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Today, soft materials (e.g., elastomers, polymers, fabrics, etc.), with compliances and extensibilities 
not allowed by rigid components, are investigated in order to develop artificial tactile sensors that can 
emulate the adaptability of the natural tissues to objects and environment in general. This research is 
fueled by the increasing demand for conformable, yet functional and robust, systems in many fields 
from soft robotics to wearable systems and biomedical devices (Kim et al., 2013).

In the past decades, remarkable results were obtained in the design and fabrication of tactile 
sensors and, more in general, of electronic skins (e-skins) (Someya et al., 2004; Sekitani et al., 2008; 
Kim et al., 2011; Park et  al., 2014; Xu et al., 2014; Zhang et  al., 2015). These achievements were 
fundamental for a plethora of new applications, such as human–machine interfaces, body-integrated 
electronics, and medical/health-monitoring devices. Also, they offered very advanced technological 
solutions for robotics and wearable systems. From a mechanical point of view, flexible and stretch-
able substrates were chosen, while the integrated components went from rigid (Yang et al., 2010; Kim 
et al., 2011; Xu et al., 2014) to semi-rigid (Engel et al., 2005; Yang et al., 2008) and finally to flexible 
(Tien et al., 2014; Park et al., 2015; Zhang et al., 2015) and stretchable (Someya et al., 2004; Sekitani 
et al., 2008; Park et al., 2014; Chou et al., 2015) devices.

In particular, pressure sensors are widely applied in classical robotics, i.e., where the materials of 
the robot body are rigid. Thus, when positioning the sensors on the hosting structures, the sensors’ 
functionality is not affected by the mechanical characteristics of the robot itself, since the rigid and 
elastic materials do not store any mechanical energy. Hence, tactile sensors were developed and 
characterized as independent components that were integrated in the robot at a later stage. On the 
other hand, especially for integrating pressure sensors in a soft robot or in a wearable system, this 
approach would not give the desired results. Indeed, the mechanical characteristics of the soft robots 
or the natural skin, which act as hosting substrates, could reduce or even totally impair the correct 
functionality of such mechanical sensors. In particular, due to the substrate softness, the largest com-
pression can occur in the substrate rather than in the sensing device. The abovementioned weaknesses 
can be overcome with an integrated approach (i.e., considering the mechanical characteristics of both 
sensing device and substrate) in the modeling, fabrication, and characterization of such systems. For 
instance, in the case of wearable systems, the properties of human skin, and underlying tissues and 
bones, should be taken into account; whereas in soft robotics, the materials used for fabricating them 
[e.g., mainly elastomers such as polydimethylsiloxane (PDMS) and Ecoflex® (Shepherd et al., 2011; 
Morin et al., 2012)] must be included as part of the working system. From the mechanical point of 
view, human skin can be approximated as a bilayer tissue standing on a soft substrate, with non-linear 
and viscoelastic properties (Hendriks et al., 2003) depending on several factors, such as the age, the 
sex, or the body region (Escoffier et al., 1989). The lower layer (hypodermis) has an average thickness 
around 0.8 mm, with a Young’s modulus around 2 kPa. Otherwise, the upper (dermis) has a thickness 
between 1.2 and 1.5 mm, with a Young’s modulus around 35 kPa, while the most superficial layer 
(epidermis) can be neglected from a mechanical point of view, due to its very low thickness (around 
80 µm). Finally, the subcutaneous tissue (muscle) has an average Young’s modulus of 80 kPa (Pailler-
Mattei et al., 2008). Looking at the soft robotics side, PDMS and Ecoflex® present non-linear and 
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Figure 1 | picture (A) and schematic structure (B) of the soft capacitive pressure sensor based on conductive textile electrodes and silicone 
elastomers. (C) Stress vs. ΔC/C0 experimental data (red circles), compared to the fitting curve (black solid line) considering the Ecoflex dielectric layer as a Fung 
non-linear material.
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viscoelastic behaviors for high strain rates, while the stress–strain 
relationships are almost linear for strain under 40% (Case et al., 
2015). In particular, PDMS is a transparent silicone with a Young’s 
modulus varying from 100 kPa to 4 MPa, mainly due to its curing 
temperature and to the mix ratio of prepolymers. Also, Ecoflex® 
has a Young’s modulus around 30–40 kPa (Case et al., 2015), and 
it is one of the very few materials available for mimicking the 
human skin mechanical behavior (Amjadi et al., 2015).

