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Abstract

We investigate reachability in pushdown automata over infinite alphabets. We show that, in terms of reachabil-

ity/emptiness, these machines can be faithfully represented using only 3r elements of the alphabet, where r is the

number of registers. We settle the complexity of associated reachability/emptiness problems. In contrast to register

automata, the emptiness problem for pushdown register automata is EXPTIME-complete, independent of the register

storage policy used. We also solve the global reachability problem by representing pushdown configurations with

a special register automaton. Finally, we examine extensions of pushdown storage to higher orders and show that

reachability is undecidable at order 2.
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1. Introduction

Recent years have seen lively interest in automata over infinite alphabets. This has largely been driven by appli-

cations which, although diverse, had a common thread in dealing with alphabets of potentially unbounded size for

which finite-domain abstractions were deemed unsatisfactory. A case in point are markup languages [20, 4], most

notably XML. Here, documents contain data values whose range is potentially unbounded and queries are allowed

to perform comparison tests on such data. A similar scenario occurs in reference-based programming languages,

such as object-oriented [6, 2, 12, 17] or ML-like languages [18, 19]. In such languages, memory is managed with

the help of reference names that can be created afresh and compared for equality but are otherwise abstract. Other

examples include array-accessing programs [1], which are allowed to use the array to store and compare elements of

an unbounded domain, as well as programs with restricted integer parameters [7].

Such applications call for a robust theory of automata over infinite alphabets which can lead to an understanding

comparable to that of the finite-alphabet setting. Such a theory will expose the limits of this model of computation

and establish a complexity-theoretic guide for applications. A lot of the groundwork, surveyed in [22, 3], was already
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dedicated to uncovering a notion of “regularity” in the infinite-alphabet case. Very early in that work, a way was

proposed to extend the concept of finite memory to infinite alphabets which consisted of introducing a fixed number

of registers for storing elements of the alphabet [13]. The constructed automata, called Finite-Memory Automata [13]

or Register Automata [20], would otherwise look just as finite-state automata where the transition labels would also

involve indices referring to register addresses. Building on the success of this work, another strand aimed to identify

the infinite-alphabet “context-free” languages. To this end, Cheng and Kaminski [8] introduced a notion of context-

free grammars over infinite alphabets and defined a corresponding notion of pushdown automata. Later, Segoufin

presented a similar definition in [22], albeit couched in a way suitable to process data words.

Our paper is devoted to studying exactly such context-free computational scenarios through an investigation of

pushdown register systems (PDRS), devices in which registers are integrated with a pushdown store. Although of

foundational nature, the work is largely motivated by the pertinence of such machines to software model checking [6,

2]. A particular such application is in game-semantics-based verification [19, 16], whereby the semantics of programs

is algorithmically given by means of variants of pushdown register systems, which in turn are used as models to be

fed in procedures for checking program equivalence. We present several new results on the complexity of reachability

testing, which altogether fill a gap in the theory of “context-free” languages over infinite alphabets. More specifically,

we make the following contributions.

Alphabet distinguishability. A finite-memory automaton [13] with r registers can store r elements of the infinite

alphabet at any instant. In fact, such automata are only capable of remembering r elements of the infinite alphabet

over the course of a run — for any accepting run one can construct another one involving only r elements of the

alphabet.1 Here we show that, even though pushdown register systems have no bound on the number of elements of

the alphabet that they can store at any instant, over the course of a run they can really “remember” at most 3r of them.

More precisely, we show that for any run of a PDRS with r registers there exists an equivalent run, i.e. with the same

initial and final configurations, but in which every configuration contains register assignments drawn from only 3r

elements. Moreover, no smaller number is enough: we exhibit a family of PDRS whose runs require remembering at

least 3r elements.

Reachability testing. The above-mentioned result yields an obvious methodology for reductions to the finite-alphabet

setting, which immediately implies decidability of associated reachability and language emptiness problems. While

the decidability of emptiness has already been proved in [8] using context-free grammars, we provide exact complexity

bounds for the problem, namely, EXPTIME-completeness.

In the pushdown-free setting, language nonemptiness was known to be NL-, NP- and PSPACE-complete, depend-

ing on the register discipline. Three register assignment disciplines have been studied in the literature, which we shall

call single and full (S F), single and initially empty (S #0) and multiple and full (MF). A single assignment discipline

1For register automata, the corresponding bound is r + 1.
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Register Discipline S F S #0 MF

RA NL-c NP-c PSPACE-c

PDRA EXPTIME-c EXPTIME-c EXPTIME-c

Table 1: Complexity of the emptiness problem.

requires that the contents of all registers be distinct, whereas a multiple assignment discipline allows for duplicate

register contents. A full assignment discipline, on the other hand, requires that at all times every register must contain

some letter from the infinite alphabet, whereas an initially empty discipline allows registers to be empty at the start

of a run. The complexity of emptiness for register automata according to the assumed register discipline is given in

the first row of Table 1: in the S F case the problem is NL-complete, as it coincides with emptiness of the underlying

finite-state automaton; in the S #0 case it becomes NP-complete [21], as one is able to use the registers to encode

boolean assignments; while in the MF case one is able to encode a linear-size tape with the registers, and therefore

the problem is PSPACE-complete [10]. In contrast, in the pushdown case, we show that such distinctions do not

affect the complexity: even if identical elements can be kept in different registers, the problem can still be solved in

EXPTIME and it is EXPTIME-hard already in the case where only distinct elements are allowed. In the latter case,

the hardness proof is technically involved since sequences of distinct names do not provide a supportive framework

for representing memory content (as needed in reduction arguments using computation histories).

Global reachability. We give a simple, exponential-time algorithm for global reachability analysis. This analysis

asks for a representation of all configurations from which a specified set of target configurations can be reached. In

the finite-alphabet case it is well known that, if the target set is regular, the set of configurations that reach it can be

captured by a finite automaton [5]. We prove an analogous result in the infinite-alphabet setting: given a PDRS S and

a register automaton defining a set of target configurations T of S, our algorithm constructs a new register automaton

that represents exactly the set of configurations that can reach some configuration in T . To ensure the algorithm is a

smooth analogy of the saturation algorithm of [5], it manipulates a particularly succinct variant of register automata

which we call a register manipulating register automaton (RMRA), but we show that such machines can always be

transformed to a machine of the usual kind for at most an exponential increase in size.

Higher-order. Higher-order pushdown automata [15] take the idea of pushdown storage further by allowing for nest-

ing. Standard pushdown store is considered to be order 1, while the elements stored in an order-k (k> 1) pushdown

store are (k−1)-pushdown stores. In the finite alphabet setting this leads to an infinite hierarchy of decidable models

of computation with a (k−1)-EXPTIME-complete problem at order k. We examine how the model behaves in the

infinite alphabet setting, after the addition of a fixed number of registers for storing elements of the infinite alphabet.

We first observe that one can no longer establish a uniform bound on the number of symbols of the infinite alphabet

that suffice to represent arbitrary runs. The existence of such a bound would imply decidability of the associated
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reachability problems, but the lack of a bound is not sufficient for establishing undecidability: indeed, the decidable

class of data automata from [4] contains an automaton that can recognize all words consisting of distinct letters. Still,

we show that the reachability problem for higher-order register pushdown automata is undecidable, already at order 2

and with one register.

2. Basic Definitions

Let us assume a countably infinite alphabet D of data values or names. We introduce a simple formalism for

computations based on a finite number of D-valued registers and a pushdown store. Writing [r] for {1, · · · , r}, by an

r-register assignment we mean an injective map from [r] toD. We write Regr for the set of all such assignments.2

Definition 1. A pushdown r-register system (r-PDRS) is a tuple S = 〈Q, qI , τI , δ〉, where:

• Q is a finite set of states, with qI ∈ Q being initial,

• τI ∈ Regr is the initial r-register assignment,

• and δ ⊆ Q × Opr × Q is the transition relation,

with Opr = { i•, push(i), pop(i) | 1 ≤ i ≤ r } ∪ { pop• }.3

The operations executed in each transition have the following meaning: the i• operation refreshes the content of

the i-th register; push(i) pushes the symbol currently in the i-th register on the stack; pop(i) pops the stack if the

top symbol is the same as that stored in the i-th register; pop• pops the stack if the top of the stack is currently not

present in any of the registers. This semantics is given formally below.

Definition 2. A configuration of an r-PDRS S is a triple (q, τ, s) ∈ Q × Regr × D
∗. We say that (q2, τ2, s2) is a

successor of (q1, τ1, s1), written (q1, τ1, s1) ` (q2, τ2, s2), if (q1, op, q2) ∈ δ for some op ∈ Opr and one of the following

conditions holds.

• op = i•, ∀ j. τ2(i) , τ1( j), ∀ j , i. τ2( j) = τ1( j) and s2 = s1.

• op = push(i), τ2 = τ1 and s2 = τ1(i)s1.

• op = pop(i), τ2 = τ1 and τ1(i)s2 = s1.

• op = pop•, τ2 = τ1 and, for some d ∈ D, ∀ j. τ1( j) , d and ds2 = s1.

A transition sequence of S is a sequence ρ = κ0, · · · , κk of configurations with κ j ` κ j+1, for all 0 ≤ j < k. We say

that ρ ends in a state q if qk = q, where qk is the state in κk. We call ρ a run if κ0 = (qI , τI , ε).

Example 3. In this example we will go a little way beyond our definition and consider a register pushdown automaton

rather than a register pushdown system, so that we can motivate the definition of PDRS by looking at a particular

2Thus, register assignments here are single and full (S F).
3For technical reasons, it is convenient to have ε-transitions. However, to keep the definition minimal, we observe that they can be simulated

with push(1) followed by pop(1).
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language of words that is accepted. An r-PDRA is an r-PDRS equipped with an additional family of transitions {i}i∈[r]

and a distinguished subset of final states. A transition i can be taken only if the next letter of the input word matches

the contents of register i and the action of taking the transition is to consume the letter. The following example is a

2-PDRA accepting the language {wwR | w ∈ D∗} of words w followed by their own reverse.

q0

q1

q2

q3q4q5

q6

q7 q8 q9

q10

2•

2•

push(2)

1•1•

1
push(1)

ε 1• 1•

1
pop(1)

pop(2)

We draw the machine’s only final state circled. The initial register assignment is unimportant, but let us say that it

is {1 7→ a, 2 7→ b}. The behaviour of the machine is as follows. Starting from state q0, the automaton first guesses a

letter c from the infinite alphabetD to use as a ‘bottom of stack’ marker and stores it in register 2. To ensure that the

guess is otherwise unconstrained, this is implemented by two consecutive 2• transitions (a single 2• transition would

allow for guessing any letter ofD under the constraint that it is different from a and b). The machine then pushes this

‘bottom of stack’ marker onto the stack and moves into the loop on state q3. During this loop, the word w is consumed

from the input by first guessing the next input letter using two consecutive 1• transitions and then reading it in using

the 1 transition. The last part of the loop has the machine store each consumed letter on the stack. At the point at

which the machine nondeterministically chooses to enter q7 , the configuration has the form (q7, {1 7→ d, 2 7→ c}, wc)

where d is the final letter of w. In the loop on q7 the machine reads in wR and, as in the finite-alphabet case, the

reversal of the word is ensured by popping w off the stack. Finally, when the stack has been exhausted except for the

‘bottom of stack’ symbol c, then the machine may take the transition to q2 and thus accept.

Remark 4. r-PDRS is meant to be a minimalistic model allowing us to study reachability in the infinite-alphabet

setting with registers and pushdown storage. Existing related models [8, 22] feature transitions of a more compound

shape, which can be readily translated into sequences of PDRS transitions.

For instance, a transition of an infinite-alphabet pushdown automaton [8] typically involves a refreshment (i•)

followed by pop (pop( j)) and a sequence of pushes (push( j)). This decomposition leads to a linear blow-up in size

for translations of reachability questions into the r-PDRS setting. For register pushdown automata [22], an additional

complication is their use of non-injective register assignments. Observe, though, that transitions in the non-injective

framework can be easily mimicked using injective register assignments provided we keep track of the partitions

determined by duplicated values in the original automaton. The book-keeping can be implemented inside the control

state, which leads to an exponential blow-up in the size of the system, because the number of all possible partitions is

exponential. Note that the number of registers does not change during such a simulation. Another difference is that
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register pushdown automata [22] are tailored towards data languages, i.e. a stack symbol is an element of D paired

up with a tag drawn from a finite set. From this perspective, r-PDRSs use a singleton set of tags. Still, richer tag

sets could be encoded via sequences of elements of D (for example, to simulate the i-th out of k tags, we could push

sequences of the form di
1d2 for d1, d2 ∈ D with d1 , d2). This reduction is achievable in polynomial time.

Following [13, 8, 20], we mostly use injective register assignments. This is done to allow us to explore whether

the restriction still leads to asymptotically more efficient reachability testing, as in the pushdown-free case. On a

foundational note, injectivity gives a more essential treatment of freshness with respect to a set of registers: non-

injective assignments can easily be used to encode PSPACE computations that have little to do with the interaction

between finite control (and pushdown) and freshness.

Name permutations. There is a natural action of the group of permutations ofD on stacks, assignments, runs, etc. For

instance, given a permutation π : D → D and an assignment τ, the result of applying π to τ is the register assignment

π · τ given by {(i, π(d)) | (i, d) ∈ τ}. Similarly, π · s = π(dn) · · · π(d1) for any stack s = dn · · · d1 while, on the other hand,

π · q = q for all states q. Hence, π · (q, τ, s) = (q, π · τ, π · s) and, for ρ = κ0 ` · · · ` κn a transition sequence, π · ρ is the

sequence π · κ0, · · · , π · κn.

Note that, as long as our constructions involve finitely many names, they will always have a finite support: we

say that a set S ⊆ D supports some (nominal) element x if, for all permutations π, if π(n) = n for all n ∈ S then

π · x = x. Accordingly, the support ν(x) of x is the smallest set S supporting x. For example, ν(τ) = {τ(i) | i ∈ [r]},

for all assignments τ. The support of a run ρ = κ0 ` · · · ` κn is ν(ρ) =
⋃n

j=0 ν(κ j), i.e. it consists of all elements of D

that occur in it. The finite-support setting can be formally described by means of nominal sets [11] and closure results

such as the following hold.

