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Abstract 

Ethyleneepropyleneediene terpolymer rubber (EPDM)-based nanocomposites containing carbon 

black (CB), graphene nanoplatelets (GNPs), and mixtures of the two fillers were prepared. The 

influence of the relative amounts of the two fillers on the dynamic and static friction coefficients was 

examined. The static analysis of the coefficient of friction suggests that the partial substitution GNPs 

into the EPDM/CB blend did not produce a significant variation of the surface grip. The sample 

comprising EPDM/CB composite and an effective amount of GNPs dispersed in the matrix provides 

an increase of the thermal conductivity, damping (i. e. shock absorbing properties) and mechanical 

properties of the nanocomposites. The field-emission scanning electron microscopy and micro 

tomography analyses showed that the replacement of CB with GNPs reduces the CB aggregation 

and, hence, improving the percolation of the hybrid fillers and the interface resistance of the 

composite. The development of thermally conducting elastomeric nanocomposites could envisage 

their utilization in the processing of rubber blends satisfying the increasing demand to reduce both 

the duration of the vulcanization process and thus the cost of the vulcanized rubbers. 

 

1. Introduction 

Rubber is commonly considered the workhorse of the industrial and automotive products because 

of its good mechanical properties and its relatively low cost; finished products are found in the market 

place as compression molded products. The physical and chemical resistance properties of rubber 

materials are determined by the addition of carbon black (CB) that historically has been utilized to 

reinforce rubber matrices [1,2]. 

However, since the main factors that affect the composite properties are the particle size and the 

mode of interactions with the matrix materials, single filler does not generally match the structural 

and functional requirements of rubber advanced composites [3e7]. There are different types of 

carbon fillers (e. g. exfoliated graphite, carbon nanotubes and carbon fibres) and each type has its 

peculiar characteristic. For example, the percolation threshold of nanotubes is very low because of 

their high aspect ratio and it was found that the partial replacement of CB with carbon nanotubes 
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leads to a much lower percolation threshold than that of the composite obtained with single filler and 

to a synergetic effect on the composite properties [8,9]; on the other hand the high cost hinders their 

large scale application. Exfoliated graphite is cheap and recently it was used as potential material 

for replacing CB for reinforcement of styrene-butadiene rubber. Its main drawback is the percolation 

threshold that is usually high and detrimental for the mechanical properties.  

Thus, the use of a combination of different carbon fillers would be a good way to get balanced 

properties and cost. A model for predicting the synergy between electrical conducting nanofillers, 

assumed immiscible, was applied for the optimal design of real nanocomposites [10,11]. Ma et al. 

[12] showed that the addition of carbon nanotubes into CB polymer composites enhanced the electric 

conductivity of the polymer matrix [12] with a low percolation threshold of about 0.4 wt%. The 

combination of two or more carbon fillers was demonstrated to improve also the thermal performance 

of the composite due to the synergistic effect [13,14]. Recently, Yang et al. [15] studied the effects 

of substituting CB with graphene oxide/CB and reduced graphene oxide/CB hybrid fillers on the 

structure and properties of natural rubber composites.  

Carbon fillers with different aspect ratio and sizes can be mixed with a host polymer matrix showing 

evidences of exfoliation and shortening of the particle size during mixing process even with 

expanded graphite. That suggests that simple mechanical milling can facilitate the exfoliation of the 

graphite layers into smaller dimension. Das et al. [16] reported a TEM and X-ray diffraction study of 

styrene butadiene rubber composites showing that the dispersion/exfoliation of the stacked 

graphene sheets into individual single sheets was facilitated by the presence of carbon black in the 

system. The existence of few-layer graphene sheets was attributed to a complex morphology arisen 

from filler to filler network interaction. The same authors [17] reported another study on solution 

styrene butadiene rubber composites reinforced with graphene nanoplatelets, expanded graphite, 

and multiwalled carbon nanotubes. It was found that the high aspect ratio of carbon nanotubes 

enabled to form a network at low filler loading, leading to a good reinforcement effect.  

