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SUMMARY

We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg.,
190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differen-
tial equation. In that approach, block systems arise because of the coupling of the spatial systems through
inner products of the temporal basis functions. If the spatial finite element space is of dimension D and
polynomials of degree r are used in time, the block system has dimension .r C 1/D and is usually regarded
as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonaliz-
able over C for r 6 100, and this means that the time-coupled computations within a time step can actually
be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this
DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with
and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given
to demonstrate the favourable effect on error and computational work of the moderately high-order (up to
degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method
to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors.
International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
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1. INTRODUCTION AND MOTIVATION

In 2001, Werder, Gerdes, Schötzau and Schwab, [1], formulated a space-time FEM for the heat
equation that employed a discontinuous Galerkin (DG) method in time. This was not the first such
formulation (see e.g. [2]), but one particularly interesting feature of their work demonstrates that
the temporal system can be diagonalised, thus making reasonably high-order finite element time
discretizations feasible. Also, there are recent results [3, 4] (see also the much earlier [5]) showing
that high-order spatial discretizations for wave equations are highly desirable in terms of the con-
trol of dispersion errors, and it is against this background that we aim here to extend the work of
Werder et al. to facilitate high-order space-time discretizations for second-order hyperbolic wave
equations. Our goal is to present a framework for useful and practical high-order space-time FEMs
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for a collection of common and important linear wave equation problems. We remark also that while
high-order time stepping has been around for some time, by using Runge–Kutta methods for exam-
ple, the approach in the succeeding text allows for the entire space-time discretization to be placed
in a variational setting. This allows the arsenal of very powerful functional analytic tools relating to
stability and error estimation to be deployed for the numerical simulation of wave propagation.

We deal firstly with an abstract formulation of the wave equation in Section 2 and describe the
time discretization and its diagonalisation. We then apply this abstract framework to the specific
examples of the acoustic wave equation and the equations of elastodynamics and viscodynamics
in Section 3. The wave equation is dealt with rather swiftly in Subsection 3.1, and we move on
to linear elasticity and Maxwell–Zener (hereditary) viscoelasticity in Subsection 3.2 and, finally,
the decoupling procedure in the presence of both long-memory and short-memory viscoelasticity is
described in Subsection 3.3.

A collection of numerical results is given and discussed in Section 4, where we aim to demonstrate
the convergence rates that are achieved in the natural norms associated with the wave equation. Our
presentation is entirely practical in that we do not aim to establish theorems on error bounds but
rather to demonstrate the practicality of high-order finite element time stepping. Our motivation for
adopting this methodology is to simulate waves in biotissue with a specific application related to
the diagnosis of coronary artery disease. This application and the challenges it presents are outlined
in Section 5. Section 6 then concludes with some observations. We would like to point out that this
is a shorter version of the long report in [6]. That report contains a much more extensive set of
numerical tests.

The approach to discretization taken in the succeeding text utilises a normalized Legendre basis
to effect the DGFEM in time discretization while in space we report here on the standard continuous
Galerkin (CG) spatial discretization. The longer report, [6], contains results also for the case where
the continuous spectral element method (SEM) using Gauss–Lobatto integration and nodes is used
for space discretization.

Irrespective of the use or not of the spectral FEM, we shall see in the succeeding text (in (8) and
(9)) that the decoupling procedure produces a set of boundary value problems that need to be solved
for each time interval. Any suitable method could be employed here, such as the standard Galerkin
procedure, a ‘blended procedure’ as in [7], or indeed any of the many other tools that have been
developed to ‘solve’ elliptic problems (such as, if applicable, exact solutions and asymptotics).

To provide some more context for what follows, we recall that the idea of using Galerkin finite
elements in space dates back to [8] and [9] and, of course, is now a method of choice in the vast
majority of cases involving elliptic operators. However, although given much less exposure, the
idea of using Galerkin discretizations in time is also not new (e.g. [10–12]) but it seems clear that
these methods never really caught the imagination of users and producers of codes until much more
recently. In fact, arguably, it was the work of Eriksson and Johnson, see [13], on adaptive space-
time formulations for parabolic problems that seemed to have revived interest in these methods. The
formulations in [14–18] are closely related but here we stay much closer to the crisper formulation
given by Johnson in [19]. We consider only DGFEM in time in this effort specifically because we are
building on the work in [1], although we note that there also exist CG methods for time discretization
(e.g. [20, 21] and [22]). These are important in their own right, due mainly to their stability and
energy conservation properties, and our early results for the heat equation in [23] suggest that a
‘CGFEM-in-time’ could be developed for the wave equation. We leave this for another time.

We close this introduction by recalling one very basic reason why high-order schemes are useful.
Suppose we compute up to time T using N1 � 1 time steps. If piecewise, polynomial degree r1
is used for the approximation, then on each step we can expect the error to be of the order N�d11

where d1 D r1 C 1. We will see in the succeeding text that d1 matrix solves are required on
each time interval, and so if we (simplistically) assume that the solver time is constant in the time
discretization parameters, the amount of computational work, as measured by the total number of
solves, is N1d1. Now consider another set up with N2 > N1 and with polynomials of degree r2.
Setting d2 D r2C1 and asking that the errors be ‘the same’ we have N d1

1 D N
d2
2 so that N2 D N

�
1

for � D d1=d2 D .lnN2/=.lnN1/. Because N2 > N1 � 1, we must have that � > 1 which,
of course, means that fewer time steps are required for higher degree polynomials. The ratio of
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SPACE-TIME FEM WITH TEMPORAL DECOUPLING 133

computational work needed is thenN1d1=N2d2 D �N
1��
1 � 1 asN1 and/or � become large and so

we conclude that, with sufficient solution regularity, higher-order schemes are capable of providing
higher-fidelity solutions than lower-order schemes for the same amount of computational work. We
attempt to illustrate this later for the 2D examples in Section 5.

2. AN ABSTRACT FRAMEWORK FOR DECOUPLED DISCONTINUOUS GALERKIN FEM
IN TIME

Our notation is standard and, apart from the preliminaries that follow, is introduced where necessary.
Let the spatial domain of interest,�, be a time-independent open-bounded polytope in Rd for d = 1,
2 or 3. We assume that the boundary, @�, is partitioned into ¹�D; �N º (also time independent) and
assume that Dirichlet boundary values are given on the closed set �D with Neumann boundary
values specified on the open (and possibly empty) set �N . As usual, we will insist that �D\�N D ¿
and �D [�N D @�. We note that, in general, there exist problems for which �D may have surface
measure zero, but here we insist that meas@�.�D/ > 0. Also, the unit outward normal vector to
�N will be written as On. To deal with the time dependence, we set I WD .0; T � and will usually use
overdots to denote partial time differentiation.

Before getting to the specific formulations of the later sections, we firstly introduce an abstract
formulation along with a semidiscrete time discretization using the DGFEM. To this end, we let
V ,! H ,! V 0 be a Gelfand triple of reflexive Hilbert spaces (dense and continuous embedding,
see, e.g. Wloka [24]) and denote the inner product and norm on H by .�; �/WH � H ! R and
k � k D .�; �/1=2. We deal in this section with the standard abstract form of second-order wave
equation problems in order to fix ideas and notation. Later, in Section 3, we recall some concrete
applications and also some damping terms. These are important for the soft-tissue applications that
we have in mind (see later in Section 5). Our goal here is to formulate a high-order finite element
time discretization that is rendered practical by decoupling. However, we point out once again that
such a scheme will only result in higher-solution quality if there is sufficient solution regularity.