Fact 5 (Closure Under Permutations). Fix an r-PDRS and let ρ be a transition sequence and π : D → D a permuta-

tion. Then π · ρ is also a transition sequence.

3. Distinguishability

Devices with r registers but without pushdown storage, such as finite-memory automata [13], can take advantage

of the registers to distinguish r elements of D from the rest. Consequently, any run can be replaced with a run that

ends in the same state, yet is supported by merely r elements of the infinite alphabet [13, Proposition 4].

With extra pushdown storage, an r-PDRS is capable of storing unboundedly many elements of D. Nevertheless,

the restricted nature of the stack makes it possible to place a finite bound on the size of the support needed for a run

to a given state, which is again a function of the number of registers.

Lemma 6 (Limited Distinguishability). Fix an r-PDRS. For every transition sequence ρ = (q0, τ0, ε) `n (qn, τn, ε),

there is a transition sequence ρ′ = (q0, τ
′
0, ε) `

n (qn, τ
′
n, ε) with τ′0 = τ0, τ′n = τn and |ν(ρ′)| ≤ 3r.
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Proof. The proof is by induction on n. When n ≤ 1, the result is trivial. Otherwise, we distinguish two cases.

In the first case, the transition sequence is of the form:

(q0, τ0, ε) ` (q1, τ1, d) `n−2 (qn−1, τn−1, d) ` (qn, τn, ε)

in which the first transition is by push(i) (so d = τ1(i)), the last transition is by pop( j) or pop• and the stack does not

empty until the final transition. Since d is never popped from the stack during the middle segment, also (q1, τ1, ε) `n−2

(qn−1, τn−1, ε) is a valid transition sequence and hence, from the induction hypothesis, there is a transition sequence

between the same two configurations using no more than 3r names. By adding d to the bottom of every stack in this

sequence one obtains another valid transition sequence: (q1, τ
′
1, d) `n−2 (qn−1, τ

′
n−1, d) with τ′1 = τ1 and τ′n−1 = τn−1,

and the new sequence features ≤ 3r names. It follows that the latter can be extended to the required:

(q0, τ0, ε) ` (q1, τ
′
1, d) `n−2 (qn−1, τ

′
n−1, d) ` (qn, τn, ε)

since neither push(i), nor pop( j)/pop• change the registers.

Otherwise, the transition sequence is of the form:

(q0, τ0, ε) `k (qk, τk, ε) `n−k (qn, τn, ε)

with 0 < k < n. It follows from the induction hypothesis that there are sequences:

ρ1 = (q0, τ
′
0, ε) `

k (qk, τ
′
k, ε)

ρ2 = (qk, τ
′
k, ε) `

n−k (qn, τ
′
n, ε)

with τ′0 = τ0, τ′n = τn, τ′k = τk and which each, individually, use no more than 3r names. Let N ⊇ ν(τ0)∪ ν(τk)∪ ν(τn)

be a set of names of size 3r. We aim to map ν(ρ1) and ν(ρ2) into N by injections i and j respectively. For i we set

i(a) = a for any a ∈ (ν(τ0) ∪ ν(τk)) and otherwise choose some distinct b ∈ N \ (ν(τ0) ∪ ν(τk)). Similarly, for j we set

j(a) = a for any a ∈ (ν(τk)∪ ν(τn)) and otherwise choose some distinct b ∈ N \ (ν(τk)∪ ν(τn)). Note that these choices

are always possible because |ν(ρ1)| ≤ |N | ≥ |ν(ρ2)|. Finally, we extend i and j to permutations πi and π j on D. Since

transition sequences are closed under permutations (Fact 5):

(q0, πi · τ0, ε) `k (qk, πi · τk = π j · τk, ε) `n−k (qn, π j · τn, ε)

is a valid transition sequence with πi · τ0 = τ0, π j · τn = τn and which is supported by a subset of N.

Corollary 7. Fix an r-PDRS S and a state q of S. If there is a run of S ending in q then there is a run of S ending in

q that is supported by at most 3r distinct names.

The 3r bound given above is optimal in the sense that there exists an r-PDRS such that all runs to a certain state

will have to rely on 3r elements ofD.

Lemma 8 (Most Discriminating r-PDRS). There exists an r-PDRS 〈Q, qI , τI , ε〉 and q ∈ Q such that |ν(ρ)| = 3r for

any run ρ ending in q.
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Proof. Consider the following high-level description of an r-PDRS. The machine proceeds as follows:

1. Push registers in numerical order, twice, to obtain stack τI(r) · · · τI(1)τI(r) · · · τI(1).

2. Refresh registers by performing i• for all 1 ≤ i ≤ r. Let the new assignment be τ1.

3. Perform pop• r-times, thus ensuring that, for each 1 ≤ i, j ≤ r, τI(i) , τ1( j).

4. Push all registers in numerical order, to obtain stack τ1(r) · · · τ1(1)τI(r) · · · τI(1).

5. Refresh all registers. Let the new assignment be τ2.

6. Perform pop• 2r-times, thus ensuring that, for each i, j, τ2(i) , τ1( j) and τ2(i) , τI( j).

7. Silently transition to state q.

Now observe that the conditions in steps 3 and 6 and the fact that register assignments are injective ensure that

|ν(τI) ∪ ν(τ1) ∪ ν(τ2)| = 3r. Hence, any run reaching q is supported by exactly 3r distinct names.

Remark 9. The 3r bound given above can be adapted to the automata presentations of [8, 22] yielding bounds

3r + Θ(1). An adaptation of Lemma 8 improves upon Example 6 of [8], where a language requiring 2r−1 different

symbols was presented.

Being able to bound the number of registers is useful for obtaining reachability algorithms as it allows us to

remove the complications of the infinite alphabet and reduce problems to the well-studied finite alphabet setting (e.g.

Theorem 10).

4. Reachability is EXPTIME-complete

We consider the following decision problem.

r-PDRS Reach: Given an r-PDRS S and q ∈ Q, is there a run of S ending in q?

We shall show that the problem (and its counterparts for all the other closely related machine models) is EXPTIME-

complete. Note that reachability is equivalent to language non-emptiness in the automata case.

4.1. Reachability is EXPTIME-solvable

Theorem 10. r-PDRS Reach and language emptiness for infinite-alphabet pushdown automata [8] and register

pushdown automata [22] are solvable in exponential time.
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Proof. Lemma 6 yields an exponential-time reduction of r-PDRS Reach to the classic reachability problem for push-

down systems over finite alphabets [5]: one can replace the r D-valued registers with r [3r]-valued registers, and then

incorporate them into the finite control (for a singly-exponential blow-up of the state space). Since the latter problem

is solvable in polynomial time, it follows that r-PDRS Reach is in EXPTIME.

By Remark 4, the emptiness problem for infinite-alphabet pushdown automata [8] can be reduced to r-PDRS

Reach in polynomial time, immediately yielding the EXPTIME upper bound4. For register pushdown automata [22]

we have an exponential-time reduction to r-PDRS Reach, which does not yield the required bound. However, recall

that the translation into r-PDRS preserves the number of registers, so Lemma 6 still implies a linear upper bound for

the number of D-values needed for finding an accepting run. Consequently, we can reduce language emptiness of

register pushdown automata to a reachability problem for pushdown systems at an exponential cost. Since the latter

is in P, the former is in EXPTIME.

4.2. Reachability is EXPTIME-hard

The bound given above is tight: we simulate a polynomial-space Turing machine with a stack (i.e. a polynomial-

space auxiliary pushdown automaton [9]), which has an EXPTIME-complete halting problem. A reduction from the

more familiar alternating polynomial-space Turing machines would also be possible, but Cook’s model is closer to

r-PDRS, which allows us to concentrate on the main issue of encoding binary memory content without the need to

model alternation.

Theorem 11. r-PDRS Reach is EXPTIME-hard.

We first give an outline of the argument before describing the proof in detail.

4.2.1. Argument outline

Let us assume an auxiliary pushdown automatonM working over a binary tape of size n and a stack alphabet of

size k. We can assume WLOG that every transition ofM performs a single push or pop (but not both) along with a

read/write by the head followed by a head movement. Moreover, let us assume that the stack alphabet ofM includes

a distinguished symbol $ marking the bottom of the stack and that, additionally,M starts with $ on the stack and halts

when it is popped ($ is not used otherwise). Finally, we let the tape ofM initially contain only 0’s.

We shall construct a (6n + k + 1)-PDRS S such that M terminates iff S reaches a designated “final” state. The

registers of S will be divided into 4 groups:

τ = τ〈0〉 τ〈1〉 τ〈2〉 τ〈3〉

of sizes k+1, 2n, 2n and 2n respectively.

4Through a careful reading of the argument for emptiness in [8] one can infer an exponential upper bound, but here Lemma 6 gives a direct

argument.
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• τ〈0〉 will containD-values coding the k stack symbols and an auxiliary symbol # (we write #̂ for the letter which

encodes #, etc.). It will be left untouched throughout the simulation.

• τ〈1〉 and τ〈2〉 will be used to encode the n-bit tape ofM during push- and pop-transitions respectively.

• τ〈3〉 will have an auxiliary role and in particular will ensure the integrity of the tape when changing from pop-

to push-transitions.

The simulation must maintain a representation of the current tape and stack content ofM (as well as the current

state, head position etc.). Since S is itself equipped with a pushdown stack, we shall use its stack to represent the stack

ofM by putting some distinguished k-element subset of D in bijection with the stack alphabet. A natural candidate

for representing the tape content ofM are the registers of S. However, the requirement that the register assignment be

an injective map whose range is D makes constructing an encoding difficult: in any given register assignment, there

are no non-trivial relationships between the elements! Hence, to encode information we are forced to use the register

assignment in conjunction with other data.

Let us consider two register assignments τ and τ′ of length 2n. We say that such a pair is compatible just if, for all

1 ≤ j ≤ n:

{τ(2 j − 1), τ(2 j)} = {τ′(2 j − 1), τ′(2 j)}. (1)

Although any given register assignment cannot encode any meaningful information, a pair of compatible register

assignments can be used together to represent a tape t by a generalised xor, written τ[τ′]:

τ[τ′]( j) = 0 iff τ(2 j) = τ′(2 j).

In other words, the tape content at position 1 ≤ j ≤ n is 0 if τ and τ′ agree on the order of the data values {τ(2 j −

1), τ(2 j)} and 1 if they are the transposition of each other. We can think of the notation τ[τ′] as a binary function of τ

and τ′, in which case it has the property that any equation:

τ[τ′] = t

can be solved uniquely for τ, τ′ or t (given the other parameters). This fact becomes essential to ensuring the integrity

of the tape encoding when changing from simulating a pop to simulating a push transition. Note that although this

binary function is commutative, the asymmetric notation reflects the fact that, by convention, we will view the first

argument as being primary, often writing that τ is an encoding of t with respect to the mask τ′.

We construct S such that, when in a configuration with register assignment τ which is faithfully simulating a

push transition of M with tape content t, we have τ〈1〉[τI 〈1〉] = t. When in such a configuration but simulating a

pop transition, we have τ〈2〉[τI 〈2〉] = t. In other words, the masks used are just the initial register assignments to

groups 〈1〉 and 〈2〉 respectively. Consequently, we have the invariant that, in any faithful simulation ofM reaching a

configuration with assignment τ, τ〈1〉 and τI 〈1〉 are compatible and τ〈2〉 and τI 〈2〉 are compatible.
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At each step of the simulation, S needs to query its representation of the tape in order to determine which tran-

sition ofM to apply, which entails computing, e.g. τ〈1〉[τI 〈1〉]. However, due to the injectivity constraint on register

assignments, for S to be able to access a pair of compatible register assignments, at least one must be stored on the

stack. Hence, S will use the stack not only to encode the stack content ofM, but also as part of the encoding of its

tape content by storing copies of the masks τI 〈1〉 and τI 〈2〉 so that they are always accessible when needed. This dual

use for the stack requires a considerable amount of bookkeeping.

The key problem to overcome is to ensure that the masks τI 〈1〉 and τI 〈2〉 are always available at the top of the stack

when they are needed for decoding. Let us first consider τI 〈2〉 which is somewhat easier because it is used for pop

transitions. Since M halts only with an empty stack, we know that for every pop transition made, there must have

already been made a corresponding push transition. Hence, we arrange for S, when simulating a push transition with

a stack of height h, to additionally push an extra copy of τI 〈2〉 (which it has stored in its registers) so that it is available

at the top of the stack when the machine next returns to a stack of height h, should it be required to simulate the

corresponding pop transition.

Ensuring the availability of τI 〈1〉 for the purpose of simulating push transitions is much more difficult. It is not

possible to “pre-load” the stack with copies of τI 〈1〉 in the same way as for τI 〈2〉 because (i) the length of sequences

of consecutive push transitions is not known and (ii) the dual use of the stack requires that copies of τI 〈1〉 must be

interleaved with data values simulating the letters of the stack alphabet pushed byM. Matters are further complicated

by the fact that looking up the value of τI 〈1〉 in order to compute τ〈1〉[τI 〈1〉] requires popping it off the top of the stack.

Consider the simulation of two consecutive push transitions. As part of the simulation of the first transition, τI 〈1〉

must be popped and hence lost. The injectivity constraint on the registers ensures that the only way that it could be

preserved (by temporarily popping it into the registers) would be at the cost of losing τ〈1〉 instead. However, by the

time the second transition is simulated, another copy is required to be accessible (i.e. be at the top of the stack again).

We cannot “pre-load” the stack with copies of τI 〈1〉, we cannot temporarily store it in the registers and accessing a

copy consumes it. Hence we are forced to construct S in such a way that it computes τ〈1〉[τI 〈1〉] without accessing τI 〈1〉

at all. To achieve this, we arrange for S to guess a mask τ′
〈1〉, compute τ〈1〉[τ′〈1〉] with respect to this guess and place

the guessed mask on the stack. During the later simulation of pop transitions, when S has some spare capacity in its

registers because τ〈1〉 is no longer used to encode tape content, it will be able to discharge the obligation of verifying

that it guessed τ′
〈1〉 = τI 〈1〉.

