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Geostrophic tripolar vortices in a two-layer fluid

We investgate equilibrium solutions for tripolar vortices in a two-layer quasi-

geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-

signed vortex lies in the other layer. The families of equilibria can be spanned by

the distance (called separation) between the two like-signed vortices. Two equilib-

rium configurations are possible when the opposite-signed vortex lies between the two

other vortices. In the first configuration (called ordinary roundabout), the opposite

signed vortex is equidistant to the two other vortices. In the second configuration

(eccentric roundabouts), the distances are unequal. We determine the equilibria nu-

merically and describe their characteristics for various internal deformation radii.

The two branches of equilibria can co-exist and intersect for small deformation radii.

Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can

be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric

roundabouts do, thus inducing stronger vortex interactions. However, for larger de-

formation radii, eccentric roundabouts can also be unstable. Then, the two branches

of equilibria do not cross. The branch of eccentric roundabouts only exists for large

separations. Near the end of the branch of eccentric roundabouts (at the smallest

separation), one of the like-signed vortices exhibits a sharp inner corner where insta-

bilities can be triggered. Finally, we investigate of the nonlinear evolution of a few

selected cases of tripoles.
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I. INTRODUCTION

Stationary states for two-dimensional vortices are states in which the vortices do not

change shape and ever move forward at a constant velocity or rotate at a constant angular

velocity. In the first case, we speak of a translating stationary state, in the second case, of a

rotating stationary state. Finding stationary states for an individual vortex, or for a system

of vortices (’V-states’ in terminology of Deem and Zabusky1) is a complex problem which

consists in solving nonlinear integral equations.

The classic solution by Kirchhoff2 for an elliptical vortex with semi-axes a and b and with

vorticity ω rotating as a solid body at a constant angular velocity Ω = ω a b/(a+b)2 has been

known since 1876. In 1893, Love3 showed that this solution is unstable for χ = a/b > 3.

More recently, Mitchell and Rossi4 have given a full analysis of the linear and nonlinear

stability of the elliptic vortex as a function of the parameter χ.

The Kirchhoff vortex has many generalisations. In particular, Chaplygin5 and later Kida6,

Dritschel7, and others showed that the introduction of an external linear velocity field gives

rise to pulsating vortices rotating at a time-varying angular velocity associated with a time-

varying χ. Polvani and Flierl8 introduced the notion of generalised Kirchhoff vortex for a

system of N embedded elliptic patches. They studied the linear stability of such solutions.

Kozlov9–11 generalised the problem of an elliptic vortex to include the effect of “entrain-

ment” through the introduction of an “effective” bottom friction. This mechanism initiates a

cyclone-anticyclone asymmetry that can be seen in the ocean or the atmosphere. Kirchhoff,

Chaplygin, and Kida vortices can be recovered as particular cases of Kozlov’s solution9.

Stationary translating vortex pairs, after the pioneering work of Sadowskii12, have been

studied in detail in many papers1,13–19.

Other theoretical studies of different translating or rotating stationary states in barotropic

fluid have been the subject of many papers16,17,20–32 including the investigations of three- and

many-vortex V-states33–40, and asymmetric piecewise uniform vortices34. We draw attention

again to the unfortunately little known work by Kozlov34, where the author suggested a

general algorithm to construct steady solutions from asymptotic expansions. This algorithm

provides the boundaries of steadily translating or rotating V -states with high accuracy.

Applications to equilibria in a rotating, stratified fluid, relevant to the oceans and to the

atmosphere have been described in the literature41–58.
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The present work is performed in the framework of a stratified (two-layer) quasi-

geostrophic model and focuses on finite-core analogues of the stationary states of discrete

vortex systems analysed in previous studies59–62. The main difference between the finite

core and the discrete systems consists in the fact that finite core vortices are sensitive to

deformation.

Here, we assume that one of the three vortices belongs to one layer and the other two

identical vortices are located into a second layer. A complete classification of the relative

motion of such a system of three discrete vortices is available in the literature62. Only three

types of movement are possible:

{1} double capture, when all three vortices rotate in the direction determined by the sign

of their total intensity, or (in the case of zero total intensity) by the sign of the “strongest”

vortex;

{2} simple capture, when a given vortex is under the predominant influence of one of the

vortices of the other layer; the second vortex of this layer moves under the action of the

combined pair;

{3} a regime where the dominant mechanism is the intra-layer interaction between vortices.

Using the terminology used in previous studies59,62, we focus on stationary states which

are:

(i) eccentric roundabouts: Asymmetric collinear constructions of three vortices rotating at a

constant angular velocity relative to the vorticity centre, which lies on the line joining all

three vortices;

(ii) tritons: Special cases of eccentric roundabout, when the total intensity of the vortices is

equal to zero. Then, the vorticity centre is located at infinity, and the collinear three-vortex

structure moves at a constant translation velocity, perpendicular to the line joining the vor-

tices (the regular and chaotic behaviour of discrete tritons has been studied63,64);

(iii) ordinary or inverse roundabouts: Symmetric collinear tripolar structures rotating around

the centre of vorticity in the direction induced by the central vortex, or in the opposite di-

rection, caused by predominant interlayer interaction of peripheral vortices, correspondingly

(the stability of discrete roundabouts is fully described in previous works65–68).

In the cases (i) and (ii), the configuration satisfies special conditions (or dispersion rela-

tions) relating the vortex intensities and the distances separating them. All three types of

movement bifurcate from one, degenerate, static collinear state60.
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Here, we build new stationary states for three vortices with uniform potential vorticity.

Then we analyse the linear stability of the states. Their nonlinear evolution is illustrated on

selected examples. Note that the type of motion (iii) was exhaustively studied by Shteinbuch-

Fridman et al56,69 for the particular case of zero total potential vorticity. We consider the

general case of an arbitrary total vorticity.

It should be noted that configurations of collinear tripoles have been observed in the

oceans, for example with the Slope Water anticyclonic Eddies (swoddies) in the Bay of

Biscay70–72. It is therefore important to understand the main characteristics of three-vortex

equilibria, and the conditions necessary for their existence.