Hence, modeling the behavior of a soft pressure sensor on 
a multilayer soft substrate can be not trivial. In our opinion, 
analyzing the correlation between the mechanical and functional 
(e.g., electrical) behavior of sensors made of soft materials is 
mandatory. In particular, it is important to understand how the 
mechanical properties of the constituent materials of sensors 
affect the electrical response and to evaluate the influence of the 
soft structures and substrates in which they will be embedded. 
Then, these characteristics can be exploited to encode tactile 
cues more efficiently and with simpler designs. This requires the 
development of non-linear mechanical models, also considering 
the way the mechanical response of such materials is typically 
described in literature, i.e., with hyperelastic models like the 
Mooney–Rivlin, Ogden, or Fung (Fung, 1993; Holzapfel, 2000).

In the overall vision of designing innovative smart devices for 
soft robotics and wearable applications in the near future, here 
we present a case study evaluating the behavior of a skin-like soft 
pressure sensor when stimulated by external loads quasi-statically 
(i.e., the indentation velocity is low). This way, some theoretical 
insights can be given for future analyses of more complex stimuli. 
The sensor, shown in Figure 1A, is made of different soft layers. 
It is highly sensitive and can detect normal forces in the 20  N 
range. Since the sensor area is 8 mm × 8 mm, the pressure range 
is around 300 kPa. The device structure, sketched in Figure 1B, 
is built by integrating in between them two non-stretchable con-
ductive textile electrodes (Zelt fabric, Mindsets Ltd., Whaltam 
Abbey, UK) and a thin film of Ecoflex®. It is a super soft silicone 
elastomer (Smooth-On 0010, USA), which acts as a deformable 
dielectric layer. The whole structure is embedded between two 
PDMS (Sylgard 184, Dow Corning, Midland, TX, USA) layers 
that insulate the textile electrodes while providing a soft and 

compliant surface to outer stimuli. In our case, we used a 1:10 
mix ratio, with the films cured at room temperature for at least 
24 h before the use. Regarding elastomeric layers, the correspond-
ing Young’s modulus is around 3 MPa for PDMS and 30 kPa for 
Ecoflex. Both values have been measured by means of indentation 
tests. Moreover, a particular aspect that affects sensor response is 
given by the textile electrodes: they consist of copper/tin-coated 
woven fabric. The architecture of a woven fabric is such that 
small air volumes (i.e., sheds) are embedded among the warp and 
weft that confer unique properties to the tactile sensor. Indeed, 
a microporous structure is obtained in the active region of the 
device. When a pressure is applied, together with the compression 
of elastomeric layers, the sheds’ volume in the stimulated area 
is reduced relevantly, thereby resulting in an enhanced sensor 
response for a wider pressure range (Viry et al., 2014).

A pressure applied on the sensor surface causes the variation 
of the dielectric layer thickness d, with respect to d0 = 300 μm, 
giving
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being C0 = kA0/d0 the capacitance for null pressure, k and A0 the 
permittivity and the sensor area, respectively, and εc = (d0 − d)/d0 
the compressive strain of the dielectric layer. The best fitting of 
the compressive stress (σc)–strain (εc) experimental curve of the 
multilayer film is given by the Fung model, with an exponential 
stress–strain constitutive equation (Fung, 1993), valid for uniaxial 
response

