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Abstract  
Adult stem cells, such as mesenchymal stem cells, are a multipotent cell source able to 
differentiate toward multiple cell types. While used widely in tissue engineering and 
biomaterials research, they present inherent donor variability and functionalities. In 
addition, their potential to form multiple tissues is rarely exploited. Here we combine an 
osteogenic nanotopography and a chondrogenic hyaluronan hydrogel with the hypothesis 
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that we can make a complex tissue from a single multipotent cell source with the 
exemplar of creating a 3D bone-cartilage boundary environment. MSCs were seeded onto 
the topographical surface and the temperature gelling hydrogel laid on top. Cells that 
remained on the nanotopography spread and formed osteoblast-like cells while those that 
were seeded into or migrated into the gel remained rounded and expressed chondrogenic 
markers. This novel, simple interfacial environment provides a platform for anisotropic 
differentiation of cells from a single source, which could ultimately be exploited to sort 
osteogenic and chondrogenic progenitor cells from a MSC population and to develop a 
tissue engineered interface.    
 

Introduction  
Articular cartilage, found at the surface ends of long bones, is an avascular, aneural 

connective tissue with a functional capacity to dissipate biomechanical loads and allow 

smooth articulation of joints.1 At the macroscopic level it contains just one functional cell 

type, the chondrocyte. The cells regulate, synthesise and assemble a complex 

extracellular matrix (ECM) during the chondroblastic stage before terminally 

differentiating to the chondrocyte to maintain the tissue. However, due to the avascular 

nature of the tissue, repair is highly limited after injury and degradation is mainly 

irreversible leading to osteoarthritis (OA) which is a degenerative and disabling joint 

disease.  

One of the main issues in repair of articular cartilage injury is that it often involves two 

tissues, bone and cartilage at their interface. Current treatments involving chondrocyte 

implantation to the defected site do not address the importance of the interface with the 

subchondral bone. Microfracture technique consisting in mobilising cells from the bony 

region tends to be suboptimal in term of cartilage tissue formation. 

Thus, use of stem cells, particularly skeletal marrow stromal cells (MSCs) capable of 

forming both cartilage and bone, may be desirable as: (a) they have high proliferative 

capacity and (b) their use would allow complex and interfacial tissue engineering (i.e. 



forming bone and cartilage) from a single cell type. However, distinct environmental cues 

are required to support differentiation down the desired osteo- or chondro- lineage of the 

MSCs. We note that while stem cells, particularly, MSCs are widely used in biomaterials 

and tissue engineering research, achieving spatial positioning of different cell types from 

a single cell source within a scaffold is challenging as different cell cues are required in 

different locations. Such cues can be physical (chemistry of the scaffold/grafting of 

chemistry, stiffness control, topographical information2–7), biological (i.e. peptides, 

growth factors8), or a combination of both.9,10 Growth factors have been added with 

spatial control to direct multiple stem cells fates.11,12 Similarly, plasmids were spatially 

delivered through a bilayer structure for the differentiation of MSCs toward bone and 

cartilage.13 While the use of a biphasic scaffold is not novel14 the self-organisation of 

hMSCs capabilities on designed scaffolds in basal media is both desirable and novel. 

In this study we employed an osteogenic nanoscale topography6 embossed on a 

biodegradable, poly(ε-caprolactone) (PCL) membrane and a hyaluronan hydrogel capable 

of supporting chondrogenesis.15 This modular system is designed to permit osteogenesis 

at the topography/gel interface and chondrogenesis within the gel using a multipotential, 

but critically single cell type source, MSCs, in the absence of directing external 

biological cues.  

