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ABSTRACT 

 

This paper reports new fieldwork at Warsash which clarifies the terrace stratigraphic 

framework of the Palaeolithic archaeology of the region. Sections were recorded in 

former gravel pits and at coastal locations, supplemented by the use of ground 

penetrating radar and luminescence dating techniques. The region’s extensive 

borehole archive was also analysed to produce a revised terrace stratigraphy at 

Warsash and for the Test valley as a whole. At Warsash, some of the sediments 

previously identified as the Mottisfont/Lower Warsash Terrace are reassigned to the 

Hamble, Belbin/Upper Warsash and Ganger Wood/Mallards Moor Terraces. A 

luminescence dating programme, using test procedures not utilised in earlier dating 

studies in the region, yielded age estimates for the Hamble and Mottisfont/Lower 

Warsash Terraces at Warsash and also highlighted the complicated nature of the 

fluvial sediments of the River Test, suggesting that published luminescence ages for 

these deposits should be treated with some caution. This study indicates that the data 

used to construct terrace stratigraphies also requires careful assessment. The use of 

bedrock height and sediment thickness data produces more coherent long profile 

correlations than those produced by terrace surface data alone. The revised terrace 

stratigraphy provides the framework for the Palaeolithic archaeology at Warsash and 

clarifies correlations within and between archaeologically important sediments of the 

Test Valley, enabling it to contribute to discussions on the Lower-Middle Pleistocene 

settlement history of southern Britain.  

 

Keywords: Lower–Middle Pleistocene, Warsash, Solent, River terrace stratigraphy, 

Long profiles, Luminescence dating (IRSL, OSL).  

 

1. Introduction 

 

The Solent region of southern England, including the River Test valley, contains an 

important Lower and Middle Palaeolithic record. Stratigraphic uncertainties have 

prevented this region from fully contributing to central themes of recent Palaeolithic 

and Quaternary research, such as understanding hominin population dynamics, 

regional settlement histories and technology/technological change during the 

Pleistocene in Britain. Studies have been concerned with the effects of climate and 

changing environments and landscapes, as these are seen as primary influences on 
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hominin colonisation and population dynamics (e.g. Gamble 1992; Roebroeks et al. 

1992; White & Schreve 2000; Ashton & Lewis 2002; Ashton & Hosfield 2010; Parfitt 

et al. 2010). The southerly position of the Solent region, and the likelihood that 

Pleistocene hominins accessed the area via the Channel rather than the North Sea 

basin route that led into the Thames and East Anglia regions, provides the potential 

for the examination of regional signatures in the archaeological record. Pleistocene 

fluvial terraces provide a fundamental resource for examining such questions of 

hominin occupation because they can produce coarse-resolution, time averaged 

records of hominin presence (e.g. Wymer 1968, 1999; Bridgland 1994, 2000, 2001; 

Bridgland et al. 2004, 2006; Hosfield 1999; Ashton & Lewis 2002; Mishra et al. 

2007; Brown 2008; Ashton & Hosfield 2010; Ashton et al. 2011; Briant et al. 2012). 

The fluvial archive of the Solent River is therefore important as both the major source 

of Palaeolithic archaeological material in the region and as a framework for 

contextualising that material.  

 

Remnant fluvial gravels of the Pleistocene River Test, a north-bank tributary of the 

Palaeo Solent River first recognised by Darwin-Fox (1862), survive alongside the 

modern course of the Test, recognisable from north of the confluence with the River 

Dun at Dunbridge downstream to Southampton Water (Figure 1). The substantial 

archaeological resource found in these terraces has been the focus of renewed interest 

(Davis 2013; Hatch 2014; Davis et al. 2016), in order to better understand its 

characteristics and chronology. The context of this record has until recently been 

unclear in two significant respects, firstly the lack of accurate location information for 

many artefact and assemblage find-spots (Davis 2013; Davis et al. 2016) and 

secondly deficiencies in the broader terrace stratigraphic framework, due to a lack of 

preserved biological material, poor chronological control, and the absence of a 

correlative model of terrace sediments from Bournemouth through to the Test valley. 

The most recent reviews of the terrace stratigraphy of the River Test (the Palaeolithic 

Archaeology of the Sussex/Hampshire Coastal Corridor project (PASHCC, Bates et 

al. 2004, 2007; Bates and Briant 2009; Briant et al. 2012) and Harding et al. 2012) 

have produced very different interpretive models, due partly to contrasting approaches 

to the construction of long profile projections of terrace sediments and landforms, and 

also to their differing interpretations of the stratigraphic and topographic data. The 

same issues are apparent when comparing recent reviews of the terrace stratigraphy in 

the wider Solent River system by Allen and Gibbard (1993) and Westaway et al. 

(2006) (Hatch 2014). Many questions remained unresolved, including the age of 

much of the sequence and the correlation of terraces both within and between key 

parts of the Solent system. Fundamental to building a robust contextual framework for 

the wider Solent is a better understanding of the terrace stratigraphy of 

archaeologically important regions such as the River Test and how they relate to other 

parts of the system. 
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Figure 1. Location map of the Solent River region (top) and the Warsash study area (bottom).  

 

Warsash, located near the former confluence of the River Test and River Hamble to 

the south-east of Southampton (Hampshire) (Figure 1), is one of the most important 

Palaeolithic sites in the region. The area was quarried extensively during the 20th 

century, and soon became recognised as a rich source of Palaeolithic artefacts (e.g. 

Burkitt et al 1939). Unfortunately the majority of the material collected at Warsash 

was not accompanied by detailed stratigraphic or contextual detail. However, a recent 

review of historic mapping and museum archives and collections enabled the 

locations of the key Palaeo-producing pits to be identified (Davis et al. 2016). 

Furthermore, correlating the timing of artefact collection and the history of gravel 

extraction in the Warsash area allowed a significant proportion of artefacts with a 

‘general’ provenance to be assigned to the Mottisfont/Lower Warsash Terrace. The 

Warsash record consists of approximately 500 handaxes and 30 Levallois artefacts 

(Roe 1968, 1981; Wessex Archaeology 1993), which is significant in a region 

characterised by a scarcity of Middle Palaeolithic material (Ashton and Hosfield 

2010). The handaxe assemblage includes ficrons, cleavers and plano-convex 

handaxes, elements that may be temporally significant (e.g. Roe 1981, 2001; Wenban-
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Smith 2004; Bridgland and White 2014; White 2015). The stratigraphic relationship 

between the handaxe assemblage and the smaller Levallois assemblage at Warsash is 

significant in understanding the nature of early Middle Palaeolithic occupation, both 

in the Solent region and in Britain in general (Ashton and Hosfield 2010; Ashton et al. 

2011; Pettitt & White 2012; Ashton et al. 2015; Davis et al. 2016).  

 

2. Previous research  

 

Burkitt et al. (1939) provided brief notes on the geology at Warsash as seen in a 

section at Newbury’s Pit (Figure 2). They describe a 3.65 m sequence of fluvial 

deposits covering Barton Sand, which rises in hummocks. Above this lies a thin 

coarse brown gravel conglomerate showing evidence of solifluction. Above this lies 

~1.8 to 2.4 m of coarse, loose, dark coloured ferruginous gravel, described as the 

source of large bifaces, sometimes heavily rolled. The unit contains a lens of non-

ferruginous, grey, clayey sand with a basal gravel layer. The sand is overlain by a 

finer gravel than that below, less brown in colour and contorted by solifluction. This 

gravel was eroded and is disconformably overlain by a fine, bedded, gravelly sand 

with occasional sand lenses. Above this lies ~0.3 m of fine angular gravel, contorted 

and then covered by a buff, stony loam. The uppermost deposits are a black pebbly 

sand with a thin basal layer of angular gravel. Burkitt et al. note that Levallois flakes 

had been recovered in the nearby Park’s Pit below a blue clay, not seen at Newbury’s 

Pit but possibly equivalent to the buff, stony loam there. 

 

Eleven River Test terraces are recognised in the British Geological Survey (BGS) 

Southampton sheet (Sheet 315) according to the mapping scheme of Edwards and 

Freshney (1987). The BGS Winchester sheet (Sheet 299) recognises eight upstream 

River Test terrace levels (Booth 2002) (Table 1). The two sheets were mapped with 

independent numbering schemes, which makes upstream/downstream terrace 

correlation of often fragmentary deposits difficult. This is particularly significant with 

regard to how the archaeologically important Dunbridge deposits, where over 1000 

handaxes and at least four Levallois artefacts have been recovered (Roe 1968, 1981; 

Wessex Archaeology 1993; Harding et al. 2012; Davis 2013), fit into the broader 

downstream Test sequence. There is some agreement in the two BGS schemes as 

Terraces 1 and 4 persist across both sheets, while Terraces 2 and 3 cease north of 

Romsey and do not appear in the south of sheet 299. At Dunbridge, however, Booth 

(2002) recognises two intermediate terrace levels between Terraces 1 and 4 without 

differentiating between them, attributing them to a ‘Terrace 2/3’ level. This makes 

understanding the relationship between the assemblages at Dunbridge and Warsash 

difficult, in particular in determining if they are contemporaneous. The immediate 

Warsash area was mapped largely as Terrace 3, with Terrace 2 to the southwest, 

outcrops of Terrace 4 downstream, and more extensive spreads of Terrace 5 and 

Terrace 6 to the northeast and north respectively (Figure 2). Archaeological material 

has been recovered from Terraces 2 and 3 around Warsash, although contextual 

information was often lacking as discussed in 2.1 below. The correlation between the 

two BGS sheets is therefore significant for both the terrace stratigraphy of the River 

Test as a whole and for understanding the region’s Palaeolithic archaeology.  

