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Abstract 

Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized 

by robust interlocking between barbules. Thus, revealing the robustness of the interlocking 

mechanical behavior of the barbules is very important to understand the function and long-term 

resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, 

presents a hierarchical mechanical model for deriving the critical delamination conditions of the 

interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high 

robustness and flaw-tolerant design of the structure. This work contributes to the understanding of 

the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and 

provides a basis for design of feather-inspired materials with robust interlocking mechanism, such 

as advanced bio-inspired micro-zipping devices. 

 

Introduction 

Birds’ feathers are a complex evolutionary novelty characterized by hierarchical structural diversity. 

Regarding their structural morphogenesis, different researchers presented different models, from 

the developmental approach of molecular mechanisms [1], to the growth theory of feather [2], and 

to the competition between growth rate and feather quality [3]. These models have been analyzed 

in detail by following their functions, such as thermal insulation, water repellency, and mechanical 

protection [4]. One of their important functions, which are well-accepted, is that the feathers must 

possess the aerodynamic properties providing the birds’ flight. This ability is achieved thanks to the 

rigid and flexible closed pennaceous vane, whose robustness or integrity are based on the elaborate 

interlocking of barbules (fig. 1(a)) [5]. Therefore, knowing the barbules’ interlocking mechanics is 

very important to understand the function and robustness of the feathers. Recently, a mechanical 

experiment was performed to test the rupture and recovery behaviors of a swan (Cygnus olor ) 

feather in order to explore the zipping and unzipping behaviors in feathers [6]. It showed that the 

delamination strength (at rupture) of the interlocking barbules was dependent on the interaction 

between the bow- and hook-barbules, and the hooklets on the hook-barbules play an important role. 

In respect of hooklet mechanics, researchers have reported mechanical behaviors of single hooklets 

[7,8], however, they are plants fruits for dispersing their seeds. Here, instead of studying the 

developmental morphology of feathers, we aimed at understanding the robustness of interlocking 

hook- and bow-barbule arrays in bird feathers, using a hierarchical analytical model (hook- and bow-

barbules connected by microhook arrays). The deformations of the barbs and barbules were studied, 
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and then coupled to develop a theoretical framework to predict critical delamination forces between 

the barbules. It is worth mentioning that the model does not include the exact hooklet geometry, and 

only considers the equivalent friction effect produced by the hooklets between the barbules as 

reasonably suggested by [7,8]. 

 

Theory 

According to the study on feather morphology [4], we first simplify the delaminated barbbarbule 

structure into a symmetrical hierarchical model, see fig. 1(b). The model involves deformations of 

barbs and barbules; here, we denote the barbs by superscript (1) and the barbules by superscript 

(2), respectively. Because of the symmetry about the global axis X (or OO’), the half structure of the 

i-th pair of interlocking barbules (1 ≤ i ≤ k ≤ n, where n is the total number of pairs of hook- and bow-

barbules, and k is the number of pairs of interlocking hook- and bow-barbules, for fig. 1(b), n = 9 and 

k = 6) is analyzed, see fig. 1(c). In the analysis, three coordinate systems are introduced: one is 

global (X, Y ) (fig. 1(b)), and the other two are local (xi, yi) and auxiliary (x i, y i) (fig. 1(c)). The 

auxiliary (x i, y i) is introduced for the transition transformation of the barbules from the local (xi, yi) 

to the global (X, Y ). Before the analysis, we made the following two basic assumptions:  

1) Due to the bending rigidity D(2) of the barbules, which is much lower than D(1) of the barbs, the 

deformation influence of the barbules on the barbs is assumed to be very weak, and thus is 

neglected; in contrast, the deformation influence of the barbs on the barbules is taken into account. 

 2) Sliding behavior between hook- and bow-barbules is assumed to be friction-dominated, which 

indicates the connecting barbules detach immediately when the angle coordinate βi at point B 

satisfies βi − Θi = ψ > ψf rict, where ψf rict is the friction angle and denotes a critical detaching state, 

and its tangent equals the ratio of the tangential to normal forces at the connecting point; if the ratio 

is greater than the tangent, sliding occurs.  