II. MATHEMATICAL AND NUMERICAL MODELS

The oceans and the atmosphere can be seen as shallow layers of fluid as the horizontal

scales of motion typically far exceed the height of the fluid. In this context, one can model

the flow using the shallow-water equations, where the fluid domain is discretised in the

vertical direction by layers of fluid of uniform density, each being in hydrostatic balance. In

this work, we consider a system of two layers of fluid. Using two layers allows to take into

account at leading order of the effects of the natural density stratification of the oceans.

The oceans and the atmosphere are also strongly influenced by the background planetary

rotation. In the absence of forcing and dissipation, two-layer flows rotating at the angular

velocity Ω, are governed by the equations:

ujt + ujujx + vjujy − fvj = −
pjx
ρ0
, (1)

vjt + ujvjx + vjvjy + fuj = −
pjy
ρ0
, (2)

pjz = ρjg, (3)

ujx + vjy + wjz = 0, j = 1, 2, (4)

where uj, vj, wj are the jth layer velocity vector components along the x, y, z-axes respec-

tively, with z axis directed downward from the surface; p is pressure, f = 2Ω is the Coriolis

parameter; ρ0 is the mean density; g is the acceleration due to gravity. The subscripts

t, x, y, z denote partial derivatives with respect to time and to the spatial coordinates, and

ρ1, ρ2 (ρ1 ≤ ρ2) are the constant densities of the incompressible fluids in the upper and lower

layers respectively.
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Introducing the vertical component of the relative vorticity in the jth layer ωj = vjx−ujy

and eliminating the pressure from (1)–(2), we obtain

Dj

(

ωj + f
)

D t
−
(

ωj + f
)

wjz = 0, j = 1, 2, (5)

where Dja/D t ≡ at +ujax + vjay ≡ at + J(ψj , a) is the two-dimensional material derivative

and J(b, a) the Jacobian, ψj is the layerwise streamfunction, and wj is the vertical velocity

in layer j.

For rapid planetary rotation, |ωj| ≪ f , and integrating equations (5) with respect to z

over each layer, taking into account the vertical boundary conditions on the vertical (“rigid

lid” on the bottom and top surfaces, pressure continuity at the interface), we obtain:

qjt + J(ψj , qj) = 0, j = 1, 2, (6)

where

qj = ∇2ψj + Fj(ψ3−j − ψj) + f, j = 1, 2, (7)

where qj(x, y) is the potential vorticity (PV) in jth layer. The first term in the right hand

side of (7) is relative vorticity of the vortices, the second term is the vorticity associated with

the vertical stretching of layerwise columns, and the third term is background vorticity. The

symbol ∇2 is two-dimensional Laplacian and Fj = f 2/g′hj are the layer coupling coefficients.

The reduced gravity g′ = g∆ρ/ρ is much smaller than the usual gravity because of the weak

relative density difference between layers: ∆ρ = ρ2 − ρ1 ≪ ρ1. The thickness of layer j at

rest is hj and h = h1 + h2 = const. is the fixed total fluid thickness.

Next, assuming that the PV distribution is piecewise-uniform with constant values qαj

inside the finite domains Sα
j bounded by contours Cα

j , i. e.

qj(x, y) =

Nj
∑

α=1

qαj Θ(Sα
j ), (8)

where N1 and N2 are the numbers of vortex patches in upper and lower layers respectively,

and Θ(Sα
j ) is the step function equal to 1 inside and 0 outside the contour Cα

j .

Under these assumptions, the streamfunctions in layers are62:

ψj(x, y) = hj

Nj
∑

α=1

qαj

∮

Cα
j

T
[

Q(r) +
h3−j

hj
Q1(r)

]

dν +

+ h3−j

N3−j
∑

α=1

qα3−j

∮

Cα
3−j

T
[

Q(r) −Q1(r)
]

dν, j = 1, 2. (9)
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Here, r =
√

(

x− x′
)2

+
(

y − y′
)2

(x′ and y′ are the coordinates of the integrating point),

and the notations

T =
(x′ − x)(∂y′/∂ν) − (y′ − y)(∂x′/∂ν)

r2
,

Q =
r2

4π
ln r, Q1 =

1

2πγ2

[

γrK1(γr) − 1
]

are introduced; ν(x′, y′) is a parametric representation of the contour Cα
j ; K1(a) is the

modified Bessel function of second kind and first order; γ = L/Ld (L is a typical horizontal

length scale and Ld =
√

g′h1h2/h/f is the Rossby deformation radius).

When modelling the evolution of vortex patches, each uniform qαj vortex is represented

by its boundary Cα
j , and its curvilinear coordinate ν is discretised by np nodes. We use here

np = 150 for high resolution (results have been checked by rerunning a selection of cases at

three or six times the resolution with np = 450 and np = 900. The most accurate results

available are shown). Nonlinear simulations are performed using Contour Surgery73 adapted

here to the two-layer quasi-geostrophic model.

III. NUMERICAL SETUP

We consider tripolar vortices in a two-layer fluid. The general geometry is illustrated in

figure 1. The vortices are uniform patches of potential vorticity qαj . The layer depths are

set to h1 = h2 = h/2. This choice is made for simplicity (the sensitivity of the results to

other choices will be studied later and is briefly described in the conclusions). Without loss

of generality, we set h = 1 and the mean horizontal radius of the vortices can be set to 1

(L = 1).

The tripolar structure consists of two positive, uniform PV vortices (referred to as vortices

1 and 3) in the upper layer (N1 = 2) and of one negative, uniform PV vortex (referred to

as vortex 2) in the lower layer (N2 = 1). As a consequence, we have q11 ≡ q1, q
2
1 ≡ q3

and q12 ≡ q2. Initially, the centres of the three vortices are aligned along the x−axis, in

a stationary configuration. The vortex structure moves with a constant linear or angular

velocity. By convention, vortex 1 will be the vortex on the left, and vortex 3 the vortex

on the right. The centres of vortices 1 and 3 are separated by a distance 2ra. The centres

of the upper vortex 1 and the lower vortex 2 are separated horizontally by a distance rb.