 σ ε
c

cc e c= −( )1
2 1 , (2)

with c1 and c2 two material constants.
Then, combining Eqs 1 and 2, we obtain
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where x = ΔC/C0.
Equation  3 is exploited for the evaluation of experimental 

data obtained by indentation tests. In particular, a flat Delrin 
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8 mm × 8 mm probe was connected to a 6-axis load cell (ATI 
Nano 17, ATI Industrial Automation Inc., Apex, NC, USA), which 
acquired force data during the tests. The indentations were made 
at constant low velocity (10 µm/s) by means of a servo-controlled 
micrometric translation stage (M111.DG, Physik Instruments, 
Karlsruhe, Germany), while the capacitive output signals were 
acquired simultaneously with a custom made printed circuit 
board based on 24-bits resolution capacitance-to-digital con-
verter (CDC) (AD7747, Analog Devices Inc., Nordwood, MA, 
USA) and PIC32 microcontroller that sends data to a control PC 
via USB interface. The CDC resolution is 1  fF, while the RMS 
noise is reduced to around 2  fF by implementing a differential 
capacitance reading strategy and using coaxial cables. Thus, the 
minimum detectable signal is around 6 fF (three times the RMS 
noise), which allows a readout force resolution at the millinewton 
scale.

In Figure 1C, the σc − ΔC/C0 curve, averaged over 12 tests, 
is fitted using Eq. 3, showing a very good agreement. We obtain 
c1 = 0.0660 and c2 = 33.847 kPa.

To study the influence of each different layer, a first approach 
could be to limit the analysis to small deformations. In this case, 
linearizing Eq. 2, σ ε εc c cc c E 1 2 = , and the product c1c2 represents 
the Young’s modulus for small deformations. Then, for small 
strain, the apparent Young’s modulus of the whole structure is 
Ea  =  c1c2  =  2.24  kPa, well below the nominal value of Ecoflex 
E0 =  30–40  kPa. A direct measurement of the Young modulus 
of textile by means of indentation tests is not trivial, since the 
experimental errors can affect the results considerably. Thus, 
we made tests on a multilayer composed of Ecoflex embedded 
between two textile films (which correspond to the active region 
of the sensor), obtaining a multilayer modulus Em = 4 kPa. Finally, 
comparing the stiffness of the whole structure to the series of 
three layers, the Young’s modulus Et of the textile electrodes can 
be estimated. Indeed, considering
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where dt = 150 μm is the textile thickness, we obtain Et = 2.22 kPa, 
almost equal to Ea. This demonstrates the relevance of the textile 
material in the mechanical behavior of the sensor. Also, as 

already shown in Viry et  al. (2014), the air sheds enhance the 
sensor response at low pressure ranges and considerably enlarge 
its operating range. Moreover, it is noteworthy to mention that, 
even if during compression all different layers are subjected to 
deformation, the capacitance variation is due mainly to the thick-
ness variation of the central sensor region. Therefore, due to the 
strong non-linear behavior of the whole structure, it is not pos-
sible to relate directly the total compressive strain to the measured 
capacitance. Indeed, the output signal is due to the compression 
of the central region only. By contrast, this example suggests that 
such electrical measurements could also be exploited as a tool to 
evaluate the effective deformation of a single layer embedded in 
a composite structure, even in the presence of several non-linear 
materials.

In conclusion, we provided some insight about the kind 
of complexity introduced by the presence of soft materials in 
modeling and designing a tactile sensor. Starting from this 
analysis, future work will be dedicated to quantitatively describe 
the effect of mechanical behavior of the constituent materials 
(especially textile) on the sensor response, by using stimuli with 
different stiffness and shape. In addition, the effect of the soft 
substrates, such as human skin for wearable systems or elastomers 
(i.e., PDMS, Ecoflex®) for soft robotic applications, should be 
included, as mentioned above. In this way, it will be possible to 
better understand how to encode different tactile features, thus 
not only force but also, e.g., shape and hardness, with improved 
but simple sensor designs.

AuTHOr COnTriBuTiOnS

MT, NP, and LB developed and discussed the model. MT per-
formed experiments. LB supervised the work. All the authors 
discussed the results and wrote the manuscript preparation.