So far, we have discussed the need to store three kinds of entities on the stack, namely: representations of the stack

letters ofM, copies of the mask τI 〈2〉 and unverified guesses of the mask τI 〈1〉. In fact, to be able to switch from tape

encoding using register group 〈2〉 to tape encoding using register group 〈1〉 (which happens whenever S simulatesM

performing a pop followed by a push) without loss of information, we need to maintain additional entities.
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More specifically, during its operation, the stack of S will have the form:

s =

si
〈0〉 si

〈1〉 τI 〈2〉 si
〈3〉 τI 〈2〉 si

〈3〉

si−1
〈0〉 si−1

〈1〉 τI 〈2〉 si−1
〈3〉 τI 〈2〉 si−1

〈3〉
...

...
...

...
...

...

(2)

with |si
〈1〉| = |τI 〈2〉| = |si

〈3〉| = 2n and |si
〈0〉| = 1 (and arbitrary i). The top stack symbol is in the top-left corner, the

element below it on the stack is on its right, si−1
〈0〉 is below si

〈3〉 etc. Each s j
〈0〉 above corresponds to a non-# stack symbol

(as specified by τ〈0〉).

The guessed masks, to be verified later, will be stored as s j
〈1〉. To represent the tape at pops, we will use the mask

τI 〈2〉. Our simulation will make sure that this is correctly stored on the stack during pushes. Finally, the elements

s j
〈3〉, τI 〈2〉, s

j
〈3〉 will be used to support the simulation when it switches from pops to pushes. The element s j

〈3〉 will also

be a mask.

There will also be “exceptional” rows, which have the form:

si
# = #̂ si

〈3〉
′

τI 〈2〉 si
〈1〉 τI 〈2〉 si

〈3〉
(3)

where #̂ is the encoding of # in τI 〈0〉. These rows will be used to verify the correctness of s j
〈3〉, as we discuss later.

Thus, in each row we store a stack symbol and 5 masks. The purpose of the masks is to help us determine the tape

content ofM. On the other hand, the current stack ofM can be recovered by projecting out the first column of s and

erasing any occurrence of #̂.

We next define the different steps of the simulation. Initially, there is an initialisation step pushing a row s0 on

the stack; S reaches its final state precisely when it successfully pops s0. Recall that every transition ofM includes a

push or a pop action. Accordingly, the states of S have two modes: a push-mode and pop-mode. Each transition of S

non-deterministically guesses the mode of the next state (of S). S simulates the push-transitions ofM using τ〈1〉[si
〈1〉]

as its tape; it simulates the pop ones using τ〈2〉[τI 〈2〉] as its tape. The simulation only goes through if the masks of

these encodings are correct, that is, if si
〈1〉 = τI 〈1〉 for all i. Put otherwise, in an accepting computation of S, all masks

si
〈1〉 that appear on the stack must be equal to τI 〈1〉.

Initialisation. S starts off by pushing the following row:

s0 = $̂ τI 〈1〉 τI 〈2〉 τI 〈3〉 τI 〈2〉 τI 〈3〉 (4)

Recall here that the tape ofM is assumed to be initially empty, and this is captured by our initial encoding: τI 〈1〉[s0
〈1〉] =

0 · · · 0 (since τI 〈1〉 = s0
〈1〉).

Push-mode. During this phase, S uses τ〈1〉 to represent the tape ofM, while τ〈0〉, τ〈2〉, τ〈3〉 stay unchanged. Assuming

S has stack content as in (2) or (3) and the current register assignment is:

τ= τI 〈0〉 τ〈1〉 τ〈2〉 τ〈3〉
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the current tape content (according to the simulation) is:

t = τ〈1〉[si
〈1〉] .

Moreover, by construction, we shall have τ〈2〉 = τI 〈2〉.

Now supposeM is to perform a push-transition q
x,y,z,push(C)
−−−−−−−−−→ q′, where x is the currently scanned symbol to be

overwritten with y, the head movement is indicated by z ∈ {L,R,N} and C is the stack symbol to be pushed. Assume

that the current head position is 1 ≤ j ≤ n (S will keep track of it in its state). In order to simulate the transition, S

first needs to retrieve τ〈1〉[si
〈1〉]( j). One way to do that would be to simply pop si

〈1〉 off the stack. However, that would

be catastrophic for our simulation since there is no guarantee at this point that si
〈1〉 is a correct mask (i.e. equal to τI 〈1〉);

popping it would destroy it, thus annihilating any possibility of verifying its correctness.5 Thus, instead, S will guess

what the value of si
〈1〉 might be and operate according to the guess. Moreover, the guess will be pushed on the stack

for subsequent verification in the pop-mode.

More precisely, S first pushes the word τ〈2〉τ〈3〉τ〈2〉τ〈3〉. It then produces a guess si+1
〈1〉 of the mask si

〈1〉 which is con-

sistent with reading x at the current head position, in that τ〈1〉[si+1
〈1〉 ]( j) = x. This is achieved by non-deterministically

pushing consecutive pairs of elements of τ〈1〉, subject to the previous requirement and the constraint expressed by

equation (1). It next performs the operations ofM (as instructed by y and z) according to the tape τ〈1〉[si+1
〈1〉 ]. Thus,

after these operations, the register assignment and top of the stack read

τ′ = τI 〈0〉 τ′
〈1〉 τI 〈2〉 τ〈3〉 si+1 = si+1

〈1〉 τI 〈2〉 τ〈3〉 τI 〈2〉 τ〈3〉

where τ′
〈1〉[si+1

〈1〉 ] is the new tape content (in particular, we have written y in bit j).

Finally, S chooses the kind of the next transition. If it is a push, then Ĉ is pushed on the stack (the name

corresponding to C). Otherwise, before switching to pop-mode, it has to transfer its tape-encoding from τ〈1〉 to

τ〈2〉. We achieve this by simultaneously moving si+1
〈1〉 from the stack into τ′

〈1〉 and changing τI 〈2〉 into τ′
〈2〉 so that

τ′
〈2〉[τI 〈2〉] = τ′

〈1〉[si+1
〈1〉 ]. This can be executed by popping si+1

〈1〉 (2 j) and comparing it with τ′
〈1〉(2 j) for each bit 1 ≤ j ≤ n

and, then, depending on the outcome, swapping the contents of registers 2 j−1 and 2 j in each of τ′
〈1〉 and τ〈2〉 in order

to reflect the desired change. Finally, we push si+1
〈1〉 back on the stack, followed by Ĉ to arrive at

τ′ = τI 〈0〉 si+1
〈1〉 τ′

〈2〉 τ〈3〉 si+1 = Ĉ si+1
〈1〉 τI 〈2〉 τ〈3〉 τI 〈2〉 τ〈3〉

with τ′
〈2〉[τI 〈2〉] = τ′

〈1〉[si+1
〈1〉 ].

Pop-mode. S now uses τ〈2〉 as the tape. Let the current configuration of S have stack as in (2) and let

τ= τI 〈0〉 τ〈1〉 τ〈2〉 τ〈3〉

5Note that pushing initially τI 〈1〉 an indefinite amount of times is not a viable solution for having it available on the stack as a mask, since the

push operations ofM would just bury these masks in the stack.
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so that τ〈2〉[τI 〈2〉] is the represented tape content.

Suppose thatM’s head scans position j and the next transition is to be q
x,y,z,pop(C)
−−−−−−−−→ q′, where si

〈0〉 = Ĉ. Recall that

τ〈1〉, si
〈1〉, · · · , s

1
〈1〉 are guesses from previous push transitions (or from exceptional pushes, still to be discussed), while

s0
〈1〉 = τI 〈1〉 by (4). To verify the guesses, it suffices to verify that τ〈1〉 = si

〈1〉 and, at the next pop, verify that τ〈1〉 = si−1
〈1〉 ,

etc. Thus, S will first pop Ĉ from the stack and then pop si
〈1〉, simultaneously checking that it equals τ〈1〉 (otherwise it

will block). Next we pop τI 〈2〉 to determine τ〈2〉[τI 〈2〉] and perform the instruction (x, y, z) by changing τ〈2〉 to τ′
〈2〉 (and

updating the head position in the state). Thus, we obtain

τ′ = τI 〈0〉 τ〈1〉 τ′
〈2〉 τ〈3〉 si′ = si

〈3〉 τI 〈2〉 si
〈3〉

having verified that τ〈1〉 = si
〈1〉.

Now S guesses the kind of the next transition. If it is to be a pop, S pops the remainder of si′. Otherwise, S

should switch to push-mode and in particular change its tape-storing routine from τ〈2〉 to τ〈1〉. That is, τ〈1〉 needs to

be updated to τ′
〈1〉 such that τ′

〈1〉[τ̂〈1〉] = t, for an appropriate mask τ̂〈1〉, where t = τ′
〈2〉[τI 〈2〉] is the current tape. Also,

having now preserved its value according to the encoding, τ′
〈2〉 should be changed back to τI 〈2〉.

We are now faced with the following obstacle. Updating τ〈1〉 to τ′
〈1〉 would make us lose the current τ〈1〉. This

would break our simulation as, although S has verified τ〈1〉 = si
〈1〉, it remains to check that τ〈1〉 is the same as all those

guessed masks still on the stack, i.e. si−1
〈1〉 , . . . , s

1
〈1〉. Since entering push-mode requires that we overwrite the contents

of τ〈1〉, we would like to preserve its current assignment on the stack. However, doing this directly is impossible since

we need to obtain τI 〈2〉 from lower down the stack in order to decode the current tape contents τ′
〈2〉. We overcome

this by storing in the stack a guess for τ〈1〉, along with auxiliary masks which will allow us to verify this guess when

popping. Moreover, we shall pick τ̂〈1〉 = τ〈1〉. Hence, S operates as follows.

• It first pops si
〈3〉 and stores it in τ〈3〉.

• Then, it pops τI 〈2〉 and stores it in τ′
〈2〉 and, at the same time, it copies t in τ〈1〉 and τ〈3〉, that is, it updates them to

τ′
〈1〉 and τ′

〈3〉 respectively, such that t = τ′
〈1〉[τ〈1〉] = τ′

〈3〉[si
〈3〉].

• It pushes τI 〈2〉 back on the stack.

• It then makes a guess τ′′
〈1〉 of τ〈1〉 and pushes it on the stack. While doing so, it updates τ′

〈3〉 to the mask si
〈3〉
′

satisfying τ′
〈1〉[τ

′′
〈1〉] = τ′

〈3〉[si
〈3〉
′ ].

• Finally, it pushes #̂si
〈3〉
′
τI 〈2〉 on the stack.

Thus, we end up with

τ′ = τI 〈0〉 τ′
〈1〉 τI 〈2〉 si

〈3〉
′ si

# = #̂ si
〈3〉
′

τI 〈2〉 τ′′
〈1〉 τI 〈2〉 si

〈3〉
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and the automaton switches to push-mode. Note that τ′
〈1〉 uses τ〈1〉 as a mask, yet we have τ′′

〈1〉 on the stack instead.

Nevertheless, by construction:

τ′′
〈1〉 = τ〈1〉

iff τ′
〈1〉[τ

′′
〈1〉] = τ′

〈1〉[τ〈1〉]

iff τ′
〈3〉[si

〈3〉] = τ′
〈3〉[si

〈3〉
′ ]

iff si
〈3〉 = si

〈3〉
′
.

Thus, when popping the row si
#, the automaton will additionally check that si

〈3〉
′

= si
〈3〉 and thus verify that the correct

mask τ′′
〈1〉 has been stored on the stack.

Finally, we discuss the case when S is in pop-mode and the top of the stack is as in (3). In such a case, the pop

transition of S is taken independently ofM. In particular, let τ= τI 〈0〉 τ〈1〉 τ〈2〉 τ〈3〉 .

• S starts by popping #̂ and si
〈3〉
′ , and stores the latter in τ〈3〉.

• Next, it pops τI 〈2〉 and si
〈1〉, and checks that the latter is equal to τ〈1〉.

• Finally, it pops τI 〈2〉 and si
〈3〉, and checks that the latter is equal to si

〈3〉
′ (which is now stored in τ〈3〉).

Thus, according to our discussion above, S correctly verifies the continuity of the masks si
〈1〉 while consuming the row

si
#.

Altogether, the above construction yields a (6n + k + 1)-PDRS S of polynomial size with respect to n. Moreover,

S pops s0 iff it makes consistent guesses for masks used in its first component and, therefore, faithfully simulates the

operations ofM leading to popping the terminating symbol from its stack.

4.2.2. Argument in detail

We now make the above sketch more precise.

Proof. Let M = 〈Q, qI ,T, δ〉 be an auxiliary pushdown automaton operating over a binary tape of size n and stack

alphabet {1, · · · , k}, with $ ∈ {1, · · · , k} being a distinguished bottom-of-stack symbol. M has initial state qI , and let

us assume its transition relation is of the following type, δ ⊆ Q × Op′k × Q, with

Op′k = {0, 1}2 × {L,R,N} × {push(i), pop(i) | 1 ≤ i ≤ k}.

That is, in every transition,M reads a bit x from its current head position, writes back y, moves the head (Left, Right,

or No-move), and pushes or pops a symbol from the stack. Moreover, we assume thatM has initial tape 0 · · · 0 and

initial stack $, andM halts when it pops $ from the stack ($ is not used otherwise).

We construct a (k + 1 + 6n)-PDRS S such thatM pops $ from the stack iff S reaches a designated state q′F . In

particular,

S = 〈(Q × {1, · · · , n} × {↑, ↓}) ∪ {qI} ∪ Q′, qI , τI , δ
′〉
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where each state of the form (q, j, ↓) [resp. (q, j, ↑)] is said to be in push-mode [pop-mode]. The index j indicates

the position of the head on the tape ofM. Thus, at its initial position,M reads the first bit of the tape and can only

perform a push. Q′ is a set of auxiliary states of polynomial size in n, which we gradually specify below. The initial

assignment τI is arbitrary; we divide the registers into 4 groups (of sizes k + 1, 2n, 2n and 2n respectively) and write

register assignments τ in the form:

τ = τ〈0〉 :: τ〈1〉 :: τ〈2〉 :: τ〈3〉.