 

Westaway et al. (2006) reinterpreted the Test stratigraphy, identifying 13 terrace 

levels, with the most significant alterations to the Edwards and Freshney (1987) and 

Booth (2002) schemes appearing above Terrace 8. Westaway et al. (2006) noted the 
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first appearance of Levallois in the Test Valley occurring in or on their equivalent of 

Terrace 4 upstream at Dunbridge and in or on Terrace 3 downstream at Warsash. This 

scheme produced a revised correlation between the River Test deposits in BGS sheets 

299 and 315, proposing that Terrace 4 in the Dunbridge area correlates with Terrace 3 

in the Warsash area. Their Belbin/Warsash Terrace resulted in the archaeological sites 

at Warsash being revised to Terrace 4, rather than Terrace 3, which fits their age 

model for the first appearance of Levallois (around the MIS 9-8 transition). However 

the long profile projection of the Test sequence produced by Westaway et al. (2006) 

erroneously placed the archaeologically important gravel pits in Terrace 3 at Warsash 

at ~25 m OD, around 10 m too high (Ashton and Hosfield 2010; Hatch 2011; Harding 

et al. 2012). This issue was addressed by Harding et al. (2012), who proposed a Test 

terrace stratigraphy with revised correlations to those of Westaway et al. (2006). 

Harding et al. (2012) adjusted the attribution of the terraces at Warsash, identifying an 

‘upper’ and ‘lower’ terrace with an intervening degraded bluff between ~15 and 

~20 m OD, and correlated them upstream with the Belbin and Mottisfont Terraces 

respectively (Table 1). The Levallois artefact-bearing quarries at Warsash, located in 

the lower terrace, were reassigned to the Mottisfont/Lower Warsash Terrace of 

Harding et al. (2012). This interpretation was based on data obtained during a 

geoarchaeological watching brief carried out at Kimbridge Farm quarry (SU 321 255) 

between 1991 and 2007. In contrast, the PASHCC scheme correlated Booth’s (2002) 

Terraces 2/3 at Dunbridge with Edwards and Freshney’s (1987) Terraces 4 and 5. 

 

This mismatch may partly result from the use of different datasets for correlation 

(Briant et al. 2012). The work of Westaway et al. (2006) and Harding et al. (2012) 

beyond the Dunbridge area was based on 140 surface elevations, plotted by relating 

outcrop information from Edwards and Freshney (1987) and BGS (1987; 1998) to the 

topography shown at 5 m contours and spot heights (to the nearest 1 m) on 1:25,000 

scale topographic maps. In contrast, the PASHCC project was based on observations 

in 12 test pits, optically stimulated luminescence (OSL) dating, published data 

(Bridgland and Harding 1987) and 96 BGS boreholes, using the full gravel thickness.  

 

Briant et al. (2012) highlight a number of issues that can lead to contrasting 

interpretations of terrace stratigraphies depending on the conceptual and 

methodological approaches taken. These approaches could include what data are used 

to describe or define terrace deposits, such as the modern terrace (i.e. ground) surface 

(e.g. Westaway et al. 2006; Harding et al. 2012) or the thickness of the underlying 

sedimentary deposit (e.g. Bates et al. 2004, 2007; Bates and Briant 2009; Briant et al. 

2012). The potential for post-depositional modification from solifluction/addition of 

overburden, or reworking by stream erosion etc, will complicate the former approach. 

The latter approach may be affected by topographical variation in the palaeo-

floodplain due to channelling or changing terrace thickness between the front and 

back of the outcrop. The choice of data used will also affect the volume of data 

available; terrace surfaces may be readily obtained from mapping data and provide 

more extensive geographical coverage while sedimentary data will be limited by the 

number of borehole records or fieldwork locations available. 

 

The schemes of the PASHCC project and Westaway et al. (2006; cf. Harding et al. 

2012) differ in the projection of long profiles of terrace fragments between Sheets 299 

and 315, while the latter scheme also reassigns some downstream terrace deposits in 

Sheet 315 in the process (Table 1). For clarity this study has correlated the numbered 
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Test terrace deposits with the Harding et al. (2012) named terrace scheme, with 

modifications as discussed below.  

 
Table 1. Terrace correlations between BGS sheets 299 (Winchester) and 315 (Southampton) as 

proposed by Harding et al. (2012) and the PASHCC project (Bates et al. 2004, 2007; Bates and 

Briant 2009; Briant et al. 2012). Terraces 9 – 11 do not appear in BGS sheet 299. 

Booth 2002 PASHCC Westaway et al. 2006  Harding et al. 2012 

Edwards and 

Freshney 1987 

BGS sheet 299 BGS sheet 299 Upstream  Downstream BGS sheet 315 

Terrace 1 Terrace 1 Broadlands Farm               Broadlands Farm Terrace 1 

 Terrace 2 

Terrace 3 

Hamble                    Hamble Terrace 2 

 

Terrace  2/3 
Terrace 4 Mottisfont   Lower Warsash Terrace 3 

Terrace 5 Belbin   Upper Warsash Terrace 4 

Terrace 4 Terrace 6 Ganger Wood  Mallards Moor Terrace 5 

Terrace 5/6 

Terrace 7   

Terrace 8 Nursling                       Nursling Terrace 6 

 Bitterne                      Bitterne Terrace 7 

  Midanbury                          Rownham’s Farm Terrace 8 

 

The PASHCC project has also contributed a substantial OSL dating programme 

(Bates et al. 2004, 2010; Briant et al. 2006, 2009a and 2009b; Schwenninger et al. 

2006, 2007; Briant et al. 2012), but confidence is limited in those dates produced 

above Terrace 2 of the Test (Bates and Briant 2009). The PASHCC project dated five 

terraces in the Test sequence, Terraces 1 (at Timsbury), 2 (at Solent Breezes), 5 (at 

Hook), 6 (at Ridge) and 8 (at Yewtree Cottage), and a brickearth deposit overlying 

Terrace 3 (at Chilling Copse) (Bates et al. 2004, 2010; Briant et al. 2012). The lowest 

terraces dated in the Test sequence produced ages that were judged to be the most 

reliable; Terrace 1 (69 ±5 ka; MIS 5a-4) and Terrace 2 (217 ±22 ka weighted mean; 

MIS 7) (Bates and Briant 2009; Briant et al. 2012). The remaining ages were 

problematic; the brickearth overlying Terrace 3 (29 ±2.3 ka; MIS 3) was a later slope 

deposit, Terrace 8 only yielded a minimum age (>200 ka; >MIS 7), and Terraces 5 

(292 ±20 ka and 233 ±27 ka; MIS 9-8 and 8-7a) and 6 (280 ±19 ka and 413 ±26 ka; 

MIS 8 and 12-11) produced varying ages from two replicated samples at each site. 

Time restrictions meant that the number of aliquots measured was low, up to a 

maximum of 12. The methods applied by the PASHCC project, while rigorous in their 

analysis of the ages produced by samples, were less comprehensive in attempting to 

detect potential issues that are not identified during the standard SAR protocol. The 

same preheat temperatures of 260 C (Preheat 1) and 220 C (Preheat 2) were used for 

each sample, with no prior assessment (i.e. a preheat test (PHT)) of which thermal 

pre-treatment would remove the unstable signal component in the signal. Recycling 

ratios were all between ±10% and thermal transfer was low, but dose recovery tests 

(DRT) were not conducted. A DRT would indicate whether the applied preheat 

temperatures in the SAR protocol resulted in accurate recovery of a given dose. 

