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Abstract. The notion of latent-variable probabilistic context-free deri-
vation of syntactic structures is enhanced to allow heads and unrestricted
discontinuities. The chosen formalization covers both constituent pars-
ing and dependency parsing. The derivational model is accompanied by
an equivalent probabilistic automaton model. By the new framework,
one obtains a probability distribution over the space of all discontinuous
parses. This lends itself to intrinsic evaluation in terms of perplexity, as
shown in experiments.
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1 Introduction

Much of traditional parsing theory considers a syntactic structure to be a tree in
which siblings are linearly ordered, and a sentence is formed by the labels of the
leaves from left to right. Whereas most English sentences can be given syntactic
analyses that satisfy these constraints, other languages, especially those with
more flexible word order such as German or Czech, do not let themselves be
described easily, if at all, by using trees of this form. At the very least, these
languages require types of syntactic trees with ‘crossing edges’, a phenomenon
which is known formally as discontinuity.

In the theory of constituent parsing, leaf nodes in a parse tree are commonly
words and punctuation tokens, and non-leaf nodes represent categories; one may
also assign a special role to the nodes one level above the words, to represent parts
of speech. In the theory of dependency parsing however, each node corresponds
to a word or punctuation token, and can also be tagged with a part of speech;
moreover, the parent-child edges are typically labeled by dependency relations.
Discontinuity in dependency parsing is more specifically called non-projectivity.

One approach to obtaining discontinuous structures is to use formalisms that
distinguish between derived trees and derivation trees, with discontinuity intro-
duced through the interaction between the two kinds of trees. This approach
has been explored in particular for tree adjoining grammars (TAGs) and linear
context-free rewriting systems (LCFRSs). For TAG, see [10]. For LCFRS applied
to dependency parsing see [12] and for LCFRS applied to constituent parsing see
[5]. In all of these cases, probability models may remain attached to grammar
rules, as in the case of traditional probabilistic context-free parsing [8].
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Another approach takes shift-reduce automata as starting point, with an
additional mechanism for swapping elements in the stack [18, 13]. Typically, there
is a unique next parser action determined by a discriminative method, or there
may be a probability distribution over a set of possible next actions. In the
latter case, beam-search may be used to reduce the computational costs, by
restricting attention to a bounded number of partial parses that locally seem
most promising. In either case, parsing tends to be very fast.

However, it was shown for continuous parsing that models of syntax that rely
on a probability distribution over actions of a shift-reduce parser are incomplete,
in the sense that some probability distributions that can be expressed by prob-
abilistic grammars cannot be expressed in terms of the corresponding automata
[16]. Moreover, shift-reduce models tend to have many more parameters than
grammatical models. Under certain conditions, this may lead to more accurate
models [24] but when little training material is available, accurate estimation
of the larger number of parameters may be infeasible. One way to deal with
this is to derive the probabilities of parser actions directly from an underlying
grammatical model [15].

The purpose of the current paper is to explore avenues towards similar theory
for the discontinuous case. Concretely, we propose a grammatical, probabilis-
tic model of discontinuous syntax, and show how this relates to an automaton
model. This approach differs from an approach using TAG or LCFRS in that it
retains a notion of immediate dominance that is context-free. Added to this is
an independent model of discontinuity.

Our work has elements in common with, for example, [22, 11, 4], which also
investigated discontinuity through a redefinition of context-free derivations. An
important difference is that we aim to characterize ‘typical’ discontinuity in
terms of a probabilistic model rather than in terms of a system of boolean
constraints.

Other approaches, such as hybrid parsing [17], pseudo-projectivity [9, 14, 20],
and the reversible splitting conversion of [2], are incomplete, in that allowed
discontinuity is bounded by properties of the trained grammar, whereas our
model provably allows for any discontinuity.

2 Trees

In the following, we define a type of trees that is able to represent both con-
stituent structures and dependency structures with discontinuities. We assume
that each substructure has a head. Heads are an inherent component of most
definitions of dependency structures [7, 6]. Most older definitions of constituent
structures avoid the notion of heads altogether, whereas some more recent liter-
ature tends to at least involve heads in some way [3].

