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Abstract: 

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 

disorder affecting approximately 5% of children. Although a wealth of evidence shows a 

significant genetic component to the disease, definitive genetic mechanisms have not 

been identified. Pathway analyses, a subset of gene-set analyses, are methods to extend 

the knowledge gained from genome-wide association studies (GWAS) by providing 

functional context for genetic associations. However, a key issue is that there are 

numerous methods for association testing of gene sets and no real consensus regarding 

the best approach. The present study applied six pathway analysis methods to identify 

biological pathways associated with ADHD in two GWAS datasets from the Psychiatric 

Genomics Consortium. Each of these methods uses a different technique for aggregating 

individual SNP-level effects to produce a pathway-level association measure. Methods 

that utilize genotypes to model pathway-level effects were found to identify more 

replicable pathway associations than methods using summary statistics. In addition, 

pathways implicated by more than one analysis method were more likely to replicate. A 

consensus of results across methods was determined by using a simple voting scheme, 

and by calculating the median p-value. Pathways containing potassium channel genes 

and others involved in RhoA signaling, glycosaminoglycan biosynthesis, and fibroblast 

growth factor receptor activity were nominally significant by multiple methods in two 

independent datasets. These results support previous hypotheses about the role of 

regulation of neurotransmitter release, neurite outgrowth and axon guidance in 
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contributing to the ADHD phenotype and suggest the value of cross-method 

convergence in evaluating pathway analysis results. 
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Introduction 

Attention deficit hyperactivity disorder (ADHD) is a common and heritable 

neurodevelopmental disorder that affects approximately 5% of children worldwide. The 

disorder is characterized by symptoms of inattention, hyperactivity, and impulsivity, and 

frequently persists in impairing form into adulthood [1].  

While the heritability of ADHD has been estimated to be 60-80% [2], definitive 

genetic mechanisms have not yet been identified. Meta-analyses of candidate gene 

studies have identified genes consistently associated with ADHD (DAT1, DRD4, DRD5, 5-

HTT, HTR1B, SNAP25), although collectively these account for less than 5% of genetic 

variance in ADHD and none are diagnostic. Unsurprisingly, such studies have also 

highlighted the genetic heterogeneity among ADHD patients [2-6].  

Genome-wide association studies (GWAS) [7-19] have revealed additional candidate 

genes (e.g. CDH13, SPOCK3, KCNC1, KCNIP1, KCNIP4), although these variants have not 

achieved genome-wide significance [13,18,20,21]. The most consistent finding is the 

CDH13 gene, which has been implicated in two family-based GWAS [7,8] and two case-

control GWAS [10,12]. Results from studies of other neuropsychiatric disorders [22] 

suggest that studies with tens of thousands of subjects will likely be needed to reveal 

more definitive single variant associations.  

Gene set methods, which test for association between groups of genes and a trait, 

offer a means of extending and contextualizing the knowledge gained from GWAS for 

several reasons. First, ADHD, like other complex diseases, is polygenic in nature, so 

testing for association with sets of related variants (e.g. those influencing a biochemical 
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pathway) can provide a functional context for multiple genetic risk factors and 

potentially yield new mechanisms and treatment targets.  

Second, because the number of gene sets is far fewer than the number of SNPs in a 

GWAS, examining gene sets improves power to detect genetic correlates by reducing 

the multiple testing correction. A third advantage is that effects due to genetic 

heterogeneity can be detected. This is related to the issue of small effect sizes, since the 

result of genetic heterogeneity in a study population will be a mixture of small-effect 

variants. If multiple small effects are present within a pathway it may be possible to 

detect their cumulative effect using pathway analysis methods.  

ADHD is an ideal candidate for pathway analysis given the evidence supporting a 

polygenic model of disease susceptibility [16,23-25]. A few pathway analyses, using a 

variety of pathway definitions and statistical methods, have been conducted on ADHD 

datasets. Poelmans et al. identified the top 85 genes reported in five ADHD GWAS and 

performed a literature search for gene functions. They reported that 45 of the 85 GWAS 

hits could be assigned to a neurodevelopment network involved in directed neurite 

outgrowth [26]. Similarly, Cristino et al. found that ADHD-associated genes are 

significantly more interconnected in a protein-protein interaction network than 

expected by chance [27]. 

Stergiakouli et al. performed a pathway analysis on an ADHD GWAS dataset 

consisting of 727 children with ADHD and 5081 controls. Using the ALIGATOR method 

they found that 13 significant pathways also contained an excess of CNV-affected genes. 
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Pathways related to cholesterol metabolism, cation channel activity, and CNS 

development were implicated [14].  

Yang et al. applied three analysis methods, INRICH [28], DAPPLE [29], and GREAT 

[30], to a GWAS dataset consisting of 1400 cases and 963 controls of Chinese descent. 

Although results from the three methods differed somewhat, common processes, such 

as cell adhesion, glutamate synaptic development, and axon development, were 

implicated [16] 

Bralten et al. performed a candidate pathway analysis using data from the 

International Multi-site ADHD Genetics (IMAGE) study [7], consisting of 909 trios. Three 

candidate gene sets (dopamine/norepinephrine pathway, serotonin pathway, and 

neuritic outgrowth pathway) were defined using the Ingenuity software 

(www.ingenuity.com) and a literature review. The three pathways combined were 

associated with hyperactive/impulsive symptomatology but not inattention 

symptomatology [31].  

Hammerschlag et al. tested 17 expert-curated gene sets of pre- and post-synaptic 

genes in the IMAGE2 case-control dataset, which consists of 896 cases and 2455 

controls [12]. However, none were more strongly associated with ADHD than random 

gene sets of equal size [32].  

The results from these previous gene set analyses performed on ADHD datasets 

provide further evidence of the polygenic nature of the disorder. However, they also 

underscore the challenge of interpreting pathway analyses due to the variation among 

methods. This challenge is substantial because of the large number of ways to define a 
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gene set and to test for association between a gene set and a phenotype [33]. This issue 

is highlighted in the recent study by O’Dushlaine et al. that examined gene set (a 

mixture of Gene Ontology and pathway models) enrichment across five different 

methods to rank pathways associated with schizophrenia, major depression and bipolar 

disorder [34].  

The present study is unlike prior pathway analyses in ADHD, in that it focuses on 

methods that use genotypes (rather than summary statistics) to model gene- or 

pathway-level association measures. Our main hypothesis was that methods utilizing 

genotypes would better represent the underlying genetic architecture and therefore 

would identify more replicable pathway associations. We applied four such methods, 

and compared them with two commonly used methods that rely on summary statistics.  