Finally, the equivalent dose (De) was calculated as the weighted mean of between 

only 5 and 12 aliquots per sample. The Harding et al. (2012) OSL dating programme 

followed a similar protocol. The anticipated antiquity of the terraces of the Solent 

region, and reported issues encountered during the PASHCC project, led to the 

development of a rigorous programme of tests in order to assess the luminescence 

ages produced during this study.  
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2.1 Brief history of archaeological research at Warsash 

 

The majority of the Palaeolithic material collected at Warsash was recovered from 

gravel pits by collectors between the mid-1920s and 1950s. As with many sites of this 

type, the precise number of artefacts discovered is unknown. The Southern Rivers 

Palaeolithic Project database lists a total of 609 artefacts, including 478 handaxes and 

24 Levallois artefacts, from 15 separate locations (Wessex Archaeology 1993). The 

majority of these (475 artefacts including 366 handaxes and 11 Levallois artefacts) are 

listed as a ‘general’ entry for the Warsash area. This reflects the frequent absence of 

associated contextual information and the fact that most collectors did not record the 

name of the pits from which the material had been recovered. A recent review of 

Warsash material in museum collections produced revised totals of 499 handaxes and 

34 Levallois artefacts (Davis 2013; Davis et al. 2016).  

 

The largest collection of Warsash palaeoliths was assembled by Mr C. J. Mogridge of 

Winchester Museum. His collection formed the basis of Burkitt et al. (1939), one of 

the few papers to deal directly with aspects of the Warsash Palaeolithic record prior to 

the current work, the others being Myra Shackley’s (1974, 1978) work on site 

formation processes in fluvial contexts, for which Warsash was a case study. The 

Mogridge Collection was recovered from four pits - Dyke's Pit, New Pit, Park's Pit 

and Newbury's Pit - which Burkitt et al. describe as being located between Warsash 

and Hook. Burkitt et al. describe four series of artefacts from these sites which they 

define on the basis of typology, technology and condition: an Early Acheulean series 

consisting of crude handaxes, a Middle Acheulean series consisting of ovates, points, 

cleavers and hand-choppers, a Late Acheulean series that included elegant plano-

convex handaxes and a Levalloisian series. The presence at Warsash of cleavers in 

combination with ficrons (Roe 2001) and plano-convex handaxes is notable in light of 

suggestions that these handaxe types are characteristic of some handaxe assemblages 

manufactured between MIS 10-8 (Bridgland & White 2014; Pettitt & White 2012; 

Roe 2001; Wenban-Smith 2004).  Burkitt et al. indicated that their Early and Middle 

Acheulean series was recovered from basal gravels, while some of the Levallois 

material was recovered from beneath a blue clay at Park’s Pit, which they suggest 

might be equivalent to the stony loam that overlies the terrace deposits at Newbury’s 

Pit. 

 

The most recent work on the Warsash Palaeolithic material is that of Davis (2013; 

Davis et al. 2016), who has been able to resolve some of the uncertainty over the 

provenance of the Warsash material. This has been achieved through a combination of 

historic map regression and the study of museum collections and archives, which has 

enabled Mogridge’s pits to be located and identified on historic maps (Figure 2). 

Historic map regression revealed the expansion of quarrying in the Warsash area from 

north to south through time, which, when correlated with the date of recovery of the 

artefacts, provided a further means of estimating likely origins for much of the 

archaeological material. The presence at Warsash of small numbers of ficrons (2.4% 

of total handaxe assemblage) and cleavers (4.7%), plus a number of handaxes with 

full or partial plano-convex profiles (11.5%) has been confirmed. There is also an 

important contrast in condition between the handaxes and Levallois artefacts at 

Warsash. While the former are typically rolled and stained, the Levallois material is 

much fresher and typically patinated. This and the observations of Burkitt et al. 

(1939) support Ashton and Hosfield’s (2010) assertion that the Warsash Levallois 
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material is likely to have been recovered from sediments overlying the terrace gravels, 

and therefore post-date terrace aggradation. 

 

3. Methods and materials 

 

3.1 Sedimentology and stratigraphy 

 

Stratigraphic data were collected at four locations in the Warsash area: Hamble Park, 

Warsash Common, Solent Breezes and Brownwich Lane. At Hamble Park and 

Warsash Common sections were exposed in old gravel pits. At Solent Breezes and 

Brownwich Lane, which are coastal locations, stratigraphic data were collected using 

a Topcon Imaging Station (IS). Sections were scanned by means of automated 

reflectorless surveys, where user-defined areas of a vertical surface are measured by 

the IS laser. Sections were between 20 m and 110 m in length, dependent on where 

vegetation cover or sediment slumping obscured sedimentary detail. Scanning was 

conducted by continuous horizontal measurement at 10 cm vertical steps. A 

representative vertical log was also recorded where access was possible. Sedimentary 

description and interpretation follow Miall’s (1977, 1996) lithofacies analysis 

approach as modified by Briant (2002). 

 

3.2 Boreholes 

 

The borehole archive for the River Test was also assessed for inclusion in this study, 

accessed via the online BGS Geoindex resource 

(http://mapapps2.bgs.ac.uk/geoindex/home.html). Records that contained sands and 

gravels of likely fluvial origin (determined from the borehole descriptions) and 

provided location, ground level and bedrock contact data were included. In total, 280 

borehole records from the River Test valley were utilised in assessing the fluvial 

terraces as discussed in Sections 6 and 8 below. This significant archive contributed to 

determining the location of fieldwork sites, interpretation of mapped terrace extents, 

the construction of terrace long profiles and cross-sections, and terrace 

upstream/downstream correlations within the Test Valley. Twenty one borehole 

records in the vicinity of Warsash were used, along with new field data, to reassess 

the terrace stratigraphy in this area.  

 

3.3 Ground penetrating radar 

 

Ground penetrating radar (GPR) was used to determine bedrock elevation and terrace 

deposit thickness in key areas that lacked borehole coverage. Principles of the method 

can be found in Bristow & Jol (2003), Moorman et al. (2003), Neal (2004) and Annan 

(2009). The survey was designed to investigate the extent and form of terrace features 

over transects, up to ~900 m in length at Warsash. Surveys focused on areas 

containing sequences of multiple terrace levels (including intervening bluffs) in order 

to aid stratigraphic differentiation in those areas or at locations where they could 

contribute to addressing specific research questions. Surveys were carried out using a 

Sensors and Software pulseEKKO PRO with 50 MHz antenna, in order to provide 

sufficient depth penetration to reach bedrock contact. The transmitting and receiving 

antenna are fixed (at 1 m separation) on a wheeled cart. Topographic data were 

collected by means of differential GPS or through surveying with a total station. GPR 

surveys were processed using a figure of 0.11 m ns-1 for radar velocity as 
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recommended by Sensors and Software (2006) and also determined by a common 

mid-point test conducted at Dunbridge, which produced a velocity of 0.1091 m ns-1. 

This value is consistent with studies which show the electromagnetic-wave velocity 

through unsaturated sand and gravel to vary between 0.09-0.13 m ns-1 (Neal and 

Roberts 2000). The GPR results were ground-truthed, where possible, against 

boreholes or sections located on or near the GPR transects. At Solent Breezes for 

example (see Section 5 below) the proximity of coastal sections to the GPR transects 

enabled comparison of GPR and geological data. Depth to bedrock within the BRW08 

section logs ranges between 5.37 m and 7.38 m, comparable to the interpreted 

bedrock contact in GPR transects CHC A-H of 5.96 m to 6.46 m. 

 

The GPR and IS data is summarised as representative ‘synthetic borehole logs’ (SBH) 

(Hatch 2014), which enable the large volume of linear altitudinal data generated 

during fieldwork to be integrated with the borehole data and be included in the 

generation of long profile projections. SBH logs consist of ground level and bedrock 

surface heights (in m OD) from which terrace deposit thickness could also be 

calculated  

 

3.4 Luminescence dating 

 

3.4.1 Sample collection and preparation 

 

Sediment samples for luminescence dating were taken within opaque plastic tubing, 

sealed at the outer end and driven into cleaned section faces. Upon removal from the 

section, tubes were sealed at the other end to prevent light penetration and stored and 

transported in lightproof bags. Further (non light-sensitive) samples were then taken 

from a 30 cm diameter surrounding the sampled sediment for water-content and 

isotope analysis to measure concentrations of uranium (U) and thorium (Th) (by 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)) and potassium (K) (by 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)), carried out 

at the Scottish Universities Environmental Research Centre (SUERC). Luminescence 

samples were then taken to the luminescence lab at Queen Mary University of 

London for analysis. In addition to samples obtained through fieldwork at Warsash, 

samples that had previously been collected from the Hamble Terrace of the River Test 

at Brownwich Lane were also available for dating.  