Each vortex with PV qi has the area Ai (hence a volume Vi = Aih/2). We set q1 = q3 = q,
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taking q = 2π without loss of generality. We also set A1 = A3 = A = π (corresponding to

r1 = r3 = 1 for the equivalent circular vortex). We denote ρq = q2/q and µ = (q2A2)/(qA),

such that the total surface-integrated PV is Γ = (q1A1 + q2A2 + q3A3)h/2 = π2(2 +µ). Since

q2 < 0, both ρq and µ < 0. It should be noted that µ = −2 corresponds therefore to the

case where the overall PV integral is 0.

When scaling time, we use the simplest model of a pair of opposite signed vortices lying

in different layers (an “equivalent” heton)48 with a vertical axis (N1 = N2 = 1, rb = 0,

A1 = A2 = π, q1 = −q2 = q). From (9) we find that the maximum dimensionless azimuthal

velocity on both unit circular vortex patches is V = qI1(γ)K1(γ), where I1(γ) is a modified

Bessel function of first kind and first order. Suppose now that γ = 0.6 (as in most examples

below), then V ≈ 2.57. Taking as a scale for the horizontal velocity and deformation radius

the values 10 cm/s and 30 km, respectively, we obtain the rotation period of fluid particles

along the contour is equal to T ≈ 5 days. We will take this value as the time-scale.

For given γ, µ, and ρq a family of steady states can be mapped by the distance δ between

the innermost edges of the lower vortices. This is indicated in figure 1 where, for the sake of

simplicity, we have adopted circular contours to represent the vortices. This distance varies

monotonically for the full branches in the range of parameters γ, µ relevant to this study

(although it may not be the case outside this range). For given values of δ, r, ρq and µ an

equilibrium solution (stationary state or ‘V’-state) is sought. It is reached by an iterative

method. The method converges when the boundaries of the vortices match streamlines in

the relative reference frame moving with the vortices14,33,35,49,55,74. For tritons (µ = −2) the

reference frame is in uniform translation, while it is in uniform rotation in the general case

µ 6= −2 (eccentric or ordinary roundabouts). When the equilibrium is reached, δ is decreased

and the calculation is resumed for this new distance. For each state, the iterative method

is repeated until the correction to the angular velocity (respectively translation velocity) is

less than a threshold set to 10−9. The threshold is chosen such that the residual error is

smaller than the overall expected accuracy from the discrete representation of the vortices.

This has been verified by recomputing a selection of cases with a threshold of 10−11 (nearer

machine precision).
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vortex 2

layer 1

layer 2

h   = H/2
H=1

h   = H/22

1

vortex 1 vortex 3

δ

b

2ra

r

δ

b r= a

2ra

r

FIG. 1. General geometry of the stationary states for two-layer tripolar vortex structures. Top

panel: vertical cross-section showing the two layers. Bottom (view form the top): left, asymmetric

configuration, generic triton or eccentric roundabout. Right, symmetric configuration, generic or-

dinary roundabout or inverse roundabout. Hereinafter, the blue (red) lines represent the contours

of vortex patches in upper (lower) layer. In this figure only, for simplicity, it is assumed that the

vortices have a circular shape.

IV. RESULTS

A. Triton: translating two-layer V-state, µ = −2

We start by presenting the results for translating two-layer asymmetric tripolar structures

called tritons (item (ii) in the introduction). For discrete vortices, the triton satisfies62:

r2b − 2rarb + 4r2a
2γrarb(2ra − rb)

− K1(γrb) − K1(γ(2ra − rb)) − K1(2γra) = 0, (10)

and its translation velocity is equal to

vt =
π

2

[

2(ra − rb)

rb(2ra − rb)
− K1(γrb) + K1(γ(2ra − rb))

]

. (11)

For the finite-core vortices, similar relations are obtained numerically. Figure 2 illustrates

a generic branch of solutions for ρq = −2 and γ = 0.6. For the sake of completeness we also

provide the results for the equivalent branch of symmetric tripoles (ordinary roundabout).

We first plot rb vs ra at equilibrium in figure 2 (top, left). Note that for each value of ra,

there are two possible values of rb, by symmetry. If rub is the value on the upper part of the

branch with a corresponding translation velocity of vut , then, the values for the lower part

of the branch denoted by the superscript l are
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rlb = 2ra − rub , vlt = −vut ≡ vt. (12)

Therefore, only half of the full branch needs to be calculated in practice, and the super-

scripts u, l will be disregarded. We will use states taken from the upper branch in the paper.

The half-branch has two limits. When ra → ∞, rb ∼ 2ra, as the asymptote drawn in figure 2

(top, left) shows. This limiting case corresponds to a near dipole (or ‘pseudo-dipole’) where

two vortices align and are only seen as a single vortex of strength qA + q2A2 = −qA, from

infinity. The second limit is when ra reached its minimum values, and corresponds to a

turning point for the full branch of solutions. By symmetry, this corresponds to ra = rb, and

is indicated by the marker A in the figure. Again, by symmetry v = 0 for this state. Since

ra = rb, this case also corresponds to a point along the branch for the rotating symmetric

roundabout. The branch of tritons bifurcates from the branch of symmetric roundabouts at

the point where vt = Ωp = 0 (static state). Obviously, the triton is also symmetrical in this

limiting state. Ordinary (respectively inverse) roundabouts lie on the red line to the right

(respectively left) of the markers A. Note that the transition between states with rb ∼ 2ra

to the state where ra ∼ rb occurs over a rather narrow range of values of ra, with indeed

a vertical asymptote (turning point) on the branch rb = f(ra) for the steady states at the

point ra = rb. This means that the position of the central vortex (vortex 2) is very sensitive

to changes in ra in this range. In practice, this makes the determination of the branch of

solutions by a (linearised) iterative method non-trivial and numerically expensive as any

small change in δ corresponds to a large displacement of vortex 2 (hence change in rb). The

overall trends are similar to the ones observed in the point vortex calculation62 and therefore

are explained qualitatively by the analytical solution obtained for the point vortices. But

contrary to point vortices, finite-area vortices can split or merge.

Thus, we perform the linear stability analysis of the stationary states, by analysing the

deformation modes of the vortices boundary. The method follows straightforwardly that

used in three-dimensional quasi-geostrophy49,55,74, adapted here to the two-layer context.