Let N+ = {1, 2, . . . }, and let [n] = {1, 2, . . . , n} for n ∈ N+. Let Σ be a finite
set of terminals and let N be a finite set of labels. Terminals correspond naively
to tokens, although in reality they can represent open classes of distributionally
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Fig. 1. Complete ph-tree for “a hearing is scheduled on the issue today” and corre-
sponding rightmost derivation, assuming π is the identity function. Thick edges lead
to heads and thin edges to dependents. Examples of headed rules used here are NP →
D〈N 〉PP and PP → ε〈P〉D N with ε here indicating absence of left dependents.

similar tokens. Labels could represent categories, parts of speech, semantic roles,
or even a combination of these.

The set H(Σ,N) of headed trees over Σ and N is defined inductively as
follows. We have a leaf (a, i) ∈ H(Σ,N) for each a ∈ Σ and i ∈ N+. We also have
A(s1 · · · sk, h, t1 · · · t`) ∈ H(Σ,N) for each A ∈ N and s1, . . . , sk, h, t1, . . . , t` ∈
H(Σ,N). Nothing else is in H(Σ,N).

In a leaf (a, i), the number i indicates an (input) position of the occurrence of
a in a string of terminals. The set of all positions in a headed tree t is denoted by
pos(t). All of s1, . . . , sk, h, t1, . . . , t` in a headed tree t = A(s1 · · · sk, h, t1 · · · t`)
will be referred to as immediate subtrees of t. We call subtree h the head of t,
we call s1, . . . , sk its left dependents and t1, . . . , t` its right dependents.

The head leaf of t = (a, i) is t itself and the head leaf of t = A(s1 · · · sk, h,
t1 · · · t`) is the head leaf of h. If (a, i) is the head leaf of t, then a is called the
head terminal of t and i is called the head position of t.

A headed tree is a positioned headed tree (ph-tree) if no two leaves share the
same position and if for every subtree t = A(s1 · · · sk, h, t1 · · · t`), the sequence of
the head positions of s1, . . . , sk, h, t1, . . . , t` is strictly increasing. A ph-tree t is
complete if pos(t) = [n] for some n ∈ N+; see Figure 1(a) for an example. The set
of ph-trees is denoted by P (Σ,N), and the set of complete ph-trees by C(Σ,N).
The yield of a ph-tree whose leaves are (a1, k1), . . . , (am, km), arranged such
that k1 < . . . < km, is the string a1 · · · am.

We call a ph-tree unilexical if each subtree is either a leaf or of the form
A(s1 · · · sk, h, t1 · · · t`), where h is a leaf and none of s1, . . . , sk, t1, . . . , t` are
leaves. A complete ph-tree that is unilexical would more commonly be called a
dependency structure.

3 Headed Context-free Grammars

In this section, we give a formalization of headed grammars that differs somewhat
from related definitions in the literature, for example those of [1, 3]. This is
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motivated by the need for a streamlined presentation that allows formulation of
both discontinuous constituent parsing and non-projective dependency parsing.
We also wish to incorporate the notion of latent variables, as this is an essential
component of some state-of-the-art parsers [21].

A headed context-free grammar (HCFG) is a 6-tuple (Σ,Q, qinit , R,N, π),
where Σ is a finite set of terminals as before, Q is a finite set of states, qinit ∈ Q
is the initial state, and R is a set of headed rules. Also as before, N is a finite set
of labels. The function π maps states to labels. Several states may be mapped to
the same label, to accommodate for latent variables. However, in the examples
and in the current experiments (Section 7), π is always the identity function.

A headed rule has the form q → α〈Z〉β, where q ∈ Q, Z ∈ Σ ∪ Q and
α, β ∈ (Σ ∪ Q)∗. Here q is called the left-hand side, and α〈Z〉β the right-hand
side, in which Z is the head, and the symbols in α and β are the left and right
dependents, respectively. The set R of headed rules is potentially infinite, in
which case we assume finite descriptions for the sets of strings α and β that may
appear in rules of the form q → α〈Z〉β, for given q and Z. Such descriptions
would typically be finite automata.

Assuming a fixed HCFG, the binary relation ⇒ has γ0γ1 · · · γkqδ0δ1 · · · δ`
⇒ γ0X1γ1X2 · · ·XkγkZδ0Y1δ1Y2 · · ·Y`δ` if q → X1 · · ·Xk〈Z〉Y1 · · ·Y` is a rule.
Note that if we were to restrict γ1 · · · γk and δ0 · · · δ`−1 to be always ε, then we
obtain the familiar notion of (continuous) context-free derivation. The reflexive,
transitive closure of ⇒ is denoted by ⇒∗.