Let aWV �V ! R be a symmetric and V -coercive bilinear form and assume that, for almost every
t 2 I , we are given data L.t/W I ! V 0. Introducing w WD Pu and suppressing spatial dependence for
clarity, we consider the abstract problem of finding a smooth map uW I ! V such that,

h% Pw.t/; vi C a.u.t/; v/ D hL.t/; vi 8v 2 V; (1)

u.0/ D Mu and Pu.0/ D Mw; (2)

where h�; �iWV 0�V ! R denotes the duality pairing arising from the continuous extension of .�; �/H
to V 0 � V and Mu; Mw are initial data. For convenience and the avoidance of unimportant constants,
we henceforth consider the space V as equipped with the scalar product a.�; �/ and the induced
norm k � kV D a.�; �/1=2. In this, % is a known positive constant that in solid dynamics repre-
sents the material’s mass density. Also, and as is usual for time-dependent problems, for a Banach
space .B; k � kB/, we define the Lp.0; t IB/ norms by kvkLp.0;t IB/ WD k kv.�/kB kLp.0;t/. The
DG-in-time formulation that follows is identical to that given by Johnson in [19]. To give a little
background, we recall that in [19] the time dependence of the unknown displacement and velocity is
approximated by piecewise linear functions that are allowed to be discontinuous at the time nodes.
Because each function has a first-time derivative taken, we then expect to see ‘delta functions’ at
these nodes that, when integrated (as in a Galerkin formulation), produce jumps in function val-
ues. That is the reason for the jump notation that is defined and used in the succeeding text. A full
and rigorous derivation of the weak formulation that follows is beyond our scope here but can be
accomplished by appealing to the definition of a weak derivative or to the Theory of Distributions
(e.g. [25]).

Discretizing the time interval so that 0 D t0 < t1 < � � � < tN D T , defining the time step
kn WD tn � tn�1 and setting In WD .tn�1; tn/ we define, as usual, the jump notation,

�w�n WD wCn � w�n where w˙n WD lim
s#0

w.tn ˙ s/:
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The semidiscrete DGFEM approximation of (1) is then: for each n D 1; 2; : : : ; N in turn, find
.U;W /jIn 2 Pr.InIV / � Pr.InIV / such thatZ

In

�
% PW .t/; #.t/

�
C a.U.t/; #.t// dt C

�
%�W �n�1; #Cn�1�C a ��U �n�1; �Cn�1�

C

Z
In

a
�
PU.t/; �.t/

�
� a.W.t/; �.t// dt D

Z
In

hL.t/; #.t/i dt

8# 2 Pr.InIV / and 8� 2 Pr.InIV /; (3)

with the understanding that U�0 WD Mu and W �0 WD Mw. Here, for each n, we use Pr.InIX/ to denote
the space of polynomials of degree r on the time interval In with coefficients in the target space
X . The target space is omitted when X D R, and we note that r could be n-dependent. Choosing
# D W and � D U gives,���%1=2W �n ��2C�� %1=2W Cn�1

���2 � 2 �%W �n�1; W Cn�1�C kU�n k2V C ��UCn�1��2V � 2a �U�n�1; UCn�1�

D

Z
In

d

dt

����%1=2W.t/���2 C kU.t/k2V
�
dt C 2

�
%�W �n�1; W Cn�1�C 2a ��U �n�1; UCn�1�

D 2

Z
In

�
% PW .t/;W.t/

�
C a

�
PU.t/; U.t/

�
dt C 2

�
%�W �n�1; W Cn�1�C 2a ��U �n�1; UCn�1�

D 2

Z
In

hL.t/;W.t/i dt;

and because ���%1=2W �n
���2 C ���%1=2W Cn�1

���2 � 2 �%W �n�1; W Cn�1�

D
���%1=2W �n

���2 � ���%1=2W �n�1
���2 C ����%1=2W �

n�1

���2 ;
we arrive at���%1=2W �n

���2 � ���%1=2W �n�1
���2 C ����%1=2W �

n�1

���2

C kU�n k
2
V � kU

�
n�1k

2
V C k�U �n�1k2V D 2

Z
In

hL.t/;W.t/i dt:

Taking L D 0 and summing over n D 1; � � � ; N then gives the basic stability estimate,

���%1=2W �N
���2 C ��U�N ��2V C

NX
iD1

�����%1=2W �
n�1

���2 C k�U �n�1k2V
�
D
���%1=2 Mw���2 C k Muk2V ;

and reminds us that this scheme is dissipative. This, of course, is a general statement and holds for
all polynomial degrees. It is also useful at this stage to recall Claes Johnson’s result in [19] which
focussed on Galerkin schemes by using discontinuous piecewise linears in time and continuous
piecewise linears in space for the standard problem Ru�r2u D f subject to homogeneous Dirichlet
boundary data. Although the presentation of the a priori error bound, there is rather terse it seems
from the comments in the succeeding text and in the introduction that we can expect the following,

kw.tN / �W
�
N k C ku.tN / � U

�
N kV 6 C

�
hk�1=2 C k3

�
; (4)

ku.tN / � U
�
N k 6 C

�
h2k�1=2 C k3

�
; (5)

so long as the space-mesh is kept constant in time and where h is the spatial mesh size and k the
constant time step. We will give some demonstrations of the numerically observed convergence
rates later, for linear as well as higher-degree approximations, but note that we do not know of any
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generalization of these error bounds to higher-degree polynomials (although we might expect this
to be straightforward).

We now move on to the specifics of the implementation. Let ¹�i W i D 0; 1; � � � ; rº be a basis for
Pr.In/ and introduce the ansatz forms of the approximations to u and w on In as,

U.t/jIn D

rX
jD0

�j .t/Uj and W.t/jIn D

rX
jD0

�j .t/Wj

where ¹U0; U1; : : :º; ¹W0; W1; : : :º � V . Replacing each of #.t/ and �.t/ with �i .t/# for �i 2
Pr.In/ and # 2 V in (3), we obtain firstly,

rX
jD0

Z
In

P�j .t/�i .t/.%Wj ; #/C �j .t/�i .t/a.Uj ; #/ dt

C

rX
jD0

�Cj;n�1�
C
i;n�1.%Wj ; #/ D

Z
In

�i .t/hL.t/; #i dt C �
C
i;n�1

�
%W �n�1; #

�

and secondly,
rX
jD0

Z
In

P�j .t/�i .t/a.Uj ; #/ � �j .t/�i .t/a.Wj ; #/ dt

C

rX
jD0

�Cj;n�1�
C
i;n�1a.Uj ; #/ D �

C
i;n�1a.U

�
n�1; #/

where each holds for all # 2 V and for each i 2 ¹0; 1; : : : ; rº. Define matrices via,

Aij WD
Z
In

P�j .t/�i .t/ dt C �
C
j;n�1�

C
i;n�1 and Mij WD

Z
In

�j .t/�i .t/ dt;

where i indexes the rows, and then by choosing our basis functions as the image under the linear
map from Œ�1; 1� to In of the normalized Legendre polynomials, we conclude easily that 2M D knI.
It seems useful at this point to recall the remark in [1] that these matrices are hierarchical, and
also that they can be precomputed just once on a reference length and then reused for subsequent
computations.

However, the main point and motivation for us here is that Werder et al. in [1] report that A is
diagonalizable over C for all polynomial degrees of practical interest. This in particular means that
the computational linear algebra associated with these objects is relatively cheap, and it also allows
us to write D D Q�1AQ D p�1 � � ��rC1y where p� � �y indicates a diagonal matrix of pairwise
complex conjugate eigenvalues and where Q has complex entries.