All deformations have a time dependence ∝ eσt, and the algebra leads to an eigenvalue

problem for σ = σr + iσi. The growth rates of instability are given by the real parts σr of

the eigenvalues σ while σi is their frequencies, see for example49,55 for full details.

Figure 2 (top, right) gives the maximum growth rate obtained numerically along the

branch of tritons for the case ρq = −2. The magnitude of the growth rate is on the order
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FIG. 2. Characteristics of the equilibria for the case µ = −2, and γ = 0.6 with ρq = −2, i. e.

A2 = A (solid) and ρq = −4, i. e. A2 = A/2 (dashed). Top, left: rb vs ra for the triton (black), and

symmetric roundabout (reference red line rb = ra). The dashed blue line indicates the asymptote

r = 2ra. Top, right: growth rate of the two most unstable modes (numerical) calculated. Bottom,

left: rotation velocity of the symmetric roundabout vs the gap between the two innermost edges of

the side vortices, δ. Bottom, right: translation velocity vt for the triton, and rotation velocity Ωp

for the symmetric roundabout vs ra. Green line indicates the zero level. The markers A, B, C, D

indicate the location of tritons and roundabouts illustrated in figures 3 and 4 for ρq = −2, while

the markers A′, B′, C ′, D′ indicate the location of tritons and roundabouts for ρq = −4.

of the precision of the computation, which means that the tritons are in fact linearly stable.

For the sake of completeness, we also plot the growth rate of the unstable modes for the

associated symmetric roundabouts. This configuration is unstable for values of ra < 1.45,

a lower threshold than the minimum ra ≃ 1.64 corresponding to the turning point for the

tritons. Figure 2 also provides the same information for a different value of ρq = −4, i. e.
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−3 −2 −1 0 1 2 3

−2

−1

0

1

2 (D)

−3 −2 −1 0 1 2 3

−2

−1

0

1

2 (D′)

FIG. 3. Top view of the contours of vortex patches of symmetric inverse roundabouts at equilibrium

on the plane (x, y) for γ = 0.6 and δ = 0. Left: ρq = −2; right: ρq = −4. These states mark (D

and D′ in the figure 2) the end of the branches of solution as no other state may exist for smaller

gaps.

A2 = A/2. The patterns are very similar. We recover the asymptotic behaviour rb ≃ 2ra

for ra → ∞ corresponding to the limit of a ‘pseudo-dipole’. Finally, we see that this branch

of tritons is also neutrally stable, σr ≃ 0. It should be noted that the fact that σr is not

exactly zero is due to (i) the accuracy of the numerical determination of the steady state

by an iterative method resulting in a residual unsteadiness for the states, and (ii) the finite

accuracy of the calculation in the linear stability analysis.

In the case ρq = −2, figure 2 (bottom, left) shows the rotation velocity for the symmetric

roundabouts for the given values of µ, γ, and ρq versus the gap δ between the innermost

edges of the side vortices (vortices 1 and 3). Thus we obtained the full branch of equilibrium

states, until the two side vortices touch (δ = 0). The state with δ = 0 for the branch of

symmetric roundabouts is illustrated in figure 3 (cf figures 4c of paper56). The side vortices

(vortices 1 and 3) exhibit sharp inner corners. The inner edge corresponds to a stagnation

point and indicates indeed the end of the branch of solution. Although there are a few

differences between the states for ρq = −2 and −4, the central vortex (vortex 2) is slightly

more deformed here than for ρq = −4. This is due to the fact that the weaker PV is, the

more deformed the vortex becomes in the shear exerted by the other vortices.

The shape of the equilibria for various values of ra are presented in figure 4. The top
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(C ′)

FIG. 4. Top view of the tritons at equilibrium for γ = 0.6. Left, ρq = −2 in vicinity of (A):

ra = 1.64 ≃ rb = 1.65; in (B): ra = 3, and rb = 5.9; and in (C): ra = 2, rb = 3.4. Right, ρq = −4

in vicinity of (A′): ra = 1.6, rb = 1.62; in (B′): ra = 3, rb = 5.9, and in (C ′): ra = 2, rb = 3.47.

The frame labels are the markers in figure 2.
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frames of figure 4 correspond to the tritons numerically obtained at the closest of the bifurca-

tion point where the branch intersects the branch of symmetric roundabouts: these are cases

labelled A (respectively A′) in figure 2 for ρq = −2 (respectively ρq = −4). They correspond

to nearly symmetric configurations with ra ≃ rb. Note that in this case ra ≃ 1.6. Recall

that the mean radius of the vortices 1 and 3 is set to unity. This means that the vortices are

in fact relatively far apart, and are not strongly deformed. This contrasts with the shape of

symmetric roundabouts which exist for much smaller values of ra, see figure 3 and further

examples56. The second set of frames (B and B′) in figure 4 corresponds to examples where

ra is large enough such that rb ≃ 2ra. Here, vortices 2 and 3 are nearly aligned. Again,

the vortices exhibit nearly circular shapes. Indeed, not only are the vortices far apart, thus

weakly interacting, but vortex 3 is nearly aligned with vortex 2. In the absence of vortex

1, vortices 2 and 3 would exhibit a perfectly circular shape if aligned. Finally, the bottom

frames C and C ′ of figure 4 illustrate tritons for intermediate offset between vortices 2 and

3. Vortex 3 exhibits the largest deformation while vortices 1 and 2 remain nearly circular.

The weak deformation of vortex 1 is again associated with the large separation distance

to both vortices 2 and 3. The asymmetry in deformation between vortices 2 and 3 can be

attributed to the PV ratio between these two vortices. Indeed |q2/q3| > 1 and vortex 2 is

able to withstand a higher level of shear without departing from a nearly circular shape.