We moreover stipulate that, throughout the operation of S, the values of its group-0 registers remain fixed and, for

each i = 1, 2, 3 and 1 ≤ j ≤ n,

{τ〈i〉(2 j − 1), τ〈i〉(2 j)} = {τI 〈i〉(2 j − 1), τI 〈i〉(2 j)} .

The discipline imposed above is instrumented so as to encode an n-size tape in each of τ〈1〉, τ〈2〉, τ〈3〉. In particular, for

each i = 1, 2, 3 and 2n-components τ〈i〉, τ̂〈i〉, we can define an n-tape τ〈i〉[τ̂〈i〉] by setting,

τ〈i〉[τ̂〈i〉]( j) = 0 iff τ〈i〉(2 j) = τ̂〈i〉(2 j)

for all 1 ≤ j ≤ n. We call τ̂〈i〉 the mask of the encoding. Our PDRS S will simulate the operations ofM using just

such an encoding. On the other hand, the stack is grouped into rows of two possible forms:

si = si
〈0〉 :: si

〈1〉 :: si
〈2〉 :: si

〈3〉 :: si
〈2〉 :: si

〈3〉 (5)

si
# = #̂ :: si

〈3〉
′ :: si

〈2〉 :: si
〈1〉 :: si

〈2〉 :: si
〈3〉 (6)

where the first component has size 1, and the rest have size 2n. In rows of the form (5), we stipulate that si
〈0〉 , #̂.

Here #̂ = τI 〈0〉(k + 1) is a symbol we use precisely for distinguishing stack rows like (6), which we call exceptional

rows. Note that components with index 〈2〉 and 〈3〉 are repeated in (5); while components with index 〈2〉 are repeated

in (6). The index i in si, si
# denotes the i-th row of the stack. The i-th row is on top of the (i−1)-th, etc. At the bottom

of the stack we will store the row:

s0 = τI 〈0〉($) :: τI 〈1〉 :: τI 〈2〉 :: τI 〈3〉 :: τI 〈2〉 :: τI 〈3〉 (7)

where recall that $ ∈ {1, · · · , k} is the empty stack symbol.

We proceed to define δ′. As explained in the main text, we divide the operations of S into operations performed in

push-mode and pop-mode. In push mode, the automaton uses the 〈1〉-component of its registers for encoding the tape,

using a mask which it needs to push on the stack at every step. As different push-steps do not share their masks (the

registers store the encoded tape, not the mask used), these may in general differ. S correctly simulates the operations

of M if the same mask is used in every push-step. Thus, S stores on the stack the mask used for each such step

and, when in pop-mode, it verifies the consistency of those chosen masks. In particular, we impose that in every

correct computation of S, all masks used in push-mode coincide with τI 〈1〉. In pop-mode, the automaton verifies the
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consistency of the push-mode masks and uses instead the 〈2〉-component of the registers for storing the tape. The

mask used for that encoding is τI 〈2〉, which is guaranteed to be readily available on the stack as, by construction every

si
〈2〉 appearing on the stack (in rows (5) or (6)) will satisfy si

〈2〉 = τI 〈2〉.

We next proceed to the formal definition of the transitions of S. We define δ′ as the least relation containing the

following transitions.6

Push-mode. The automaton starts its operation by storing s0 on the stack. That is, we include in δ′ the transition

sequences

qI
push〈1,2,3,2,3〉
−−−−−−−−→

push〈0〉($)
−−−−−−−→ (qI , 0, ↓),

qI
push〈1,2,3,2,3〉
−−−−−−−−→

push〈0〉($)
−−−−−−−→ (qI , 0, ↑),

which simply push on the stack the contents of registers {$} ∪ {k + 2, · · · , 6n + k + 1} in the required fashion and guess

whether the next state is going to be in push- or pop-mode.

We next move to ordinary push transitions. For each (q, x, y, z, push(i), q′) ∈ δ and j ∈ {1, · · · , n}, we include the

following transition sequences.

(q, j, ↓)
push〈2,3,2,3〉
−−−−−−−→

guess〈1〉(q
′, j,x,y,z)

−−−−−−−−−−−−→ (q′, j + z, i, ↓)′

(q′, j + z, i, ↓)′
push〈0〉(i)
−−−−−−→ (q′, j + z, ↓)

(q′, j+z, i, ↓)′
switch(q′, j+z,i,↑)
−−−−−−−−−−→ (q′, j+z, i, ↑)′

push〈0〉(i)
−−−−−→ (q′, j+z, ↑)

with j + z = j − 1 if z = L, etc. All primed states are taken from Q′. Moreover, guess〈1〉(q
′, j, x, y, z) is the gadget:

q′n q′n−1 · · · q′j q′j−1 · · · q′0

push〈1〉(2n, 2n−1)

push〈1〉(2n−1, 2n)

push〈1〉(2 j+2, 2 j+1)

push〈1〉(2 j+1, 2 j+2)

push〈1〉(2 j−2, 2 j−3)

push〈1〉(2 j−3, 2 j−2)

x 7→ j
〈1〉 y

with each q′i being some (q′, j, x, y, z, i, ↓)′g ∈ Q′, for i = 1, · · · , n, and q′0 = (q′, j + z, i, ↓)′. The transition sequence

x 7→ j
〈1〉 y assumes that the j-th bit of the tape (as encoded in the 〈1〉-component) is x, pushes the corresponding mask

registers on the stack (according to the value of x), and changes the value of the j-th bit to y:

x 7→ j
〈1〉 y =



push〈1〉(2 j−1, 2 j) if x = 0, y = 0

push〈1〉(2 j−1, 2 j); flip〈1〉( j) if x = 0, y = 1

push〈1〉(2 j, 2 j−1) if x = 1, y = 1

push〈1〉(2 j, 2 j−1); flip〈1〉( j) if x = 1, y = 0

.

6Some notation: we write push〈0〉(i) for push(i), push〈1〉(i) for push(k+1+i), etc. Similarly for pops, and for referring to registers in general:

e.g. j•
〈2〉 = (k+1+2n+ j)•. We write q

t1;t2
−−−→ q′ for the sequence of transitions q

t1
−→ q′′

t2
−→ q′, choosing some unique q′′ ∈ Q′. Finally, we push

sequences from right to left, i.e. write push〈i〉(i1, · · · , im) for push〈i〉(im); · · · ; push〈i〉(i1), and let push〈i〉 abbreviate push〈i〉(1, · · · , 2n) (push the full

i-th component), while e.g. push〈1,2〉 stands for push〈2〉; push〈1〉. Dually for pops (in particular, we pop sequences left-to-right).

17



The transition sequence flip〈i〉( j) (i = 1, 2) simply flips the j-th bit of the tape in the 〈i〉-component of the registers:

flip〈i〉( j) = push〈i〉(2 j−1, 2 j); (2 j)•〈i〉; (2 j−1)•〈i〉; (2 j)•〈i〉; pop〈i〉(2 j, 2 j−1).

Thus, the transition sequence starts by performing a push of the 〈2〉〈3〉〈2〉〈3〉-components on the stack. It then guesses

a mask for τ〈1〉, say si+1, and pushes it on the stack, while at the same time it updates τ〈1〉 to τ′
〈1〉 according to the write

instruction y. At that point, it guesses whether it needs to switch to pop-mode. If it guesses that it should remain in

push-mode, then it simply pushes the stack symbol i (i.e. its representation in τI 〈0〉). Otherwise, it performs a switch

by using switch(q′, j, i, ↑), which is the following gadget.

q′0 q′1 · · · q′n (q′, j, i, ↑)′.

pop〈1〉(2, 1); flip〈1〉(1); flip〈2〉(1)

pop〈1〉(1, 2)

pop〈1〉(2n, 2n−1); flip〈1〉(n); flip〈2〉(n)

pop〈1〉(2n−1, 2n)

push〈1〉

Here each q′i is some (q′, j, i, ↑)′s ∈ Q′ (i = 1, · · · , n) and q′0 = (q′, j+z, i, ↓)′. The above allows us to switch our

tape-storing routine from the 〈1〉-component of the registers to the 〈2〉-component: S pops the mask si+1
〈1〉 from the

stack and stores it in the 〈1〉-component of the registers and, while doing so, it copies the value of τ′
〈1〉[si+1] onto τ〈2〉.

This is achieved via the flip〈2〉(i) transitions, in case τ′
〈1〉[si+1] = 1 (upper arcs); and by their alternatives, which leave

τ〈2〉(2i) and τ〈2〉(2i − 1) untouched, if τ′
〈1〉[si+1] = 0 (lower arcs).

Pop-mode. For each (q, x, y, z, pop(i), q′) ∈ δ and j ∈ {1, · · · , n}, include the following transition sequences,

(q, j, ↑)
pop〈0〉(i)
−−−−−−→

pop〈1〉
−−−−→

read〈2〉(q′, j,x,y,z)
−−−−−−−−−−−−→ (q′, j + z, ↑)′

(q′, j + z, ↑)′
clear〈3〉
−−−−−→

clear〈2〉
−−−−−→

clear〈3〉
−−−−−→ (q′, j + z, ↑)

(q′, j+z, ↑)′
switch(q′, j+z,↓)
−−−−−−−−−→ (q′, j+z, ↓)′

push〈0〉(k+1)
−−−−−−−→ (q′, j+z, ↓)

with j + z as above and all primed states taken from Q′. Note that, be definition, pop〈1〉 pops the 〈1〉-component

off the top of the stack and checks that it is the same as the 〈1〉-component of the registers. On the other hand,

read〈2〉(q′, j, x, y, z) is the gadget:

q′0 q′1 · · · q′j−1 q′j · · · q′n

pop〈2〉(2, 1)

pop〈2〉(1, 2)

pop〈2〉(2 j−2, 2 j−3)

pop〈2〉(2 j−3, 2 j−2)

pop〈2〉(2 j+2, 2 j+1)

pop〈2〉(2 j+1, 2 j+2)

x 7→ j
〈2〉 y
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with q′0, q
′
1, · · · , q

′
n ∈ Q′.7 The transition sequence x 7→ j

〈2〉 y is given by:

x 7→ j
〈2〉 y =



pop〈2〉(2 j−1, 2 j) if x = 0, y = 0

pop〈2〉(2 j−1, 2 j); flip〈2〉( j) if x = 0, y = 1

pop〈2〉(2 j, 2 j−1) if x = 1, y = 1

pop〈2〉(2 j, 2 j−1); flip〈2〉( j) if x = 1, y = 0

.

Thus, the transition sequence starts by popping the stack symbol i and checking that the last guessed mask for τ〈1〉

stored in registers equals the one stored at the top of the stack. It then continues to pop the mask τI 〈2〉 for τ〈2〉, focussing

specifically in the values determining the value of its j-th bit. It verifies that τ〈2〉[τI 〈2〉]( j) = x and updates the latter to

y (yielding some τ′
〈2〉). At this point, it guesses whether the next state is going to be in pop-mode. If it guesses so, it

simply pops the remaining top-row from the stack (without looking at the popped values). The latter is accomplished

by the clear〈i〉 gadgets:

q′0 q′1 · · · q′n

pop〈i〉(2, 1)

pop〈i〉(1, 2)

pop〈i〉(2n, 2n−1)

pop〈i〉(2n−1, 2n)

for appropriately chosen q′0, · · · , q
′
n ∈ Q′. We specifically stipulate that if i = $ (the symbol signifying termination)

then S will necessarily guess to stay in pop-mode and, instead of reaching state (q′, j + z, ↑), it will drive itself to a

designated state q′F ∈ Q′.

If, on the other hand, the automaton guesses that the next state is in push-mode, it makes a switch of modes,

using the switch(q′, j, ↓) gadget, and pushes the special symbol τI 〈0〉(k + 1) on the stack. The switch(q′, j, ↓) gadget is

decomposed as follows:

(q′, j+z, ↑)′
pop-in〈3〉
−−−−−−→

pop-in〈2〉&copy-in〈1,3〉
−−−−−−−−−−−−−−−→

push〈2〉
−−−−−→

guess〈1〉&copy-in〈3〉
−−−−−−−−−−−−−→

push〈3,2〉
−−−−−−→ (q′, j+z, ↓)′.

Recall that at this point in the simulation, the register assignment and top of the stack of S are as follows:

τ′ = τI 〈0〉 :: τ〈1〉 :: τ′〈2〉 :: τ〈3〉 si′ = si
〈3〉 :: τI 〈2〉 :: si

〈3〉.

As described in the main text, the utility of the above is to:

• First pop si
〈3〉 and store it in τ〈3〉 (via pop-in〈3〉).

• Then, pop τI 〈2〉 and store it in τ′
〈2〉 and, at the same time, copy t = τ′

〈2〉[τI 〈2〉] in τ〈1〉 and τ〈3〉, that is, update them

to τ′
〈1〉 and τ′

〈3〉 respectively, such that t = τ′
〈1〉[τ〈1〉] = τ′

〈3〉[si
〈3〉] (via pop-in〈2〉&copy-in〈1,3〉).

7From this point forward we generally refrain from giving explicit names to auxiliary states, for simplicity. Such names can be given, similarly

as in the push-mode case, in order to show that Q′ has size polynomial in the size ofM.
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• Push τI 〈2〉 back on the stack (via push〈2〉).

• Then make a guess τ′′
〈1〉 of τ〈1〉 and push it on the stack. While doing so, update τ′

〈3〉 to the mask si
〈3〉
′ satisfying

τ′
〈1〉[τ

′′
〈1〉] = τ′

〈3〉[si
〈3〉
′ ] (via guess〈1〉&copy-in〈3〉).

• Finally, push on the stack si
〈3〉
′
τI 〈2〉 (push〈3,2〉).