So, proceeding step by step and using the abbreviation †j to mean the summation
Pr
jD0, our

system is

†j

�
Aij .%Wj ; #/C ıij

kn

2
a.Uj ; #/

�
D Fi .#/; (6)

†j

�
Aija.Uj ; #/ � ıij

kn

2
a.Wj ; #/

�
D Gi .#/; (7)

where

Fi .#/ WD
Z
In

�i .t/hL.t/; #i dt C �
C
i;n�1

�
%W �n�1; #

�
and Gi .#/ WD �

C
i;n�1a

�
U�n�1; #

�

are known from data and the previous time step. Defining ¹Yqº and ¹Zqº as the unique solutions of
Wj D †qQjqYq and of Uj D †qQjqZq we have,

†j†q

�
AijQjq.%Yq; #/C ıij

kn

2
Qjqa.Zq; #/

�
D Fi .#/;

†j†q

�
AijQjqa.Zq; #/ � ıij

kn

2
Qjqa.Yq; #/

�
D Gi .#/;
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and taking linear combinations using the rows of R WD Q�1 then yields,

†i†j†q

�
RpiAijQjq.%Yq; #/C

kn

2
RpiıijQjqa.Zq; #/

�
D †iRpiFi .#/;

†i†j†q

�
RpiAijQjqa.Zq; #/ �

kn

2
RpiıijQjqa.Yq; #/

�
D †iRpiGi .#/:

Noting that †i†jRpiAijQjq D ıpq�p and †i†jRpiıijQjq D ıpq , setting Fi .#/ WD
†pRipFp.#/ and Gi .#/ WD †pRipGp.#/, we now arrive at the decoupled form

2�i .%Yi ; #/C kna.Zi ; #/ D 2Fi .#/;

2�ia.Zi ; #/ � kna.Yi ; #/ D 2Gi .#/:

Therefore, defining ˇi WD †pRip�
C
p;n�1,

4�2i .%Yi ; #/C k
2
na.Yi ; #/ D 4�iFi .#/ � 2knGi .#/; (8)

a.2�iZi � knYi � 2ˇiU
�
n�1; #/ D 0; (9)

because 2Gi .#/ D 2ˇia
�
U�n�1; #

�
.

The algorithm is now clear. At each time step, we solve r C 1 boundary value problems for the
complex unknowns ¹YiºriD0 and then update with Zi D .2�i /

�1.knYi C 2ˇiU
�
n�1/. We recall that

for the SEM, the mass matrices arising from the spatial discretization of these systems are diagonal,
and note also that because �2i is complex we will either need to introduce complex arithmetic in the
solver or treat the complex system as a two-by-two-block real system.

Remark 2.1 (non-zero Dirichlet data)
Although not included in the formulation in the previous text, some of the examples in the suc-
ceeding text use non-zero Dirichlet boundary data. These data are imposed by time-projection on
to the temporal basis at each desired x 2 �D to determine pointwise boundary values for each
of the decoupled systems. Specifically, suppose that we want to set the known Dirichlet value
wD.t/ � PuD.t/ during the time interval In. We assume the ansatz wD.t/ D

Pr
jD0 �j .t/w

D
j (with

the superscript D denoting ‘Dirichlet’) and then determine the wDj by the projection:Z
In

wD.t/�i .t/ dt D

rX
jD0

wDj

Z
In

�j .t/�i .t/ dt D
kn

2
wDj :

We then do the same for the UDj values at the boundary and we modify (6) to become,

†j

�
Aij

�
%W I

j ; #
�
C ıij

kn

2
a
�
U Ij ; #

��
D Fi .#/ �†j

�
Aij

�
%W D

j ; #
�
C ıij

kn

2
a
�
UDj ; #

��
;

(10)
where W �n�1 D

�
W �n�1

�I
C
�
W �n�1

�D
is now used in the definition of Fi , and the superscript I

denotes ‘interior’. The W D
j and UDj on the right are then spatially interpolated along the boundary

by augmenting the spatial basis to incorporate the Dirichlet boundary nodes (with zero values in
the interior), and then ‘mass’ and ‘stiffness’ (rectangular) matrix-vector contributions to the load
are formed from these new inner products on the right hand side of (10). Because we derive the
boundary values for w from Pu, they cancel each other out in (7) and so no change is needed there.
The remainder of the implementation is as described earlier but with the ‘interior’ functions being
the unknowns.

Remark 2.2
We could also define the semidiscrete DGFEM approximation of (1) as: for each n D 1; 2; : : : ; N
in turn, find .U;W /jIn 2 Pr.InIV / � Pr.InIV / such thatZ

In

�
% PW .t/; #.t/

�
C a.U.t/; #.t// dt C

�
%�W �n�1; #Cn�1�C �%�U �n�1; �Cn�1�

C

Z
In

.% PU .t/; �.t// � .%W.t/; �.t// dt D

Z
In

hL.t/; #.t/i dt (11)

8# 2 Pr.InIV /; Pr.InIH/:
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The advantage of this is that we could deal with pure Neumann problems wherein a.�; �/ may no
longer be coercive. Numerical tests show that this scheme works well, but we are not able to prove
any stability estimates for it. For that reason, we do not consider it further here, but note that the
time decoupling method described in the previous text could be applied to this formulation also.

3. SPECIFIC APPLICATIONS

In this section, we apply the foregoing to the specific examples of the wave equation and
elastodynamics. We also enhance the formulation to take viscoelastic damping effects into account.

3.1. The acoustic wave equation

In this subsection, we consider the specific example problem where we seek u such that,

Pw � c2r2u D ± ;

w D Pu; u.0/ D Mu; w.0/ D Mw;

u D 0 on�D � I and c2ru � On D g on�N � I:

Defining a.w; v/ WD
�
c2rw;rv

�
, where . � ; � / is the L2.�/ inner product, and setting V WD ¹v 2

H 1.�/W vj�D D 0º the weak form of the problem is: find uW I ! V such that,

. Pw; �/C a.u; �/C a. Pu � w; / D hL.t/; �i 8�;  2 V

where hL.t/; �i WD .± ; �/C .g; �/�N . Notice that we overload . � ; � / in a completely standard way
where no notational distinction is made when the arguments are scalar-valued or vector-valued.

The semidiscrete finite element formulation in (3) applies without change and so on the n-th time
step, of width kn D tn � tn�1 say, and for i D 0; : : : ; r , we have to solve the boundary value
problems given by:

.Yi ; #/C 	ia.Yi ; #/ D `i .#/ 8# 2 V;

where 	i WD 1
4
.kn=�i /

2, and perform the update Zi D .2�i /
�1
�
knYi C 2ˇiU

�
n�1

�
. Once car-

ried out, we obtain Wi D †jQijYj and Ui D †jQijZj . In these `i .#/ WD .4�iFi .#/ �
2knGi .#//=4�

2
i , Fi .#/ D †jQ�1ij Fj .#/ and Gi .#/ D †jQ�1ij Gj .#/ where

Fi .#/ D
Z
In

�i .t/hL.t/; #i dt C �
C
i;n�1

�
%W �n�1; #

�
and Gi .#/ D �

C
i;n�1a

�
U�n�1; #

�
:

The spatial discretization has already been described in general terms earlier in Section 1, and so all
that remains is to demonstrate the behaviour of the scheme. This is carried out later in Subsection
4.1 for both 1D and 2D test problems. In those experiments, we will have either c2 D E0=% or
c2 D G=% where E0 and G represent stiffness moduli and % a mass density (Section 5).

