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Abstract—Musicologists, music cognition scientists and others
have long studied music in all of its facets. During the last few
decades, research in both score and audio technology has opened
the doors for automated, or (in many cases) semi-automated
analysis. There remains a big gap, however, between the field of
audio (performance) and score-based systems. In this research,
we propose a web-based Interactive system for Multi-modal
Music Analysis (IMMA), that provides musicologists with an
intuitive interface for a joint analysis of performance and score.
As an initial use-case, we implemented a tension analysis module
in the system. Tension is a semantic characteristic of music that
directly shapes the music experience and thus forms a crucial
topic for researchers in musicology and music cognition. The
module includes methods for calculating tonal tension (from the
score) and timbral tension (from the performance). An audio-to-
score alignment algorithm based on dynamic time warping was
implemented to automate the synchronization between the audio
and score analysis. The resulting system was tested on three
performances (violin, flute, and guitar) of Paganini’s Caprice
No. 24 and four piano performances of Beethoven’s Moonlight
Sonata. We statistically analyzed the results of tonal and timbral
tension and found correlations between them. A clustering
algorithm was implemented to find segments of music (both
within and between performances) with similar shape in their
tension curve. These similar segments are visualized in IMMA. By
displaying selected audio and score characteristics together with
musical score following in sync with the performance playback,
IMMA offers a user-friendly intuitive interface to bridge the gap
between audio and score analysis.

Index Terms—Multimodal system, music analysis, tension,
online interface, music representation

I. INTRODUCTION

Extracting low-level features such as chroma vectors and
Mel-frequency spectral coefficients from audio recordings
has been the driving force for Music Information Retrieval
(MIR). The success of various MIR tasks, including music
recommendation and playlist generation, requires the analysis
of audio as a fundamental step. More recently, researchers
in MIR started to examine the semantic meaning of these
low-level acoustic features. The most common “multi-modal”
approach in MIR is to study the relation between these low-
level acoustic features and high-level features labeled by music
experts or casual listeners. For example, Schedl and et al. [1]
created an informative dataset of popular music by considering
acoustic features, user-generated tags (free-style short textual
segments) from Last.fm, expert-annotated tags (genre and

mood), and editorial meta-data such as album and artist name.
Similarly, Wang and et al. [2] combined user-generated tags
and acoustic low-level features as ontology classes for music
recommendation. Saari and Eerola [3] also used social tags
from Last.fm to study the semantic meaning of mood in music.

The problem with the above-mentioned approach is that it
is not truly multi-modal. Such an approach mainly focuses
on acoustic features, and only aims to create another level of
representation that groups certain acoustic features together
using tags as categories. In addition, using user-generated
tags to study semantic meanings in music is convenient but
superficial: one tag such as “coffee house” for a song does not
describe the musical nuances in the composition or recording.
To truly understand semantically meaningful concepts such
as tension, relaxation, and closure, it is necessary to consider
the manner in which music theorists and musicologists study
music, i.e., to study the score.

Several software tools exist for music editing and semantic
music analysis, but none of them focus on the features that we
aim for in this paper. For example, Sonic Visualizer [4] allows
users to annotate and visualize acoustic characteristics in audio
recordings. Through the use of Vamp plug-ins1, the software
can automatically perform analyses such as identifying the
fundamental frequency of notes and extracting beat, tempo
and chords from a music recording. However, displaying or
analyzing the musical score is not currently supported in the
software, nor does the system work online. In contrast, Mus-
eScore2 provides powerful functions to create and annotate a
music score, but it does not support semantic music analysis
on the score nor audio level.

We propose a web-based Interactive Multi-modal Music
Analysis system (IMMA) that provides a multi-modal interface
that unifies audio- and score-based musicological analysis. In
this paper, we focus on tension as an initial use-case for seman-
tic music analysis. “Music, particularly music in the Western
tonal-harmonic style, is often described in terms of patterns
of tension and relaxation” [5]. Modeling musical tension has
long captivated the attention of researchers in music theory and
psychology. Empirical studies indicate that many aspects of

1http://www.vamp-plugins.org/
2https://musescore.org/
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music including melody [6], harmony [6], [7], tempo [8], and
phrase structures [9] are highly correlated to perceived tension,
among both musicians as well as non-musicians [10]. Ratings
of tension have also been found to correlate with ratings of
physiological measures [9]. In addition, studies have found that
the effect of tension-relaxation patterns is a key component in
aesthetic experience and emotions [11].