The pop-in〈3〉 gadget simply performs a pop-into place for component 〈3〉:

q′0 q′1 · · · q′n

pop〈3〉(2, 1); flip〈3〉(1)

pop〈3〉(1, 2)

pop〈3〉(2n, 2n−1); flip〈3〉(n)

pop〈3〉(2n−1, 2n)

for designated q′0, · · · , q
′
n ∈ Q′. Next, pop-in〈2〉&copy-in〈1,3〉 is the following gadget, resembling the previously de-

scribed switch(. . . , ↑).

q′0 q′1 · · · · · · q′n.

pop〈2〉(2, 1); flip〈2〉(1); flip〈1〉(1); flip〈3〉(1)

pop〈2〉(1, 2)

pop〈2〉(2n, 2n−1); flip〈2〉(n); flip〈1〉(n); flip〈3〉(n)

pop〈2〉(2n−1, 2n)

Lastly, the guess〈1〉&copy-in〈3〉 gadget is similar to pop-in〈2〉&copy-in〈1,3〉, only that instead of reading (i.e. popping) a

mask from the stack, it guesses and pushes it:

q′n q′n−1 · · · · · · q′0.

push〈1〉(2n, 2n−1); flip〈3〉(n)

push〈1〉(2n−1, 2n)

push〈1〉(2, 1); flip〈3〉(1)

push〈1〉(1, 2)

That is, it makes a guess for the mask at component 〈1〉 and pushes it on the stack while updating component 〈3〉.

In order to conclude the definition of δ′, we need to add pop-transitions for consuming rows starting with the

“exceptional” symbol k + 1. As explained in the main text, the purpose of these transitions is simply to verify the

continuity of the masks used in the 〈1〉-component of S, using also information stored in the two 〈3〉-components

of the given stack row. In particular, S must verify that those two 〈3〉-components are equal. We therefore add the

following transition sequences in S,

(q, j, ↑)
pop〈0〉(k+1)
−−−−−−−→

pop-in〈3〉
−−−−−→

clear〈2〉
−−−−→

pop〈1〉
−−−→

clear〈2〉
−−−−→

pop〈3〉
−−−→ (q, j, ↑)

for every q ∈ Q and j ∈ {1, · · · , n}.

We claim that S reaches q′F iffM pops $ from its stack. Note first that, ifM has a computation leading to a pop-$,

then S can simulate it by making sure it makes all guesses right, and thus reach q′F . Conversely, as argued above, S
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may only reach its final state if all its guesses on used masks are correct. But any such run would faithfully simulate

a run ofM leading to pop-$, by construction. Finally, observe that theM → S reduction is poly-time. In particular,

S has 6n + k + 1 registers and a state space of size polynomial in the number of transitions inM.

The EXPTIME-hardness carries over to the language emptiness problem associated with infinite-alphabet push-

down automata [8] and register pushdown automata [22]. Since the latter allows for storage of identical values in

different registers, their hardness can also be established more directly by encoding relative to two fixed data val-

ues for 0 and 1. These different policies for register management are known to lead to different complexity bounds

for emptiness testing in the absence of pushdown store: NP-completeness [21]8 (injective assignment) vs PSPACE-

completeness (non-injective assignment) [10]. Perhaps surprisingly, we have shown the presence of pushdown store

cushions these differences and there is no analogous complexity gap.

5. Global Reachability

We now move on to investigate global reachability for r-PDRS. We show that, given an r-PDRS S and a rep-

resentation C of a set of configurations of S, one can construct, in exponential time, a representation of the set of

configurations Pre∗
S

(C) from which S can reach a configuration in C. To that end we extend the methodology of

Bouajjani, Esparza and Maler [5] to the infinite alphabet setting.

The developments in this section rely on an auxiliary variant of (stack-free) register automata which feature sym-

bolic transitions representing multiple rearrangements of registers. In order to describe them, let us introduce r-

register manipulations, which are partial functions R ∈ [r] × [r] ↪→ {0, 1} such that R−1{1} is a partial injection.

We denote the set of all such partial functions by RegManr and use Rb to refer to R−1{b}, for b ∈ {0, 1}. Given

R, S ∈ RegManr, we define R ; S as follows.

(R ; S )(i, j) =


1 (S 1 ◦ R1)(i) = j

0 ∃k ∈ [r]. (R1(i) = k ∧ S 0(k) = j) ∨ (R0(i) = k ∧ S 1(k) = j)
.

Moreover, given i ∈ [r], we shall write Ri• for the partial function defined by:

Ri• ( j, i) = 0 for all j ∈ [r], Ri• ( j, j) = 1 for all j , i.

Register manipulations can be seen as abstract predicates on register assignments. In particular, given two register

assignments τ, τ′, we write τ R τ′ just if, for all (i, j) ∈ dom R:

R(i, j) = 0 implies τ(i) , τ′( j), and R(i, j) = 1 implies τ(i) = τ′( j).

8This result is affected by registers initially containing a special undefined value, without which the emptiness problem is reducible to that for

finite automata and, consequently, NL-complete.
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Definition 12. A register-manipulating r-register automaton (r-RMRA) is a tuple 〈Q, F, ∆〉 with Q a finite set of

states, F ⊆ Q a subset of final states and ∆ ⊆ Q×OPr ×Q the transition relation, with OPr = [r]∪ {•} ∪RegManr. A

configuration is a pair (q, τ) consisting of a state q and an r-register assignment τ. We say that a configuration (q2, τ2)

is an x-accepting successor of a configuration (q1, τ1) and write (q1, τ1) `x (q2, τ2) just if there is some transition

(q1, o, q2) ∈ ∆, x ∈ D ∪ {ε} and either:

• o = i for some i ∈ [r], τ1 = τ2 and τ1(i) = x

• o = •, τ1 = τ2 and x < ν(τ1).

• o = R for some R ∈ RegManr, τ1 R τ2 and x = ε.

By some abuse of notation, we will write (q, τ) `w (q′, τ′) to denote the existence of a (possibly empty) sequence of

configurations (q0, τ0) `x1 (q1, τ1) `x2 · · · `xn (qn, τn) for which (q0, τ0) = (q, τ), (qn, τn) = (q′, τ′) and w = x1 · · · xn. If

(q, τ) `w (q′, τ′) for some τ′ and q′ ∈ F then we say that w is accepted from (q, τ).

The operations of RMRAs generalise the stack-free operations of PDRSs: i ∈ [r] specifies reading a name already

present in the i-th register, • reads a locally fresh name and R ∈ RegManr is an internal action such that if q
R
−→ q′

then any configuration (q, τ) may transition to any configuration (q, τ′) satisfying τ R τ′. In what follows, we will

start RMRAs from various initial configurations, so we do not include an initial state or register assignment in their

specifications.

Definition 13. Given an r-RMRAA = 〈Q, F,∆〉, a state q ∈ Q and an r-register assignment τ, we set:

L(A)(q, τ) = {w ∈ D∗ | w is accepted byA from (q, τ)}.

Moreover, given an r-PDRS S = 〈P, qI , τI , δ〉 such that P ⊆ Q, we say thatA represents the S-configuration (p, τ, s)

whenever s ∈ L(A)(p, τ). We write C(A) for the set of S-configurations represented byA.

Given an r-RMRA characterising a set of configurations of an r-PDRS S, our aim is to construct another RMRA

that represents exactly those configurations of S that can reach configurations in C(A), i.e. we aim to construct a

representation of Pre∗
S

(C(A)).

We shall do this in the “saturation” style of the classical construction of [5] but we need more notation in order to

deal with the infinite alphabet. Given R ∈ RegManr, we say that:

• R is consistent with the statement i = j just if R(i, j) , 0 and [i ∈ dom R1 ∨ j ∈ ran R1] implies R1(i) = j, and

in that case we write R || i= j. (resp. R || i•).

• R is consistent with i• just if i < dom R1, and in that case we write R || i•.

So, the meaning of R || i•, is that i in the situation before R may be locally fresh with respect to the situation after R.

If R || i= j (resp. R || i•) then we write R[i = j] (resp. R[i•]) for R ∪ {(i, j) 7→ 1} (resp. R ∪ {(i, j) 7→ 0 | j ∈ [r]}). Note

the difference between Ri• and R[i•].
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We write q
R
−→∗ q′ just if there is some finite, possibly empty, sequence 〈qi〉i∈[n] such that q1 = q and qn = q′ and,

for all i ∈ [n − 1], qi
Ri
−→ qi+1 and R1 ; · · · ; Rn−1 = R.

Definition 14. Given an r-PDRS S over states P, and given an r-RMRAA over states Q and transitions ∆, such that

P ⊆ Q and ∆ contains no transitions to states in P, we construct another r-RMRA SAT(A) by induction (note that op

ranges over OPr):

p
op
−−→
A

p′

p
op

−−−−−→
SAT(A)

p′
(N)

p
i•
−→
S

p′

p
Ri•
−−−−−→
SAT(A)

p′
(i)

p
push(i)
−−−−−→
S

p′ p′
R

−−−−−→
SAT(A)

∗ q q
j

−−−−−→
SAT(A)

q′

p
R[i= j]
−−−−−→
SAT(A)

q′
(ii)

p
push(i)
−−−−−→
S

p′ p′
R

−−−−−→
SAT(A)

∗ q q
•

−−−−−→
SAT(A)

q′

p
R[i•]
−−−−−→
SAT(A)

q′
(iii)

p
pop(i)
−−−−→
S

p′

p
i

−−−−−→
SAT(A)

p′
(iv)

p
pop•
−−−→
S

p′

p
•

−−−−−→
SAT(A)

p′
(v)

where we additionally require R || i= j in rule (ii), and R || i• in rule (iii).

The above construction can be carried out in exponential time: consider that there are at most |Q×OPr ×Q| many

transitions added, which is at most exponential in the size of the input. For each transition, computation is either

trivial or, in (ii) and (iii), involves computing exponentially many graph reachability queries.

Theorem 15. Given r-PDRS S and r-RMRAA as above, C(SAT(A)) = Pre∗
S

(C(A)).

We show the theorem in two parts. First we show soundness:

Lemma 16. If (p, τ, w) `∗ (p′, τ′, w′) and w′ ∈ L(A)(p′, τ′) then w ∈ L(SAT(A))(p′, τ′).

Proof. Let the witness to the first premise be k, the proof is by induction on k. When k = 0 the result follows from

rule (N). When k = n + 1, the transition sequence has the form:

(p, τ, w) ` (p′′, τ′′, w′′) `n (p′, τ′, w′).

It follows from the induction hypothesis that w′′ ∈ L(SAT(A))(p′′, τ′′) (*). We continue by analysing the initial

transition.

• If the initial transition is by p
i•
−→ p′′ then τ′′ = τ[i 7→ a] and w′′ = w for some a fresh for τ. By part (i) of the

construction also (p, τ) ` (p′′, τ′′) and hence w ∈ L(SAT(A))(p, τ).

• If the initial transition is by p
push(i)
−−−−−→ p′′ then τ = τ′′ and w′′ = τ(i)w. By (*) there must be some transition

sequence (p′′, τ) `∗ (q, σ) ` (q′, σ) in SAT(A) with the final transition being the only transition to read an

input: τ(i), and w ∈ L(SAT(A))(q′, σ). This final transition must be justified either by (1) q
j
−→ q′ or (2) q

•
−→ q′.

In both cases, the initial part of the sequence must be justified by some register manipulations p′′
R

−−−−−→
SAT(A)

∗ q. We

distinguish between the two cases:
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(1) In the first case, necessarily τ(i) = σ( j) and, therefore, R || i = j. It follows from part (ii) of the construction

that (p, τ) ` (q′, σ) and hence w ∈ L(SAT(A))(p, τ).

(2) In the second case, necessarily τ(i) < ν(σ) and, therefore, R || i•. It follows from part (iii) of the construction

that (p, τ) ` (q′, σ) and hence w ∈ L(SAT(A))(p, τ).

• If the initial transition is by p
pop(i)
−−−−→ p′′ then τ = τ′′ and w = τ(i)w′′ and it follows from part (iv) of the

construction that w ∈ L(SAT(A))(p, τ).

• If the initial transition is by p
pop•
−−−→ p′′ then τ = τ′′ and w = aw′′ for some a fresh for τ. It follows from part (v)

of the construction that w ∈ L(SAT(A))(p, τ).

Corollary 17. Pre∗
S

(C(A)) ⊆ C(SAT(A)).

For completeness, i.e. to see that SAT(A) does not accept any word which is not the stack component of some

configuration reaching the target set, we first generalise the quantity Pre∗
S

(C(A)). Define P∗
S

(A) as follows:

P∗
S

(A)(q, τ) =


L(A)(q, τ) q < P

{s | (q, τ, s) ∈ Pre∗
S

(C(A))} q ∈ P

(recall that P is the set of states of the PDRS S). Observe that, if q ∈ P and w ∈ L(A)(q, τ) then (q, τ,w) ∈ C(A),

which implies w ∈ {s | (q, τ, s) ∈ Pre∗
S

(C(A))}.

Lemma 18. Transitions in SAT(A) preserve P∗
S

(A):

• If q
R

−−−−−→
SAT(A)

q′, w ∈ P∗
S

(A)(q′, τ′) and τ R τ′ then w ∈ P∗
S

(A)(q, τ).

• If q
i

−−−−−→
SAT(A)

q′ and w ∈ P∗
S

(A)(q′, τ) then τ(i)w ∈ P∗
S

(A)(q, τ).

• If q
•

−−−−−→
SAT(A)

q′, w ∈ P∗
S

(A)(q′, τ) and a < ν(τ) then aw ∈ P∗
S

(A)(q, τ).

Proof. By induction on the construction of SAT(A) and case analysis on the last rule used in it:

(N) Note that, by our initial assumption, A contains no incoming transitions to states in P. Thus, in every case,

q′ < P. Suppose now q
R
−→
A

q′, w ∈ P∗
S

(A)(q′, τ′) and τ R τ′. Then, w ∈ L(A)(q′, τ′) and therefore, since

(q, τ)
ε
−→ (q′, τ′) in A, w ∈ L(A)(q, τ). Thus, using also our previous observation, w ∈ P∗

S
(A)(q, τ). The other

cases are shown in a similar manner.

(i) If the construction is concluded by (i) then assume p
i•
−→
S

p′ and let w ∈ P∗
S

(A)(p′, τ′) and τ Ri• τ
′, with p = q.