3.2. Linear elastodynamics and viscodynamics

In this section, we suppose that � represents the interior of a linear viscoelastic compressible body.
This body is acted upon by a system of body forces ± WD .±i .x; t //

d
iD1 for x WD .xi /

d
iD1 2 � and

t 2 I and on the open (and possibly empty) set �N there is prescribed a system of surface tractions
g WD .gi .x; t //

d
iD1 for x 2 �N and t 2 I .

The displacement from equilibrium resulting from the action of the applied forces ± and g is
denoted by u D .ui /

d
iD1W� � I ! Rd and, in this linear theory, the deformation is described by

the strain tensor " WD ."ij /di;jD1 given by,

"ij .u/ WD
1

2

�
@ui

@xj
C
@uj

@xi

�
: (12)
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We assume also that t D 0 is a reference time such that u D 0 for all t < 0.
Newton’s second law of motion with boundary conditions gives for each i 2 ¹1; : : : ; dº that,

% Pwi � 
ij;j D ±i in� � I; (13)

w D Pu; u.0/ D Mu; w.0/ D Mw

u D 0 on�D � I and 
ij Onj D gi on�N � I

with summation implied and where � WD .
ij /di;jD1 is the symmetric stress tensor.
We close this problem by recalling the standard literature on viscoelasticity (e.g. [26, 27]) and

introducing the following linear hereditary viscoelastic constitutive relationship between stress
and strain,


ij .uI t / D Cijkl"kl. Pu.t//CDijkl.0/"kl .u.t// �

Z t

0

@Dijkl.t � s/

@s
"kl .u.s// ds (14)

where, as usual, we omit the x dependence and, as in the previous text, sum over repeated indices. In
this,C andD.t/ are fourth-order tensors withC related to the Kelvin–Voigt model of viscoelasticity
andD.t/ stemming from the Zener and Maxwell models.

The Hooke’s law tensor D.t/ WD
�
Dijkl.t/

�d
i;j;k;lD1

is a fourth-order stress relaxation tensor
satisfying the following symmetries:

Dijkl.t/ D Dj ikl.t/ D Dijlk.t/ but, in general, Dijkl.t/ ¤ Dklij .t/: (15)

However, we do haveDijkl.t/ D Dklij .t/ for t D 0 and t D1 in general, and for all t for isotropic
materials (see, e.g. [28, equations (1.10), (2.62)]), and the components of D can be assumed to
be (a.e. in �) of class W 1

1 in t although we will not need this level of generality. In addition,
because D.0/ measures instantaneous linear elastic response, we follow Hooke’s law and assume
positive-definiteness: �ij �klDijkl.0/ > 0 a.e. in� for all non-zero symmetric second-order tensors
� .

In what follows, we will assume a much simpler version of this constitutive law. Firstly, we
assume that the material is synchronous so thatD.t/ is replaced by '.t/D, whereD is now constant
in time, and ' is a stress relaxation function. Following classical theory, we assume the Prony
series form,

'.t/ D '0 C

N'X
qD1

'q exp.�t=�q/; (16)

where 'q > 0 for q 2 ¹0; 1; : : : ; N'º, �q > 0 for q 2 ¹1; : : : ; N'º, and we normalize so that
'.0/ D '0 C

P
q 'q D 1. The case, '0 D 0, corresponds to a viscoelastic fluid in the sense

described by Golden and Graham in [26], whereas '0 > 0 gives a solid. The second assumption
is that the material is homogenous and so, in particular, is isotropic. This means that D can be
described by just two independent Lamé coefficients denoted, usually, by � D �E=..1C�/.1�2�//
and 
 D 2G D E=.1C�/, where E is Young’s modulus,G is the shear modulus and � is Poisson’s
ratio. Theoretically, � 2 .�1; 1=2/ but because we are dealing only with compressible non-auxetic
materials, we have � 2 .0; 1=2/ and both � and 
 are well defined. The action of D is now given
specifically by Dijkl"kl .u/ D �r � uıij C 
"ij .u/, and the constitutive law can be written in
the form,

� .uI t / DC". Pu.t//CD

�
".u.t// �

Z t

0

's.t � s/".u.s// ds

�
;

DC". Pu.t//CD"

0
@u.t/ �

N'X
qD1

Z t

0

'q

�q
e�.t�s/=�qu.s/ ds

1
A ;

DC". Pu.t//CD"

0
@u.t/ �

N'X
qD1

u?q.t/

1
A ;
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where for q D 1; 2; : : : ; N' ,

u?q.t/ WD

Z t

0

'q

�q
e�.t�s/=�qu.s/ ds

are internal variables (see, e.g. [29–32]) and satisfy,

�q Pu
?
q C u

?
q D 'qu with u?q.0/ D 0: (17)

To give a weak formulation of this problem, we firstly define the product Hilbert spaces,
H s.�/ WD H s.�/n, for s D 0; 1; 2; : : :, with inner products given for all �, v 2 H s.�/ by
.�; v/s WD

Pd
iD1.�i ; vi /H s.�/. These spaces have the natural norms k � ks WD

p
.�; �/s and, of

course, L2.�/ � H
0.�/. We also use the (symmetric second-order) tensor-valued L2 space,

L2.�/ WD
°
� D .�ij /

d
i;jD1 W �ij D �j i 2 L2.�/ 8i; j 2 ¹1; : : : ; dº

±

and, noting the essential boundary condition, we define the test space as,

V WD
®
v 2 H 1.�/ W v D 0 on�D

¯
: (18)

After integration by parts (see e.g. [33] for details), we then arrive at the weak problem of seeking a
smooth map, uW I ! V , such that,

.% Ru.t/; v/C a.u.t/; v/C b. Pu.t/; v/ D hL.t/; vi C

N'X
qD1

a
�
u?q.t/; v

�
8v 2 V; (19)

a
�
�q Pu

?
q.t/C u

?
q.t/; v

�
D a.'qu.t/; v/ for q D 1; : : : ; N' and8v 2 V: (20)

Here, the bilinear forms a; b W H �H ! R are defined by

a.�; v/ WD

Z
�

Dijkl.0/"kl .�/"ij .v/ d� and b.�; v/ WD

Z
�

Cijkl"kl.�/"ij .v/ d�

for all �, v 2 H , and LW I ! V 0 is the time-dependent linear form defined through,

hL.t/; vi WD

Z
�

v � ±.t/ d�C

I
�N

v � g.t/ d� 8v 2 H:

This completes the statement of the basic problem. The next section discusses the extension of the
decoupling procedure to incorporate the viscoelastic terms that have just been introduced.

