
Exact Initial Data for Black Hole Universes with a

Cosmological Constant

Jessie Durk1 and Timothy Clifton2

School of Physics and Astronomy, Queen Mary University of London, UK

E-mail: 1j.durk@qmul.ac.uk, 2t.clifton@qmul.ac.uk

Abstract. We construct exact initial data for closed cosmological models filled with

regularly arranged black holes in the presence of Λ. The intrinsic geometry of the

3-dimensional space described by this data is a sum of simple closed-form expressions,

while the extrinsic curvature is just proportional to Λ. We determine the mass of each

of the black holes in this space by performing a limiting procedure around the location

of each of the black holes, and then compare the result to an appropriate slice through

the Schwarzschild-de Sitter spacetime. The consequences of the inhomogeneity of this

model for the large-scale expansion of space are then found by comparing the lengths

of curves in the cosmological region to similar curves in a suitably chosen Friedmann-

Lemaitre-Robertson-Walker (FLRW) solution. Finally, we locate the positions of the

apparent horizons of the black holes, and determine the extremal values of their mass,

for every possible regular arrangement of masses. We find that as the number of black

holes is increased, the large-scale expansion of space approaches that of an FLRW

model filled with dust and Λ, and that the extremal values of the black hole masses

approaches that of the Schwarzschild-de Sitter solution.

1. Introduction

Cosmological models filled with lattices of black holes have received considerable

attention over recent years, as they provide an inhomogeneous alternative to the spatially

homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) solutions,

while remaining simple enough to solve using analytic methods. They therefore present

us with an opportunity to investigate some of the foundational assumptions that go

into the standard concordance model of cosmology, which both neglects the effects

of inhomogeneity on the large-scale expansion [1], whilst simultaneously requiring the

existence of a “dark sector” [2]. This is of particular interest as it is theoretically possible

for small-scale inhomogeneities to play a role in the large-scale dynamics of cosmological

models [3, 4], and because inhomogeneities can have consequences for a wide array of

cosmological observables [5]. It is important to ensure that we understand all of these

effects, especially with the advent of precision cosmology and in anticipation of future

surveys. Black hole lattices provide a valuable contribution to the literature on this

subject, as they all include all relativistic effects at all orders.
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The work in this paper builds on the seminal works by Lindquist and Wheeler [6]

and Misner [7], who considered time-symmetric initial data for black holes in vacuum.

This work was recently extended and investigated within a cosmological context [8],

and the evolution of this space has now been studied using numerical and symmetry-

reducing methods [9]-[15]. Perturbative and numerical analyses of cubic lattices of black

holes have also been performed [16]-[19]. The present study contributes to this literature

by constructing exact initial data for a universe that contains both black holes and a

cosmological constant, Λ. These reduce to the models in [8] in the limit where Λ vanishes.

These models do not require any approximations or perturbative methods, and therefore

include all relativistic effects. This means that while the distribution of matter is highly

idealised, the treatment of the gravitational field is exact and unambiguous.

The lattice models we consider for the majority of this paper are based on 3-spheres

tessellated with regular polyhedra, with a Schwarzschild de-Sitter-like mass placed at the

centre of each. They therefore represent closed cosmological models, and have a degree

of homogeneity if coarse-grained over large enough scales. There are six different ways

of constructing such models, with either 5, 8, 16, 24, 120 or 600 masses. In the absence

of Λ, each of these geometries is a time-symmetric hypersurface with vanishing extrinsic

curvature, corresponding to a closed FLRW universe at its maximum of expansion.

With the inclusion of a non-zero Λ we find that solutions that correspond to spaces of

constant mean extrinsic curvature have the terms involving Weyl curvature and spatial

curvature cancel each other out in the Hamiltonian constraint equation. In a Friedmann

cosmology, this would correspond to the moment when the density parameters for dust

and spatial curvature are equal in magnitude, and opposite in sign. Of course, modern

observational data constrains the real universe to be very close to spatially flat. The

initial data we present should therefore be considered as a mathematical exploration of

exact cosmological solutions to the Einstein field equations, rather than a model to be

immediately applied to the actual universe. We expect the knowledge gained from this

study to be instructive for understanding inhomogeneity in more realistic models, which

contain both dark matter and baryons, even though it is itself highly idealized.

Recent related works of particular significance are the numerical studies of Yoo et

al [13], and perturbative constructions of Sanghai et al [19]. The first of these constructs

a flat, infinite, cubic lattice of black holes with a non-zero cosmological constant, and

numerically solves the constraint and evolution equations for the spacetime. The second

study extends the post-Newtonian formalism to include a cosmological constant, and

then joins together cells of perturbed Minkowski spacetime using the Israel junction

conditions. Both of these studies are motivated by the fact that a positive-valued

cosmological constant causes accelerated expansion of the universe at late times, and so

is a prime candidate for “dark energy”. Our work differs from these previous studies

as we make no approximations when modelling the geometry of space, and because we

solve the constraint equations using a fully analytic approach. The topology of our

model is also different to that of Yoo et al, which allows us the benefit of studying six

different tessellations (rather than the one tessellation that exists in flat space).
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This paper is organised as follows. In Section 2 we present the initial data problem

for a universe containing black holes and a cosmological constant. In Section 3 we

determine the mass of these black holes by looking for a particular constant mean

curvature slice of the Schwarzschild-de Sitter spacetime. Section 4 introduces the

cosmological deceleration parameter, and presents results for how it is affected by back-

reaction in our inhomogeneous models. In Section 5 we derive a formula for locating

apparent horizons within each of our lattice models, which are used in Sections 6 to

determine the distance between black holes. Section 7 then contains a presentation of

the extremal values of Λ in cosmologies of this type. Finally, we discuss our results in

