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Abstract 22 

Precise temporal and spatial control of the neural stem progenitor cells within the 23 

subventricular zone germinal matrix of the brain is important for normal development 24 

in the third trimester and early postnatal period. High metabolic demands of 25 

proliferating germinal matrix precursors, coupled with the flimsy structure of the 26 

germinal matrix cerebral vasculature, are thought to account for high rates of 27 

haemorrhage in extremely- and very-low birth weight preterm infants. Germinal 28 

matrix haemorrhage can commonly extend to intraventricular haemorrhage. Because 29 

neural stem progenitor cells are sensitive to micro-environmental cues from the 30 

ventricular, intermediate and basal domains within the germinal matrix, haemorrhage 31 

has been postulated to impact neurological outcome through aberration of normal 32 

neural stem/progenitor cells behaviour  33 

 34 

We have developed an animal model of neonatal germinal matrix haemorrhage using 35 

stereotactic injection of autologous blood into the mouse neonatal germinal matrix. 36 

Pathological analysis at 4 days post injury shows high rates of intraventricular 37 

extension and ventricular dilatation but low rates of parenchymal disruption outside 38 

the germinal zone, recapitulating key features of human “Papile grade III” IVH.  At 4 39 

days post injury we observed proliferation in the wall of the lateral ventricle with 40 

significantly increased numbers of transient amplifying cells within the subventricular 41 

zone and corpus callosum. Analysis at 21 days post injury revealed that cortical 42 

development was also affected with increased neuronal and concomitant reduced 43 

oligodendroglial differentiation. 44 

 45 

At the molecular level, we show down regulation of the expression of the 46 

transmembrane receptor Notch2 in CD133+ve cells of the SVZ, raising the possibility 47 

that the burst of precocious proliferation seen in our experimental mouse model and 48 

the skewed differentiation could be mediated by down regulation of the Notch 49 

pathway within the proximal / ventricular domain. These findings raise the possibility 50 

that Notch regulation plays a critical role in mediating the response of the neonatal 51 

SVZ to ischaemic and haemorrhagic insults.  52 

 53 
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 58 

Introduction 59 

 60 

Delayed primigravida (first pregnancy) and the use of in vitro fertilisation have 61 

contributed to an increase in the incidence of premature birth in all developed 62 

countries [1,2] and despite advances in perinatal care, haemorrhage within the 63 

germinal matrix (GM) remains a commonly recognised complication seen in up to 64 

45% of extremely premature babies weighing 500-750g [3]. The cause of brain injury 65 

associated with premature birth is complex and multifactorial with ischaemia [4] and 66 

inflammation [5] playing key roles. In addition to this outcome has been shown to 67 

correlate with the severity of haemorrhage with extension into the ventricle and loss 68 

of brain parenchyma secondary to porencephalic cyst formation being associated with 69 

significant neurodevelopmental disabilities [6-8]. The prevention of premature birth 70 

and reducing the incidence of haemorrhage remain key research goals. However, the 71 

need for new modalities of treatment to limit neurodisability in this vulnerable patient 72 

group is clearly evident.  73 

 74 

In order for normal brain development to take place, the behaviour of the neural 75 

stem/progenitor cells (NSPC) is tightly regulated in both a temporal and spatial 76 

fashion. This occurs through the balance of the cell intrinsic mechanisms and micro-77 

environmental factors [9,10]. The microenvironment within the GM in which the 78 

NSC reside can be conceptualised as consisting of three domains [10]; the proximal / 79 

ventricular domain which responds to signalling within the CSF [11] and from 80 

interaction with the ependymal cells [12], the intermediate zone in which the NSC 81 

responds to cues arising from the intermediate progenitor cells [13,14] and 82 

neurotransmitters released within the SVZ [15] and the distal / basal domain which is 83 

under the influence of cues from the circulation and endothelial cells [16]. Plausible 84 

mechanisms can be envisaged through which any and all of these micro-85 

environmental domains could be affected due to GMH.  86 

 87 

Whilst GABAergic interneurons are known to arise from the SVZ in the final 88 

trimester [17-19], lineage tracing experiments have highlighted the critical role that 89 

the GM plays in the production of astrocytic and oligodendrocytic precursors [20] 90 

with the majority of oligodendrocytes developing during late embryogenesis and early 91 

postnatal life [21]. This surge in progenitor formation coincides with the peak 92 

incidence of GMH (23-28 weeks) and given the critical role that the oligodendrocyte 93 



lineage is likely to play in the encephalopathy of prematurity (EP) [22] we 94 

hypothesised that GMH might be responsible for a primary stem cell disorder in an 95 

otherwise developmentally normal brain (i.e. no underlying genetic / pathological 96 

abnormality) making it an appealing target for therapeutic intervention. 97 

 98 

GMH is recognised to cause both destructive and developmental impacts on the 99 

developing brain of the premature neonate [23]. To date, published models of IVH 100 

have focused on modelling severe haemorrhage with large parenchymal defects seen 101 

[24-27]. This approach is likely to mask the more subtle developmental impact of 102 

IVH on the NSPC within the SVZ; as such we endeavoured to produce a model with 103 

minimal cortical disruption to uncover this subtle mechanism.  104 

 105 

Combining stereotactic injection of autologous blood at P0 [28] with a thymidine 106 

labelling strategy at P1 [29], we show that GMH caused an activation of proliferation 107 

in the wall of the lateral ventricle, which eventually resulted in an altered cellular 108 

composition of the cortex with an increased number of neuronal elements and 109 

concomitant depletion of oligodendrocytes. Expression analysis of the 110 

CD133/Prominin-positive cell fraction (a transmembrane glycoprotein expressed by 111 

NSC and ependymal cells within the lateral ventricle during early postnatal 112 

development [30], demonstrated down-regulation of the expression of Notch2, a well-113 

known regulator of NSPC function in the proximal / ventricular domain [9,31], in 114 

these cells following GMH.  115 

 116 

Material and Methods 117 

 118 

Animals 119 

All procedures had Home Office approval (Animals Scientific Procedures Act 1986, 120 

PPL 70/7275). C57BL/6 mice were used throughout. Cages were checked daily and 121 

intracranial autologous blood injections were undertaken on the afternoon of the first 122 

day of life. 123 

 124 

Stereotactic intracranial injection of autologous blood 125 

To facilitate accurate and reproducible restraint of the P0 pup, modifications were 126 

made to a Narishige stereotactic frame based on the work of Merkle et al [28] (Figure 127 