3.3. Decoupling in the presence of viscoelastic damping

Now that we have defined the viscoelastic models, we introduce them into the DG formulation
as given earlier by (3) and obtain the following problem. For each n D 1; 2; : : : ; N in turn, find�
U;W;U 1; U 2; : : : ; UN'

�
jIn 2 Pr.InIV / � Pr.InIV / � Pr.InIV /N' such that,

Z
In

�
% PW .t/; #.t/

�
C a.U.t/; #.t//C b

�
PU.t/; #.t/

�
dt �

N'X
qD1

Z
In

a.U q.t/; #.t// dt

C
�
%�W �n�1; #Cn�1�C a ��U �n�1; �Cn�1�C b ��U �n�1; �Cn�1� (21)

C

N'X
qD1

�Z
In

a
�
PU q.t/C ��1q U q.t/ � 'qU.t/; �

q.t/
�
dt C a

��U q�n�1; �qCn�1
��

C

Z
In

a
�
PU.t/; �.t/

�
� a.W.t/; �.t// dt D

Z
In

hL.t/; #.t/i dt
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8# 2 Pr.InIV /; 8¹�
qº
N'
qD1 � Pr.InIV / and 8� 2 Pr.InIV /: (22)

The decoupling is now a straightforward extension of the method described earlier and by similar
means, and with the same notation for the temporal basis, we obtain firstly,

rX
jD0

Z
In

�
P�j .t/�i .t/.%Wj ; #/C �j .t/�i .t/a.Uj ; #/C P�j .t/�i .t/b.Uj ; #/

�
dt

�

N'X
qD1

Z
In

�j .t/�i .t/ dt a
�
U
q
j ; #

�
C

rX
jD0

�Cj;n�1�
C
i;n�1.%Wj ; #/C

rX
jD0

�Cj;n�1�
C
i;n�1b.Uj ; #/

D

Z
In

�i .t/hL.t/; #i dt C �
C
i;n�1

�
%W �n�1; #

�
C �Ci;n�1b

�
U�n�1; #

�

secondly,

rX
jD0

Z
In

�
P�j .t/�i .t/a.Uj ; #/ � �j .t/�i .t/a.Wj ; #/

�
dt

C

rX
jD0

�Cj;n�1�
C
i;n�1a.Uj ; #/ D �

C
i;n�1a

�
U�n�1; #

�
;

and thirdly,

N'X
qD1

rX
jD0

�Z
In

�
P�j .t/�i .t/a

�
U
q
j ; �

q
�
C �j .t/�i .t/a

�
��1q U

q
j � 'qUj ; �

q
��

dt

C�Cj;n�1�
C
i;n�1a

�
U
q
j ; �

q
�
� �Ci;n�1a

�
.U q/�n�1; �

q
� �
D 0:

In our earlier notation, these are simply

†j

0
@Aij .%Wj ; #/CMija.Uj ; #/C Aij b.Uj ; #/ �

N'X
qD1

Mija
�
U
q
j ; #

�1A D Fi .#/;

†j
�
Aija.Uj ; #/ �Mija.Wj ; #/

�
D Gi .#/;

†j

�
Aija

�
U
q
j ; �

q
�
C ��1q Mija

�
U
q
j ; �

q
�
� 'qMija.Uj ; �

q/
�
D Gqi .#/ for each q;

and with easily derivable right hand side functionals F, G, G1; : : : ;GN' . The decoupling is now
carried out exactly as before.

4. NUMERICAL EXPERIMENTS

In this section, we give a selection of results from some computational experiments. Our main goal
is to illustrate the estimated convergence rates, for the standard norms, which are achieved by this
scheme. The examples have been chosen in order to try and cover all of the main possibilities. For
example, we can have mixed or Dirichlet boundary data along with, in each case, various combi-
nations of elastic and viscoelastic effects. In Subsection 4.1, we focus on the scalar-wave equation
as described earlier in Subsection 3.1. Then in Subsection 4.2, we give some similar results the vis-
coelasticity problem with the scheme described earlier in Subsection 3.3. As for practical matters,
we remark firstly that the enforcement of initial data was, in all cases, carried out by interpolation
rather than projection and, secondly, that all integrals were computed by using Gauss–Legendre
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rules of high-enough order to render the contribution of the ‘variational crime’ negligible as com-
pared with the errors that we are interested in. To detail this recall that the Gauss–Legendre n point
rule is exact for polynomial integrands of degree 2n � 1, and we ask that this quadrature rule be
exact for three orders higher than the maximum degree that occurs. This means that for an approx-
imation based on polynomials of degree r , we require 2n � 1 D 2r C 3 and so n D r C 2. This is
the order of rule used (in space and time — whenever necessary) in our 2D results.

As alluded to in the introduction, we have also computed results for spatial discretization using the
SEM where Gauss–Lobatto rules are used to build the system matrices with nodes placed at (the ten-
sor product of) those same Gauss–Lobatto nodes. The Galerkin method for which results are given
in the succeeding text used the same node locations. This was purely for ease of implementation
where the same code could perform both the Galerkin and the spectral computation.

4.1. The acoustic wave equation

We consider several examples, focussing first on a one-space dimensional problem in order to best
reveal the (computed) temporal convergence rates. Specifically, for examples 1, 2, 3 and 4 that
now follow, we consider a problem that involves different combinations of the Kelvin–Voigt and
Maxwell–Zener damping. The problem, with x-dependence suppressed, is

% Ru.t/ �E0uxx.t/ �E1 Puxx.t/ D ±.t/ �E0

Z t

0

's.t � s/uxx.s/ ds in� � I; (23)

where � D .0; 1/ with T D � and all data chosen so that u D x.x � 1/ cos.t/ is the exact
solution. Homogeneous Dirichlet boundary data are imposed at each end of �, and we use both
the Galerkin and spectral spatial discretization. In these computations, we used 12 point Gauss–
Legendre integration to compute the spatial inner products ‘exactly’ and, for the Galerkin spatial
approximation, we used a two equal-element mesh for � and piecewise quadratics.

For the DG time discretization, we use piecewise polynomials of degree 1 through 7 and also
compute using a Crank–Nicolson (CN), or trapezoidal, discretization of (19) and (20) to give a
comparison with a standard and well-known scheme. In that, ‘CN method’, we put w D Pu and then
use central differences across a time step for the time derivatives and time nodal-averages for the
remaining terms (this is a very standard discretization, see [34] for a similar approach).

We show only a small selection of the computed results here. The full set are available in the
extended report [6].

Example 1 (time error; undamped)
In (23), we choose the density as % D 1010 kg=m3, the stiffness modulus asE0 D 58 kPa, damping
modulus as E1 D 0Pa � s and '.t/ D 0. To save space, the results are not shown because they are
very similar to those in Example 4 in the succeeding text.

Example 2 (time error; Kelvin–Voigt)
This is exactly as mentioned previously for Example 1 but with E1 D 30 kPa � s. The results for the
computed energy error bound given by (4) are shown in Figure 1 for the Galerkin error. The SEM
gave a similar picture.

Example 3 (time error; Kelvin–Voigt and Maxwell–Zener)
Similar to Example 2 but with '.t/ D

�
1C e�t=0:05

�
=2. The results are not shown because they

are very similar to those in Example 2 in the previous text.

Example 4 (time error; Maxwell–Zener)
Again, similar to Example 2 but with E1 D 0, and '.t/ D

�
1C e�t=0:05

�
=2. The results for the

computed energy error bound given by (4) are shown in Figure 2 for the Galerkin error. The SEM
gave a similar picture.

Figures 1 and 2 show the variation of energy error with a succession of doublings of time
steps (N D 2; 4; 8; : : :) and also the variation of energy error with a measure of the amount of
computational work (see in the succeeding text). In the convergence plots, we see two ‘fanned
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Figure 1. Results for the Example 2 version of (23) showing (left) the energy error, (4), and (right) the
corresponding work-error dependence for the Galerkin method.

Figure 2. Results for the Example 4 version of (23) showing (left) the energy error, (4), and (right) the
corresponding work-error dependence for the Galerkin method.

triangles’. These indicate the slopes that correspond to energy error bounds of size O.kp/ for
p 2 ¹2; 3; 4; 5; 6º, for the fan on the right and p 2 ¹7; 8; 9º, for the fan on the left.