In order to design a system that supports musical tension
analysis, it is necessary to understand the research method-
ologies and needs of researchers working on this topic. Re-
searchers who study melodic and harmonic tension usually
provide detailed analyses on segments of one or more pieces,
mapping the predicted tension from their model, or the tension
ratings from the participants of a listening experiment, to
the score note-by-note. In order to properly assess tension in
a listening experiment, the ideal stimulus is a performance
of the piece by a musician. This provides a more authentic
music experience, yet, it also requires control of potentially
interrelated variables, i.e., a profound understanding of both
the composition (score) and performance (audio) is required
to examine results of a listening experiment. For example,
in Krumhansl’s experiment [5], the stimulus consisted of a
performance of Mozart’s piano sonata K. 282, played by a
musician and recorded into MIDI format for playback, with
a detailed analysis on the performance by Palmer [12]. More
recently, Farbood and Price [13] explored the contribution of
timbre to musical tension by using artificially synthesizing
sounds with two states of spectral characteristics as stimuli
in their experiment. The authors also indicated the future
research direction: “The next step is to explore precisely
how these features covary in order to model how dynamic
timbral changes influence tension perception. Additional ex-
periments using more complex stimuli—particularly musical
stimuli where other musical features influencing tension such
as harmony and melodic contour are involved—are the next
directions to explore.”. This statement confirms the need for a
multi-modal system to examine results from both score- and
audio-based analyses.

A review of the literature thus pinpoints the important
functions that IMMA offers: 1) representing the score with a
graph that shows multiple semantic score-based characteristics
such as tonal tension; 2) aligning audio recordings to the
score to show how audio-based timbral features change over
time in relation to the score; 3) providing functions for cross-
correlation analysis between multi-modal features; and 4)
retrieving segments with similar tension patterns for detailed
analysis. To demonstrate the capability of the system, we study
four piano performances of Beethoven’s Moonlight sonata and
three performances, with different instruments, of Paganini’s
Caprice No. 24 in this paper. For each of these performances,
the audio recording is first aligned to the score using a
dynamic time warping (DTW) algorithm (Section II). Three
tonal tension models [14] and five timbral features related
to tension [13] are implemented to extract tension data from
both the score and the audio (Sections III-A and III-B). The
relationship between tonal and timbral tension is analyzed

statistically and visualized in plots and with ribbons over a
score for easy interpretation (Section III-C). A clustering algo-
rithm is performed to compare performances based on similar
tension patterns (Section III-D). IMMA interactively visualizes
these analyses and is available as a web-based application for
easy accessibility at http://dorienherremans.com/imma.

II. AUDIO-TO-SCORE ALIGNMENT

In order to create a multi-modal interface for semantic music
analysis based on audio as well as score, the first task is
to synchronize the audio recording with the score, i.e., to
identify when each note in the score is played in the audio
performance. This task is called audio-to-score alignment in
MIR. Audio-to-score alignment has been extensively studied
and remains a popular topic in the MIR community [15]–
[17]. We chose to adopt and modify the approach as de-
scribed in [18]. This algorithm uses DTW to calculate the
distance between two sequences and to extract the optimal
alignment path based on the distance. DTW has been used in
all submissions for MIREX 2014 and 2015 score following
competitions3. In this study, one sequence consists of the
chroma representation over time for the audio recording, and
the other represents the chroma of the synthesized audio
from the MIDI file that represents the score. Both the audio
recording and the synthesized audio are analyzed using fast
Fourier transform with half-overlapped windows to extract a
chroma vector roughly every 185 milliseconds.

To evaluate the alignment result, we manually annotated
the onsets using Sonic Visualiser4 for the first 60 seconds of
each performance and compared the annotated onsets with
the aligned time. We adopted the evaluation metrics from
MIREX score following task which are based on piecewise
precision rate, i.e., the average percentage of detected notes,
which are defined as the detected onset within a tolerate
threshold of the actual onset. The results are shown in Table I.
Readers can also assess the alignment results by listening to
the synchronized examples, the audio recording on the left
channel and the aligned re-synthesized audio on the right, at
http://dorienherremans.com/ imma.