 

Materials and Methods 

Generation of FLAT and NSQ surfaces 

As previously described, quartz slides of near-square (NSQ) topography (120nm pits in 

square arrangement, centre–centre spacing of 300 nm, with ±50 nm offset in pit 



placement in x and y axes 4,6) and glass coverslips of FLAT topography were used to 

create multiple polymer replicas by manual hot (80°C) embossing poly(ε-caprolactone) 

beads ((C6H10O2)n; PCL (Sigma Aldrich): typical disks 13 mm in diameter, suitable for 

cell culture in 24 well plates. PCL disks were treated for 30 seconds at MHz-range Radio 

Frequency (RF) in a plasma cleaner (PDC-002 Harrick Plasma) to remove organic 

contaminants and activate the surface to improve cell surface attachment, then sterilized 

in 70% ethanol for 30 minutes and two sequential 5 minute washes in cell culture media 

prior to cell seeding. 

Synthesis of poly(N-isopropylacrylamide) hyaluronan derivative. 

 The derivative was prepared as already reported.16 Briefly, amino-terminated poly(N-

isopropylacrylamide) (PNIPAM-NH2) was synthesized by dissolving 10 g of N-

isopropylacrylamide in 20 ml of dry N,N-dimethylformamide (DMF). Under nitrogen 

atmosphere, 15 mg of azobisisobutyronitrile and 30 mg of cysteamine hydrochloride 

were added, and the reaction was let to proceed for 6 hrs. The product was precipitated 

and washed with diethyl ether. The PNIPAM-NH2 Mw value was 40'300 g⋅mol-1 as 

measured by gel permeation chromatography. HA sodium salt from Streptococcus equi 

(HANa) with Mw of 293'000 g.mol-1 and polydispersity PDI = 1.86 (Contipro Biotech.) 

was transformed in its tetrabutylammonium salt (HATBA) via cationic exchange. Then, 

2.0 g of HATBA were dissolved in 200 ml of dry dimethyl sulfoxide at RT. 

Methanesulfonic acid and 1,1'-carbonyldiimidazole both equimolar to the repeating unit 

of HA were added and 3.7 g of PNIPAM-NH2 added and stirred at RT for 3 days. The 

solution was dialysed against demineralized water using regenerated cellulose dialysis 

tubes (MWCO 50 kDa) for 5 days and finally freeze dried. 1H NMR analysis was 



performed on a Bruker Avance AV-500 NMR spectrometer using deuterium oxide as 

solvent to assess the degree of grafting of pNIPAM-NH2 onto HA. 

Reconstitution and rheology of thermoresponsive hyaluronan 
solution. 

The hyaluronan derivative was reconstituted to 15% w:v in sterile phosphate buffered 

saline (PBS) and stored at 4oC for 24 hrs for complete dissolution. Rheological 

measurements were performed on an Anton Paar MCR-302 rheometer equipped with 

Peltier temperature control device and thermostatic hood. A 1° conical geometry of 25 

mm diameter and 49 µm gap was used. For each sample an amplitude sweep was 

measured at 10 rad/s and 37.00 ± 0.03 °C. Storage moduli were measured as function of 

the temperature between 20 °C and 40 °C with a gradient of 1 °C/min at angular 

frequency of 10 rad/s and amplitude within the linear viscoelastic range. A thin layer of 

low-viscosity silicon oil was spread along the meniscus interface in order to avoid 

evaporation. 

Cell isolation and culture. 

MSCs were isolated from haematologically normal patients undergoing routine surgery 

as previously described.17 MSCs were cultured in growth media containing 86% DMEM 

(Sigma) supplemented with 10% Fetal Bovine Serum (FBS) (Sigma, UK), 2% penicillin 

streptomycin, 1% non-essential amino acids (Invitrogen, UK) and 1% 100mM sodium 

pyruvate (Life Technologies, UK) at 37°C with a 5% CO2 atmosphere. Media was 

changed every 3 days and cells passaged to passage 2 or 3. hMSCs were seeded on NQS 

topography PCL surfaces in 24 well plates at 1 x 104 cells per PCL disk (surface area of 

disk average 1.13 cm2), media as recipe above and incubated for 24 hours to allow for 



adherence. Then, 250 µL of 1 x 104 cells/ml of thermoresponsive hyaluronan 

composition at temperature around 10°C was added and allowed to flow on top of the 

PCL disk before incubation at 37°C for 10 – 15 minutes to allow gelation, resultant gel 

approximately 0.5 cm thickness. 13 mm glass coverslips sterilized in 70% ethanol were 

subsequently added on top to ensure that the hydrogel was always in contact with the 

underlying PCL disk. Note that MSCs from Promocell were used to generate 

Supplementary Figure 1. 