Because of the different results expected from different pathway analysis 

algorithms, we aimed to discover robust pathway-level effects by identifying a 

consensus of pathway significance across the methods and multiple independent data 

sets. Our second hypothesis was that this ensemble approach for identifying robust 

pathway effects would confirm prior findings that neuro-developmental processes are 

important genetic mechanisms in ADHD.  

 

Data & Methods 

Participants and Genotype Data 

Two independent, ADHD case-control, GWAS datasets from the Psychiatric 

Genomics Consortium, which will be referred to as the (a) IMAGE2 (N=3351; mean age = 
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10.5, SD = 2.9) and (b) German ADHD GWAS (N=1793; mean age = 11, SD = 2.7) datasets, 

were used for our analysis [12,13]. Details about these datasets and the genotype 

QA/QC procedures are available in the Supplementary Methods.  

 

Gene Sets 

The pathways tested were obtained from the Pathway Commons database 

(www.pathwaycommons.org; version 4) [35], which included a total of 3074 human 

pathways from the following sources: Reactome (www.reactome.org; v46) [36], NCI 

Pathway Interaction Database (pid.nci.nih.gov; 16-AUG-2012) [37], HumanCyc 

(humancyc.org; 17.1) [38], and PANTHER (www.pantherdb.org/pathway/; 3.2.1) [39]. 

This initial collection of pathways was filtered by removing those with only a single gene, 

those with more than 300 genes, and duplicates (same name and same genes). If two 

pathways shared the same name, but contained different members, the gene members 

were merged to create a single pathway. Uniprot IDs were converted to Ensemble gene 

IDs using the mapping contained in the Ensembl database (version 74). The final set of 

2233 pathways ranged in size from 2 to 284 genes (mean=31, SD=39). Because of the 

different requirements of each analysis method, very small pathways were not tested by 

all methods. Of the final set of 2233 pathways, 1980 and 2057 were tested by all 

methods in the IMAGE2 and German ADHD GWAS datasets, respectively. Figure 1 

provides an overview of our pathway analysis workflow. 

 

Mapping SNPs to Genes 
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SNPs were mapped to pathway genes if located within 1Kb of the gene boundaries. 

Gene and SNP locations were obtained from the Ensembl database (www.ensembl.org; 

v74). For the IMAGE2 dataset, 52921 SNPs were mapped to 5093 pathway genes. For 

the German ADHD GWAS dataset, 103128 SNPs were mapped to 6136 pathway genes.  

 

Pathway Analysis Methods 

Six pathway analysis methods were applied to both datasets. Four were previously 

published methods that use the original genotype data rather than SNP p-values: 

GRASS, PCgamma, PoDA, and NBF [40-43]. Two were previously published methods that 

utilize SNP p-values: GSEA [44] and Fisher's method for combining p-values [43,45]. See 

the supplementary methods for more details on these algorithms. To examine the 

individual SNP effects contributing to pathway associations, SNP-level p-values were 

calculated using the logistic regression procedure in Plink v1.07 [46]. 

 

Adjustment for Pathway Size 

Although often overlooked, an obvious confound in interpreting pathway analysis 

results is that pathways with more SNPs ("larger" pathways) are more likely to be 

associated with the phenotype [33,44,47,48]. The degree of correlation between 

pathway size and pathway significance was therefore examined for all methods. When a 

significant correlation was seen, pathway p-values were adjusted as follows.  

For each pathway, a collection of random pathways was constructed in order to 

calculate a null distribution of p-values. These random pathways were created to 
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approximately match the number of genes and SNPs in the target pathway. This was 

accomplished by binning all genes according to the number of SNPs assigned to each 

gene. Because genes with a large number of SNPs are rare, bins were merged so that 

each contained approximately 25 genes. Random pathways were then created by 

sampling the appropriate number of genes from each bin. The adjusted p-value is simply 

the proportion of random pathways with a p-value smaller than the p-value of the 

target pathway. 

 

Results 

Accounting for Pathway Size 

We first considered the effect of pathway size in the IMAGE2 data set. Both the 

PoDA and GSEA methods have built-in permutation procedures that successfully 

corrected for size bias (correlation p-values > 0.2). The four other methods all had 

significant correlations between pathway size and significance of association to ADHD. 

These effects were small for PCgamma and GRASS (Pearson's correlation coefficients, r, 

of 0.169 and 0.068, respectively; p-values < 0.002). However, the results from Fisher's 

method were highly correlated with pathway size (r = 0.95, p-value < 2  10-16). In 

addition, there was a significant negative correlation between pathway size and 

pathway significance (the inverse of the Bayes Factor) reported by the NBF method (r = -

0.40, p-value < 2  10-16).  

Therefore, p-values from the PCgamma, GRASS, and Fisher's methods were adjusted 

for pathway size as described in Methods. This procedure successfully corrected the size 
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bias for PCgamma and Fisher's methods (correlation p-values > 0.13), but 

"overcorrected" and resulted in a slight negative correlation between size and 

significance for GRASS (r = -0.045, p-value = 0.036) (Supplementary Figure 1). However, 

the adjusted p-value was retained. The results from the NBF method could not be 

corrected because the hierarchical model used in that method does not allow for the 

application of permutation-based correction. 

In the German ADHD GWAS dataset, we repeated these checks. Similar results 

regarding the relationship between pathway size and significance were seen (data not 

shown), and therefore corrections were applied in the same way. All pathway p-values 

reported below are adjusted for pathway size either inherently or by our permutation 

procedure. All pathway-level association statistics (both adjusted and unadjusted) and 

the number of genes and SNPs in each pathway are reported in Supplementary Tables 

1-4. 

 

Comparing Pathway Analysis Algorithms 

A total of 1980 pathways were tested by all methods in the IMAGE2 dataset; the 

number of pathways reported as nominally significant ranged from 88 for GSEA to 61 for 

the NBF method. Pathways reported as nominally significant by Fisher's, PCgamma , and 

GRASS were most likely to also be significant by at least one other method (74.6%, 

74.1%, and 62.9%, respectively), while those reported as nominally significant by NBF 

were least likely to be confirmed by a second method (22.9%) (Table 1).  
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This initial finding replicated well in the German ADHD GWAS dataset, with the 

PCgamma, GRASS, and Fisher's methods overlapping most with other methods (74%, 

72.5%, and 72.2%, respectively) and the NBF method overlapping the least (25%). 

