
1

Self-Tuning Service Provisioning for Decentralized
Cloud Applications

Raul Landa, Marinos Charalambides, Richard G. Clegg, David Griffin, and Miguel Rio

Abstract—Cloud computing has revolutionized service delivery
by providing on-demand invocation and elasticity. To reap these
benefits, computation has been displaced from client devices
and into data centers. This partial centralization is undesirable
for applications that have stringent locality requirements, for
example low latency. This problem could be addressed with large
numbers of smaller cloud resources closer to users. However,
as cloud computing diffuses from within data centers and into
the network, there will be a need for cloud resource allocation
algorithms that operate on resource-constrained computational
units that serve localized subsets of customers. In this paper
we present a mechanism for service provisioning in distributed
clouds where applications compete for resources. The mechanism
operates by enabling execution zones to assign resources based
on Vickrey auctions, and provides high-quality probabilistic
models that applications can use to predict the outcomes of such
auctions. This allows applications to use knowledge of the locality
distribution of their clients to accurately select the number of bids
to be sent to each execution zone and their value. The proposed
mechanism is highly scalable, efficient and validated by extensive
simulations.

Index Terms—Cloud Resource Management, Decentralized
Cloud Applications, Vickrey Auctions, Quality of Experience.

I. INTRODUCTION

Cloud computing has been very successful, delivering appli-
cations and services in a scalable manner through on-demand
computation. It has allowed applications to elastically cope
with changing demand for computing resources, and to exploit
economies of scale in multi-tenancy data centers. However,
this has meant that in many cases execution points can only
be selected from a limited number of options; this could
potentially reduce the quality of experience (QoE) provided to
the customers, or increase the bandwith requirements between
geographically dispersed customers and cloud data centers.

Many resource-demanding services (including personalized
real-time video, games or processing of high bandwidth
streams for security, safety and health-care monitoring) are
not suited to being centralized in a relatively small number of
data centers where higher network delays and low throughput
can have a serious impact on the QoE experienced by many
users. Application providers do not normally have the means
to position cloud application logic very close to their users in
order to meet tight quality constraints or to avoid congested
or expensive network paths for high bandwidth flows.

There is a current trend for deploying cloud resources closer
to users as telcos and ISPs deploy data centers at the network
edge. In addition, routers and other network equipment can

The authors are with the Department of Electronic and Electrical Engineer-
ing, University College London, UK.

now also perform general-purpose computation for virtualized
network functions; these can be deployed by ISPs themselves
or offered to third party providers to deploy applications and
services [?]. Such a distributed cloud drastically reduces RTT
to customers and greatly relaxes the end-to-end bottleneck
bandwidth requirements between end users and these localized
cloud points of presence. Distributed cloud resources can be
deployed in various places throughout the Internet: in network-
edge points of presence close to users, as an extension to
typical CDNs; in specialized data centers owned and operated
by ISPs; and in traditional data centers and service farms
operated by cloud providers. Unfortunately, each one of these
small cloud execution points will be unable to provide the
essentially boundless elasticity that purpose-built data centers
can. This means that, in many instances, there can be more
requests for resources at a given execution point than there
are resources available. In these cases, resource allocation
mechanisms that deal with service contention will be required.

In this paper we present a resource allocation mecha-
nism for service provisioning in distributed clouds where
computation resources are made available much closer to
users, possibly within routers themselves. This will save
bandwidth, provide better user QoE and potentially comply
with regulatory frameworks that demand services to run in
specific regions/countries/states. Applications can then use
these resources to deploy demanding services. Of course,
when securing resources, applications will need to balance the
benefit that these resources bring to the QoE of their users with
the costs that they need to pay to the computation resource
providers. To this end, we propose an auction-based resource
allocation approach that allows cloud providers to provide
computation capacity in a decentralized manner, while at the
same time allowing applications to implement effective cost-
benefit tradeoffs. We take as given the well-known properties
of the Vickrey auction (eg. truthful revelation and ex-post
efficiency [?]) and focus on their use as a vehicle to imple-
ment a self-adaptive mechanism for the dynamic allocation
of service slots, obviating the need of a logically centralized
clearinghouse.

In the paper we show that the proposed approach provides
an effective option to deal with contention and oversubscrip-
tion in decentralized cloud scenarios. We prove that it is
both scalable and efficient, but also immune to false-name
attacks. We present both the analytical work that underpins
our design and an extensive set of simulations that demonstrate
its behavior in many cases of interest. The dynamic behavior
of the algorithm has been investigated using three different
convergence approaches and it is shown that the algorithm



2

converges to the same solutions.
The paper is organized as follows. In Section II we describe

the main actors of our proposed mechanism. We continue
in Section III by explaining the analytical foundations of
our resource allocation mechanism. In Section IV we present
the results of evaluating our proposed mechanisms through
simulation in a wide variety of situations. Finally, we present
an overview of the related work in auction-based resource
allocation in Section V and our conclusions in Section VI.

II. SYSTEM OVERVIEW

In our proposed system we assume the existence of a
large number of execution zones (EZ), where computational
capabilities are offered to applications. Resources in each EZ
are managed by a zone manager (ZM), which is operated by
the infrastructure provider. Applications can deploy services
(i.e. self-contained application logic components) on these
EZs under the direction of an application manager (AM),
which is operated by the application provider and implements
the appropriate cost-benefit tradeoffs for that application. The
AMs belonging to various applications then compete for
resources on the EZs. Rather than relying on a centralized
resource allocator to grant AMs access to EZ resources, we
allow each EZ to individually perform resource allocation
decisions. There is a rich literature on how to solve this
problem [?], [?], [?]; we propose the use of a market system to
allow EZs to allocate resources to those applications that value
them the most (see [?], [?], [?], [?]). We take advantage of
the well known properties of Vickrey auctions [?] to allocate
resources to applications (see [?], [?], [?], [?], [?], [?] for
other examples of auctions used for resource allocation in grid,
peer-to-peer and cloud computing). Our mechanism allows
each AM to bid for resources on the desired EZs according
to its individual policies, and to implement its own tradeoff
between user satisfaction and infrastructure cost. This involves
considering the monetary cost of the resources together with
the cost of users being blocked due to resource unavailablity.

We consider latency- and bandwidth-sensitive services
which require accurate placement of service instances so that
the network performance metrics between users and cloud-
based services are within acceptable bounds to ensure QoE.
There are two dimensions to QoE in our model. Firstly there is
the quality experienced by the users of an application in terms
of the latency, bandwidth and response time of a session. This
is determined by an AM selecting EZs that are topologically
close to the users in terms of network metrics, such as latency,
and by the EZ offering sufficient computational capabilities
(e.g. CPU, memory) for the application. This aspect of QoE is
determined by decisions made by the AM to map user demand
to appropriate EZs and is part of the AM logic outside of the
auction mechanism described in this paper. The outcome of
this decision determines the demand on a specific EZ and
hence will drive the quantity of bids an AM should make to a
specific EZ. The second dimension of QoE, termed QoS cost,
is related to the blocking probability of user session requests
at an EZ. Our model deals with both dimensions of QoE,
but only the blocking probability is directly impacted by the

Zone%
Manager%

Zone%
Manager%

Cloud%Resources%
%
%
%

Service%Load%Balancer%

Service%
Instance%

Service%
Instance%

Applica:on%
Manager%

Cloud%Resources%
%
%
%

Service%Load%Balancer%

Service%
Instance%

Execu:on%Zone% Execu:on%Zone%

Service%Queries%

Bids% Bids%

Bidding/Demand%
Informa:on%

Bidding/Demand%
Informa:on%

Fig. 1. Notional architecture

auction outcome. Latency, throughput and other metrics of an
active session are indirectly covered by the prior selection of
the EZs where an AM will place bids for service slots. For this
reason, and in order to maintain our architectural decoupling
between AM and EZ functions, we assume that bids from
AMs are relevant only for one specific EZ. Off-loading of
demand from one EZ to another may violate QoE constraints
and the placement decisions made by the AMs. Of course, a
cloud provider with multiple physical data centers within a
region may act as a single EZ if the underlying locations are
equivalent in terms of latency, bandwidth and other network
performance metrics.