Immunocytochemistry. 

After 5 days of culture, cells were fixed (10 ml 37% formaldehyde, 2g sucrose in 90 ml 

PBS solution) for 15 minutes. Permeabilising buffer (10.3g sucrose, 0.292g NaCl, 0.06g 

MgCl2, 0.476g HEPES, 0.5 ml Triton X, in 100 ml of H2O, at pH 7.2) was then added for 

15 minutes to control samples without hydrogel (-GEL), and for 2 hours to samples with 

hydrogel (+GEL). To block non-specific binding samples were incubated in 1% 

BSA/PBS for 15 min -GEL, and 1 hour +GEL. Primary antibodies (1:50 in 1% 

BSA/PBS) were added at 200 µL/well for 1 hour -GEL, and at 500 µl/well overnight 

(+GEL). Substrates were then washed three times in 0.5% Tween 20/PBS (5 minutes 

each –GEL, 20 minutes each +GEL). Corresponding secondary biotin-conjugated 

antibody (1:50 in 1% BSA/PBS) was added for 3 hours to –GEL and +GEL samples, 

followed by substrate washing as described above. FITC-conjugated streptavidin was 

added (1:50 in 1% BSA/PBS, Vector Laboratories) for 2 hours before samples were 

given a final wash. All immunostaining were carried out at 37°C with warmed solutions 

in order to maintain hydrogel integrity. Surfaces were mounted using mounting medium 

for fluorescence, with DAPI counterstain (Vector Laboratories, UK), and viewed by 



fluorescent microscopy (Zeiss Axiophot).  Digital images were captured in two 

fluorescent channels (x20 magnification) and saved for further processing. Primary 

antibodies presented in Table 1. Secondary antibodies: biotinylated monoclonal anti-

mouse (IgG) raised in horse and fluorescein streptavidin (all Vector Laboratories, UK).  

 Table 1. Table of primary antibodies used for immunocytochemistry. 

Von Kossa staining. 

After 28 days of culture, cells were fixed for 15 minutes in 4% formaldehyde solution 

and stored in PBS overnight. 1 ml of 5% silver nitrate solution (5g silver nitrate, 100ml 

deionized H2O, kept in dark) was added to each sample well and exposed to U.V. light 

for 20 minutes. Samples were washed thrice in deionized water. 1 ml 5% sodium 

thiosulphate solution (5g sodium thiosulphate, 100ml deionized H2O, stored in dark) was 

added for 10 minutes, samples were washed as described above. 1 ml counterstain 

solution (0.1g nuclear fast red, 5g aluminium sulphate in 100ml deionized H2O, boiled 

for 5 minutes and filtered) was added for 3 minutes. Samples were washed as described 

above and finally rinsed in 70% ethanol. Digital images of PCL disks were captured and 

saved for further analysis. The whole procedure was carried out at 37°C to maintain gel 

integrity. The hydrogel was washed away during the staining protocol and therefore is not 

imaged. 

Target	Molecule	 Host	 Isotype	 Source	 Reference	

β3	Tubulin	 mouse	 Monoclonal,	IgG2b	 Sigma,	UK	 18–20	

Phosphorylated	
RUNX2	

mouse	 Monoclonal,	IgG2a		 Abcam,	UK	 21,22	

Vinculin	 mouse	 hVIN-1,	Monoclonal,	IgG1	 Sigma,	UK	 5,20,23,24	

SOX9	 mouse	 Monoclonal,	IgG2a	 Abcam,	UK	 25,26	
Osteocalcin	 mouse	 Monoclonal,	IgG2a	 Santa	Cruz	Biotechnology,	USA	 23,27	



Quantitative PCR. 

