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ABSTRACT

Context. Phase-mixing of Alfvén waves in the solar corona has been identified as one possible candidate to explain coronal heating.
While this scenario is supported by observations of ubiquitous oscillations in the corona carrying sufficient wave energy and by
theoretical models that have described the concentration of energy in small-scale structures, it is still unclear whether this wave
energy can be converted into thermal energy in order to maintain the million-degree hot solar corona.
Aims. The aim of this work is to assess how much energy can be converted into thermal energy by a phase-mixing process triggered
by the propagation of Alfvénic waves in a cylindric coronal structure, such as a coronal loop, and to estimate the impact of this
conversion on the coronal heating and thermal structure of the solar corona.
Methods. To this end, we ran 3D MHD simulations of a magnetised cylinder where the Alfvén speed varies through a boundary shell,
and a footpoint driver is set to trigger kink modes that mode couple to torsional Alfvén modes in the boundary shell. TheseAlfvén
waves are expected to phase-mix, and the system allows us to study the subsequent thermal energy deposition. We ran a reference
simulation to explain the main process and then we varied thesimulation parameters, such as the size of the boundary shell, its
structure, and the persistence of the driver.
Results. When we take high values of magnetic resistivity and strong footpoint drivers into consideration, we find that i) phase-mixing
leads to a temperature increase of the order of 105 K or less, depending on the structure of the boundary shell, ii) this energy is able
to balance the radiative losses only in the localised regioninvolved in the heating, and iii) we can determine the influence of the
boundary layer and the persistence of the driver on the thermal structure of the system.
Conclusions. Our conclusion is that as a result of the extreme physical parameters we adopted and the moderate impact on the heating
of the system, it is unlikely that phase-mixing can contribute on a global scale to the heating of the solar corona.
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1. Introduction

The coronal heating has been an unsolved problem for several
decades, and the mechanism behind the million-degree hot so-
lar corona is still unclear. Of course, all this time has not been
passed idly, and different generations of instruments and models
have brought further insights to the problem. We recommend De
Moortel & Browning (2015) and references therein for a com-
prehensive review.

One of the candidates suggested to explain coronal heating is
phase-mixing of Alfvén waves (Heyvaerts & Priest 1983), which
is one of the main models where Alfvén waves are put forward
to explain the thermal structure of the solar corona. (see Arregui
2015, for a more extended review). In this specific model, lo-
calised small-scale gradients develop when Alfvén waves prop-
agate at different speeds and these are preferred locations where
magnetic and kinetic energy can be converted into heating. Re-
cently, this model has fallen under careful scrutiny from the
coronal physics community because theoretical results andob-
servations have opened the possibility for phase-mixing toex-
plain coronal heating (e.g. Cargill et al. 2016).

Oscillations in the solar corona have been observed for more
than a decade, and some studies have suggested that the damping
of waves could be connected with coronal heating (Nakariakov
et al. 1999). However, observations of ubiquitous Alfvén waves
have only more recently concluded that waves carry enough en-

ergy to account for the coronal heating (Tomczyk et al. 2007;
Jess et al. 2009; McIntosh et al. 2011), where wave disturbances
are sufficiently intense to power the quiet Sun and coronal holes,
while active regions remain off the range by an order of magni-
tude (see also De Moortel & Nakariakov 2012, for a more com-
prehensive review). Morton & McLaughlin (2013) focused on
low-amplitude oscillations, where the authors found that wave
activity is low over an extended period of time, and these os-
cillations would not be able to match the energy requirements
of active regions. Threlfall et al. (2013) identified unambigu-
ous wave propagations by simultaneously measuring the veloc-
ity and displacement of observed coronal loops that López Ariste
et al. (2015) have interpreted as combined propagation of kink
and sausage wave modes.

At the same time, a number of studies have shown that trans-
verse waves are damped in the solar corona, opening the way for
the possibility that the energy previously observed in the form
of waves could be converted into coronal heating. Morton et al.
(2014) analysed the power spectra of transverse motions in the
solar corona and chromosphere and have discovered frequency-
dependent transmission profiles generated by the damping of
kink waves in the lower corona. Hahn et al. (2012) came to sim-
ilar conclusions from observing the line width of coronal lines
in coronal holes, adding that such damping could account for
a major portion of the energy required to heat these structures.
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Pascoe et al. (2016) observed and analysed the damping of some
coronal loop oscillations by making a detailed seismologicanal-
ysis to retrive the loop parameters, while Goddard et al. (2016)
examined a large set of kink oscillations to carry out a statisti-
cal study on how these oscillations undergo damping in the so-
lar corona. Additionally, other studies have compared observed
heating properties with models in order to constrain the models.
Van Doorsselaere et al. (2007) found that coronal loop heating
profiles match a resistive wave heating mechanism better than a
viscous one. Okamoto et al. (2015) observed the oscillations of
threads of a coronal prominence, identified as standing Alfvén
waves, and their subsequent damping, and Antolin et al. (2015)
argued that the observed damping of the oscillations is enhanced
by the development of Kelvin-Helmotz instabilities at the bound-
aries of the threads.

On the theoretical side, the highly structured solar corona
suggests the presence of numerous interfaces between the many
magnetic structures where plasma and magnetic field vary and
offers the ideal environment where Alfvén waves can propagate
at different speeds. At the same time, such coronal structures are
anchored to the base of the corona where footpoints move hori-
zontally as a result of photospheric and chromospheric motions,
which means that they move transversally to the magnetic field
and are likely to cause phase-mixing of transverse waves. Inthis
context, the magnetohydrodynamical (MHD) numerical experi-
ments of Pascoe et al. (2010), Pascoe et al. (2011), Pascoe etal.
(2012), and Pascoe et al. (2013) have shown that phase-mixing
can be triggered in the solar corona when kink oscillations of
coronal loops lead to the propagation of Alfvénic waves along
the inhomogeneous flux tube. It has been reliably proven that
this process leads to the concentration of wave energy in thein-
homogeneous boundary shell and the formation of small-scale
structures. This model has also described that the structures gen-
erated by the phase-mixing on the boundary shell become in-
creasingly smaller. This result has been validated in different
and increasingly realistic configurations, and it has been con-
cluded that this energy eventually needs to be dissipated. Earlier
on, ideal MHD simulations by Poedts & Boynton (1996) had es-
timated the heating that is due to phase-mixing of Alfvén waves
propagating along a magnetised cylinder by assuming turbulent
heating following the ideal evolution. Soler et al. (2016) ran a
similar analysis of propagating Alfvén waves in prominences,
but approached the problem from an analytical point of view and
also estimated the heating that can derive from this process. They
found that wave heating can contribute a fraction of the radiative
losses and only under certain conditions.