We focus our attention on the dynamic use of EZ resources
by AM. To simplify the resource allocation tasks of EZs, we
will assume that each EZ will offer a discrete number of
identical service slots. Rather than expressing service execu-
tion requirements in terms of CPU speed, amount of memory,
etc. EZs abstract the underlying computational resources as
service slots. Cloud providers, such as Amazon EC2, offer
multiple virtual computing instance types that vary in terms
of the processing and storage capabilities of the underlying
hardware resources. We assume that an AM has identified the
resource type offered by a data center that is best suited to
their applications, e.g. to optimize compute power, storage or
memory, or the use of specialized resources such as GPUs.
A service slot for an application will be mapped to a single
instance type and an AM will therefore bid on only one type
of instance. Our model assumes that a cloud provider offering
multiple instance types could operate multiple, collocated EZs,
one for each instance type and therefore a separate auction
where AMs offering applications with similar requirements
will compete for resources. We assume that prior negotiation
has established the type and quantity of resources required to
support a service slot for the applications being deployed by
the AM. In addition to its scalability benefits (see Section
IV-C), this abstraction simplifies the resource modeling in
EZs and allows a more straightforward calculation of the
tradeoffs involved. Our model therefore allows heterogeneous
application requirements and heterogeneous resources to be
accommodated without introducing the complexity of a multi-
parameter auction.

According to the definitions above, our proposed mecha-
nism, which is depicted in Fig. 1, can be explained as follows.



3

AMs determine which EZs are capable on computational
grounds for hosting their application. From this subset of EZs
an AM will determine how demand from their users should
be mapped to EZs so that network metrics, such as latency
and bandwidth, do not violate application QoE requirements.
Users will typically be distributed over a wide area and a single
EZ is unlikely to be positioned to achieve the required QoE
to all user locations. Hence, our model assumes that an AM
will select multiple EZs to deploy the application and will
bid for resources in all EZs it has selected (the quantity of
service slots being determined at each EZ by the user demand
in that location). Application users generate service queries,
which are directed to their local EZs by existing methods
like differentiated DNS resolution and HTTP redirection, as
configured by the application provider. These queries are
received by ZMs and mapped to the service slots that the
application has available on that zone. Each AM can secure a
number of service slots for its application in each EZ; this is
achieved by sending bids to the ZMs specifying the number of
service slots desired and the bid amount that they are willing to
pay per service slot. The ZM then allocates its available service
slots by running a multi-item Vickrey auction [?]; the top
bidding AM bids are hence selected. AMs make a centralized
decision on which EZs should host their application to meet
QoE requirements and on the quantity of resources required
to meet the demand at that EZ (see Fig. 1). Each EZ runs an
auction for resources with bids being generated by the set of
AMs that have selected the EZ. There is a set of independent
auctions, one at each EZ (see Fig. 3), where each auction is for
local resources only and therefore no coordination is required
between independent auctions.

Among alternatives, eg. open ascending / descending bid
auctions, we have chosen to use Vickrey auctions due to
their low overhead, which preserves system scalability. Fur-
thermore, compared to other sealed bid auction types, eg. first
price, in Vickrey auctions, true value bidding is the dominant
strategy (truthful revelation). Since the Vickrey auction is
a VCG mechanism [?], it is ex-post efficient: it allocates
resources in a way that is optimal for the entire system. This
is the reason it is frequently used as a protocol component in
self-organising resource allocation [?] [?].

III. AUCTION-BASED RESOURCE ALLOCATION FOR THE
DECENTRALIZED CLOUD

We assume that the AM can determine, by external means,
the total user demand associated with a given EZ. Then, for
each AM the resource allocation problem becomes: given the
bidding profile at every EZ, for how many service resource
units should the AM bid, and at what price? Formally, each
AM bj must determine the number of service slots mij it will
bid for at each EZ j,as well as the bid price vij it must offer,
according to the estimated user demand and expected service
quality.

We now present our analytic model of the EZ, and how
it implements resource allocation using Vickrey auctions. In
a standard Vickrey second price auction the bidders bid for
a single item. The highest bid wins and pays the price of

the second highest bid. This can be shown (under certain
assumptions) to mean that rational bidders will bid according
to their true valuation for the item. In a multiunit Vickrey
auction with identical items, the bidders bid for K items and
may each bid multiple times. The highest K bids win and
they pay the combined value of the next K bids (the first K
losing bids). This preserves the property that rational bidders
bid according to how much they value the item.

In the context of this paper, we assume that each EZ ni can
offer up to Mi service slots (see Table I), and that each AM
bj sends mij bids to ni, each at a value vij . The EZ receives
these bids and ranks them in increasing order of value, and
the top Mi win a service slot. Let Xij be the number of bids
that AM bj wins in EZ ni. According to the definition of a
Vickrey auction, the payment that will be levied on manager
bj is the sum of the top Xij losing bids.

By the construction of a Vickrey auction the value of the
bids that ni makes in bj are a true reflection of the benefit it
would gain from those bids if they were successful. Therefore,
the utility Uij that bj obtains from this interaction with ni
is just the difference between the sum of the values of its
Xij winning bids and the sum of the top Xij losing bids (its
payment to the EZ). The outcome of this process is that each
AM calculates the price of its bids to each EZ according to
the value it expects to derive from service slots located in that
EZ.

A. Resource Allocation Properties

Even though the Vickrey auction has interesting advantages
(e.g. incentive compatibility and ex-post efficiency), it is not
revenue-maximizing [?] [?]. In fact, for uncontested Vickrey
auctions, the bidders can obtain items at zero cost. For the
present paper we assume that AMs pay a monthly fixed fee
to gain access to the EZ infrastructure; this would allow them
to use uncontested resources. If AMs wish to gain access to
EZ resources for which there is contention, they will need to
submit nonzero bids and pay for these bids in addition to the
fixed flat fee. In contrast to other contributions in the literature,
we assume that bids are made in terms of actual currency and
the EZs receive income from both the monthly rental fees and
non-zero winning bids from AMs.

We base our auction mechanism on two simplifying assump-
tions. First, we will use the independent private values model
in the sale of Mi service slots to Ni managers. This means
that the value that each AM bj gives to service slots auctioned
by an EZ ni is private, and is not a function of the values that
other AMs give to service slots offered by ni. This simplifies
the valuation problem, decoupling the decisions for each AM.
Second, we will assume that AMs experience no synergy in
acquiring increasing numbers of service slots. This means that
for each manager bj , the value of obtaining Xij service slots
from ni is just Xij times the value of obtaining a single
service slot from ni. Therefore, there are no complementarity
or substitution effects between different service slots, and all
service slots from a given EZ have the same value.

In addition to making the problem mathematically tractable,
these two assumptions have an additional benefit: they make



4

our proposed mechanism false-name proof [?] [?]. In a
combinatorial auction bidders bid for sets of non-identical
items, and they have independent valuations for each one of
these sets. This makes the system vulnerable to false-name
attcks, in which bidders can use additional identities to submit
strategic bids that allow them to obtain items at a reduced
cost. Although false-name proofness is in general impossible
using Vickrey auctions [?], our proposed mechanism avoids
this problem by mandating service slots within each EZ
to be identical (for combinatorial auctions, different auction
mechanisms can regain the false-name-proof property [?]).