ACKnOWLeDgMenTS

NP is supported by the European Research Council PoC 2015 
“Silkene” No. 693670 and by the European Commission H2020 
under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer 
Nanocomposites”) and under the FET Proactive “Neurofibres” 
No. 732344.

reFerenCeS

Amjadi, M., Yoon, Y. J., and Park, I. (2015). Ultra-stretchable and skin- 
mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. 
Nanotechnology 26, 375501. doi:10.1088/0957-4484/26/37/375501  

Case, J. C., White, E. L., and Kramer, R. K. (2015). Soft material character-
ization for robotic applications. Soft Rob. 2, 80–87. doi:10.1089/soro. 
2015.0002 

Chou, H.-H., Nguyen, A., Chortos, A., To, J. W. F., Lu, C., Mei, J., et  al. (2015). 
A chameleon-inspired stretchable electronic skin with interactive colour 
changing controlled by tactile sensing. Nat. Commun. 6, 8011. doi:10.1038/ 
ncomms9011 

Engel, J., Chen, J., Fan, Z. F., and Chang, L. (2005). Polymer micromachined 
multimodal tactile sensors. Sens. Actuators Phys. 117, 50–61. doi:10.1016/ 
j.sna.2004.05.037 

Escoffier, C., de Rigal, J., Rochefort, A., Vasselet, R., Leveque, J.-L., and 
Agache, P. G. (1989). Age-related mechanical properties of human skin: 

an in  vivo study. J. Invest. Dermatol. 93, 353–357. doi:10.1111/1523-1747. 
ep12280259 

Fung, Y. (1993). Biomechanics: Material Properties of Living Tissues. New York: 
Springer.

Hendriks, F. M., Brokken, D., Van Eemeren, J. T. W. M., Oomens, C. W. J., 
Baaijens, F. P. T., and Horsten, J. B. A. M. (2003). A numerical-experi-
mental method to characterize the non-linear mechanical behaviour of 
human skin. Skin Res. Technol. 9, 274–283. doi:10.1034/j.1600-0846.2003. 
00019.x 

Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. Chichester: John Wiley & Sons.
Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., et  al. (2011). 

Epidermal electronics. Science 333, 838–843. doi:10.1126/science.1206157 
Kim, S., Laschi, C., and Trimmer, B. (2013). Soft robotics: a bioinspired evolution 

in robotics. Trends Biotechnol. 31, 23–30. doi:10.1016/j.tibtech.2013.03.002 
Morin, S. A., Shepherd, R. F., Kwok, S. W., Stokes, A. A., Nemiroski, A., and 

Whitesides, G. M. (2012). Camouflage and display for soft machines. Science 
337, 828–832. doi:10.1126/science.1222149 

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive
https://doi.org/10.1088/0957-4484/26/37/375501
https://doi.org/10.1089/soro.
2015.0002
https://doi.org/10.1089/soro.
2015.0002
https://doi.org/10.1038/
ncomms9011
https://doi.org/10.1038/
ncomms9011
https://doi.org/10.1016/
j.sna.2004.05.037
https://doi.org/10.1016/
j.sna.2004.05.037
https://doi.org/10.1111/1523-1747.ep12280259
https://doi.org/10.1111/1523-1747.ep12280259
https://doi.org/10.1034/j.1600-0846.2003.00019.x
https://doi.org/10.1034/j.1600-0846.2003.00019.x
https://doi.org/10.1126/science.1206157
https://doi.org/10.1016/j.tibtech.2013.
03.002
https://doi.org/10.1126/science.1222149


4

Totaro et al. Micromechanical Analysis of Soft Tactile Sensors

Frontiers in Materials | www.frontiersin.org February 2017 | Volume 4 | Article 3

Pailler-Mattei, C., Bec, S., and Zahouani, H. (2008). In vivo measurements of the 
elastic mechanical properties of human skin by indentation tests. Med. Eng. 
Phys. 30, 599–606. doi:10.1016/j.medengphy.2007.06.011 