1A&B). P0 pups were anaesthetised on ice for 3 minutes and 30 seconds prior to 128 

being fixed into the frame and autologous blood, collected from the tail tip 129 



(Microvette™ CB300 VWR) was injected via a customized 1cm 30-gauge needle; 130 

1mm posterior & 1.5mm superior to the posterior border of the left eye with a forward 131 

angulation of 24 degrees and a depth of 2mm (Figure S1). In the Sham group all 132 

experimental conditions were equivalent with the exception that the mice underwent 133 

needle injection only without blood injection. 134 

 135 

EdU administration 136 

Intraperitoneal injections of EdU (12.5mg/kg) (Life technologies™) were given on 137 

day 1 of life, according to published protocols [29]. 138 

 139 

Immunohistochemistry and histology 140 

Mice were transcardially perfused under terminal anaesthesia with 0.9% saline 141 

followed by 4% paraformaldehyde. (PFA). Brains were dissected and post-fixed for 2 142 

hours in 4% PFA at 4°C. Tissue was cryoprotected with 30% sucrose overnight, 143 

mounted in O.C.T. (VWR™) medium and sectioned at 10μm on a cryostat (Leica™). 144 

 145 

For EdU staining samples were blocked with 3% BSA (Sigma™)/ Phosphate-146 

Buffered Saline (PBS)/0.1% Triton X100 and incubated for 30 minutes with 147 

proprietary Click-iT® solutions (Life technologies™). For immunofluorescent double 148 

staining the following antibodies were used: Rabbit anti-GFAP 1:400 (Dako™): 149 

Rabbit anti-NG2 1:200 (Millipore™): Guinea Pig anti-Dcx 1:2000 150 

(MerckMillipore™): Mouse anti-NeuN 1:100 (Millipore™): Mouse anti-MASH1 151 

1:200 (BD Biosciences™): Rabbit anti-Iba1 1:100 (Wako™): Mouse anti-Olig2 152 

1:500 (Charles-Stiles Lab). All incubations with primary antibody were undertaken 153 

overnight. After washing with PBS, sections were incubated with appropriate Alexa 154 

Fluor® secondary antibodies diluted 1:500 (Invitrogen™) for 2 h at room temperature, 155 

washed in PBS and mounted in Fluoromount™ (Sigma Aldrich™) or Vectashield® 156 

with DAPI (Vector Laboratories™). 157 

 158 

Volumetric analysis using the Cavalieri probe 159 

To quantify ventricular volume we adopted a stereological approach using the 160 

Cavalieri estimator probe within Stereoinvestigator MBF Bioscience™. In the 161 

Coronal plane volumetric analysis was undertaken between the induseum griseum 162 

(anterior zero section) and the appearance of the hippocampus in continuity across the 163 

midline (posterior zero section) (Figure S2) with every tenth section analysed. In the 164 

sagittal plane volume acquisition was undertaken from the sagittal zero section 165 



(Figure S3) (defined as the first appearance of the striatum within the rostral 166 

migratory stream) and two further sections at 150μm & 300μm medial to the 167 

sagittal zero. 168 

 169 

Image acquisition and analysis 170 

All images were acquired using the Zeiss™ 710LSM Confocal Microscope at 40x Oil 171 

immersion objective lens and analysed using either tile scanning and Image J™ or the 172 

Optical Fractionator probe of Stereoinvestigator (MBF Bioscience™). For analysis of 173 

the subventricular zone, 3 coronal specimens per sample were analysed: Zero slide 174 

(Z) Z+150 μm & Z+300 μm, with all cells counted within the lateral and superior wall 175 

of the ventricle within the immediate hypercellular periventricular region, any 176 

staining which was not clearly nuclear was not counted.  Within the corpus callosum a 177 

300 pixel wide counting frame was taken through the corpus callosum positioned 178 

anterior to a perpendicular line taken from the anterior border of the hippocampus 179 

through the cortex (Figure 3). 3 samples per specimen were analysed: Sagittal - Z, Z-180 

150 μm & Z-300 μm. Within the neocortex quantification was undertaken on 3 181 

sagittally orientated samples with all neocortex included anterior to a perpendicular 182 

line taken from the anterior border of the hippocampus (Figure 4A). 183 

 184 

Behavioural analysis 185 

Daily behavioural analysis between P2 and P21 was undertaken. Reflex development 186 

was assessed using grip strength, negative geotaxis, cliff aversion and surface righting 187 

(Figure S4). Neuromotor development was assessed for three minutes in a Perspex 188 

open field chamber 50cm by 50cm: the number of head, shoulder pelvis lifts, head 189 

pointing and sniffing, sitting, rearing and falls were recorded using key presses, whilst 190 

distance travelled and speed was recorded using proprietary Anymaze software. 191 

 192 

Extraction amplification and analysis of RNA from CD133+ve cell fraction 193 

Following removal of the cerebellum and olfactory bulbs the left hemisphere was 194 

mechanically and enzymatically homogenised using the Miltenyi Biotec™ Neural 195 

Tissue dissociation kit®. Due to the small sample size wash volumes were reduced 196 

and all collections were made into 1ml Eppendorf tubes. Homogenised samples were 197 

filtered through 30 μm pre-separation filters (Miltenyi Biotec™), incubated with 198 

CD133 microbeads (Miltenyi Biotec™) and passed through the MACS® separation 199 

columns (Miltenyi Biotec™). 200 

 201 



RNA extraction was undertaken using the RNeasy® Micro kit (Qiagen™). 20ng of 202 

extracted RNA from each sample was amplified using the QuantiTect® Whole 203 

Transcriptome kit (Qiagen™). The PCR array was then carried out on each amplified 204 

RNA product using the Mouse Stem Cell RT² Profiler™ (Qiagen™) to identify the 205 

potential targeted genes related to stem cell biology. 206 

 207 

ISH analysis 208 

The Hes 5 probe was kindly donated by Kriegstein lab (previously published in 209 

Muzio et al 2005[32]) and the in situ hybridization was carried out according to 210 

standard protocols[33]. 211 

 212 

Statistical analysis 213 

Statistical analysis was undertaken using GraphPad Prism, t-test and one-way 214 

ANOVA in conjunction with Tukey’s test for multiple comparisons were applied for 215 

comparisons between two datasets or multiple datasets respectively. A linear growth 216 

model was used to compare behavioural parameters. 217 

 218 

219 



Results 220 

 221 

Establishment of a mouse model of GMH by stereotactic injection of autologous 222 

blood into the neonatal mouse subventricular zone. 223 

 224 

In our hands using a published freehand injection of 15ul of autologous blood with a 225 