Theorem 1. In a system where service slots are allocated to
AMs following the mechanism described in Section III-A, there
is no incentive for AMs to submit bids at any valuation other
than their true valuation.

Proof. The false-name attack is geared towards obtaining the
same set of items in the auction but at a lower cost; hence, our
analysis assumes that the bidder will only bid for its desired
number of service slots. Further, since bidders can only specify
the number of slots that they bid for and the unitary valuation
that they have for each one, we only need to consider three
possibilities: that the bid is equal, lower or higher than their
true value.

1) False-name bids are made at the same valuation
as true-name bids. This case is indistinguishable from
simply submitting the same number of bids using a
single name. Hence, in this case the bidder has no
incentive to use an alternate identity.

2) False-name bids are made at a lower valuation than
true-name bids. We can distinguish two cases here. If
false-name bids are low enough so that the bidder fails
to secure service slots that it would have secured by
revealing its true valuation, the bidder will be forced to
forgo service slots which were available at a price that
the bidder was willing to pay. Consequently, it will have
experienced a lower utility than it would have had it bid
its true valuation. On the other hand, if the false-bids
are lower than its true valuation, but still high enough
to secure all required service slots, the amount paid
is identical to that obtained by bidding normally using
its true name. Hence, under-bidding with an alternative
identity can not increase its utility, and may potentially
decrease it.

3) False-name bids are made at a higher valuation than
true-name bids. Again, we can distinguish two cases. If
false-name bids are not high enough so that the bidder
wins service slots that it would not have won by bidding
its true valuation, its utility is unchanged. If false-name
bids are high enough to make the bidder win service
slots that it would not have won by bidding its true
valuation, its utility will be negative for those service
slots. To see why, consider that the true valuation for
those service slots is necessarily lower than that of the
lowest bid in the winning set (by the definition of our
auction mechanism in Section III-B). When these bids
displace a number of previously winning bids, these will
become the highest losing bids, and hence, will define

the price that the bidder will have to pay. However, this
price is higher than its true valuation, and hence, will
lead to a negative utility. It follows that over-bidding
with an alternative identity can not increase its utility,
and may potentially decrease it.

B. Estimating the Expected Number of Successful Bids

To allow an AM to estimate the expected number of bids it
will win and the total price it will pay when placing a given
number of bids at a given price, each with a given ZM, it needs
to estimate the level of competition it will face in the auction
from other AMs. Formally, this is achieved by determining
the number of competing bids it will encounter. Thus, rather
than the total number of bids Ni received by ni, an AM bj
is interested in the number of bids with which its bids must
compete. This involves subtracting from Ni those bids sent to
ni by bj itself. We shall denote this number of competing bids
as N j

i , the total competing load of manager bj at EZ ni. By
definition, N j

i =
∑
k 6=imkj .

We now define two basic load-related states for the EZ. We
call the case where Mi > N j

i the surplus state, and the case
where Mi ≤ N j

i as the scarcity state. In the surplus state
there are more service slots in auction than bids submitted by
competing AMs, and bj can expect to have some of its bids
accepted at zero price. Winning bids pay nonzero prices only
in the scarcity state, when bj competes with other managers
and there are losing bids.

It will be advantageous for AMs to have a model of the
expected auction outcome after bidding with a given EZ. To
this end, we investigate how an AM bj can predict, given a
hypothetical bidding value vij , the expected number of bids it
will win when submitting bids to a particular ZM ni. Since by
the truthful revelation property of the Vickrey auction [?], [?]
bidders have no incentive to bid strategically, we can safely
assume that vij is the true value that every AM estimates for
service slots being auctioned by ni. In what follows, we shall
refer to a given execution manager ni or its associated EZ
interchangeably; likewise, we will denote as bj both the AM
and the application itself.

We simplify our analysis by modeling the bid values as
a random variable V i with a probability density fV

i

and
cumulative distribution FV

i

. Then, FV
i

(vb) − FV
i

(va) =∫ vb
va
fV

i

(ω)dω gives the proportion of values between va and
vb for all those bids that were sent to ni from all AMs. Since
AMs do not bid strategically, EZs can compile these value
probability distributions simply by performing elementary
frequency counts (histograms) over their received bids.

Again focusing on the prospective competition for AM bj ,
in the model presented here we treat the N j

i competing bids
that ni receives in a given interval T as a set of N j

i realizations
of the random variable V i. We denote this vector of variates
drawn from fV

i

as V i = {V i1, V i2, . . . , V iNj
i−1

, V iNj
i
}. To

model a bidding round in a Vickrey auction, we assume that
the EZ ni constructs V i using the bid values it receives for that
round. Then, it sorts V i in ascending order, creating V̄ ij =



5

TABLE I
AUCTION-BASED RESOURCE ALLOCATION MODEL NOTATION

Ni Total number of bids that zone manager ni receives
Nj

i Total number of bids that zone manager ni receives which
compete with those placed by bj

Mi Total number of service slots offered in execution zone
ni

mij Total number of bids that application manager bj sends
to zone manager ni

vij Monetary value for each bid that application manager bj
sends to to zone manager ni

Xij Number of bids that bj wins on ni

Xij
free Number of contention free service slots (ie. obtainable

at zero auction cost) that bj can obtain when submitting
bids to ni

Xij
max Maximum number of bids that bj can win by bidding

with ni

fV
i
(vij) Probability density function of bid values received by

auctioneer ni

FV i
(vij) Cumulative distribution function of bid values received

by auctioneer ni

fV
i

(k)
(vij) Probability density function of the k-th order statistic of

the bid values received by auctioneer ni

FV i

(k)
(vij) Cumulative distribution function of the k-th order statistic

of the bid values received by auctioneer ni

φij Maximum losing rank in the Vickrey auction; bidding
round after which bids sent to ni by bj will necessarily
be lost

µij Expected number of successful bids that bj will have
when bidding with ni

E [Cij ] Expected monetary cost that bj will incur when submit-
ting mij bids to ni at a bid price vij

E [Qij ] Expected QoS cost that bj will incur when submitting
mij bids to ni at a bid price vij

E [Tij ] Expected total cost (monetary and QoS) that bj will incur
when submitting mij bids to ni at a bid price vij

{V i(1), V i(2), . . . , V i(Nj
i−1)

, V i(Nj
i )
}, keeps the top Mi bids

in V̄ ij , and discards the rest.

Theorem 2. Assume a Vickrey auction where application
managers bid for execution slots within zones. Let vij be the
value to application manager bj of winning one slot in zone
ni and assume that the value of winning s such slots is svij .
Let FV

i

(vij) be the CDF of the bid values received by ni
from bj . Let N j

i be the total number of bids received by ni
excluding those placed by bj . Let φij be the maximum losing
rank in the auction and let Xij

max be the maximum number of
bids that bj can win by bidding with ni. The expected number
of slots won by bj in zone ni is given by

µij =

Xij
max∑
k=1

I(FV
i

(vij) ; φij + k,N j
i − (φij + k) + 1)., (1)

where I(x; a, b) is the regularized incomplete beta function.