Park, J., Kim, M., Lee, Y., Lee, H. S., and Ko, H. (2015). Fingertip skin–inspired 
microstructured ferroelectric skins discriminate static/dynamic pres-
sure and temperature stimuli. Sci. Adv. 1, e1500661. doi:10.1126/sciadv. 
1500661 

Park, S., Kim, H., Vosgueritchian, M., Cheon, S., Kim, H., Koo, J. H., et al. (2014). 
Stretchable energy-harvesting tactile electronic skin capable of differentiating 
multiple mechanical stimuli modes. Adv. Mater. Weinheim 26, 7324–7332. 
doi:10.1002/adma.201402574 

Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., and Someya, T. (2008). 
A rubberlike stretchable active matrix using elastic conductors. Science 321, 
1468–1472. doi:10.1126/science.1160309 

Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., 
et al. (2011). Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403. 
doi:10.1073/pnas.1116564108 

Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T. (2004).  
A large-area, flexible pressure sensor matrix with organic field-effect transistors 
for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A. 101, 9966–9970. 
doi:10.1073/pnas.0401918101 

Tien, N. T., Jeon, S., Kim, D.-I., Trung, T. Q., Jang, M., Hwang, B.-U., et  al. 
(2014). A flexible bimodal sensor array for simultaneous sensing of pressure 
and temperature. Adv. Mater. Weinheim 26, 796–804. doi:10.1002/adma. 
201302869 

Viry, L., Levi, A., Totaro, M., Mondini, A., Mattoli, V., Mazzolai, B., et al. (2014). 
Flexible three-axial force sensor for soft and highly sensitive artificial touch. 
Adv. Mater. Weinheim 26, 2659–2664. doi:10.1002/adma.201305064 

Xu, S., Zhang, Y. H., Jia, L., Mathewson, K. E., Jang, K. I., Kim, J., et al. (2014). Soft 
microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 
70–74. doi:10.1126/science.1250169 

Yang, Y. J., Cheng, M. Y., Chang, W. Y., Tsao, L. C., Yang, S. A., Shih, W. P., et al. (2008). 
An integrated flexible temperature and tactile sensing array using PI-copper 
films. Sens. Actuators Phys. 143, 143–153. doi:10.1016/j.sna.2007.10.077  

Yang, Y. J., Cheng, M. Y., Shih, S. C., Huang, X. H., Tsao, C. M., Chang, F. Y., et al. 
(2010). A 32 × 32 temperature and tactile sensing array using PI-copper films. 
Int. J. Adv. Manuf. Technol. 46, 945–956. doi:10.1007/s00170-009-1940-z 

Zhang, F. J., Zang, Y. P., Huang, D. Z., Di, C. A., and Zhu, D. B. (2015). Flexible and 
self-powered temperature-pressure dual-parameter sensors using microstruc-
ture-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356. 
doi:10.1038/Ncomms9356 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The handling editor declared a past coauthorship with one of the authors (NP) and 
states that the process nevertheless met the standards of a fair and objective review.

Copyright © 2017 Totaro, Pugno, Mazzolai and Beccai. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these  
terms.

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive
https://doi.org/10.1016/j.medengphy.2007.06.011
https://doi.org/10.1126/sciadv.
1500661
https://doi.org/10.1126/sciadv.
1500661
https://doi.org/10.1002/adma.201402574
https://doi.org/10.1126/science.1160309
https://doi.org/10.1073/pnas.1116564108
https://doi.org/10.1073/pnas.0401918101
https://doi.org/10.1002/adma.
201302869
https://doi.org/10.1002/adma.
201302869
https://doi.org/10.1002/adma.201305064
https://doi.org/10.1126/science.1250169
https://doi.org/10.1016/j.sna.2007.10.077
https://doi.org/10.1007/s00170-009-
1940-z
https://doi.org/10.1038/Ncomms9356
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Micromechanical Analysis of Soft Tactile Sensors
	Author Contributions
	Acknowledgments
	References