For the work-error plots, we define work as the product of the number of time steps with the
number of matrix solves required per time step. For the decoupled DG approximation using poly-
nomials of degree r , this latter quantity is of course r C 1. For comparison purposes, we also show
the performance of the CN method, recalling that it requires only one real-arithmetic solve per time
step. Assuming that real-arithmetic multiplications are four times faster than complex, that real-
arithmetic additions are twice as fast as complex and that banded-matrix (of dimension, D, say)
inversion is of quadratic complexity with an equal mix of products and sums, we can estimate the
operation count of a real inversion as .D=2/2C .D=4/2 D 5D2=16 and that of a complex inversion
as 2D2. The complex inversion is therefore around 32=5 D 6:4 times more expensive. In produc-
ing the work-error data for the figures, we took one complex inversion as the basic work unit (per
time step) and applied the scaling of 5=32 to the CN figures to make the comparison fairer. Actual
raw wall-clock timings from the Example 1 run produced a real scalings of around 1=6 to 1=6:5,
so our approach appears to be well-founded. Of course, for larger and more realistic problems, an
iterative solver will almost certainly be required and the work comparison becomes a much more
delicate issue.

The results for the 1D problems in Examples 1, 2, 3 and 4 show the behaviour of ‘time error’ in
the computed solution for four cases covering elasticity and mixtures of viscoelastic formulations.
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Because Examples 1 and 4 were similar, and Examples 2 and 3 were also similar, we can infer
that the presence of Maxwell–Zener viscoelasticity does not alter the convergence properties of the
scheme away from that displayed by the standard wave equation. The addition of a Kelvin–Voigt
term, however, does seem to negatively affect the convergence behaviour but without a complete a
priori error analysis to hand it is not clear why or how.

In particular, for Examples 1 and 4, from Figure 2, we can infer CN convergence with energy
error like k2, DG(1) like k3, DG(2) like k5 and DG(3) like k7. It seems safe to conjecture a DG(r)
energy error of order O.k2rC1/.

On the other hand, for Examples 2 and 3, from Figure 1, we can infer that the CN scheme con-
verges with energy error like k2 and the linear DG scheme with energy error like k3. These are as
expected. However, the quadratic and cubic DG schemes seem to converge like k4:5 and k6, whereas
the quartic and quintic seem both to be between k7 and k8. The sextic and septic schemes appear
to converge with at least k9. The reason for these unexpected behaviours is not clear although we
suspect that the precision of the computations is inadequate for these high-order approximations. It
does, however, seem safe to conclude that convergence is not so rapid when a Kelvin–Voigt term
is present.

The accompanying work-error plots seek to illustrate the efficiency associated with higher-order
methods. However, they need to be interpreted with care because it would be unlikely to have only
‘time error’ in a problem of real interest. They are included merely to remind us that the extra
linear algebra workload must be borne in mind when decoupling in time. These results were for the
Galerkin-in-space method. The results for the SEM were similar in both cases.

We turn now to problems in two space dimensions and an illustration of space-time error
behaviour. The physical data are based on the ‘real life’ problem that we discuss later in Section 5,
and the spatial domain is a scaled-up version of the one that we later describe.

For this 2D calculation, we chose the domain � D ¹0:005 < x < 0:15 and 0 < y < 0:3º with
T D 2 and the problem % Ru � Gr2u D ± with % D 1010 kg=m3 and G D 58 kPa. We took N
uniform time steps and, to demonstrate the computed space-time convergence rate, we meshed the
domain with an N by N grid. These numerical results use DG-in-time with piecewise polynomials
in space and time of degree up to 7, with the same degree being used in both space and time except
when indicated. The CN computations are based on piecewise linears for the spatial approximations,
with quadratics being used in the bottom row of the figures—as explained more fully in the first
example. Our motivation for mixing these degrees was to check whether there was any numerical
evidence of a different convergence rate ‘in space’ than ‘in time’. The bottom rows show that in fact
there is — we can expect at least one degree higher in time for the L2.�/ error in both u and ru.
In the convergence graphs that follow, the triangle fans indicate convergence rates from zero to nine
in half-steps.

Example 5 (space-time error for the wave equation, Dirichlet BC’s)
Here, Dirichlet boundary data are assumed on the whole of @� and, ± , the boundary and the initial
data are chosen so that the exact solution is u D cos.2�t/ sin.40�x/ cos.30�y/. The results are
plotted on the left of the top row in Figures 3, 4 and 5 for the Galerkin-in-space scheme for errors in
u.T /, ru.T / and w.T /, with the estimated convergence rates tabulated on the right. (Notice that a
zero value of L2 error for w is reported for the CN scheme when N D 2 — this is no more than a
numerical anomaly resulting from exact boundary data and a very coarse mesh.) These are based on
the computed errors for N (first column) and for 2N (the results for N D 4 use those for N D 2,
the row for which is not shown). The middle row of the figure shows the result of computing with
one degree higher polynomials in time than in space, whereas the bottom row shows the result of
using one degree higher in space than in time. The CN results are of course unaffected in the middle
row. Analogous results for the spectral element scheme in the case where equal degrees are used
have also been obtained and are contained in [6].

Example 6 (space-time error for the wave equation, Mixed BC’s)
This example is set-up exactly as for Example 5, except that homogeneous (because at x D 0:15,
we have sin.40�x/ D 0) Dirichlet boundary data are imposed on the right-hand edge of the domain,
with Neumann data everywhere else on @�. The results are plotted on the left of the top row in

Copyright © 2014 The Authors. International Journal for Numerical
Methods in Engineering published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2014; 98:131–156
DOI: 10.1002/nme



144 H. T. BANKS ET AL.

Figure 3. Plots of the L2.�/ error in u.T / against N (equal in space and time) for the wave equation
problem in Example 5 (Galerkin-in-space).

Figures 6, 7 and 8 for the Galerkin-in-space scheme for errors in u.T /, ru.T / and w.T /, with
the estimated convergence rates tabulated on the right. These are based on the computed errors for
N (first column) and for 2N (the results for N D 4 use those for N D 2, the row for which is
not shown). The middle row of the figure shows the result of computing with one degree higher
polynomials in time than in space, whereas the bottom row shows the result of using one degree
higher in space than in time. The CN results are of course unaffected in the middle row. Again,
analogous results for the spectral element scheme are contained in [6].

With Examples 5 and 6 for the scalar wave equation, we can now discuss space-time convergence.
Firstly, for Example 5, we infer from Figure 3 that ku.tN / � U�N kL2.�/ D O

�
hdC1 C kdC2

�
for

the Galerkin-in-space scheme, with the last term being suggested by the bottom table in the figure.
In a similar way, Figure 4 suggests that

��ru.tN / � rU�N��L2.�/ D O
�
hd C kdC1

�
, although the

last term is not so clearly apparent in this case. The results for w D Pu are not so useful. The curves
in Figure 5 quite clearly show rapid convergence as the order increases but the tables do not give
useful figures. The convergence behaviour seems too erratic to be able to draw useful conclusions.
Our longer report, [6], contains the analogous results for the SEM and here we simply remark that
the same conclusions can be drawn for that as for the Galerkin scheme.
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Figure 4. Plots of the L2.�/ error in ru.T / against N (equal in space and time) for the wave equation
problem in Example 5 (Galerkin-in-space).

Example 6 has different types of boundary data. Figures 6, 7 and 8 for the Galerkin-in-space
scheme and the results for the spectral element scheme in [6] suggest essentially the same behaviour
as for Example 5.