Proof. We are interested in the probabilities of the various
possible outcomes of the auction (see Figure 2). We consider
a situation where every AM in the system but bj has already
submitted all their bids to ni, so that the N j

i , Mi and mij

are set. In this case, since N j
i is the total number of bids that

ni will receive in addition to the mij that bj will send, we
have that Ni = N j

i +mij . If N j
i ≥ Mi, ni is in the scarcity

state, and bids from bj will face competition. In particular, we
see that the lowest bid that bj will have to surpass will be the

(N j
i −Mi+1)-th highest bid received by ni, which is the last

winning bid in its absence.
On the other hand, if Mi > N j

i , ni is in the surplus state and
bj will have access to Xij

free = Mi−N j
i contention-free service

slots: the first Xij
free bids from bj will win without competition

and have zero cost. Any bids following, however, will face
the same competition situation detailed above, although in this
case with a reduced effective number of bids m′ij = mij −
Xij

free = mij−Mi+N j
i . Thus, we see that if mij < Xij

free, the
AM wins all its bids at zero cost, and if mij ≥ Xij

free, Xij
free of

its bids win at zero cost and m′ij face the EZ in the scarcity
state. Without loss of generality, we focus on the scarcity state
and assume that N j

i > Mi.
We see in Figure 2 that bj will win no bids with a probability

P[vij < V i(Nj
i−Mi+1)], and it will win exactly one bid with

probability P[V i(Nj
i−Mi+1) < vij < V i(Nj

i−Mi+2)]. This
pattern continues until either all the bids that were submitted
to the EZ have been considered (the case shown in Figure
2) or all the service slots that ni has in auction have been
considered. This bounds Xij , the maximum number of bids
that an AM can win, to either the total number of units in
auction Mi or the number of bids that bj submits, mij .

Thus, we have that Xij
max = min(mij ,Mi), and this can

happen with a probability of P[V i
(Nj

i−Mi+X
ij
max)

< vij ]. For
µij , the expected number of successful bids that bj will have
per auction, we have that

µij = E[Xij ] =

Xij
max−1∑
k=1

k P[V i(φij+k)
< vij < V i(φij+k+1)]

(2)

+Xij
maxP[V i

(φij+X
ij
max)

< vij ],

where φij = N j
i − Mi. Since we have that P[V i(φij+k) <

vij < V i(φij+k+1)] = P[V i(φij+k) < vij ]− P[V i(φij+k+1) <
vij ], we see that the expression for µij telescopes and can be
trivially simplified. Thus, it follows that

µij = E[Xij ] =

Xij
max∑
k=1

P[V i(φij+k) < vij ]. (3)

We find P[V i(φij+k) < vij ] by noting that it corresponds to
the (φij + k)-th order statistic of the probability density fV

i

of bid values [?], [?]. Formally, order statistics can be defined
as follows.

Definition 1. Let V i ≥ 0 denote a continuous random
variable with probability density fV

i

(v), and cumulative dis-
tribution FV

i

(v) =
∫ v
0
fV

i

(ω)dω. Let (V i(1), V
i
(2), . . . , V

i
(Nj

i )
)

denote a random sample of size N j
i drawn on V i, and ordered

so that V i(1)<V
i
(2)<. . .<V

i
(Nj

i )
. Then, the V i(1), V

i
(2), . . . , V

i
(Nj

i )

are collectively known as the order statistics derived from V i.
The probability density for the k-th order statistic will be
denoted as fV

i

(k)(v), and can be calculated [?] as

fV
i

(k)(v) =
N j
i !FV

i

(v)k−1(1− FV i

(v))N
j
i−kfV

i

(v)

(k − 1)!(N j
i − k)!

. (4)



6

Probability
Bids
Won

Bid
Rank

Winner
Rank

Ni

Ni − Mi + mji

Ni − Mi + 1

Ni − Mi + 2

Mi

mji

1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

mij

1

0

P[V i
(Ni)

≤ vij ]

P[V i
(Ni−Mi+mji)

≤ vij ≤ V
i
(Ni)

]

P[V i
(Ni−Mi+2) ≤ vij ≤ V

i
(Ni−Mi+mji)

]

P[V i
(Ni−Mi+1) ≤ vij ≤ V

i
(Ni−Mi+2)]

P[vij ≤ V
i
(Ni−Mi+1)]

Fig. 2. Calculating the expected number of won bids

We denote the cumulative distribution of the (φij + k)-th
order statistic of V i, as FV

i

(φij+k)
(vij), so that

P[V i(φij+k) ≤ vij ] = FV
i

(φij+k)
(vij) =

∫ vij

0

fV
i

(φij+k)
(ω)dω,

(5)
where fV

i

(φij+k)
(ω) denotes the probability density for the

(φij + k)-th value in our sorted vector V̄ ij , and FV
i

(φij+k)
(vij)

denotes its cumulative distribution. By substituting the defini-
tion for fV

i

(φij+k)
(ω) in (5) and simplifying, we find that

FV
i

(φij+k)
(vij) =

B(FV
i

(vij) ; φij + k,N j
i − (φij + k) + 1)

B(φij + k,N j
i − (φij + k) + 1)

,

where FV
i

(vij) is the cumulative density of the bid values
submitted to ni valuated at vij , and B(φij + k,N j

i − (φij +
k)+1) and B(x ; φij+k,N j

i −(φij+k)+1) are, respectively,
the beta function B(a, b) and the incomplete beta function
B(x ; a, b) with parameters a = φij + k and b = N j

i − (φij +
k) + 1. Formally, these are defined as

B(x ; a, b) =

∫ x

0

ωa−1(1− ω)b−1dω [0 ≤ x ≤ 1]

B(a, b) = B(1 ; a, b) =

∫ 1

0

ωa−1(1− ω)b−1dω.

We can further simplify (5) by using I(x ; a, b), the regular-
ized incomplete beta function with parameters a and b, which
is defined as

I(x ; a, b) =
B(x ; a, b)

B(a, b)
[0 ≤ x ≤ 1].

We can see then that

P[V i(φij+k) ≤ vij ] = I(FV
i

(vij) ; φij+k,N
j
i −(φij+k)+1),

where I(x ; φij + k,N j
i − (φij + k) + 1) is I(x ; a, b) with

parameters a = φij + k and b = N j
i − (φij + k) + 1. By

substituting this last expression in (3), we then have (1) from
the theorem.

µij =

Xij
max∑
k=1

I(FV
i

(vij) ; φij + k,N j
i − (φij + k) + 1).

Since I(0; a, b) = 0 and I(1 ; a, b) = 1, we have that
limvij→0 µij = 0 and limvij→∞ µij = Xij

max, as expected:
in the first case no bids are won, while in the second one
the maximum number of feasible service slots are won. This
completes the proof.

C. The Expected Resource Cost

We now calculate the expected cost of an AM when bidding
at a given EZ.

Theorem 3. Given the auction mechanism from theorem 2 the
expected cost paid by an AM bj to a ZM ni is given by

E [Cij ] = vijµij −
∫ vij

0

µij(ω)dω. (6)

Proof. This cost, for each won bid, equals the price that bj
needs to pay to ni. Then, for the cost Cij paid by bj if it
sends mij bids to ni, we have for N ≤ Xij

max won bids

Cij =

N∑
k=1

V i(φij+k)
if V i(φij+N) < vij

and thus we have for the expected cost E[Cij ] that

E[Cij ] =

Xij
max∑
k=1

∫ vij

0

ωfV
i

(φij+k)
(ω)dω,

where, again, fV
i

(φij+k)
(ω) is the probability density of the

(φij + k)-th order statistic of V i. The integral within the
summation can be partially evaluated and simplified using
integration by parts, and we find that∫ vij

0

ωfV
i

(φij+k)
(ω)dω = ωFV

i

(φij+k)
(ω)
∣∣∣vij
0

−
∫ vij

0

FV
i

(φij+k)
(ω)dω.