26 gauge needle into the newborn mouse pup [26] caused significant morbidity and 226 

mortality and was associated with high levels of subdural extension of blood, 227 

significant damage to the surrounding cortex and marked variability in the injection 228 

site. 229 

 230 

Stereotactic injection in newborn mouse pups using conventional equipment is limited 231 

due to the lack of restraints, as such modifications were made to a Narishige 232 

stereotactic frame based on the work of Merkle et al [28] (Figure 1A). The custom-233 

made clay mould (Figure 1A inset), in combination with nose and body taping (Figure 234 

1B) facilitated accurate and reproducible restraint.  235 

 236 

Tissue dye injection into euthanized newborn (P0) mouse pups followed by 237 

histopathological examination of coronal brain samples was used to define injection 238 

coordinates and trajectory (Figure S1). The site of blood bolus, its vicinity to the 239 

anterior SVZ, the degree of damage to the surrounding parenchyma and the rate of 240 

intraventricular spread in comparison to subdural extension were analysed. Optimal 241 

injection coordinates were found to be; 1mm posterior and 1.5mm superior to the 242 

posterior border of the eye with a forward angulation of 24 degrees, at a depth of 243 

2mm (Figure 1C and Figure S1). The longer trajectory used in the forward angulated 244 

approach was found to reduce bleed back along the needle tract with an increased 245 

volume of the SVZ seen to be affected by the blood bolus, it also facilitated injecting 246 

the anterior SVZ without the risk of damaging the eye. The needle used for injection 247 

was a custom-made Hamilton™ 30 gauge 1cm needle, lower gauge needles were 248 

associated with increased mortality and caused unacceptably high levels of tissue 249 

damage, higher gauge needles were liable to bend or slip, reducing the reproducibility 250 

of the injection site. We injected 5ul of whole blood, an amount that is easily and 251 

atraumatically extracted from the tail tip and does not significantly impact on the 252 

circulating volume, it also limits the adverse impact of bolus size on tissue distortion 253 

and intracranial pressure. 254 

 255 



Histological analysis was carried out on coronally sectioned brains at day 1(P1) 256 

following stereotactic blood injection on the day of birth (P0) and it showed the 257 

haematoma to be consistently located within the SVZ with variable intraventricular 258 

spreading (Figure 1D). Minimal damage to the surrounding cortex was noted and 259 

overall mortality was low at day 4 with no late mortality seen. At day 4 (P4) an 260 

incipient haematoma cavity was noted within the SVZ with frequent cells of 261 

macrophagic lineage scavenging blood products within the SVZ, in keeping with 262 

siderophages (macrophages laden with iron) (Figure 1E). 263 

 264 

We show that modification to the Narishige stereotactic frame as described above 265 

facilitates accurate and reproducible lesioning within the SVZ of the newborn mouse 266 

pup and could represent a useful tool to study the effect of GMH on the SVZ NSPC 267 

and on early cortical development. 268 

 269 

GMH causes ventriculomegaly at P4, which persists up to P21 270 

Histological examination of Nissl stained samples demonstrated significant 271 

ventriculomegaly in the blood-injected samples in comparison with the control 272 

samples. To quantify ventricular volume we adopted a stereological approach using 273 

the Cavalieri estimator probe within Stereoinvestigator MBF Bioscience™. Due to 274 

the potential distortion of the parenchyma in the rostrocaudal plane secondary to 275 

GMH, volumetric analysis was undertaken between fixed anterior and posterior points 276 

to ensure reproducibility. Using the indusium griseum / first appearance of the corpus 277 

callosum in continuity as the most anterior slide and the appearance of the 278 

hippocampus in continuity across the midline as the posterior slide (Figure S2A-D) an 279 

equal number of sections was generated for analysis  (Control (n=8) 73.63 sections ± 280 

3.8, Sham (n=5) 73.4 ± 2.4 GMH (n=7) 77 sections  ± 4.8, p=0.78 ANOVA)  (Figure 281 

S2E).  282 

 283 

Quantitative assessment of volume in the coronal plane between the induseum 284 

griseum and the first appearance of the hippocampus in continuity revealed that blood 285 

injection causes significant ventriculomegaly at P4 (Control (n=7) 0.054mm3  ± 0.007, 286 

Sham (n=4) 0.053mm3 ± 0.003, GMH (n=5) 0.078mm3  ± 0.005, p=0.02 ANOVA) 287 

(Figure 1F) and this was shown to persist up to P21 (Control (n=5) 0.003 mm3 ± 288 

0.0004 GMH (n=4) 0.015 mm3 ± 0.005 p=0.03 t-test) (Figure 1G-H). 289 

Ventriculomegaly was not seen in the sham mice. Volume analysis within the corpus 290 

callosum, SVZ and cortex at P4 & P21 demonstrated no significant difference 291 



between the control and GMH pups indicating that the increase in ventricular volume 292 

was not due to parenchymal loss. 293 

 294 

We have shown that the experimental model of moderate GMH we have developed, 295 

causes ventriculomegaly at P4 which persists up to P21, faithfully recapitulating a key 296 

feature of the human condition. 297 

 298 

GMH causes increased proliferation in the wall of the lateral ventricle  299 

To assess the impact of GMH on the NSPC within the SVZ we adopted a thymidine 300 

labelling strategy whereby five intraperitoneal injections, at 2 hourly intervals, were 301 

given on day one (P1) [29]. The number of EdU+ve cells within the lateral wall of the 302 

lateral ventricle was quantified after 3 days and a significant increase was found in the 303 

GMH samples as compared to controls (Control (n=4) 57.5 ± 8.605, Sham (n=5) 304 

80.23 ± 5.008, GMH (n=4) 165 ± 24.09, p=0.0008 ANOVA) (Figure2 A-B). 305 

Importantly, Sham injection did not elicit a similar effect, therefore excluding that the 306 

observed phenotype was due to the injection alone. EdU staining was found to be 307 

tightly confined to DAPI+ve nuclei, and no picnotic/apoptotic cells were seen in the 308 

wall of the lateral ventricle. The pattern of EdU staining was also seen to change from 309 

a solid high intensity signal in the control setting to a more fragmented and less 310 

intense signal in the GMH sample, implicating a dilution of the EdU signal secondary 311 

to increased proliferation (Figure 2A). 312 

 313 

To determine if the increase in EdU+ve cells could be accounted for by an increase in 314 

the number of transient amplifying (TAP) cells we co-stained for the nuclear marker 315 

MASH1 (ASCL1) which has been shown to be expressed at high levels in TAP[9]. 316 

This demonstrated a significant increase in the number of MASH1+ve cells within the 317 

wall of the lateral ventricle in the GMH samples (Control (n=4) 67 ± 10.24, GMH 318 