Similarly to these previous attempts, Hu et al. [18] report a simple and effective way to disperse 

carbon nanotubes and graphene in silicone rubber and more recently Li et al. [19] demonstrated 

toughening natural rubber by designing a compact hybrid filler network composed of graphene and 

carbon nanotubes. In addition to graphene oxide, multi-layer graphene platelets also exhibit unique 

and useful behaviors. Multi-layer graphene, herein referred to as graphene nanoplatelets (GNPs) 

contains essentially no oxygen (<1% by weight of oxygen). GNPs are obtained from graphite 

expansion that determines the platelet thickness [20,21]. With this method, 2D graphite materials 

consisting of hundreds of stacked graphene layers with ABA or ABCA stacking, and with a thickness 

and/or lateral dimension less than 100 nm are obtained.  

The 2D nanoscale dimension of GNPs is a huge benefit in relation to the large conventional 3D fillers 

[22]. Those graphitic inclusions are characterized by far better shape factor, larger contact surface 

and higher mechanical strength. At the same time GNPs tend to aggregate and are difficult to 

disperse in polymer matrices due to the strong van der Waals attraction between the sheets and 

their high surface area, the synergy among the hybrid fillers comprising of graphite intercalation 

compounds, mainly GNPs, and CB could lead to the development of graphite-based elastomer 

composites exhibiting exceptional mechanical and thermal properties.  

It is known that rubbers or elastomers generally have a low thermal conductivity. Consequently, 

when such materials are used as packaging for electronic circuit, they store the generated heat that 

in turn raises the temperature of the device itself, thereby promoting heat deterioration of the 

electronic component. To achieve this goal, the heat conduction capability of a rubber may be 

improved by compounding a rubber with a filler having a heat conductivity higher than that of the 

rubber. 



High filler loadings (>30 vol%) or traditional metallic materials were typically necessary to develop 

functional elastomers with appropriate level of thermal conductivity [23,24]. The employment of high 

filler loading makes difficult the processing, such as possibility to be extruded and injection molded, 

while traditional metallic materials with the highest thermal conductivity are too heavy and subjected 

to corrosion. Moreover the reinforcing capacity is deteriorated after some certain value of filler 

amount. When a dramatic increase in properties, such as mechanical and thermal properties can be 

achieved when two different fillers both with saturate amount are added in rubber matrix 

synchronously, this is suggestive of synergistic effect.  

In this work a part of CB with GNPs was replaced to produce ethylene-propylene diene terpolymer 

rubber (EPDM) based nanocomposites; a proper combination of GNPs lead to synergistic effect in 

improving the thermal conductivity, damping and mechanical properties of the nanocomposites. The 

effects of substituting GNPs for CB on the thermal, damping and mechanical properties of rubber/CB 

composites was studied and rationalized in terms of a mixture model. 

 

2. Experimental details 

EPDM was kindly supplied by Exxon Mobil Chemical under the trade name Vistalon 7500 (ethylene 

content: 56.0 wt% and 5- ethylidene-2-norbornene (ENB) content: 5.7 wt%). Carbon black was kindly 

supplied by Cabot, S.A. under the trade name Vulcan 3- N330 (diameter 225 nm with a surface area 

of 77 m2 /g) and a paraffinic oil kindly supplied by Nynas, Nyflex 820 was used as plasticizer. GNPs, 

an intermediate grade between graphene and graphite, which can neither be considered pure 

graphene nor graphite were purchased from Cheap tubes. Rubber compounds were prepared in an 

open two-roll mill at room temperature. The rotors operated at a speed ratio of 1:1.4. The 

vulcanization ingredients were sequentially added to the elastomer before to the incorporation of the 

filler and sulphur. The recipes of the compounds are described in Table 1. Vulcanizing conditions 

(temperature and time) were previously determined by a Monsanto Moving Die Rheometer MDR 

2000E. 

Table 1 Recipes of the rubber compounds (indicated in phr: parts per hundred of rubber). The %weight content of 

GNPs/CB is reported below the name of each sample. 

 

Rubber compounds were then vulcanized at 160  C in a thermofluid heated press. The vulcanization 

time of the samples corresponds to the optimum cure time t90 derived from the curing curves of the 

MDR 2000E. Specimens were mechanically cut out from the vulcanized plaques. Field emission 

scanning microscopy (FESEM) was used to investigate the cross section of the samples.  