Hence, we have that

E[Cij ] =

Xij
max∑
k=1

[
vijF

V i

(φij+k)
(vij)−

∫ vij

0

FV
i

(φij+k)
(ω)dω

]
,

and therefore, if we exchange summation and integration, that

E[Cij ] = vij

Xij
max∑
k=1

FV
i

(φij+k)
(vij)−

∫ vij

0

Xij
max∑
k=1

FV
i

(φij+k)
(ω)dω.

Let µij(·) represent µij expressed as a function of the bid
value vij and hence

E [Cij ] = vijµij −
∫ vij

0

Xij
max∑
k=1

FV
i

(φij+k)
(ω)dω

= vijµij −
∫ vij

0

µij(ω)dω.



7

D. The Expected QoS Cost

In this section we consider the QoS cost that an AM expects.
The QoS cost can be considered as a penalty to QoS that the
application has, given the number of service slots secured.

Theorem 4. Given the auction mechanism from theorem 2
define Qij as the QoS cost that users of application bj
experience in EZ ni. This is a function of the number of service
slots secured. We define Qij(k) as the QoS cost from securing
exactly k slots in ni. Then we have

E[Qij ] = Qij(0) +

Xij
max∑
k=1

∆Qij(k) (7)

I(FV
i

(vij) ; φij + k,N j
i − (φij + k) + 1),

where ∆Qij(k) = Qij(k) − Qij(k − 1) is the QoS cost
difference achieved by adding the kth service slot.

Proof. In this case, we assume that customer queries will
receive a QoS that is a function of the current number of
service slots that an application has obtained in a given EZ.
If we define Qij(k) as the QoS cost that users of application
bj experience when using EZ ni (with k service slots secured
by bj), we can calculate the expected QoS cost as

µQij = E[Qij ] = Qij(0)P[vij < V i(φij)
]

+

Xij
max−1∑
k=1

Qij(k)P[V i(φij+k)
< vij < V i(φij+k+1)]

+Qij(X
ij
max)P[V i

(φij+X
ij
max)

< vij ].

By following a reasoning identical to (3), we see that

µQij = Qij(0) +

Xij
max∑
k=1

∆Qij(k)P[V i(φij+k) < vij ].

The theorem follows immediately.

By comparing (1) and (7) we see that whereas k runs from
1 in (1), it runs from 0 in (7). The reason for this is that,
whereas k = 0 in (1) contributes nothing to µij , k = 0 in (7)
has an important contribution to µQij because it represents the
situation where no client requests are served, and hence, the
maximum QoS cost that can be incurred.

To understand the boundary properties of µQij , we assume
that the QoS cost Qij(k) decreases as the number of service
slots k (bids won) increases. This implies that ∆Qij(k) will
be negative for all values of k. Hence, µQij attains its maximal
value of Qij(0) for k = 0 and it then decreases with increasing
k. In addition, we have that limvij→0 µ

Q
ij = Qij(0) and

limvij→∞ µqij = Qij(X
ij
max), as expected.

E. Bid Determination: The Expected Total Cost

Suppose that an AM bj wishes to determine the number and
value of bids that it must submit to a given execution manager
ni, and it wishes to do so taking into account both the resource
cost and client QoS. This can be achieved by selecting the
combination of mij and vij that minimize a total cost measure
that includes both QoS and monetary bidding effects. We use

the simplest possible definition, in which the total expected
cost is simply the sum of the resource and the QoS costs.
However, since the resource cost is in monetary units and the
QoS cost is in QoS units, we require a mapping between these
two units of measurement so that these costs can be added.
We assume a linear mapping based on a static coefficient ζ
that gives the monetary cost associated with a given QoS cost.
This does not impose any loss in generality, as the nonlinear
aspects of QoS cost will be considered separately: the role of
ζ is only to allow the joint consideration of QoS and monetary
costs into a single model. Then, for this total cost Tij we have

E [Tij ] = E [Cij ] + ζE [Qij ] . (8)

However, in order for Tij to be fully defined, it is necessary
to define the quality cost Qij(k). To achieve this, we assume
that each EZ i will provide service to a given population of
customers that generate service requests at a rate of λij per
unit time following a Poisson distribution. Further, we assume
that each service slot can process service requests at a rate
of ri per unit time, with the service time being exponentially
distributed. Finally, we assume that each service slot can only
process one request at a time. The queueing model, therefore
has exponential interarrival times, exponential service times,
N servers and at most N customers. In standard Kendall
notation [?], this is an M/M/N/N model.

We use the loss probability of the the M/M/N/N model to
define the QoS cost Qij(k). Intuitively, Qij(k) is defined as
the probability that a customer request will be denied service
(i.e. blocked) from EZ ni, given a service request rate of λij
and a service completion rate of ri. Formally, if we define the
offered load ρij =

λij

ri
and the full-blocking cost Bij , we have

Qij(k) =

ρkij
k!∑k

n=0

ρnij
n!

Bij . (9)

By using the recursive definition of the Erlang B loss proba-
bility [?], we find that

∆Qij(k) =

[
1−Qij(k − 1) +

k

ρi

]
Qij(k), (10)

where the recursion terminates with Qij(0) = 1. This will
allow our simulation engine to calculate Qij(k) efficiently.

With these definitions, we can formulate the bid planning
problem for each AM as

Minimize:
mij∈N≥0,vij∈R≥0

E [Tij ] . (11)

This problem could be solved by using nonlinear mixed integer
programming. In the case of this paper, however, the state
space is sufficiently small that it can be explored exhaustively.
That is, each AM can try all combinations of mij , vij and see
which values do minimize E [Tij ].

F. Stability

A common pitfall in decentralized optimization mecha-
nisms, such as the one presented in this paper, is the possibility
for oscillation (see eg. [?], [?]). We address this concern
by using the optimal answers provided by (11) to guide an



8

incremental bidding strategy, thus dampening oscillations and
ensuring convergence. During each epoch, each AM calculates
the optimal mij and vij based on the level of competition and
resource availability in each EZ. Instead of using these directly,
AMs use approximations m̂ij and v̂ij that are designed to vary
without risking large oscillations, meaning, free from large
step changes. We do this by limiting the change in m̂ij and
v̂ij from one epoch to the next. Furthermore, we also ensure
that both m̂ij and v̂ij remain bounded by specifying respective
maximal values m̂max and v̂max.

Three approaches are taken. The first approach is to move
the number of bids at most one unit towards the optimal
number. The second is to move the number of bids only a
fraction of the way towards the new optimal and the third is
to do this but reduce the fraction as time progresses.

Approach 1: This changes the number of bids by +1 (-1) if
it is too low (high) with probability p, and leaves it unchanged
with probability 1− p. We used p = .5 in our evaluation.

Approach 2: This changes the number of bids in a manner
based on the exponentially weighted moving average. The bid
is increased (or decreased) by an amount proportional to the
difference between the previous bid and the ideal bid. That
is, the bid increases (or decreases) by w(mij − m′ij) where
m′ij is the previous bid and 0 < w < 1 is some constant. The
nearer w is to 0 the more conservative the system is. Since bids
must be whole numbers then the fractional part is treated as a
probability, for example if w(mij −m′ij) = 1.2 then the bid
will increase by 1 (with probability p) or 2 (with probability
1− p). We used p = .8 in our evaluation.

Approach 3: This is like Approach 2 but the factor w is
decreased each round by multiplying it by some constant 0 <
d < 1. So, as epochs progress the changes to bids become
more conservative.