These data and numerical experiments have opened up the
possibility that the damping of kink oscillations could contribute
to the coronal heating, and with this premise, phase-mixingis a
likely candidate mechanism that could enhance the damping of
waves and lead to the conversion into coronal heating. The aim
of this work is therefore to test this hypothesis and to assess the
possible contribution to coronal heating that can derive from the
damping of kink waves through phase-mixing.

To this end, we continue the study of Pascoe et al. (2010),
where MHD simulations of a magnetised cylinder with the pres-
ence of a driver at one of the footpoints are used to simulate the
propagation of a kink mode in a coronal loop and the subsequent
mode-coupling with the (m = 1) Alfvén mode of the loop and
dissipation of these waves through phase-mixing. In our simula-
tions we also account for non-ideal terms such as magnetic re-
sistivity and thermal condution in order to investigate howmuch
energy is converted into heating and how the plasma temper-
ature changes following this process. To do so, we first run a

Fig. 1. Sketch to illustrate the geometry of our system and the Cartesian
axes.

reference MHD simulation where a single pulse driver is set in,
and we analyse the energy deposition in the boundary shell. We
then run a series of simulations where we investigate the role of
the width and shape of the boundary shell, and how the results
change when a continuous driver acts instead of a single pulse.

The paper is structured as follows: in Sect. 2 we describe our
reference model, in Sect. 3 we analyse our reference simulation
in full detail, in Sect. 4 we vary some properties of the boundary
shell and the driver, and in Sect. 5 we discuss our results and
draw some conclusions.

2. Model

In order to investigate the deposition of thermal energy in the
solar corona during the mode-coupling and phase-mixing, we
devise a numerical experiment following the same pattern asin-
troduced by Pascoe et al. (2010), Pascoe et al. (2011), and Pascoe
et al. (2012).

2.1. Initial condition

We consider a cylindrical flux tube where we define an interior
region, a boundary shell, and an exterior region (Fig. 1). The
system is set in a Cartesian reference frame withz being the
direction along the cylinder axis, andx andy define the plane
across the cylinder section. The origin of the axes is placedat the
centre of one footpoint of the cylinder. The cylinder has radiusa,
the interior region has radiusb, and the boundary shell covers a
fractionl = (a − b) /a of the cylinder radius. The boundary shell
is the ring between radiib anda, and the exterior region is the
rest of the domain beyond radiusa.

The interior region is denser than the exterior, and the density
increases over the boundary shell defined as a function ofρe, ρi,
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Table 1. Parameters

Parameter value Units
a 1 Mm
l 0.5 a
ρi 1.16× 10−16 g/cm3

ρe 2.32× 10−16 g/cm3

T0 1.58 MK
Be 6.18 G

a, andb:

ρ(ρe, ρi, a, b) = ρe +

(

ρi − ρe

2

)

[

1− tanh

(

e
a − b

[

r −
b + a

2

])]

,

(1)

wherer =
√

x2 + y2 is the radial distance from the centre of
the cylinder,ρe is the density in the exterior region, andρi is
the density in the interior. The temperature of the plasma,T , is
assumed uniform atT0, and the thermal pressure,p, is set by the
equation of state

p =
ρ

0.5mp
kbT , (2)

wheremp is the proton mass andkb is the Boltzmann constant.
The flux tube is initially in equilibrium, and in order to allow
the propagation of kink waves and provide magnetohydrostatic
equilibrium, we set a non-uniform magnetic field,B, along the
z-direction:

Bz =

√

B2
e − 2(p − pe), (3)

which balances the varying thermal pressure, whereBe is the
value of the field in the exterior region,pe is the thermal pressure
in the exterior region (derived fromρe andT0), andp is the local
value of the thermal pressure. In Table 1 we list the values ofthe
free parameters used to set up our specific experiment.

Figure 2 shows the value ofρ, Bz, and the corresponding
Alfvén speed (VA) across the cylinder. In particular,VA is higher
in the exterior region and decreases in the boundary shell, where
the maximum gradient is atr ≃ 0.8a. With the present parame-
ters, the plasmaβ is uniformlyβ = 0.02.

2.2. Driver

A driver acts on the system in order to initiate the propaga-
tion of Alfvénic waves within the system (represented in pink
in our sketch in Fig. 1). The driver is prescribed by the displace-
ment along the x-axis of the flux tube below the lowerz bound-
ary of the cylinder and by the consequent velocity perturbation.
Specifically, Fig. 3a (blue line) shows the position of the centre
of the flux tube as a function of time, whose expression is given
by

s(t) =
V0

ω
sinωt sin

ωt
2
, (4)

where V0 is the amplitude of the speed of the displacement,
ω = 2π/P is the angular frequency derived by the period of the
oscillationsP, andV0/ω is the following spatial displacement of
the centre of the flux tube. The driver sets in att = 0 and stops
at t = P. This displacement of the flux tube leads to a uniform
velocity perturbation within the interior region and the boundary

Fig. 2. Cuts of our initial condition for our MHD model across the cylin-
der. (a) Density, (b)z−component of the magnetic field, and (c) Alfvén
speed.

shell that is described by the time derivative of Eq. 4 (Fig. 3a,
red line):

vx0 =
ds(t)

dt
= V0

(

cosωt sin
ωt
2
+ 0.5 sinωt cos

ωt
2

)

. (5)

As in Pascoe et al. (2011), this choice for the driver combines an
oscillatory motion at the footpoint (∼ sin(ωt)) with an envelope
of sin(ω/2t) to ensure a smooth (continuous) acceleration att =
0. In the exterior region, we assume that the system reacts tothe
flux tube motion as a 2D dipole velocity configuration, so that
thex andy components of the velocity in the exterior region can
be written as a function of time and space as

vx = vx0a2 (x2 − y2)
(x2 + y2)2

(6)

vy = vx0a2 2xy
(x2 + y2)2

. (7)

This choice allows a smooth transition between the boundary
shell and the exterior region as the velocity amplitude is never
discontinuous and mimics plasma flows around the magnetised
cylinder when in motion. Figure 3b shows the driver configura-
tion at t = P/2 when the velocity is maximum and the flux tube
is at its rest position. Table 2 summarises the values we usedto
set up the driver in our numerical experiment.