With regard to cross-sample replication of particular pathways associated with 

ADHD, PCgamma had the highest proportion of nominally significant pathways that 

were also reported as nominally significant in the German ADHD GWAS dataset (16.8%), 

followed by GRASS and PoDA (~12%). GSEA, Fisher's Method, and the NBF method all 

had replication rates below 9% (Table 1). This finding is consistent with our hypothesis 

that methods utilizing genotypes would identify more replicable associations, the NBF 

method being an exception. The small sample size of each data set is a limitation of our 

study and is likely responsible, in part, for the discordance between results in the two 

datasets. 

Next, for each pathway, p-values from both cohorts were combined, using Fisher's 

method [45], to create a single pooled p-value for each analysis method except NBF 

(which reports a Bayes factor, not a p-value). The number of methods reporting a 

pooled p-value ≤ 0.05 was counted and the median pooled p-value for each pathway 

was calculated. Table 2 shows the top 25 most significant pathways ranked by median 

pooled p-value. The most significant pathway by any method was the Potassium 

Channels pathway, with a pooled size-adjusted p-value of 4.11  10-5 for the GRASS 

algorithm. 

Given the limited amount of overlap seen among the different methods, discordant 

pathways were examined in order to gain a better understanding of the differences 
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between methods. We use the term "discordant pathway" to mean one that is reported 

as significant by only a single method (9.3% of pathways tested by all methods).  

We hypothesize that differences in the distribution of SNP-level p-values among 

pathways may explain some of the discordance across methods. For instance, some 

methods may be more sensitive to pathways containing a few strong to moderate SNP 

effects, while others are more sensitive to pathways with many small SNP effects.  

To examine differences in genetic effects for discordant pathways, SNP-level p-

values were calculated using the logistic regression procedure in Plink v1.07 [46]. Next, 

each gene was assigned the minimum p-value among all SNPs in that gene. The 

distribution of the minimum gene-level p-value and the median gene-level p-value for 

each method's discordant pathways are plotted in Supplementary Figures 2 and 3. 

These plots show that gene-level effects within pathways implicated by one method are, 

in some cases, significantly different from the gene-level effects within pathways 

implicated by another method. For example, pathways reported as significant by only 

PCgamma tend to have a smaller minimum gene-level p-value compared to pathways 

reported as significant by only GSEA (t-test p-value < 0.0005 for both IMAGE2 and 

German ADHD GWAS datasets). This suggests that PCgamma is sensitive to pathways 

with only a few moderate SNP effects, while GSEA is sensitive to pathways with many 

small effects.  

These observations support previous assertions [34,49] that it may be beneficial to 

apply multiple analysis methods to a dataset, since the results from different methods 
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can be complementary. Furthermore, it is likely that pathways reported as significant by 

multiple methods are more stable and replicable (not due to spurious genetic effects).  

For example, 46 pathways were reported as nominally significant by three or more 

methods in the IMAGE2 data set, while 211 pathways were nominally significant by only 

a single method. A significantly higher proportion of the pathways identified by three or 

more methods replicated in the German ADHD GWAS dataset (16 of 46; 34%), 

compared to the pathways identified by only a single method (35 of 211; 17%) (Fisher's 

exact test p-value = 0.0078).  

Seven pathways were reported nominally significant by more than one method in 

both cohorts (pathways bold in Table 2). Q-Q plots of SNP-level p-values for all SNPs in 

each of these pathways show an excess of weak effects (Figure 2). These observations 

are consistent with a polygenic model of disease risk for ADHD, as has been 

demonstrated previously [16,23-25,50]. 

Supplemental analyses were done to evaluate the use of imputed genotypes for 

pathway analysis (Supplementary Tables 5 and 6). 

 

Specific Pathway Findings for ADHD 

Pathways reported as nominally significant by at least two methods in both data sets 

are: Ca activated K+ channels, FGFR1b ligand binding and activation, FGFR2b ligand 

binding and activation, Potassium Channels, Validated targets of C-MYC transcriptional 

repression, RhoA signaling pathway, and Chondroitin sulfate biosynthesis. All of these 
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are expressed in the brain and are relevant to neuro-development. Here we present 

biological context for these pathways and supporting evidence for their role in ADHD.  

Potassium channel genes have been implicated in a number of previous GWAS and 

pathway analyses of ADHD [7,8,10,16,20]. These findings from genetic studies are 

supported by research on the role of potassium channels in the regulation of 

dopaminergic neurons [51]. For instance, Fulton et al. found that a Kv1 channel blocker 

significantly increased dopamine release in mouse midbrain dopamine neurons, and 

provided evidence that the D2 dopamine autoreceptor attenuates dopamine release 

through regulation of Kv1 voltage-gated potassium channels [52]. 

Pharmacological studies provide additional support for the role of potassium 

channels in ADHD. Kobayashi et al. found that atomoxetine, a norepinephrine reuptake 

inhibitor approved for the treatment of ADHD, significantly reduced inward currents 

through G-protein-activated inwardly rectifying K+ (GIRK) channels expressed in 

Xenopus oocytes [53]. And Sasaki et al. conducted a preliminary study on the efficacy of 

tipepidine, reported to inhibit GIRK channel currents [54], to treat childhood ADHD. 

They found that ADHD Rating Scale IV scores improved significantly for 10 ADHD 

patients after taking 30mg of tipepidine daily for 4 weeks [55].  

Figure 3 shows gene-level association measures (minimum SNP p-value) for all 

potassium channel genes, along with interactions from the STRING protein-protein 

interaction database (low-confidence interactions excluded) [56]. Also plotted are the 

distributions of distance scores, S, (as calculated by the PoDA algorithm) showing a 

significant difference between cases and controls (odds ratios of 1.41 and 1.81 for the 
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IMAGE2 and German ADHD GWAS study groups, respectively; FDR adjusted p-values < 3 

 10-13).  

One hypothesis regarding the etiology of ADHD involves a dysregulation of 

developmental processes, particularly axon guidance and neurite outgrowth [26,57]. A 

number of the pathways implicated in this study contribute to these neuro-

developmental processes, namely the RhoA signaling pathway, pathways involved in 

proteoglycan metabolism, and pathways involved in fibroblast growth factor receptor 

activation. Although the role of c-Myc in neurodevelopment has not been studied 

extensively [58], c-Myc knockout models show significant effects on brain growth [59], 

and the interaction between c-Myc and RhoA in cancer is well known [60]. 

