On the use of skin texture features for gender recognition:
an experimental evaluation
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Abstract— Skin appearance is almost universally the object
of gender-related expectations and stereotypes. This notwith-
standing, remarkably little work has been done on establishing
quantitatively whether skin texture can be used for gender
discrimination. We present a detailed analysis of the skin texture
of 43 subjects based on two complementary imaging modalities
afforded by a visible-light dermoscope and the recently developed
Epsilon sensor for capacitive imaging. We consider an array of
established texture features in combination with two supervised
classification techniques (1-NN and SVM) and a state-of-the-
art unsupervised approach (t-SNE). A statistical analysis of
the results suggests that skin microtexture carries very little
information on gender.
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I. INTRODUCTION

The ability to distinguish between male and female is
essential to the survival of the species, and it is therefore
hardly surprising that nature has provided plenty of visual
cues through which genders can be effectively discriminated.
These vary from secondary sexual characteristics to subtler
behavioural cues such as, for instance, gait. Accordingly, some
of the main visual biometric technologies originally developed
for person identification have proved able to discriminate
between genders, often with little or no modification. Gender
recognition can for instance be performed using low frequency
information from the contour of the face [6], [15], [20].
Likewise, kinematic data from gait analysis [1], [26], [14] can
be used to discriminate between men and women.

To the best of our knowledge, however, very little work has
been done on the gender discrimination potential of another
established visual biometric modality, namely skin texture.
This is even more remarkable because the perception of skin is
heavily sexualised in the media and in society. For example,
skin care products are marketed differentially to both sexes
with a heavy emphasis on appearance. In some cultures,

expectations on skin appearance may push women to avoid
exposure to the sun or use skin-lightening products [9] in
order to achieve a lighter skin tone associated with refinement
and high social status. Conversely, where a premium is placed
on a tanned appearance that implies health, women (and men)
may resort to indoor tanning [7].

Gender differences in skin appearance therefore partake of
the biological trait [8] and of the acquired social construct.
The question of whether such differences allow discriminating
between the sexes arguably has a sociological interest, besides
its computational relevance. This appears to create a feedback
loop where stereotypes and expectations on skin appearance
reinforce social behaviour that in turn leads to the preservation,
acquisition or enhancement of the desired appearance.

In this work, we investigate a quantitative approach to
gender recognition based on skin microtexture. We consider
two different imaging modalities, namely optical imaging with
a professional dermoscope and capacitive imaging with the
novel Epsilon sensor described in Section II. Skin texture was
acquired from the back of the hand and the palm (that are
known to be useful for identity recognition), as well as from
the inner forearm of 43 subjects. We considered a variety
of texture descriptors of known effectiveness, namely auto-
correlation, Gabor filters, local binary patterns, co-occurrence
features, granulometric analysis and the semi-variogram. To
the resulting feature vectors we applied both supervised clas-
sification (I-NN, SVM) and a state-of-the-art unsupervised
dimensionality-reduction technique (t-SNE [23]); we then per-
formed a statistical analysis of the significance of classifi-
cation results using Fisher’s exact test. Rather surprisingly,
although our results confirmed that skin texture information,
as previously documented, provides very useful clues for
person identification, no gender classification is feasible, inter-
subject variability swamping the difference between the two
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Fig. 1. Sample images acquired with the capacitive device (Epsilon). The
approximate scale (length on paper / length on inspected area) is 1:1.

sexes. Notably, our findings are markedly different from those
available in the literature [25]: we argue quantitatively that if
one controls for identity, very little can be inferred from skin
texture about gender.

II. DATASET AND ACQUISITION

Sample images of skin were acquired from a population
of 43 subjects (24 males, 19 females), average age 32.1
+ 14.2. The ethnic stratification [16] of the sample was
as follows: White (27), Asian / Asian British (7), Black /
African / Caribbean / Black British (7) and Mixed / multiple
ethnic groups (2). The acquisition process was performed
using two different devices: a digital optical dermoscope [5]
(ProScope HR2, Bodelin Technologies, United States) and
a capacitive fingerprint sensor (Epsilon, Biox Systems Ltd,
United Kingdom — for details see Refs. [18], [4]). From each
of the back of the hand (BH), forearm (FR) and palm (PL) of
the upper left limb of each of the participants four images were
acquired using both devices (Epsilon and Proscope). Images
of the inspected parts were taken in different areas and with no
predefined position or relative orientation between the devices
and the skin. Sample images acquired with both systems are
shown in Figs. 1-2.