Where we speak of ‘a derivation qinit ⇒∗ w’, we implicitly assume a certain
sequence of rule applications that leads us from qinit to w, via intermediate
sentential forms. This includes not only the identity of each applied rule, but
also the occurrence of the state on which it is applied (a sentential form may
contain several occurrences of the same state), and the locations where the left
and right dependents are placed among the existing elements in the sentential
form.

A derivation qinit ⇒∗ w maps to a complete ph-tree as follows. First we en-
hance w = a1 · · · an to w′ = (a1, 1) · · · (an, n), so that each terminal is coupled
to its position in the derived string. In the same way, we construct a set of en-
hanced rules, on the basis of the rules that occur in the derivation. Concretely,
for a rule ρ of the form q → X1 · · ·Xk〈Z〉Y1 · · ·Y`, the set of enhanced rules con-
tains all rules of the form (q, i) → (X1, i1) · · · (Xk, ik)〈(Z, i)〉(Y1, j1) · · · (Y`, j`),
where 1 ≤ i1 < . . . < ik < i < j1 < . . . < j` ≤ n. The set of such enhanced rules
for given rule ρ will be denoted by ρ(n). Examples of enhanced rules relevant for
Figure 1 are (S, 4) → (NP, 2)〈(VP, 4)〉ε and (D, 6) → ε〈(the, 6)〉ε. We can now
extend the derivation qinit ⇒∗ w in a unique way to a derivation (qinit , i0)⇒∗ w′,
for some i0, where we replace an application of a rule ρ by some rule ρ′ ∈ ρ(n). In
the enhanced derivation, we have made explicit in which position each terminal
occurrence will end up, as well as made explicit the head position belonging to
each state occurrence.

Next, we interpret the enhanced derivation as a tree structure, with the right-
hand side elements of an enhanced rule being the children of the left-hand side.
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On this tree structure, we apply π, which amounts to replacing each (q, i) by
π(q). In particular, if π is the identity function, as in the case of Figure 1, then
each (q, i) is simply replaced by q. Hereby, a derivation maps to a unique string
w as well as to a unique complete ph-tree. For a given HCFG G, the string
language SL(G) generated by G is the set of all strings that can be derived and
the tree language TL(G) is the corresponding set of complete ph-trees.

The permutation closure of a string language L ⊆ Σ∗ is defined to be the
language perm(L) of strings that are permutations of a string in L. We extend
permutation closure to rules as follows. If ρ is a rule q → α〈Z〉β, then perm(ρ) is
the set of rules of the form q → α′〈Z〉β′, where α′Zβ′ is a permutation of αZβ;
note that α′ and β′ need not be of the same length as α and β. The permutation
closure of a HCFG G, denoted by perm(G), is obtained by replacing its set of
rules by the union of their permutation closures. It is easy to see that a language
is a permutation closure of an epsilon-free context-free language (and thereby
of an epsilon-free regular language) if and only if it is SL(perm(G)) for some
HCFG G.

In practice, it is undesirable for a model of natural language syntax to allow
indiscriminate permutation of left dependents or of right dependents, let alone
indiscriminate swapping of left and right dependents. This motivates considering
the following weaker alternative to permutation closure. It involves shuffling
the descendents of a node with descendents of other nodes, while preserving
the relative order of immediate subtrees. Formally, a complete ph-tree u2 is a
shuffling of a complete ph-tree u1 if their yields, both of length n, are equal
under some permutation f of positions in [n] and if for every subtree of u1 of
the form A(s1 · · · sk, h, t1 · · · t`), whose immediate subtrees have head positions
i1, . . . , ik, i, j1, . . . , j`, there is a corresponding subtree of u2 of the form
A(s′1 · · · s′k, h′, t′1 · · · t′`), whose immediate subtrees have head positions f(i1), . . . ,
f(ik), f(i), f(j1), . . . , f(j`). The shuffle closure of a set T of complete ph-trees,
denoted by shuffle(T ), is obtained by replacing every tree t ∈ T by the set of its
shufflings. It is easy to see that TL(G) = shuffle(TLc(G)) for every HCFG G,
where TLc(G) is the tree language that results if ⇒ is restricted to continuous
derivation.