(n=4) 178 ± 27.84 p=0.0096 t-test) (Figure 2C,D-E). Staining for GFAP (gliogenic 319 

lineage) (Figure 2A,D-E) showed similar findings (Control (n=4) 97.79 ± 7.55, Sham 320 

(n=5) 160.2 ± 2.705, GMH (n=4) 265.9 ± 48.25, p=0.004 ANOVA). Colocalisation 321 

analysis revealed a significant increase in the number of cells colocalising MASH1 & 322 

EdU (Control (n=4) 9 ± 2.97, GMH (n=4) 29.5 ± 4.66, p=0.01 t-test) and in the 323 

number of cells colocalising GFAP & EdU (Control (n=4) 32.13 ± 5.23, Sham (n=5) 324 

47.63 ± 3.5, GMH (n=4) 101.2 ± 19.69, p=0.004 ANOVA) 325 

 326 



To exclude that the increase in the number of EdU+ve cells within the SVZ could be 327 

accounted for by an infiltration of inflammatory cells, we stained for the microglial 328 

marker Iba1. We show that whilst a significant inflammatory response was elicited by 329 

blood injection as evidenced by the significant increase in the number of Iba1+ve cells 330 

counted within the SVZ following GMH (Control (n=4) 14 ± 2.35, GMH (n=4) 30.8 331 

± 5.1 p=0.02 t-test), this did not account for the significant rise in the number of 332 

EdU+ve cells as the majority of the EdU+ve cells were Iba1 negative (Figure S5). 333 

 334 

In summary, we have shown that GMH causes an increase in the number of EdU+ve 335 

cells within the wall of the lateral ventricle with a significant increase in the number 336 

of transient amplifying cells and glial cells. 337 

 338 

GMH causes an increase in the number of NG2+ve progenitors within the corpus 339 

callosum 340 

 341 

While carrying out the analysis within the lateral wall of the lateral ventricle as 342 

described above, it became apparent that increased numbers of EdU+ve cells were also 343 

seen within the callosal / dorsal border of the ventricle, a finding which is also seen in 344 

the MASH1 staining (Figure 2C). This area is recognised by Suzuki et al [34] as a key 345 

postnatal gliogenic migratory pathway out of the SVZ and into the cortex (Figure 346 

3A), as such to quantify this increase, analysis was undertaken within the corpus 347 

callosum on an independent series of sagittally sectioned brains (Figure 3 B-C).  348 

 349 

The first most striking finding was that the blood-injected samples exhibited a 350 

different morphology within the corpus callosum. The normal perpendicular 351 

arrangement of cells was replaced by a markedly hypercellular and disordered pattern 352 

(Figure 3D). Quantification of the number of EdU+ve cells, again demonstrated a 353 

significant increase following IC blood injection, which was not found in the sham 354 

control (Control (n=6) 32.73 ± 1.386, Sham (n=5) 35.03 ± 1.662, GMH (n=6) 49.09 ± 355 

4.83, p=0.0049 ANOVA) (Figure 3E). Colocalisation revealed a significant increase 356 

in NG2+ve EdU+ve cells (Control (n=6) 11.67 ± 2.362 GMH (n=6) 20.17 ± 1.558 357 

p=0.013 t-test) with a trend for increase also seen in the GFAP+ve/EdU+ve population 358 

whilst no increase was seen in the number of cells colocalising EdU & Dcx (Figure 359 

4). 360 
 361 



The corpus callosum is thought to represent a major conduit of glial progenitors 362 

migrating from the SVZ to the cortex [34]. Here we show that GMH not only impacts 363 

on the SVZ but also leads to an increase in the number of NG2+ve lineage committed 364 

progenitors in the corpus callosum. 365 

 366 

Reduced expression of Olig2 at P21 after GMH 367 

Given that we have shown that GMH causes phenotypic changes within the SVZ and 368 

the corpus callosum at an acute / immediate stage (P4) we resolved to determine how 369 

this might impact on early cortical development. To achieve this we analysed the 370 

neocortex from P21 mice as this was felt to be representative of juvenile brain 371 

development (Figure 5A). 372 

 373 

We found that GMH causes a significant reduction in the percentage of EdU+ve cells 374 

(Control (n=3) 13.66 ± 0.86, GMH (n=3) 9.88 ± 0.45 p=0.017 t-test) (Figure 5B) 375 

throughout the cortex and it was not limited to any specific layer. Co-staining with the 376 

panneuronal marker NeuN revealed that in the control setting less than 1% of the 377 

DAPI cells counted were found to be labelled for both EdU and NeuN and this was 378 

not found to be significantly affected by GMH (Figure 5C). 379 

 380 

Further costaining with the oligodendrocyte marker Olig2 revealed that while in the 381 

control setting around 9% of cells were labelled with EdU and Olig2, this was seen to 382 

drop significantly to around 6% following GMH (Control (n=3) 8.54 ± 0.34, GMH 383 

(n=3) 6.07 ± 0.35, p=0.007 t-test) (Figure 5D). Similarly the percentage of cells that 384 

express Olig2 was seen to significantly decrease following GMH (Control  385 

(n=3) 12.69 ± 0.53, GMH (n=3) 9.63 ± 0.61, p= 0.019 t-test) (Figure 5E). 386 

 387 

Taken together these data suggest that GMH has a negative impact on postnatal 388 

oligodendrogenesis while not significantly affecting postnatal neurogenesis. Whether 389 

this is due to direct toxicity or an impact on differentiation or migration of 390 

oligodendrocyte precursors remains to be definitively clarified.  391 

 392 

Moderate GMH causes transient early impacts on neonatal development 393 

Following IC blood injection at P0 we observed an increased number of falls (Control 394 

(n=15) 4.5 ± Sham (n=12) 9.33 ± GMH (n=21) 22.23 ± ANOVA) and significantly 395 

more fails in grip strength testing (Control (n=15) 1.875 ± Sham (n=12) 1.83 ± GMH 396 

(n=21) 2.47 ± ANNOVA) at P3 to P6 however this difference did not persist and in 397 



contrary to published models of GMH (Aquilina [24], Xue [26], Lekic [25]) we found 398 

no persistent deficits / alterations in neuromotor development up to P21. (Figure S4). 399 

This finding differentiates our model as more representative of low grade GMH i.e. 400 

