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Benchmarking the grasping capabilities of the
iCub hand with the YCB Object and Model Set

Lorenzo Jamone1, Alexandre Bernardino1, and José Santos-Victor1

Abstract—The paper reports an evaluation of the iCub
grasping capabilities, performed using the YCB Object and
Model Set. The goal is to understand what kind of objects
the iCub dexterous hand can grasp, and with what degree
of robustness and flexibility, given the best possible control
strategy. Therefore, the robot fingers are directly controlled by
a human expert using a dataglove: in other words, the human
brain is employed as the best possible controller. Through this
technique, we provide a baseline for researchers who want to
evaluate the performance of their grasping controller. By using
a widespread robotic platform and a publicly available set of
objects, we believe that many researchers can directly benefit
from this resource; moreover, what we propose is a general
methodology for benchmarking of grasping and manipulation
that can be applied to any dexterous robotic hand.

Index Terms—Grasping, Dexterous Manipulation, Humanoid
Robots, Multifingered Hands.

I. INTRODUCTION

BENCHMARKING is fundamental for any activity of re-
search and development, to evaluate intermediate results

and to guide innovation. While this is a common practice
in many fields, ranging from automated reasoning (e.g. for
planning [1]) to computer vision (e.g. for object recognition
[2, Chapter 12.1] or pedestrian detection [3]), it is still not
widespread in robotics [4].
A common approach in computer vision benchmarks is to
compare the machine performance to the human performance
in a specific task, given the same visual input (i.e. the same
images). For example, the images of a pedestrian detection
dataset are labeled by a human to determine whether a pedes-
trian is present in each image and where; the performance of a
computer vision algorithm is then compared to this baseline.
In the robotics domain the definition of a human baseline
is more challenging, because the tasks do not involve only
perception, but also action: decision, planning, control. The
mechanical properties of the hardware are critical: it would be
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Fig. 1. Experimental setup. The fingers of the iCub robot hand (on the left)
are controlled by a human operator with the CyberGlove-II dataglove (on
the right).

unfair (and not very useful) to simply compare to the human
performance in the same task, since the robot hardware and
the human hardware are too different. Moreover, it is hard to
propose benchmarks that can be performed by a large number
of researchers, mainly because of the lack of common
hardware and the scarce availability of public datasets. For
example, while the digital images used for computer vision
benchmarks can be easily made available to many researchers
(e.g. on the web), it might be hard to retrieve exactly the same
objects used in a robotic manipulation experiment.
Recently, a notable effort was made in this direction, with
the creation of the YCB (Yale-CMU-Berkeley) Object and
Model Set [5], [6]. Differently from previous attempts, this
dataset does not only include 3D models of a large number of
objects, but also the real physical objects are made available.
This is very important for the benchmarking of robotic
grasping and manipulation, because it allows to replicate the
real world experiments, and not just the simulations.
In terms of common robotic platforms, one renowned exam-
ple is the iCub humanoid robot [7], shown on the left side of
Fig. 1 while grasping a tennis ball with its anthropomorphic
hand. The robot is the outcome of the EU Project RobotCub
(2005-2010), and it has been designed to be a shared robotic
platform to study embodied cognition. Currently, more than
25 laboratories worldwide have their own iCub robot, and
use it for research. Moreover, many ongoing EU Projects
employ this humanoid robot as experimental platform (e.g.
Poeticon++, TacMan, CoDyCo).
Although many research groups are currently working on
the development of grasping and manipulation strategies
using the iCub [8]–[15], still no benchmark is available
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to test the performances of the proposed controllers. The
evaluation is therefore performed each time with different
objects, procedures and performance metrics.
How to claim that a controller is good or very good? How
to replicate the experiments to drive future development?
The objective of this paper is to define a baseline for grasping
control by fixing both the hardware (the iCub hand) and the
dataset (the YCB objects). A human user directly controls
the fingers of the iCub using a dataglove, to grasp the YCB
objects (as in Fig. 1). The user is familiar with the robot, with
the dataglove and with the objects, and can see both the target
object and the robot hand during the grasping actions. This
provides a human baseline for the control, since the human
brain is employed to solve the problems that an automatic
controller would need to solve: e.g. how to use the visual
feedback to drive the finger motion, how to coordinate the
motion of the different fingers, how to select the best grasping
strategy. We argue that this methodology could be applied
to other widespread dexterous robot hands (e.g. Allegro,
Shadow, Shunk SVH), using the same set of objects, both to
compare the different robots and to define specific baselines
for researchers who are testing their controllers with such
robots.
Overall, we provide three main contributions. First, we re-
strict the YCB Object and Model Set to the set of objects
that the iCub can physically grasp; this allows researchers to
efficiently use the YCB objects for any manipulation task
involving the iCub. Second, we perform an adaptation of
the Gripper Assessment Benchmark proposed in [5] with
the iCub hand on two sets of objects (a basic set and an
extended set); this provides researchers who want to evaluate
the performance of their grasp controllers on the iCub with
a baseline to compare to. Third, we perform a more in-
depth evaluation on a single object, to test the robustness
with respect to object displacements and rotations; we aim
to show how the large number of DOFs of the iCub hand (19
joints actuated by 9 motors) offers a high grasping flexibility,
that can be very useful even in simple grasping tasks, for
example to compensate for reaching errors that may arise
from imprecise robot calibration.
The rest of the paper is organized as follows. In Section II
we describe the experimental setup, providing details about
the robot, the dataglove and the objects set. The protocols
followed in the evaluation experiments are discussed in
Section III, and in Section IV we summarize the results.
Finally, we provide some concluding remarks in Section V,
and we sketch the future research directions.