Tensile stress-strain properties were measured according to ISO 37e1977 specifications, on an 

Instron dynamometer (Model 4301), at 25  C at a crosshead speed of 500 mm min1 . At least five 

specimens of each sample were tested.  

XRD experiments were conducted with an XRD diffractometer (Bruker) with a radiation source of 

CuKa and wave length l ¼ 0.154 nm operating at 40 kV and 40 mA. The incidence angle (2q) was 

fixed between 1  and 60  and the scan rate was 0.02 /s. Raman measurements were performed 

with Labram Raman spectroscopy (Horiba, Jobin-Yvon spectrometer) with a wavelength of 632.8 

nm.  



A ball-on-disk tribometer was used to determine the dynamic friction coefficient of the composites. 

The samples were cut in order to have a squared base with different measures, from 8   8 mm2 to 

15   15 mm2 (average values), depending on the given materials. They were fixed in the tribometer 

and the antagonist material we chose was steel (100Cr6), a sphere of 6 mm diameter in order to 

have a single contact point between the rubber and the steel. No lubricants were used. The sliding 

velocity was set at 0.01 m/s and the normal load varied from 0.05 N (softer samples) to 0.1 N (harder 

samples). For each sample from three to five measurements were realized.  

The method used to measure the static friction coefficient is based on the Coulomb theory of friction. 

Each sample was positioned on a plate and fixed on it. After, a weight is put on the sample. The 

plate was then tilted until the stable configuration was overwhelmed and the weight slides on the 

rubber surface. The final configuration is tilted by a certain angle with respect to the initial position of 

the plate and corresponds to the transition from a stable state (static equilibrium) to an unstable one 

(incipient movement). The tangent of that angle corresponds to the ratio between the tangential force 

and the normal applied load (the weight). Five measures per sample were performed.  

The damping properties were tested through a vibration generated via a pneumatic percussion 

system hitting a metallic plate. The impact area is a metallic plate where the sample to be tested has 

been fastened to. The sample was hit by a percussion which excites the vibration. A shock 

accelerometer positioned in the back plate is thus excited and the response is recorded and 

digitalized via high performance data acquisition system. The impact velocity was set to 8 m/s 

resulting in an impact energy of 58 J. Three tests were repeated on each sample; the experimental 

error was estimated below 1%.  

Thermal conductivity measurements follow the “two thermometer-one heater” method using a 

custom built stage. Two PT100 thermocouples, contacted to the surfaces of a 13   40 mm2 

rectangular shape and 14 mm thick sample, monitor the temperature of two polished oxygen-free 

sample sides. A 3.4 Ohm resistor heats the top plate (13   40 mm2 surface, 14 mm thick) to a 

temperature THot. Heat flows from the top plate, through the sample, and into the bottom plate which 

is thermally grounded to TCold (i. e. 20  C) by the cold plate. Thermally conducting grease was 

used to enhance the thermal contact to the bottom of the sample.  

The microstructure of the sample was investigated by micro tomography (m-CT) using a Carl Zeiss 

Xradia Versa-410 3D X-ray microscope. The scan was performed over a 360  rotation using 1600 

projections, 80 KV voltage, 7 W power, 80 s exposure time, and 20  objective lens. The resulting 

nominal voxel (volumetric pixel) size was 0.36 mm and the total scan time was ~38 h for each scan. 

Reconstruction of the attenuation data was performed using filtered back-projection, producing a 

stack of 967 cross-sectional, grey-scale digital images. The different components and their 

distributions have been analysed by segmenting regions of a given range of grayscale values from 

the rest of the image by using the XM3D viewer and Fiji software. 

 

3. Results and discussion 

Raman spectroscopy has been carried out to elucidate the Raman characteristics of GNP used in 

this work, such as differentiating few-layer and multi-layer from bulk graphite [25] and detecting 

structural defects [26]. The main features in Raman spectra reported in Fig. 1a are the G and D 

bands and the second order of the D band, so-called 2D band. The G band, standing at around 1580 

cm1 , corresponds to in-plane carbon-atom stretching vibrations [26]. The positions of the D and 2D 

bands are excitationenergy dependent and occur at around 1329 cm1 and 2663 cm1 , respectively 

(Fig. 1a). The D band is activated by the presence of defects [26]. After characterizations of a large 

number of ABstacked few-layer graphene samples during the past years [27], the FWHM of 2D band 

(Fig. 1b) unambiguously is associated to the graphite layer number. The typical FWHM of 2D peaks 



plotted in Fig. 1b is consistent with five-layer graphitic material and thus with GNPs with AB stacking, 

and having a thickness and/or lateral dimension less than 100 nm [27].  