 

Samples were prepared to isolate quartz components for OSL and K-rich feldspar for 

Infrared Stimulated Luminescence (IRSL). Chemical preparation of samples was 

carried out according to standard laboratory procedures, using HCl and H2O2 in order 

to remove carbonates and organic material. Quartz and feldspar separates were 

isolated from heavy minerals in the sample, and then from each other, using sodium 

polytungstate with densities of 2.70g cm-3 and 2.58g cm-3 respectively (Mejdahl 

1985). Quartz samples for OSL dating were further treated with 40% hydrofluoric 

acid (HF) in order to remove any feldspar component remaining (Mauz and Lang 

2004). No feldspar contamination was detected in any quartz sample. Grain fractions 

used were 212-250 µm (HAP10-02Qz, HAP10-03Qz and BRW08-02Qz) and 180-

212 µm (WAC10-03Fs).   
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3.4.2 Test procedures 

 

Rigorous quality control on the single aliquot regenerative dose (SAR) protocol 

(Murray and Wintle 2000, 2003; Wintle and Murray 2006) was utilised in order to 

calculate the amount of laboratory-induced radiation that was equivalent to the dose 

that the sample received while buried (the equivalent dose (De), measured in Gy 

(Gray)). All luminescence measurements were conducted using a Risø TL/OSL-20 

reader with an in-built 90Sr/90Y beta source. Quartz samples were stimulated with 

blue LEDs emitting at a wavelength of 470 ±30 nm and an intensity of 37 mW cm-2. 

Signal readout was at 125° C for 60 s. Feldspar samples were stimulated with infrared 

LEDs emitting at a wavelength of 870 nm, an intensity of 117 mW cm-2, and readout 

was at 50° C for 300 s. 

 

Prior to the application of the SAR protocol a number of test sequences were applied 

to each luminescence sample in order to determine how well the sample behaved 

using this protocol. The dose recovery test (DRT) (Roberts et al. 1999; Wallinga et al. 

2000; Murray and Wintle 2003) aims to demonstrate that the SAR protocol is able to 

recover a known laboratory-induced dose. The preheat test (PHT) aims to determine 

the appropriate preheat temperature to apply to a sample in order to remove the 

thermally unstable signal components in an artificially induced signal (Aitken 1985). 

The thermal transfer test (TTT) aims to investigate whether electrons are being 

transferred from thermally unstable to light-sensitive traps (Rhodes and Pownall 

1994; Rhodes and Bailey 1997; Rhodes 2000), an effect that has been observed in 

similar depositional settings and results in erroneous De during the SAR protocol. 

 

3.4.3 De determination and age calculation 

 

The equivalent dose used for age calculation was based on a central age model 

(Galbraith et al. 1999), using De values from each aliquot that passed the test 

procedures. It is expected that individual grains from samples rarely receive exactly 

the same dose of natural radiation over time, due to sediment mixing and beta-dose 

heterogeneity post-burial as well as pre-burial incomplete bleaching (Galbraith and 

Roberts 2012).. To account for the resulting ‘overdispersion’ of De values a central 

age model is appropriate for calculating the equivalent dose used for the production of 

final age estimates (Galbraith and Roberts 2012). The calculations required to produce 

age determinations for samples were carried out in ADELE (G. Kuhlig, University of 

Freiberg); this program takes into account cosmic ray concentrations based on latitude 

and longitude, buffering due to sediment overburden and assumes a standard internal 

dose component provided by 13% of K in K-rich feldspar samples. Further details of 

the input for De and dose-rate determination can be found in Lukas et al. (2012). 

 

4. Stratigraphy and sedimentology at Hamble Park, Warsash Common, Solent 

Breezes and Brownwich Lane 

 

Warsash is located on River Test gravels predominantly mapped as the 

Mottisfont/Lower Warsash Terrace, with areas of the Hamble Terrace to the south 

(Edwards and Freshney 1987) (Figure 2). To the east there are spreads of 

Belbin/Upper Warsash and Ganger Wood/Mallards Moor terrace deposits and to the 

north the Nursling Terrace. The Pleistocene Test flowed to the south-east, and the 

orientation of the terrace landforms shows a north-east to south-west trending 
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migration. In the Warsash area, access to in situ fluvial deposits was provided at the 

perimeter of two disused gravel quarries, which in turn provided samples suitable for 

luminescence dating. GPR surveys were also carried out along with examination of 

the borehole archive of the region (see below).  

 

 
Figure 2. Location map of fieldwork sites and terrace attributions (Edwards and Freshney 1987) in the 

Warsash area. Fieldwork sites are numbered: 1. Newtown Road (GPR). 2. Church Road (GPR). 3. 

Hamble Park (excavation of quarry section HAP10 S1 and OSL/IRSL). 4. Warsash Common 

(excavation of quarry section WAC10 S1 and OSL/IRSL). 5. Chilling Copse (GPR lines A-H). 6. 

Solent Breezes (coastal section recording at SOB10 S1-5 and SOB L2). 7. Brownwich Lane (coastal 

section recording at BRW08 L1-3 and OSL/IRSL). 8. Park’s Pit. 9. Dyke’s Pit. 10. Newbury’s Pit. 11. 

Fleet End Pit. 12. New Pit. Quarry extents from Davis et al. 2016.  

 

4.1 Hamble Park and Warsash Common 

 

Sections were recorded at Hamble Park (SU 506 060) (HAP10 S1) and Warsash 

Common (SU 506 058) (WAC10 S1), sites of the former Park’s Pit and Dyke’s Pit 

respectively (Figure 2). The section recorded in Hamble Park (Figure 3; Table 2) has 

three identifiable sedimentary units above Barton Sand bedrock. The lowest deposit 

comprises a horizontally bedded, clast supported, flint-dominated gravel, with sub-

angular to sub-rounded clasts in a medium to coarse slightly silty sand. The unit is 

concreted, with an iron-pan layer 5 to 10 cm below the top of the deposit. The lower 

bounding surface with bedrock was not reached in the section but bedrock was 

located by use of a hand-auger. The next deposit comprises two sand beds: the lower 

bed is a moderately compact fine sand with a slightly clayey band and patches, 

displaying sub-parallel bedding aligned with the lower boundary, while the upper bed 

is a friable medium sand with some horizontal bedding, slightly gravelly in the right 

of the section. The sands fill a channel or scour cut into the lowest gravels, the extent 
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of which could not be determined due to the limited exposure. The upper deposits 

consist of a sequence of gravelly and sandy bedform accumulation, possibly 

representing stacked gravel bars. The gravels are clast-supported with some crude 

horizontal bedding, with flint-dominated sub-angular to sub-rounded clasts. The 

intervening sand beds are medium-coarse with some horizontal bedding.  

 

The restricted width of the section recorded at Warsash Common (Figure 3; Table 2) 

combined with a lack of diagnostic features made detailed description of the deposits 

difficult, although its lithological characteristics appear similar to HAP10 S1. The 

deposits overlie Barton Sand above an erosional unconformity and consist of a 

sequence of gravelly and sandy bedform elements, possibly representing stacked 

gravel bars. The lower gravel units are clast supported with very fine to coarse clasts, 

coarsening upwards from the base of the section. The upper 1.4 m of gravels consist 

of fine to medium clasts, generally fining upwards. The basal gravel is concreted with 

an iron-pan layer at the top of the deposit, similar to the basal gravel bed at Hamble 

Park quarry. The gravel units are separated by medium to coarse sandy bedforms with 

some horizontal bedding, again possibly indicative of bar-tops. Each of the gravels 

recorded were dominated by flint clasts.  

 

Neither of these sites revealed the extensive buff, stony loam or ‘localised’ blue clay 

that overlies the Mottisfont/Lower Warsash Terrace (Burkitt et al. 1939). In addition 

to Park’s Pit and Dyke’s Pit, two further locations in the Warsash area which could 

potentially retain in situ deposits around the perimeter of former quarries Newbury’s 

Pit and Fleet End Pit were identified (Davis 2013). However, the footprint of 

Newbury’s Pit has since been filled-in and restored to agricultural use. Fleet End Pit 

was located and a small scale hand-auger survey was undertaken but the brickearth 

was not found. 

  

4.2 Solent Breezes and Brownwich Lane 

 

Solent Breezes (SU 5077 0377) is located on the eastern shore of Southampton Water, 

is situated around 2 km south of Warsash (Figure 2). The deposits exposed in coastal 

sections are of the Hamble Terrace, with the transition to the Mottisfont/Lower 

Warsash Terrace occurring around Chilling Copse, some 500 m inland (see below). A 

reconnaissance survey of undeveloped coastal areas between Solent Breezes and Lee-

on-Solent identified several locations with potentially in situ fluvial deposits exposed. 

Table 2 summarises the stratigraphy of the coastal sections. 

 

The fluvial sands and gravels seen in the coastal section at Solent Breezes are out of 

reach from the modern beach level. The only access to the deposits was afforded by a 

slumped section face near the second IS section recorded, due to modern erosion of 

the coast. Sedimentary log SOB10 L2 (Figure 3; Table 2) was recorded in as much 

detail as was possible with limited access. Six sedimentary units were identified 

below the topsoil level, although only the bedrock and basal fluvial sandy gravel was 

easily accessible. Bedrock consists of fine to medium Barton Sand, overlain by an 

iron-stained fine to coarse, moderately sorted gravel of sub-angular to sub-rounded 

clasts in a fine/fine to medium sand matrix. A sequence of sands and sandy gravels 

overlies the basal sandy gravel unit; the sands consist of slightly clayey fine to 

medium sand with no apparent bedding, while the sandy gravel units appear to consist 
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of fine to coarse, poorly sorted gravel with sub-angular to sub-rounded clasts in a 

medium sand matrix. 