We have thus seen two ways of relating HCFG to continuous context-free
grammar, one in terms of string languages, using the permutation closure, and
one in terms of tree languages, using the shuffle closure.

4 Leftmost and Rightmost Derivations

Just as in established theory of context-free grammars, there can be several
derivations for the same string and the same tree that differ only in the order
in which states are rewritten. For the purpose of designing effective parsers
and formulating consistent probability distributions, one traditionally restricts
derivations to be either leftmost or rightmost. The behavior of top-down parsers
most closely matches leftmost derivations, whereas bottom-up parsers typically
match (reversed) rightmost derivations.
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Restricting our discontinuous derivations to be either leftmost or rightmost
is more involved than in established theory, because of the potentially non-local
behavior of derivation steps. Although we could define leftmost and rightmost
derivations for arbitrary HCFGs, the definitions become simpler if we restrict
ourselves to HCFGs that are separated; a HCFG is called separated if terminals
only occur in rules of the form q → ε〈a〉ε, where a ∈ Σ, and all other rules are
of the form q → α〈r〉β, where r ∈ Q and α, β ∈ Q∗. In a rightmost derivation,
every sentential form is then split into a prefix and a suffix. The suffix consists
entirely of terminals, whereas the prefix is in the set {ε} ∪ Q∗Q̂Q∗, where
Q̂ = {q̂ | q ∈ Q}. In words, if the prefix is not the empty string, then it contains
only states, of which exactly one has a hat.

The binary relation ⇒rm (‘rm’ for ‘rightmost’) has γq̂δw ⇒rm γ0q
′
1γ1q

′
2 · · ·

q′kγkr
′δ0s

′
1δ1s

′
2 · · · s′`δ`w if q → q1 · · · qk〈r〉s1 · · · s` is a rule, γ = γ0 · · · γk ∈ Q∗,

δ = δ0 · · · δ` ∈ Q∗, w ∈ Σ∗, q, q1, . . . , qk, r, s1, . . . , s` ∈ Q, and q′1 · · · q′kr′s′1 · · · s′`
is obtained from q1 · · · qkrs1 · · · s` by placing the hat on exactly one of these
states.

The relation ⇒rm further has γq̂w ⇒rm γ′aw if q → ε〈a〉ε is a rule, where
a ∈ Σ, and γ′ = γ if γ = ε and otherwise γ′ is obtained from γ by placing the
hat on exactly one of the states. A derivation starts from the sentential form
q̂init .

Perhaps counter-intuitively at first sight, our rightmost derivations do not
necessarily rewrite the rightmost state. Instead, a rightmost derivation can be
decomposed into several chains of rewrites, each of which ends in a step that
is rightmost in the sense of adding one more terminal at the front of the suffix
of terminals. After the first step in a single chain, each step rewrites a state
introduced by the previous step. This constraint is enforced by placing a hat on
a state to be rewritten next.

An example of a chain starts in the third line in Figure 1(b), with N̂P . In
the fourth line, NP has been rewritten to D N PP , of which the last obtains
the hat. The chain ends when issue is added at the front of the terminal suffix,
upon which another state from the sentential form obtains the hat, in this case
the rightmost D , which starts a new chain.

Leftmost derivations are analogous. We can define SLlm, TLlm, SLrm and
TLrm much as we defined SL and TL, now restricting the derivations to be
leftmost or rightmost, respectively. Of central importance to later sections is:

Theorem 1 For each HCFG G, we have SL(G) = SLlm(G) = SLrm(G), and
TL(G) = TLlm(G) = TLrm(G).

A proof can be given in terms of enhanced derivations, which can be rearranged
to become rightmost (or leftmost for the symmetric case). For a string of length
n, there are chains of rewrites, one for each i = n, . . . , 1. In the chain for a certain
i, only state occurrences are rewritten whose corresponding subtrees have yields
that include the i-th terminal but not the j-th terminal in the string, for any
j > i. Theorem 1 can be refined to formulate a surjective mapping from an
arbitrary derivation to a rightmost derivation for the same tree. Moreover, if
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π is the identity function, then there is a bijective mapping from rightmost
derivations to TL(G).