GNPs have attracted considerable attention in nanocomposites, thanks to the excellent in-plane 

mechanical and thermal properties of graphene. The stress-strain characteristics of the prepared 

nanocomposites are presented in Fig. 2a and the tensile properties given in terms of the modulus at 

different strains (50%, 100% and 300%), maximum strength and elongation at break are reported in 

Figs. 2b and 3, respectively. It is known that CB or silica when added to elastomers create a modulus 

that increases with strain. This non-linearity protects rubber from damage during large deformations 

[28]. Pristine GNPs provide enhanced non-linear strength to elastomers. The interface is similar to 

that of CB, the flexibility of the GNPs enables deformation at low strains and strengthening at higher 

deformations. As expected, the addition of the fillers to the EPDM matrix gives rise to an increase of 

the stiffness of the material which is reflected in an improvement of the modulus at different strains 

(Fig. 2). The elongation at break, as an indicator for the toughness of the materials, decreases when 

adding GNPs to the EPDM/CB blend (Fig. 3) (i. e. EPDM-7 sample). The synergistic effect of CB 

and GNPs is evident in the sample EPDM-6 (i. e. 2 wt% of GNPs and 24 wt% of CB) that showed a 

higher increment of the maximum strength (Fig. 2) along with a higher elongation at break with 

respect to the EPDM/CB blends (Fig. 3). 

 

Fig. 1. a) Raman spectra of GNPs. b) The data of FWHM with respect to 2D peak positions. 

For a system containing two types of fillers such as GNPs and CB, our results can be rationalized in 

terms of the following mixture model: 

 

where s is the composite strength, sm is the matrix strength, sGNPs is the GNP strength, sCB is the 

CB strength and fGNPs and fCB are the GNPs and CB concentrations, respectively.  

Assuming sGNPs = 800 MPa [29], sCB ~14 MPa (obtained by using the rule of mixture for CB single 

phase s y sm(1 0.48)þ0.48sCB) and fGNPs and fCB the concentrations for obtaining the maximum 

of the mechanical resistance, the model predict for the composite a mechanical strength of about 25 

MPa that is in good agreement with that obtained experimentally (i. e. ~20 MPa). For a single phase 

inclusion, if an ideal dispersion, thus without agglomeration, is considered, the composite mechanical 

resistance would depend linearly on the percentage of the phase itself, thus an increment of f would 

cause an increment also in the mechanical resistance (assuming the strength of the inclusion much 

larger than that of the matrix). This is not true if the agglomeration of the phase takes place. In the 

model for two immiscible phases, the synergy can be understood as a retardation of the 

agglomeration towards higher total concentration as reported below.  



 

Fig. 2. (a) Stress-strain curves of the prepared samples. (b) Modulus at different strains and maximum strength of the 

prepared samples. 

 

 

Fig. 3. Elongation at break of the prepared samples. 



 

Fig. 4. Dynamic and static coefficient of friction measured of the prepared samples. 

 

Fig. 5. a) Set-up of the impact test. The impact area is a metallic plate where the sample to be tested has been fastened 

to. The sample was hit by a percussion which excites the vibration. A shock accelerometer positioned in the back plate is 

thus excited and the response is recorded and digitalized via high performance data acquisition system. b) Peak 

acceleration measured by the accelerometer in the impact test of the prepared samples. 

The dynamic friction coefficients of the samples were estimated accordingly to the Hertzian analysis 

for a smooth sphere in contact with a smooth flat surface, where the radius of contact circle 

expressed as a ¼ [3LR/4E]^1/3, where L is the applied load, R is the sphere radius and E is the 

elastic modulus of the softer material (i. e. rubber). In the present case the only parameter varied 

was the load, thus accordingly to the mechanical properties, it was decreased for the softer 



composite samples containing a GNP/CB ratio of 2/0, 5/ 0 and 10/0, respectively. The final values 

are shown in Fig. 4. For composites with a GNP/CB ratio of 5/0, 10/0 and 2/24 values major than 1 

were obtained and in literature for particular combinations of rubbers similar results were found (i. e. 

rubber-steel contact) [30e34]. It was also reported that the dynamic friction coefficient depends on 

the sliding velocity, it increases if the velocity increases, but becomes almost stable for velocities 

from 0.01 m/s and more [30e34].  