It follows from the assumption that (p, τ, w) ` (p′, τ′, w) whenever τ′ = τ[i 7→ a] for some fresh a. Since this

is true of any τ such that τ Ri• τ
′ the result follows.
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(ii) Assume p
push(i)
−−−−−→
S

p′, also p′
R

−−−−−→
SAT(A)

∗ q′′, R || i = j and q′′
j

−−−−−→
SAT(A)

q′, with p = q. Let w ∈ P∗
S

(A)(q′, τ′) and let

τ R[i = j] τ′. It follows from the induction hypothesis that τ′( j)w ∈ P∗
S

(A)(q′′, τ′) and, since R[i = j] is stronger

than R, that τ′( j)w ∈ P∗
S

(A)(p′, τ). Since τ(i) = τ′( j), it follows from the first assumption that w ∈ P∗
S

(A)(p, τ).

(iii) Assume p
push(i)
−−−−−→
S

, p′
R

−−−−−→
SAT(A)

∗ q′′, R || i• and q′′
•

−−−−−→
SAT(A)

q′. Let w ∈ P∗
S

(A)(q′, τ′) and τ R[i•] τ′. Since τ(i) is

fresh for τ′, it follows from the induction hypothesis that τ(i)w ∈ P∗
S

(A)(q′′, τ′) and, since R[i•] is stronger than

R, that τ(i)w ∈ P∗
S

(A)(p′, τ). Finally, it follows from the first assumption that w ∈ P∗
S

(A)(p, τ).

(iv) Assume p
pop(i)
−−−−→
S

p′. Let w ∈ P∗
S

(A)(p′, τ). Then by definition τ(i)w ∈ P∗
S

(A)(p, τ).

(v) Assume p
pop•
−−−→
S

p′. Let w ∈ P∗
S

(A)(p′, τ) and let a be fresh for τ. Then by definition aw ∈ P∗
S

(A)(p, τ).

Corollary 19. C(SAT(A)) ⊆ Pre∗
S

(C(A)).

Proof. Let (p, τ) ` · · · ` (q, τ′) with p ∈ P be a transition sequence of SAT(A) accepting some word w. Since q is

necessarily a final state, ε ∈ L(A)(q, τ′) and then it follows from Lemma 18 that w ∈ Pre∗
S

(C(A)).

We can thus verify whether one can reach a configuration represented byA from a given configuration: construct

the corresponding SAT(A) and check membership. To implement the latter in nondeterministic space, given a source

configuration (q, τ,w), we need O(log |QSAT(A)|+ p(r) + log |w|) bits to track the state, register assignment and position

in w respectively. This is polynomial space in S,A,w which, along with the construction of SAT(A), yields an

exponential-time reachability testing routine.

Finally, let us observe that RMRAs are no more expressive than register automata with nondeterministic reassign-

ment [14]. An r-RMRA A = 〈Q, F, ∆〉 can be seen as an r-register automaton with nondeterministic reassignment

(r-RAnr) if ∆ ⊆ Q × OP−r × Q, with OP−r = [r] + {Ri• | i ∈ [r] }. The proof of this result is contained in Appendix A.

Lemma 20. For any r-RMRA A, one can construct a (2r+1)-RAnr Â such that, for each A-configuration κ there

exists a Â-configuration κ̂ satisfying L(A)(κ) = L(Â)(κ̂).

6. Higher-Order Pushdown Systems

We now consider reachability at higher orders, defining pushdown register automata as a register-equipped ana-

logue of the classical definition of [15]. We show that the reachability problem is undecidable.

A 1-stack is just a finite sequence of elements of D. For n> 1, an n-stack is a finite sequence of n−1-stacks. We

consider the following operations on 1-stacks:

• pusha
1〈al, . . . , a1〉 = 〈a, al . . . , a1〉 for any a ∈ D,

• pop1〈al, al−1, . . . , a1〉 = 〈al−1, . . . , a1〉,
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• top1〈al, al−1, . . . , a1〉 = al,

and, in connection with n-stacks for n > 1:

• pusha
1〈sl, . . . , s1〉 = 〈pusha

1 sl, sl−1, . . . , s1〉,

• pushk〈sl, . . . , s1〉 = 〈pushk sl, sl−1, . . . , s1〉 if 2 ≤ k < n,

• pushk〈sl, . . . , s1〉 = 〈sl, sl, . . . , s1〉 if k = n,

• popk〈sl, . . . , s1〉 = 〈popk sl, sl−1, . . . , s1〉 if 1 ≤ k < n,

• popk〈sl, . . . , s1〉 = 〈sl−1, . . . , s1〉 if k = n,

• top1〈sl, . . . , s1〉 = top1 sl,

noting that every operation except pusha
1 is undefined when applied to an empty stack. Finally, we write 〈 〉k for the

k-stack defined as ε when k = 1 and 〈〈 〉k−1〉 otherwise.

Definition 21. An order-n pushdown r-register system (r-nPDRS) is an r-PDRS with the vocabulary of operations

Opr extended in the following way:

Opn
r = Opr ∪ { pushk, popk | 2 ≤ k ≤ n }.

A configuration of an r-nPDRS is a triple (q, τ, s) with q and τ as before and s now an n-stack. The initial configuration

is (qI , τI , 〈 〉n). A configuration (q2, τ2, s2) is said to be a successor of a configuration (q1, τ1, s1) just if there is some

op ∈ Opn
r such that (q1, op, q2) ∈ δ and one of the following is true:

• op = i•, ∀ j. τ2(i) , τ1( j), ∀ j , i. τ2( j) = τ1( j) and s1 = s2,

• op = push(i), τ2 = τ1 and s2 = pushτ1(i)
1 s1,

• op = pop(i), τ2 = τ1, top1 s1 = τ1(i) and s2 = pop1 s1,

• op = pop•, τ2 = τ1, ∀ j. τ1( j) , top1 s1 and s2 = pop1 s1,

• op = pushk, k > 1, τ2 = τ1 and s2 = pushk s1,

• op = popk, k > 1, τ2 = τ1 and s2 = popk s1.

We show that, for all r and n > 1, r-nPDRS have undecidable reachability problems by showing undecidability

for r = 1 and n = 2. For 1-2PDRS, we will write a configuration (q, {1 7→ a}, s) generally as (q, a, s). The following

example shows how data held on a 1-stack of a 1-2PDRS can be copied and interrogated.

Example 22. We demonstrate the lack of a uniform bound on the number of distinct data values needed to reach a

designated state (for r-PDRS that bound is 3r). For every k ∈ N, there is an 1-2PDRS needing more than k names in

order to reach state pk.
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q0 q1 q2 q3 q4 q5

q6

q7q8q9p0· · ·pk

push(1) push(1) 1• push(1) push2

pop(1)

pop•1•pop(1)pop(1)
pop2ε

pop•pop•

The idea is as follows, let the initial register assignment be the single element #. Whenever the machine is in state q2,

its 2-stack is of the form 〈〈am, . . . , a1, #, #〉〉, for m ≥ 0, with ai , a j , # for all i , j. The use of ## serves to mark

out the bottom of the stack. On each iteration of the cycle starting in q2, an additional data value is pushed onto the

singleton 1-stack (upon leaving state q3) which is then verified to be different from all the others. This verification

is implemented by first taking a copy of the 1-stack using push2, then checking that the data value in the register is

different from all other values on the stack using pop•. Now, the top copy of the 1-stack will be exhausted and the

machine simply discards it with pop2, restoring the invariant and returning to state q2. Finally, note that the automaton

can transition from q2 to pk only if it has gathered at least k non-# values in its stack.

To show the undecidability of the reachability problem for higher-order PDRS, we reduce from the emptiness

problem for weak pebble automata, which is known to be undecidable [20, 23]. We find it convenient to use pebbles,

because the push and pop instructions have a direct analogue in placing and lifting a pebble.

Theorem 23. The reachability problem for r-nPDRS is undecidable for any n > 0.

Proof. For the full definition of pebble automata we direct the reader to [20]; we here recall only an outline. A weak

k-pebble automaton (k-PA) is a tuple (Q, q0, F, T ) where Q is a finite set of states of which q0 is initial and F ⊆ Q are

final, and T is a finite set of transitions. Each transition is of the form α→ β. In general α has shape (i, d, P, V, q) or

(i, P, V, q) specifying: the index of the head pebble; (possibly) the data value under the head; the set of pebbles whose

position coincides with the head; the set of pebbles on the same data as the head; and the state respectively. The shape

of β is (q, A) with q the state to be moved to and A ∈ {stay, right, place, lift} the pebbling action to perform. Given

a word w, a configuration of such a machine on w is a tuple (i, q, θ) where θ : {1, . . . , i} → {1, · · · , |w|} specifies the

locations of the currently placed pebbles. WLOG we assume that |w| > 0. The initial configuration is (1, q0, θ0) with

θ0(1) = 1.9

We now consider a particular kind of data structure which will be very useful for the undecidability argument.

Indexed stacks. We say that a 1-stack is in m-padded index form just if it has the following shape:

cm · · · c1 an bn · · · a1 b1 ##

in which #, a j, b j, c j ∈ D for all j. Furthermore, for all j and k: a j , #, a j , bk, and a j = ak =⇒ j = k. Also, for all j

there is j′ such that c j = a j′ . Such 1-stacks are composed of three segments. The first segment ## is a ‘bottom of stack’

9Our definition differs slightly from [20] in that the latter uses θ with range {0, · · · , |w| + 1}, with positions 0 and |w| + 1 corresponding to

end-markers. Here we do not treat end-markers, hence the different range for θ. End-markers can be treated in the same way as constants (cf. the

following section).
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marker (such as in Example 22). The second segment anbn · · · a1b1 represents the indexed word (a1, b1) · · · (an, bn),

where the names a1, · · · , an are called the indices and b1, · · · , bn are the values of the word. Finally, the third segment

is a sequence of m indices.

Stacks in padded index form support a kind of dereferencing operation which allows a 1-2PDRS to retrieve the

data value stored at some constant offset k from one of the indices. For m-padded index stacks the operation is

implemented by the following gadget, which we call deref (m, k).

p0p1· · ·p1+mp2+m

...
p2+m+k p3+m+k p4+m+k p5+m+k

push2

pop(1)

pop•

pop(1)

pop•
pop•

pop(1)
pop•

pop• 1• pop(1) pop2

Starting from state p0 with a j in its register, the machine first saves a copy of the working 1-stack. In the current copy,

it discards the top segment and then the segment anbn · · · a j+1b j+1. It then transitions to state p2+m (consuming a j) and

then discards the next k-elements of the stack. Having traversed the constant offset it then refreshes the contents of

its register and verifies that the new assignment is exactly the element on top of its 1-stack. Finally, it restores the

original 1-stack.

The following result is easily verified by inspecting the construction.

Lemma 24. Let (p0, a, 〈s〉) be a configuration of an 1-2PDRS containing deref (m, k) and in which s is an m-padded

index with s(i) = a an index, for some i.10 Then (p0, a, 〈s〉) `∗ (p5+m+k, b, s′) iff b = s(i + k + 1) and s′ = 〈s〉.

Using deref it is possible to implement useful operations associated with the index structure. In particular, with

index a assigned to the register, lookup(m) = deref (m, 0) looks up the value associated with index a and pred(m) =

deref (m, 1) finds the preceding index of a.

6.1. Simulation of k-PA without constants

Given a k-PA A = (Q, q0, F, T ), we construct a 1-2PDRS S = 〈Q′, qI , τI , δ〉 that first guesses a non-empty11

word w and then checks that w ∈ L(A) by simulating an accepting run ofA on w.

For clarity of exposition, we shall assume that A does not recognise constants: i.e. there are no transitions of the

form (i, d, P, V, q) → β. As we demonstrate in the following section, the proof can be extended to account for such

transitions by modelling constants as sequences of identical data values of a fixed length.

The state space Q′ of S consists of the set

{(q, j) | q ∈ Q and 1 ≤ j ≤ k}

10Here we write s(i) for the i-th element of the 1-stack s; s(0) = top1 s.
11Given PAA, it is straightforward to construct PAA′ such thatA′ accepts a word iffA′ accepts a non-empty word andL(A) = ∅ iffL(A′) = ∅.
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of primary states, the set {qt
(P,V) | t = (i, P,V, q)→ β ∈ T } and the set {qt

(q′,A) | t = α→ (q′, A) ∈ T }; as well as a number

of auxiliary states which will be specified implicitly in the description to follow.

We say that a configuration κ of S is proper just if it is of the form:

((q, m), d, 〈〈cm, . . . , c1, an, bn, . . . , a1, b1, #, #〉〉)

with w = bn · · · b1. We map proper configurations κ of S to configurations ofA on w by the following surjection:

[[κ]] = (m, q, { j 7→ n − i + 1 | 1 ≤ j ≤ m ∧ c j = ai}).

In other words, proper configurations have m-padded indexed stacks where the index structure represents the input

word, and the padding records the positions of the m (so far) placed pebbles.

The computation of S consists of two parts. First an initialisation phase computes the initial guess of the word w

and puts S into a proper configuration κ with [[κ]] = (1, q0, θ0) running on w. The second part is a loop in which the

machine guesses an applicableA-transition α→ β and simulates it.

Initialisation. Starting from its initial configuration, S begins in the same way as the system from Example 22 by

pushing its initial register assignment twice to form a ‘bottom of stack’ marker. Then, starting from state q2, it loops

nondeterministically building an indexed representation of the word w on its top 1-stack. On each iteration, when the

system is in state q2, its 2-stack has shape 〈〈al, bl, · · · , a1, b1, #, #〉〉 with singleton 1-stack in 0-padded index form.

From state q2, S can either choose a new data value bl+1 followed by a new index al+1 and return to state q2, or

it can transition to state (q0, 1) as described below. In the first case, the machine uses two gadgets to ensure that the

choices respect the desired invariant. We describe the gadget that ensures that the choice of bl+1 is different from any

index below; the gadget to ensure that al+1 is different from all other stack elements is exactly as in Example 22.

q2 q3 q4 q5 q6

q7q8q9q10q11

1• push(1) push2 pop(1)

pop•
pop(1)

/pop•
1•

pop(1)pop(1)pop2

The path from q2 to q4 guesses the next data value xl+1 and places it at the top of the 1-stack. The remainder of the

gadget is used to ensure that the guess does not coincide with one of the indices. The machine first takes a copy of the

current 1-stack and then checks that every other data value on the stack is different from xl+1. Finally, it restores the

original 1-stack.