A recent review by Stankiewicz and others summarizes the abundance of literature 

describing the role of Rho family GTPases in neurodevelopment [61]. RhoA in particular 

has been shown to regulate neuronal survival and migration during development [62-

64]. Note that 14 of 45 genes (31%) in the RhoA signaling pathway are also members of 

the much larger axon guidance pathway (280 genes).  

Chondroitin sulfate proteoglycans (CSPGs) are thought to act as inhibitory signals to 

guide neuronal growth [65,66]. It has been proposed that the inhibitory effect of the 

Rho/ROCK pathway on neurite growth is mediated by CSPGs [67,68]. Monnier et al. 

demonstrated that both an inhibitor of Rho and an inhibitor of the ROCK kinase were 

able to block CSPG inhibition of axon growth [67]. Siebert et al. confirmed this finding 

and further showed that chondroitinase ABC, which removes the glycosaminoglycan 

chains from CSPGs, counteracts the inhibition of axon growth [66].  
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Interestingly, the SPOCK3 gene, which encodes a calcium-binding proteoglycan 

expressed in the brain, has previously been implicated in GWAS of ADHD and 

personality disorders [7,17]. 

Like CSPGs, heparan sulfate proteoglycans (HSPGs) have been shown to play a role in 

axon guidance and neuronal growth [69,70]. HSPGs may exert their effect through the 

activation of fibroblast growth factor receptor (FGFR) signaling pathways [71], which are 

important in neurite outgrowth [72,73] and other neuronal development processes [74]. 

It has also been suggested that FGRFs may interact with the ADHD-susceptibility gene 

CDH13 [57].  

 

Discussion 

An abundance of data on the genetics of ADHD has been produced in recent years. 

Although results have been inconsistent, patterns are beginning to emerge. First, 

multiple studies have demonstrated the polygenic nature of the disorder [16,23-25]. The 

observation that ADHD is likely due to the cumulative effect of many genes, each 

contributing only a small effect on their own, explains much of the discordance among 

previous genetic association studies, which have largely been underpowered to detect 

small effects. 

The predictive value of polygenic risk scores provides hope that larger studies will be 

able to produce more definitive genetic associations [50]. Furthermore, when taking a 

higher-level view of the reported genetic associations, a number of cellular processes 
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have consistently been implicated. For instance, genes involved in cell-cell signaling, 

adhesion, and neural development have been top hits in multiple studies.  

Gaining insights by taking this process-level view is precisely the goal of pathway 

analyses. Given the variety of algorithms for aggregating SNP-level effects, we aimed to 

combine the results from multiple analysis methods to identify pathways most likely 

associated with ADHD. We identified seven pathways reported as nominally significant 

by multiple analysis methods in two independent data sets (Table 2). Each of these 

pathways was found to contain an excess of small SNP effects consistent with a 

polygenic model of disease risk. Furthermore, these pathways provide additional 

support for previous hypotheses about the etiology of ADHD, particularly related to the 

regulation of neurotransmitter release, and neuro-developmental processes.  

Methods that test for the cumulative effect of multiple genes increase the strength 

of secondary analyses, and allow researchers to extract additional information from 

currently available datasets. Our results and others [26] have shown the ability to place 

individual genetic associations within a meaningful biological context that will help focus 

future research and guide the development of hypotheses about the mechanisms of 

ADHD susceptibility. 

 

Supplementary information is available at Molecular Psychiatry’s website. 

 

 

 



 23 

Acknowledgements 

Work on this project was supported by the following grants: MH099064 (Drs. Nigg, 

Wilmot, and Mooney), NIH/NCATS 5UL1RR024140 (Drs. McWeeney and Mooney and 

Wilmot), and DFG HE1446/9-1 (Drs. Hinney and Hebebrand). 

Professor Faraone was supported by the K.G. Jebsen Centre for Research on 

Neuropsychiatric Disorders, University of Bergen, Bergen, Norway, the European 

Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 

n°602805, and NIMH grants R13MH059126 and R01MH094469. 

Barbara Franke was supported by grants from the Netherlands Organization for 

Scientific Research (NWO), i.e. the NWO Brain & Cognition Excellence Program (grant 

433-09-229) and a Vici grant (grant 016-130-669). She also received funding from the 

European Community’s Seventh Framework Programme under grant agreements n° 

602805 (Aggressotype) and n° 602450 (IMAGEMEND), from the European Community’s 

Horizon 2020 Programme under grant agreement n° 643051 (MiND), and from the BD2K 

Initiative of NIH (grant number U54 EB020403). 

Andreas Reif was supported by the European Community's Seventh Framework 

Programme (FP7/2007-2013) under grant agreement n°602805. 

 

Conflict of Interest 

Barbara Franke received a speaker fee from Merz. All other authors declare no 

conflict of interest. 

 



 24 

References 

1. Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit 

hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med. 2006 

Feb;36(2):159-65. PMID: 16420712 

 

2. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. 

Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 

2005 Jun 1;57(11):1313-23. Epub 2005 Jan 21. Review. PMID: 15950004 

 

3. Faraone SV, Khan SA. Candidate gene studies of attention-deficit/hyperactivity 

disorder. J Clin Psychiatry. 2006;67 Suppl 8:13-20. Review. PMID: 16961425 

 

4. Kebir O, Tabbane K, Sengupta S, Joober R. Candidate genes and 

neuropsychological phenotypes in children with ADHD: review of association 

studies. J Psychiatry Neurosci. 2009 Mar;34(2):88-101. Review. PMID: 19270759 

 

5. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic 

review. Hum Genet. 2009 Jul;126(1):51-90. doi: 10.1007/s00439-009-0694-x. 

Epub 2009 Jun 9. Review. PMID: 19506906 

 



 25 

6. Stergiakouli E, Thapar A. Fitting the pieces together: current research on the 

genetic basis of attention-deficit/hyperactivity disorder (ADHD). Neuropsychiatr 

Dis Treat. 2010 Sep 7;6:551-60. doi: 10.2147/NDT.S11322. PMID: 20856918 

 

7. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB et al. Genome-wide 

association scan of attention deficit hyperactivity disorder. Am J Med Genet B 

Neuropsychiatr Genet. 2008 Dec 5;147B(8):1337-44. doi: 10.1002/ajmg.b.30866. 