II. EXPERIMENTAL SETUP

In this Section we outline the setup used in our experiments
(see Fig. 1). We first introduce the iCub humanoid robot
(Section II-A) and in particular its dexterous hand. Then, we
present the dataglove that we use to control the iCub fingers

(Section II-B), and we describe the objects of the YCB Object
and Model Set (Section II-C).

A. The iCub humanoid robot

The iCub is the main outcome of the EU Project RobotCub
(2005-2010): a common open-source platform for researchers
in cognitive robotics. All mechanical and electronics CAD
files and the associated documentation are released under
the GPL, while the software and middleware infrastructure
(YARP [16]) is licensed either as GPL or LGPL. Also, a
large number of YARP-based software modules are available
as open source, due to the constant effort of a growing com-
munity of robotics researchers, practitioners and enthusiasts
[17]. The robot mechanical and electronic design is described
in detail in [18].
The hand of the iCub has been designed to enable dexter-
ous manipulation, as this capability is crucial for cognitive
development. It is sized 50 mm in length, 60 mm in width
and 25 mm in thickness, making it one of the smallest and
most dexterous of its kind. It has 19 joints, but it is driven
by only 9 motors: this implies that group of joints are under-
actuated and their movement is obtained with mechanical
couplings. The motion of the proximal phalanx and medial
and distal phalanges are independent for the thumb, the index
and the middle finger. The ring and small finger motions
are coupled and driven by a single motor. Finally, two
motors, placed directly inside the hand assembly, are used
for thumb opposition and fingers adduction/abduction. The
angles between the phalanxes (i.e. joint angles) are sensed by
17 small custom magnetic angular position sensors. The palm
and the fingertips are covered by a pressure sensitive skin.
More details about the design of the iCub hand, including
sensing and actuation, can be found in [19].