In the future, we will incorporate the active learning algo-
rithm described in [19] so that IMMA can improve the accu-
racy of audio-to-score alignment by augmenting the automated
alignment with manual corrections on the most uncertain
note onsets. The alignment algorithm implemented in IMMA
allows us to visualize semantic characteristics of both audio
and score in a synchronized way.

threshold (ms.) 250 500 750 1000 1250 1500
precision rate 0.69 0.89 0.96 0.98 0.98 0.99

TABLE I: Piecewise precision rate for the first 60 seconds of
the seven audio recordings studied in this paper.

3http://www.music-ir.org/mirex/wiki/2014:Real-time Audio to Score
Alignment (a.k.a. Score Following) Results

4http://www.sonicvisualiser.org/



III. SYNCHRONIZED MUSICOLOGICAL CHARACTERISTICS

In this section, we demonstrate how the proposed system
can be used as a tool for multi-modal musicological analysis
by analyzing tension characteristics calculated from both audio
and score files.

Farbood [8] describes increasing musical tension as “a
feeling of rising intensity or impending climax, while de-
creasing tension can be described as a feeling of relaxation
or resolution”. Tension is a complex, composite characteristic
that is not easy to quantify. Musicologists therefore often
look at different aspects of tension when studying a piece or
performance. In this paper we will discuss three aspects of
tonal tension based on [14] and align them to different timbral
characteristics [13] extracted from the audio signal. The results
and benefits of the alignment methods for analyzing tension
are discussed based on one of Beethoven’s most popular piano
pieces, Sonata No. 14 in C] minor “Quasi una fantasia”, Op.
27, No. 2 (otherwise known as the Moonlight Sonata), and
Paganini’s Caprice No. 24, performed with three instruments:
violin, flute, and guitar. We also demonstrate how IMMA can
cluster and visualize segments based on semantic similarity.
Finally, the implementation details of the system are discussed.

A. Tonal tension ribbons based on score

Different aspects of tonal tension were captured from a
musical score with a model for tonal tension [14] based on
the spiral array [20]. The spiral array is a three dimensional
representation of pitch classes, chords and keys. Each pitch
class is represented as spatial coordinates along a helix. The
spiral array is constructed in such a way that close tonal
relationships are mirrored by their close proximity in the
array [21]. This concept is illustrated in Figure 1 in which
a C-major chord is drawn in the array (in blue).

Fig. 1: The helix of pitch classes in the spiral array [20]

In [14], Herremans and Chew present three methods for
quantifying aspects of tonal tension based on the spiral array.
In order to do so, the piece is first divided into equal length
segments, which form a cloud of points in the spiral array.

Based on this cloud of notes, the first aspect of tonal
tension captures the dispersion of notes in tonal space and
is calculated as the cloud diameter. Figure 2 illustrates that a

tonally consistent chord has a small cloud diameter. The first
chord, which consists of the notes D and G, has a very small
diameter in the spiral spiral array, as can be seen in Figure 1.
The third chord, which consists of the notes D, G and E], is
tonally very dispersed and thus has a large cloud diameter.

Fig. 2: Cloud diameter ribbon on a fragment from Beethoven’s
Moonlight Sonata.

Cloud momentum, a second aspect of tonal tension, captures
the movement of subsequent clouds (i.e. chords) in the spiral
array. The tonal movement in the opening bar of the Moonlight
sonata is displayed in Figure 3. As long as there is an
arpeggiation over the same chord, there is no change in cloud
momentum, but when the chord changes on the third beat, the
cloud momentum ribbon clearly indicates a movement in tonal
space.

Fig. 3: Cloud momentum ribbon on a fragment from
Beethoven’s Moonlight Sonata.

Finally, tensile strain measures how far the tonal center of
each cloud is removed from the global key. Figure 4 illustrates
how the cloud momentum ribbon grows bigger when there is
a movement from notes predominantly belonging to A minor
(the global key) to G] and F].

Fig. 4: Tensile strain ribbon on the first two bars of Paganini’s
Caprice No 24.

These three methods are implemented in a system that
visualizes the results as tension ribbons over the musical score,
allowing for easy interpretation [14]. This system is integrated
in IMMA, which ports the results into the interactive score
characteristics plot (see Figure 7).