Samples were harvested after 28 days of culture in triplicate by transferring hydrogels to 

a 2 ml Eppendorf tube and adding 1 ml of TRIZOL reagent and incubating at room 

temperature for 10 mins. Cells on PCL substrates were removed by trypsinization and 

cell pellet was added to corresponding hydrogel TRIZOL solution. Samples were stored 

at -80 °C until RNA isolation. RNA was isolated using RNAeasy micro kit according to 

manufacturer protocol (Qiagen, UK). RNA pellets were solubilized in RNase free water 

and assessed for concentration and purity with measured absorbance at 230 nm, 260 nm 

(nucleic acids) using a NanoDrop ND 100 spectrometer (Thermo Scientific). Reverse 

transcription was carried out on extracted RNA using an Omniscript Reverse 

Transcription kit (Qiagen, UK) according to manufacturer’s instructions, with Random 

Primers (Invitrogen, UK) and RNAsin (Promega, USA). Quantitative PCR was carried 

out using a qPCR detection system (model 7500, Applied Biosciences) by the SYBR 

green method. Expression of SOX9 (Table 2) were tested, and GAPDH expression was 

used as a reference gene to normalize all data. RQ (relative gene expression) values were 

automatically calculated by the delta delta CT method. Statistical analysis first 

determined that GAPDH did not vary under test conditions (one-way ANOVA;). Cycle 

threshold values were then converted from logarithmic to linear scale (2ΔΔ-CT) for further 

analysis. 

Table 2. Primers used for qPCR 
PRIMER FORWARD REVERSE 

GAPDH TCAAGGCTGAGAACGGGAA TGGGTGGCAGTGATGGCA 

SOX9 
AGACAGCCCCCTATCGACTT CGGCAGGTACTGGTCAAACT 



Statistical Analysis. 

For analysis of gene expression the 2ΔΔ-C
T method was used.28 Statistical analysis was 

carried out using the Tukey Kramer multiple-comparisons post-test analysis of variance 

(ANOVA). Relative transcript levels expressed as the mean ± standard deviation for 

plotting on graphs. (n=3 for each condition).  

Results 
Unless stated, experiments were set up as depicted in the scheme in Figure 1, with MSCs 

seeded onto the flat control or NSQ nanotopographical for 24 hrs before setting the gel on 

top of the cells. 

 

Figure 1. Schematic of basic in vitro experimental set up. 
 

Materials.  

Thermoresponsive hyaluronan derivatives formulation used for this study had an average 

degree of substitution value of 6.42 ± 0.40% as measured by 1H NMR, an 



average storage modulus (G') value of 0.46 ±�0.226.7 Pa at 25°C and 1090 ± 6602492 

Pa at 35°C.  

To assess the influence of hMSCs on the stability and rheological properties of the 

hydrogel formulation, 20 million hMSCs were seeded encapsulated into 1 ml of 

hyaluronan derivative reconstituted at 15% w:v in PBS and the rheological profile 

measured (Figure 2). The gelation temperature was not influenced by the presence of 

cells, while the final storage modulus value decreased from 6.7 to 4.8 Pa at 25°C and 

from 1100Pa down to 1000Pa kPa at 35°C. 

 



 

 

Figure 2. Rheological features of the gel with (blue symbols) and without (red symbols) 
hMSCs. Cells were seeded at 20 x106  cell/ml. Squares represent storage moduli, triangles 
loss moduli. Cell presence has a minor impact on the rheological properties. 
 

Morphological analysis. 