The value ofV0 we chose is one tenth of the Alfvén speed
in the interior and is a relatively high value with respect tothe
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Fig. 3. Settings for the driver. (a) Time evolution of the cylinder centre
footpoint displacement as a function of time (blue line) andthe con-
sequent velocity displacement (red line). (b) Map of the density of the
driver att = 0.5 P with the velocity arrow overplotted. The maximum
velocity in the cylinder at this time isV0 , according to Table 2.

Table 2. Parameters

Parameter value Units
V0 113 km/s
P 6.18 s

usually considered horizontal footpoint motions (Threlfall et al.
2013). The period of the driver is designed to produce a visible
effect on the present numerical experiment and is not meant to
represent a significant frequency in the power spectrum of the
corona. At the same time, while the period is well below the peak
of the 5 minutes, oscillations of the order of seconds could still
contribute to the power spectrum of the velocity perturbation at
the coronal footpoints.

2.3. MHD simulation

In order to study the evolution of the system caused by the foot-
point driver, we used the MPI-AMRVAC software (Porth et al.
2014) to solve the MHD equations, where thermal conduction,

magnetic diffusion, and joule heating are treated as source terms:

∂ρ

∂t
+ ∇ · (ρv) = 0, (8)

∂ρv
∂t
+ ∇ · (ρvv) + ∇p −

j × B
c
= 0, (9)

∂B
∂t
− ∇ × (v × B) = η

c2

4π
∇2B, (10)

∂e
∂t
+ ∇ · [(e + p)v] = −η j2 − ∇ · Fc, (11)

wheret is time,v velocity,η the magnetic resistivity,c the speed
of light, j = c

4π∇ × B the current density, andFc the conductive
flux (Spitzer 1962). The total energy densitye is given by

e =
p
γ − 1

+
1
2
ρv2 +

B2

8π
, (12)

whereγ = 5/3 denotes the ratio of specific heats.
In our numerical experiments we adopted a value ofη that is

set uniformly asη = 109ηS , whereηS is the classical value at
T = 2 MK (Spitzer 1962).

The computational domain is composed of 512× 256× 512
cells, distributed on a uniform grid. The simulation domainex-
tends fromx = −2 Mm to x = 2 Mm, from y = −2 Mm to
y = 0 Mm (where we model only half of a flux tube) and from
z = 0 Mm to z = 40 Mm in the direction of the initial magnetic
field. The boundary conditions are treated with a system of ghost
cells, and we have periodic boundary conditions at bothx bound-
aries, reflective boundary conditions at they boundary crossing
the centre of the flux tube, and outflow boundary conditions at
the othery boundary. The driver is set as a boundary condition
at the lowerz boundary and outflow boundary conditions are set
at the upperz boundary.

3. Reference simulation

The evolution of the MHD simulation allows us to analyse how
the process of mode-coupling and phase-mixing leads to the de-
position of thermal energy in the system. As soon as the driver
sets in, a wavetrain propagates into the domain, and we illustrate
the evolution that follows in Fig. 4, where we show maps of den-
sity contrast (ρ(t) − ρ(0))/ρ(0), thex-component of the velocity
and temperature of the plasma att = P andt = 4 P in a projec-
tion of the 3D simulation box where we cut two vertical planes
at x = 0 andy = 0 and a horizontal plane at thez coordinates of
the trail of the wavetrain propagating at the Alfvén speed ofthe
interior region.

The evolution described by they = 0 plane is the expected
evolution of an oscillation of the flux tube along thex direction,
where we see weak compression and rarefaction according to the
phase of the driver, alternating positive and negativevx regions,
and no significant temperature change. Additionally, an acoustic
mode follows the propagation of the transverse wave and leads
to a visible compression and rarefaction atz = 5 Mm at t = 4P.

The evolution on the planex = 0 is of greater interest for
the present work. The velocity patterns are in line with what
has been found and thoroughly analysed by Pascoe et al. (2010),
where the mode-coupling and phase-mixing lead to the concen-
tration of velocity structures in the boundary shell. The ampli-
tude of the driver (10% of the Alfvén speed) leads to weakly
non-linear dynamics.
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Fig. 4. 3D cuts of the MHD simulation where show maps of density
contrast(ρ(t) − ρ(0)) /ρ(0) (left column),vx (centre column), and tem-
perature change(T (t) − T (0)) (right column) on thex = 0 andy = 0
plane and the horizontal plane at thez = (t − P)VA0 coordinate att = 1
P (upper row) andt = 4 P (lower row).

As the purpose of this work is to identify the capacity of these
phenomena to convert the magnetic and kinetic energy concen-
trated in the boundary shell into plasma heating, we addressthe
temperature change in the boundary shell att = 4P (Fig. 4 right
column). We find that a region of increased temperature along
the vertical direction inside the boundary shell is formed.This
region has a slightly variable width and extends over about 45◦

on thexy plane, as we see in the horizontal cut att = 4 P. In this
simulation the heating is of the order to 5× 104 K and reaches
7× 104 K in some regions.