B. The Cyberglove-II dataglove

Datagloves have been used since about 30 years to measure
human hand movements for a number of applications [20],
including the control of robot hands [10], [21]–[23]. In our
experiments we use the Immersion CyberGlove-II dataglove
[24], which is considered the state-of-the-art input device for
recording human hand postures [20]. The feasibility of using
datagloves for robot hand control has been demonstrated both
for the CyberGlove [10], [21], [22] and for custom devices
that use the same sensing technology [23].
Our version of the CyberGlove-II has a total of 15 sensors
(versions with 18 or 22 sensors also exists), with two flexure
sensors per finger (total of ten sensors), three abduction
sensors placed between the fingers, one sensor for the thumb
opposition and one palm-flexure sensor (we do not use this
latter sensor). Most of the sensors measurements are directly
mapped to the 9 robot hand motors: 3 for the thumb (flexure
of the two phalanxes and thumb opposition) and 2 for both
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the index and the middle fingers (flexure of the two pha-
lanxes), for a total of 7 motors. Then, the measurements from
the ring and little fingers (4 measurements) are combined
together and mapped to the single motor that actuates the
robot ring and little fingers. Finally, the measurements from
the fingers abduction (3 measurements) are combined to-
gether and mapped to the single motor that actuates the robot
fingers abduction. A user-dependent calibration is performed
to optimize the mapping coefficients, which is described in
detail in [10]. In short, a number of finger movements toward
pre-defined hand postures are performed (e.g. hand fully
open, hand fully closed), and the collected data is used to
estimate the coefficients through least squares regression.
Clearly, the robotic mimicking of the human hand postures
cannot be perfect, not only because of mapping inaccuracies,
but mainly because of the structural differences between
the human hand and the robot hand. However, the exact
reproduction of human hand postures is not the goal of our
system; the goal, instead, is to grasp and manipulate objects
effectively. Therefore, the required feature is to be able to
control all the joints of the robot fingers simultaneously over
their entire range of motion, in a natural way. During the
grasping actions the human user can see both the robot hand
and the target object, both from their own perspective and
from the robot perspective (images from one of the robot
cameras are displayed on a screen behind the robot), and
therefore they can exploit such visual feedback to shape the
robot fingers on the object as desired, and also to correct
the posture after grasping if slippage is visually detected.
Moreover, all the experiments are performed by the same
human user, who is very experienced in the use of the setup
(both concerning the glove and the robot hand).

C. The YCB Object and Model Set

The YCB Object and Model Set [6] is a collection of
daily life objects with different shape, size, texture, weight
and rigidity. The associated dataset includes high-resolution
RGBD scans, physical properties and geometric models of
the objects. In addition, some example of benchmarking
protocols are provided [5]. A total of 69 objects (or objects
assortments) are divided in four main categories: food items
(e.g. cracker box, chips can, plastic banana), kitchen items
(e.g. sponge, fork, skillet), tool items (e.g. scissors, hammer,
screwdriver) and shape items (e.g. tennis ball, foam brick,
rope, an assortment of cups). An additional category, task
items, comprises 6 objects that can be used for specific tasks
(e.g. a 9-peg-hole test, an airplane toy to assemble); we do
not consider these objects in this paper. The set is freely
distributed to research groups worldwide at international
workshops (our group acquired one for free at a ICRA 2015
workshop), or delivered at a reasonable cost.