MSCs cultured for 5 days on FLAT or NSQ patterned PCL with and without the addition 

of the hydrogel were first subject to immunofluorescence microscopy in order to analyse 

differences in cellular morphology between the different materials. Samples were 

fluorescently stained for either β3-tubulin or vimentin alongside a nuclear stain. The 



FLAT control surfaces exhibited great variation in cellular morphology within samples, 

with most cells spindle-shaped typical of fibroblast morphologies, alongside more stellate 

or rounded morphologies more typical of osteogenic or chondrogenic/adipogenic lineages 

(Figure 3(a) & (b) (tubulin), (g) & (h) (vimentin)). Whereas NSQ surfaces consistently 

led to well spread, polygonal cells with large nuclei (Figure 4), typical of osteoblastic 

morphologies (Figure 3(d) & (e) (tubulin), (j) & (k) (vimentin)). More organised tubulin 

microtubule and vimentin intermediate filament networks were observed in larger, 

polygonal cells on the NSQ surfaces (Figure 3(d) & (e) (tubulin), (j) & (k) (vimentin)). 

Within the hyaluronan hydrogel, a small number of cells were observed. Cells in the 

hydrogel exhibited rounded morphologies of ~ 10-25 µm in diameter typical of 

chondrogenic morphology, and this was maintained throughout samples regardless of 

underlying surface topography.  

 



 

Figure 3. Cytoskeletal morphology analysis of MSCs cultured on FLAT and NSQ 
topography with and without addition of Hyal hydrogel. Images of immunostained MSCs 
cultured for 5 days on PCL surfaces of FLAT (A – C, G - I) or NSQ (D – F, J – L) topography, 
with and without addition of hydrogel. Cells exhibit varied morphology typical of several 
mesenchymal lineages on FLAT surfaces +/- gel, where NSQ leads to well spread 
polygonal cells typical of osteoblast morphology. Note rounded morphology, typical of 
chondrogenesis, in hydrogels cultured with either FLAT or NSQ surfaces. Green is tubulin 
A – F, vimentin G – L, blue is DAPI nuclear stain. Scale bar is 50 µm. 



	
Figure 4.  Nuclear area of hMSCs cultured on FLAT +/-GEL and NSQ +/-GEL for 5 days. 
NSQ topographies consistently lead to a larger nuclear area, indicative of increased 
cellular spreading associated with osteoblastic morphologies. The change in matrix 
elasticity upon addition of the hydrogel also led to a lesser yet significant increase in 
nuclear area on FLAT surfaces. Data presented is mean nuclear area ±SD. Comparison 
was done by ANOVA **P <0.01, ***P <0.001, ****P <0.0001, n = 20. 
 

Transcription factor expression analysis. 

Following analysis of MSC morphology, expression of phosphorylated runt-related 

transcription factor type 2 (pRUNX2), a marker for osteogenic differentiation, and sex-

determining region Y-box 9 (SOX9), a transcription factor involved in chondrogenic 

differentiation were observed by immunofluorescence microscopy in MSCs cultured for 

5 days on FLAT or NSQ patterned PCL with and without the addition of the hydrogel.  

RUNX2 expression on FLAT surfaces was abundant in both the nucleus and in the 

perinuclear region of the cytoplasm (Figure 5(a) & (b)), whereas on NSQ surfaces 

RUNX2 appears highly abundant in the nucleus with only negligible detection in the 



perinuclear region (Figure 5(d) & (e), co-localisation shown as turquoise colour 

(blue/green overlay)). Also, there were notably larger nuclei observed in the NSQ 

populations compared with control FLAT populations (more examples of MSC nuclei on 

NSQ in Sup Figure 2). It should also be noted that RUNX2 is also an indicator of late 

chondrogenesis 29,30; and positive RUNX2 expression was detectable in cytoplasm (not in 

the nuclei) of MSCs that had migrated into the hydrogel regardless of underlying PCL 

surface topography (Figure 5(c) & (f)).  