 

Table 2 also shows ground level, gravel terrace thickness and bedrock height data 

generated from Imaging Station recording of five coastal sections at Solent Breezes. 

Synthetic boreholes SOB10 SBH 1 to 5 summarise the stratigraphy of the coastal 

sections SOB10 S1 to 5 respectively. The first three IS sections (SOB10 S1 to S3; 

Figure 2) provide around 270 m of near-continuous stratigraphic data in the coastal 

section. Sections SOB10 S4 and S5 (Figure 2) were recorded 300 to 400 m further 

downstream. The five coastal sections extend over ~1.4 km of exposures of sands and 

gravels of the Hamble Terrace at Solent Breezes. The vertical range of bedrock 

heights recorded along that distance, and in particular the range seen in each 

individual section, highlight the variety present in bedrock surface topography.  

 

 
Figure 3. Quarry sections and coastal section logs recorded at Hamble Park (HAP10 S1), Warsash 

Common (WAC10 S1), Solent Breezes (SOB10 SBH1 to 5 and L2) and Brownwich Lane (BRW08 L1 

to 3). Black circles denote luminescence sampling locations. 
 

Three sedimentary logs, BRW08 L1 to 3, were also recorded at Brownwich Lane and 

samples were taken for luminescence dating (Figure 3, Table 2). Here up to 4 m of 

terrace deposits rest on Barton Sand bedrock, consisting of medium to coarse massive 

sandy gravels, overlain by a medium to coarse trough cross-stratified sand unit, which 

is in turn overlain by massive medium to coarse clast supported flint gravel.  
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Table 2. Synthetic borehole data from logs and IS sections at Hamble Park, Warsash Common, Solent Breezes 

and Brownwich Lane, GPR transects in the Warsash area, and BGS borehole data in the Warsash area as 

discussed in the text. The terrace attributions of Edwards and Freshney (1987) and Harding et al. (2012) are 

shown. The final column shows the revised terrace scheme proposed here, with terrace attributions changed from 

either previous scheme highlighted in bold. Terrace nomenclature key: Mott./LW: Mottisfont/Lower Warsash; 

UW: Upper Warsash; GW/MM: Ganger Wood/Mallards Moor. 

Method and 

Reference Easting Northing 

Ground  

level  

(m OD) 

Gravel  

thickness 

(m) 

Bedrock  

height 

(m OD) 

Terrace  

E. & F.  

(1987) 

Terrace  

Harding et al. 

(2012) 

Revised  

terrace 

scheme 

Logs and IS         

SOB10 SBH1 450775 103775 9.08 2.46 6.36 Terrace 2 Hamble Hamble 
SOB10 SBH2 450856 103738 8.90 2.80 5.85 Terrace 2 Hamble Hamble 
SOB10 SBH3 450955 103701 9.43 1.54 7.66 Terrace 2 Hamble Hamble 
SOB10 SBH4 451570 103430 9.37 1.43 7.64 Terrace 2 Hamble Hamble 
SOB10 SBH5 452110 103160 9.27 2.37 6.55 Terrace 2 Hamble Hamble 
SOB10 L2 450856 103730 9.34 3.07  5.84  Terrace 2 Hamble Hamble 
BRW08 L1 451358 103540 9.37 3.80 5.37 Terrace 2 Hamble Hamble 
BRW08 L2 451316 103566 9.40 3.15 6.05 Terrace 2 Hamble Hamble 
BRW08 L3 451239 103596 9.43 1.85 7.38 Terrace 2 Hamble Hamble 
HAP10 S1 450641 106051 16.27 4.39 11.47 Terrace 3 Mott./LW Mott./LW 
WAC10 S1 450647 105881 16.56 4.26 11.56 Terrace 3 Mott./LW Mott./LW 

GPR         
NTRD SBH 1 449340 106030 16.10 3.19 12.91 Terrace 3 Mott./LW Mott./LW 
NTRD SBH 2 449320 105711 14.32 3.89 10.43 Terrace 3 Mott./LW Mott./LW 
NTRD SBH 3 449304 105434 11.94 4.22 7.72 Terrace 2 Hamble Hamble 

CHRD SBH 1 449684 106073 16.35 4.34 12.01 Terrace 3 Mott./LW Mott./LW 
CHRD SBH 2 449810 105821 15.81 5.39 10.42 Terrace 3 Mott./LW Mott./LW 
CHRD SBH 3 449933 105591 15.36 5.94 9.42 Terrace 2 Hamble Mott./LW 

CHC SBH 1 451935 104101 12.14 4.40 7.74 Terrace 3 Mott./LW Hamble  

CHC SBH 2 451900 104145 15.04 3.95 11.09 Terrace 3 Mott./LW Mott./LW 
CHC SBH 3 451880 104167 15.55 3.60 11.95 Terrace 3 Mott./LW Mott./LW 
CHC SBH 4 451761 104210 15.74 3.61 12.13 Terrace 3 Mott./LW Mott./LW 
CHC SBH 5 451546 103832 10.82 4.67 6.15 Terrace 2 Hamble Hamble 
CHC SBH 6 451569 103825 10.50 4.54 5.96 Terrace 2 Hamble Hamble 
CHC SBH 7 451500 103840 10.90 4.44 6.46 Terrace 2 Hamble Hamble 
CHC SBH 8 451485 103844 10.92 4.60 6.32 Terrace 2 Hamble Hamble 

BGS boreholes         

SU50NW207 449340 106030 16.22 2.50 13.52 Terrace 3 Mott./LW Mott./LW 

SU50NW214 449320 105711 28.66 1.80 25.86 Terrace 3 Belbin/UW GW/MM 

SU50NW323 449304 105434 20.24 4.40 15.84 Terrace 3 Mott./LW Belbin/UW 
SU50NW324 449684 106073 20.24 3.10 16.94 Terrace 3 Mott./LW Belbin/UW 
SU50NW325 449810 105821 20.38 3.00 17.08 Terrace 3 Mott./LW Belbin/UW 
SU50NW326 449933 105591 20.79 2.50 18.29 Terrace 3 Mott./LW Belbin/UW 
SU50NW327 451935 104101 21.59 2.40 18.19 Terrace 3 Belbin/UW Belbin/UW 
SU50NW328 451900 104145 22.17 2.50 19.67 Terrace 3 Belbin/UW Belbin/UW 
SU50NW329 451880 104167 22.99 1.80 21.19 Terrace 3 Belbin/UW Belbin/UW 
SU50NW331 451761 104210 25.42 3.70 19.72 Terrace 3 Belbin/UW Belbin/UW 
SU50NW332 451546 103832 23.74 2.80 19.34 Terrace 3 Belbin/UW Belbin/UW 
SU50NW333 451569 103825 23.51 1.68 19.03 Terrace 3 Belbin/UW Belbin/UW 
SU50NW334 451500 103840 24.10 3.20 19.20 Terrace 3 Belbin/UW Belbin/UW 
SU50NW335 451485 103844 22.90 5.80 16.90 Terrace 3 Belbin/UW Belbin/UW 
SU50NW336 449340 106030 22.27 5.20 16.77 Terrace 3 Belbin/UW Belbin/UW 
SU50NW343 449320 105711 22.00 1.40 18.60 Terrace 3 Mott./LW Belbin/UW 
SU50SW16 449304 105434 11.55 2.10 8.25 Terrace 3 Mott./LW Hamble 

SU50SW21 449684 106073 13.40 2.10 10.90 Terrace 2 Hamble Mott./LW 
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Method and 

Reference Easting Northing 

Ground  

level  

(m OD) 

Gravel  

thickness 

(m) 

Bedrock  

height 

(m OD) 

Terrace  

E. & F.  

(1987) 

Terrace  

Harding et al. 

(2012) 

Revised  

terrace 

scheme 

SU50SW23 449810 105821 8.40 1.95 6.20 Terrace 2 Hamble Hamble 

SU50SW26 449933 105591 13.00 5.00 8.00 Terrace 2 Hamble Mott./LW 

SU50SW27 451935 104101 10.67 4.27 5.49 Terrace 2 Hamble Hamble 

 

5. Ground penetrating radar at Warsash, Chilling Copse and Solent Breezes 

 

GPR surveys were carried out along Newtown Road and Church Road in Warsash 

itself and between Solent Breezes and Chilling Copse to the south-east of the town 

(Figure 2). Both areas contained the Hamble and Mottisfont/Lower Warsash terraces. 