PMID: 18980221 

 

8. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB et al. Genome-wide 

association scan of quantitative traits for attention deficit hyperactivity disorder 

identifies novel associations and confirms candidate gene associations. Am J 

Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1345-54. doi: 

10.1002/ajmg.b.30867. PMID: 18821565 

 

9. Lasky-Su J, Anney RJ, Neale BM, Franke B, Zhou K, Maller JB et al. Genome-wide 

association scan of the time to onset of attention deficit hyperactivity disorder. 

Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1355-8. doi: 

10.1002/ajmg.b.30869. PMID: 18937294 

 

10. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Röser C, Nguyen TT et al. 

Molecular genetics of adult ADHD: converging evidence from genome-wide 



 26 

association and extended pedigree linkage studies. J Neural Transm. 2008 

Nov;115(11):1573-85. doi: 10.1007/s00702-008-0119-3. Epub 2008 Oct 7. PMID: 

18839057 

 

11. Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD et al. Family-based genome-

wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child 

Adolesc Psychiatry. 2010 Sep;49(9):898-905.e3. doi: 10.1016/j.jaac.2010.02.014. 

Epub 2010 May 14. PMID: 20732626 

 

12. Neale BM, Medland S, Ripke S, Anney RJ, Asherson P, Buitelaar J et al. Case-

control genome-wide association study of attention-deficit/hyperactivity 

disorder. J Am Acad Child Adolesc Psychiatry. 2010 Sep;49(9):906-20. PMID: 

20732627 

 

13. Hinney A, Scherag A, Jarick I, Albayrak Ö, Pütter C, Pechlivanis S et al. Genome-

wide association study in German patients with attention deficit/hyperactivity 

disorder. Am J Med Genet B Neuropsychiatr Genet. 2011 Dec;156B(8):888-97. 

doi: 10.1002/ajmg.b.31246. PMID: 22012869 

 

14. Stergiakouli E, Hamshere M, Holmans P, Langley K, Zaharieva I; deCODE Genetics 

et al. Investigating the contribution of common genetic variants to the risk and 



 27 

pathogenesis of ADHD. Am J Psychiatry. 2012 Feb;169(2):186-94. PMID: 

22420046 

 

15. Ebejer JL, Duffy DL, van der Werf J, Wright MJ, Montgomery G, Gillespie NA et al. 

Genome-wide association study of inattention and hyperactivity-impulsivity 

measured as quantitative traits. Twin Res Hum Genet. 2013 Apr;16(2):560-74. 

doi: 10.1017/thg.2013.12. PMID: 23527680 

 

16. Yang L, Neale BM, Liu L, Lee SH, Wray NR, Ji N et al. Polygenic transmission and 

complex neuro developmental network for attention deficit hyperactivity 

disorder: genome-wide association study of both common and rare variants. Am 

J Med Genet B Neuropsychiatr Genet. 2013 Jul;162B(5):419-30. doi: 

10.1002/ajmg.b.32169. Epub 2013 May 31. PMID: 23728934 

 

17. Weber H, Scholz CJ, Jacob CP, Heupel J, Kittel-Schneider S, Erhardt A et al. 

SPOCK3, a risk gene for adult ADHD and personality disorders. Eur Arch 

Psychiatry Clin Neurosci. 2014 Aug;264(5):409-21. doi: 10.1007/s00406-013-

0476-2. Epub 2013 Nov 29. PMID: 24292267 

 

18. Sánchez-Mora C, Ramos-Quiroga JA, Bosch R, Corrales M, Garcia-Martínez I, 

Nogueira M et al. Case-Control Genome-Wide Association Study of Persistent 

Attention-Deficit Hyperactivity Disorder Identifies FBXO33 as a Novel 



 28 

Susceptibility Gene for the Disorder. Neuropsychopharmacology. 2015 

Mar;40(4):915-26. doi: 10.1038/npp.2014.267. PMID: 25284319 

 

19. Zayats T, Athanasiu L, Sonderby I, Djurovic S, Westlye LT, Tamnes CK, et al. 

Genome-wide analysis of attention deficit hyperactivity disorder in norway. PLoS 

One. 2015 Apr 13;10(4):e0122501. doi: 10.1371/journal.pone.0122501. PMID: 

25875332 

 

20. Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. 

Hum Genet. 2009 Jul;126(1):13-50. doi: 10.1007/s00439-009-0663-4. Epub 2009 

Apr 22. Review. PMID: 19384554 

 

21. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP et al. Meta-

analysis of genome-wide association studies of attention-deficit/hyperactivity 

disorder. J Am Acad Child Adolesc Psychiatry. 2010 Sep;49(9):884-97. doi: 

10.1016/j.jaac.2010.06.008. Epub 2010 Aug 1. PMID: 20732625 

 

22. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 

insights from 108 schizophrenia-associated genetic loci. Nature. 2014 Jul 

24;511(7510):421-7. doi: 10.1038/nature13595. Epub 2014 Jul 22. PMID: 

25056061 

 



 29 

23. Hamshere ML, Langley K, Martin J, Agha SS, Stergiakouli E, Anney RJ et al. High 

loading of polygenic risk for ADHD in children with comorbid aggression. Am J 

Psychiatry. 2013 Aug;170(8):909-16. doi: 10.1176/appi.ajp.2013.12081129. 

PMID: 23599091 

 

24. Groen-Blokhuis MM, Middeldorp CM, Kan KJ, Abdellaoui A, van Beijsterveldt CE, 

Ehli EA et al. Attention-deficit/hyperactivity disorder polygenic risk scores predict 

attention problems in a population-based sample of children. J Am Acad Child 

Adolesc Psychiatry. 2014 Oct;53(10):1123-9.e6. doi: 10.1016/j.jaac.2014.06.014. 

Epub 2014 Aug 19. PMID: 25245356 

 

25. Martin J, Hamshere ML, Stergiakouli E, O'Donovan MC, Thapar A. Genetic risk for 

attention-deficit/hyperactivity disorder contributes to neurodevelopmental 

traits in the general population. Biol Psychiatry. 2014 Oct 15;76(8):664-71. doi: 

10.1016/j.biopsych.2014.02.013. Epub 2014 Feb 25. PMID: 24673882 

 

26. Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide 

association study findings: identification of a neurodevelopmental network for 

attention deficit hyperactivity disorder. Am J Psychiatry. 2011 Apr;168(4):365-77. 

doi: 10.1176/appi.ajp.2010.10070948. Epub 2011 Feb 15. Review. PMID: 

21324949 

 



 30 

27. Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. 