Section 8. Throughout this paper we use geometrised units where c = G = 1. We use

the second half of the Greek alphabet (µ, ν) as indices to denote spacetime coordinates,

whilst the second half of the Latin alphabet (i, j) are used as indices to denote spatial

coordinates.

2. Exact Initial Data with Λ

The 3 + 1 decomposition of Einstein’s equations yields the Hamiltonian and momentum

constraint equations,

R+K2 −KijK
ij = 16πρ , (1)

Dj(K
j
i − γ

j
i K) = 0 (2)

where R is the Ricci scalar of the hypersurface, Kij is the extrinsic curvature, K its

trace, ρ is the matter density, γij is the intrinsic metric of the hypersurface and Dj is

the covariant derivative with respect to this metric. We can then write the extrinsic

curvature in terms of its trace and trace-free part, Aij, as

Kij =
1

3
γijK + Aij , (3)

and performing a conformal rescaling of the 3-metric, such that γij = ψ4γ̃ij, then allows

us to write the Ricci scalar as

R = ψ−4R̃ − 8ψ−5D̃2ψ , (4)

where R̃ is the Ricci scalar of γ̃ij, and D̃2 is the covariant Laplacian associated with γ̃ij.

Substituting Eqs. (3) and (4) into Eqs. (1) and (2) then gives

8D̃2ψ − ψR̃ − 2

3
ψ5K2 + ψ5AijA

ij = −2Λψ5, (5)

Dj

(
A j
i −

2

3
γ j
i K

)
= 0 , (6)

where we have made the substitution 8πρ = Λ. It can be seen that for non-vanishing

extrinsic curvature and/or Λ we have that Eq. (5) is non-linear in ψ, making it extremely

difficult to solve in general. However, it can be seen that if we take

K2 = 3Λ and Aij = 0 (7)
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then Eq. (6) is satisfied identically, and Eq. (5) becomes linear in ψ:

8D̃2ψ = ψR̃ . (8)

If R̃ is constant, then this is simply the Helmholtz equation. If R̃ = 0 then it is just

the Laplace equation. In either case, it has known solutions. What is more, due to

the linearity of Eq. (8), we can add any number of particular solutions to obtain new

solutions. This makes it highly amenable to the study of the many-body problem in

cosmology.

For the study that follows, we take the conformal metric of the initial hypersurface

to be a 3-sphere of constant curvature, with line-element

ds2 = ψ4(dχ2 + sin2 χ(dθ2 + sin2 θdφ2)) . (9)

This means that R̃ = 6, and that solutions exist to Eq. (8) of the form ψ ∝ 1/sin (χ/2).

Due to the linearity of Eq. (8), this means that we can sum arbitrarily many such

solutions to obtain

ψ(χ, θ, φ) =
N∑
i=1

√
m̃i

2fi(χ, θ, φ)
. (10)

As each term in this sum corresponds to a different mass, we have a solution that

corresponds to N masses on a 3-sphere. The parameters m̃i are a set of constants that

we refer to as the “mass parameters”, and the fi are a set of source functions of the

form fi = sin (χi/2), where χi is the χ coordinate after a rotation so that the ith mass

appears at the coordinate position χ = 0. This is exactly the same intrinsic geometry

that one obtains for the corresponding situation on a time-symmetric hypersurface in

the absence of Λ (see [8] for further details).

3. Proper Mass of Black Holes

It should be noted that while the m̃i in Eq. (10) look like mass parameters, they

are not the masses that one would determine from observing gravitational interactions

from within the spacetime. This is due to the existence of interaction energies, which

themselves gravitate and must be accounted for in order to calculate the total proper

mass of each of the black holes [20]. In this section we outline the method we use to

extract the proper mass of each of the black holes in our models.

The basic idea here is to look at the asymptotic form of the geometry given in

Eq. (10) in the limit χi → 0, where we have rotated the coordinate system so that the

ith mass is located at χi = 0. Taking this limit corresponds to looking at the black

hole from infinity, in the asymptotically flat region on the far side of the Einstein-Rosen

bridge (for an explanation of this interpretation in terms of reflection operators and

embedding diagrams, see [21]). Once we know the leading-order part of the gravitational

field in this limit, we can compare it to the same limit of the Schwarzschild-de Sitter

(or Kottler) solution, and read off a value for the mass parameter. This process works,
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as we expect the geometry of space to approach that of a suitably chosen slice through

the Schwarzschild-de Sitter solution as we approach χi = 0.