The static coefficient of friction of the samples was estimated by putting a weight made of steel (0.7 

g) on the rubber samples and tilting the plate, until the incipient sliding was reached. The dynamic 

and static coefficients of friction are not comparable due to the different type of steel used as 

counterpart as well as the different type of setup adopted for dynamic and static tests. The addition 

of GNPs to the EPDM/CB blend reduces the static coeffi- cient of friction while the partial substitution 

of CB with GNPs did not affect the grip of the EPDM/CB sample surfaces.  

Fig. 5 reports the peak acceleration measured in the impact excitation test. The damping of the 

sample can be qualitatively estimated by the peak acceleration. No data were recorded on neat 

EPDM due to the cracking of the samples even at lower impact velocity. It is evident how in the 

composites, the impact performances depend on the elongation at break; in particular, the higher 

stiffness of the composites with CB shows a scarce damping properties. The obtained results can 

be explained with the increase of the modulus at different strains along with the reduction of 

elongation when the GNPs were added. The addition of 5 wt% of GNPs in the 48 wt% CB filled 

matrix deteriorates the damping properties. The partial substitution of CB in the sample with 2 wt% 

of GNPs and 24 wt% of CB showed the best shock absorbing performance with a lower variation of 

the acceleration peak after the impact.  

Fig. 6a shows the experimental set up for the thermal conductivity measurements. The in-plane 

thermal conductivity was measured through a rectangular shaped (1.5 cm wide, 1.4 mm high, 4 cm 

long) specimen, as shown in Fig. 5a. The in-plane thermal conductivity test method was used with 

the goal to conduct heat only by conduction through the solid sample. A Mylar cap around the cold 

plate fixed at TCold and a high vacuum 105 Torr reduce thermal losses due to radiation and 

convection, respectively. When the sample is powered, the generated heat flows through the sample 

from the sample heater to the cold plate. Heat is generated in the sample from electrical resistance 

heating of the sample heater. Thus, heat is equal to the power dissipated by the resistor (V   I). Fig. 

6a illustrates this set up. The thermal conductivity of the specimen is determined by Ref. [35] l¼(V 

  I/DT)   (d/A) where l is the thermal conductivity of the specimen being tested; V is the voltage 

drop across the sample heater resistor; I is the current through the sample heater resistor; DT is the 

temperature difference across the specimen; d is the distance between the two junctions of the 

thermocouples; and A is the cross-sectional area of the specimen (specimen width   specimen 

height). Such in-plane thermal conductivity test method is based on the steady state method (see 

inset of Fig. 6a).  

In analogy with electrical conductivity, the thermal conductivity of polymers filled with conducting 

nanoparticles derives from the formation of a percolation network of the fillers in the matrix [36]. The 

increasing of the conductive paths enhances the composite thermal conductivity. As for the CB filler 

alone EPDM-5 (i. e. 48 wt% CB), the conductive network is formed due to the contact between GNPs 

and CB. For the sample EPDM-6 (i. e. 2 wt% GNPs and 24 wt% CB) when GNPs are added into the 

CB composite, GNP particles act as spacers between the CB agglomerates, which leads to the 

formation of linked conductive paths (Fig. 6b). As proof of this statement, XRD, FESEM and MCT 

analyses were performed.  

XRD experiments on GNPs and CB related rubber composites are reported in Fig. 7a. All XRD 

spectra present a broad region at 2q ¼ 14 e20  due to the EPDM polymer reported in Fig. 7b [37].  

 



 

Fig. 6. (a) Set up of the thermal conductivity measurements. (b) Thermal conductivity values as a function of the 

GNPs/CB content. 

Fig. 7b shows the X-ray diffractogram recorded for the pristine carbon black; the spectrum reveals a 

peak at about 2q ¼ 24.6 , which is the d(002) 3.72 Å lattice spacing of the graphite layers [38,39]. 