III. BENCHMARKING TESTS

We perform three experiments, that are described in detail
hereinafter. The first one aims to determine what objects
within the YCB Object and Model Set can be grasped by
the iCub (Section III-A); the outcome is a subset of the
original YCB Set tailored to the iCub hand. The second
one is an adaptation to dexterous hands of the Gripper
Assessment Benchmark proposed in [5] (Section III-B); it
provides a baseline for researchers who want to evaluate the
performance of their grasping controller with the iCub. The
third one consists in grasping one object under a wide range
of pose uncertainties (Section III-C); the goal of this test is
to benchmark the flexibility offered by the many DOFs of
the dexterous iCub hand.
In all the experiments, the object to be grasped is placed
on a table in front of the robot (see Figure 1). The surface
of the table is 15 cm lower with respect to the origin of
the robot root reference frame, which is located on the axis
of rotation of the torso pitch in the middle of the legs (as
defined in http://wiki.icub.org/wiki/ICubForwardKinematics).
The object pose with respect to the robot is chosen so as to
permit a successful arm reaching movement that does not
approach joint limits or singular configurations. Before each
grasping action the arm is in a fixed configuration, with
the hand palm facing down, at a distance of about 25 cm
from the table; we refer to this arm configuration as rest
pose. For each object a default grasp pose is selected (i.e.
position and orientation of the hand palm with respect to
the object). In each grasping action, the robot automatically
moves the arm from the rest pose to the grasp pose; then, the
human user controls the robot fingers using the dataglove, to
perform the grasping. While the rest pose is the same in all
experiments, the grasp pose depends on the object. Videos
of the experiments can be found online (http://limoman-
project.blogspot.pt/p/videos.html).
Clearly, there are many hand poses that allows to grasp
the object, and the selection of the default hand pose for
a specific object has a large influence on the grasp success,
robustness and flexibility. For example, the type and amount
of object pose uncertainties the hand can deal with, are
strongly affected by the default hand pose. The choice of
the best hand pose depends on many variables: not only the
kinematic and dynamic properties of the robot hand, but also
the object properties (e.g. shape, weight, texture) and the
strategy that will be employed to control the robot fingers.
Since in our experiments the strategy to control the fingers
will be selected in real-time by the human user, which is very
familiar with the properties of both the hand and the objects,
we exploit the human knowledge also for the selection of
the default hand pose. The user physically moves the robot
arm during an offline phase, until the best hand pose for the
object is manually identified (i.e. kinesthetic demonstration);
the correspondent arm configuration is stored as the grasp
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Fig. 2. Objects of the YCB Set that can be grasped with the iCub hand. On
the left, food items. In the middle, kitchen items. On bottom right corner,
tool items. On top right corner, shape items.

pose for that object, and it will be used for all the grasping
actions directed to that object in that pose.

A. Definition of the iCub YCB Object SubSet

Each object of the original YCB Set [6] is placed on a
table in front of the robot, in a pre-defined reachable pose
for which a grasp pose was previously identified. For each
object, the arm moves automatically from the rest pose to the
grasp pose; then, the finger motion to grasp the object starts,
controlled by the human user with the dataglove. Fingers
control lasts 10 seconds at most. Then, the arm automatically
moves back to the rest pose. If the object is successfully
grasped, the user keeps controlling the robot fingers to hold
the object in the hand while the arm is in the rest pose,
for 5 seconds. Finally, the arm automatically moves back to
the grasp pose, and the user opens the fingers to release the
object. If the object is successfully held in the hand for at
least 5 seconds, without any visible in-hand displacement,
it is considered as graspable; otherwise, it is considered as
non-graspable.
The image in Fig. 2 shows the objects of the YCB Set that are
graspable with the iCub hand; the image in Fig. 3 shows the
non-graspable ones. The representative grasp types employed
are shown in Fig. 5; the grasps used with the other objects
are small variations of these ones. Detailed information on
each object (e.g. mass, size) can be found in [6].

B. Gripper assessment

This experiment is an adaptation to dexterous robot hands
of the Gripper Assessment Benchmark (GAB) described in
[5, Appendix B.2] .
The grasp procedure is the same of the previous experiment.
However, each object is grasped in four different positions
(SP1 = default position; SP2 = 1 cm displacement on the X
axis; SP3 = 1 cm displacement on the Y axis; SP4 = 1 cm

Fig. 3. Objects of the YCB Set that cannot be grasped with the iCub hand.