After iterating the loop on q2 some number of times and thus choosing the word w, the machine then makes an

extra copy of the top of the 1-stack and enters state (q0, 1). It follows from this construction that, for all d and s:

(qI , #, 〈 〉2) `∗ ((q0, 1), d, s) iff there exists some word w such that [[((q0, 1), d, s)]] = (1, q0, θ0) running on w.

Simulation loop. At the start of each iteration of the simulation loop, S is in some proper configuration κ =

((q, m), 〈s〉) with s = 〈cm, . . . , c1, an, bn, . . . , a1, b1, #, #〉. It guesses an applicable transition t = (m, P, V, q)→ (q′, A)
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and moves to state qt
(P,V). To verify the applicability of the transition S must check the applicability of the P and V

components.

To check applicability with respect to the V-component, S needs to check that V contains precisely those pebbles

in positions which contain the same data value as that of the mth pebble. Put otherwise, assuming cm = am′ , we must

have V = { j | ∀ j′. c j = a j′ =⇒ b j′ = bm′ }. Thus, for each 1 ≤ j < m, S will find the j′ such that c j = a j′ , and then

check the condition: b j′ = bm′ ⇐⇒ j ∈ V . Thus, S first copies the head position (currently at the top of the stack)

into its register by executing two 1• operations followed by pop(1) and push(1). Note that, because 1• will always

choose a data value that is fresh with respect to the current register contents, two occurrences of this operation are

used sequentially to ensure that the correct data value can be guessed, even if it is already stored in the register. It then

uses a copy of the lookup( j) gadget to retrieve the data value indexed by the head pebble and performs push(1) to put

the data at the top of the stack. Then, for each 1 ≤ j < m in sequence, S uses a copy of the following gadget to check

that the value indexed by c j (the data value under pebble j) is the same as that at the top of the stack just if j ∈ V .

u0 u1 u2 u3 · · · u4+m− j

lookup( j−1)u5+m− j

.

u6+m− ju7+m− j

push2 1• 1•

pop(1)

pop•

pop(1)

pop•

pop(1)

pop2pop(1)push(1)

1•pop(1)

This gadget copies the current 1-stack and then guesses and checks the position c j of pebble j. It then uses a copy

of the lookup( j − 1) gadget to store the data value indexed by pebble j in its register. Next it restores the old 1-stack

(which has the data value under the head pebble at the top of the stack) and: if j ∈ V then it verifies that the data value

at the top and the data value in its register are the same (dotted arrow); if j < V then it verifies that these data values

are different (dashed arrows). At the end of the sequence of m copies of the gadget, S discards the redundant data

value from the top of the stack.

Checking applicability with respect to the P component is much simpler: S needs to check that, for each 1 ≤ j <

m, c j = cm ⇐⇒ j ∈ P. This is achieved by the gadget:

u0 u1 u2 u3 · · · u2+m u3+m
push2 1• pop(1) tm−1 t1 pop2

where each t j is pop(1) if j ∈ P, and pop• otherwise.

At the end of both sequences of gadgets, S transitions to state qt
(q′,A). By construction, we have κ `∗ (qτ(q′,A), d, s′)

iff d = cm, s′ = 〈s〉 and (m, P, V, q) is applicable to [[κ]].

In state qt
(q′, A), S simulates the action ofA executing A and then moves to simulating state q′. If A is stay, then S

simply transitions to state (q′, m). If A is lift-pebble, then S discards the top of the stack and transitions to (q′, m−1).

If A is place-pebble then S pushes an extra copy of the top of the current 1-stack on to the top of the current 1-stack

and transitions to (q′, m+1). Finally, if A is move right, S pops the current pebble position (top of the stack) into its
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register and then copies the current 1-stack using push2. It then uses a copy of the pred(m−1) gadget to reassign to

its register the next index in the sequence and then restores the saved 1-stack, pushes the assignment and transitions

to state (q′, m). The simulation loop then begins again.

It follows from the definition of the simulation loop that, for each proper configuration κ, and each configuration

κ′ in a primary state, κ `∗ κ′ iff κ′ is also proper and [[κ]] `∗ [[κ′]]. Hence, L(A) is non-empty iff there is a final state

q ∈ F and a pebble index m such that S has a run ending in state (q, m).

6.2. Simulation of k-PA with constants

Every pebble automaton induces a finite set of constants {c1, . . . , cl} ⊂ D ∪ {., /} which are those elements of D

(and the start and end of word markers, where applicable) which are mentioned (by the s component) of transitions

in T . Furthermore, the words accepted by a pebble automaton are delimited by markers /, .. Both of these aspects,

which were omitted from the treatment in the main text, are addressed here through an encoding of constants. Since

1-2PDRS has only one register, it does not have a native ability to recognise all such constants and so this must be

encoded. However, it is straightforward to do so using fixed length sequences of identical data values.

To extend the construction from Theorem 23, we simulate constants appearing in the guessed word w. To this end,

we consider an extended definition of m-padded index form stacks which have the following shape:

cm · · · c1anun · · · a1u1 # · · · #︸︷︷︸
l + 2 times

.

Here, the individual data values b j are replaced by words u j of length l + 1. We require that each index a j is distinct

from every other as before and also that each a j is distinct from any data value in any uk. Each word u j encodes either

a particular constant or an anonymous data value. The encoding is as follows. We require each u ∈ {un, . . . , u1} to be

composed of two segments u = bi · · · b1al+1−i · · · a1 with i > 0, and a1 = · · · = al+1−i , b1 = · · · = bi. The quantity i

determines the value represented by the word:

[[bi · · · b1al+1−i · · · a1]] =


bi when i = 1

ci−1 otherwise
.

Also, the ‘bottom of stack’ marker has been lengthened to size l + 2 so that it is distinguished among the other

segments. In this way it is effectively treated as the l + 1st constant.

The operations over padded index stacks must be changed to reflect the more involved encoding. Both lookup and

pred are much the same as before, but because lookup also needs to decode the value it finds at a given index before

returning, the code for the two diverges. The extended pred(m) gadget is simply deref (m, l + 1), since the offset from

one index to the next is now length l + 1. The new gadget for lookup is as follows.
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p0p1· · ·p1+mp2+m

p3+m

p4+m p5+m · · · p5+m+l

p′4+m p′5+m p′5+m+l

pdata pc1 pcl

· · ·

· · ·

push2
pop(1)

pop•

pop(1)

pop•

pop•

pop(1)

1•

pop(1) pop(1) pop(1) pop(1)

pop• pop• pop•

pop2 pop2 pop2

This gadget starts in the same way as deref (m, k) but, after popping off the desired index and reaching state p2+m, it

then proceeds to count the number of consecutive identical data values, thus establishing the number i. The result is

recorded in its state space. Consumers of this operation, such as the simulation loop, can be straightforwardly (but

tediously) modified to take into account whether or not a constant was discovered and do comparisons between values

first according to the record in the state space and second (if both values are anonymous data) according to equality

of data values.

When simulating transitions, S must only choose some applicable (i, P,V, q) → β if there are no other applicable

transitions (i′, P′,V ′, q′)→ β′. Observe that if configurations (i, P,V, q) and (i′, d, P′,V ′, q′) are both applicable to the

current configuration κ, then i′ = i, P′ = P, V ′ = V and q′ = q, since these are all determined by κ. So we modify

S so that, when checking applicability of (i, P,V, q), it looks up and decodes (as above) the value (word of length

l + 1) u under the head pebble and checks that it is not any constant d s.t. (i, d, P,V, q) is the antecedent of some other

transition.

Finally, initialisation must be changed so that a word containing encoded constants can be guessed and stored as

a padded index stack. We show the extended gadget for choosing a word ul+1 (having already chosen u1, . . . , ul for

l ≥ 0), the gadget for choosing a new index is similar to the one without constants.
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q2

q3 · · · q2+l−i · · · q3+l

check(i)

qi
1

qi
2qi

3qi
4

...

check(l + 1) check(l + 1)
· · ·

1•
push(1) push(1) push(1) push(1)

push(1)

1•

pop(1)

push(1)1•

push(1)

push(1)

push(1)

From state q2 and with its 2-stack of shape 〈〈al, ul, . . . , a1, u1, #, . . . , #〉〉 (0 ≤ l), the top row of the gadget allows the

machine to non-deterministically choose a new data value a, a number i and push i copies of a on to the top of the

stack. It must then check that this data value a does not coincide with any of the existing indices a1, . . . , al which is

accomplished using a copy of the check(i) gadget, to be described below. At the end of the check(i) gadget, the stack

of the machine is the same as at the start, i.e. it has the form:

〈〈a, . . . , a︸  ︷︷  ︸
i times

, al, ul, . . . , a1, u1, #, . . . , #︸  ︷︷  ︸
l + 2 times

〉〉

and all that remains is to choose some b, push l + 1 − i copies of b onto the stack and check that a , b and that also b

is different from any existing index. This is accomplished by the remaining part of the gadget.

In order to ensure that the word is properly delimited by the endmarkers, S is modified to always choose u1 such

that [[u1]] = / and to add an extra step of choosing a final encoded data value un+1 and index an+1 such that [[un+1]] = ..

When started from a configuration whose top 1-stack is in extended m-padded index form, the check(m) gadget

ensures that the data value in the machine’s register is different from any index in the stack.

u1 u2 · · · u2+m u3+m+l

· · ·

u4+m+l· · ·u6+m+2lu7+m+2l

push2

pop(1)

pop•

pop(1)

pop•
pop•

pop(1)

pop
•

po
p(

1)

po
p•

1•

pop(1)pop(1)pop2

The gadget first preserves the working 1-stack and then discards the m-padding values. It then cycles, alternating

between checking that an index is fresh for the value in its register and discarding a length l + 1 word u j encoding a

33



data value or constant. At some point it guesses that it has met the bottom of the stack and verifies the guess. Finally

it restores the preserved stack.

7. Conclusion

We have studied reachability problems for pushdown register automata, adding new results to the literature on

automata over infinite alphabets [22]. Although the automata are equipped with unbounded stack storage, we have

shown that their discriminating power with respect to the infinite alphabet is quite restricted and only 3r elements

suffice to answer reachability questions. Unlike in the pushdown-free case, variations in register disciplines no longer

affect the complexity of reachability, which is EXPTIME-complete in every case. We have also shown that global

reachability analysis can be carried out in exponential time. Finally, in contrast to the finite-alphabet case, the exten-

sion of pushdown storage to higher-order pushdown storage leads to undecidability.

Appendix A. From register-manipulating RAs to RAs with non-deterministic reassignment

We show the equivalence by a series of reductions, starting from RMRAs and reducing to more restricted machines

until we reach RAnrs.

Definition 25. An r-RA of type X, for X ∈ {I, II, III}, is a tripleA = 〈Q, F, ∆〉, ∆ ⊆ Q × OPX
r × Q, with:

(I) OPI
r = [r]∪{•}∪{Rα• | α ⊆ [r] }, where Rα• is the partial function given by, for all i ∈ [r] and j ∈ α, Rα• (i, j) = 0,

and Rα• (i, i) = 1 for all i < α.

(II) OPII
r = [r] ∪ {•, ε} ∪ {Ri• | i ∈ [r] }.

(III) OPIII
r = [r] ∪ {ε} ∪ {R+

i• | i ∈ [r] } ∪ {Ri• | i ∈ [r] }.

RAs of types I and II are special cases of RMRAs. Type-III RAs are variants in which the semantics of transitions

q
R+

i•
−−→ q′ is identical to that of sequences of RMRA-transitions: q

Ri•
−−→ ·

i
−→ q′.

LetA = 〈Q, F, ∆〉 be an r-RMRA. We construct an r-RAA′ = 〈Q′, F′, ∆′〉 of type I as follows. We take

Q′ = Q × ([r]
�
→ [r]) F′ = {(q, f ) ∈ Q′ | q ∈ F}

and include in ∆′ precisely the transitions given below.12

• For each q
R
−→
A

q′ and π, f : [r]
�
−→ [r] and Rα• such that R || (π; Rα• ), add (q, f )

Rα′•
−−−→
A′

(q′, f ′) with α′ = (π−1; f )(α)

and f ′ = π−1; f .

12Here we view the bijection π as an r-manipulation with component π0 empty and π1 = π. Moreover, we write R || (π; Rα• ) for the condition

“R ∪ (π; Rα• ) is a valid r-manipulation”.
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• For each q
i
−→
A

q′ and f : [r]
�
−→ [r] add (q, f )

f (i)
−−→
A′

(q′, f ).

• For each q
•
−→
A

q′ and f : [r]
�
−→ [r] add (q, f )

•
−−→
A′

(q′, f ).

The idea is that the second component f of a given state (q, f ) of A′ maps register locations of configurations in A

in state q to register locations of configurations ofA′ in state (q, f ). For example, the first clause of the construction

above says that, if there is an R transition inA from q to q′ and R can be decomposed as some permutation of locations

π followed by some refreshes Rα• then, in A′, (q, f ) can transition to (q′, f ′) on Rα′• . Since R may refresh those

locations in α which are themselves given by permuting locations according to π, it follows that the corresponding

register locations are given inA′ by starting from α, undoing π and then consulting f .

Now, letA1 andA2 be register automata (of any denomination). We say that a relation R between configurations

ofA1 andA2 is a simulation if, whenever κ1Rκ2,

• if κ1 is final then so is κ2;

• if κ1 `
x
A1

κ′1 (with x ∈ D ∪ {ε}) then κ2 `
x
A2

κ′2 and κ′1Rκ
′
2.

We say that R is a bisimulation if both R and R−1 are simulations.

Lemma 26. LetA be an r-RMRA andA′ be the type-I r-RAA′ constructed as above. Then, the relation

R = { ((q, τ), (q, f , τ̂)) | τ = f ; τ̂ }

is a bisimulation13.

Proof. Note first that both R and R−1 relate final configurations to final ones. Now, let (q, τ)R(q, f , τ̂).