5 The Automaton Model

This section defines a discontinuous shift-reduce parser, which computes (re-
versed) rightmost derivations of a separated HCFG. A configuration is a pair
consisting of a stack, which is a string in {ε} ∪ Q∗Q̂Q∗, and a remaining input,
which is a string in Σ∗.

The binary relation ` is defined by two allowable steps. A shift is (γ, aw) `
(γ′q̂, w) if q → ε〈a〉ε is a rule, and γ′ results from γ by removing the occurrence
of the hat if there is one (if not, then γ = ε). A reduction is (γ0q

′
1γ1q

′
2 · · · q′kγkr′

δ0s
′
1δ1s

′
2 · · · s′`δ`, w) ` (γ0 · · · γkq̂δ0 · · · δ`, w) if q → q1 · · · qk〈r〉s1 · · · s` is a rule,

and q′1 · · · q′kr′s′1 · · · s′` contains exactly one hat, which is removed to give q1 · · · qkr
s1 · · · s`. It differs from the usual definition of reduction in continuous parsing
by the fact that the occurrences of symbols in the right-hand side of the used
rule can be arbitrarily deep in the stack (but in the same relative order as in the
rule). The location in the stack where the head is found determines the location
of the left-hand side of the rule after the reduction.

A computation recognizing a string w is a sequence of steps (ε, w) `∗ (q̂init , ε).
As ` can be seen as the reversal of ⇒rm , it is not difficult to see that a string
can be recognized if and only if it is in SL(G), using Theorem 1. Further, com-
putations can be enhanced to construct corresponding trees.

For the example from Figure 1, the computation is:

(ε , a hearing is scheduled on the issue today) `
(D̂ , hearing is scheduled on the issue today) `
(D N̂ , is scheduled on the issue today) ` . . . `

(D N Aux V P D̂ , issue today) `
(D N Aux V P D N̂ , today) `
(D N Aux V P̂P , today) `
(N̂P Aux V , today) `
(NP Aux V ÂDV , ε) `
(NP V̂P , ε) `
(Ŝ , ε)

6 Probabilities

There may be many derivations for a given string, each of which determines
one tree. In order to disambiguate, and choose one out of those derivations, and
thereby one tree, one may impose a probability model, either on steps of the
automaton, or on derivation steps. For reasons explained in Section 1, we here
want to investigate the latter, as before for a fixed HCFG that is separated.
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The task ahead is to define a probability distribution over the derivation steps
that are possible for a sentential form γq̂δw. A derivation step is characterized
first by a choice of a rule q → α〈r〉β or a rule q → ε〈a〉ε; the latter is only possible
if δ = ε. When a non-lexical rule q → α〈r〉β is applied, we also need to choose
the way in which γ and δ are broken up, to accommodate for the placement of
the elements of α and β, and we need to choose the state among those in αrβ
that will have the hat next. When a lexical rule q → ε〈a〉ε is applied, we need to
choose the state among those in the sentential form that will have the hat next.

In order to be able to estimate parameters effectively, we need to make a
number of independence assumptions, which will become clear in the following.
The probability of obtaining α2 = γ0q

′
1γ1 · · · q′kγkr′δ0s′1δ1 · · · s′`δ`w in one step

from α1 = γ0 · · · γkq̂δ0 · · · δ`w through application of q → q1 · · · qk〈r〉s1 · · · s`,
where the m-th state in q′1 · · · q′kr′s′1 · · · s′` is the one with the hat, and B denoting
the truth value of δ0 · · · δ` = ε, can be approximated by:

p(α2 | α1) ≈ prule(q → q1 · · · qk〈r〉s1 · · · s` | q,B) ·
pleft(|γ0|, . . . , |γk| | k, |γ0 · · · γk|) ·
pright(|δ0|, . . . , |δ`| | `, |δ0 · · · δ`|) ·
prule hat(m | k, `) (1)

The use of prule embodies the independence assumption that the probability of
applying a non-lexical rule for state q does not depend on the context, except
for the question whether q is the rightmost state in the sentential form. This is
because probability mass may be shared with application of a lexical rule in case
B = true, which is to be discussed later.