Figure 5a shows the temperature increase profile atz = 26.60
Mm from t = 3.2 P to t = 5 P with a cadence of 0.1 P (from the
thinnest to the thickest line) where the red vertical line marks
the position of the maximum gradient of the Alfvén speed. The
temperature starts to increase in the boundary shell near its bor-
der with the exterior region, where the kinetic energy is higher.
Then the temperature increase profile maximum drifts towards
the centre of the boundary shell and stops at the position where
the gradient of the Alfvén speed is maximum, and from there
it develops in a temperature increase profile centred at thatpo-
sition. The green line in Fig. 5a follows the maximum of the
temperature increase that approaches the centre of the bound-
ary shell in three consecutive segments, each determined bythe
arrival of one of the velocity peaks induced by the driver. The
location of the maximum gradient of the Alfvén speed does not
change over this time frame. Figure 5b stacks cuts of the temper-

Fig. 5. Temperature difference(T (t) − T (0)) cuts. (a) Cuts atx = 0
andz = 26.6 Mm (where the maximum temperature is found) between
t = 3.2 P (thinnest line) andt = 5 P (thickest line). The vertical red
dashed lines are the borders of the boundary shell, and the red lines are
placed at the location of the maximum gradient of the Alfvén speed at
each time. (b) Staggered cuts along the z direction on thex = 0 at the
initial location of the maximum gradient of the Alfvén speed. The green
line follows the location of the maximum temperature increase in both
plots.

ature increase along thez-direction at different times every 0.1P
at they coordinate where the maximum of the gradient of the
Alfvén speed is situated. We note that the bump in the temper-
ature increase is located at higher z as the evolution progresses
until t = 4 P, when it settles at aboutz = 27 Mm. At the same
time, its magnitude increases as well. Att = 5P the maximum
temperature increase is 7× 104 K. It should also be noted that at
each time the maximum temperature increase lags the perturba-
tion, as is visible from the wave that propagates from the origin
towards the edge of the domain.

Similar conclusions can be made based on Fig. 6, where we
show maps of the quantity∇2Bx (Fig. 6a) and temperature in-
crease (Fig. 6b) att = 4P on thex = 0 plane. The black arrows
represent the Poynting flux (only where its intensity is above a
threshold), and we chose∇2Bx because it is some order of mag-
nitude larger than∇2By and∇2Bz. As we are investigating a non-
ideal heating mechanism, we focus on∇2Bx because where this
term is large, magnetic diffusivity operates and magnetic energy
is converted into heating. Where∇2Bx is locally large, the Poynt-
ing vector shows a transfer of energy from the exterior to the
boundary shell. This creates favourable conditions for thediffu-
sivity term to act, and thus, the conversion into thermal energy
starts. Therefore, the temperature increase becomes visible only
after (or following) the transfer of energy to the boundary shell
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Fig. 6. Maps on thex = 0 plane of (a)∇2Bx and (b) the temperature dif-
ference(T (t) − T (0)) at t = 4 P with Poynting flux vectors overplotted
where this is more intense. In panel (a) the dashed blue linesdefine the
borders of the boundary shell.

Fig. 7. Temperature difference evolution of two points on thex = 0
plane at the location of the maximum gradient of the Alfvén speed atz =
26.60 Mm (red line, where the maximum temperature in the simulation
is reached att = 5 P) and atz = 13.32 Mm (blue line).

has occurred, together with the formation of regions with high
∇2Bx.

Additionally, the heating takes place over a bounded pe-
riod of time from when the phase-mixing starts to occur until
the process of conversion of energy into thermal energy is con-
cluded. Figure 7 shows the temperature evolution of two points
at z = 13.32 Mm (blue line) andz = 26.60 Mm (red line) at
the x = 0 plane at the location of the maximum gradient of the
Alfvén speed. The vertical lines show the time at which a wave
that propagates from the lower boundary at the Alfvén speed of
the exterior region reaches the two points (fronts), and thetime
at which a wave that propagates from the lower boundary when
the driver ends at the speed of the Alfvén speed of the interior
region (trails). The temperature remains constant as long as no
perturbation reaches the point, it then steadily increasesas the
energy concentrated in the boundary shell is dissipated, and it
finally remains constant again. While this evolution is common
for both points, the final temperature depends on thez coordi-
nate because the amount of energy that can be converted into
heating depends on the intensity of the gradients of the mag-

Fig. 8. (a) Difference in energy in the boundary shell between timet
and t = 1P: magnetic (blue lines -Bx, magenta lines -Bz), kinetic
(green lines), and thermal (red lines) energy for the simulations with
η = 109ηS and η = 0. (b) Difference in the energy in the boundary
shell between the simulation withη = 109ηS andη = 0 normalized to
the thermal energy difference between the two simulations at each time.
Note that the horizontal axis in both panels starts att = 1 P, i.e. when
the boundary driving has terminated.

netic field, which become steeper in z the more out of phase
adjacent propagating waves are. At the same time, because of
the progressive damping of waves, there is more kinetic energy
available at lower z-coordinates than higher up. In the present
analysis the time integral of the kinetic energy in the boundary
shell that crosses thez = 13.32 Mm surface is 20% higher than
the time integral of the kinetic energy that crosses thez = 26.60
Mm.

In order to further investigate how the energy is converted
into heating, we ran a simulation where we setη = 0 to ex-
clude the resistivity effects. In MHD simulation terms, this cor-
responds to adopting numerical resistivity, which is the lowest
resistivity value that a given MHD simulation can achieve. The
simulation withη = 0 shows an evolution very similar to the one
in Sect. 3, except that no significant temperature increase occurs
through phase-mixing (lower than 5× 103 K).

Figure 8a shows the change in magnetic energy (associated
with B2

x and B2
z ), kinetic, and thermal energy in the boundary

shell compared to the timet = P (when the driver has stopped)
as a function of time in the two simulations. The magnetic en-
ergy associated withB2

y remains negligible throughout the entire
evolution. The main difference is that the thermal energy signif-
icantly increases in the simulation whereη = 109ηS , while it
shows only a very modest change in the simulation without re-
sistivity. This corresponds to a visible drop in magnetic (Bx) and
kinetic energy in the simulation with resistivity, when thedriver
has transmitted energy into the system. In addition, the localised
heating leads to an increase in the plasma pressure in the bound-
ary shell and hence (to conserve pressure balance) to a decrease
in Bz. This decrease is clearly visible from the magenta lines in
Fig. 8a. The oscillations in theBz-magnetic energy are due to
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Fig. 9. Thermal energy difference as a function of time (a) in the same
point as in Fig.7 atz = 26.60 Mm and (b) integrated in the entirex = 0
plane. The red dashed line in both plots is an estimate of the radiative
losses for the region of interest.

the driver-induced transverse wave motions, as the equilibrium
magnetic field is not constant in the domain. This analysis shows
again that the non-ideal MHD terms are essential to convert the
energy concentrated in the boundary shell into heating. In Fig.
8b we set equal to 1 the difference of the thermal energy in the
boundary shell at any given time between the simulation with
resistivity and the one without. The corresponding difference in
magnetic (Bx) and kinetic energy is about the same, at a value
of −0.6. This result suggests that the kinetic and magnetic en-
ergy contribute to the same extent in providing the system with
thermal energy, as expected for Alfvén waves and predicted in
Heyvaerts & Priest (1983).