Small deflection of barbs. According to the experimental observation in [6], we consider that the barb 

can be described assuming small deflection in the beam (here cantilever with one end fixed) theory; 

a set of dimensionless quantities is first defined as K(1) = L(1) F/D(1), X = X/L(1), Y = Y /L(1), ΔY = 

ΔY /L(1), where F is the applied detaching force acting on the barb, K(1) is the dimensionless 

detaching force, L(1) and D(1) are the length and bending rigidity of single barb, respectively, (X, Y) 

is coordinate of an arbitrary point on the barb, and correspondingly, (X, Y) are its dimensionless 

coordinates, ΔY calculated by the classical Euler beam theory, is the deflection of the point in the Y-

direction. Then, for the upper barb in fig. 1(b), Y is expressed as Y = −l (2) sin α0/L(1)−ΔY , where 

α0 is an initial included angle made by the undeformed barbule and barb, and l (2) is the effective or 

deformed length (note: not the total length L(2), fig. 1(b)) of the barbule. For the i-th locking barbules, 

the displacement ΔYi and rotation angle Θi of the cross-section at the joint coordinate Xi are 

expressed as [9] 

 

Large deflection of barbules. Similarly, according to the experimental observation in [6], there is an 

apparent rotation of barbules at the joint o, and thus, we consider that the barbules display large 

deflection of a beam, here a cantilever with one end rotationally constrained by an angular spring. 

Its deformation process is subdivided into two steps: according to the assumption (1), the barbules 

are influenced by the deformation of barbs, therefore, the first step is that it is translated by ΔY¯i and 

rotates by Θi caused by the barb with respect to the joint o, i.e., from the state IS to the MS state 

(fig. 1(c)): in this step, the barbule bears no force at the point A. The second step is that the barbule 



is deformed from the MS state to the FS state (fig. 1(c)), due to an equivalent interlocking force fi 

applied at the point A which moves to the point B, moreover, under the interlocking force fi, the 

included angle made by barbs and barbules is changed from α0 into α0 + αi (FS state in fig. 1(c)), 

where αi is the rotation angle of the i-th barbule with respect to the joint o. For the sake of expedience, 

we study the deformation process of the second step in the local system (xi, yi) (fig. 1(d)). 

For the deformed portion oB in the barbules, the moment equilibrium with respect to a point P(xoB i 

, yoB i ) requires [10] D(2)dθ/ds = fi cos Θi(l (2) cos α0 −δxi −xoB i )+ fi sin Θi(l (2) sin α0 +δyi −yoB 

i ), where D(2) is the bending rigidity of single barbule, δxi and δyi are the displacements of the point 

B with respect to its original position A in the xi and yi directions, respectively. Defining a new set of 

dimensionless quantities K(2) i = l (2)fi/D(2), s = s/l(2), δxi = δxi /l(2), δyi = δyi /l(2), xoB i = xoB i /l(2), 

yoB i = yoB i /l(2), the above moment-equilibrium equation 

 

Furthermore, deriving the curvature eq. (2) with respect to s, and considering dxoB i /ds = cos θ and 

dyoB i /ds = sin θ, the equation is rearranged as 

 

Then, employing the boundary condition at the free end B, where the moment (or the curvature) is 

zero, i.e., dθ/ds|θ=βi = 0, the curvature of the cantilever is calculated as 

 

where θ varies from α0 + αi to βi. According to the assumption (2), the condition 0 < βi − Θi < ψfrict 

ensures the interlock of barbules. Integrating eq. (4) leads to the dimensionless curvilinear 

coordinate of P(xoB i , yoB i ): 

 

where p2 i = 2/[1 + sin(βi − Θi)], the function F(pi, ξ) is the incomplete elliptical integral of the first 

kind, in which ξ is a general amplitude. Considering the inextensibility of the cantilever ¯s(βi) = 1, we 

find that 

 

based on d¯xoB i /d¯s = cos θ, d¯yoB i /d¯s = sin θ, and eq. (4), the dimensionless Cartesian 

coordinates of the point P(¯xoB i , y¯oB i ) can be computed as 



 

in which the function E(pi, ξ) is the incomplete elliptical integral of the second kind. Then, 

transforming the coordinates of the barbules from the local coordinate system (xi, yi) to the global 

one (X, Y ), the corresponding global coordinates of the barbules are obtained as 

 

where XoB i (θ) = XoB i (θ)/l(2), YoB i (θ) = Y oB i (θ)/l(2), and (Xi, Yi) is the dimensionless coordinate 

of the i-th joint o. In particular, the coordinates (XoB i (βi), YoB i (βi)) of the point B at the i-th barbule 

are obtained from eq. (8). In the global system, because the ordinate of the point B equals zero, i.e., 

YoB i (βi) = 0, we have 

 

Again, considering moment equilibrium of the cantilever but with respect to the joint o, a new equation 

emerges: 

 

where λ is the stiffness of angular spring (which has the physical unit (N · m/rad)). Rearrangement 

of the above equation leads to 

 

where λ= λl(2)/D(2) is a new dimensionless parameter, which represents the materials parameters 

in the barbbarbule system, i.e., the relative relationship between the rotation and bending abilities of 

the barbules. Thus, substituting eq. (11) into eqs. (6) and (9), an equation system with two unknown 



parameters, αi and βi, could be solved numerically. With the solution of αi and βi, the dimensionless 

force K(2) i in each barbule can be calculated.  