4.2. Elastodynamics and viscodynamics

In this subsection, we give a numerical demonstration of this scheme for the elasticity and viscoelas-
ticity problems described earlier in Subsection 3.2. Also, unless stated otherwise, the set-up for the
numerical results is exactly as for the wave equation as described in the previous section.

Example 7 (space-time error for viscodynamics, Mixed BC’s)
For this 2D calculation, we choose the same domain as previously mentioned, � D ¹0:005 <
x < 0:15 and 0 < y < 0:3º but now with T D 0:5 and the problem given by (19) and (20).
We set % D 1010 kg=m3, E D 167 kPa, Poisson’s ratio � D 0:44 and include viscoelastic
effects by choosing '0 D 0:2, '1 D 0:8 and �1 D 0:05 in (16). The load, ± , boundary and
initial data are chosen so that the exact solution is .u1; u2/T D .sin.2�x/ sin.2�y/ cos.2�t C
�=4/; cos.2�x/ sin.2�y/ sin.2�t � �=4//T and Dirichlet data were prescribed on bottom edge
of @� with tractions prescribed elsewhere. The results are given in Figures 9, 10 and 11 for the
Galerkin-in-space scheme and, as before, analogous results for the SEM are in [6]. These results are
for the case where equal polynomial degrees in space and time were used.
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Figure 5. Plots of the L2.�/ error in w.T / against N (equal in space and time) for the wave equation
problem in Example 5 (Galerkin-in-space).

We observe that Figures 9, 10 and 11 for the Galerkin-in-space scheme are compatible with the
expectations of error rates indicated by Examples 5 and 6. For that reason, we did not pursue a more
extensive numerical study of convergence in this case (again, see [6] for the SEM).

Although these rates of convergence are, broadly, in line with what we might expect, we should
sound a note of caution. A single-discretization parameter, N , has been used which means that the
mesh width and time steps are, in essence, the same. The mixing of h and k suggested by Johnson’s
results ((4) and (5)) will therefore not be clearly revealed in our study. Also, curiously, we did not
clearly observe the semi-integer rate predicted by Johnson’s bounds, although it is possible that this
is ‘hidden’ in the quite ragged results for w.

5. APPLICATION: SHEAR WAVES IN BIOTISSUE-MIMICKING GEL

In this section, we shift our focus away from exact errors and manufactured solutions to a much
more practical experimental set-up. We consider an annular cylinder of tissue mimicking agarose gel
of height 0:0514m and with inner and outer radii 0:00175m and 0:027m. Here ‘height’ indicates
that the cylinder is up-ended so that the radial plane is horizontal.

This experimental rig actually exists in our laboratories (see the right of Figure 12) and is the
first step in an ambitious project investigating the possibility of diagnosing coronary artery disease
through computational mathematics. Briefly, plaque build-up in a diseased coronary artery causes
a stenosis (see the left of Figure 12) that induces a disturbance in the downstream blood flow. It
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Figure 6. Plots of the L2.�/ error in u.T / against N (equal in space and time) for the wave equation
problem in Example 6 (Galerkin-in-space).

is hypothesized that the resulting wall shear stresses are the cause of a 500 – 1500 Hz acoustic
shear wave, or bruit, which travels through the thorax and which is audible on the chest wall. Our
project has a long term aim to couple an inverse solver algorithm with an efficient forward solver
to simulate the passage of these shear waves through viscoelastic soft tissue, produce a signal on
the chest surface and, by comparing with a ‘real signal’ from a patient, use the difference in these
signals to identify and locate the disease.

We refer to [29, 36, 37] for a much more detailed treatment of the background to both the biomed-
ical science and the proposed methodology and algorithm; to [38] and [39] for full details of the
inverse problem and to [40] for the experimental protocol and findings.

The small rig referred to in the previous text, and in Figure 12, is but the first step towards this
long-term objective and it is necessary to develop an efficient forward solver that can at least deal
with this experimental set-up. Thus, here, we work in cylindrical polar coordinates and restrict our
attention to a 2D meridian-plane cross section: we take � D ¹0:00175 < r < 0:027ºm� ¹0 < ´ <
0:0514ºm and we set T D 0:5 sec.

The bottom of the cylinder is assumed fixed in both coordinate directions (a homogeneous Dirich-
let boundary condition), whereas the outer radius and top are stress free (a homogeneous Neumann
boundary condition). The inner radius is subject to an oscillating traction g.t/ D .0; g.t//T where,

g.t/ D 500 ramp.t/ sin.2�f t/ exp
�
�100; 000.´ � Ń/2

�
(24)
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Figure 7. Plots of the L2.�/ error in ru.T / against N (equal in space and time) for the wave equation
problem in Example 6 (Galerkin-in-space).

for Ń D 0:0257 and with a frequency, f , as specified in the succeeding text. Here,

ramp.t/ D

8<
:

sin2
�
�f t

100

�
if t < 50=f I

1 otherwise,

is a ‘ramp-up’ function the role of which is to ensure that high-frequency noise associated with
sudden starts does not pollute the signal — this ramp allows for the full amplitude of the traction to
develop slowly over 50 full cycles. This is intended to mimic the experimental set-up.

The material data are taken as % D 1010 kg=m3, E0 D 167 kPa and � D 0:44 (the Voigt term
was set to zero: C D 0). High quality estimates for the viscoelastic parameters have now appeared
in [39] but, for the sake of illustration here, we simply took '0 D 0:2, '1 D 0:8 and �1 D 2
with N' D 1 in (16). The spatial discretization used in the succeeding text is a SEM on, mostly,
a 13 (radial) by 25 (axial) uniform mesh of bicubics supported on tensor products of the Gauss–
Lobatto nodes. (We also ran some problems on a 25 by 50 mesh, and will return to this point later.)
The DG time discretization used piecewise cubic polynomials (we refer to this as ‘DG(3)’ in the
succeeding text) and all except for the spectral quadratures (the mass and stiffness matrices) use
high-order (degree 12 in space and time) Gauss–Legendre rules to calculate the (space and time)
definite integrals.

The imposed traction, g, in (24) simulates the wall shear disturbance that may arise from a dis-
eased (stenosed) artery, represented by the centre line of the cylinder and, in order to illustrate the
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Figure 8. Plots of the L2.�/ error in w.T / against N (equal in space and time) for the wave equation
problem in Example 6 (Galerkin-in-space).

Figure 9. Plots of theL2.�/ error in u.T / againstN (equal in space and time) for the viscodynamic problem
in Example 7 (Galerkin-in-space).

performance of the DG-in-time method as developed in the previous text, we report here on the
resultant displacement signals computed at the point O D .r; ´/ D .0:027; 0:01028/ on the outer
surface. This models a diagnostic sensor location on the chest surface.

For the ¹250; 500; 750; 1000; 1250ºHz family of frequencies, we compare the performance of the
DG method against the more standard CN method. In the computations that follow, we took
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Figure 10. Plots of the L2.�/ error in ru.T / against N (equal in space and time) for the viscodynamic
problem in Example 7 (Galerkin-in-space).

Figure 11. Plots of the L2.�/ error in w.T / against N (equal in space and time) for the viscodynamic
problem in Example 7 (Galerkin-in-space).

Figure 12. On the left (reproduced by permission from Figure 4b in [35] ©RSNA 2009), an image of a right
proximal coronary artery stenosis obtained by X-Ray angiography after injecting a contrast medium through
a catheter passed into the aorta and thence into the root of the coronary vessel. On the right, an illustration
of our experimental rig referred to in Section 5. The middle section of the scaffold contains the gel phantom
wrapped in film to prevent dehydration. The rod containing a moulded-in bead is visible emerging from the
top and the unit at the bottom is the controllable ‘shaker’ that imparts the bead’s vertically linear vibration.
This bead is mimicked in our computational set-up by the traction in (24). The displacement of the rod and

bead assembly is measured by an optical device at the top of the rig, removed in this picture for clarity.