displacement on the Z axis). The grasp pose is the same for
all SPs. For each grasp, 2 points are given if the objects is
held in the hand for at least 3 seconds without visible motion,
1 point is given if some motion is detected, 0 points are given
if the object drops. For articulated objects (rope and chain),
the object is grasped and held for 20 times, each time from
a random position around SP1; for each grasp, 0.5 points are
given if no part of the object is touching the table while it is
held (0 points otherwise).
The original GAB described in [5] is applied to robotic
grippers; here we introduced a few differences to better fit
the benchmark to dexterous hands.
In [5] the pose and motion of the gripper is the same in all
SPs; instead, in our case the hand pose (i.e. the grasp pose)
is the same, but the fingers motion can be different. This is
meant to show that a dexterous hand with many joints/DOFs
can cope with many object pose offsets, if supported by a
smart controller. In our case the smart controller is provided
by the human user, who is controlling the fingers with the
dataglove, to provide the human baseline performance.
Moreover, differently from [5], in our test each grasp is
performed with two different object orientations (90◦ apart
around the Z axis); this leads to a total of eight grasps for
each object. This allows to benchmark the robustness not just
to position offsets (as it is done in [5]), but also to orientation
offsets.
In [5], after the object is grasped and lifted, it is also rotated
by 90◦ to prove grasp stability during motion. However,
details about speed and acceleration of the object are not
provided; even if they were provided, it would be difficult for
researchers to replicate them exactly. Therefore, we removed
this part in our experiments, and instead we test the grasp
stability only by lifting the object from the table of about
25 cm and holding it against gravity for 3 seconds. The
lifting movement is executed applying a bell-shaped velocity
profile to the arm joints, that was resulting in a slow and
smooth motion of the object, with a maximum speed in
the middle of the motion of about 0.10 m/s. Any motion
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Fig. 4. Objects used for the Basic GAB (left image) and for the Extended
GAB (right image). Left image, from left to right, top to bottom: chain,
set of clamps (S to XL), rope, large marker, flat screwdriver, tennis ball,
racquetball, golf ball, set of marbles (from XL to S). Right image, from top
to bottom, left to right: pudding box, foam brick, colored wood block, dice,
plastic strawberry, plastic nut, plastic bolt, plastic pear, plastic wine glass,
large cup (100x78mm), medium cup (80x70mm), small cup (55x60), chips
can.

which is slow and smooth enough not to generate big and
sudden accelerations would be appropriate to replicate the
experiment: the only relevant source of perturbation of the
object stability is the object weight. We perform two versions
of the benchmark. The first one uses a subset of the objects
used in [5], excluding the ones that are non-graspable for the
iCub; we call this Basic GAB. The objects are shown in the
left image in Fig. 4 and their names are reported in Table
I. With respect to the GAB described in [5], we excluded
all the flat objects (too thin), two round objects (soccer ball,
too big, and softball, too heavy) and three tools (scissors,
too thin and complex, hammer and driller, too heavy). The
second version of the benchmark includes additional objects;
we call this Extended GAB. We add three shape categories
to the Basic set: cubic objects (pudding box, foam brick,
colored wood block, dice), cylindrical objects (chips can,
plastic wine glass, small cup, medium cup, large cup) and
complex objects (plastic pear, plastic strawberry, plastic bolt,
plastic nut). These objects are shown in the right image in
Fig. 4 and their names are listed in Table II.

C. Grasping flexibility

This test is similar to the GAB, but is conducted with
only one object, that is grasped 100 times after different pose
offsets are applied with respect to the default pose (SP1); we
call it Grasping Flexibility Benchmark (GFB). The object
is first grasped at SP1, and then displaced on either X, Y
or Z, at each successive grasp attempt, with steps of 1 cm.
Maximum displacements are ±5 cm on X and Y, and ±2
cm on Z. For each position (in total, 25 different positions),
the object is grasped in 4 different orientations around the Z
axis, separated 45◦ apart; this makes a total of 100 grasps.
All the other details of this test are the same as in the GAB,
including the scoring.

IV. RESULTS AND DISCUSSION

In this Section we start by providing a few general
considerations on the grasping capabilities of the iCub hand

(Section IV-A), focusing in particular on the main reasons
for grasp failures of the non-graspable object in Fig. 3. Then
we show the results of the Gripper Assessment Benchmarks
(Section IV-B) and of the Grasping Flexibility Benchmark
(Section IV-C), and discuss them.

A. General considerations on object graspability

Based on our experiments, it is typically a combination
of different object properties that determines the object
graspability. However, weight and size appear to be the most
important ones. Shape, texture and hardness also might play
a role, when size and weight are close to the limits: compact
shapes, rough textures and soft bodies are easier to grasp.
The main categories of non-graspable objects are discussed
hereinafter.