The Schwarzschild-de Sitter spacetime has a line-element, in standard Schwarzschild

coordinates (t, r, θ, φ), that can be written as

ds2 = −
(

1− 2M

r
− Λr2

3

)
dt2+

dr2(
1− 2M

r
− Λr2

3

)+r2(dθ2+sin2 θdφ2) , (11)

where M is the mass of the black hole. This solution has both black hole and

cosmological horizons, provided that the combination of parameters M 2Λ lies within

the range 0 < M 2Λ < 1/9. We now need to take a slice through this spacetime that

can be compared to the geometry of our initial data, as outlined in Section 2.

The initial data constructed in Section 2 has constant mean curvature (CMC),

which means we need to look for a CMC foliation of the Schwarzschild-de Sitter

spacetime in order to determine the mass of our black holes. In order to do this it

is convenient to write the metric as [22]

ds2 = −
(
α2 − ψ

β2

)
dt̃2 + 2βdt̃dr + ψdr2 + r2(dθ2 + sin2 θdφ2) (12)

where α and β are the lapse and shift respectively, and where ψ = ψ(r, t̃). Insisting on

a CMC foliation, with K = constant, then gives [23]

ψ−1 = 1− 2M

r
+

(√
2

3
K +

|A|
2

)
|A|
3
r2 , (13)

where |A| =
√
AijAij, and where M is the mass parameter from Eq. (11). The value

of |A|r3 in this expression is constrained to be a function of t̃ only, and must obey the

following evolution equation

d(|A|r3)

dt̃
=
√

6αM −
√

6r2

ψ

∂α

∂r
+

(
2|A|√

6
− K

3

)
α|A|r3 . (14)

For further details about this foliation, including explicit forms for the shift and lapse

functions, the reader is referred to Ref. [23].

The particular leaf we require is the one on which Aij = 0. From Eq. (13), this

gives us a hypersurface with intrinsic geometry

ds2 =

(
1 +

M

2ρ

)4

(dρ2 + ρ2(dθ2 + sin2 θdφ2)) , (15)

where we have transformed to an isotropic radial coordinate using r = ρ(1 + M/2ρ)2.

This is manifestly the same intrinsic geometry as a time-symmetric slice though the

Schwarzschild geometry. Given that the intrinsic geometry in Eqs. (9) and (10) is also

identical to that of a time-symmetric slice through the Schwarschild solution, this means

that the proper mass of the ith black hole must be given by [21]

Mi =
∑
j 6=i

√
m̃im̃j

sin
(χij

2

) , (16)
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where the indices i and j label each of the N masses in our cosmological model, and

where χij is the coordinate distance χ between the mass mi and the mass mj, after

rotating so that one of these is at χ = 0.

The sum in Eq. (16) is over all other masses in the spacetime, and therefore has a

total of N − 1 terms. This means that the mass of any given black hole in this model

depends on the location and mass parameter of every other black hole, through χij and

m̃j, respectively. One cannot, therefore, determine the properties of any region of space

without knowing the positions and magnitudes of every other mass in the universe.

4. Back-Reaction Effect on the Deceleration Parameter

We are now in a position to be able to calculate some of the differences in the large-scale

behaviour of a regular lattice of black holes in the presence of Λ, and a homogeneous and

isotropic FLRW model containing dust and Λ. One of the most relevant and interesting

quantities for a comparison of this kind is the deceleration parameter, q, which is a

dimensionless quantity that measures the rate of change of expansion of space. For an

FLRW universe, the deceleration parameter is defined as

q ≡ −aä
ȧ2

(17)

where overdots denote derivatives with respect to the proper time of comoving observers,

t. The Friedmann equations for an FLRW universe containing pressureless dust and Λ,

which give us the values of ȧ and ä in terms of the matter content, are given by

ȧ2

a2
=

8πρ

3
− k

a2
+

Λ

3
(18)

ä

a
= −4πρ

3
+

Λ

3
, (19)

where k is the spatial curvature constant and ρ is the energy density in the dust.

The situation we considered in Section 2, where constructed our initial data, was

one in which K2 = 3Λ and where 8D̃2ψ = ψR̃. The most closely analogous FLRW

solutions are therefore those that obey the conditions

ȧ2

a2
=

Λ

3
and

8πρ

3
=

k

a2
. (20)

This is because K = −3ȧ/a in an FLRW solution, because R̃ = 6k, and because the

electric part of the Weyl tensor (proportional to ψ−1D̃2ψ) plays the role of the energy

density in the effective Friedmann equations [12]. Substituting these conditions into Eq.

(17) then gives

q =
4πρ

Λ
− 1 , (21)

which is the expression we will use for the deceleration in both our black hole lattice

and our comparison FLRW space. In the former of these cases the energy density, ρ,

will be taken to be the sum of proper masses of all black holes, and in the latter case

it will simply be the energy density in dust at the moment described in Eq. (20).
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Of course, there also exist many other ways that one could construct measures of

deceleration in inhomogeneous universes. The one presented in Eq. (21) should therefore

be considered a choice, albeit one that allows for a particularly simple generalisation of

the corresponding quantity in FLRW cosmology.