Neurodevelopmental and neuropsychiatric disorders represent an 

interconnected molecular system. Mol Psychiatry. 2014 Mar;19(3):294-301. doi: 

10.1038/mp.2013.16. Epub 2013 Feb 26. PMID: 23439483 

 

28. Lee PH, O'Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment 

analysis for genome-wide association studies. Bioinformatics. 2012 Jul 

1;28(13):1797-9. doi: 10.1093/bioinformatics/bts191. Epub 2012 Apr 17. PMID: 

22513993 

 

29. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y et al. Proteins 

encoded in genomic regions associated with immune-mediated disease 

physically interact and suggest underlying biology. PLoS Genet. 2011 Jan 

13;7(1):e1001273. doi: 10.1371/journal.pgen.1001273. PMID: 21249183 

 

30. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB et al. GREAT 

improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 

2010 May;28(5):495-501. doi: 10.1038/nbt.1630. Epub 2010 May 2. PMID: 

20436461 

 

31. Bralten J, Franke B, Waldman I, Rommelse N, Hartman C, Asherson P et al. 

Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) 



 31 

show association to hyperactive/impulsive symptoms in children with ADHD. J 

Am Acad Child Adolesc Psychiatry. 2013 Nov;52(11):1204-1212.e1. doi: 

10.1016/j.jaac.2013.08.020. Epub 2013 Sep 5. PMID: 24157394 

 

32. Hammerschlag AR, Polderman TJ, de Leeuw C, Tiemeier H, White T, Smit AB et al. 

Functional gene-set analysis does not support a major role for synaptic function 

in attention deficit/hyperactivity disorder (ADHD). Genes (Basel). 2014 Jul 

22;5(3):604-14. doi: 10.3390/genes5030604. PMID: 25055203 

 

33. Mooney MA, Nigg JT, McWeeney SK, Wilmot B. Functional and genomic context 

in pathway analysis of GWAS data. Trends Genet. 2014 Sep;30(9):390-400. doi: 

10.1016/j.tig.2014.07.004. Epub 2014 Aug 22. PMID: 25154796 

 

34. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. 

Psychiatric genome-wide association study analyses implicate neuronal, immune 

and histone pathways. Nat Neurosci. 2015 Feb;18(2):199-209. doi: 

10.1038/nn.3922. PMID: 25599223 

 

35. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N et al. Pathway 

Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011 

Jan;39(Database issue):D685-90. PMID: 21071392 

 



 32 

36. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al. The Reactome 

pathway knowledgebase. Nucleic Acids Res. 2014 Jan;42(Database issue):D472-

7. doi: 10.1093/nar/gkt1102. Epub 2013 Nov 15. PMID: 24243840 

 

37. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T et al. PID: the 

Pathway Interaction Database. Nucleic Acids Res. 2009 Jan;37(Database 

issue):D674-9. PMID: 18832364 

 

38. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. 

Computational prediction of human metabolic pathways from the complete 

human genome. Genome Biol. 2005;6(1):R2. PMID: 15642094 

 

39. Mi H, Muruganujan A, Thomas PD . PANTHER in 2013: modeling the evolution of 

gene function, and other gene attributes, in the context of phylogenetic trees. 

Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86. PMID: 23193289 

 

40. Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, Peters U et al. Insights into 

colon cancer etiology via a regularized approach to gene set analysis of GWAS 

data. Am J Hum Genet. 2010 Jun 11;86(6):860-71. doi: 

10.1016/j.ajhg.2010.04.014. PMID: 20560206 

 



 33 

41. Biernacka JM, Jenkins GD, Wang L, Moyer AM, Fridley BL. Use of the gamma 

method for self-contained gene-set analysis of SNP data. Eur J Hum Genet. 2012 

May;20(5):565-71. doi: 10.1038/ejhg.2011.236. Epub 2011 Dec 14. PMID: 

22166939 

 

42. Braun R, Buetow K. Pathways of distinction analysis: a new technique for multi-

SNP analysis of GWAS data. PLoS Genet. 2011 Jun;7(6):e1002101. doi: 

10.1371/journal.pgen.1002101. Epub 2011 Jun 9. PMID: 21695280 

 

43. Evangelou M, Dudbridge F, Wernisch L. Two novel pathway analysis methods 

based on a hierarchical model. Bioinformatics. 2014 Mar 1;30(5):690-7. doi: 

10.1093/bioinformatics/btt583. Epub 2013 Oct 11. PMID: 24123673 

 

44. Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide 

association studies. Am J Hum Genet. 2007 Dec;81(6):1278-83. PMID: 17966091 

 

45. Fisher RA. Statistical Methods for Research Workers (4th Edition). Oliver and 

Boyd, London, 1932. 

 

46. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: 

a tool set for whole-genome association and population-based linkage analyses. 

Am J Hum Genet. 2007 Sep;81(3):559-75. Epub 2007 Jul 25. PMID: 17701901 



 34 

 

47. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide 

association studies. Nat Rev Genet. 2010 Dec; 11(12):843–54. PubMed: 

21085203 

 

48. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: 

concepts, methods, and prospects for future development. Trends Genet. 2012 

Jul; 28(7):323–32. PubMed: 22480918 

 

49. Gui H, Li M, Sham PC, Cherny SS. Comparisons of seven algorithms for pathway 

analysis using the WTCCC Crohn's Disease dataset. BMC Res Notes. 2011 Oct 

7;4:386. doi: 10.1186/1756-0500-4-386. PMID: 21981765 

 

50. Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. 

Research review: Polygenic methods and their application to psychiatric traits. J 

Child Psychol Psychiatry. 2014 Oct;55(10):1068-87. doi: 10.1111/jcpp.12295. 