1) Heavy objects: Objects heavier than 350 g are typically
not graspable with the iCub hand, even if their size would
allow. The force exerted by the fingers is not enough to hold
them against gravity. From Fig. 3 (left to right, top to bottom):
cereal box, wood block, hammer, bleach cleanser, Windex
bottle, skillet, skillet lid, Master Chef can, potted meat can,
sugar box, power drill, mustard bottle.

2) Big objects: Although the maximum distance that can
be obtained between the tip of the thumb and the tip of the
index or middle fingers is about 120 mm, objects larger than
100 mm in all the dimensions are typically not graspable,
even if light enough. From Fig. 3: soccer ball.

3) Thin objects: Since we are considering the grasping of
objects from the table, a minimum thickness of the object
is required (about 15 mm, according to our experiments).
Objects that are too thin cannot be grasped. From Fig. 3 (left
to right, top to bottom): adjustable wrench, scissors, nails,
washers, small marker, spoon, blank credit card, fork, knife.

4) Other non-graspable objects: The yellow softball (191
g, 96 mm, on the rightmost side in Fig. 3) has a size and a
weight that should allow grasping (even if close to the limits),
but it is too hard and smooth, and therefore it slips easily.
The padlock (304 g) is also too hard and smooth to be held
steadily against gravity.
The red plate and bowl (in the middle of Fig. 3) do not
exceed in size and weight, but have shapes that are difficult
to grasp: because of the excessive diameter they can only be
grasped from one of the edges, and after grasping the center
of mass of the object is too far from the hand, causing the
object to slip (also because of the very smooth texture).

5) Borderline objects: Despite the binary classification
into graspable and non-graspable, some objects are more
difficult than others to grasp, and some might be considered
borderline (they might be graspable under some conditions).
For example, some objects that were successfully grasped in
a few occasions (but that were typically not held steadily in
the hand) have not been included in the graspable set because
of their excessive weight, that can easily damage the hand:
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Fig. 5. Different grasp types used for different objects. From left to right,
top to bottom: lateral cylindrical wrap (tomato soup can), lateral prismatic 5-
fingers grip (pudding box), top cylindrical wrap (banana), 2-fingers precision
grip (dice), top prismatic 5-fingers grip (tuna can), 3-fingers precision grip
(strawberry).

Fig. 6. Sequence of fingers movements to grasp the large marker. First the
thumb and middle finger are used to raise the object from the table, then
all the fingers are used to wrap it. Top row: images from one robot camera.
Bottom row: external views.

the skillet lid, the crackers box, the sugar box and the potted
meat can. The padlock cannot be grasped from its body, and
therefore it was not included in the graspable set; however,
the hook could be caged by the index and medium fingers
and the thumb to safely lift the object.
Among the graspable objects, the pitcher base and pitcher
lid can be grasped only using the appropriate handles (they
cannot be grasped, for example, with a pinch grip on one of
the edges). Thin elongated objects (e.g. the large marker, the
banana, the spatula, the screwdrivers) can be grasped with
the hand approaching from the top, with a complex motion
that starts as a prismatic 5-fingers grip and then becomes a
cylindrical wrap, after the object slips inside the fingers; the
sequence of finger movements for the grasping of the large
marker is shown in Fig. 6. Small thin objects that are very
light and compact can be grasped with a 2-fingers precision
grip, for example the plastic nut (8x15 mm, 1 g), the smallest
marble (14 mm, 4 g) and the dice (16 mm, 5 g); however, in
these cases high precision is required in the hand positioning.