III. FEATURE EXTRACTION

The following six texture descriptors were considered in this
study: 1) autocorrelation, 2) Gabor filters, 3) grey-level co-
occurrence matrices (GLCM), 4) local binary patterns (LBP),
5) granulometry and 6) semi-variogram. The basics of each
method are recalled here below.

A. Autocorrelation

Autocorrelation is an estimator of the self-similarity of
an image at different distances. For a given image I the
autocorrelation under a vertical shift J= and a horizontal shift
dy can be defined as follows [19]:
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Fig. 2. Sample images acquired with the digital dermoscope (Proscope). The
approximate scale (length on paper / length on inspected area) is 3:1.

where I indicates the mean value of I, and H, W respectively
the vertical and horizontal dimensions of the image. In order to
obtain rotation-invariant features we averaged the correlation
coefficient r over eight angularly equispaced vectors:
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where L is the distance (lag) at which the autocorrelation is
computed and 0, = (k — 1) /4. In the experiments we used
a set of six lags from 2px to 64px in octave spacing, this way
obtaining six features per image.

B. Gabor filters

Gabor filters [22] decompose the information content of an
image into different frequency and orientation channels. In the
spatial domain the two-dimensional formulation of the filter is
the following:
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where z,y are the spatial coordinates and z’,y’ the coordinates
after being rotated around the origin by an angle 6 (Eq. 4).

a' = xcos(f) + ysin(0) 4
y' = —asin(f) + ycos(6) @

In the experiments we used a bank of 24 filters (four
frequencies and six orientations) with maximum frequency
Fy = 0.327px~!; the lower frequencies were obtained
through octave down-spacing from F);. The smoothing pa-
rameters 7) and y were set respectively to = 1.1 and 0.8. We
computed, as image features, the mean and standard deviation
of the absolute value of each transformed image, therefore
obtaining a feature vector of dimension 4 X 6 x 2 = 48.
Rotation-invariant features were obtained by taking, for each
frequency, the absolute value of the discrete Fourier transform
(DFT) over the six orientations (see [13] for details).

C. Grey-level co-occurrence matrices

Grey-level co-occurrence matrices encode the joint occur-
rence probability of the grey levels of pairs of pixels separated
by a given displacement vector. The method was originally



[ AN BN J
[ AN BN J [} [}
O | ® O [}
R=1 R=2

Fig. 3. Neighbourhood arrangement for GLCM features.

proposed by Haralick [11] more than forty years ago and has
proved effective in many practical applications. In the exper-
iments we considered sense—symmetric displacement vectors
along digital circles of radii R = 1 and 2 as suggested in [2]
(see Fig. 3).

From each co-occurrence matrix M we extracted the fol-
lowing five global statistical parameters:
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where w,v represent the row- and column-wise coordinates
along M; p,, by, o, and o, respectively the mean and
standard deviation of the u-th (v-th) row (column) of M. This
way we obtained 4 x 5 = 20 features for R=1and 6 x 5 =
30 features for R = 2, therefore a total of 50 features. Rotation
invariant features were computed by taking the absolute value
of the DFT of the five features mentioned above — for further
details see [2, Sec. 2.3].

D. Local binary patterns

Local binary patterns (LBP) [17] consider, as image fea-
tures, the probability distribution of the binary patterns that
can be generated from a neighbourhood of points when
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Fig. 4. Neighbourhood arrangement for LBP.

thresholded at a certain intensity value. The points are typ-
ically arranged into equally-spaced circular neighbourhoods
(Fig. 4), and the grey-level of those not coinciding with image
pixels are estimated through interpolation. In the literature this
arrangement is usually referred to as (m, R), being m the
number of points and R the radius (in pixels) of the circle.

The resulting binary patterns can be assigned a unique label
in the following way:
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where [. indicates the grey-level of the central point, I;
that of the i-th peripheral point starting from an arbitrary
reference point ¢+ = 0, and £ (z) the thresholding function
(Eqg. 11). Rotation invariance is obtained by considering the
probability distribution of the resulting necklaces — i.e. groups
of binary patterns that can be transformed into one another
by a rotation of multiples of +2m/m radians. The resulting
rotation-invariant descriptor is referred to as LBP:,i r- In the
experiments we used a concatenation of LBPg'; and LBPg, ,.