Papile grade II & III in contrast to the Grade IV haemorrhage modelled by those 401 

previously published [24-26]. This finding further reinforces the need for this model 402 

of low grade GMH and implies that the global impact of grade IV haemorrhage may 403 

mask the more subtle impact that GMH/IVH has on the NSPC within the SVZ. 404 

 405 

GMH causes Notch down-regulation in CD133+ve cells in the SVZ 406 

Next, we set out to assess the impact of GMH on the molecular regulation within the 407 

proximal / ventricular domain. To this end MACS sorting of Prominin/CD133 408 

labelled cells from a single hemisphere of P4 blood injected vs. control pups was 409 

carried out. Prominin is a transmembrane glycoprotein expressed by ependymal cells 410 

and on the primary cilia of NSPC [35] within the SVZ, its expression decreases 411 

through gestation but its expression is highly conserved within the ventricular / 412 

proximal domain at P4 [36].  413 

 414 

Expression analysis of a selection of genes known to play a role in SVZ NSPC 415 

regulation was carried out on RNA extracted from the injured hemisphere of three 416 

animals and uninjured controls. Eight genes were found to be significantly 417 

deregulated with only Hsp90ab1 being up regulated and all others, Notch2, Ep300, 418 

Kat2a, Sox2, Cxcl12, Tubb3, and Ccne1 down regulated (Figure 6A).  419 

 420 

Given the integral role that the Notch pathway has in modulating stem cell 421 

proliferation and differentiation, we were intrigued to find that Notch 2 expression 422 

was down regulated >25 fold following GMH. To validate these findings, in-situ-423 

hybridisation for the Notch pathway effector Hes5 was used (Control n=3, GMH 424 

n=3). In the uninjured P4 SVZ, Hes5 is expressed in both the ependymal lining and in 425 

few scattered GFAP+ve cells, as demonstrated by double staining for GFAP/Hes5 426 

(Figure 5B). A striking reduction of Hes5 staining was observed in the SVZ of P4 427 

mice following GMH in all the samples tested, particularly marked in the anterior 428 

SVZ (Figure 5C).  429 

 430 

The observed down regulation of the Notch pathway in CD133+ve cells in the SVZ 431 

after GMH raises the possibility that Notch signalling could be functionally mediating 432 



the proliferative burst of TAP with subsequent aberrant differentiation observed in the 433 

mature cortex.   434 

 435 

Discussion 436 

 437 

Despite advances in perinatal care, EP is still a common cause of disability in children 438 

and GMH is the most prevalent intracranial lesion seen in premature babies [37]. Due 439 

to the multifactorial nature of the EP [23], isolating the impact of GMH and 440 

deciphering its effect on the NSPC and cortical development remains elusive. 441 

 442 

The severity of haemorrhage correlates with outcome [38] and ranges from minor 443 

bleeds within the substance of the GM to significant life threatening haemorrhages, 444 

which extend into the ventricle causing florid hydrocephalus and associated venous 445 

infarction [39]. There is widespread agreement that outcome following high grade 446 

haemorrhage is poor [40] which is likely due in part to the destructive impact on the 447 

parenchyma[23]. However, outcome following moderate / low-grade haemorrhage is 448 

more variable with contradictory reports in the literature [41-43]. More advanced 449 

neuroimaging techniques have shown that even if development appears outwardly 450 

normal, functional MRI imaging following premature birth shows markedly abnormal 451 

connectivity and synchronisation [44,45] and volumetric analysis indicates reduced 452 

brain size and cortical gyration [46-49]. Postnatally developed neuronal cells [4] with 453 

reduced dendritic arborisation [45] are also increasingly recognised as important 454 

consequences of premature birth. 455 

 456 

Given the clinical significance of GMH numerous models in different animal species 457 

have been trialled [50] however to date all models have focused on the severe end of 458 

the spectrum with extensive cortical injury where diffuse haemorrhage and marked 459 

disturbance in behaviour are seen [25,51,52] . It is well recognised that NSPC within 460 

the SVZ are exquisitely sensitive to microenvironmental cues [9,10] and further that 461 

haemorrhage within the ventricle alters the expression of NSC modulators, such as 462 

TGFβ [53]. As such in order to understand how GMH impacts on NSPC and cortical 463 

development in the intermediate group, in whom outcome appears to be most variable 464 

and who may have the most to gain from intervention, a more subtle injury model is 465 

needed. Currently available physiological techniques [52] cannot be used to model 466 

low grade GMH as it causes widespread haemorrhage within the brain parenchyma 467 

[50] and may also be confounded by the use of glycerol, which has been shown to 468 



impact independently on cortical development [54]. Similarly the interpretation of 469 

results following the injection of collagenase into the SVZ [25], whilst reducing bolus 470 

size, is significantly limited due to the potentially confounding affect of collagenase 471 

on the NSPC.  472 

 473 

Modelling intracerebral haemorrhage through targeted mutations within components 474 

of the blood brain barrier has been instrumental in determining the aetiology of GMH, 475 

for example the role of integrins [55], collagen [56] and pericytes [57] have all been 476 

shown. Further to this, using a tetracycline inducible system to initiate VEGF 477 

expression within the GM of the developing embryo, Yang et al have shown high 478 

rates of IVH [58]. The transgenic models developed to date invariably cause 479 

intrauterine bleeding and are associated with a high perinatal mortality, as such no 480 

widely accepted transgenic model of neonatal GMH has yet been developed to 481 

determine how postnatal haemorrhage impacts on cortical development.  482 

 483 

We have chosen to use injection of autologous blood to circumvent the potentially 484 

misleading influence of using non-physiological substances. Similarly, reducing the 485 

volume of injection to 5ul and employing a stereotactic injection technique limits the 486 

kinetic impact of the blood bolus and focuses the lesion within the SVZ whilst 487 

limiting collateral damage to the surrounding parenchyma. The fact that stereotactic 488 

blood injection causes minimal primary damage to the cortex with low rates of 489 

porencephalic cyst formation, whilst accurately modelling ventriculomegaly and 490 

microglial activation reinforces the premise that the effect of GMH, in this model, is 491 

subtle and offers a unique opportunity to understand how moderate degrees of 492 

haemorrhage impact on the NSPC and cortical development. 493 

 494 

Our primary finding of increased EdU+ve cells in the wall of the lateral ventricle at P4 495 

following GMH at P0, was initially unexpected given that a previous blood injection 496 

model had shown a reduction in proliferation following GMH [26]. This likely 497 

reflects the different degrees of haemorrhage modelled by the two approaches. The 498 

finding of activation of proliferation following GMH is in keeping with ischaemic 499 

models of premature brain injury [59], whilst differences may exist in the temporal 500 

course (delayed response seen following ischaemia and a more immediate response 501 

seen following haemorrhage), this finding suggests activation of a common pathway 502 

following brain injury in the premature neonate.  503 

 504 



Co-staining within the SVZ at P4 revealed that the increase in EdU+ve cells seen 505 

following GMH is in part accounted for by an increase in the number of MASH1+ve 506 

and GFAP+ve progenitor cells. Further to this, analysis of the postnatal gliogenic 507 

migratory pathway out of the SVZ [34] (i.e. within the corpus callosum) revealed a 508 

significant increase in the number of glial progenitors (EdU+ve / NG2+ve) following 509 