However, the open question is whether this energy input can
match the radiative losses in order to answer to which extentthis
heating mechanism can contribute to the coronal heating. InFig.
9a we show the internal energy evolution in a plasma element
located on the phase-mixing shell atz = 26.60 Mm (same as
red line in Fig.7) as a function of time compared with an esti-
mate of the cumulated radiative losses following from the den-
sity and temperature evolution of the same plasma element. We
find that the energy deposition in a single plasma element can
largely overcome the radiative losses. However, the question is
not whether the heating mechanism can maintain coronal tem-
perature in a single favourable location, but if it can supply suf-
ficient energy for entire coronal structures. Figure 9b shows the
result when the same analysis is carried out and integrated on the
upper three quarters of thex = 0 plane of the present simulation
(we exclude the lower part to avoid spurious variations thatare
due to the lower boundary of the simulation and the propagation
of the acoustic mode). As the heating is localised in a narrowre-
gion near the phase-mixing shell, the energy contribution to this
extended domain is insufficient to balance the energy lost by ra-
diation of the plasma on the planex = 0. This spatial domain is

arbitrary and plotted just to show the effect of the spatial limita-
tion of the heating. Conditions would be even less favourable to
maintain a coronal temperature in this regime if we considered a
3D domain instead.

4. Investigating the parameter space

In Sect. 3 we have described the mechanism that leads to the de-
position of thermal energy in the boundary shell as a result of
the phase-mixing of propagating Alfvén waves. Our estimation
of the thermal energy contribution from this mechanism seems
to be inconclusive as to whether it can definitely overcome the
radiative losses. In light of this, it is essential to address the role
of the boundary shell in this mechanism in order to assess how
much the energy deposition can differ from what we have anal-
ysed so far. To do so, we ran simulations where the boundary
shell of the cylinder varies in width and where it has a more
complex structure.

4.1. Boundary shell width

Using the setup explained in Sect. 2, we ran two more simula-
tions in which we only changed the width of the boundary shell
by using l = 0.75 (wider boundary shell) andl = 0.35 (nar-
rower boundary shell) with respect to Table 1. These were anal-
ysed in combination with the reference simulation withl = 0.5
described in Sect. 3 to investigate how the mode-coupling and
phase-mixing are affected by Alfvén speed gradients. A nar-
rower boundary shell leads to a steeper Alfvén speed profile
(as all other parameters in the setup have remained unchanged),
implying that phase-mixing will become more efficient (i.e. the
damping length will be shorter Heyvaerts & Priest (1983)). The
mode-coupling process that feeds kinetic and magnetic energy
into the shell region also depends on the Alfvén speed profilein
the shell region, but now a wider shell (a milder Alfvén speed
gradient) leads to more efficient mode-coupling (Pascoe et al.
2010, 2012, 2013). Hence, the deposition of thermal energy is
dependent on the combined efficiency of mode-coupling and
phase-mixing and how the resistivity effects interact with these
mechanisms, so that it is not a priori obvious which configuration
will be most efficient. The purpose of this experiment is to assess
which effect dominates the dynamics and how this influences the
non-ideal effects in the simulation, in particular the heating.

Figure 10 shows 3D cuts ofvx andT on thex = 0 andy = 0
planes att = 4 P for the simulations withl = 0.35 andl = 0.75,
to be compared with the simulation withl = 0.5 (Fig.4). The
velocity phase-mixing patterns are visibly narrower in thesim-
ulation with l = 0.35 and visibly wider in the simulation with
l = 0.75 as they entirely fill the boundary shell. Similar varia-
tions are found in the extension of the temperature increasere-
gion, where the temperature increase is dependent on the size
of the boundary shell, however. The region in which the heating
occurs is narrowest in the simulation withl = 0.35, and the max-
imum temperature increase is∆T ≃ 105 K, while the simulation
with l = 0.75 show the largest heated region where∆T ≃ 5×104

K.
In order to assess which configuration (wide or narrow

boundary shell) leads to more efficient deposition of thermal en-
ergy, we analysed the time evolution of the wave energy (kinetic
+ magnetic energy associated toBx) and the thermal energy in
the boundary shell (Fig. 11). Initially (t < 1 P), energy is in-
jected into the domain (blue lines), including the boundaryshell,
by the driver. This initial increase is followed by a second rise,
where the mode-coupling process transfers wave energy intothe
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Fig. 10. 3D cuts as in Fig. 4 ofvx in the left column and temperature
difference,(T (t) − T (0)), right column, att = 4 P for the simulation
with l = 0.35 (upper row) and withl = 0.75 (lower row).

Fig. 11. Evolution of the wave energy (blue lines) and thermal energy
(red lines) in the loop boundary layer as a function of time for different
widths of the boundary (l = 0.35, dashed line;l = 0.50, continuous line;
l = 0.75, dotted line).

shell region. However, phase-mixing is already taking place at
this stage, as is evident from the increase in thermal energy. The
thermal energy starts to rise before the wave energy reachesits
maximum value. Following this maximum, dissipation through
phase-mixing is clearly the dominant process in the shell re-

Fig. 12. Time evolution of the time derivative of the average kinetic
energy in the boundary shell (continuous lines) and in the interior region
(dashed lines) for the three simulations withl = 0.35 (red lines),l =
0.50 (black lines), andl = 0.75 (blue lines).

gion: wave energy is converted into thermal energy at a faster
rate than it is transferred into the layer by mode-coupling.From
comparing the thermal energy curves (red lines), it is clearthat
the increase in thermal energy is largest for the narrow boundary
layer (dashed red line). This is in agreement with Fig. 10, which
showed a larger increase in temperature in the boundary layer
at t = 4 P for the simulation with the smallest boundary width
(l = 0.35).