Epub 2014 Aug 1. PMID: 25132410 

 

51. Dragicevic E, Schiemann J, Liss B. Dopamine midbrain neurons in health and 

Parkinson's disease: Emerging roles of voltage-gated calcium channels and ATP-

sensitive potassium channels. Neuroscience. 2015 Jan 22;284C:798-814. doi: 



 35 

10.1016/j.neuroscience.2014.10.037. Epub 2014 Oct 30. Review. PMID: 

25450964 

 

52. Fulton S, Thibault D, Mendez JA, Lahaie N, Tirotta E, Borrelli E et al. Contribution 

of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of 

axonal dopamine overflow. J Biol Chem. 2011 Mar 18;286(11):9360-72. doi: 

10.1074/jbc.M110.153262. PMID: 21233214 

 

53. Kobayashi T, Washiyama K, Ikeda K. Inhibition of G-protein-activated inwardly 

rectifying K+ channels by the selective norepinephrine reuptake inhibitors 

atomoxetine and reboxetine. Neuropsychopharmacology. 2010 Jun;35(7):1560-

9. doi: 10.1038/npp.2010.27. PMID: 20393461 

 

54. Hamasaki R, Shirasaki T, Soeda F, Takahama K. Tipepidine activates VTA 

dopamine neuron via inhibiting dopamine D₂ receptor-mediated inward 

rectifying K⁺ current. Neuroscience. 2013 Nov 12;252:24-34. doi: 

10.1016/j.neuroscience.2013.07.044. Epub 2013 Jul 26. PMID: 23896570 

 

55. Sasaki T, Hashimoto K, Tachibana M, Kurata T, Okawada K, Ishikawa M et al. 

Tipepidine in children with attention deficit/hyperactivity disorder: a 4-week, 

open-label, preliminary study. Neuropsychiatr Dis Treat. 2014 Jan 24;10:147-51. 

doi: 10.2147/NDT.S58480. eCollection 2014. PMID: 24493927 



 36 

 

56. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al. 

STRING v9.1: protein-protein interaction networks, with increased coverage and 

integration. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. PMID: 

23203871 

 

57. Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP. Impact of the ADHD-

susceptibility gene CDH13 on development and function of brain networks. Eur 

Neuropsychopharmacol. 2013 Jun;23(6):492-507. doi: 

10.1016/j.euroneuro.2012.06.009. Epub 2012 Jul 12. Review. PMID: 22795700 

 

58. Mainwaring LA, Bhatia B, Kenney AM. Myc on my mind: a transcription factor 

family's essential role in brain development. Oncotarget. 2010 Jun;1(2):86-8. No 

abstract available. PMID: 21297222 

 

59. Wey A, Knoepfler PS. c-myc and N-myc promote active stem cell metabolism and 

cycling as architects of the developing brain. Oncotarget. 2010 Jun;1(2):120-30. 

PMID: 20651942 

 

60. Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR. A transcriptional cross-talk 

between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. 



 37 

Oncogene. 2010 Jul 1;29(26):3781-92. doi: 10.1038/onc.2010.134. PMID: 

20453885 

 

61. Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal 

development, neuronal survival, and neurodegeneration. Front Cell Neurosci. 

2014 Oct 7;8:314. doi: 10.3389/fncel.2014.00314. eCollection 2014. PMID: 

25339865 

 

62. Katayama K, Melendez J, Baumann JM, Leslie JR, Chauhan BK, Nemkul N et al. 

Loss of RhoA in neural progenitor cells causes the disruption of adherens 

junctions and hyperproliferation. Proc Natl Acad Sci U S A. 2011 May 

3;108(18):7607-12. doi: 10.1073/pnas.1101347108. PMID: 21502507 

 

63. Sanno H, Shen X, Kuru N, Bormuth I, Bobsin K, Gardner HA et al. Control of 

postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines 

neuronal density. J Neurosci. 2010 Mar 24;30(12):4221-31. doi: 

10.1523/JNEUROSCI.3318-09.2010. PMID: 20335457 

 

64. Cappello S, Böhringer CR, Bergami M, Conzelmann KK, Ghanem A, Tomassy GS et 

al. A radial glia-specific role of RhoA in double cortex formation. Neuron. 2012 

Mar 8;73(5):911-24. doi: 10.1016/j.neuron.2011.12.030. PMID: 22405202 

 



 38 

65. Maeda N, Ishii M, Nishimura K, Kamimura K. Functions of chondroitin sulfate and 

heparan sulfate in the developing brain. Neurochem Res. 2011 Jul;36(7):1228-40. 

doi: 10.1007/s11064-010-0324-y. Epub 2010 Nov 26. Review. PMID: 21110089 

 

66. Siebert JR, Osterhout DJ. The inhibitory effects of chondroitin sulfate 

proteoglycans on oligodendrocytes. J Neurochem. 2011 Oct;119(1):176-88. doi: 

10.1111/j.1471-4159.2011.07370.x. Epub 2011 Aug 16. PMID: 21848846 

 

67. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK. The Rho/ROCK 

pathway mediates neurite growth-inhibitory activity associated with the 

chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci. 2003 

Mar;22(3):319-30. PMID: 12691734 

 

68. Siebert JR, Conta Steencken A, Osterhout DJ. Chondroitin sulfate proteoglycans 

in the nervous system: inhibitors to repair. Biomed Res Int. 2014;2014:845323. 

doi: 10.1155/2014/845323. Epub 2014 Sep 18. PMID: 25309928 

 

69. de Wit J, Verhaagen J. Proteoglycans as modulators of axon guidance cue 

function. Adv Exp Med Biol. 2007;600:73-89. Review. PMID: 17607948 

 

70. Nishimura K, Ishii M, Kuraoka M, Kamimura K, Maeda N. Opposing functions of 

chondroitin sulfate and heparan sulfate during early neuronal polarization. 



 39 

Neuroscience. 2010 Sep 15;169(4):1535-47. doi: 

10.1016/j.neuroscience.2010.06.027. Epub 2010 Jun 19. PMID: 20600662 

 

71. Jastrebova N, Vanwildemeersch M, Rapraeger AC, Giménez-Gallego G, Lindahl U, 

Spillmann D. Heparan sulfate-related oligosaccharides in ternary complex 

formation with fibroblast growth factors 1 and 2 and their receptors. J Biol 

Chem. 2006 Sep 15;281(37):26884-92. Epub 2006 Jun 28. PMID: 16807244 

 

72. Anderson AA, Kendal CE, Garcia-Maya M, Kenny AV, Morris-Triggs SA, Wu T et al. 

A peptide from the first fibronectin domain of NCAM acts as an inverse agonist 

and stimulates FGF receptor activation, neurite outgrowth and survival. J 

Neurochem. 2005 Oct;95(2):570-83. Epub 2005 Aug 31. PMID: 16135080 

 