B. Gripper Assessment Benchmarks

Table I presents the scores measured on the Basic GAB:
the total score is 173 (maximum score would be 228). The
scores for the additional objects that are included in the
Extended GAB are displayed in Table II. The total score
considering also these objects is 337 (173+164); maximum
score would be 436. These benchmarks provide a more in-
depth analysis on the grasping robustness with respect to
representative objects of the set.
The iCub hand can reliably grasp round, cubic and cylindrical
objects that fit the size and weight constraints. The bigger
spheres (tennis ball and racquetball) can be grasped with a
3-fingers wrap (as in Fig. 1), the medium ones (golf ball
and XL marble) with a 3-fingers precision grip (similar to
the one used for the strawberry in Fig. 5) and the smaller
ones (marbles of size L, M and S) with a 2-fingers precision
grip (similar to the one used for the dice in Fig. 5). The
2-fingers grip is indeed used for all very small objects. Big
cubic objects can grasped with lateral prismatic grips (e.g. the
pudding box in Fig. 5). Cylindrical objects can be grasped
with a lateral cylindrical wrap (similar to the one used for the
tomato soup can in Fig. 5) or with a 3-fingers grip, if they are
light enough (e.g. cups). Objects with complex shapes can be
more challenging, but they are typically grasped if not too
big or heavy (e.g. the strawberry in Fig. 5). Elongated objects
(marker and screwdriver) can be grasped using the strategy
described in Fig. 6. While the rope can be consistently
wrapped by the fingers (with a top wrap), the chain very
often cannot, due to its larger size.
For thin and/or small objects, displacements on the Z axis
cannot be accommodated; the hand positioning needs to be
very precise on the Z axis. Instead, small displacements on
the X and Y can be compensated also for very small objects,
by using different fingers for the grips (e.g. the index finger
instead of the middle finger). However, objects that are closer
to the maximum graspable size (chips can, glass and large
cup) may not allow for displacements on the X or the Y axis.
Objects that have a preferential grasping orientation (e.g.
marker, screwdriver, XL clamp) or that are too large on one
dimension (e.g. pudding box, pear) might not be successfully
grasped when rotated 90◦.

C. Grasp Flexibility Benchmark

The results of the GFB experiment are reported in Table
III. The scores on the X and Y rows are relative to object
displacements from -5 cm to +5 cm, while the ones on the
Z row are for displacements from -2 cm to +2 cm. The
total score is 126 (the maximum score would be 200). We
executed the benchmark on the foam brick object because
it has the average size and weight that the iCub can easily
grasp, and its cubic shape allows to precisely set the position
and orientation at each grasp; moreover, its softness allows to
test the dexterity of the iCub hand with no risks of breakages.
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TABLE I
SCORING OF THE ICUB HAND IN THE BASIC GRIPPER ASSESSMENT
BENCHMARK (A.O. STANDS FOR ARTICULATED OBJECTS). TOTAL

SCORE WAS 173 (MAXIMUM: 228).

Object SP1 SP2 SP3 SP4

R
ou

nd
ob

je
ct

s

Tennis ball 4 4 4 4
Racquetball 4 4 4 4
Golf ball 4 4 4 4
Marble XL 4 4 4 4
Marble L 4 4 4 0
Marble M 4 4 4 0
Marble S 4 4 4 0

To
ol

s

Large marker 2 2 2 0
Flat screwdriver 2 2 2 0
Clamp XL 2 2 2 2
Clamp L 4 4 4 4
Clamp M 4 4 4 0
Clamp S 4 4 4 0

A
.O

. Rope 10 – – –
Chain 3 – – –

TABLE II
SCORING OF THE ICUB HAND WITH THE ADDITIONAL OBJECTS

INCLUDED IN THE EXTENDED GRIPPER ASSESSMENT BENCHMARK.
TOTAL SCORE ON THESE OBJECTS WAS 164. ADDED TO THE SCORE IN
THE BASIC GAP, THE OVERALL SCORE OF THE ICUB HAND WAS 337

(MAXIMUM: 436).