Representative synthetic borehole (SBH) logs were derived from the GPR data for the 

three locations (Table 2). 

 

The GPR transect at Newtown Road (SU 4934 0603) (Figure 4; Table 2) shows two 

bluff features in the ground level with corresponding breaks of slope in the bedrock. 

Surface height along the first 310 m of the transect is at around 16 m OD, with the 

bedrock surface at around 12.9 m OD. From around 350 m to 600 m along the 

transect ground level is around 14.3 m OD with bedrock between 10 and 11 m OD. At 

600 m the last break in profile sees ground level at 12 m OD with bedrock at 7.7 m 

OD. Ground level then drops into a stream valley from 825 m along the transect.    

 

The topography of the second transect at Church Road (SU 4968 0607), east of 

Newtown Road, shows a similar profile for the first 600 m, with a single gentle break 

of slope at around 250 m (Figure 5; Table 2). Ground level differed by less than two 

metres (16.62 m to 14.95 m OD) over a consistent gradient along the length of the 

transect, while the corresponding bedrock surface ranges from 12.79 m to 8.75 m OD. 

The second break of bedrock profile present at Newtown Road is not seen at Church 

Road; rather there appears to be a gently sloping bedrock surface towards the front 

edge of the Mottisfont/Lower Warsash Terrace. The breaks in profile seen at 

Newtown Road are however comparable to those seen in the Hamble and 

Mottisfont/Lower Warsash Terrace borehole logs at Warsash (see Figure 7 below). 

 

A further GPR survey was carried out in the area between Chilling Copse (SU 5176 

0420) and Solent Breezes (Figure 2), both to locate the transition between the 

Mottisfont/Lower Warsash and Hamble Terraces and also to provide a larger dataset 

of the Hamble Terrace bedrock topography and terrace thickness. Eight transects (A-

H) were carried out. A similar profile was seen in each transect, lines D and E are 

representative of the profile produced from the Mottisfont/Lower Warsash Terrace to 

the Hamble Terrace (Figure 6; Table 2). 
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Figure 4. North to south GPR trace output of Newtown Road with interpretation of bedrock contact 

(top). Bottom image is a profile of the GPR transect with synthetic boreholes NTRD SBH 1, 2 and 3 

locations.  

 

 
Figure 5. North to south GPR trace output of Church Road with interpretation of bedrock contact (top). 

Bottom image is a profile of the GPR transect with synthetic boreholes CHRD SBH 1, 2 and 3 

locations.   
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Figure 6. Northeast to southwest GPR trace outputs of Chilling Copse Lines D and E with 

interpretation of bedrock contact (top). Bottom image is a profile of the GPR transect with synthetic 

boreholes CHC SBH 4 and 5 locations and heights shown.  

 

6. The terrace stratigraphy of the Warsash region 

 

The integration of the new data from fieldwork around Warsash with existing 

borehole data (Figure 7, section A-A’; Hatch 2011) indicates that the current terrace 

classification is incorrect (Figure 7b) and that more than one terrace level is present in 

the area assigned to the Mottisfont/Lower Warsash Terrace (Figure 7c). To the north 

of Warsash, a series of fourteen boreholes (SU50NW323 to 329, 331 to 336 and 343) 

form a previously unrecognised higher terrace level and are reassigned to the 

Belbin/Upper Warsash Terrace (Tables 2 and 9; Figure 7c). The GPR survey at 

Church Road (CHRD SBH 3) revealed a continuation of the Mottisfont/Lower 

Warsash Terrace where Edwards and Freshney (1987) place the transition to the 

Hamble Terrace (Figure 7a). Boreholes SU50SW21 and SU50SW26 similarly show 

the Mottisfont/Lower Warsash and Hamble Terrace transition to be slightly further 

south-west, supported by GPR results at Chilling Copse. These re-attributions affect 

the area to the south/south-west of Warsash Common previously assigned to the 

Hamble Terrace. Here ground level is at ~15 m and, in light of the changes to the 

Mottisfont/Lower Warsash Terrace discussed above, these outcrops are reassigned to 

the Mottisfont/Lower Warsash Terrace (Figure 7a). 

 

A further borehole record located in the Mottisfont/Lower Warsash Terrace as 

previously mapped required reassessment of its terrace attribution. Borehole 

SU50NW214 (Tables 2 and 9) is one of four logs from the north and east of Warsash 

that indicate a previously unmapped extension of the spread of the Ganger 

Wood/Mallards Moor Terrace in the area. SU50NW214 projects to a higher level than 

the Warsash boreholes reassigned to the Belbin/Upper Warsash Terrace in the 

locality, and is interpreted as representing the front edge of the terrace seen in 

boreholes SU50NW177, 178 and 186. SU50NW214 is reassigned from the 

Mottisfont/Lower Warsash Terrace to the Ganger Wood/Mallards Moor Terrace to 
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reflect this terrace level, with corresponding adjustments made to the mapped extent 

of the Ganger Wood/Mallards Moor Terrace (see Figures 7 and 12). 

 

The fieldwork and borehole data indicates that the Hamble, Mottisfont/Lower 

Warsash, Belbin/Upper Warsash and Ganger Wood/Mallards Moor Terraces can be 

identified in an area previously mapped as the Mottisfont/Lower Warsash Terrace 

(Table 2). Depth to bedrock under the Ganger Wood/Mallards Moor Terrace is at 

~30.0 m with ground level at ~33.3 m OD. Bedrock contact under the re-assigned 

Belbin/Upper Warsash Terrace at Warsash averages ~18.3 m with ground level at 

~22.3 m OD. The bedrock contact height below the revised Mottisfont/Lower 

Warsash Terrace averages ~11.2 m with ground level at ~15.4 m OD and the bedrock 

contact below the revised Hamble Terrace is at average ~6.6 m with ground level 

~10.1 m OD. The relationship of the revised terrace stratigraphy at Warsash to the 

Test terraces as a whole is discussed further below. 
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Figure 7. Section profiles of the borehole and fieldwork record at Warsash (after Hatch 2011). a) 

Location map with the revised terrace attributions of this study in dashed lines (cf. figure 2); b) as 

plotted in section (A – A´) with original terrace attributions; c) The same section plotted at fixed 

distances, shown with revised attributions.  
 

7. Luminescence dating at Hamble Park, Warsash Common and Brownwich 

Lane: Results and discussion 
 

The primary aim of the geochronological element to this study was to produce 

chronological tie-points for key terraces of the Warsash sequence. Specific 

geochronological objectives for the study were i) to establish the age of the 

archaeologically important Mottisfont/Lower Warsash Terrace, a key terrace lacking 
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chronological data, ii) to strengthen the age attribution of the Hamble Terrace. A 

further element was iii) that these would enable comparison with other parts of the 

Test sequence, notably Dunbridge, and with the main Solent River. Such correlations 

further contextualise the archaeological signal of the region. 

 

7.1 Sample context  

 

Figure 8 shows details of the sedimentary logs recorded at the sample locations 

HAP10-02, HAP10-03, WAC10-03 and BRW08-02. It provides the sedimentological 

context for the interpretation of Des and issues encountered with dose rate 

determination (see below). Table 3 provides a summary of sedimentary information at 

luminescence sample locations.  

 

 
Figure 8. Sedimentary logs of luminescence sample locations HAP10-02Qz, HAP10-03Qz, WAC10-

03Fs and BRW08-02Qz. Sample location altitude (m O.D.) in italics. The 60 cm field around each 

sample location which may contribute to the dose rate is indicated.   

 
Table 3. Summary of sedimentary information at luminescence sample locations. 