A quantity that can now be used as a measure of back-reaction in our black hole

lattice models is the ratio of deceleration parameters between these two types of universe,

which according to the discussion above is given by

qL
qF

=
4πρL − Λ

4πρF − Λ
, (22)

where subscripts L and F on a quantity denote that it is associated with either the

lattice of black holes or the fluid of dust, respectively. One may note that for vanishing

Λ the first term on the right-hand side of Eq. (21) diverges, and so this quantity cannot

be defined in that case. For non-zero Λ, however, the deceleration parameter is finite,

and the quantity in Eq. (22) is well defined.

In order to fully specify ρF we now need to impose one further condition, which

essentially corresponds to choosing which of the infinite family of solutions that obey

the conditions Eq. (20) we wish to compare to our lattice universe. We choose this

condition to be such that the total mass of the dust fluid is equal to the sum of the

masses in the black hole lattice, as in Ref. [8]. This uniquely specifies a single FLRW

solution, and gives the energy density in the lattice and fluid models as

ρL =
MT

2π2

1

a3
L

and ρF =
MT

2π2

1

a3
F

, (23)

where MT =
∑

iMi is the total mass in the universe, where aL and aF denote the global

scale factors in the lattice and fluid models. In each case we have taken the volume of

a hypersurface of constant t to be given by V = 2π2a3. It now remains to identify an

appropriate scale factor for each of the two models.

In an FLRW model the choice of scale factor is unique and unambiguous. For a

universe with positive spatial curvature (k = +1), at the moment specified by Eq. (20)

and for the energy density specified in Eq. (23), we have

aF =
4MT

3π
. (24)

The corresponding quantity in the lattice model is more difficult to identify, as the length

of any given curve in the space depends on its location and orientation (the space is

both inhomogeneous and anisotropic). We choose to take the curves that constitute

the edges of the lattice cells in order to define a scale factor in this case. These curves

are uniquely determined by the symmetries of the lattice, and are maximally far away

from every black hole, making them as close as possible to a measure of the scale of the

cosmology. The scale of these curves, as a ratio of curves that subtend the same angle

at the centre of the conformal 3-sphere, is given in Table 1. These ratios are the same

as in the absence of Λ [8], as the intrinsic geometry in Eqs. (9) and (10) is unchanged

from that case. Together with Eq. (24), these ratios determine the scale factor aL for

each of the six possible tessellations of the 3-sphere.
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Number of masses, N Ratio of scale factors, aL/aF
5 1.360

8 1.248

16 1.097

24 1.099

120 1.034

600 1.002

Table 1: Ratios of scale factors for discrete and continuous universes for each of the six

possible lattice configurations on a 3-sphere [8].

We now have all the information needed to calculate the ratio of deceleration

parameters in Eq. (22), as a function of the combination ΛM2
T . It can be seen that in

the limit ΛM2
T →∞, both qL and qF tend to −1. For small values of Λ the deceleration

parameters qL and qF are both large and positive (diverging in the limit Λ → 0, as

discussed above). These properties are true for each of the six tessellations of the

3-sphere, and in each case we find that q → −1 rapidly as Λ is increased. This is

non-surprising, and is due to the form of the expression in Eq. (22).

Fig. 1 shows the ratio of our two deceleration parameters, evaluated at different

values of Λ. As the number of masses increases the ratios tend to unity for all values of

Λ. This is expected as for large values of N we have aL ≈ aF , as can be seen from Table

1 as well as from studies that consider very large numbers of randomly located masses

[24]. This equality of scale factors implies ρL ≈ ρF , and therefore qL/qF ≈ 1. When Λ

is large, as in the 100M−2
T case, the ratio of deceleration parameters is approximately

unity regardless of N .

Again, this is to be expected from the form of the expression in Eq. (22). When Λ

is very small, the ratio of deceleration parameters reduces to ρL/ρF = (aF/aL)3. This is

shown by the curves corresponding to 0.1M−2
T and 0.01M−2

T , which are indistinguishable

from each other. On the other hand, for intermediate values of Λ, when 4πρF = Λ, the

same ratio diverges. Using Eqs. (23) and (24) this occurs at Λ ≈ 8.33M−2
T , for which

the green curve is a good indicator of this divergence in ratio. All values of Λ below this

critical value give qL/qF < 1, while all values above it give qL/qF > 1.

5. Locating the Apparent Horizons

We now wish to determine the effect a non-zero cosmological constant has on the

locations of horizons in each of our lattice models. The apparent horizons in this case

are defined as closed 2-surfaces that have outgoing future-directed normal null geodesics

with vanishing expansion. Such surfaces are marginally outer trapped, meaning that

light rays are neither able to escape to infinity nor fall towards the singularity [25]. To

find the positions of these surfaces we use the orthonormal frame approach [26], with

non-zero Λ but in the absence of matter, and follow the approach used in Ref. [12].
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Figure 1: The ratio of the deceleration parameter in the lattice universe, compared

to the corresponding FLRW universe, in each of the six possible tessellations of the

3-sphere. Each curve corresponds to a different value of Λ, in units of M−2
T .