Object SP1 SP2 SP3 SP4

C
ub

ic

Pudding box 2 2 2 2
Foam brick 4 4 4 4
Colored wood block 4 4 4 4
Dice 4 4 4 0

C
yl

in
dr

ic
al Chips can 4 4 0 4

Plastic wine glass 4 4 0 4
Large cup 4 0 0 4
Medium cup 4 4 4 4
Small cup 4 4 4 4

C
om

pl
ex Plastic pear 2 2 2 2

Plastic strawberry 4 4 4 4
Plastic bolt 4 4 4 0
Plastic nut 4 4 4 0

Some of the object poses used in the experiment are shown
in Fig. 7.
The scores we obtained show that considerable displacements
of the object from the nominal pose can be accounted for.
In particular, we observed that displacements of 3 cm or less
did not typically jeopardize the grasping performance, and
that in a few cases successful (or partially successful) grasps
were achieved even in presence of larger displacements.
In real world tasks, these displacements can be either real
displacements of the object (undesired and/or unexpected),
errors in the object pose estimation (due to sensor noise
and/or occlusions) or errors in the hand positioning (due to
inaccurate calibration and/or noise in the actuation). Similar
considerations hold for the changes in the object orientation.
Depending on the actual pose of the object, different fingers
and different grasp types were used, exploiting the flexibility
offered by the 9 DOFs of the iCub hand (some of the grasps
are shown in Fig. 8).

TABLE III
SCORING OF THE ICUB HAND IN THE GRIPPER FLEXIBILITY

BENCHMARK PERFORMED ON THE FOAM BRICK OBJECT. TOTAL SCORE
IS 126 (MAXIMUM: 200).

0◦ 45◦ 90◦ 135◦

SP1 2 2 2 2

X [2, 2, 2, 2, 2, [0, 2, 2, 2, 2, [0, 1, 2, 2, 2, [0, 1, 2, 2, 2,
2, 2, 2, 0, 0] 2, 2, 2, 1, 0] 2, 2, 2, 1, 0] 2, 2, 2, 1, 0]

Y [0, 1, 2, 2, 2, [0, 1, 2, 2, 2, [0, 0, 0, 1, 2, [0, 1, 2, 2, 2,
2, 2, 0, 0, 0] 2, 2, 2, 1, 0] 2, 1, 0, 0, 0] 2, 2, 1, 0, 0]

Z [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2]

Fig. 7. Some of the object poses used in the GFB. From left to right. First
row: displacements of -2 cm, 0 cm, 2 cm on Z (the middle image corresponds
to SP1). Second row: maximum displacements on X and Y (±5cm). Third
row: the four orientations used for each position: 0◦, 45◦, 90◦ and 135◦.

Fig. 8. Some exemplar grasps used in the GFB experiment.

This is a clear advantage with respect to simple grippers;
however, the presence of many DOFs must be supported by
a sophisticated controller to be a real advantage in practical
situations.
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V. CONCLUSIONS AND FUTURE WORK

In this paper we perform an evaluation of the grasping
capabilities of the iCub hand using the YCB Object and
Models Set. We experimentally identify a subset of the YCB
Set comprising objects that are graspable with the iCub hand,
and we perform three different benchmarks on some of those
objects, showcasing the grasping capabilities of the robot.
An expert human user controls the fingers motion using
the CyberGlove-II dataglove; ideally, this provides the robot
with the best possible controller (i.e. the human brain), and
therefore it allows to generate a performance baseline that
researchers can compare to. We offer a useful resource for
the iCub community, and also suggest a general methodology
for benchmarking in grasping and manipulation research.
Based on our experiments we also discuss how the use of
articulated hands with many DOFs may impact the robustness
and flexibility of grasping, if a smart controller is available.
In this work we focus on the mechanical possibilities of
the iCub hand, exploiting the human brain as a controller
and the human vision as a sensory feedback. We do not
consider tactile perception, nor the human or the robot one.
An interesting addition to this work would be to include
tactile sensing, providing also tactile feedback to the human
operator (for example, using a dataglove similar to the
prototype presented in [25]). This would allow more complex
benchmarking, possibly exploring also the implications of
using either vision alone, touch alone, or the two modalities
combined.
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