GMH/IVH. This combination of findings implicates that moderate grade GMH 510 

associated with intraventricular extension causes an activation of proliferation within 511 

the SVZ with a consequent increase in the number of glial progenitors within the 512 

postnatal migratory pathways. 513 

 514 

Interestingly, by analysing the neocortex at P21 we find that this initial burst of 515 

proliferation of glial progenitors does not increase the proportion of glial cells within 516 

the cortex indeed the opposite is seen, with reduced numbers of Olig2+ve cells seen 517 

within the neocortex. This finding implies that the burst of glial progenitor cells 518 

produced by the activation of precocious proliferation within the SVZ (in reaction to 519 

GMH/IVH) are unable to integrate within the cortex and further to this that the 520 

developing cortex is unable to compensate for the loss of potential and abnormal 521 

temporal activation. 522 

 523 

These intriguing findings led us to speculate that GMH may be impacting on the 524 

molecular control of NSC within the proximal / ventricular domain of the SVZ in our 525 

model. To address this question we decided to isolate cells from the proximal / 526 

ventricular domain of the neonatal pup using a CD133 MACS protocol. Whilst no 527 

single marker has been demonstrated to show absolute sensitivity and specificity, 528 

CD133 is a robust and widely accepted marker of ependymal cells and NSC in the 529 

early postnatal brain [30].  530 

 531 

Expression analysis demonstrated that moderate grade GMH down regulates Notch2 532 

within the CD133+ve cell fraction (Figure 6A). The periventricular location of Notch 533 

signalling down regulation following GMH was confirmed using in-situ-hybridisation 534 

directed against Hes5, a downstream effector of the Notch pathway (Figure 6C).  535 

 536 

The role of the Notch signalling pathway in the maintenance and differentiation of 537 

SVZ NSC is well characterised. Evidence of activation of the pathway in quiescent 538 

NSC was shown in transgenic mice where the expression of a reporter gene was 539 

driven by the Hes5 promoter or RBPj binding sites and its main role was found to be 540 



the maintenance of the pool of undifferentiated quiescent NSC [14]. In fact, 541 

conditional inactivation of the pathway led to a premature conversion of slowly 542 

dividing NSC into transient amplifying cells, a phenomenon accompanied by a 543 

proliferative burst which led to premature differentiation of the cells and to depletion 544 

of the pool of undifferentiated NSC as well as subsequent premature cessation of 545 

neurogenesis [14]. In our model of GMH, we found profound disruption of the SVZ 546 

including the ependymal lining and concomitant decrease of Notch activity as 547 

assessed by reduced numbers of cells expressing the Notch signalling downstream 548 

effector Hes5. It is conceivable that the decreased Notch signalling may be 549 

responsible for the proliferative burst of transient amplifying progenitors observed at 550 

P4. These data are in agreement with previous studies, where disruption of the 551 

ependymal cells by an ischaemic injury led to decreased Notch signalling, which in 552 

turn induced a fate change followed by cell cycle entry and neuronal differentiation 553 

[60]. We did not observe increased neuronal differentiation in our model at P21 but a 554 

decreased oligodendrogenesis instead, possibly because our injury strategy mainly 555 

affects the dorsal and anterior SVZ, an area where NSC with oligodendrocytic 556 

potential are enriched for [61]. These results are also in keeping with the reported role 557 

of Notch signalling in favouring oligodendrocytic specification [62] 558 

 559 

Furthermore, Notch has an important role in dendritic arborisation of immature 560 

neurons in the adult brain, in fact conditional knock-out of Notch 1 results in 561 

significantly less complex arborisation, while overexpression of activated Notch 1 562 

leads to a significant increase in dendritic complexity in newborn, maturing granule 563 

cells of the adult dentate gyrus [63]. Future studies will tell whether similar 564 

abnormalities are seen at later stages in our mouse model, since they could provide a 565 

preliminary explanation for subtler neurocognitive sequelae suffered by GMH 566 

patients later in their life.  567 

 568 

It will be important to assess the translational value of these findings in human 569 

autoptic GMH brain tissue as Notch down regulation may represent a final common 570 

pathway following premature birth. Should this be the case, quantification of Notch 571 

expression in the GM may prove a useful prognostic indicator and importantly, 572 

pharmacological activation of the Notch pathway, which has been shown to be 573 

achievable and to exert the predicted functional impact in human cells [64,65], could 574 

be therapeutically pursued 575 

 576 



Taken together these findings raise the possibility that activation of Notch signalling 577 

could be a therapeutic strategy for GMH and our mouse model would be an ideal 578 

platform to test this hypothesis at pre-clinical level.  579 
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Figure legends 588 

Figure 1. Stereotactic injection of autologous blood recapitulates moderate grade 589 

GMH (A) The Narishige stereotactic frame was modified with a clay mould (inset) 590 

secured to a custom made board shaped to fit the space into which the proprietary 591 

metal plate would ordinarily sit. The board is secured down using the housing screws 592 

shown and in combination with the taping shown in (B) this method facilitates 593 

reproducible immobilisation of the P0 mouse pup. (C) (i) Schematic showing the 594 

point of bolus injection within the anterior margin of the SVZ (ii) Macroscopic 595 

picture showing the result of tissue dye injection into the SVZ – a small entry wound 596 

and needle tract can be seen leading to the injection bolus within the anterior SVZ, 597 

bilateral intraventricular spread can also be clearly seen (iii) Matching macroscopic 598 

picture showing the result of blood injection into the SVZ a tiny entry wound with a 599 

very similar distribution of intraventricular blood can be seen, the relative lack of 600 

surrounding tissue damage and the absence of any subdural blood is also noted. (D) 601 

Coronal section of day 1(P1) mouse brain stained with H&E (i) x5 magnification and 602 