 Sample 

 HAP10-02Qz HAP10-03Qz BRW08-02Qz WAC10-03Fs 

Sample depth below 

ground surface 

2.21 m 2.36 m 1.60 m 3.01 m 

Sample bed 

sediment 

Medium sand, some 

Fe staining, slightly 

gravelly in right of 

bed; some 

horizontal bedding 

Fine sand, with 

slightly clayey grey 

band and patches; 

some Fe staining; 

sub-parallel bedding 

aligned with lower 

boundary 

Sand. Medium 

grained; planar 

cross-stratified; 

yellow; pebbly in 

places (to left of 

section) 

Sand, medium to 

coarse; some 

horizontal bedding; 

some Fe staining 

Unit thickness 

 

0.55 m 0.36 m 0.25 m 0.17 m 

Overlying 

sediments 

Sandy fine to coarse 

gravel with 

occasional cobbles; 

medium matrix; 

some crude 

horizontal bedding 

Medium sand, some 

Fe staining, slightly 

gravelly in right of 

bed; some 

horizontal bedding 

Sand. Fine grained 

ripples in places 

Sandy, very fine to 

coarse gravel; 

medium to coarse 

matrix; some crude 

horizontal bedding 

Underlying 

sediments 

Fine sand, with 

slightly clayey grey 

band and patches; 

some Fe staining; 

sub-parallel bedding 

aligned with lower 

boundary 

Sandy fine to coarse 

gravel with 

occasional cobbles; 

compact; ; 

horizontally bedded; 

Fe pan layer 5 to 10 

cm from top of 

strata; Fe stained 

Gravel. Crude sub-

horizontal bedding; 

flint, medium to 

coarse 

Sandy, very fine to 

medium gravel; 

fining upwards; 

horizontally bedded 

Sample depth to 

bedrock 

2.59 m 2.44 m 1.72 m 1.99 m 

Bedrock Clay, slightly silty Clay, slightly silty Sand Clay, slightly silty 
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7.2 Test procedures 

 

Section 2 critiqued previously published OSL dates for the Solent region. The studies 

reviewed there did not carry out performance tests on the reported samples to the 

degree conducted in this study, and that have become customary in recent 

luminescence studies (section 3.4.2; Wintle and Murray 2006). Therefore, these 

previous Solent studies would not have detected the issues that arose here which 

caused so many samples and aliquots to be rejected. The objective of the tests 

conducted here was to ascertain whether the SAR protocol was applicable to each 

individual sample and to find the most suitable preheat temperature that could be 

applied in the SAR protocol. The outcome of the testing procedure resulted in the 

rejection of more than half of the samples processed. This was entirely due to those 

samples not fulfilling any of the tests applied, for example being unable to recover 

known doses with no apparent systematic over- or underestimation of given doses, or 

show a lack of sensitivity changes to increases in preheat.  

 

Four of the ten samples from Brownwich Lane, Hamble Park and Warsash Common 

(BRW08-02Qz, HAP10-02Qz, HAP10-03Qz and WAC10-03Fs) passed all three tests 

and were deemed suitable for the application of the SAR protocol in order to calculate 

luminescence ages (Table 4). The dose recovery tests showed robust SAR behaviour 

in only 50% of cases, as five of the ten samples failed to recover the given dose 

accurately. This is very low compared to most other studies, even in more problematic 

glaciofluvial settings (e.g. Klasen et al. 2006). The remaining samples showed a 

varied response to the dose recovery test, indicating accurate recovery at some 

temperature ranges but not others. More than half the samples failed to produce clear 

plateaux in preheat temperatures during the preheat tests. The majority of samples 

performed well in the thermal transfer tests, showing no increase in apparent 

palaeodose as the applied preheat temperature increased, demonstrating that thermal 

transfer is the only problem sometimes experienced elsewhere (e.g. Rhodes, 2000) 

that is not a problem in the samples reported here. However, some samples showed a 

signal transfer from light-insensitive (but heat-sensitive) to light-sensitive traps. 

Samples HAP10-02Qz and WAC10-03Fs indicated minor thermal transfer at and 

above specific temperatures which informed the preheat temperature chosen for the 

SAR protocol (270C and 230C, respectively). 

 
Table 4. Results of the test procedures applied to samples in the study. The Dose Recovery Test (DRT) 

indicates preheat temperatures in the test SAR applied that resulted in accurate recovery of a given 

dose (preheat range 230° – 310° C); The Preheat Test (PHT) indicates the thermal pre-treatment that 

removes the unstable signal component in an artificially induced signal; The Thermal Transfer Test 

(TTT) detects thermal transfer of electrons from light-insensitive to light-sensitive traps. The final 

column indicates the suitability of a sample for age calculation and the appropriate preheat temperature 

to be used in the SAR protocol for that sample.  

Sample code DRT (C) PHT (C) TTT Status 

HAP10-02Fs None None Increasing with PHT Unsuitable 

HAP10-02Qz 270 C 270 C Some thermal transfer at 290 C Measure at 270 C 

HAP10-03Fs 250, 270 C None Increasing with PHT Unsuitable 

HAP10-03Qz 270 C 270 C No thermal transfer Measure at 270 C 

WAC10-03Fs 230-290 C 230-250 C Some thermal transfer 

increasing with PHT 
Measure at 230 C 

WAC10-03Qz None None No thermal transfer Unsuitable 

BRW08-02Fs None None Some thermal transfer at 290 C Unsuitable 

BRW08-02Qz 270, 290 C 270-290 C No thermal transfer Measure at 270 C 



 22 

Sample code DRT (C) PHT (C) TTT Status 

BRW08-03Fs None None No thermal transfer Unsuitable 

BRW08-03Qz 230 C (weak) None No thermal transfer Unsuitable 

 

For each of the samples that passed these tests, aliquots were then screened for 

recycling and recuperation to check for good correction of sensitivity change and the 

amount of thermally transferred signal induced by the preheat stage of the SAR 

sequence after the application of a zero Gy regenerative dose. Table 5 shows the 

performance of the quartz samples HAP10-02, HAP10-03 and BRW08-02 are 

generally good, with mean recycling ratios of 1.02, 1.01 and 0.99 respectively 

showing reliable performance of the SAR. Recuperation, expressed as mean thermal 

transfer, is present but minimal (1.09 to 1.98%), well within the 5% maximum value 

of the natural signal put forward by Murray and Wintle (2000). The feldspar sample 

WAC10-03 similarly indicates reasonable recycling but with more thermal transfer 

present. Recycling ratios of 0.97 for the sample is well within the suggested limit of 

±10% (Murray and Wintle 2000). The general good performance of the luminescence 

properties of the samples that were taken forward for dating indicates that the test 

procedures applied successfully isolated the well-behaved parts of the samples. The 

final column of Table 5 shows the number of aliquots rejected during the application 

of the SAR protocol as discussed in section 7.3.  

 
Table 5. Summary of the luminescence characteristics of samples. 

Field Code 

Sequence 

number 

Mean 

recycling ratio 

Mean thermal 

transfer (%) 

Rejected aliquots 

(%) 

HAP10-02Qz 0006 1.01 ± 0.08 1.09 ± 0.91 34/48 (70.83) 

HAP10-03Qz 0008 0.99 ± 0.07 1.98 ± 2.18 25/48 (52.08) 

BRW08-02Qz 0010 1.02 ± 0.07 1.42 ± 1.08 32/48 (66.67) 

WAC10-03Fs 0028 0.97 ± 0.07 4.08 ± 2.25 12/24 (50.00) 

 

7.3 De determination 

 

The performance of each aliquot measured was assessed relative to a number of 

criteria before they could be considered to contribute to the determination of a 

sample’s De (Table 6). Firstly aliquots which produced a recycling ratio of greater 

than ±15% were rejected, with 65% (110 of 168) meeting the criteria for acceptance. 

The ±15% cut off point exceeds that of ±10% suggested by Murray and Wintle 

(2000). However, as there was found to be no correlation between the De and the 

recycling ratios of aliquots in each sample, a higher recycling ratio cut off point does 

not introduce any systemic bias. It was therefore considered reasonable to use a higher 

recycling ratio cut-off point. It was also deemed reasonable to increase the threshold 

due to the large amount of rejected samples due to poor performance generally 

encountered during this study. Overall 51 of the 65 aliquots (78%) used in the final 

age calculations (below) met the ±10% threshold. The remaining 14 aliquots were in 

the ±15% range. 

 

Curve fitting was carried out using exponential or exponential and linear fits, with 

preference given to the method which produced the lower average error in the fit. 

Curve fitting was generally unproblematic, with only 11 of 110 aliquots (10%) that 

passed the recycling ratio criteria rejected on the criterion of producing a viable 

regeneration curve. Issues primarily related to apparent saturation of electron traps 

within grains, where the latent luminescence signal reached the point of filling all 
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available traps over time, in effect ceasing accumulation of a signal and therefore not 

recording depositional time. This assessment was done visually, i.e. by assuming that 

any asymmetric, supralinear components of the growth curve resembled samples in 

saturation rather than assessing 2D0-values mathematically (cf. Lowick et al. 2015). 

 

As a final measure of the success of the SAR protocol to determine the De of a 

sample, the response of each aliquot to a fixed test dose (T) was examined. This 

response shows sensitivity changes that may have been present during the 

measurement of the main luminescence signal (L) within a regenerative dose 

procedure such as the SAR protocol. Studies have shown that sensitivity changes can 

reach a factor of two when sedimentary grains are heated (Wintle and Murray 2000). 

To reduce the possible impact of sensitivity change an arbitrary limit of ±50% was 

employed, with aliquots showing more than 50% change being rejected. Under this 

criterion 65 of the remaining 99 aliquots (65.6%) were accepted. The cumulative 

effect of the performance criteria applied to aliquots resulted in a pass rate of 38.7% 

(65 of 168). This outcome calls into question the results of luminescence dating 

procedures which rely on small numbers of aliquots and/or do not apply rigorous test 

protocols. 