Suppose (q, τ) ` (q′, τ′), due to some q
R
−→ q′, so τRτ′. We let π : [r]

�
−→ [r] be such that, for all i, j, (i, j) ∈ π

iff τ(i) = τ′( j), and α be an enumeration of the elements of [r] \ ran(π). Since τRτ′, we have R || (π; Rα• ). Thus,

(q, f )
Rα′•
−−−→
A′

(q′, f ′) and so (q, f , τ̂) ` (q′, f ′, τ̂′), for f ′ = π−1; f and α′ = (π−1; f )(α) and any τ̂′ such that τ̂Rα′• τ̂
′. We

take τ̂′ = f −1; π; τ′ and proceed to show τ̂Rα′• τ̂
′. We have:

Rα′• (i, j) = 1 =⇒ i = j < (π−1; f )(α)

=⇒ ( f −1; π)(i) = ( f −1; π)( j) < α

(1)
=⇒ (π; Rα• )( f −1(i), ( f −1; π)( j)) = 1

(2)
=⇒ τ( f −1(i)) = τ′(( f −1; π)( j)) =⇒ τ̂(i) = τ̂′( j)

where (1) is by definition of π; Rα• and (2) is by definition of π and α. Moreover,

Rα′• (i, j) = 0
(3)

=⇒ j ∈ (π−1; f )(α) =⇒ ( f −1; π)( j) ∈ α

(4)
=⇒ τ′(( f −1; π)( j)) , τ( f −1(i)) =⇒ τ̂′( j) , τ̂(i)

13Throughout this section we write (q, f , τ̂) rather than the more cumbersome ((q, f ), τ̂).
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where (3) is by definition of Rα′• and (4) is by definition of α. Now, observing that f ′; τ̂′ = π−1; f ; f −1; π; τ′ = τ′, we

obtain (q′, τ′)R(q′, f ′, τ̂′).

Conversely, if (q, f , τ̂) ` (q′, f ′, τ̂′), due to some (q, f )
Rα′•
−−−→
A′

(q′, f ′) via some q
R
−→
A

q′, then f ′ = π−1; f and α′ =

(π−1; f )(α) and τ̂Rα′• τ̂
′, for some π and α such that R || (π; Rα• ). Note that π; Rα• is maximal, in the sense that

R || (π; Rα• ) implies R1 ⊆ (π; Rα• )1. Now, (q, τ) ` (q′, τ′) for all τRτ′. We take τ′ = π−1; f ; τ̂′ and proceed to show

τRτ′. We have:

R(i, j) = 1 =⇒ (π; Rα• )(i, j) = 1 =⇒ π(i) = j < α

=⇒ f (i) = (π−1; f )( j) < (π−1; f )(α) = α′

=⇒ Rα′• ( f (i), (π−1; f )( j)) = 1

(5)
=⇒ τ̂( f (i)) = τ̂′((π−1; f )( j)) =⇒ τ(i) = τ′( j)

Moreover, if R(i, j) = 0 then either j ∈ α or π(i) , j, and

( j ∈ α ∨ π(i) , j) =⇒ ((π−1; f )( j) ∈ (π−1; f )(α) ∨ (π−1; f )( j) , f (i))

(6)
=⇒ τ̂′(π−1; f )( j)) , τ̂( f (i)) =⇒ τ′( j) , τ(i)

where (5) and (6) follow from τ̂Rα′• τ̂
′. Now, observing that f ′; τ̂′ = π−1; f ; τ̂′ = τ′, we obtain (q′, τ′)R(q′, f ′, τ̂′).

The cases of the other transitions are straightforward.

Now, let A = 〈Q, F, ∆〉 be an r-RA of type I. We construct a 2r-RA A′ = 〈Q′, F, ∆′〉 of type II accepting the same

languages as A by simply decomposing the Rα• -labelled transitions of A into constituent Ri• -labelled ones. Note

that, because of possible name-reuses in the composition Ri•1 ; · · · ; Ri•m , the latter is not equivalent to R{i1,··· ,im}• . To

avoid unintentional name-reuse, we add an additional r registers to record old names that should not be reused in a

transition. In particular, we take

Q′ = (Q × ([r]
�
→ [2r])) ∪ Q̂ F′ = {(q, f ) ∈ Q′ | q ∈ F}

where Q̂ = { (t, k, f ) ∈ (∆× [r]×Φ) | t = q
R{i1 ,··· ,im }•
−−−−−−−→
A

q′, k < m } is a set of auxiliary states that will be used for breaking

down transitions of the form q
Rα•
−−→
A

q′. Here [r]
�
→ [2r] denotes the set of (total) injections from [r] to [2r]. We let

Φ = { f ∈ [2r]
�
⇀ [2r] | dom( f ) = [r + i], 0 ≤ i < r } be re-indexing functions that allow us to locate the r registers

of A inside the 2r registers of A′ (i.e. the i-th A-register is to be found in the f (i)th A′-register), but also specify

the names that should not be reused at this point (all names in A′-registers ran( f ) \ f ([r])). Then, the transitions of

∆′ are obtained by dividing transitions of the form q
R{i1 ,··· ,im }•
−−−−−−−→
A

q′ into m steps, where at each step j we stipulate that

a fresh name should be introduced in register i j, with freshness specified with respect to the range of the re-indexing

function f stored in the current state ofA′. These re-indexing functions need to be updated along the way. Moreover,

sometimes the fresh names may actually be already resident in the part of the 2r registers that is not covered by f .
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Lemma 27. Let A be a type-I r-RA and A′ be the type-II 2r-RA constructed as above. For all A-configurations

(q, τ), L(A)(q, τ) = L(A′)(q, { i 7→ i | i ∈ [r] }, τ).

Proof. We here give the full definition of ∆′. Note first that, by convention, given transition t = q
R{i1 ,··· ,im }
−−−−−−→
A

q′ and

f : [r]
�
→ [2r], we write (t, 0, f ) for (q, f ). Given f ∈ Φ, we let f	 be the least number in [2r] \ dom( f ), and f⊕ to be

the least number in [2r] \ ran( f ). We build ∆′ as follows.

• For each t = q
R{i1 ,··· ,im }•
−−−−−−−→
A

q′ and (t, k, f ) ∈ Q′ with 0 ≤ k < m − 1 and | f | ≤ r + k, add:

– (t, k, f )
R f⊕•

−−−→
A′

(t, k+1, f ′) with f ′ = f [ f	 7→ f (ik), ik 7→ f⊕], and

– for each j ∈ [2r] \ ran( f ), (t, k, f )
ε
−−→
A′

(t, k+1, f [ f	 7→ f (ik), ik 7→ j]),

• For each t = q
R{i1 ,··· ,im }•
−−−−−−−→
A

q′, m > 0, and (t,m − 1, f ) ∈ Q′, add:

– (t,m − 1, f )
R f⊕•

−−−→
A′

(q′, f ′ � [r]) with f ′ = f [im 7→ f⊕], and

– for each j ∈ [2r] \ ran( f ), add (t,m − 1, f )
ε
−−→
A′

(q′, f [im 7→ j] � [r]),

• For each q
R∅•
−−→
A

q′, add (q, f )
ε
−−→
A′

(q, f ).

• For each q
i
−→
A

q′ and f , add (q, f )
f (i)
−−→
A′

(q′, f ).

• For each q
•
−→
A

q′ and f , add (q, f )
•
−−→
A′

(q′, f ) and, for all j ∈ [2r] \ ran( f ), add (q, f )
j
−−→
A′

(q′, f ).

Now, according to the argument given above, we can see that, for each transition q
Rα•
−−→
A

q′, f : [r]
�
−→ [2r] and pair

of r- and 2r-assignments τ, τ̂ such that τ = f ; τ̂, if (q, τ) ` (q′, τ′) then (q, f , τ̂) `∗ (q′, f ′, τ̂′), for τ̂′, f ′ such that

τ′ = f ′; τ̂′. Also, conversely, if (q, f , τ̂) `∗ (q′, f ′, τ̂′) then (q, τ) ` (q′, f ; τ̂′). Our statement then follows from these

two observations.

Finally, letA = 〈Q, F, ∆〉 be an r-RA of type II. We construct a type-III (r+1)-RAA′ = 〈Q′, F′, ∆′〉 as follows. We

take

Q′ = Q × ([r]
�
→ [r + 1]) F′ = {(q, f ) ∈ Q′ | q ∈ F}

and include in ∆′ precisely the transitions given below. Here, the idea is to simulate the
•
−→
A

transition by using the

extra (r+1)th register to generate a locally fresh element of the infinite alphabet and then read exactly that element

from the input word. Given f : [r]
�
−→ [r + 1] we write f⊕ for the unique element of the set [r + 1] \ ran( f ). For all

q ∈ Q and f : [r]
�
−→ [r + 1]:

• For each q
Ri•
−−→
A

q′ add (q, f )
R f (i)•

−−−−→
A′

(q, f ) and (q, f )
ε
−−→
A′

(q, f [i 7→ f⊕]).

• For each q
i
−→
A

q′ add (q, f )
f (i)
−−→
A′

(q′, f ).

37



• For each q
•
−→
A

q′ add (q, f )
R+

f⊕•

−−−→
A′

(q′, f ) and (q, f )
f⊕
−−→
A′

(q′, f ).

• For each q
ε
−→
A

q′ add (q, f )
ε
−−→
A′

(q′, f ).

Lemma 28. LetA be a type-II r-RA andA′ be the type-III (r+1)-RA constructed as above. Then, the relation

R = { ((q, τ), (q, f , τ̂)) | τ = f ; τ̂ }

is a bisimulation.

Proof. Note first that both R and R−1 relate final configurations to final ones. Now let (q, τ)R(q, f , τ̂).

Suppose (q, τ) ` (q′, τ′), due to some q
Ri•
−−→ q′, so τ′ = τ[i 7→ a] for some fresh a ∈ D. If a = τ̂( f⊕) then, from

(q, f )
ε
−−→
A′

(q, f [i 7→ f⊕]), we have (q, f , τ̂) ` (q, f ′, τ̂) with f ′ = f [i 7→ f⊕]. Moreover, since τ = f ; τ̂, we also have

τ′ = f ′; τ̂, so (q′, τ′)R(q′, f ′, τ̂). If a , τ̂( f⊕) then τ = f ; τ̂ implies that a is fresh for τ̂. Thus, (q, f )
R f (i)•

−−−−→
A′

(q′, f )

implies (q, f , τ̂) ` (q′, f , τ̂′) with τ̂′ = τ̂[ f (i) 7→ a]. Moreover, τ′ = f ; τ̂′ so (q′, τ′)R(q′, f , τ̂′).

Conversely, suppose (q, f , τ̂) ` (q′, f ′, τ̂′), due to (q, f )
R f (i)•

−−−−→
A′

(q′, f ), itself due to some q
Ri•
−−→
A

q′. Then, f ′ = f and

τ̂′ = τ̂[ f (i) 7→ a], some a < ran(τ̂), and we can see that (q, τ) ` (q′, τ′) with τ′ = τ[i 7→ a] and (q′, τ′)R(q′, f , τ̂′). If the

transition is due to (q, f )
ε
−−→
A′

(q′, f [i 7→ f⊕]) then, since τ̂( f⊕) < ran(τ), we have (q, τ) ` (q′, τ′) with τ′ = τ[i 7→ τ̂( f⊕)]

and (q′, τ′)R(q′, f ′, τ̂).

Suppose (q, τ) `a (q′, τ), due to q
•
−→
A

q′. Then, if a = τ̂( f⊕), from (q, f )
f⊕
−→
A

(q′, f ) we obtain (q, f , τ̂) `a (q′, f , τ̂)

and, since τ = τ′, (q′, τ′)R(q′, f , τ̂). On the other hand, if a < ran(τ̂), we use the transition (q′, f )
R+

f⊕•

−−−→
A′

(q′, f ) to

obtain (q, f , τ̂) `a (q′, f , τ̂′), with τ̂′ = τ̂[ f⊕ 7→ a], and we can see that (q′, τ)R(q′, f , τ̂′). Also, using essentially

the same argument, we can show that if (q, f , τ̂) `a (q′, f , τ̂′), with a fresh or a = τ̂( f⊕), then (q, τ) `a (q′, τ) with

(q′, τ)R(q′, f , τ̂′).

The cases of the other transitions are straightforward.

Summing up, we have the following.

Theorem 29. LetA be an r-RMRA. We can construct a (2r+1)-RAnr Â, of size O(2p(|A|)) for some polynomial p, such

that, for eachA-configuration κ there is a Â-configuration κ̂ such that L(A)(κ) = L(Â)(κ̂).

Proof. By consecutively applying the three previous lemmas, and using the fact that bisimilarity implies language

equivalence, we obtain the statement for Â a type-III (2r+1)-RA of exponential size. From the latter we obtain a

(2r+1)-RAnr by simply breaking each transition of the form q
R+

i•
−−→
Â

q′ into two transitions: q
Ri•
−−→ ·

i
−→ q′. Epsilon

transitions can be removed using the standard procedure of computing epsilon closures for each state.

References
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[4] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data words, ACM Trans. Comput. Log. 12 (4)

(2011) 27.

[5] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown automata: Application to model-checking, in: Proceedings of 8th

International Conference on Concurrency Theory, CONCUR, vol. 1243 of Lecture Notes in Computer Science, Springer, 1997, pp. 135–150.

[6] A. Bouajjani, S. Fratani, S. Qadeer, Context-bounded analysis of multithreaded programs with dynamic linked structures, in: Proceedings of

the 19th International Conference on Computer Aided Verification , CAV, vol. 4590 of Lecture Notes in Computer Science, Springer, 2007,

pp. 207–220.

[7] A. Bouajjani, P. Habermehl, R. Mayr, Automatic verification of recursive procedures with one integer parameter, Theor. Comput. Sci. 295

(2003) 85–106.

[8] E. Y. C. Cheng, M. Kaminski, Context-free languages over infinite alphabets, Acta Inf. 35 (3) (1998) 245–267.

[9] S. A. Cook, Characterizations of pushdown machines in terms of time-bounded computers, J. of the Assoc. for Comput. Mach. 18(1) (1971)

4–18.
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