Further, pleft(i0, . . . , ik | k, i) is the probability that k left dependents are
distributed over i = i0 + . . .+ ik states, leaving i0 states before the first left de-
pendent, ik after the last left dependent, and i1, . . ., ik−1 states between the cor-
responding pairs of consecutive left dependents. The meaning of pright(j0, . . . , j` |
`, j) is analogous. The assumption made here is that the probability of how the
left and right dependents are interspersed with the existing states of the senten-
tial form is independent of the identities of the involved states, and only their
numbers matter. The motivation behind this assumption is to keep the model
simple. Investigation of more refined models is a matter for future research.

Lastly, prule hat(m | k, `) is the probability that with k left dependents, one
head, and ` right dependents, the hat is placed on the m-th element, with m ∈
[k+ 1 + `]. Once more, there is the independence assumption that the identities
of the involved states do not matter.

The probability of obtaining α2 = γ′aw from α1 = γq̂w using a rule q →
ε〈a〉ε, where the m-th state in γ′ is the one with the hat, can be approximated
by:

p(α2 | α1) ≈ prule(q → ε〈a〉ε | q) · plex hat(m | |γ|) (2)

Here prule is implicitly conditional on B = true, as lexical rules can only rewrite
states that occur rightmost in the sentential form. Further, plex hat(m | k) is the
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probability that the hat is placed on the m-th state of a string of k states. Once
again, there is the independence assumption that the identities of the involved
states do not matter.

We define pleft and pright recursively, motivated by the assumption that the
probability decreases exponentially with the number of existing states from the
sentential form that are interspersed with the dependents. For i ≥ 0 and k ≥ 0:

pleft(i0 | 0, i) = pleft(i0, . . . , ik | k, 0) = 1 (3)

pleft(i0, . . . , ik, ik+1 + 1 | k + 1, i+ 1) = Pleft · pleft(i0, . . . , ik, ik+1 | k + 1, i) (4)

pleft(i0, . . . , ik, 0 | k + 1, i+ 1) = (1− Pleft) · pleft(i0, . . . , ik | k, i+ 1) (5)

Here Pleft is the probability that the next dependent is not placed rightmost
among the available existing states in the sentential form, provided there are
any. We have probability 1 if there are no more available states in the sentential
form that can be skipped, or no more dependents. We define pright in the same
way, with constant Pright . By the same reasoning, we define prule hat(m | k, `) =
P k+`+1−m
rule hat · (1−Prule hat) for m > 1 and prule hat(m | k+ `+ 1) = P k+`+1−m

rule hat for
m = 1. Here Prule hat can be seen as the probability that the hat is not placed on
the next available state of a rule, from right to left, if there are at least two more
available states. We have probability 1 if there is only one more state. We define
plex hat similarly, with constant Plex hat , which can be seen as the probability
that the hat is not placed on the next available state in the sentential form, from
right to left.

With the usual assumption of absence of useless rules, a sufficient condition
for the above equations to specify a consistent probability model is that there
is at least one rule q → α〈r〉β with non-empty β for each q. To illustrate the
problem that is potentially caused if this requirement is not satisfied, assume
the hat is placed on a state q in the sentential form that is not rightmost, and
assume only lexical rules exist that have q as left-hand side. Then no rules at all
are applicable, and probability mass is lost.

Such a problem in fact had to be solved for our experiments in Section 7 with
dependency grammars, which are formalized in terms of rules qinit → ε〈A〉ε,
A → α〈A〉β, and A → ε〈a〉ε, where state A represents a part of speech and A
is an auxiliary state for the same part of speech, α and β are strings of such
auxiliary states for parts of speech, and a is a word. Dependency relations are
ignored. For each A there is one smoothed bigram model pld for possible choices
of left dependents α and one such model prd for right dependents β. To avoid
problems caused by out-of-vocabulary words and inflection, probabilities of rules
A→ ε〈a〉ε are ignored, so that conceptually the input consists of a string of parts
of speech.

In order to then obtain a probability distribution over derivations, one needs
to ensure that the hat cannot be given to a part of speech that is non-rightmost
in the sentential form. This is achieved by adjusting the definitions of prule hat

and plex hat to ignore parts of speech unless they are right-most in the sentential
form. We further ensure that an auxiliary state A that occurs non-rightmost
in the sentential form can only be rewritten using A → α〈A〉β if αβ 6= ε,
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Table 1. Perplexity of the likelihood p, and some estimated parameters, for German,
Norwegian, English and Hindi, for leftmost and for rightmost derivations.

