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Abstract 

An analytical benchmark and a simple consistent Mathematica program are proposed for graphene 

and carbon nanotubes, that may serve to test any molecular dynamics code implemented with REBO 

potentials. By exploiting the benchmark, we checked results produced by LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) when adopting the second generation Brenner 

potential, we made evident that this code in its current implementation produces results which are 

offset from those of the benchmark by a significant amount, and provide evidence of the reason. 

 

Program summary  

Program title: MDBenchmarks  

Catalogue identifier: AFAS_v1_0  

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAS_v1_0.html  

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland  

Licensing provisions: GNU GPL v3  

No. of lines in distributed program, including test data, etc.: 22854  

No. of bytes in distributed program, including test data, etc.: 369171  

Distribution format: tar.gz  

Programming language: Mathematica 9.  

Computer: Any PC.  

Operating system: Any which supports Mathematica; tested under OS Yosemite.  

RAM: <5 gigabytes  

Classification: 7.7, 16.1, 16.13.  

Nature of problem: Testing commercial or open-source molecular dynamics codes implementing off-

theshelf REBO potentials on an analytical benchmark.  

http://cpc.cs.qub.ac.uk/summaries/AFAS_v1_0.html


Solution method: Analytical equilibrium conditions for achiral carbon nanotubes are implemented 

and solved, delivering benchmark values for the corresponding natural radius and cohesive energy; 

material properties (Young’s modulus and Poisson coefficient) are also computed. 

Running time: Instantaneous, or a few seconds, depending on computer hardware 

 

1. Introduction 

Molecular dynamics (MD) simulations are nowadays more and more popular in scientific 

applications, especially in those fields of material science involving nanotechnology and advanced 

material design. On one side, there are advantages in the speed and accuracy of the simulations, 

with the model of the potential for atomic interactions being optimized to reproduce either 

experimental values or quantities estimated by first principles calculations (considered, as a matter 

of facts, just like experimental results). On the other side, it is more and more frequent to use 

commercial or open-source codes implementing off-the-shelf potential models, and use them as a 

black box, without having a precise feeling with the code itself. One of the most used simulator is 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), able to implement several 

interatomic potentials. By using an analytical discrete mechanical model, we present a benchmark 

for the equilibrium problem of graphene and carbon nanotubes, which can be applied to any kind of 

REBO (reactive empirical bond-order) potential. The analytical condition proposed produces results 

in complete agreement with First Principles, Density Functional Theory and Monte Carlo simulations. 

With the aid of this benchmark, we show that LAMMPS code, when implemented with the second 

generation Brenner potential, produces results which are offset from those of the benchmark by a 

significant amount, and provide evidence of the reason. The analytical formulation is implemented 

in a Mathematica program, intended to provide a set of easy-to-get benchmark solutions; 

combination of symbolic manipulation and numerical routines make the program easy to be adapted 

to any REBO potential, providing a general tool for testing MD codes. 

 

2. An analytical discrete model for equilibrium configurations of FGSs and CNTs  

 

The benchmark solution we propose has been developed within the context of carbon 

macromolecules, such as Flat Graphene Strips (FGSs) or Carbon Nanotubes (CNTs). When 

regarded from the point of view of MD, such aggregates are modeled as sets of mass points, whose 

configuration is described by the Cartesian coordinates of each point with respect to a chosen 

reference frame; each point is then interacting with the others – at least with the closest ones – and 

the interaction is captured by a suitable empirical potential, whose shape and parameters are fitted 



with a set of selected experiments and ab initio calculations. The last generation potentials usually 

take into account multiparticle interactions, up to the third nearest neighbor, which is indispensable 

to capture the mechanics of complex systems, such as carbon macromolecules.  

In order to provide an easy-to-visualize mechanical picture, the perspective we here adopt is not the 

one of MD, we consider instead the approach of Favata et al. [1], where a discrete mechanical model 

is detailed for 2D carbon allotropes. In this view, the configuration of a molecular aggregate is not 

identified by the coordinates of the mass points, but rather by a suitable finite list of order parameters. 