B. Timbral tension based on audio

The five features used to capture timbral tension in this pa-
per are based on [13]. These features include loudness, rough-
ness, flatness, spectral centroid, and spectral spread/deviation.
Loudness is measured via the root-mean-square of the audio
wave amplitude. Roughness measures the sensory dissonance
by calculating the ratio between pairs of peaks in the frequency
spectrum. Flatness shows how smooth the spectrum distribu-
tion is as the ratio between the geometric mean and the arith-
metic mean. Spectral centroid and spread calculate the mean
and standard deviation of the spectrum. Each of these features
has shown to contribute to perceived tension, however, they
have yet to be integrated in one comprehensive model [13].
These features were extracted using MIRToolbox [22] with
half-overlapped windows, similar to the windowing approach
used for the alignment process. Based on the alignment result,
the average per window is calculated for each timbral feature.
This value is then mapped to the aligned onsets, so that it can
be synchronized to and compared with tonal tension.

In addition to these five timbral features, the system esti-
mates tempo variations of the audio performance based on
the alignment result. In order to reduce the impact caused by
alignment errors on the estimation, we calculated the local
alignment cost at each aligned point and excluded the points
where the cost is above 95% threshold for tempo estimation.

C. Synchronizing tension based on score and audio

The alignment of tonal tension ribbons and audio-based
timbral tension features allows us to examine how the different
aspects of tension correlate over different performances of the
same piece. The analysis results for four performances of the
Moonlight sonata are displayed in Table II. Table III shows
correlation results of three performances of Paganini’s Caprice
No 24, each with a different instrument.

A correlation analysis was performed on the data, with a
window size of one quarter note. Since tension is typically
cyclic throughout a piece, there is autocorrelation within each
of the tension features, which influences the interpretability
of cross-correlation [23]. We therefore fitted an Arima model
each of the characteristics and used this to prewhiten the data,
so that the trend is removed. The resulting cross-correlation
values calculated with the software package R5 are displayed
in Tables II and III.

When interpreting these results, we should keep in mind
that tension is a composite characteristic. The different char-
acteristics described in this paper capture different aspects, and
may therefore not always be correlated. Yet as a first analysis,
it can give us insight into strongly correlated characteristics.
Examples of highly correlated audio and score-based tension
characteristics are shown in Figure 5.

The analysis results of the Moonlight sonata in Table II
show that there is a consistent significant correlation of
roughness/loudness with cloud diameter/cloud momentum for
most of the performances. The correlation between tensile

5r-project.org

Audio based Score based
Diameter Momentum Tensile strain

Loudness

A1 0.187 (0) 0.309 (1) N/A
A2 0.201 (-1) 0.252 (0) 0.117 (4)
A3 0.307 (-1) 0.253 (1) 0.124 (3)
A4 0.239 (-2) 0.114 (1) N/A

Roughness

A1 0.153 (0) 0.332 (1) -0.131 (-2)
A2 0.181 (0) 0.277 (0) 0.108 (3)
A3 0.302 (-1) 0.283 (1) N/A
A4 0.198 (0) N/A -0.121 (0)

Flatness

A1 -0.277 (0) -0.368 (-1) 0.137 (-4)
A2 -0.201 (-2) -0.213 (1) N/A
A3 -0.219 (0) -0.221 (1) N/A
A4 -0.285 (-1) -0.164 (1) N/A

Centroids

A1 -0.207 (0) -0.344 (1) 0.132 (-4)
A2 N/A -0.160 (1) N/A
A3 -0.117 (2) -0.198(1) N/A
A4 N/A -0.198 (1) N/A

Spread

A1 -0.218 (0) -0.367 (1) 0.120 (-4)
A2 -0.175 (2) -0.213 (1) N/A
A3 -0.257 (0) -0.216 (1) N/A
A4 -0.327 (0) -0.187 (1) N/A

TABLE II: Highest significant cross-correlation coefficient
(after prewhitening) together with its lag (1 unit = 1 win-
dow) between tonal tension characteristics and aligned timbral
tension features (N/A = no significant correlation) based
on Beethoven’s Moonlight Sonata. The performances are by
Evgeny Kissin (A1), Wilhelm Kempff (A2), Arthur Rubinstein
(A3) and Tiffany Poon (A4).

strain and the timbral features is not significant, except in
the case of the performance of Evgeny Kissin, for which
tensile strain is positively correlated with flatness, centroids
and spread. The negative correlation between, for instance,
cloud diameter and flatness, confirms that tension is a complex
concept that consists of an interplay of different aspects. In the
case of Beethoven’s sonata, certain tension characteristics such
as flatness and cloud diameter seem to have an interchanging
dynamic.