NCN 2¹1500; 3000; 6000; 12000; 18000; 24000; 36000; 48000; 72000;

96000; 144000; 216000; 288000º

time steps for the CN method and

NDG 2 ¹125; 250; 500; 750; 1125; 1500; 2250; 3000; 4500; 6000; 9000; 13500; 18000º
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Figure 13. Computed signals for 250Hz on a 25 � 50 mesh with (left) 6000 CN and 500 DG(3) and (right)
12000 CN and 750 DG(3) time steps.

Figure 14. Computed signals for 250Hz on a 13 � 25 mesh with (left) 6000 CN and 500 DG(3) and (right)
12000 CN and 750 DG(3) time steps.

Figure 15. Computed signals for 1250Hz on a 13 � 25 mesh with (left) 48000 CN and 3000 DG(3) and
(right) 288000 CN and 18000 DG(3) time steps.

time steps for DG(3). The larger numbers were not used for the lower frequencies. The timing figures
are based on using MATLAB’s ® tic and toc commands (the entire code is currently prototyped
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Figure 16. Computed signals for 1250Hz on a 25 � 50 mesh with (left) 72000 CN and 4500 DG(3) and
(right) 288000 CN and 18000 DG(3) time steps.

in MATLAB ® ). Also, if we take N time steps up to time T D 0:5 to simulate a signal with a
frequency, f , as given earlier then we have 2N=f time steps per wave. Thinking about the minimum
number of data points, we need to represent such a wave we see that we must have 2NCN =f > 4,
to get five data points per wave and 2NDG=f > 1 to get one cubic polynomial per wave. It follows
that the minimum number of time steps for each given frequency is then,

NCN D 2¹250; 500; 750; 1000; 1250º D ¹500; 1000; 1500; 2000; 2500º
NDG D ¹250; 500; 750; 1000; 1250º=2 D ¹125; 250; 375; 500; 625º:

Selections from the computed signals are shown for f D 250 Hz and a 25�50mesh in Figure 13,
and for a 13 � 25 mesh in Figure 14. For f D 1250 Hz, selected output is shown in Figure 15,
for the 13 � 25 mesh, whereas for the 25 � 50 mesh, we show output in Figure 16. Results for
f 2 ¹250; 500; 750ºHz are given in [6].

To discuss these results, we begin with the computations for the least challenging frequency,
250Hz, where we find output results for a selection of time step sizes and for the 25 � 50 spatial
mesh in Figure 13. The corresponding results for the 13 � 25 mesh are shown in Figure 14.

In a crude ‘eyeball judgement’, we can see that the DG(3) scheme seems to have converged to a
practically useful level of accuracy, and with both meshes, at 500 time steps, whereas CN requires
around 12000 for both meshes. This equates to 2000 complex system solves for DG(3) as against
12000 real solves for CN.

We can use this observation to infer that it is reasonable to assume that the DG solution for
the largest NDG is much more accurate than the CN solution at all considered values of NCN .
This suggests a method for approximating the error in these computed signals. For each of the
frequencies, we take the DG solution corresponding to the largest NDG in use, call these Qu and
NDG;max, and assume that it is ‘exact’. We then approximate the error in the CN and DG solutions on
the set, S, of discrete times that are common to the ‘exact’ computation and the one being assessed.
With these notions, we define the relative radial (subscript j D 1) and axial (subscript j D 2)
errors by,

Ej WD
max

®
j Quj .ti / � uj .ti /jW i 2 S

¯
max

®
j Quj .ti /jW 1 6 i 6 NDG;max

¯ :
The results for the resulting approximate relative error max¹E1;E2º are shown in Figures 17 and 18
for the 24 � 50 mesh and the 13 � 25 mesh. We can see that they are effectively identical and, of
course, we caution against paying too much attention to the estimated relative errors associated with
the larger values of NDG . We also recorded the run times using MATLAB’s ® tic and toc wall-
clock timer commands and although this allows the execution times to be plotted against number of
time steps, we consider it more interesting to plot error as a function of execution time.
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Figure 17. Approximated errors and ‘tic-toc’ MATLAB ® wall-clock timings in minutes for the 250Hz
run with CN and DG(3) on a 25 � 50 mesh.

Figure 18. Approximated errors and ‘tic-toc’ MATLAB ® wall-clock timings in minutes for the 250Hz
run with CN and DG(3) on a 13 � 25 mesh.

Here, for the 25� 50 computation, we see from the left of Figure 17 that to obtain a relative error
of about 10�3 we need around 500 DG(3) steps and 48000 CN steps. The right hand plot tells us
that, for these values, CN took about 400 min: about 10 times that of DG(3).

Because Figure 17 and Figure 18 are essentially the same (except, of course, for execution time),
we can assume that we have in effect computed an ‘exact solution’ that gives us confidence in our
findings at 250 Hz.

In [6], we give 13�25mesh results for 500 Hz, 750 Hz and 1000 Hz but include only the results
for the highest frequency we computed for, 1250 Hz, here. In that case, the error and timing data
are shown in Figure 19 for the 13 � 25 mesh and in Figure 20 for the 25 � 50 mesh.

It seems clear that on the 13 � 25 mesh the DG(3) results have converged by 3000 time steps
and CN by 288 000; whereas for the 25 � 50 mesh, we would estimate these figures at 4500 and
288 000. However, the ‘converged plots’ are not the same — there are significant differences in the
wave envelopes for times later than 0.2. This is a clear indication that a finer spatial mesh is needed
in order to properly assess the situation at higher frequencies. This study is ongoing but will have to
wait for a software development phase to be completed: the execution times required by MATLAB
® for repeating all these tests on a, say, 50 � 100 mesh, are prohibitive.
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Figure 19. Approximated errors and ‘tic-toc’ MATLAB ® wall-clock timings in minutes for the 1250Hz
run with CN and DG(3) on a 13 � 25 mesh.

Figure 20. Approximated errors and ‘tic-toc’ MATLAB ® wall-clock timings in minutes for the 1250Hz
run with CN and DG(3) on a 25 � 50 mesh.

6. CONCLUSIONS AND DISCUSSION

The conclusions relating to the specific numerical performance of the scheme have been included in
the previous two sections. Here, to close, we would like to make just two more general remarks.

Firstly, despite the need to introduce complex arithmetic, it seems clear that DG(3) and, by exten-
sion, DG(p), can offer much greater efficiency for certain types of wave equation problem. Linearity,
solution smoothness and (temporally) constant coefficients are the obvious desirable properties, and
we note that in engineering dynamics these are often satisfied. The extension and study of the tech-
nique beyond these assumptions seems worthwhile, as does a full and detailed a priori error analysis
building on that in [19]. On the basis of the results in the previous text, we could conjecture a tem-
poral convergence rate at the nodes corresponding to a O.k2qC1/ error term (as for the DG scheme
for parabolic problems in [13]) when the Kelvin–Voigt term is not present. It also seems clear that
the addition of Maxwell–Zener viscoelastic damping does not affect the convergence rates.

Secondly, and to close, we note that the scheme developed in the previous text is suited to both
coarse and fine grained parallelism in the sense that each of the decoupled problems can be solved
in parallel (the fine graining). Because these problems are independent of each other, they can be
solved simultaneously on separate hardware (the coarse graining).
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