We first consider a unit time-like vector uµ and its covariant derivative, decomposed

as

∇µuν = −uµu̇ν + σµν +
1

3
Θhµν − ωµν , (25)

where Θ is the expansion scalar, σµν is the shear tensor, ωµν is the vorticity tensor and

hµν = gµν +uµuν is the projection tensor. If uµ is orthogonal to our initial hypersurface

then we immediately have

K = −Θ, Aij =
dxµ

dξi
dxν

dξj
σµν , and ωµν = 0 , (26)

where ξi are coordinates in this space. We now need to consider the electric part of the

Weyl tensor. This quantity is obtained by taking the trace free part of the Riemann

tensor, Rµν
ρσ, and decomposing it into its electric and magnetic parts [26]. We find

that for the solution outlined in Section 2, and using the results in Eq. (26), the electric

part of the Weyl tensor can be written as

Eµν = Rµν , (27)

whereRµν is the Ricci tensor of the initial hypersurface. This result is obtained using the

general expressions for the Gauss embedding equation in orthonormal frame variables

[26], and is identical to the result that one obtains in the absence of Λ [12]. We will now

use it to locate the position of the apparent horizons.

Consider three orthogonal space-like unit vectors, {eµ1 , e
µ
2 , e

µ
3 } arranged so that eµ1

points outwards from the black hole. These three vectors, along with uµ = eµ0 , complete
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our orthonormal frame. We can now write the condition that outgoing null geodesics

kµ should have zero expansion as [25]

Θ̂ ≡ kµ;νm
µν =

1√
2

(e0µ;νm
µν + e1µ;νm

µν) = 0, (28)

where mµν is the screen space projector, which is an induced two-dimensional metric

that can be written as mµν = eµ2 e
ν
2 + eµ3 e

ν
3 . The first term in Eq. (28) is directly

related to the extrinsic curvature of the initial hypersurface, and does not vanish if Λ is

non-zero. The second term in Eq. (28) is the expansion of eµ1 in the screen space.

We treat the black holes horizons as being non-expanding in the initial data, so

that Θ̂ = LkΘ̂ = 0. The null Raychaudhuri equation then tells us that the shear of the

integral curves of kµ must also vanish, which means that the positions of the apparent

horizons in the initial data must have constant mean curvature and hence must be

totally geodesic with indeterminate lines of curvature [27]. These properties mean that

the space-like normal to the apparent horizons must be a principal direction of the Ricci

tensor of the 3-space [28]. From Eq. (27) this means that we have E12 = E13 = 0 at all

points on the apparent horizon, and hence that [26]

e1(E11) = 3a1E
11 + n23(E3

3 − E2
2) , (29)

where e1 is a frame derivative, 2a1 = −e1µ;νm
µν is the expansion of eµ1 , n23 is a symmetric

2-index object and E11, E3
3 and E2

2 are components of the electric part of the Weyl

tensor. Eq. (29) can be used to find the positions of the horizons in our initial data.

Let us now rotate our lattice of black holes so that one of the masses appears at

χ = 0, and consider the points at which the horizon of this black hole intersects curves

that exhibit local rotational symmetry (such as the edges of cells, or the curves that

connect it to neighbouring black holes). At these points we have E3
3 = E2

2 [12], which

means that the second term on the right-hand side of Eq. (29) vanishes. For the value

of a1 we find

a outer
1 = −1

2
e1µ;νm

µν =
1

2
e0µ;νm

µν =
1

3
Θ = ±

√
Λ

3
, (30)

where we have used Eq. (28) in the second equality, and where in the third equality we

have used to fact that mµν contains only two of the three orthonormal basis vectors.

The ± after the final equality indicates the fact that our initial data can describe either

an expanding (+) or a collapsing (−) space.

We can repeat the analysis above for marginally inner trapped surfaces, which will

also be of interest in the models we are constructing. In this case Eq. (28) should be

modified so that it instead gives e0µ;νm
µν − e1µ;νm

µν = 0. By exactly the same logic,

this yields

a inner
1 = −1

2
e1µ;νm

µν = −1

2
e0µ;νm

µν = −1

3
Θ = ∓

√
Λ

3
, (31)

where the ∓ sign here corresponds to expanding (−) or collapsing (+) space. We

therefore have both inner and outer trapped surfaces for each of the two possible signs
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Θ > 0

Θ < 0

O
C

IBH
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BHIC

IC

O
C
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BH

IBH

Figure 2: Penrose-Carter diagram for the region of spacetime around one of the black

holes, in a lattice with non-zero Λ. The hypersurfaces that constitute our initial data

are shown as dashed lines. The expanding universe with Θ > 0 passes through an

outer trapped cosmological horizon (OC), an outer trapped black hole horizon (OBH),

an inner trapped black hole horizon (IBH) and an inner trapped cosmological horizon

(IC) before emerging into the cosmological region on the right. Similarly, a contracting

universe with Θ < 0 passes through an inner trapped cosmological horizon (IC), an

inner trapped black hole horizon (IBH), an outer trapped black hole horizon (OBH)

and an outer trapped cosmological horizon (OC) before emerging into the cosmology.

