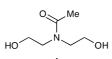
Variable temperature ¹H and ¹³C NMR study of restricted rotation in *N*,*N*-bis(2-hydroxyethyl)acetamide

R. Alan Aitken^{*}, Melanja H. Smith, Heather S. Wilson

^aEaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U. K.


Abstract

N,*N*-bis(2-hydroxyethyl)acetamide shows restricted rotation about the amide bond in both ¹H and ¹³C NMR spectra rendering the two hydroxyethyl groups non-equivalent. A variable temperature study in CD₃SOCD₃ allowed estimation of the free energy barrier to rotation as 75.6 ± 0.2 kJ mol⁻¹. Previously published data in CDCl₃ appears to be erroneous.

Keywords: Variable temperature NMR; Restricted rotation; Amide bond

1. Introduction

The simple compound N,N-bis(2-hydroxyethyl)acetamide or N-acetyldiethanolamine **1** (Scheme 1) was first described in a patent some 75 years ago [1] and has since found a wide variety of applications including as a component of surfactants [1], and of radiation curable polymers [2]. It has also been mentioned both as a product and a reference compound in a series of recent studies on selective acyl transfer reactions in which acetylating agents such as N-acetyl-4,6dimethylpyrimidine-2-thione [3] and 3-(N,Ndiacetylamino)quinazolin-4-ones [4] were reacted with various amines including diethanolamine.

Scheme 1

In view of the well-known restricted rotation about the amide bond, the NMR spectra of this compound are expected to exhibit interesting dynamic effects due to interconversion of the two (degenerate) conformations as a function of temperature, which should allow estimation of the free energy barrier to rotation [5].

Previous NMR characterisation of this simple compound is poor and various conflicting and erroneous data have been published. A correct low-resolution ¹H spectrum was published in D₂O in 1987 [6] but this only showed a singlet for the methyl group (δ 2.27) and all eight other CH protons occurring together as a multiplet (δ 3.45–4.03). In 2013 the ¹H spectrum was reported in CDCl₃ at 500 MHz [7] showing a singlet for methyl (δ 2.15) and two triplets (δ 4.23, 4.21) assigned to CH₂O and two triplets (δ 3.62, 3.61) assigned to CH₂N but with mismatched coupling constants in the latter case. Again in 2014 [4], ¹H data in CDCl₃ at 500 MHz appeared with chemical shift ranges similar to those above but with the CH₂O signal reported as a singlet. In addition, these authors reported ^{13}C NMR data for the first time (125 MHz, CDCl₃) but this includes two separate carbonyl signals (δ 170.8, 171.25) with the remaining three environments each reported as a chemical shift range: δ 20.76–22.02 for Me, δ 45.33–49.63 for CH₂N and δ 50.38–62.23 for CH₂O. In view of the serious problems with this data we have redetermined the ¹H and ¹³C NMR spectra of **1** both in CDCl₃ and in CD₃SOCD₃ and, by means of a variable temperature study in the latter solvent, obtained several consistent values for the free energy barrier to rotation about the amide bond.

2. Experimental

Preparation of *N*,*N*-bis(2-hydroxyethyl) acetamide 1 [2]

To a solution of diethanolamine (10 g, 95 mmol) in THF (20 cm³) stirred and cooled below 5 °C was added dropwise acetic anhydride (10 g, 98 mmol). After the addition the mixture was heated to 100 °C for 1 h and then evaporated using a rotary evaporator followed by a high vacuum pump until all traces of acetic acid and acetic anhydride had been removed. The product was obtained as a faintly yellow oil (12.5 g, 90%).

NMR spectra were determined at 300 MHz for ¹H and at 75 MHz for ¹³C using a Bruker instrument. Chemical shift values are given in ppm relative to Me₄Si and spectra are referenced either to internal Me₄Si or to residual solvent peaks. Coupling constants are given in Hz. For data obtained see Tables 1 and 2.

3. Results and Discussion

Compound **1** has been prepared by reaction of diethanolamine with methyl acetate [1] or ethyl acetate [8] or base mediated reaction of acetamide with ethylene oxide [9], but the most widely used method is reaction of diethanolamine with acetic anhydride. This has been performed

^{*} Corresponding author. Tel: +44 1334 463865. *E-mail address:* raa@st-and.ac.uk

in water [7], in acetonitrile in the presence of a zeolite catalyst [10], and in methanol with one equivalent of triethylamine [11]. However we used the direct reaction of equimolar amounts of diethanolamine and acetic anhydride in THF at 100 °C followed by evaporation under high vacuum [2] and obtained compound 1 in 90% yield.

NMR spectra of the product were first recorded in CDCl₃ at 300 MHz and this showed two slightly non-equivalent triplets for each of CH₂N and CH₂O (Table 1). However these were all in the range δ 3.4–3.8, which is at odds with both the previous spectra reported in CDCl₃ [4,7]. By moving to CD₃SOCD₃ separate clearly defined triplets were observed in the range δ 3.3–3.5. A comparison of the CH₂ signals in the two solvents is shown in Figure 1.