SOX9 expression was detected on FLAT surfaces at low levels in some cells throughout 

the sample but was located in the cytoplasm only (Figure 5(g) and (h)). In MSCs on the 

NSQ surfaces, SOX9 expression was mainly negligible (Figure 5(j) & (k)). Consistent 

with RUNX2 expression, SOX9 was abundantly present in cells that had migrated into 

the hydrogels regardless of the underlying PCL surface topography (Figure 5(i) & (l)).  



 

Figure 5. Osteogenic and Chondrogenic transcription factor expression analysis of MSCs 
cultured on FLAT and NSQ topography with and without addition of Hyal hydrogel. Images 
of immunostained MSCs cultured for 5 days on PCL of FLAT (A – C, G - I) or NSQ (D – F, J-
L) topography, with and without addition of hydrogel. A – F showing osteogenic marker 
phosphorylated RUNX2 expression, note large nuclear area on NSQ surfaces with high 
nuclear expression and localisation. Note expression in rounded cells in hydrogel. G – L 
showing chondrogenic marker SOX9 expression, note cytoplasmic expression in FLAT 
samples compared to very low levels detected on NSQ, with cells in hydrogels showing 
clear positive expression. Green is phosphoRUNX2 A – F, SOX9 G – L, blue is DAPI 
nuclear stain. Scale bar is 50 µm. Turquoise colour (blue/green overlay) = co-localisation.  



Matrix maturation and mineralization. 

MSCs were cultured on FLAT and NSQ surfaces with and without hydrogel for 28 days 

and immunofluorescence was used to detect expression of the bone-specific extracellular 

matrix protein osteocalcin (OCN), an osteoblast differentiation marker. On the FLAT 

surfaces without gel, only very low levels of OCN were detected (Figure 6(a)). With 

addition of gels OCN expression increased notably (Figure 6(b)). OCN levels were, 

however, high on the NSQ samples without the hydrogel (Figure 6(c)) and this 

expression of OCN increased further with hydrogel addition (Figure 6(d)).  

Further to this, MSCs that had been cultured for 28 days were assessed for mineralization 

via von Kossa staining (stain for calcium deposits present in bone mineral, therefore 

suggestive of osteogenic differentiation), in which the trend observed was consistent with 

the immunofluorescence analysis with maximal expression seen in cells cultured on NSQ 

with gels on top (note that the gel was removed during staining) (Figure 6(e)). 



 
Figure 6. MSC mineralization analysis following long-term culture.  A – D. RGB images of 
immunostained MSCs cultured for 28 days on PCL surfaces with FLAT (A, B) or NSQ (C, D) 
topography, with (B, D) and without (A, C) addition of hydrogel. Samples were stained for 
osteocalcin secretion. (E) MSCs cultured on PCL for 28 days and von kossa stained. Note 
increase in positive staining in all NSQ compared to FLAT, with slight increase also 
observed on FLAT + gel. Green is osteocalcin, blue is DAPI nuclear stain. Scale bar is 100 
µm. 

Discussion		
The current study investigated the use of a chondropermisive hyaluronan hydrogel in 

combination with a well-defined topography presented on a biodegradable, biocompatible 



polymer as a method to produce a tissue engineered cartilage-bone interface from a single 

multipotent cell source.  

The NSQ topography provides targeted osteogenesis from MSC populations, while the 

FLAT control surface results in uncontrolled heterogeneous differentiation. This is in 

agreement with published data.11 Cells cultured on NSQ consistently had a well-spread, 

polygonal morphology with notably increased nuclear size in comparison to those 

cultured on control surfaces. It is now understood that the NSQ arrangement is able to 

promote osteogenesis by encouraging this well-spread morphology. Through integrin 

receptor-related signalling31 and BMP2 signalling32, RUNX2 is phosphorylated 

(activated) and thus the transcription of osteoblast specific genes essential for bone 