It was found that the final results were similar in almost all
cases investigated and the eventual position was insensitive
to the convergence approach used (although on occasion the
transient positions early in the simulation could be quite
different). This is discussed further in Section IV-D. The
results presented in the paper are for Approach 2 with w = 0.1.

The following section presents the simulation set up and the
results of the evaluation of our proposed mechanism.

IV. EVALUATION

We evaluate our mechanism through simulation. The sim-
ulation proceeds by epochs, with one epoch consisting of a
bidding phase in which AMs decide, independently and in
parallel, how many bids to submit to each EZ and at what
valuation. These values are accumulated at each EZ, and when
all required values are available, the system moves on to the
allocation phase. At this point, EZs, independently and in
parallel, perform resource allocation on the available bids and
calculate the QoS experienced by the users of each service in
their designated population. Statistics are then gathered and
made available to AMs so that they can adapt their bidding
behavior.

Applica'on	  
Manager	  1	  

Applica'on	  
Manager	  2	  

Applica'on	  
Manager	  3	   …	  

Zone	  
Manager	  1	  

Zone	  
Manager	  2	  

Zone	  
Manager	  3	  

Zone	  
Manager	  4	  

Zone	  
Manager	  5	   …	  

Fig. 3. Simulator architecture

A. Simulator Setup

Each application and ZM in our simulator is implemented as
an independent thread and triggered by means of a thread pool
[?]. As already stated, simulation progresses by discrete time
steps denoted as epochs. Each epoch consists of two steps,
and each one of these steps is implemented as a map/reduce
operation. Simulation state is synchronized after each reduce
step. We now broadly explain the two main steps of each
simulation epoch by focusing in turn on the EZs and the
AMs (see Fig. 3). The first step, denoted as the execution
step, implements functionality to allow EZs to receive bids
from all AMs, choose the winning set of bids, and calculate
the QoS experienced by application users. Each EZ can then
report to each AM the total number of bids Ni it received, the
total number of service slots Mi it offers, and the distribution
FV

i

(vij) of its received bid values. The second step, denoted
as the bid planning step, implements functionality to allow
each AM to evaluate (1), (6) and (7) as a function of mij and
vij . Then, each AM can determine the optimal mij , vij pair
that minimizes its expected total cost as expressed by (8), and
use this information to drive its bidding behavior. A summary
of the main simulation steps is provided below.

1) Initialize simulation - generate EZs and AMs according
to QoE tolerance and population density distributions

2) Execution step
a) AMs make bids and send to EZs
b) Winning bids determined and results disseminated

3) Bid planning step
a) AMs calculate the number and value of bids they

would optimally make next round (if no other bids
changed)

b) AMs adjust their bidding towards this optimal
number/value using Approach 1, 2 or 3 from
previous section

4) Return to step 2)

In order to capture the different incentives behind service
deployment decisions, we consider three different kinds of
AMs, which we denote as QoS-sensitive, Price-sensitive and
Background. Whereas the first two solve (11) to arrive to
the optimal QoS/resource cost tradeoff embodied by (8),
Background AMs generate bids and bid values drawn from
static probability distributions. Hence, Background helps us
model additional EZ load that is non-adaptive. Regarding QoS-
sensitive and Price-sensitive AMs, the only difference is the



9

TABLE II
SIMULATION PARAMETERS

N_EZ Number of execution zones 20
N_App_QoS Number of QoS-sensitive apps

(ζ = 30000)
10, 20

N_App_Price Number of Price-sensitive apps
(ζ = 5000)

10, 20

N_App_BG Number of Background apps 10, 20
N_Srv_Slots Number of service slots Mi in an exe-

cution zone
50, 100

Mu_Max
Mu_Min

Maximum and minimum values for the
rate at which a given execution zone can
process user requests

5.5
3.5

Lambda_Max
Lambda_Min

Maximum and minimum values for the
rate at which user requests for a given
application are generated at a given ex-
ecution zone

1
1

N_Iterations Maximum number of epochs for a given
simulation replica

100

N_App_Threads Number of application manager threads
in the bid planning pool

450

N_EZ_Threads Number of application manager threads
in the execution pool

450

N_Replicas Number of simulation replicas per sim-
ulation run

1

N_Hist_Bins Number of histogram bins to represent
FV i

(vij)

60

chosen value of ζ. For QoS-sensitive AMs we use ζ = 30000;
for Price-sensitive AMs we use ζ = 5000. These values are
arbitrary and only chosen to differentiate between these two
categories of AMs.

We parametrize our simulations in terms of the variables
presented in Table II. In order to reliably test the statistical
properties of our simulation, we organize our simulations into
runs, with each run consisting of a set of N_Replicas simu-
lation replicas. For each one of these replicas we use the same
values for all parameters and report the averages. For each
simulation run, we choose a combination of individual values
of N_EZ, N_App_QoS, N_App_Price, N_App_BG and
N_Srv_Slots; the rest of the parameters are kept unchanged
for all simulation runs. The values used for these variables are
shown in the third column of Table II. In order to represent
the probability densities FV

i

(vij), we used histograms that
split the entire range for vij into N_Hist_Bins equally-sized
bins. Additional information on our simulation setup can be
found below.

B. Competition, QoS and Pricing

The first variable that we examine is the average cost
incurred by each AM. Each subgraph in Fig. 4 corresponds
to a combination of values as defined in Table II (see the
top- and right-most edges of each panel). Because resource
allocation is performed by means of a Vickrey auction, the
total cost is defined by the losing bids in each EZ (the reader
is reminded that in our multi-item Vickrey auction model
a bidder winning n bids will pay the sum of the first n
losing bids). Hence, in situations where there is a significant
overprovisioning of resources, cost will remain close to zero.
Such is the case for N_App_QoS = 10, N_App_Price = 10
and N_App_BG = 10; in this case, the cost paid is very low
for all AM classes. As competition increases, however, we see
that Quality-sensitive managers are much more aggressive in

trying to secure EZ resources, and consequently end up paying
higher costs. Although Price-sensitive AMs are more willing
to tolerate higher blocking probabilities, they still implement a
cost-quality tradeoff and hence experience consistently lower
blocking probabilities than Background applications (see Fig.
5). It is interesting to note that the increase in total cost is not
related only to competition with other adaptive AMs; even
an increase in Background leads to an increase in total cost.
This happens because adaptive applications will respond to
increased competition to Background applications according
to their cost-benefit tradeoff.

With regards to client blocking probability, Quality-sensitive
managers achieve consistently better quality than Price-
sensitive AMs (and, consequently, than Background services).
It is interesting to note that, in the early stages of all simulation
runs (lower values for the epoch), Background applications
achieve lower blocking probabilities than either Price-sensitive
or Quality-sensitive managers. This is due to the fact that these
two categories of AMs progressively increase their number of
bids for each EZ and their bid values. Hence, whereas at the
beginning Background applications occupy a majority of the
available service slots, they are soon displaced by adaptive
AMs. This is shown explicitly in Fig 6. Although Background
managers send an approximately constant number of bids to
each EZ the number of bids they actually win decreases sig-
nificantly as both Price-sensitive and Quality-sensitive adapt
to the increased competition. However, this adaptation does
not consist on indiscriminately increasing the number of
sent bids; our approach allows managers to concentrate their
resources on those EZs that will bring them a greater benefit
(a greater decrease in client blocking probability) at a smaller
expected resource cost. For example, in the case in which
N_App_QoS = 10, N_App_Price = 10 and N_App_BG =
20, the number of bids sent by Price-sensitive and Background
managers is very similar. However, the blocking probability
experienced by Price-sensitive applications is much lower than
that experienced by Background applications. There are two
reasons for this. The first one is that, as shown in Fig. 6, Price-
sensitive managers are winning more bids than Background
managers; the second one, that our approach drives adaptive
AMs to bid more in those EZs that provide better cost/benefit.