In particular, the conditions of natural equilibrium of the aggregate can be determined and expressed 

in terms of such list and independently of the choice of the REBO potential. As we will see, the 

prediction of such equations is in total agreement with First Principles, Density Functional Theory 

and Monte Carlo simulations; moreover, given their generality, they can be exploited to establish 

benchmark solutions.  

In order to understand the physical meaning of the conditions we propose, we summarize some of 

the results of Favata et al. [1]. We make reference to Fig. 1, which depicts a FGS before being rolled 

up into an achiral CNT. Let the axes 1 and 2 be respectively aligned with the armchair and zigzag 

directions, and let n1, n2 be the number of hexagonal cells counted along these axes. On identifying 

a CNT by its chiral numbers (n, m), armchair CNTs have m = n and are rolled up from a FGS with 

n1 = 2 n and n2 very large; zigzag CNTs have m = 0 and are rolled up from a FGS with n2 = n and 

n1 very large. Let us consider now the representative hexagonal cell A1B1A2B3A3B2A1, with sides 

A1B1 and A3B3 aligned with the axis 1; the common length of corresponding bonds will be denoted 

by a, and we will call a-type the corresponding bonds. We see that the other four sides have equal 

length b (b-type bonds). We pass to introduce the bond angles and, since we intend to consider 

interactions up to the third neighbor, the dihedral angles. As to the bond angles, we notice that they 

can be of α-type and β-type (e.g., respectively, A3B2A1 and B2A1B1; see Fig. 1). As to the dihedral 

angles, there are five types (Θ1, . . . , Θ5), which can be identified with the help of the colored bond 

chains in Fig. 1. In conclusion, to determine the deformed configuration of a representative 

hexagonal cell, no matter if that cell belongs to a FGS or to an achiral CNT, we need to determine 

the 9-entry order-parameter substring: 

 

The complete order-parameter string for the whole molecular aggregate can be obtained by 

sequential juxtaposition of substrings. Due to the geometric compatibility conditions induced by the 

built-in symmetry (see Favata et al. [1] for details), only three of the nine kinematic variables 

determine the natural configuration, which are chosen to be a, b, and α. In particular, by 

distinguishing the armchair (superscript A) from the zigzag (superscript Z) case, the order-parameter 

substrings are given by, respectively: 

 

The explicit form of the functions β A,Z , ΘA 1 , ΘA,Z 2 is given in Favata et al. [1]. In (2), ϕ A = π/n1 

is the angle between the plane of A1B1B3 and the plane of B1A2B3 when an armchair CNT is 

considered, and ϕ Z = π/n2 the angle between the planes of A1B1A2 and A2B3A3, when a zigzag 

CNT is considered. In case of a FGS, we have ϕ A,Z = 0, β A,Z = π − α/2, and ΘA 1 = ΘA,Z 2 ≡ 0.  

The equilibrium equations turn out to be the following ones: 

 



where σa, σb, τα, τβ , and Ti , are the so-called nanostresses, workconjugate to changes of, 

respectively, bond lengths, bond angles, and dihedral angles of each type considered. The form of 

the third of (3) depends on which of the two achiral CNTs is dealt with; more precisely, we have that 

 

Due to their generality, the conditions (3) may serve as a benchmark for any REBO potential. To 

express the equilibrium equations in terms of the Lagrangian coordinates a, b, and α, it is necessary 

to introduce the constitutive equations for the stress, which result from the assignment of an 

intermolecular potential. In the next section, we detail the formulas in the Brenner 2nd generation 

REBO potential [2] which are needed to solve (3) in terms of the order parameters. 

2.1 The traction problem 

Starting from the geometry and the energy gathered by means of (3), it is possible to obtain 

secondary quantities. The Young modulus can be computed by solving the equilibrium problem in 

the presence of a traction load F , whose corresponding governing equations are the following: 

 

for the armchair traction direction and 

 

for the zigzag direction. Once these equations have been solved, with the constitutive equations 

(17), the axial deformation can be computed as: 

 

where λ(F )is the deformed length of the CNT due to the load F and the λ0 the initial length. The 

Young modulus is defined to be 

 

where ρ(F )is the deformed radius of the CNT after the deformation consequent to the load F and t 

is the nominal thickness. The evaluation of this latter value is still object of debate, giving rise to the 

so-called Yakobson’s paradox [3]; valuable contributions on the subject are Huang et al. [4], Pine et 

al. [5] Bajaj et al. [6] and references cited therein. An accurate account of this issue is out of the 

scope of this paper. Be that as it may, the thickness value does not affect the significance of the 

present work; in order to compare results from our benchmark with those obtained in LAMMPS, we 

set t = 0.34 nm, a value commonly used by several authors.  