homeostasis occurs.33 Further, changes in nucleus size in cells on NSQ has been 

implicated in changing chromosomal positioning and hence direct cellular 

mechanotransduction.34,25 When cultured with the hydrogel in place, NSQ surfaces 

continued to direct osteogenesis of MSCs on the surface, whereas FLAT surfaces 

displayed evidence of an increase in a rounded cell population on the surface. This can be 

speculated to suggest that cues presented by the hydrogel in 3D culture predominate other 

mechanical or chemical cues presented by the FLAT surfaces but not the topographical 

cues presented by the NSQ surfaces. This is perhaps logical as the cell-cell mimicking 

effects of hyluronan have been previously implicated in chondrogenesis35, through 

interaction with the CD44 antigen. 

Previous studies have confirmed the viability of culturing MSCs in the hydrogel and also 

presented strong evidence of chondropromotive environment provided by the hyaluronan 

based hydrogel15,36, with a further study investigating the biocompatibility in vivo.37 The 



addition of cells to the hydrogel led to a decrease of storage modulus after the transition. 

This is to be expected, because the gelation mechanism is based on non-covalent 

interactions prone to disruption by the presence of MSC, especially at such a high 

concentration. However, the gelation temperature remained unvaried and the cell-

containing hydrogel underwent a >200-fold increase of storage modulus in a very narrow 

temperature window. In agreement with the previous findings, we found cells cultured in 

the hydrogel were consistently rounded, typical of chondrocyte morphology with clear 

expression of chondrogenic marker SOX9. Although not statistically significant, due to a 

large volume of hydrogel and small volume of cells introducing variability, gene 

expression analysis shows SOX9 detection in the gel (supplementary figure 3). It is 

suggested that the lack of degradation sensitive sites presented in the hydrogel network 

restricts cellular spread, promoting this rounded morphology and thus directing 

chondrogenic differentiation.3,15 Further, there is a lack of integrin specific ligands in the 

gel. In the same study, hMSCs cultured in the hydrogel underwent chondrogenic 

differentiation even when cultured in osteogenic media.15 It is noteworthy that HA is a 

native component of cartilage and as indicated in this, and previous studies, it may be 

responsible for maintaining the chondrocyte phenotype.  

 

When considering orthopaedic applications of the construct, injection of the hydrogel into 

subchondral defects in rabbit highlighted clinical transferability of the gel itself. In the 

study by D’Este, et al., 2016, biocompatibility and ease of use was confirmed, as the gel 

was injected into the site of the defect. Gel shearing from the nanotopographical surface 

could present a potential limitation of this construct upon scaling-up. However, the 2016 



study validated retention of the gel in a partially weight-bearing osteochondral defect 

within a moving synovial joint for up to 12 weeks; it was also noted here that the 

implanted gels had lost their reversibility upon long-term harvesting.37  

This study highlights that differential tuning of the extracellular environments chemical, 

physical and mechanical properties can lead to the targeted differentiation of cells down 

different tissue lineages within the same culture. Two materials were used for in 

vitro culture of MSCs, both of which have previously been fully characterized.5,15 Here, 

we introduce the possibility to create interfaces capable of directing anisotropic cell and 

potentially tissue growth, which can have important implications in complex tissue 

engineering. Analysis confirmed that when put together, the materials retained their 

abilities to direct differentiation down two distinct lineages, as expected, NSQ 

topography consistently led to osteogenesis and we were able to confirm targeted 

chondrogenesis of cells that migrated from the surface into the hydrogel. This novel 

system combines two simple materials with different differentiation capacities and cells 

from a single source to create a platform with the capability to sustain the growth of two 

tissue types in culture. This proof-of-concept system highlights that multi-compartmental 

material systems that control spatial differentiation of MSCs can be made, but the current 

system is perhaps more suited to drug testing than orthopaedic use due to its mechanical 

characteristics that need to be developed. It is envisioned that creating more biomimetic 

grafts through complex tissue engineering techniques as such could be exploited to 

improve success of current approaches. 
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