The solid curved line on the right-hand side represents a cut-off, beyond which the

causal structure of the cosmological region should be expected to be too complicated to

represent in a 2D figure.

of Θ. Those with Θ < 0 (or K > 0) correspond to contracting universes whilst those

with Θ > 0 (or K < 0) correspond to expanding universes.

Substituting these results back into Eq. (29) gives us a general expression for

the positions of all of the horizons in a black hole lattice universe with a cosmological

constant. They are given by solutions to the following expression:

e1(E11) = α1α2

√
3ΛE11 , (32)

where we have introduced two new quantities, α1 and α2, which both take values of

either +1 or −1. The first parameter, α1, describes whether the space is expanding

or contracting, and we choose α1 = +1 to correspond to expansion and α1 = −1

to correspond to contraction. The second parameter, α2, then describes whether the

horizon in question is an inner or outer trapped surface. Given our previous choice,

we have that α2 = +1 corresponds to outer trapped surfaces, whilst α2 = −1 refers

to inner trapped surfaces. The reader may note that this implies there is a symmetry

between outer trapped surfaces in the expanding case and inner trapped surfaces in the

contracting case.

Fig. 2 shows the hypersurfaces we have been considering, for some arbitrary

value of Λ, in a Penrose-Carter diagram. We have indicated how both expanding and

contracting hypersurfaces fit into this diagram. Each surface passes through exactly

two cosmological horizons and two black hole horizons, and the sign of Θ determines
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whether these are inner or outer trapped surfaces. On the left of the diagram the

spacetime approaches perfect Schwarzschild-de Sitter, while on the right it approaches

the complicated cosmological region (separated off by the curve). At the mid-point,

within the black hole region, each of the two spaces contains a throat that has a finite,

non-zero minimal radius. In the limit Λ → 0 we can verify that Eq. (32) reduces

to the corresponding equation in Ref. [12], and in that case the apparent horizon

becomes degenerate with the minimal sphere that can fit within the throat at the centre

of the black hole region. Finally, we note that the procedure outlined in this section

correctly identifies the known locations of the horizons in the exact Schwarzschild-de

Sitter geometry.

6. Distance Between Black Holes in Regular Lattices

The lattice spacetime with Λ has two types of horizon – cosmological and black hole

– and these can be inner or outer trapped surfaces. In addition, these can occur in

either contracting or expanding configurations. We may therefore naively have thought

there are eight different horizons to be found. However, noticing that an outer/inner

trapped surface in the expanding case is the same as an inner/outer trapped surface in

the contracting case reduces the number of horizons to be found to four. We now seek

to determine the location of these horizons in each of the six possible lattices. To start

with, we use the 5-mass model as an example, and rotate coordinates so that one of the

masses appears at the position χ = 0. We then calculate the electric part of the Weyl

tensor along a curve that connects this mass with one of its neighbours in an adjacent

cell, as a function of radial coordinate χ. This information can then be used in Eq.

(32), to obtain the positions of the various horizons for different values of Λ in units of

M −2
0 (where M0 is the proper mass of one of the black holes, as calculated using Eq.

(16)) The results of all this are displayed in Table 2, where we have chosen to consider

an expanding universe, with Θ > 0 and therefore α1 = +1. From this point onwards we

will refer to horizons in the expanding case only, unless specified otherwise. The results

and analyses for contracting solutions are exactly the same, albeit under an interchange

of the words “inner” and “outer” when referring to horizons.

For Λ = 0, we find that the locations of the horizons at χ = χ2 and χ = χ3 are

degenerate, as previously identified in Ref. [9]. The positions of the other two horizons

when Λ = 0 are found to be at χ1 = 0 (the origin) and χ4 = 0.912 (the midpoint

between masses). These are mathematical solutions to Eq. (32), but for vanishing Λ

had not previously been considered as physically interesting. Indeed, although the latter

can rightly be identified as an extremal surface in the geometry (it is part of the face

of one of the cells in the lattice), it is not part of a closed extremal surface, and so

is not technically a horizon. Similarly, it is stretching the definition somewhat to call

the sphere at χ = 0 a horizon, as this corresponds to a sphere at infinity on the far

side of the Einstein-Rosen bridge. Nevertheless, it is useful to identify these points as

“cosmological horizons”, as they become more interesting when Λ 6= 0.
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Λ/M−2
0