For F → 0, the Young modulus in a neighborhood of the natural configuration is computed. As to the 

Poisson coefficient, we define it as 

 

where ρ0 is the radius in the natural configuration. For F → 0, its value in a neighborhood of the 

natural configuration is determined. 

 

3. REBO potentials 

In the Brenner 2nd generation REBO potential, the binding energy VREBO of a molecular aggregate 

is written as a sum over nearest neighbors: 

 

the interatomic potential VIJ is given by the construct 

 

where the individual effects of the repulsion and attraction functions VR(rIJ) and VA(rIJ), which model 

pair-wise interactions of atoms I and J depending on their distance rIJ , are modulated by the 

bondorder function bIJ , which depends on the bond angles θIJK between bonds IJ and JK and on 

the dihedral angle ΘIJKL between the planes of I, J, K and I, J, L.  

When the point of view described in Section 2 is assumed, the expressions of the potentials have to 

be specialized and written in terms of the order parameters in the substrings (1). On introducing the 

potentials Va and Vb for the a- and b-type bonds, we have, respectively: 

 

(see Favata et al. [1] for details).  

Once this has been done, the nanostresses entering the balance equations (3) can be expressed in 

terms of the order parameters by means of the following constitutive relations: 

 

 

 

 



4. Mathematica program vs LAMMPS results 

The most direct outcomes of our solution are natural geometry and energy, which can be used to 

check the correctness of whatever MD code. The analytical model described has been coded in a 

Mathematica program, that computes the natural radius and the cohesive energy of armchair and 

zigzag CNTs. The program implements the 2nd generation Brenner potential, but other or 

customized REBO potentials can be assigned by the user by changing the functions VR, VA, ba, 

and bb appearing in (16). Possible alternatives to the Brenner 2nd generation potential are the 

Tersoff potential [7,8] or the Brenner 1st generation potential [9], which are also readily available in 

LAMMPS. It is worth noticing that a benchmark for density functional-based codes (such as DFTB, 

see Aradi et al. [10]), which could serve as alternative methods of computation when samples are 

not too large, would be much harder to formulate and implement. The results obtained with the 

program are in good agreement with First Principles, Density Functional Theory (DFT) and Diffusion 

Monte Carlo (DMC) simulations, as Tables 1 and 2 show. A related point to consider is that our 

evaluation of the radii is different from that obtained by classical Roll-Up Model (RUM), which adopts 

bond lengths shorter in CNTs than in their parent flat graphene sheets, due to the difference between 

the length of a helix segment and the distance between its endpoints. In an elegant study initiated 

by Cox and Hill, see Lee et al. [11] and the references cited therein, the geometrical approximation 

of RUM has been overcome, and precise analytical expressions for the radius have been proposed, 

in terms of the bond lengths and bond angles. We verified that on inserting our values of bond lengths 

and bond angles in those formulas, the resulting values for the radius are equal to ours, up to the 

fourth significant digit, for all considered CNTs.  

 

As an application of the possibility of exploiting the benchmark solutions, we present in Table 3 the 

results for a number of CNTs, showing that standard LAMMPS code underestimates the geometry 

and highly overestimates the energy. The origin of the discrepancies can be found only by a close 

inspection of LAMMPS source code. In fact, although in Brenner et al. [2] it is indicated that the 

values of the function PIJ should be taken null for solid-state carbon, the code assigns the value 

0.027603. This latter value is actually dictated in Table VIII of Stuart et al. [18] for AIREBO potentials, 

due to the additional terms included in this potential. Whenever a LAMMPS user wants to adopt 

REBO potentials, he needs to change the hard-wired number for the variable PCCf[2][0] in 

‘‘pair_airebo.cpp’’; unfortunately, the LAMMPS manual does not provide any information on this 

issue, and most studies based on LAMMPS REBO calculations are likely to have underestimation 

or overestimation of mechanical and geometrical properties presented in our Tables. An example of 

the use of LAMMPS with 2nd generation Brenner potential is Zhang et al. [19]. When the value 

assigned in Brenner et al. [2] is implemented, the LAMMPS code produces the same results as the 

benchmark solution, letting alone a tiny difference due to numerical effects, as Table 3 undeniably 

makes evident.  