Table 1: ¹H NMR data for 1

Solvent	CDCl ₃	CD ₃ SOCD ₃
Me	2.15 (s)	2.00 (s)
CH ₂ N	3.50 (d, J 5.3)	3.30 (d, <i>J</i> 6.2)
	3.52 (d, J 5.3)	3.36 (d, <i>J</i> 5.8)
CH ₂ O	3.77 (d, J 5.3)	3.45 (d, <i>J</i> 6.2)
	3.78 (d, J 5.3)	3.51 (d, J 5.8)
OH	5.69 (br s)	5.52 (v br s)
	. ,	. ,

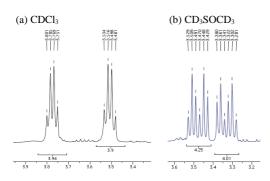


Figure 1: CH₂N and CH₂O ¹H NMR signals for 1

When 13 C NMR spectra were run in both solvents, the expected pattern was observed with a single carbonyl signal, two widely separated signals for CH₂N and two slightly non-equivalent signals for CH₂O (Table 2). The clearly defined patterns obtained (Figure 2) give no hint as to origin of the erroneous literature data [4].

Table	2:	^{13}C	NMR	data	for	1	
		~				-	

Solvent	CDCl ₃	CD ₃ SOCD ₃
Me	21.71	21.61
CH ₂ N	49.99	48.13
	52.80	51.46
CH ₂ O	60.07	58.86
	60.44	59.08
CO	173.05	170.14
	175.05	170.14

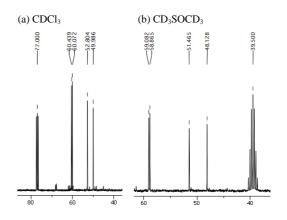


Figure 2: CH₂N and CH₂O ¹³C NMR signals for 1

Having established the expected pattern of nonequivalence of the two hydroxyethyl groups at RT due to restricted rotation of the acetyl group, CD_3SOCD_3 was chosen as the preferred solvent for a variable temperature study and spectra were obtained for both ¹H and ¹³C over the range 25– 100 °C. As shown in Figure 3, upon moving from RT to 100 °C, the separate ¹³C signals for CH₂O were replaced by a single peak and the pairs of triplets for CH₂O and CH₂N were each replaced by a single triplet. By coincidence the coalescence temperature in each case was 77 °C.

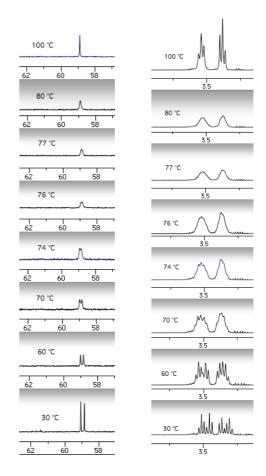


Figure 3: Variable temperature results for 1

The free energy barrier to rotation ΔG^{\neq} can be calculated using the equation:

$$\frac{\Delta G^{\neq}}{R \times T_c} = 22.96 + \ln(\frac{T_c}{\delta_v})$$

where R is the gas constant, T_c is the coalescence temperature in K and δ_v is the low temperature chemical shift difference in Hz. The corresponding calculated values are: from ¹³C of CH₂O 75.74 kJ mol⁻¹, from ¹H of CH₂O 75.40 kJ mol⁻¹ and from ¹H of CH₂N 75.50 kJ mol⁻¹. These values compare well with those previously reported for similar systems such as *N*,*N*diethylacetamide (71.0 kJ mol⁻¹) and *N*,*N*dipropylacetamide (71.4 kJ mol⁻¹) [12].

4. Conclusions

As expected, the restricted rotation about the amide bond in compound **1** leads to nonequivalence of the two hydroxyethyl groups at room temperature and doubling of the signals due to CH₂N and CH₂O in both ¹H and ¹³C NMR spectra. The spectra obtained in CDCl₃ are not in agreement with the data recently published by two separate groups [4,7], which appear to be erroneous. Quantification of the barrier to rotation by means of a variable temperature study in CD₃SOCD₃ gives values well within the normal range for such amides.

Supplementary information

Copies of ¹H and ¹³C NMR spectra for **1** in $CDCl_3$ at 25 °C and in CD_3SOCD_3 at 25, 77 and 100 °C.

References

- F. J. Cahn, B. R. Harris (Emulsol), US Pat. 2,238,927 (1941).
- [2] T. H. Meij, M. Houweling, A. J. A. A. Dias, J. F. G. A. Jansen, R. A. T. M. Van Benthem (DSM), Eur. Pat. 0956318 B1 (2006). synth used no Et3N
- [3] M. P. Rajan, Asian J. Chem. 27 (2015) 287–291.
 [4] A. G. Al-Sehemi, R. S. A. Al-Amri, A. Irfan, Ind.
- J. Chem. 53B (2014) 1115–1121.
 [5] W. E. Stewart, T. H. Siddall III, Chem. Rev. 70 (1970) 517–551.
- [6] R. Kuroki, N. Kanesaka, H. Yamada, T. Imoto, Chem. Pharm. Bull. 35 (1987) 4203–4207.
- M. Yar, N. Mushtaq, S. Afzal, A. S. Khan, I. U. Khan, M. N. Akhter, S. Zareen, S. A. Shahzad, Z. A. Khan, S. A. R. Naqvt, N. Mahmood, L. Tahir, M. Salem, Asian J. Chem. 25 (2013) 7297–7304.
- [8] H. Krimm (Bayer), Ger. Pat. 3235933 (1984).
- [9] F. T. Peters (du Pont), US Pat. 2,357,283 (1944).
 [10] R. Srivastava, N. Venkatathri, Ind. J. Chem. 43B (2004) 888–891.
- [11] D. J. Coady, A. C. Engler, J. M. Garcia, J. L. Hedrick, J. P. K. Tan, Y. Y. Yang (IBM), US Pat. 2015/0264932 A1 (2015).
- [12] R. M. Hammaker, B. A. Gugler, J. Mol. Spectrosc. 17 (1965) 356–364.