α2 = +1 α2 = −1

χ1 χ2 χ3 χ4

0 0 0.413 0.413 0.912

0.002 0.00539 0.367 0.474 0.824

0.004 0.00781 0.349 0.507 0.781

0.006 0.00975 0.337 0.541 0.740

0.008 0.0115 0.326 0.586 0.690

0.009 0.0121 0.323 0.638 0.638

0.020 0.0196 0.285 - -

0.040 0.0311 0.241 - -

0.060 0.0426 0.207 - -

0.080 0.0559 0.177 - -

0.100 0.0749 0.144 - -

0.111 0.104 0.104 - -

0.120 - - - -

Table 2: Positions of the horizons for the expanding 5-mass model, as a function of Λ

measured in units of M−2
0 . The horizons at χ = χ1 and χ2 are both outer trapped, while

those at χ = χ3 and χ4 are both inner trapped. Dashes indicate that no horizons exist

for the given value of Λ. The position of the midpoint between masses is at χ = 0.912,

in this configuration.

Turning on Λ reveals that the horizons change positions, as indicated in Table 2.

For the inner trapped surfaces with α2 = −1, the black hole horizon at χ = χ3 moves

outwards with increasing Λ, while the cosmological horizon at χ = χ4 moves inwards as

Λ increases. This means that as Λ increases, χ3 and χ4 converge towards each other,

and in fact become degenerate at Λ ' 0.009M−2
0 . For values of Λ above this critical

value, there are no solutions to Eq. (32). Similarly, for outer trapped surfaces with

α2 = +1, the black hole horizon at χ = χ2 moves to lower χ as Λ increases, whilst

the cosmological horizon at χ = χ1 moves to higher values of χ. This corresponds to

the black hole horizon moving outwards on the far side of the Einstein-Rosen bridge,

while the cosmological horizon moves inwards from infinity. Again, these two horizons

become degenerate at a critical value of Λ ' 0.111M−2
0 , and there exist no solutions to

Eq. (32) for higher values of Λ.

To illustrate this behaviour graphically one can consider the functional form of the

left and right-hand sides of Eq. (32). These quantities are shown in Fig. 3 as a function

of the coordinate χ, for the 5-mass expanding model, and with α2 = ±1. The coloured

lines represent the right-hand side of Eq. (32), and hence are a function of Λ. When the

black line and the coloured lines cross, Eq. (32) is satisfied, and a value for the position

of a horizon, χh, can be read off. For small enough values of Λ there are four occasions

where this happens. However, if the value of Λ is increased sufficiently then these lines

do not cross at all, and the horizons cease to exist.
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0.5 1.0 1.5
χ

-0.10

-0.05

0.05

0.10

e1E
11
 / M0

-3, α2 3Λ E11
/ M0

-3

Figure 3: A graphical representation of the left and right-hand sides of Eq. (32) for the

expanding 5-mass model. The black curve corresponds to the left-hand side, while the

multi-coloured curves correspond to the right-hand side. The values of Λ range from 0

(purple) to 0.02M−2
0 (red) in increments of 0.002M−2

0 . For α2 = +1 the multi-coloured

lines are above the horizontal axis, and α2 = −1 for those below. The vertical dashed

line shows the midpoint between the two masses.

The χ values from the positions of the horizons can be plotted separately, and in

the first panel of Fig. 4 these values are shown for the 5-mass model. The subsequent

panels in Fig. 4 show the positions of the horizons for each of the five other lattice

universes that we are considering, for different values of Λ. These diagrams show all

four possible horizons, both inner and outer black hole horizons as well as inner and outer

cosmological horizons. The extremal values of Λ, in both the inner and outer regions,

are displayed in the diagrams as vertical lines. As the number of masses is increased,

these two extremal values for Λ converge, until they become indistinguishable by eye in

the case of the 120-mass and 600-mass configurations. The black hole horizons meet at

Λ = 0, as expected [9], and in every case the largest χ4 value is simply the midway point

between the two masses. The information presented in Fig. 4 can be used to determine

the distance between neighbouring black holes for every value of Λ, in each of the six

possible configurations.

7. Extremal Values for Λ

Cosmological and black hole horizons exist in the Schwarschild-de Sitter spacetime

provided 0 < M 2
0 Λ < 1/9. In our lattice models there also exist bounds on the
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(d) 24 masses.
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(e) 120 masses.
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(f) 600 masses.

Figure 4: The positions of the four possible horizons in each of the six lattice universes,

as a function of Λ. The blue (orange) line corresponds to a marginally inner trapped

cosmological (black hole) horizon, whilst the green (red) line corresponds to a marginally

outer trapped black hole (cosmological) horizon. The vertical lines represent the value

of Λ after which no solutions to Eq. (32) exist.
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Figure 5: The upper bound on ΛM 2
0 as a function of the number of masses, for the

outer horizons (blue) and the inner horizons (yellow). The solid line corresponds to the

Schwarzschild-de Sitter value of 1/9.