Numerical experiments show that the curves presented here are generic of the situation

for γ ∈ [0.2; 0.7]. A summary of the results is provided in figure 5 for ρq = −2, ρq = −4

and ρq = −1. The generic trend is that increasing γ, which increases the vertical coupling,

increases the translation velocity and shifts the turning point, where rb = ra to smaller values

of ra. Note that when γ → 0, the two layers are uncoupled and the lower vortex cannot

compensate the mutual rotation induced by the upper vortices, hence the tripolar structure

cannot exist as a translating state. When increasing γ, the ability of the lower (negative)

vortex to counteract the rotation of the two upper vortices is enhanced, even when the upper

vortices are located close to one another, inducing a strong (positive) rotation. Therefore,

the triton can exist over a larger range of values for ra as γ is (moderately) increased. We

will next see what happens if γ exceeds a threshold depending on ρq (but typically ≥ 0.8).

Finally, in the range γ ∈ [0.2; 0.7], the translating, asymmetric tritons are linearly, neutrally

stable.

The qualitative dependence of the parameters rb and vt vs ra for the steady states is the
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FIG. 5. Characteristics of the equilibria for µ = −2 (tritons): Left, rb vs ra and, right, vt vs ra.

Curves are organised as follows: ρq = −1 (dotted lines), −2 (dashed lines), and −4 (solid lines).

Then, from left to right γ = 0.7 (red), 0.6 (black), 0.5 (green), 0.4 (blue), 0.3 (red), 0.2 (black).
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FIG. 6. Top view of the triton at equilibrium for γ = 0.6 and ρq = −1 with (a): ra = 1.71, rb = 1.73,

(b): ra = 3, rb = 5.89, and (c): ra = 2, rb = 3.28.

same for different values of ρq. We see that the quantitative dependence of the parameters rb

vs ra and vt vs ra is small. This is due to the fact that these parameters are, at leading order

at least, dictated by the strength of the vortices qiVi rather than by the individual values

of the PV qi and associated area Ai. However, the actual shape of the vortices is strongly

influenced by the PV ratio. As mentioned before, the ability of a vortex to withstand

external shear with little deformation is related to its strong PV. Note that the curves in

figures 5 are qualitatively similar to the curves provided by the formulas (10) – (11) for the

discrete tritons (figure 2.64 of paper62).
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FIG. 7. Characteristics of the equilibria with µ = −2 (tritons) for ρq = −4 and γ = 0.8, incomplete

branch. Top right, rb vs ra. Top, right, growth rate of the two most unstable modes (numerical)

calculated for tritons and symmetric roundabouts. Bottom, left: rotation velocity of the symmetric

ordinary roundabouts vs the gap between the two innermost edges of the side vortices, δ. Bottom,

right: translation velocity vt > 0 for the tritons (upper curve), and rotation Ωp < 0 (lower curve)

for the symmetric ordinary roundabouts vs ra. The central line offers a reference at Ωp = vt = 0.

Figure 6 illustrates the shape of vortices for ρq = −1 (when A2 = 2A), for ra ≃ rb, ra ≃ 2rb

and an intermediate case. Compared with the shapes of the steady states for ρq = −2, −4

(see figure 4), it is clear that vortex 2 is more deformed as its ability to withstand shear is

lowered. This helps understand the weak dependence of the values of rb and vt from a given

value of ra for the steady states, depending of ρq. The deformation of vortex 2 weakens its

influence. This affects the interaction in a similar (albeit much weaker) way as changing γ

as discussed previously.

When increasing γ further, the situation changes. We cannot reach the point where the
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FIG. 8. Top view of the vortices at equilibrium for µ = −2 (tritons), for ρq = −4 and γ = 0.8,

corresponding to the markers E (left) and F (right) in figure 7.

branch would intersect the branch of ordinary/inverse roundabouts at ra = rb. In fact,

we cannot obtain equilibria for ra smaller than a threshold value. This value of ra still

corresponds to a situation for which rb > ra. Moreover, when decreasing further the gap δ,

the corresponding value of ra for the new steady states increases. There is a new turning

point in the branch of solutions. We illustrate this for ρq = −4, and γ = 0.8. This case is

generic and similar behaviours are obtained for ρq = −2 (not shown). The turning point in

the plane (ra, rb) is indicated in figure 7 (top, left).

The shape of the tritons around the turning point, indicated in figure 7 by the markers E

and F , is illustrated in figure 8. We could not continue numerically the branch for smaller

values of δ (i. e beyond the marker F ). Other numerical experiments however indicate

that the branch could continue until vortex 3 exhibits a sharp inner edge, which marks the

physical end of the branch of solution. Recall that since the vortex boundary coincides with a

streamline, a sharp corner indicates the presence of a stagnation point (u, v) = (0, 0). A brief

analysis of the deformation of the vortex is proposed in the Appendix. To better understand

why the branch does not reach a state where rb = ra, we look at the corresponding branch

for the symmetric roundabouts. We observe in figure 8 (bottom, left) that, contrarily to the

cases with γ ∈ [0.2; 0.7], the rotation rate for the ordinary roundabout is always dominated

by the (negative) rotation of the central negative PV vortex. Even when δ = 0, and the side

vortices are at their closest, the positive rotation they induce cannot counteract the negative
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FIG. 9. Spatial structure of the two most unstable modes for vortex 3, the lower (unstable) pole

of the triton for ρq = −4 and γ = 0.8. Left, marker H in figure 7 with ra ≃ 2.1. There are

unstable two modes of equal growth rates. Right: marker I in figure 7 with ra ≃ 1.95 (there is

only one unstable mode in this case). The horizontal axis represents the azimuthal angle θ along

the contour. The vertical axis corresponds to the amplitude η of deformation mode (eigenvector)

of the contour (departure from equilibrium).

rotation. There is no point with Ωp = 0 on this branch where the branch of tritons would

bifurcate from. This regime cannot be captured by a discrete system of point vortices, and

is specific to the more realistic finite core vortex system

We next perform the linear stability analysis for the branch of tritons. Unstable modes

are found. The first two modes, of equal growth rate σr, arise at ra ≃ 2.25. Their emergence

is indicated by the marker G in figure 7. The growth rate associated with these two modes

first increases as ra is decreased to reach a peak σr ≃ 0.079 at ra ≃ 2.02 (marker H), then

decreases for small ra. The mode is stable for ra < ra ≃ 1.95 (marker E), but a new mode of

instability emerges there. The former mode is relatively weak while the latter has a growth

rate which increases significantly as ra is further decreased (see for example marker I).