The proposed system does not only allow us to study the
effect of performance on tension, but also the influence of
instrumentation. Table III shows three performances, each with
a different instrument, performing Paganini’s Caprice No 24.
In contrast to the previously discussed piece, loudness is not
correlated with the cloud diameter. It is, however, correlated
with cloud momentum and (in some cases), the tensile strain.
It is to be expected that greater variations exist in the size
and direction of the correlations, since instrumentation has
an important effect on timbral features such as roughness.
Different instruments manipulate distinctive aspects of timbre,
thus allowing them to express tension in different ways, as is
confirmed by the correlation results.

We have analyzed the correlation of the tension characteris-
tics throughout the entire piece. In the next section, we discuss
an example of how the proposed system can identify smaller
musical fragments within a piece that have similar properties
in tension features.



(a) Cloud diameter tension ribbon together with roughness

(b) Cloud momentum tension ribbon together with loudness

(c) Tensile strain tension ribbon together with flatness

Fig. 5: Selected score based and timbral tension characteristics based on Kissin’s performance of Beethoven’s Sonata No. 14
in C] minor, Op. 27, No. 2, bars 9–16. The score characteristics are displayed over the score, the audio features are depicted
above the score.



Audio based Score based
Diameter Momentum Tensile strain

Loudness
Violin N/A 0.097 (1) N/A
Guitar N/A 0.199 (-1) 0.174 (-3)
Flute N/A 0.424 (0) 0.354 (0)

Roughness
Violin 0.123 (-2) N/A -0.120 (-2)
Guitar 0.173 (-1) -0.106 (0) N/A
Flute -0.131 (-4) 0.511 (-4) 0.395 (-3)

Flatness
Violin 0.151 (4) -0.258 (3) -130 (-4)
Guitar 0.440 (3) -0.583 (-2) -0.425 (3)
Flute 0.174 (2) 0.096 (0) N/A

Centroids
Violin 0.125 (0) -0.209 (2) -0.103 (-4)
Guitar 0.368 (3) -0.402 (4) -0.261 (2)
Flute 0.190 (2) 0.243 (0) 0.170 (0)

Spread
Violin N/A -0.187 (2) N/A
Guitar 0.192 (-2) -0.311 (0) -0.247 (-4)
Flute 0.185 (-3) -0.200 (-1) -0.201 (-4)

TABLE III: Highest significant cross-correlation coefficient
(after prewhitening) together with its lag (1 unit = 1 window)
between tonal tension characteristics and aligned timbral ten-
sion features (N/A = no significant correlation) for Paganini’s
Caprice No 24. The performances are by Julia Fisher (violin),
Eliot Fisk (guitar), and Janos Balint (flute).

D. Clustering segments based on semantic similarity for per-
formance analysis

In this section, we demonstrate how segments of a score
or a performance can be clustered based on similar (tension)
characteristics and visualized over the aligned score. Tradi-
tionally, the (audio) sources of a performance are analyzed by
connecting the dynamics, such as loudness/tempo variations
and articulation, to the score. The tension-based performance
analysis included in IMMA provides an opportunity to link
musical performance strategies with musical segments that
have specific tension-relaxation patterns.

The performance analysis process starts with a “ribbon
cutting” process which segments the score into segments for
each tension characteristic (ribbon) by cutting the ribbon at
the thinner points (local minima). Each ribbon segment is then
clustered into groups based on its shape. The shape of each
ribbon segment is described by its average height, the maximal
height, width, and the angles of left and right slopes. K-means
clustering is then used to encode each ribbon segment by the
centroid of its group. Finally, the sequence of ribbon segments
are represented using n-gram models to study the frequency
of occurrence of each n-gram pattern and to retrieve the parts
of the score that share similar tonal tension patterns.