combination M 2
0 Λ, but the value of the upper limit is not always equal to 1/9. This is

an interesting result, as it appears that the fact the black holes exist within a cosmology

changes the value of M0 for which the black holes can be said to be extremal (for a given

value of Λ). The vertical lines in Fig. 4 have already been used to denote the location

of the point where the black hole and cosmological horizons become degenerate. Here

we will collect these results, for each of the six lattice models, to consider the behaviour

of the upper bound on M 2
0 Λ as a function of the number of masses in the universe. We

present this information numerically in Table 3, and illustrate it graphically in Fig. 5. It

is manifest that two different phenomena arise as the number of masses increases. The

first is that the critical values for Λ, after which there are no horizons, converge to the

same value for both α2 = +1 and α2 = −1. The second is that the value to which they

converge is the same value as the upper bound in the Schwarschild-de Sitter solution,

M 2
0 Λ = 1/9. This is not unexpected, as for large values of N the distance between

neighbouring masses increases, and the overall contribution from any individual black

hole to the spacetime of any other diminishes. In other words, increasing N isolates each

black hole to the point that it can be very well approximated by the Schwarzschild-de

Sitter solution.

It is also interesting to see if a varying lower limit for ΛM2
0 exists, or whether it is

always bound from below by zero. One way of determining this is to look at the gradients

of both sides of Eq. (32) and see if it always true that ∂χ(
√

3ΛE11) > ∂χ(ψ−2∂χ(E11)), for

arbitrarily small values of Λ. If it is, then the inner black hole and cosmological horizons
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Number of masses, N
Λ/M−2

0

α2 = −1 α2 = +1

5 0.00884 0.111

8 0.0569 0.111

16 0.0835 0.112

24 0.102 0.105

120 0.111 0.111

600 0.111 0.111

Table 3: Extremal values for Λ, for each of the six expanding lattice models. The

column headed α2 = −1 gives the upper bound on ΛM2
0 for the inner horizons, while

the corresponding quantity for the outer horizons is given in the column headed α2 = +1.

should be expected to exist, and to remain separate. We calculated these two functions

numerically, and found the condition to be valid down to values of Λ ∼ O(10−14) and

χ ∼ O(10−8) for all six lattice models. This indicates the lower bound on ΛM2
0 is

always zero, at least as far as can be determined with machine precision calculations.

This result agrees with the results of Ref. [13], who found that an inner cosmological

horizon always exists in the case of an infinite flat lattice.

8. Discussion

Inhomogeneous cosmological models are important for understanding the role of small-

scale structures on the large-scale dynamics of the universe, and in turn the consequent

effects that this has on observable quantities. This paper contributes to the literature

on this subject by providing and studying exact initial data for a universe that contains

regularly arranged black holes in a hyperspherical universe and in the presence of a

cosmological constant. In Section 2 we presented the constraint equations for such a

universe, and solved them in closed analytic form. In Section 3 we then determined the

proper mass of the black holes by considering the constant mean curvature foliation of

the Schwarzschild-de Sitter spacetime.

We then studied the change in deceleration parameter due to inhomogeneity in

spaces of this type, by comparing to positively curved FLRW models that contain the

same cosmological constant and dust with the same total proper mass. The results

of this were presented in Section 4. We found that the back-reaction effect from

inhomogeneity decreases as the number of masses is increased, and as the value of

the cosmological constant becomes large. We then found expressions for the locations of

the black hole and cosmological horizons in Section 5, and determined numerical values

for the positions of these horizons in each of the six possible lattice universes in Section

6. We found that there are upper bounds on the value of ΛM2
0 , where M0 is the proper

mass of the black holes in this spacetime, and that this upper bound converges to the

Schwarschild-de Sitter value as the number of masses in the universe is increased.
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These results give qualitative agreement with the numerical work found performed

in Ref. [13] when considering the inner black hole and cosmological horizons, but appear

to disagree when considering the outer horizons. We expect that the source of this

disagreement is due to the freedom that exists to change the scale of the size of the

cells in the flat lattice that the authors of this study had been considering. No such

freedom exists in the hyperspherical lattices that we have studied, which makes them

much more rigid, and thus changes the relationship between the positions of black hole

horizons and cosmological horizons.

The initial data we have constructed and studied can be evolved numerically, as was

done for the 8-mass case with vanishing Λ in Ref. [9]. In fact, it may be that the present

set of initial data has certain benefits over the corresponding set without Λ. This is

because the initial hypersurface when Λ = 0 is time-symmetric, meaning that evolving

the initial data in either direction in time means evolving it towards a cosmological

singularity, where numerical errors are likely to increase. Initial data for eternally

expanding lattice universes has so far only been achieved numerically [13, 29, 30], which

inevitably leads to numerical errors that can grow during the evolution. In our case, we

strongly suspect that, for the initial data we presented in Section 2, there will be values

of the parameter combination ΛM2
0 that lead to eternally expanding universes. The

fact that the initial data is exact in this case may then mean that errors in the future

evolution are easier to control. Using the Friedmann equations, and the values given in

Eq. (20), we estimate the required conditions for eternal expansion will be approximately

when ΩΛ & 4
27

Ωm, where we have defined ΩΛ ≡ Λ/3H 2
0 and Ωm ≡ 8πρm/3H

2
0 .
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