C. Scalability Considerations

One of the challenges faced by many auction-based systems
is that they can exhibit high communications and/or computa-
tional complexity [?]. This means that, depending on the way
in which the auction is resolved, a very large number of either
messages or computations are required to achieve an optimal
result. Hence, many of our engineering choices will be aimed
to reducing the communications and computational overhead
of the system. First, as detailed above, we eschew global
optimality in which a central optimizer performs the optimal
allocation in favour of a system based on local optima for each
EZ. This breaking of the entire market into a number of local
markets allows the computational problem to be massively
parallelized, and has been shown to impose a tolerable impact
on the quality of the solution [?]. Our use of service slots to



10

Fig. 4. Per-epoch application manager cost (arbitrary units)

model the way in which computational resources are offered
to applications is also useful to scalability. In addition to
discretizing the resource allocation problem, it also provides a
simplified way in which the execution zones can advertise their
available capacity and hence reduces the size of the messages
required to that effect. Another benefit of the use of service
slots is that it obviates the need for a bidding language to
describe the various different bundles available in a multi-
item auction; in our case, only the number of service slots
required is needed. Finally, we constrain each bidder from
assigning a bid value to each service slot they bid for; instead,
bidders specify a single price and the number of service slot for
which they bid at that price. This means that, when bidding for
resources, each AM only needs to send the number of service
slots bidded for and the value to be used for these bids. If the
number of bids is constrained to an 8-bit integer and the value
to bid is discretized to one of ∼ 28 levels, a single 16-bit word
is sufficient for each bid.

Another common problem with auction-based systems is
that bidders can experience unpredictable results, depending
on the number and value of bids received by the auctioneer.
To help AMs reduce their uncertainty, we provide closed-form
solutions of the expected outcomes of interest to AMs that

are easy to calculate and depend on few inputs. In particular,
AMs can evaluate their cost-benefit for each EZ only based
on knowledge of the CDF of bid values for each auctioneer,
the number of bids received by it, and the number of service
slots it has on offer. By conveniently discretizing these to ∼ 28

levels, the entire CDF can comfortably fit in a single IP packet.
In particular, assume that each EZ reports 28 bin values and
that these have been normalized so that the count per bin can
be represented again with ∼ 28 levels. Then, a full CDF can be
represented in 211 bits with no compression, which amounts to
a ∼256 byte data structure. Since each AM will receive one
such packet from each EZ, this amounts to a traffic stream
of ∼2 ×N_EZ kilobits/epoch. For a representative value of
N_EZ=1000 and and an epoch of 10 seconds, this amounts to
200 kbps.

With regards to computation, a conventional laptop dual-
core CPU running at 2.50GHz achieves a throughput of ∼1500
simulation units per second, where each unit includes both
bid planning for a single AM and Vickrey auction resolution
for a single EZ. Even if we disregard CPU time devoted to
auction resolution, this still implies a throughput of ∼1500
EZs per second using low-end hardware. Hence, a load of
N_EZ = 1000 with an epoch length of 10 seconds as suggested



11

Fig. 5. Per-epoch execution zone blocking probability

above would induce a CPU load of only ∼7% on our reference
machine. Based on these calculations, a virtual machine with 4
cores running at 2.50GHz could then act as AM for a system
with N_EZ ≈ 60,000; we posit that this makes our system
economical.

D. Discussion

The convergence approaches used (see Section III-F) were
all tested in simulation with a variety of parameters. For
reasons of space, only one of these can be presented in this
paper. The cases studied were Approach 2 with values of w
between 0.05 and 0.5 and Approach 3 with similar values
for w but with d between 0.9 and 0.99. In these cases the
final results (after all iterations) were nearly identical. Two
exceptions were noted. Using Approach 3 (where the rate of
change of bids shrank with time) the algorithm could simply
stop moving bids too soon and end on a very different result
if w shrank quickly (low values of d). This is as would be
expected since that algorithm is designed to stop all changes
in bidding as time progresses. With Approach 2 then higher
values of w (for example 0.5) give end results which oscillate
slightly more than the results shown but still giving a similar
pattern overall. Higher values of w failed to converge but this is

completely expected as that algorithm allows extremely severe
changes every iteration.

In all cases studied the transient results for the first ten
to twenty epochs differed with the parameters. The major
difference is observed in the number of sent bids. The results
in this paper are all for Approach 2 with w = 0.1, which
show an initial ”overshoot”. If Approach 1 is used instead,
this overshoot is substituted for a slow climb; this happens
because Approach 1 seeks the equilibrium position more
slowly. This is best illustrated by the results for 10 background
slots per AM, 100 slots per EZ (the second column in all
results). In these figures a transient can be seen in epochs
5–20 which is not present in slower converging methods for
reaching equilibrium. If w = 0.5 is used with Approach 2,
this overshoot is much larger. In most cases, however, the
difference between the three approaches was for the first 10
or 20 epochs only.

Our approach assumes that bidding cycles, comprised of
multiple epochs, are undertaken in the context of stable traffic
demand such that bidders remain a fixed group, and their
internal service slot valuations remain fixed. We refer to [?]
where dynamically changing traffic patterns can be considered
constant within 10 minute intervals. Our results show that



12

Fig. 6. Per-epoch average won bids for application managers of given type (thousands)

the bidding process converges at ∼ 20 epochs, which is well
within the period of traffic stability with epochs of 10s as we
have assumed in this paper.

We have made every effort to keep the number of param-
eters used in the model to a minimum in order to reduce
the parameter space. However, it remains a model with a
number of free parameters. Of these, our plots explore the
most important: the number of applications in the ecosystem
(in terms of background, price sensitive and QoS sensitive).
The number of iterations per simulation and the number of
simulation replicas are only important to ensure convergence
is reasonably likely and that the results of a run are not merely
a result of random processes; they do not provide interesting
information per-se. This is also the case for other parameters
such as µ, λ their ratio ρ; the number of EZs; and the ratio of
ζ values between different types of adaptive applications. All
of these are fixed for our simulations in the interest of space
because they did not provide additional information.

As would be expected the results showed that AMs fo-
cussing on QoS ended up paying more than those focusing
on reducing price. This difference was greater when more
AMs were competing for fewer resources. In return those
AMs prioritising QoS obtained a lower loss probability. In

extreme cases, the background AMs which did not vary their
behavior obtained extremely poor loss probabilities (nearing
100%) when there was a great deal of competition for a small
number of slots. This was because they won very few bids
(indeed in some scenarios their mean number of won bids was
far less than 1 – that is in a typical epoch they won no bids).
Only in the scenarios where there was very little competition
did the QoS and the price sensitive AMs obtain similar results
to each other. In particular when there are 10 AMs of each
type competing for 100 EZ slots then there is little overall loss
and the QoS and price sensitive AMs end up with very similar
costs and QoS.

V. RELATED WORK

Due to the useful properties that we have briefly described
elsewhere in the paper, there is a large body of work on
auction-based resource allocation. General analysis of the topic
can be found in works focusing on the game theoretic aspects
of multi agent systems, such as [?] sec. 11.2.3 and [?] sec.
9.3 to name but two examples. We now provide concrete and
representative examples of related work in the literature, and
how they relate to our current proposal.