In order to further describe how the width of the boundary
shell affects the energy transfer to the boundary shell, we show
the time derivative of the average kinetic energy in the interior
region and in the boundary shell in Fig. 12. We focus on the av-
erage kinetic energy because i) it is the form of energy that is
initially pumped into the system and more clearly drifts to the
boundary shell, and ii) by averaging over the domain, we com-
pensate for two effects: first, the narrower boundary shell simula-
tion has more total kinetic energy because it has more plasmain
the simulation box, and second, the broader boundary shell sim-
ulation has more kinetic energy in the boundary shell because
the shell is larger. In Fig. 12 the time derivative is large and pos-
itive for t < P while the driver is pumping kinetic energy into
both the interior and boundary shell. Aftert = 1 P, the average
kinetic energy in the interior diminishes and it increases in the
boundary shell. The time derivative of the average kinetic energy
in the interior is negative for all simulations, and the simulation
with l = 0.75 is the one where it is minimum. The time deriva-
tives of the interior region and the boundary shell are opposite
in sign, and the total kinetic energy remains roughly constant,
with variations of the order of 1%. This confirms that in this first
phase the mode-coupling dominates the dynamics, that the ki-
netic energy is transferred from the interior to the boundary shell,
and that a broader boundary shell makes the energy transfer via
mode-coupling more efficient. This phase continues untilt ∼ 2.5
P, when the time derivative of the average kinetic energy in the
boundary shell changes sign. In this second phase, dissipation
dominates, and hence the time derivative of the average kinetic
energy in the boundary shell is negative for all the simulations.
In this regime the narrower boundary shell simulation is more ef-
ficient in dissipating energy as its time derivative is lower. At the
same time, the time derivative in the interior region approaches
zero because there is less and less energy to dissipate, without
ever showing a regime change, as the waves keep damping in
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Fig. 13. Temperature difference evolution of the points with highest
temperature on thex = 0 plane at the location of maximum gradient
of Alfvén speed in each simulation:l = 0.75 (dotted line),l = 0.50
(continuous line), andl = 0.35 (dashed line). Note that the time axes
have been shifted so that we plot the elapsed time from when the heat-
ing starts. At the end of each line, we report thez-coordinate of the point
and the time at which the heating of the point starts.

that region. Aftert = 4 P, the propagating waves interact with
the upper boundary of the simulation box and the kinetic energy
undergoes variations because a part leaves the domain.

Figure 13 shows the temperature evolution of the point on
the x = 0 plane that reaches the highest temperature at the end
of the simulation from the time at which heating starts. We find
that the final temperature depends on the width of the boundary
shell, while the timescale over which thermal energy energyis
deposited is not dependent on the width of the boundary shell
because the time taken from the start of the temperature increase
to the final temperature is the same for all three simulations. In
all three simulations, the final temperature is reached in about
one period. Figure 13 also shows that the maximum of tempera-
ture is reached at lower z (and earlier in time), as the boundary
shell becomes narrower.

4.2. Structure of the boundary shell

The boundary shell structure we have investigated so far is rela-
tively simple, where the density smoothly increases towards the
interior region and the gradient of the Alfvén speed peaks near
the centre of the boundary shell. In order to address how the
location of the heating depends on the structure of the bound-
ary shell, we devised a different simulation where we changed
the structure of the boundary into a profile with two peaks in
the gradient of the Alfvén speed (Fig. 14). In this simulation the
boundary shell extends fromb = 0.25 to a = 1 (l = 0.75), and
the density increases in two steps similar to Eq. 1, each extend-
ing for half of the boundary shell. The density profile is given
by

ρ = 0.5

[

ρ

(

ρe,
ρ2 + ρi

2
, a,

a + b
2

)

+ ρ

(

ρ2 + ρi

2
, ρi,

a + b
2
, b

)]

.

(13)

This density profile prescribes a boundary shell of width 0.75
Mm where the density in the interior and exterior region are the
same as in the simulation withl = 0.75. The two gradients of the
Alfvén speed peaks are smaller and larger than the equivalent
profile for the simulation with a smooth boundary shell.

Fig. 14. Density (blue lines) and gradient of Alfvén speed (red lines)
across the cylinder for the simulation with a smooth boundary shell
(dashed lines) and the simulation with a two-step boundary shell (con-
tinuous lines).

Fig. 15. 3D cuts as in Fig. 4 ofvx in the left panel and temperature
difference,(T (t) − T (0)), right panel, att = 4 P for the simulation with
l = 0.75 and a two-step boundary shell.

Figure 15 shows the evolution of the system att = 4 P equiv-
alent to Fig. 10, and the mode-coupling and temperature increase
patterns do not show great differences with respect to the sim-
ulation with a smooth boundary profile. We only find that the
vx phase-mixing pattern becomes slightly more structured with a
variable width and that the temperature increases at two different
locations on the boundary shell, where the temperature increase
is more signficant at the more external peak.

Figure 16 shows the temperature increase on the planex = 0
at z = 31.91 Mm at t = 5 P for the two simulations with a
boundary shelll = 0.75 Mm. We find that the temperature in-
crease follows the structure of the boundary shell, with as many
temperature peaks as the gradient of the Alfvén speed peaks.
The peaks are also located in the same positions as the peaks of
the gradient of the Alfvén speed, and the temperature increase is
proportional to the intensity of the Alfvén speed gradient.

However, as shown in Fig. 17, this does not lead to a visible
change in the thermal energy deposited in the boundary shell,
where in the simulation with a two-step boundary shell only 2%
more thermal energy is deposited in the boundary shell.
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Fig. 16. Temperature difference,(T (t) − T (0)), cut across the cylinder
on thex = 0 plane atz = 31.91 Mm for the simulations withl = 0.75
with the smooth boundary shell (dashed line) and the two-step boundary
shell (continuous line).

Fig. 17. Thermal energy difference between t andt = 0 in the boundary
shell as a function of time for the simulation withl = 0.75 and a smooth
boundary shell (dashed line) and a two-step boundary shell (continuous
line).

4.3. Continuous driver

To conclude our investigation, we analysed the evolution ofthe
system when a continuous driver (instead of a single pulse) is
used to perturb the system. This is a step towards a configuration
where the footpoints are continuously displaced by photospheric
motion. In this simulation we used all the parameters outlined in
Sect. 2, with the only difference that we did not switch off the
driver after one pulse, but let it continue.