The eigenvector of the modes of instability allows to reconstruct its spatial structure

(deformation of the vortex boundary). They are illustrated in figure 9 for cases H and I.

The vortex which mostly undergoes instability in the nonlinear regime is the most deformed
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one, vortex 3. The deformation mode is dominated by the azimuthal wave number m = 2.

This mode corresponds to the elongation of the vortex in a direction (and conversely its

thinning in the near perpendicular direction by area conservation).

The instability is illustrated by performing a nonlinear simulation of the equilibrium.

There is no forcing imposed and the perturbations arise from the numerical noise associated

with the finite resolution of the vortices. We illustrate the case corresponding to peak

instability for the first unstable modes, with ra ≃ 2.02 (marker H of figure 7) in figure 10.

The larger, upper vortex (vortex 3) lying over the smaller yet more intense, lower vortex

(vortex 2) destabilises on an azimuthal mode m = 2 and elongates. A filament, generated

at its sharper inner edge spreads and wraps around vortex 1 which is in the same layer.

For ra = 1.95 with σr ≃ 0.15, the same scenario repeats. The flow evolution (not shown)

is dominated by the destabilisation of vortex 3 according to an instability dominated by

an azimuthal wave number m = 2, in agreement with the linear stability analysis. Again,

a filament is generated at the acute inner corner of vortex 3 after a preliminary phase of

elongation towards vortex 1. This instability appears to be generic of the configurations

where vortex 3 is more deformed than any of the two other vortices, in particular near its

inner edge.

B. Common case µ 6= −2: eccentric roundabout (rotating asymmetric

two-layer tripolar V-state)

The dispersion equation for point vortex eccentric roundabout (item (i) in Introduction)

is62

1

2γra
+

2ra(1 + µ)

γrb(2ra − rb)
+K1(2γra)+

(2ra + µrb)K1(γ(2ra − rb)) −
(

2ra(1 + µ) − rbµ
)

K1(γrb)

2(ra − rb)
= 0.

(13)

For a collinear configuration of three discrete vortices located along the x-axis with the

vortex of the lower layer at (0, 0), satisfying the above equations (eccentric roundabout), the

solid body rotating at angular velocity Ωp relative the vorticity centre (xc, yc) is given by

(xc, yc) =

(

2(ra − rb)

µ+ 2
, 0

)

(14)

with

Ωp =
(µ+ 2)π

2(2ra + rbµ)

(

rb + 2raµ

2γrarb
− µK1(γrb) + K1(2γra)

)

. (15)
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FIG. 10. Time evolution of the vortex patches for an unstable equilibrium with µ = −2 (triton)

for ρq = −4 and γ = 0.8. The equilibria corresponds to the marker H in figure 7 with ra ≃ 2.02.

Frames displayed correspond to t = 0, 79, 84, 89. The frames are plotted in the reference frame

rotating with the equilibrium.

When µ → −2, the dispersion equation (13) gives (9), xc → ∞ and Ωp → 0 and we recover

the case of a triton. For µ 6= −2 however, xc is finite. Similarly, for finite core vortices with

µ 6= −2, the centre of vorticity is no longer rejected to infinity, and an eccentric roundabout

no longer translates as the tritons did, but rotates.

We illustrate the asymmetric two-layer tripoles for 3 values of the parameter µ, the
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strength ratio between the lower vortex (vortex 2) and one of the two upper vortices (vortex

1 or 3): µ = −1.2, −1.5, and −1.8. We first determine rb vs ra and the angular velocity

Ωp (for given ra) for the steady asymmetric tripoles (eccentric roundabout). The numerical

procedure is the same as for the triton, except that the equilibria are sought in a rotating

frame. We start with ra ≫ 1 and rb ≃ 2ra. When an equilibrium is reached, the distance

between the side vortices (vortices 1 and 3) is reduced and the procedure is resumed. For

tritons, there is no steadily translating state below some ramin. The numerical procedure

used to obtained the stationary states stops at this minimum, as no equilibrium exists below

this threshold. Recall that the state corresponding to ramin is a symmetric state, and is the

point of intersection with the branch of symmetric tripoles (ordinary/inverse roundabouts).

For asymmetric tripoles (µ 6= −2), since both branches correspond to rotating states, the

procedure started along the branch of eccentric roundabouts naturally follows the branch

of symmetric tripoles for values of ra < ramin. Obtaining stationary states for ra ≃ ramin

is however difficult numerically due to the proximity of multiple solutions for the equilibria.

On the other hand, the full branch of symmetric states can also be browsed by imposing a

double symmetry (with respect of the x, and y-axes).

Figure 11 shows rb vs ra and Ωp vs ra for ρq = −2, and −4 respectively, and µ =

−1.2, −1.5, and −1.8. The sharp turning point in the curves Ωp vs ra corresponds to the

point when ra reaches rb; this point is the intersection between the branches of symmetric

and eccentric roundabouts. Note that the kink in the curve appears at Ωp ≃ 0. In theory,

the kink should correspond to Ωp = 0. We cannot reach this state exactly in practice (due

to the accuracy of the solution near the intersection between the two branches of solutions).

This difficulty is related to the sharpness of the kink (vertical tangent in Ωp vs ra) at this

point. The graph rb vs ra presents two distinct parts. The linear part of the graph for small

values of ra corresponds to the branch of symmetric states (where by construction ra = rb)

while the curved part for larger ra corresponds to the eccentric roundabouts. This part

asymptotically tends to rb ≃ 2ra for ra → ∞. The abrupt change of dependence of Ωp on ra

was already observed in the point vortex calculation, and therefore can be explained by a

simple analytical calculation62. The branches corresponding to the asymmetric tripoles are

qualitatively very similar to the ones for the tritons (µ = −2). Again, we recover a strong

influence of γ. Increasing γ lowers the values of ramin, and overall increases (for a given ra)

Ωp. Both trends are related to the increased coupling between the layers, as explained in
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FIG. 11. Characteristics of eccentric roundabouts at equilibrium for µ = −1.2 (top panels) , −1.5