(ii) x10 magnification, following stereotactic blood injection on the day of birth (P0) 603 

demonstrating haematoma within the SVZ (white arrow) in association with 604 

intraventricular blood (red arrow). Minimal damage to the surrounding cortex is 605 

noted (E) Coronal section of day 4 (P4) mouse brain stained with H&E, (i) x10 606 

magnification and (ii) x40, demonstrating haematoma cavity within the SVZ (black 607 

arrow) associated with the presence of siderophages (green arrows). (F) Graph 608 

showing that GMH causes ventriculomegaly at P4, (Control n=7, Sham n=4, GMH 609 

n=5 p<0.05 ANOVA) (G) Similarly at P21 we see a persistence of ventriculomegaly 610 

(Control n=5 GMH n=4 p<0.05 t-test) (H) The persistence of hydrocephalus 611 

following GMH can be seen at P21 in the small stature and marked doming of the 612 



cranium (inset top: comparison of control pup; upper frame labelled a, with GMH 613 

pup; lower frame labelled b, demonstrates small stature at P21 in GMH pups, inset 614 

bottom: coronal view of brain with dilated lateral ventricles). 615 

 616 

Figure 2 GMH activates proliferation in the wall of the lateral ventricle and 617 

increases the expression of GFAP and the number of MASH1+ve cells  (A) 40X 618 

Oil Confocal acquired tile scan images of the left lateral ventricle of the P4 mouse 619 

pup, comparing control (i&ii) versus blood injected/GMH (iii & iv) samples (DAPI-620 

Blue GFAP-Red EdU-Green). In the control setting we see occasional EdU+ve cells in 621 

the SVZ with minimal GFAP positivity, in the GMH sample we see a marked 622 

increase in the number of EdU+ve cells (white arrow) with a marked increase in GFAP 623 

immunoreactivity. Marked ventriculomegaly is also seen in the GMH sample (B) 624 

Quantification of the number of EdU+ve cells within the lateral and dorsal wall of the 625 

left lateral ventricle at P4 shows that GMH causes a significant increase in the number 626 

of cells counted in comparison to both the control and sham needle only conditions 627 

(Control n=4, Sham n=5, GMH n=4 p<0.001 ANNOVA) (C) Following GMH 628 

(iii&iv) we see a significant increase in the number of MASH1+ve cells in the superior, 629 

medial and lateral walls of the lateral ventricle in comparison to control (i&ii) (DAPI-630 

blue, MASH1-red) (D) Bar chart highlighting the increase in the number of 631 

MASH1+ve and GFAP+ve  cells in the lateral wall of the left lateral ventricle following 632 

GMH compared to the control (Control n=4 GMH n=4: p<0.01 MASH1 p<0.05 633 

GFAP t-test). (E) Bar Chart showing the significant increase in GFAP+ve/EdU+ve and 634 

MASH1+ve/EdU+ve cells following GMH (Control n=4 GMH n=4: p<0.05 MASH1 635 

p<0.05 GFAP (scale bar 100μm) 636 

 637 

Figure 3 GMH leads to an increase in the number of EdU+ve transient amplifying 638 

cells within the corpus callosum (A) Sagittal schematic representation of the P4 639 

mouse brain demonstrating the postnatal migratory patterns out of the SVZ (adapted 640 

from Suzuki et al 2003[34]), neuronal migration into the olfactory bulb is shown in 641 

green whilst glial migratory pathways are shown in yellow and orange (B) Sagittal 642 

single channel DAPI image from a P4 mouse pup to demonstrate the positioning of 643 

the 300 pixel wide counting frame (white checkered box) orientated anterior to a line 644 

drawn perpendicular to the anterior border of the hippocampus (red arrow) (C) 645 

Example of the counting frame used for quantification in the sagittal analysis (i) 646 

Single channel DAPI image demonstrates four phenotypically different regions; the 647 

subventricular zone (SVZ), corpus callosum (CC), subcortical white matter (SCWM) 648 



and the cortex (CTX), quantification was undertaken within the CC (ii) Myelin Basic 649 

Protein (MBP) (Green) staining used to demonstrate the anatomical boundaries 650 

between the SCWM and CC facilitating quantification within the CC. (D) 40X oil tile 651 

scans (DAPI-Blue EdU-Green) following GMH shows that the cellular architecture 652 

within the CC is abnormal with markedly increased cellularity and a loss of the 653 

perpendicular arrangement of nuclei (as seen in the control samples). Similarly we see 654 

a significant increase in the number of EdU+ve cells within the SVZ and CC whilst the 655 

SCWM and CTX remain relatively unaffected (E) Quantification of the number of 656 

EdU+ve cells within the counting frame of the CC reveals that GMH causes a 657 

significant increase in the number of EdU+ve cells. (Control n=6 Sham n=5 GMH n=6 658 

p<0.01 ANNOVA) (scale bar 100μm) 659 

 660 

Figure 4 GMH causes an increase in glial progenitors within the corpus callosum 661 

(A) Quantification of the number of cells which colocalise (i) GFAP (ii) NG2 & (iii) 662 

Dcx reveals that GMH causes a significant increase in the number of cells which 663 

colocalise EdU & NG2 with a similar trend seen in the number of cells colocalising 664 

EdU & GFAP, with no comparative increase seen in the number of cells colocalising 665 

EdU & Dcx (B) Representative example showing that GMH causes an increase in the 666 

number of cells which colocalise EdU & NG2. (scale bar 100μm) 667 
 668 

Figure 5 GMH at P0 impacts on early cortical development (quantified at P21) 669 

(A) Quantification was undertaken in the neocortex anterior to a line drawn 670 

perpendicular to anterior border of the hippocampus (area shaded in red). (B) GMH at 671 

P0 significantly reduces the percentage of cells which express EdU within the cortex 672 

at P21 (Control n=3 GMH n=3 p<0.05 t-test) (C) No significant change is seen in the 673 

% of cells which colocalise EdU & NeuN (Control n=3 GMH n=3 p=0.1 t-test) (D) In 674 

contrast analysis of colocalisation with markers of oligodendrocytic lineage reveals 675 

that GMH significantly reduces the proportion of cells which colocalise EdU & Olig2 676 

(Control n=3 GMH n=3 p<0.01 t-test) (E)  Similarly, following GMH at P0 we see a 677 

significant reduction in the percentage of cells which express the Oligodendrocyte 678 

marker Olig2 (Control n=3 GMH n=3 p<0.05 t-test) 679 

 680 

Figure 6 GMH causes a down regulation of Notch2 in CD133 positive cells within 681 

the wall of the lateral ventricle (A) RNA analysis from the CD133+ve cell fraction 682 

isolated from the wall of the lateral ventricle reveals that GMH causes a significant 683 

down regulation of Ccne1, Cxcl12, Ep300, Kat2a, Notch2, Sox2, Tubb3 and 684 



significant upregulation of Hsp90ab1 (Control n=3 GMH n=3 p-values shown in table 685 

calculated using t-test) (B) By overlaying the Hes5 ISH with the GFAP/EdU IHC we 686 

confirm the expression of Notch within the wall of the lateral ventricle predominantly 687 

in GFAP-ve cells with occasional expression in GFAP+ve cells (C) Photomicrographs 688 

showing in situ hybridisation performed using a Hes5 probe[32] on coronal sectioned 689 