XRD pattern of the EPDM-5 (i. e. 48 wt% CB) with CB filler alone, reveals that the EPDM region is 

followed by a distinct crystalline region at 2q ¼ 26.5 . This results is in agreement with a previous 

study reported in Ref. [40], stating that carbon black aggregates tend to concentrate in amorphous 

regions of the polymer matrix; the peak at 2q of about 32  corresponds to (100) lattice plane of the 

hexagonal wurtzite structure of zinc oxide (ZnO) [41].  

XRD pattern of EPDM-3 (i. e. 5 wt% GNPs) shows three signifi- cant peaks at 2q of about 32 , 34  

and 36  corresponding to (100), (001) and (101) lattice planes of the hexagonal wurtzite structure 

of zinc oxide (ZnO), respectively [41]. By comparison with the XRD pattern of pristine GNPs reported 

in Fig. 7b, it is evident that the peak at about 26.3  is due to the GNPs. The diffraction peak at about 

11.7  is attributed to the intrinsic diffraction of oxidized graphite, as confirmed by the XRD pattern 

of oxidized graphite reported elsewhere [42] and indicated by Raman measurement that there are 

substantial defects on graphite plane prone to be oxidized during the vulcanization process.  

 



    

Fig. 7. X-ray diffraction patterns of (a) EPDM 
nanocomposites with different GNPs/CB content and (b) 
CB, GNPs and neat EPDM. 
 

Fig. 8. FESEM images of the a) EPDM-6 and b) EPDM-7 
samples. The arrows in Fig. 6a) shows the CB 
agglomerates on a GNP sheet. The scale bars indicate 1 
mm. 

 

Accordingly to Wei et al. [36], our FESEM analysis reported in Fig. 8a shows small CB agglomerates 

attached on the surface and edge of the GNPs. On the other hand, increasing the GNPs content into 

the sample with the highest CB concentration (i. e. 5 wt% GNPs and 48 wt% CB) contribute to the 

increase of the CB agglomeration resulting in a decrease of both impact properties and thermal 

conductivity (Figs. 6b and 8b).  

Fig. 9 shows the results of m-CT analyses for the sample EPDM-6 (i. e. 2 wt% GNPs and 24 wt% 

CB). The raw data acquired by the X-ray microscope have been processed using tomographic 

reconstruction, producing a stack of 967 cross-sectional, grey-scale digital images. The total 

cylindrical volume of the analysed sample has 348 mm in diameter and 360 mm in height (Fig. 9a). 

As the grey level value in 3D image is related to the X-ray absorption of the material, the concentrated 

CB agglomerates are shown in lighter grey to white color, while GNPs due to its flat shape is shown 

in darker grey color.  

Image analysis techniques have been applied in order to segment the 3D imaged data and separate 

the different materials by their grey level value. Segmented m-CT images reported in Fig. 9b and c, 

show that both GNPs and CB are uniformly dispersed within the polymer matrix. Particularly CB 

forms aggregates (Fig. 9d) mostly on the surface of the GNPs linking the gap distance between the 

GNPs resulting in the formation of additional conductive paths and increasing the interface 

resistance in the hybrid composite. 

 

 

 



 

Fig. 9. A) Total cylindrical volume of the EPDM-6 sample (348 mm in diameter and 360 mm in height); B) and C) Detail of 

segmented m-CT images showing the distribution of the GNPs and CB aggregates, respectively (scale bar is 50 mm). D) 

Detail of segmented m-CT images showing the whole distribution of the GNPs (in red) and CB aggregates (in blue indicated 

by the arrows) (scale bar is 50 mm). 

 

4. Conclusions 

In this paper we adopt a processing technology to develop elastomer plus nano-graphite hybrid 

composites with multifunctional properties. Beyond the improvements of the mechanical properties, 

the research findings demonstrate the synergistic effect of carbon black and graphene nanoplatelets 

to prepare rubber composites thermally conductive and to design a new class of shock absorbers. It 

was found that a critical GNPs/CB ratio was able to reduce the strong interlayer forces among the 

GNPs sheets, which led to the efficiency on reinforcement in mechanical properties and 

improvements of the performance of the rubber composites. 
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