E. Granulometry

Digital granulometry is obtained by processing the input im-
age through sets of morphological filters at different scales. In
particular, by applying a set of openings (closings) at increas-
ing scales L;, i € {1,...,N}, we obtain a discrete approx-
imation of the cumulative probability distribution of image
structures brighter (darker) than their neighbourhoods. Math-
ematically, the approximated discrete granulometric curve G
can be expressed as follows:

_ Ve, () =-V (@)

where I is the input image, V' (I) the sum of the grey-levels
and AVy,, (I) the global change resulting from opening the
input image at the maximum scale Ly. From G (L;) the
probability size distribution (or pattern spectrum) is obtained
through discrete differentiation — see also [3] for details. In
the experiments we used a set of disc-shaped morphological



Table 1. Overall gender classification accuracy (in %) by image descriptor and imaging modality.

Classifier  Image descriptor Epsilon Proscope Epsilon + Proscope
BH FR PL BH FR PL BH FR PL

Autocorrelation 4942 4419  50.00 50.58  49.42  47.09 4942 4419  50.00
Gabor filters 50.00 61.05 51.74 4593 5349 4884 50.00 61.05 51.74

L-NN GLCM 47.67 5872  49.42 4477 44777 48.84 47.67 5872 4942
Granulometry 51.74  54.07 4477 51.16 5174  51.16 51.74 5407 4477
LBP 4593 4070 5291 46.51 5407 4477 4593 4070 5291
Semi-variogram 5233 5116  51.74 5233  47.67 5233 5233 5116  51.74
Autocorrelation 48.26 5233 4942 51.16 6337 5523 4942 5174 5233
Gabor filters 43.60 5349 5349 5349 5872 57.56 43.02  54.65 5349

SVM GLCM 5349 5349 5349 5349 5349 5201 5349 5349 5349
Granulometry 5581 5174 5233 59.88 5349 5349 4942 5174 51.16
LBP 4535 5291 5349 43.60  51.16 5523 50.00 5698  51.74
Semi-variogram 47.09  51.16 5349 5291 5407 49.42 5581 5116  53.49

openings with radius from 2px to 64px in octave spacing (same
setting used for autocorrelation — Sec. III-A).

F. Semi-variogram

The semi-variogram [10] is an averaged measure of the
squared difference between the grey-levels of pairs of pixel
set apart by a given displacement vector. Given dx and Jy
the components of the vector (also see Sec. III-A) the semi-
variogram ~(dx, 0y) is given by:
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To obtain rotation-invariant features we averaged the values

over eight angularly equally-spaced vectors:
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where 60 has the same meaning as in Sec. III-A. For a given set
of lags L;, i € {1,..., N} the corresponding image features
again are f; = Y(L;).

IV. CLASSIFICATION AND DATA MAPPING

To test the gender discrimination capability of the texture
skin features we ran a supervised image classification experi-
ment using the image descriptors detailed in Sec. III. We con-
sidered both the features obtained from single-image modality
(either Epsilon or Proscope separately) and a concatenation
of them. We employed two different classification strategies:
1) nearest neighbourhood (1-NN) classifier with Euclidean
distance (L2) and support vector machines (SVM) with radial
basis kernel.

Accuracy estimation was based on leave-one-out cross vali-
dation, i.e. for each given acquisition zone (either back of the
hand, forearm or palm) all the four images of each subject in
turn were simultaneously removed from the dataset and used
for testing the classifier; the images of all remaining subjects
were used for training. This procedure ensured that different

images of the same subject could only appear either in the train
or in the test set — but not in both at the same time, thus con-
trolling for the effect of identity—specific information. SVM
parameters (C' and «y) were determined through 5-fold cross
validation on the train set over the following grid of possible
values: C € {2022 ... 28} and v = {278,276, ...,28}.

To further investigate the gender and identity information
content of the features we applied dimensionality reduction
through t-Distributed Stochastic Neighbour Embedding (t-
SNE) [23]. This unsupervised mapping technique aims to find
a non-linear correspondence between the high-dimensional
feature space and a low-dimensional target space that models
distances between pairs of points as well as possible, while
preserving both the local and the global structure of the
data. This is obtained by minimising the Kullback-Leibler
divergence of transition probabilities between points in the
two spaces.

V. EXPERIMENTAL RESULTS

The results of the gender classification experiments are
summarised in Tab. 1. As can be seen, the estimated accuracy
was invariably poor with all the feature combinations and
classifiers used, and not very different from the accuracy of a
random classifier (i.e. ~50%).

Further, for each feature set/classifier combination in Tab. 1
we constructed the contingency table whose rows and columns
respectively represent the true and the assigned gender. We
then applied a 1-tailed Fisher’s exact test to detect positive
correlation between the true and assigned gender, under the
null hypothesis that they are uncorrelated. After applying
the Bonferroni correction, none of the results was found to
be significant at a p-value of 10%, indicating that none of
the combinations tested was significantly better than random
classification.