In [?] the authors describe a double auction scenario be-
tween mobile users and cloudlets. Examples of these kind



13

rely on a trusted third party to administer the trading. Our ap-
proach is architecturally different in that a logically centralized
matchmaking entity is not involved in the resource allocation
decision; instead, the system is self-organized. There have also
been proposals for decentralized markets. An example of this
is CompuP2P [?], a system that implements an open market for
peer resources quantized into different markets. Each market
is managed by a particular peer through a dynamic hash table
(DHT), and pricing is arrived at by using Vickrey auctions
[?]. Our proposed architecture relies on direct communications
rather than on a DHT, thus simplifying the protocols and
avoiding the need for costly and time-consuming overlay
maintenance operations. Vickrey auctions have also been used
for virtual network embedding [?], where service providers
lease resources from multiple infrastructure providers for
constructing virtual topologies across autonomous systems. In
this case, infrastructure providers bid for the virtual resources
they are willing to host according to the requirements of
the service provider. A distinct difference with our work is
that bidding concerns communication resources as opposed to
compute resources, but also the fact that the physical resource
providers are the bidders rather than the auctioneers. Another
system based on Vickrey auctions is Spawn [?], which uses
an open market to solve a distributed CPU resource allocation
problem. Rather than true money, Spawn uses an abstract
form of priority, so that better funded processes can obtain
correspondingly better access to the computing infrastructure
than others. A limitation of Spawn is that it may not scale well
with spatial price dynamics; the scalability of our approach
under price variability among EZs is guaranteed by the auction
resolution process and demonstrated in simulation.

Some contributions to the literature have moved away from
simple Vickrey auctions to consider multi-item auctions. Full-
blown combinatorial auctions, in which bidders express their
preferences for product bundles, are more versatile but can
be very computationally intensive and involve large delays
[?]. Hence, multiple simplifications have been proposed. In
[?], each participant allocates its finite budget to bid on a
given resource set, and receives a proportion of each resource
commensurate with the proportion of its bid with the bids of
other participants; this same technique was later on proposed
by [?] as a replacement for the unchoking policy of BitTorrent.
Another auction-based resource management implementation
is Mirage [?], where combinatorial auctions using a centralized
virtual currency environment are used for sensor network
testbed resource allocation. Our work presents yet another
take on computationally tractable multiunit auctions which is
efficient, as evidenced by our simulation results.

A first set of server placement techniques has been devel-
oped in the context of data centers. Their key rationale is to
minimize data center energy consumption by maximizing the
utilization of the running servers through efficient placement
of the work load (in the form of virtual machines). Various
decision parameters have been studied, such as the workload
of the virtual machines or their memory consumption [?]
[?] or the type of resources requested [?]. However, these
algorithms are not directly applicable to our problem defi-
nition, as in the data center case the effect of the underlying

physical network topology is negligible: inside data centers,
dedicated high-bandwidth and low-latency links can be used.
Another contribution in this direction is [?], where the authors
propose a centralized service placement algorithm requiring
information on the entire network topology. The algorithm
maximizes the satisfied demand and minimizes the number
of placement changes. In [?] and [?], the authors propose
a decentralized variant of this algorithm that overcomes the
scalability limitations of [?] by performing a local optimization
on each server, based on state information from that servers
neighborhood. A decentralized solution was also proposed in
[?], which uses a round-based gossip protocol for exchanging
state information between servers. In an effort to combine
the optimality and scalability benefits of centralized and
distributed solutions, respectively, a hierarchical model was
investigated in [?] and [?]. However, the above approaches
do not take into account latency or any other characteristics
of the underlying physical network. A dynamic and latency-
aware service placement algorithm for assigning resources to
services is presented in [?]. The servers are connected via
a peer-to-peer overlay technology. Each server is responsible
for both taking part in the management tasks and running a
subset of the available services. A comprehensive review of
various service placement approaches can be found in [?]. In
general, resource allocation in non-auction based approaches
is predominantly driven by the objectives of the infrastruc-
ture provider, eg. balancing resource usage, reducing energy
consumption, etc. The absence of customer influence in this
process can compromise the expected service quality but also
allow providers to dictate the price of resources, which might
not be fair.

The techniques discussed above require a mapping of indi-
vidual workloads (services) to a set of servers. Within the
field of distributed systems, the replica placement problem
has also been studied extensively, i.e. where to cache or
replicate popular data objects [?]. A model taking QoS into
consideration is presented in [?]. Parameters like storage cost,
update cost and access cost of data replication are used
for the replica placement. Being NP-complete, two heuristic
algorithms are presented for the model. For tree networks, two
new policies for QoS-aware placement are presented in [?].

VI. CONCLUSIONS

Cloud applications have different requirements in terms of
cost and quality, and different applications will coexist in the
same cloud infrastructure that have different tradeoffs between
these. The mechanism presented in this article allows different
applications to implement their own tradeoffs transparently
by abstracting away the task of allocating resources between
applications with differing requirements to an auction mech-
anism. This allows the system to be responsive to the needs
of each service, without the need for specialized treatment.
In addition, because applications themselves use the prices
provided by the system as signals to drive their own cost-
quality tradeoffs, they experience better outcomes than those
that would be possible in a static system.

Many properties of the system are predictable, because they
are rooted on closed-form solutions of the Vickrey auction, a



14

well-researched mechanism. In addition, we carry out exten-
sive simulations to verify that the system as a whole (that
is, the global market in which applications bid for resources
according to their needs) is both stable and efficient. We find
that it is stable in the sense that, if the input parameters of the
system do not change, it converges to an equilibrium state. It
is efficient in the sense that resources are allocated to those
applications that need them the most, and in those EZs where
they provide the best improvement to the quality experienced
by its users.

In the process of reaching an efficient equilibrium, the
system will track any changes in its inputs, and hence, it will
adapt to the changing needs of those applications using it.
This provides self-tuning, that is, the ability of the system to
naturally configure its resources to best fit the demand profiles
imposed by heterogeneous populations of cloud users.

ACKNOWLEDGMENT

This research has received funding from the Seventh Frame-
work Programme (FP7/2007-2013) of the European Union,
through the FUSION project and the FLAMINGO Network
of Excellence (grant agreements 318205 and 318488).

Raul Landa is currently a Data Scientist in the
Network Planning and Operations group within Sky
UK Network Services. His research interests involve
the measurement-based modelling of Internet video
quality of experience, the large-scale behaviour of
content delivery networks and the strategic aspects
in peer-to-peer overlays. He received a PhD in Elec-
tronic and Electrical Engineering from University
College London, UK.

Marinos Charalambides is a senior researcher at
University College London. He holds a BEng, a
MSc and a Ph.D. from the University of Surrey, UK.
He has been working in a number of European and
UK national projects since 2005 and his research
interests include network programmability, content
distribution, and adaptive resource management. He
has been the technical program chair of several
events and serves in the committees of the main
network and service management conferences.

Richard G. Clegg is a Research Fellow at the
Department of Computing in Imperial College Lon-
don. His PhD in mathematics and statistics from the
University of York was gained in 2005. His research
interests include investigations of the dynamic be-
haviour of networks and measurement of network
traffic statistics.

David Griffin is a Principal Research Associate
at University College London. He has a PhD in
Electronic and Electrical Engineering from UCL.
His research interests are in planning, management
and dynamic control for providing QoS in multi-
service networks, p2p networking and novel routing
paradigms in the Internet.

Miguel Rio is a Reader (Associate Professor) in
Computer Networks at the Department of Electronic
and Electrical Engineering at University College
London. He has published extensively in top ranked
Conferences and journals in the areas of Network
measurement, congestion control, new network ar-
chitectures and, more recently, in the interaction
between cloud and network services. He holds a
PhD from the University of Kent at Canterbury and
MSc and MEng from the Department of Informatics,
University of Minho, Portugal.