Again, invoking YoB i (βi) = 0, the coordinates of the straight portion BC part satisfy 

 

where YBC i = Y BC i /l(2), XBC i = XBC i /l(2) is from XoB i (βi) to XoB i (βi)+(L(2)/l(2) − 1)cos(βi − 

Θi).  

The above equations from (2) to (12) are derived for the interlocking barbules. As for the detached 

barbules (k + 1 ≤ i ≤ n), the coordinates of the barbules satisfy 

 

where YoC i = Y oC i /l(2), XoC i = XoC i /l(2) which varies from Xi(L(1)/l(2)) to Xi(L(1)/l(2)) + 

(L(2)/l(2))cos(α0 − Θi), and (Xi, Yi) is the same as that in eq. (8). 

 

Parametric analysis and discussions 

As an example, the eight critical states in the delaminating process shown in fig. 1(b) are treated; 

we selected an initial included angle α0 = 30◦, according to the statistic data of the barbules angle in 

the literature [11]. The dimensionless rotation stiffness λ¯ of the barbules and the friction angle ψf 

rict are assigned to be 1.0 and 45◦, respectively, and length ratios used in the model are set to be 

L(2)/l(2) = 1.2 and L(1)/l(2) = 10.  

In each critical state, the k-th pair of barbules detaches, and the connecting dimensionless forces 

K(2) i , the rotation angles αi and βi in the i-th (i ≤ k) interlocking barbules are plotted in fig. 2. We 

can see that when i = 1 and K(2) i = 0, αi =0 and βi = 30◦ for the fixed first barbule; whereas for 2 ≤ i 

≤ k, the distribution of the dimensionless forces K(2) i in the interlocking barbules is linear. The force 

on the same barbule decreases as the number k of interlocking barbules increases. For instance, 

the force on the 2nd barbule decreases as indicated by the dashed arrow in fig. 2(a), when k 

increases from 2 to 9. This means that the detaching force acting on the 2nd barbule, which 

determines the ultimate structural robustness, is mitigated by the presence of interlocking barbules 

behind it. The rotation angles αi and βi are nonlinearly distributed (fig. 2(b)). Also, the increasing 

number of interlocking barbules decreases the two rotation angles and thus the structural failure 

probability. Accordingly, the structure consisting of multiple barbules may progressively but 

effectively absorb energy before the complete structural failure, and thus enhance its robustness, 

and this may be a reason why there are many instead of few barbules on a barb [6].  

Besides, the critical detaching force K(2) k,crit of the barbule in each critical state and its 

corresponding critical applied forces K(1) k,crit of the barb are plotted in fig. 3(a), and the deformed 

profiles of the critical states are plotted in fig. 3(b). In fig. 3(a), both critical forces decrease as the 

number k of interlocking barbules increases; in particular, K(1) k,crit decreases sharply when k 

changes from 2 to 3. This is because the barbules closer to the fixed ends of barbs are severer 

restrained, compared to the barbules far from the ends, and a larger force is needed to detach the 

barbules situated closer to the fixed end. Surprisingly, the local force on individual barbules with 

increased number of detached barbules (k from 9 to 2) is increased only 1.3 times, whereas the 

critical separation force increases 7 times. In this regard, the structural hierarchy and large rigidity 

difference seem to propose a strong gradient failure of barbs and a weak one of barbules in the 

interlocked architecture, which is crucial for reaching the high resistance to quasistatic (fatigue) and 



dynamical loadings during the flight in birds’ pennaceous feathers. Corresponding to fig. 3(a), the 

profiles plotted in fig. 3(b) indicate that detaching the k-th (k ≥ 3) barbules is easier because of the 

weak de- flection differences between these barbules, compared to k = 2 (the thick blue line).  

In all, according to the existence of a large number of barbules, fig. 2, and to the different gradient 

failures of barbs and barbules in the static delamination, fig. 3, the pennaceous vanes are not 

seriously disclosed when birds are flying, despite the absence of some barbules (see fig. 3(a), when 

the number of absent barbules F N = 1, 2, 3, the delamination is not strongly influenced). This 

suggests a flaw-tolerant and robust behavior of this natural and hierarchical design. However, we 

must admit that due to the neglected influence of barbules on barbs, the detachment of barbules is 

forced not to cause the instability in the progressive delamination, even if a dynamic instable process 

could take place. 

 

Conclusions 

Revealing the detaching behavior of the barb-barbule structure in birds’ feather is very helpful to 

understand their aerodynamic function. This paper employed beam theory to develop a hierarchical 

mechanical model to compute the static delamination strength of the barb-barbule system in the bird 

feather. The model results indicate a high robustness and thus flaw-tolerance of the natural design, 

and suggest a new bio-inspired strategy in the design of robust interlocking mechanism, such as bio-

inspired zipping devices. 
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