P4 mouse brain. Specific localisation of the Hes5 probe to the wall of the lateral 690 

ventricle in the control setting is clearly seen (i&ii) with a significant reduction in 691 

Hes5 expression seen following GMH (iii & iv).  692 

 693 

Supplementary data legends 694 

 695 

Supplementary Figure 1 Stereotactic injection facilitates accurate and reproducible 696 

targeting of the neonatal mouse SVZ with high rates of intraventricular extension and 697 

low rates of subdural extension (A) Schematic demonstrating how the degree of 698 

angulation refers to the angle generated between the needle and an imaginary line 699 

drawn perpendicularly to the head of the mouse pup, in the example shown two 700 

angulations are depicted at 200 (red needle) and at 450 (green needle) (B) Chart 701 

showing the relative incidence of subdural (SD) and intraventricular extension of 702 

bleed (IVH) at macroscopic examination on day 4 following IC blood injection at P0 703 

using the different trajectories of forward angulation. At 24 degrees of angulation we 704 

see a very low rate of subdural extension with high rates of intraventricular extension 705 

(C-F) Unstained coronal sections taken from P0 mouse brain following stereotactic 706 

tissue dye injection highlighting the location of the injection bolus (white circle) at the 707 

different trajectories trialled (C) 250 forward angulation, blood bolus is seen within 708 

parenchyma with intraventricular spread (D) 270 forward angulation bolus - site more 709 

lateral but IV spread still seen (E) 280 forward angulation, injection site is seen 710 

laterally with evidence of SD extension (F) 300 forward angulation, lateral injection 711 

site with SD extension. The reproducibility in the height of the injection bolus on the 712 

ventral dorsal axis is noted in association with the limited amount of surrounding 713 

damage to the brain parenchyma.  714 

 715 

Supplementary Figure 2 Anatomical landmarks used to identify the coronal zero 716 

specimens. In order to facilitate robust comparison of volumetric measurements, 717 

quantification was undertaken between fixed anterior and posterior landmarks (A-D) 718 

Nissl stained coronal samples from P4 mouse pup x5 magnification (A) Penultimate 719 

slide prior to the anterior ‘zero specimen’ (i.e. zero minus 10μm) the continuity of the 720 



corpus callosum is seen to be interrupted by the two parallel lines which constitute the 721 

indusium griseum (IG) the orientation of this structure can be taken as an indication 722 

of how ‘square’ the sample has been cut (B) Anterior zero specimen showing the 723 

corpus callosum in continuity across the midline (CC) this appearance demarcates the 724 

anterior extent of the region of quantification (C) Penultimate section prior to the 725 

posterior ‘zero specimen’  (zero minus 10μm) demonstrating that the fibres of the 726 

hippocampus do not cross the midline (D) Posterior zero specimen, fibres of the 727 

hippocampus are seen to cross the midline (white arrow) this appearance demarcates 728 

the posterior extent of the region of quantification (E) Schematic showing the 729 

orientation of the ‘zero specimens’ (anterior, posterior and sagittal) through the P4 730 

mouse brain (F) Graph showing that the number of sequential 10um specimens 731 

collected between the anterior and posterior borders does not significantly change 732 

following blood injection, facilitating comparison of the volumetric analysis using 733 

these landmarks described above. 734 

 735 

Supplementary Figure 3 Anatomical landmarks used to identify the sagittal zero 736 

specimens - In order to facilitate robust comparison of specimens from control and 737 

blood injected samples in the sagittal plane we used the first appearance of striations 738 

of the caudate putamen within the rostral migratory stream to denote the sagittal zero 739 

specimen (A-F) Unstained sagittal sections of P4 brain as viewed at the cryostat to 740 

determine the zero slide (A&B) Samples one and two sections medial to the zero slide 741 

respectively demonstrating an intact SVZ and RMS with no evidence of the striations 742 

of the caudate putamen (C) Sagittal zero slide – the last slide in which the striations 743 

of the caudate putamen are not visible (D&E) First and second samples lateral to the 744 

sagittal zero respectively, showing the emergence of the striations, consistent with the 745 

caudate putamen, within the SVZ (F) High power field taken from the Zero specimen 746 

showing the lateral ventricle and SVZ / RMS, with no evidence of the striations 747 

consistent with the caudate putamen.  748 

 749 

Supplementary Figure 4 GMH elicits an inflammatory response in the wall of the 750 

lateral ventricle but this does not account for the significant increase in EdU+ve cells 751 

Graph showing a significant increase in the number of cells expressing Iba1 in pups 752 

following GMH. 753 

 754 

Supplementary Figure 5 GMH at P0 causes early changes in grip strength and 755 

propensity to fall but does not cause lasting neuromotor deficit (A&B) Screen shots 756 



taken showing the technique used to test grip strength, the paws are placed onto a 757 

piano wire and the pups ability to grip for more than 5 seconds is recorded C Graph 758 

showing the number of failed attempts at grip strength testing – analysis reveals that 759 

GMH causes significantly more failed attempts at 4 to 6 days (D-F) Screen shots 760 

detailing the technique used for negative geotaxis, the pup is placed head down on a 761 

surface inclined at 450 and the time taken to turn 1800 recorded. Testing time is 762 

limited to 30 seconds G Graph showing that GMH does not significantly impact on 763 

negative geotaxis (H-J) Screen shots to show the technique used to assess surface 764 

righting; the pup is rolled onto its back and the time taken to stand on all four paws is 765 

recorded. Testing time limited to 30 seconds K Graph showing the time taken for 766 

surface righting, no significant impact of GMH on time to surface right is seen.  L 767 

Analysis of the number of falls recorded demonstrates that GMH is associated with 768 

significantly more falls at 4 to 6 days M Graph showing the total time mobile (secs) 769 

within the testing chamber – no significant change was seen following GMH N Graph 770 

showing the total distance travelled within the testing chamber –at 19 to 21 days 771 

needle injection (i.e. sham and GMH) is seen to cause a significant increase in the 772 

total distance travelled O Graph showing the maximum speed recorded whilst in the 773 

testing chamber – a significant increase in the total maximum speed is seen at 13 to 774 

15 days following GMH.  775 

 776 
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