⇒lm ⇒rm

p Plex hat Prule hat Pleft Pright p Plex hat Prule hat Pleft Pright

Ge 1.88 4.0*10−3 2.0*10−3 1.3*10−1 4.2*10−2 1.89 6.0*10−4 1.1*10−2 1.0*10−2 2.8*10−1

No 1.96 5.8*10−4 3.4*10−3 5.0*10−1 8.5*10−2 1.97 2.1*10−3 1.7*10−2 5.1*10−3 2.1*10−1

En 1.99 4.8*10−4 3.8*10−3 5.2*10−1 3.7*10−2 2.00 1.1*10−3 6.5*10−3 4.5*10−3 2.3*10−1

Hi 1.72 2.3*10−3 3.6*10−3 5.7*10−1 4.1*10−2 1.71 3.9*10−4 2.6*10−2 9.6*10−3 4.6*10−1

with probability pld(α | A) · prd(β | A) ·Cnorm(A), with the normalization factor
Cnorm(A) = 1/(1− pld(ε | A) · prd(ε | A)). For rightmost occurrences of A there
is no such restriction on α and β and the normalization factor is not needed.

7 Evaluation

The number of derivations is exponential in the length of a sentence. This makes
it infeasible to compute the most probable among all rightmost (or leftmost)
derivations. One may use beam search or related pruning techniques to reduce
running time. However, an extrinsic evaluation that determines the usual F1
score (combining precision and recall) would then say as much about the used
techniques of pruning as it does about the underlying model.

Because our model defines a probability distribution, one may instead per-
form an intrinsic evaluation in terms of perplexity, which is the negative log like-

lihood of a test corpus, normalized by the size of that corpus, i.e.
−

∑
t∈T log2 p(t)∑

t∈T |t|
.

Here T is the set of trees for the test corpus, p is the trained probability model of
leftmost or rightmost derivations, and |t| is the number of nodes in t. Perplexity
was shown by [23] to be a good indicator of parsing accuracy.

An obvious question to investigate is whether there is a difference in per-
plexity between leftmost and rightmost derivations. For this, we considered four
corpora from the Universal Dependencies treebank [19], taking the first 13000
trees from each training section and the first 950 trees from each testing section.
All punctuation was removed and sentences consisting entirely of punctuation
were ignored altogether. Table 1 presents perplexity and some of the parameters
obtained by maximum likelihood estimation.

Note that the probabilities of prule , as determined by pld and prd and the
probabilities of rules qinit → ε〈A〉ε, are not affected by the direction of the
derivations. They make the biggest contribution to the perplexity, so that total
values for leftmost and right derivations become very similar. Table 2 therefore
looks at the decomposition of the perplexity, into the contributions from prule ,
plex hat , prule hat , from pleft and pright together, as well as the (negative) contri-
bution from the normalization factor Cnorm . Also this more detailed view does
not reveal a clear preference for leftmost or rightmost derivations.
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Table 2. Perplexity of the likelihood p decomposed.

⇒lm ⇒rm

prule p plex hat prule hat pleft∗pright Cnorm p plex hat prule hat pleft∗pright Cnorm

Ge 1.86 1.88 5.4*10−3 2.9*10−3 1.5*10−2 -3.0*10−4 1.89 8.3*10−3 1.3*10−2 1.2*10−2 -1.6*10−3

No 1.92 1.96 4.6*10−3 7.0*10−3 2.9*10−2 -3.4*10−4 1.97 1.8*10−2 1.8*10−2 2.1*10−2 -5.5*10−3

En 1.98 1.99 1.7*10−3 1.1*10−3 8.9*10−3 -1.8*10−4 2.00 4.6*10−3 6.7*10−3 5.5*10−3 -1.4*10−3

Hi 1.67 1.72 1.1*10−2 6.4*10−3 3.4*10−2 -5.3*10−4 1.71 1.7*10−3 2.3*10−2 2.0*10−2 -1.7*10−3

8 Conclusion

Motivated by the ultimate aim of developing more accurate and robust parsers
that can handle discontinuity, we have introduced a model of syntax that cap-
tures discontinuous derivation. Unlike previous models, it explicitly defines a
probability distribution over the space of all discontinuous parses. We have shown
that this allows evaluation in terms of perplexity.
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