Figure 6 shows an example of a performance analysis
based on cloud diameter tension on the four performances
of Beethoven’s Sonata No. 14 in C] minor. In this example,
only the height and width of a ribbon segment are considered
in k-means clustering (k=5) and the sequences of ribbons are
represented as tri-gram patterns. The tri-gram tension sequence
shown in Figure 6 occurred four times in the score, highlighted
in rectangles, at measures 25, 47, 55, and 58. The graphs

below the scores show the loudness and tempo variations
in the four performances for the identified tension sequence
at measures 25 (sequence no. 3) and 47 (sequence no. 4).
Although sequences no. 3 and 4 do not share exactly the same
notes, similar trends in loudness variations (e.g. becoming
louder towards the end of the sequence) are observed. Some
similarity can also be spotted in tempo variations. However, it
is not as consistent as loudness.

E. IMMA as a web application

The IMMA system is implemented as an interactive appli-
cation, see Figure 7. Its interface allows for easy interpreting
of a performance on both the score and audio level. This
multi-modal system displays aligned musical analysis results
of both audio and score. In this paper we have elected to focus
on tension as an initial musical characteristic, yet, in future
versions modules for other types of analysis will be added.
The implementation details of IMMA include:

1) VexFlow API: The user can upload a score in musicXML
format, an open format designed for easy interchanging of
scores [24]. This file is then parsed with the VexFlow Mu-
sicXML plugin6, and displayed as a score by the VexFlow
API7. VexFlow is a rendering engine, built in JavaScript with
the jQuery API, that displays a score on an HTML5 canvas
with scalable vector graphics support.

2) Multi-modal music analysis: The IMMA interface al-
lows users to playback an mp3 performance. A score following
plugin was written for VexFlow that displays a colored box
over the current bar of the score, synced with the audio. The
music analysis of both the score and audio are displayed using
Flot Charts8, a JavaScript library for displaying interactive
plots [25]. A moving crosshair over the plots is synced with
the audio playback, allowing for an easy and user friendly
interface for multi-modal music analysis (see Figure 7). The
similar semantic fragments, as described in the previous sec-
tion, are visualized as colored boxes over the plots. We decided
to implement the music analysis results as plots instead of
ribbons in the online system, in order to not clutter the score.
In future research, we plan to set up an experiment in order to
test if musicologists prefer the ribbon or curve representation.

IV. CONCLUSIONS

In this paper, a web-based Interactive Multi-modal Music
Analysis system (IMMA) that facilitates the fusion of audio
and score based musical analysis is developed. The system
performs audio-to-score alignment using a DTW-based algo-
rithm. In a first use case, score- and audio based tension
analysis modules were implemented. IMMA allows the user to
visualize various aspects of tonal tension from score, synced
with timbral tension features from an audio performance. We
used the visualization and statistical analysis tools offered by
IMMA to show the relationship between tonal and timbral
tension. IMMA also includes a clustering algorithm that allows

6https://github.com/mechanicalscribe/vexflow-musicxml
7http://vexflow.com
8http://flotcharts.org



Fig. 6: Loudness and tempo changes in the four performances of Beethoven’s Sonata No. 14 in C] minor for the identified
tri-gram sequences of cloud diameter tension ribbons.

Fig. 7: The IMMA website.

us to compare segments of musical performances based on
similar patterns in tension curves.

IMMA is implemented as an interactive web application
that researchers in musicology and music cognition can use
for their analyses. Many parameters can be customized by the

researchers, depending on the purpose of their study, including
the manner in which they describe the similarity between
tension ribbon sequences.

It is widely acknowledged that cross-disciplinary collabo-
ration is the key to the success of MIR research. However,



such collaboration “challenges MIR to find a balance between
features that are powerful but also make sense to collaborators
who may not be experts in machine learning or audio signal
processing” [26]. IMMA aims to provide a platform for re-
searchers across different disciplines to systematically connect
score and audio features to important semantic concepts in
musicology and music cognition.

We will continue to improve IMMA by creating novel and
state-of-the-art accessible interface features that allow the user
to intuitively annotate music and provide feedback. In this
manner, IMMA can be used as a tool for collecting semantic
data from both experts and general users. Experiments will
also be conducted to evaluate and further improve the usability
of the system. An active learning developed by one of the
authors [19] will be incorporated into IMMA in order increase
the accuracy of audio-to-score alignment. The module-based
back-end is built in such a way that it can easily be expanded
with new modules and features that extend beyond tension
analysis. Ultimately, we will work with researchers in musi-
cology and music cognition who can use IMMA to explore
new ways and directions in semantic music analysis.
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