73. Beesley PW, Herrera-Molina R, Smalla KH, Seidenbecher C. The Neuroplastin 

adhesion molecules: key regulators of neuronal plasticity and synaptic function. J 

Neurochem. 2014 Nov;131(3):268-83. doi: 10.1111/jnc.12816. Epub 2014 Aug 

14. Review. PMID: 25040546 

 

74. Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and 

neurodegeneration. J Neuroimmune Pharmacol. 2014 Mar;9(2):92-101. doi: 

10.1007/s11481-013-9501-5. Epub 2013 Sep 21. Review. PMID: 24057103 

  



 40 

 

Tables 

Table 1. Number of Nominally Significant Pathways in the IMAGE2 Dataset 

Method 

Proportion of nominally 
significant pathways  

(p ≤ 0.05) confirmed in at 
least one other method* 

Proportion of nominally 
significant pathways  

(p ≤ 0.05) confirmed in the 
German ADHD GWAS 

dataset 

PCgamma 63 / 85 (74.1 %) 15 / 89 (16.8 %) 

GRASS 39 / 62 (62.9 %) 8 / 65 (12.3 %) 

PoDA 46 / 75 (61.3 %) 9 / 75 (12 %) 

GSEA 45 / 88 (51.1 %) 8 / 93 (8.6 %) 

FM 59 / 79 (74.6 %) 5 / 83 (6.0 %) 

NBF 14 / 61 (22.9 %) 1 / 84 (1.1 %) 

* Denominators in this column are slightly smaller because they reflect only those 

pathways tested by all methods. Here we refer to a pathway as confirmed in two 

different ways: 1) when it is nominally significant (p ≤ 0.05) by a second analysis method 

in the IMAGE2 dataset (center column); or 2) when it is nominally significant using the 

same analysis method in an independent dataset (the German ADHD GWAS dataset; 

right column). 

 
Table 2. Top 25 Most Significant Pathways 

Pathway Pathway Size  
(SNP Count) 
IMAGE2 / 
German 
ADHD GWAS 

Methods 
with 
Nominal 
Significance 

Median  
Pooled 
P-value 

Ca activated K+ channels * 262 / 487 5 0.0010 

FGFR1b ligand binding and activation 56 / 126 5 0.0011 

FGFR2b ligand binding and activation 64 / 145 5 0.0023 

Potassium Channels 1065 / 2117 4 0.0026 

Signaling mediated by p38-gamma and p38-
delta 58 / 108 4 0.0043 

Validated targets of C-MYC transcriptional 
repression * 243 / 548 5 0.0060 
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RhoA signaling pathway 295 / 507 4 0.0075 

tnf/stress related signaling 111 / 217 5 0.0089 

histidine degradation III * 41 / 79 3 0.0113 

Dermatan sulfate biosynthesis 85 / 206 4 0.0116 

Chondroitin sulfate biosynthesis 219 / 451 4 0.0157 

Metabolism of Angiotensinogen to 
Angiotensins * 70 / 143 3 0.0160 

Clearance of Nuclear Envelope Membranes 
from Chromatin * 39 / 83 4 0.0165 

Histidine catabolism * 21 / 52 4 0.0184 

Translesion synthesis by DNA polymerases 
bypassing lesion on DNA template * 11 / 13 4 0.0189 

FGFR1 ligand binding and activation 69 / 166 5 0.0197 

RAC1 signaling pathway 282 / 446 4 0.0197 

Regulation of signaling by CBL 180 / 322 3 0.0224 

Caspase-mediated cleavage of cytoskeletal 
proteins 128 / 208 4 0.0238 

FGFR2 ligand binding and activation 81 / 201 4 0.0240 

DNA Damage Bypass * 11 / 13 3 0.0254 

human cytomegalovirus and map kinase 
pathways 69 / 143 3 0.0295 

Rapoport-Luebering glycolytic shunt 5 / 12 3 0.0298 

Thromboxane A2 receptor signaling * 821 / 1586 3 0.0299 

LKB1 signaling events 305 / 482 3 0.0304 

Pathways in bold were reported nominally significant by multiple methods in both the 

IMAGE2 and German ADHD GWAS datasets. Pathways marked with an * were also 

nominally significant by at least one method in the post-imputation analysis 

(Supplementary Tables 1 and 2). For each pathway the following information is 

provided: the number of SNPs assigned to the pathway in each data set, the number of 

analysis methods reporting the pathway nominally significant, and the median pooled p-

value across all the analysis methods.   
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Figures 

Figure 1. Pathway analysis workflow. Pathways tested were retrieved from the Pathway 

Commons database. Genotyped (and imputed) SNPs were mapped to genes in the 

pathways, and six pathway analysis algorithms were used to test for association with 

ADHD. A random pathway permutation procedure was used to adjust pathway 

significance for pathway size. Finally, pathways were ranked based on the number of 

methods reporting significance and the median p-value across methods. 

 

Figure 2. Q-Q plots for seven pathways found nominally significant in both cohorts. Each 

pathway shows an excess of small SNP effects consistent with a polygenic model of 

disease risk. 

 

Figure 3. A) The Potassium Channels pathway genes overlaid onto the STRING protein-

protein interaction network (low confidence interactions, STRING score < 0.5, were 

removed). Node size is proportion to the IMAGE2 gene p-value, while label size is 

proportional to the German ADHD GWAS gene p-value. Green node border indicates a 

gene p-value <= 0.05 in the IMAGE2 dataset, and a green label indicates the same in the 

German ADHD GWAS dataset. Gray border or label indicates no SNPs present in a 

particular gene. B) and C) Pathway of Distinction Analysis (PoDA) S scores showing a 

difference in the distribution between cases and controls in both the IMAGE2 and 

German ADHD GWAS datasets, respectively. 
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Supplementary Figure 1. The relationship between gene set association significance and 

the number of SNPs assigned to the gene set. The gene set size bias affects the applied 

methods to varying degrees. After correction the comparability of results from different 

methods is greatly improved.  

 

Supplementary Figure 2. Density plots showing the distribution of gene-level p-values 

across pathways reported as nominally significant by only one method in the IMAGE2 

dataset. The differences among the p-value distributions for each method suggest the 

methods are sensitive to different types of pathway-level genetic effects (i.e. different 

compositions of individual SNP effects). 

 

Supplementary Figure 3. Density plots showing the distribution of gene-level p-values 

across pathways reported as nominally significant by only one method in the German 

ADHD GWAS dataset. 