Starting from the geometry and the energy gathered by means of (3), it is possible to obtain 

secondary quantities. Besides the radius and cohesive energy, the Mathematica program yields as 

output the Young’s modulus and the Poisson coefficient of armchair and zigzag CNTs. In Table 4 

some results are reported and compared with standard LAMMPS code: the latter overestimates the 

Young’s modulus and underestimates the Poisson coefficient. Our results are in very good 

agreement with the literature (see e.g. Agrawal et al. [20]). The differences between our benchmark 

and the LAMMPS code with modified parameters are ascribable to numerical effects, more 



accentuated because Young’s modulus and Poisson coefficients are quantities not directly 

evaluated, but rather derived, and an increment of numerical error is foreseeable. 

 

 

5. Description of the software structure and the individual software components 

A simple program for solving Eqs. (3) has been implemented in Mathematica, version 9. The 

program, entitled MDBenchmarks, is written in two files: the Package Benchmark_code.m and the 

Computable Document Format Benchmark_solutions.cdf, which needs the package to be loaded. In 

the CDF file it is sufficient to choose armchair or zigzag CNTs and assign the chiral number n to get 

the benchmark solutions for the 2nd generation Brenner potential, set as default potential. Other 

REBO potentials can be defined in the package file.  



The program Benchmark_code.m is divided into four chapters:  

1. REBO Potentials.  

In this chapter the form of the REBO potential to be tested is assigned. In the section ‘‘2nd generation 

Brenner potential’’, the default setting for this potential is implemented, according to [2]; in particular, 

in the subsection ‘‘Potential components’’ the components introduced in (15) are specified. In the 

section ‘‘Analytical discrete model’’ the definition of the nanostresses (17) is implemented; this 

definition is independent of the REBO potential one chooses.  

2. Armchair CNTs.  

In this chapter the equilibrium problem for armchair CNTs is solved. In the section ‘‘Generalities’’ the 

geometric conditions on the order parameters are established and the nanostresses are computed. 

In the section ‘‘Solution of the equilibrium equations’’ the solution of the systems (3)1 and (4)1 is 

determined as a function of the applied force F and the chiral number n. In the section ‘‘Radius’’ the 

natural radius is computed as a function of F and n and then determined for F = 0, namely in the 

natural configuration. In the section ‘‘Energy’’ the natural energy is computed as a function of F and 

n and then determined for F = 0, namely the cohesive energy. In the section ‘‘Young’s modulus’’ the 

current and the referential lengths of a CNT are determined, and the strain measure is defined, as a 

function of F and n; on introducing the nominal thickness, the Young’s modulus is defined as a 

function of F and n, and then computed for a tiny value of F , up to convergence. In section ‘‘Poisson 

coefficient’’, the named material parameter is defined as a function of F and n, and then computed 

for a tiny value of F , up to convergence.  

3. Zigzag CNTs.  

This chapter has the same sections as the previous one, but implemented for the zigzag case; the 

different geometric constraints are properly included.  

4. Summary of results.  

In this chapter the benchmark solutions are collected for the visualization in the CDF file 

Benchmark_solutions.cdf.  

The software package is supplemented by three folders:  

1. Original_and_Modified_REBOpotFiles, containing the two LAMMPS files for the original and the 

modified REBO potential, ‘‘pair_airebo.cpp’’, instrumental to make the comparison of Tables 3 and 

4.  

2. CNT_Graphene_DATAFiles, containing LAMMPS input files with the coordinates of nanotubes 

and graphene we examined. These coordinates are obtained by simply mapping atomic locations in 

graphene to a cylinder. These files can be converted into input files for any other molecular dynamics 

package.  

3. CNT_Graphene_OUTPUTFiles, containing files with the coordinates of nanotubes and graphene 

resulting from the energy minimization in LAMMPS using the modified REBO potential. 
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