(middle panels), −1.8 (bottom panels), and (ρq, γ) = (−2, 0.3) solid black, (−2, 0.4) solid blue,

(−2, 0.5) solid red, (−2, 0.6) solid green, (−2, 0.7) dotted black, (−4, 0.3) dashed black, (−4, 0.4)

dashed blue, (−4, 0.5) dashed red, (−4, 0.6) dashed green, (−4, 0.7) dot-dashed black. Left graphs

rb vs ra at equilibrium. Right graphs Ωa vs ra. Note that the kink in the curves Ωp vs ra should

occur (in theory) at Ωp = 0 exactly.
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FIG. 12. Comparison between 3 branches of eccentric roundabouts at equilibrium with ρq = −4,

γ = 0.5, and µ = −1.2 (solid blue), −1.5 (solid green), and −1.8 (solid black). Left: rb vs ra, and

right Ωp vs ra.

the case µ = −2. As in the case of the tritons, and for the same reasons, the branches of

solution cannot reach the symmetric states for large values of γ (not further detailed here).

On the other hand, by changing µ, we change the relative importance of the lower,

negative vortex on the pair of co-rotating upper, positive vortices. Lowering the influence

of the negative vortex makes, overall, the rotating rate Ωp reach higher, positive values. It

also shifts ramin to higher values. Again, this is related to the reduced ability of the lower

vortex to adapt to the positive rotation induced by the upper vortices. This influence is

illustrated in figure 12. We also recover that the influence of ρq on the global parameters

such as rb = f(ra), and Ωp = g(ra) (for equilibrium) is moderate.

Next, we present the linear stability of the full branches of asymmetric tripoles and the

corresponding branch of symmetric tripoles. Figure 13 shows the growth rates of the two

most unstable modes for µ = −1.5, ρq = −2, and γ = 0.6. Both cases are qualitatively

very similar. The branch corresponding to the eccentric roundabout (asymmetric case)

represented in red shows that the configurations are neutrally stable (within the accuracy

23



Geostrophic tripolar vortices in a two-layer fluid

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

ra

0.00

0.02

0.04

0.06

0.08

0.10

0.12
σ

J

K

FIG. 13. Growth rates of the two most unstable modes vs ra for the equilibria with ρq = −2,

µ = −1.5, γ = 0.6 (bottom) for eccentric roundabout (red) and ordinary/inverse roundabouts

(blue).

of the calculation). This branch stops at at ra = 1.835 for γ = 0.6.

For lower values of ra, the only possible configuration is the symmetric one. In both

cases, the intersection between the branches of eccentric and ordinary/inverse roundabouts

is the starting point of an unstable mode along the symmetric branch. The growth rate of

this mode first increases as ra is decreased, to reach a maximum σ = 0.0357 at ra = 1.71 for

γ = 0.6 (with q = 2π). Note that the amplitude of the maximum growth rate remains small

(O(10−2)). The growth rate then decreases for decreasing ra and the mode disappears for

ra = 1.62. The second mode appears and rapidly grows for ra < 1.47.

We illustrate the unstable regime by performing nonlinear simulations of µ = −1.5,

ρq = −2 and γ = 0.6. The instabilities are not forced and arise from the amplification of

small numerical errors. We first investigate the nonlinear evolution of a strongly unstable

state with ra = 1.46 (indicated by the marker J in figure 13). Results are presented in

figure 14. It should be noted that the results are presented in the reference frame rotating

with the equilibrium. At t = 0, the two positive vortices of the upper layer at equilibrium

exhibit highly deformed inner edges. Their shape resembles that of two co-rotating vortices
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FIG. 14. Top view of the unstable symmetric inverse roundabout at t = 0, 29, 30, and 39 for

ρq = −2, µ = −1.5 and γ = 0.6 and ra = 1.46, see marker J in figure 13. The frames are plotted

in the reference frame rotating with the equilibrium.

at equilibrium close to the limit of vortex merger. The instability that develops is indeed

related to the merger of the two upper, like-signed vortices. The two vortices elongate in the

direction joining their centres (a deformation consistent with an azimuthal mode m = 2).

At t = 29 the two inner edges come close to each other and the two vortices start to join

by their sharp edges. This is characteristic of the instability leading to vortex merger in the

binary interaction for like-signed vortices. We see that by t = 30, the two upper poles have
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FIG. 15. Top view of the unstable ordinary roundabout at t = 0, 249, 399, and 499. for ρq = −2,

µ = −1.5 and γ = 0.6 and ra = 1.72, see marker K in figure 13. The frames are plotted in the

reference frame rotating with the equilibrium.

merged into a single pole.

Finally, we consider the nonlinear evolution of a symmetric ordinary roundabout in the

first regime of instability. We consider a case where the growth rate is near its peak at

ra = 1.72. In this case the two like-signed vortices are much less deformed due to their

weaker mutual interaction. In fact they are too far apart to merge. The state remains very

close to its equilibrium configuration. Recall that the growth rate of the instability is small.
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Eventually the vortices start to misalign and the three vortices depart from their equilibrium

position. However, the vortices do not deform significantly though they move relative to

each other. The vortices do not undergo interaction which results in their breaking (by

shear) or merger, and the structure remains tripolar.

V. CONCLUSION

Half of the overall transport of heat, salinity and other tracers in the oceans is likely to

be due to mesoscale structures75. Systems of vortices in mutual equilibrium are of particular

interest as they can travel in the fluid over long distances. When these structures are linearly

stable, they are able to persist in the flow for long periods of time. These vortex configura-

tions are therefore central to the transport in the oceans. In this paper, we have focused on

the existence and on the properties of equilibria for three horizontally aligned vortices in a

two-layer fluid. Such configuration may be, for example, formed by the interaction between

two propagating pairs of opposite-signed vortices or hetons53,74,76. Hetons themselves are

often observed on the oceans, as they can be generated by several physical mechanisms,

such as a local density perturbation (ice melting), the baroclinic destabilisation of a coastal

current, or of a thin and intense oceanic jet.