Figure 18 shows the evolution of the system aftert = 6 P and
t = 12 P. Thevx pattern shown on the planex = 0 indicates that
the phase-mixing occurs in a similar way for each consecutive
period of the driver as the same pattern as is visible in Fig. 4
repeats. However, as each wave train encounters conditionsthat
increasingly depart from the initial condition, the shape of the
phase-mixing pattern becomes less regular and has more internal
structuring. The temperature increase pattern shows significant
differences with respect to our previous simulation, as the plasma
reaches higher temperatures and the heated region broadensin
time.

Figure 19 shows the temperature increase evolution of a sin-
gle plasma element located at the steepest Alfvén speed location
on thex = 0 plane atz = 26.60 Mm, and the overplotted grid
is spaced one period horizontally and vertically by the temper-
ature increase after one pulse. The temperature increase starts

Fig. 18. 3D cuts as in Fig. 4 ofvx in the left column and temperature
difference,(T (t) − T (0)), right column, att = 6 P (upper row) andt =
12 P (lower row) for the simulation with continuous driver.

after t = 3 P, and it increases mostly linearly untilt = 7 P,
when four pulses have crossed the plasma element. Aftert = 7
P, the temperature increase is no longer linear in time, and each
pulse contributes with an increasingly smaller temperature rise.
At t = 12 P, the temperature increase slightly exceeds∼ 5× 105

K.
Similar conclusions can be drawn from the evolution of the

energy in the boundary shell (Fig. 20), where we find that the
thermal energy steadily increases untilt = 11 P. After t = 2
P, the thermal energy increases at the expense of the wave en-
ergy that enters the boundary shell. However, the wave energy
remains constant aftert = 5 P, when the entire z-extension of
the domain is filled by the wave propagation. Aftert = 11 P, the
thermal energy becomes saturated.

Figure 21 compares the thermal energy increase in the
boundary shell atx = 0 with an estimate of the radiative losses
(as in Fig. 9). In this simulation the thermal energy deposition
largely overcomes the radiative losses because energy is contin-
uously injected into the system. It also should be noted thatthe
increase in thermal energy is not linear, and each pulse deposits
an increasingly higher amount of thermal energy because thede-
position of energy drifts to lower and higher z coordinates after
the shells initially involved saturate.

Additionally, the prolonged effect of the driver on the system
leads to the fragmentation of the structure of the boundary shell
in the time span of a few periods. Figure 22 shows the evolution
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Fig. 19. Temperature difference evolution of the point on thex = 0
plane at the location of the maximum gradient of the Alfvén speed atz =
26.60 Mm for the simulation with continuous driver (black continuous
line), compared to the same temperature evolution for the simulation
with single pulse (red line). The overplotted grid is horizontally spaced
by 1 P and vertically spaced by the final temperature increase in the
single-pulse simulation. The blue straight line would be the temperature
evolution if the same initial temperature increase is gained at each pulse.

Fig. 20. Difference in energy in the boundary shell between timet and
t = 0 for the simulations with a continuous driver as a function of time:
wave energy (blue line) and thermal energy (red line).

.

Fig. 21. Thermal energy difference as a function of time integrated in
the entirex = 0 plane for the simulation with a continuous driver (red
line) and for the simulation with a single pulse (black line). The red
dashed line is an estimate of the radiative losses in the sameregion.

Fig. 22. Maps on the planez = 30 Mm of the temperature difference,
(T (t) − T (0)) (left column), andvx (right column) att = 6 P (upper row)
andt = 12 P (lower row) for the simulation with a continuous driver.

of vx and the temperature difference (T − T0) on a cross section
placed atz = 30 Mm at t = 6 P and t = 12 P. The cross sec-
tions show regular patterns att = 6 P, when that cross section
has been reached by only one pulse. The velocity patterns are
concentric around the centre, and negative and positive velocity
regions alternate. The temperature increase is contained within
an annular arc region of the boundary shell. Once more, pulses
reach this location, the patterns ofvx andT − T0 become more
irregular, and smaller-scale structures appear. The temperature
increase extends to higher radial distances from the centreof the
cylinder and is no longer an annular arc. The velocity pattern
also becomes irregular and involves more external shells from
the centre of the cylinder. These structures develop when the
system loses the initial symmetry about thex = 0 plane, and
analysis of the involved forces suggests that the loss of symme-
try originates from the oscillations of the magnetic field induced
by the driver. This evolution is comparable with the develop-
ment of Kelvin-Helmholtz instabilities reported in Terradas et al.
(2008), Antolin et al. (2015), and Magyar & Van Doorsselaere
(2016), with the difference that in our model the conditions for
a development of the instability are built through the passage of
several propagating waves, while in these studies the instability
is triggered by standing oscillations. It has been shown that the
development of Kelvin-Helmholtz instabilities amplifies the ef-
fect of resonant absorption (or phase-mixing) of Alfvén waves
on plasma heating by developing smaller-scale structures at the
boundary shell where wave energy is more favourably converted
into heating (Browning & Priest 1984). The present simulation
shows comparable dynamics, as the thermal energy deposition
in the boundary shell significantly accelerates aftert = 9 P,
when the first Kelvin-Helmholtz instability-like structures ap-
pear. However, the high resistivity we have adopted prohibits the
development of visible small-scale vortices.

One consequences of the expansion of the region involved
in the temperature increase is that the heating is not bounded to
the initial boundary shell, but extends in time to regions initially
outside of the boundary shell. Figure 23 shows the temperature
increase on thex = 0 plane atz = 26.60 Mm from t = 0 to
t = 12 P with a 1 P cadence (from the thinnest to the thickest
line). The temperature increase profile is always a curve with one
peak that reaches 0.55 MK at the end of the simulation. We also
see that the position of the centre of the peak slightly movesin
time, but more importantly, while at the beginning the heating
is only appreciable in the initial boundary shell (betweeny =
[−1,−0.5]), at the end it extends fromy = −1.3 to y = −0.2.
This results is also in line with what has been found by Antolin
et al. (2015).
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Fig. 23. Temperature difference,(T (t) − T (0)), cut across the cylinder
on thex = 0 plane atz = 26.60 Mm from t = 0 to t = 12 P with 1 P
cadence from the thinnest to the thickest line. The red vertical dashed
lines mark the borders of the boundary shell.