It is worth noticing that, by contrast, consistently good
performance was obtained when the same features were used
for personal identification (43-class classification problem): in
this case concatenation of Gabor features from Epsilon and
Proscope images attained over 92% accuracy.

The above results are further confirmed by the unsupervised
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Fig. 5.
individual).

approach shown in Fig 5. The two t-SNE maps depict the
pattern distribution for the two best performing methods
(Gabor features/forearm/Epsilon + Proscope and autocorrela-
tion/forearm/Proscope). These plots confirm that whereas the
individual identities are fairly obviously separable, gender does
not appear to be.

VI. DISCUSSION

Our experiments show that skin texture on the millimiter
scale correlates very weakly with gender — if at all. Interest-
ingly, a related analysis leading to different conclusions was
recently reported by Xie et al. [25], where a database of skin
textures from 80 persons was acquired using a custom rig
featuring CCD camera at an approximately fixed distance from
the skin and under controlled illumination conditions. The
texture images thus obtained were similar to those produced
by Proscope, but with a lower resolution (= 450dpi). Image
size was 288 x 384px; considering that Proscope images
are 1600 x 1200px at ~ 2822dpi in our system, that gives
an imaging area of about 3.5cm? in [25] as opposed to
about 1cm? after trimming in our experiments, which is still
comparable. Likewise, features used in [25] were a sparse
representation based on MRS filters [24] — closely related to
Gabor filters, which we also used in our tests. In spite of
the similarities in acquisition and processing, however, [25]
reports a gender classification accuracy of 98.60% based on
the texture of the back of the hand, where our best result was
63% — dramatically lower and not statistically significant.

Crucially, in [25] samples collected from the same indi-
viduals, albeit in two different sessions, were used both for

Sample t-SNE maps showing the feature distribution in a two-dimensional space. Numbers indicate identities (there are four patterns for each

training and testing the gender classifier. This is in actual fact
a relaxation of the personal identification problem, therefore
not a good benchmark for gender recognition performance as
it does not control for identity—specific information. To see
this consider that, as we have shown in Fig. 5 and Section V,
skin texture is very distinctive of identity. Indeed personal
identification accuracies of around 90% are reported in [25]
based on very the same features used for gender discrimination
(we obtained a quite comparable 92% for identification on our
data). Using the same identities for training and testing there-
fore amounts to performing identification while condoning all
instances in which a person is mistaken for another person of
the same sex.

The observation in [25] that female and male subjects have
different skin texture patterns on the back of their hand, with
the female texture being “much finer” (as exemplified by Fig. 5
in [25]) should be considered with care in the light of our
results and may not generalise to other datasets (see Fig. 6 in
our work).

Finally, it must be noted that both our analysis and the one
in [25] focus entirely on skin texture. While the existence
of physiological differences in skin related to gender is well
established [8], these do not seem to affect texture enough for
reliable gender identification. Population differences between
the genders in the distribution of skin tone [12] and thickness
and water retention capability [21] have been documented,
but for specific individuals and one-shot acquisitions these are
likely to be obscured by inter-personal and time variability.
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Fig. 6. Inter—personal variability in the skin texture of the back of the hand
(including perceived coarseness) overshadows gender differences.

VII. CONCLUSIONS

In spite of the common assumption that male and female
skins have a distinctly different appearance, the question of
whether skin texture allows discriminating between genders
has seldom been addressed quantitatively. We investigated
this issue using two different imaging modalities (visual and
capacitive), a varied array of image features, two supervised
classification strategies (1-NN and SVM) and a state-of-the-
art unsupervised approach (t-SNE). Our database included
subjects of different age and ethnicity, and we acquired skin
texture from three different areas. Statistical analysis of the
results using Fisher’s exact test shows no evidence that skin
texture can be used for gender discrimination, individual
variations swamping whatever weak correlation there may be.
This contradicts both common wisdom and, notably, the results
of a previous study [25]. Admittedly, our investigation is far
from exhaustive from the point of view of age, ethnicity and
the particular (Western) culture in which the subjects are im-
mersed, which may affect skin care and thus skin appearance.
It could also be argued that microtexture does not exhaust skin
information (and indeed, in the case of face biometrics gender
information is carried by different image frequencies than used
for identification). However, our experiments clearly show that
any naive assumption on visual differences between the male
and female skin should be avoided, and cast serious doubts on
whether skin texture is useful for gender discrimination.
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