Notably, configurations of three collinear vortices have been observed in the Bay of

Biscay70–72. The present paper has provided an idealised, theoretical framework where the

existence and stability of such configurations of three vortices can be studied. In these

configurations, two like-signed vortices lie in the first layer and another vortex, of opposite

sign in the second layer. For these tripoles, there are two branches of steady solutions. One

branch consists of symmetric roundabouts, where the vortex of the second layer lies on the

axis of rotation of the pair of like-signed vortices. The full structure rotates about this axis.

Such branches are referred to as ordinary (or inverse) roundabouts. The second branch

consists of three-vortex structures whose centre of rotation is eccentric and are referred to

as eccentric roundabouts. When the overall strength of the vortices vanishes, the centre of

rotation is rejected to infinity and the configuration translates. Such vortex structures are

known as tritons. The branches of ordinary/inverse and eccentric roundabouts normally in-

tersect at a point where the rotation rate (or translation velocity) of the structure vanishes.

Both branches of solution can be characterised by the horizontal distance separating the
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two like-signed vortices of the first layer, 2ra. Since not all distances vary monotonically

across all branches, there is no single, universal distance to be considered for the problem.

Typically ordinary or inverse roundabouts can exist at equilibrium over larger ranges of this

distance. Branches of eccentric roundabouts and triton normally normally cease to exist for

separation distances between the centres of the lower vortices, 2ra, less than a threshold.

Only symmetric roundabouts can exist for separations less than this threshold.

In the case where the branches of eccentric and ordinary roundabouts intersect, the

branch of eccentric roundabouts (respectively triton) appears to be linearly stable. This

can be related to the fact that the turning point of the branch occurs for values of ra too

large to trigger instabilities. Instabilities generally occur for the ordinary roundabouts for

smaller separation distances between the vortices only. This indicates that most of eccentric

roundabouts are generally long lived.

Instabilities have however been observed for eccentric roundabouts and tritons for large

values of γ. For such vortex configurations, one of the upper-layer vortices is closer to the

lower-layer vortex than the other. For large values of this parameter, this upper-layer vortex

experiences a strain so high that a sharp corner forms on the vortex inner edge; this sustains

stationarity. The corner indicates the presence of a stagnation point, and the end of the

branch of solution. Such strong deformation in the shape of the vortex may trigger an

instability. In the nonlinear regime, the instability results in the shedding of a PV filament

from this inner edge. The structure then stabilises back and persists as a different, meta-

stable tripolar structure surrounded by thin filaments. The filaments eventually disappear.

As mentioned before, for values of ra smaller than the range where eccentric roundabouts

may exist, the ordinary and inverse roundabout can be unstable. In the range of parameters

studied, the instability results in the merger of the two upper-layer, like-signed vortices.

This results in the formation of a metastable hetonic structure which keeps rotating around

the same rotation axis. This type of behaviour depends on the value of γ, and other regimes

could be observed (such as the breaking of the opposite-signed vortex74).

All the results above have been obtained for the case h1 = h2. The general case with

h1 6= h2 needs to be studied in detail. However, an early test, represented in figure 16,

shows rb vs ra and the translation velocity vt (for tritons) or the rotation velocity Ωp for

ordinary and inverse roundabouts vs ra for the case µ = −2, γ = 0.6 and with h1 = 0.2,

h2 = 1 − h1 = 0.8. Results for both ρq = −2 and −4 are presented. In practice, the curves
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cannot be distinguished visually on the graph as they are almost identical. In these results,

the PV of the vortices of the like-signed vortices is kept to 2π as before, and their mean

radius is also kept to 1. The PV of the opposite-signed vortex is then fixed by the value of

ρq, and its radius such that the ratio of the volume integrated PV is µ. The linear stability

analysis provides results qualitatively similar to those obtained for the case h1 = h2. The

eccentric roundabouts are linearly stable, while ordinary and inverse roundabouts can be

unstable when the two like-signed vortex are close enough to each other. We present the

growth rate of the most unstable mode for the ordinary roundabout in figure 16. The overall

pattern is the same as the other cases - the difference is in appearance only: here the view is

zoomed out to see a larger range of growth rates, and the growth rates are plotted against

the distance δ instead of ra. This first plot provides a less detailed view on the growth rates,

but allows to exhibit the classical behaviour of the bifurcation of the mode.

The upshot of the study is that, despite the existence of small regions of instability, most

of these tripolar structures are linearly stable and are therefore persistent. Such vortex

configurations are well suited candidates to be oceanic tracer-carrying eddies.

The natural extension of this study is the investigation of the equilibria of four vortices

(N1 = 1, N2 = 3 and N1 = N2 = 2). Point vortex solutions for equilibria have been obtained

in the two-layer configuration53,62 as well as in the context of the three dimensional, continu-

ously stratified quasi-geostrophic model57. Future work will therefore determine equilibrium

solution for finite core vortices and address their linear stability properties.
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APPENDIX

We present here a Fourier analysis of the deformation of the boundary of vortex 3 in the

case µ = −2, ρq = −4, and γ = 0.8 when it deforms to form a sharp inner edge. Results
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FIG. 16. Steady eccentric and ordinary roundabouts characteristics for h1 = 0.2, h2 = 0.8. Here,

µ = −2, γ = 0.6. Results for ρq = −2 (solid black - eccentric, and solid red - ordinary/inverse) and

ρq = −4 (dashed black - eccentric, and dashed red - ordinary/inverse) are almost superimposed.

Top left: distance rb vs ra for the equilibria. Top right: Translation velocity (black, eccentric

roundabouts) and rotation velocity (red, ordinary/inverse roundabouts) vs ra. Bottom: growth

rate of the most unstable mode vs the gap δ.

are presented in figure 17. We first measure ∆r = r − r3, the departure of the local polar

radius r (measure from centroid of the vortex) as a function of the local polar angle. The

contours is originally mapped by 450 nodes. The signal obtained is re-sampled over 512

points equally-spaced in polar angle using local quadratic interpolation. We next perform
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an FFT to determine the azimuthal modes of deformation. The deformation is dominated

by mode m = 2 and its first subharmonics m = 4. The asymmetry between the inner and

outer edges of the vortex is fed by an increase in magnitude of mode m = 3.
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