5. Discussion and conclusions

We have developed a simple model of a magnetised cylinder that
is perturbed at one of its footpoints by a transverse displacement.
The configuration we have adopted leads to the phase-mixing
of propagating Alfvén waves in the loop shell region, and we
focused our analysis on the heating that follows. The aim of
this modelling effort is to investigate the contribution of phase-
mixing of Alfvén waves to the coronal heating problem.

In many respects, our model is a simplification of a coronal
loop structure, and it does not address more complex features of
these magnetic structures. Certainly, our modelling starts from a
condition where the coronal loop is already in place and witha
temperature above the chromospheric and photospheric temper-
atures. Therefore, the key to interpret our results is whether such
a mechanism can at least maintain the loop structure againstthe
radiative losses.

Although our study is not conclusive on the matter, it sheds
light on some relevant aspects of the contribution from phase-
mixing to coronal heating, and it helps identify some points
where this model is in disagreement with observations.

First of all, our numerical experiments show that phase-
mixing is a plausible mechanism in the corona, where we have
used plasma and magnetic field parameters that are in the ob-
served or measured range. We also showed that a time-limited
oscillation propagating from the footpoint leads to a time-limited
energy deposition that increases the plasma temperature bya
certain amount. This process is in line with the impulsive man-
ner in which coronal heating is observed to work (Warren et al.
2011; Reale 2010). Finally, we showed that the energy deposi-
tion is comparable with the radiative losses, thus keeping phase-
mixing as a candidate to maintain the high temperature of theso-
lar corona. Given the physics and geometry of the solar corona,
where magnetic field structures act as vertical wave guides and
observed horizontal motions at the base of the corona perturb
these magnetic structures out of equilibrium, inevitably lead-
ing to the upward propagation of Alfvénic waves, phase-mixing
has to occur. The unanswered question is whether this is justa
marginal process in the solar corona or whether it dominatesthe
temperature evolution.

Here, major concerns are still challenging phase-mixing asa
mechanism to justify coronal heating on a larger scale, and here
we list some. Fist of all, the model can match the radiative loss
estimation only with the adoption of a very high magnetic re-
sistivity. In our simulations we used a resistivity 109 times the
value predicted by the classical theory (at a 2 MK temperature),

and such an amplification of the resistivity is not only essential to
overcome the numerical resistivity (inherent to any MHD code),
but more importantly, also to achieve a significant increasein
the plasma temperature in the model. Similarly, we had to adopt
a relatively large amplitude driver in order to stimulate anappre-
ciable deposition of thermal energy in the model. Velocities of
the order of 10 km/s are typically measured as motions of coro-
nal structures, while in our case the peak velocity is higherthan
100 km/s. Our velocity is also much higher than the one used in
Pascoe et al. (2010), and at about 10% of the Alfvén speed, our
system probably evolves in a weakly non-linear regime. More-
over, the measured power spectrum of the oscillations of the
solar corona peaks at 5 minutes because of the forcing photo-
spheric oscillations. The period of our driver is instead at6 sec-
onds, which may not be a significant frequency of the coronal
power spectrum. This is especially relevant because longeroscil-
lation periods would probably lead to slower heating timescales
in this model. Finally, our model has certainly led to the heating
of the boundary shell, but does not address how the centre of the
loop would obtain a significant amount of thermal energy to sus-
tain the loop structure against radiative cooling. This is aconcern
intrinsic to the phase-mixing process, which concentrateswave
energy only on the boundary shell (Cargill et al. 2016). Even
the single case we addressed, in which the temperature increase
eventually involved regions beyond the boundary shell, it needs
several oscillations to set in. The question remains open whether
this extension needs to be triggered earlier in order to balance
radiative losses, particularly in the core of the loop.

The aforementioned problems seem to pose major concerns
for the validation of phase-mixing as a mechanism for coronal
heating on a global scale. The model we described seems to
match the observations only by pushing the physical parameters
to conditions that are extremely unlikely to occur in the solar
corona. At the same time, it is useful to outline some uncertain-
ties about the coronal physics that could still open the way to
the possibility that phase-mixing can explain coronal heating. It
is widely accepted that the combination of a classical resistiv-
ity value and the spatial resolution at which we resolve coronal
structure are not able to explain the magnetic energy conversion
in the solar corona. One possibility is that the developmentof
gradients on spatial scales much smaller than our current spatial
resolution can affect the larger-scale evolution and thus amplify
the role of the classical diffusivity terms. Another possibility is
that the classical theory simply fails when small spatial scales
become relevant. In any case, the question on how the Ohmic
heating operates in the solar corona still holds and the efficiency
of any magnetic energy conversion mechanism remains uncer-
tain. The intensity of the driver has also been questioned, but it is
currently not possible to separate the line-of-sight projection ef-
fects when coronal flows are measured from Doppler velocities.
While we can state that average observed speeds are of the order
of 10 km/s, it is therefore more difficult to determine whether
this average comes from a collection of comparable motions or
from the residual of the line-of-sight cancellation of muchfaster
motions (De Moortel & Pascoe 2012). Similarly, it needs to be
addressed whether the development of Kelvin-Helmholtz insta-
bilities triggered by phase-mixing could make the whole mecha-
nism more efficient. Finally, while it is true that our model takes
only a monochromatic wave packet with a specific period into
account that seems not to be relevant for the solar corona, itis
also true that such simple drivers are unlikely to occur at the
dynamic base of the solar corona. It is more plausible that ac-
tual drivers in the solar corona are composed of a more complex
spectrum. This means that frequencies of the order of seconds
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are also a component of the spectrum and that a realistic wave
packet that is more energy rich would provide the system with
more energy than what we have modelled with a monochromatic
pulse.

Our partial conclusion is that phase-mixing does not seem
to be a viable mechanism to explain the large-scale heating of
the solar corona, even though it is likely that some energy de-
position takes place through this mechanism. At the same time,
further analysis is needed to validate the present results and to
complete the investigation. To begin with, we will run a compa-
rable analysis over longer timescales and with a different class
of drivers, also including the effects of radiative losses and vari-
ous types of background heating in the energy balance, in order
to more conclusively address whether phase-mixing can sustain
the thermal structure of a coronal loop.
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