 

It was hoped that the samples processed would each yield, after the three test stages 

applied, a minimum of 24 aliquots suitable for producing luminescence ages for each 

sample. This did not occur. Table 6 details the success rate of aliquots during the SAR 

protocol in regard to their recycling ratio, curve fitting and sensitivity correction. This 

highlights the poor performance of samples taken from the Test Valley, which is out 

of line with luminescence studies in other regions where a similarly rigorous testing 

programme has been carried out (e.g. Wallinga 2002). Figure 9 shows the distribution 

of Des from the accepted aliquots which were deemed to have passed the SAR-

performance tests.  

 
Table 6. Number (and percentage) of aliquots which passed an assessment of the recycling test, 

curve fitting and sensitivity change within a regenerative cycle test for each sample.   

Sample code 

Total 

aliquots 

measured 

Passed 

recycling 

test 

% of 

total 

aliquots 

Passed  

curve 

fitting 

% of 

total 

aliquots 

Passed 

sensitivity 

correction/ 

Final 

sample size 

% of 

total 

aliquots 

HAP10-02Qz 48 28 58.33 24 50.00 14 29.17 

HAP10-03Qz 48 37 77.08 32 66.67 23 47.92 

BRW08-02Qz 48 32 66.67 30 62.50 16 33.33 

WAC10-03Fs 24 13 54.17 13 54.17 12 50.00 
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Figure 9. De distribution of aliquots that passed the recycling, curve fitting and sensitivity correction 

test stages.  

 

The De distributions shown in Figure 9 display a degree of scatter. Samples BRW08-

02Qz, HAP10-02Qz and HAP10-03Qz in particular exhibit a positively-skewed 

distribution potentially indicative of incompletely-bleached samples (Preusser et al. 

2008). The expected antiquity of the sediments dated meant that partial bleaching was 

not considered to represent a significant issue; if a signal of a few thousand years did 

remain in incompletely bleached samples, the effect on the ages produced (>120 ka) 

would not be great (cf. Bailey and Arnold 2006). 

 

7.4 Age calculation and discussion 
 

The De values produced by samples BRW08-02Qz, HAP10-02Qz, HAP10-03Qz and 

WAC10-03Fs were used to produce age calculations (Table 7). Table 2 showed the 

overall good performance of the quartz samples HAP10-02, HAP10-03 and BRW08-

02, while WAC10-03Fs indicated more thermal transfer present but within the 5% 

tolerance.  
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Table 7. Summary of luminescence age calculations produced using K, U and Th concentrations 

determined by inductively-coupled-plasma mass spectrometry (ICP-MS). n = number of aliquots used. 

Water content error margin ranges used in calculations: 1 7 to zero; 2 9.5 to zero; 3 8.3 to zero. MIS 

chronology from Lisiecki and Raymo (2005). Test dose sizes: 75.40 Gy (BRW08-02Qz); 75.45 Gy 

(HAP10-02 & -03Qz) and 75.65 Gy (WAC10-03Fs). Regeneration dose sizes: 151.1, 302.2 and 453.3 Gy 

(BRW08-02Qz); 151.2, 302.4 and 453.6 Gy (HAP10-02 & -03Qz) and 151.6, 303.2 and 454.8 Gy 

(WAC10-03Fs). Preheat temperatures: Quartz samples 270°C for 10s; Feldspar samples 230°C for 10s.  

Terrace Sample ID n K (%) U (ppm) Th (ppm) 

Water 

Content 

(%) D (Gy ka-1) De (Gy)  Age (ka) MIS 

Hamble BRW08-02Qz 16 0.38 ±0.03 0.21 ± 0.01 1.18 ± 0.02 2±5 1 0.64 ± 0.06 127.94 ±8.68 200 ±22.8 7-6 

Belbin/UW HAP10-02Qz 14 1.27 ±0.03 0.76 ± 0.01 5.08 ± 0.02 6.4±5 1.75 ± 0.11 208.36 ±13.51 119 ±10.7 5e – 5d 

Belbin/UW HAP10-03Qz 23 0.28 ±0.01 0.25 ±0.002 1.62 ± 0.01 4.5±5 2 0.56 ± 0.04 127.26 ±9.79 229 ±23.7 8-7 

Belbin/UW WAC10-03Fs 12 0.67 ±0.01 0.52 ± 0.01 4.24 ±0.03 3.3±5 3 2.05 ± 0.12 114.1 ± 8.93 55 ±5.4 4-3 

 

The sand bed that yielded sample WAC10-03 (Figure 8) was notably thin at just 

17 cm, potentially leading to an underestimation of contributing external gamma 

sources from the gravels above and below (Table 3) that could include high-emitters 

such as flints or gravels eroded from zircon-rich source rocks. The beds that yielded 

BRW08-02 and HAP10-03, at 25 cm and 36 cm respectively, were also somewhat 

thinner than the 60 cm gamma field that may contribute to the received dose rate. The 

sand bed sampled for HAP10-02 reached 55 cm in thickness, and the sample location 

was targeted to minimise the inclusion of any visible clasts in the unit. 

 

The use of isotope concentration data obtained by ICP-MS is also not without 

problems. The method analyses a subsample of sediment recovered from the location 

of luminescence samples taken in a sedimentary unit. Subsamples of 30-50 g were 

sent for analysis, from which 10g was processed, with 0.1 g subsequently dissolved 

and analysed by ICP-MS. It is therefore difficult to assess how representative the 

sample analysed is in terms of the sediment body as a whole.  

 

A further complication arises from the inability of ICP-MS to differentiate between 

the different uranium decay series 238U and 235U. An assumption is often made during 

luminescence dating that the decay products of these isotopes are in equilibrium; 

however environmental conditions, particularly the movement of water through a 

sediment, can preferentially remove 238U from the 238U – 210Pb-decay chain causing 

the dose rate received by that sediment to vary over time (Olley et al. 1996). A more 

homogeneous sample (e.g. dune sand or loess) would not present the same issue, nor 

would a chemically-closed depositional environment after burial (Olley et al. 1996). 

The effect on dose rate disequilibrium will typically be <3%, however past changes to 

precipitation and ground water movement can influence that effect (Olley et al. 1996). 

Given that the sediments were deposited in a fluvial environment and probably buried 

in a near-saturated state on the floodplain until incision caused this floodplain to be 

abandoned as a terrace, the water content determined in the laboratory after sampling 

in a wind and sun-dried exposure face is an absolute minimum value to be applied. 

Water content significantly lowers the dose rate a sample receives (Preusser et al. 

2008; Lowick et al. 2012; Lukas et al. 2012); however, it is impossible to determine 

in retrospect whether this effect was pronounced enough in the present situations to 

have a notable effect, and it is merely noted that this further complication exists. Due 

to the issues reported above, it is also noted that sample WAC10-03Fs could suffer 

from anomalous fading; however, given the problems faced, no fading tests were 
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carried out as part of this study. In summary, the age calculations presented above 

should only be regarded as indicative and likely represent minimum ages. 

 

8. The terrace stratigraphy of the River Test 

 

A dataset of 280 borehole records has been used to reassess the terrace stratigraphy of 

the River Test (Table 8). This dataset, consisting of surface elevation and bedrock 

surface elevation (m OD) and sediment body thickness, has been enhanced for a 

number of key locations in the study area by 30 synthetic borehole logs generated by 

this study and a further 41 records from other work (Bates et al. 2004, 2007; Bates 

and Briant 2009; Bridgland and Harding 1987; Harding et al. 2012). Each record in 

the dataset was assigned to a terrace level as defined by the schemes of the BGS 

(Edwards and Freshney 1987; Booth 2002) and Harding et al. (2012), with alternative 

attribution by PASHCC highlighted as necessary. The resulting long profile 

projection (Figure 10) reveals considerable variation in altitudinal range of a number 

of terraces. The revised long profile projection of the terrace stratigraphies of the 

River Test, after the interrogation and integration of data presented in this paper, is 

presented in Figure 11 and removes the anomalies noted in previous mapping 

schemes (cf. Figure 10). 

 
Table 8. Distribution of the 280 borehole records from the Test Valley region used in the study. Terrace 

attributions as mapped by the BGS (Edwards and Freshney 1987; Booth 2002) and Harding et al. (2012).  

Scheme T1 T2 T2/3 T3 T4 T5 T6 T6/7 T7 T8 T9 T10 T11 T12 Total 

BGS 64 65 1 40 35 9 28 1 5 4 22 4 2 - 280 

H. et al. 62 64 - 18 54 16 28 1 5 12 - - 15 5 280 
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Figure 10. The terrace stratigraphy of the Test Valley using borehole and fieldwork data collated 

during this study. Mapping nomenclature is that of Edwards and Freshney (1987) (Southampton sheet) 

and Booth (2002) (Winchester sheet). Alternative terrace attributions of the Westaway et al. (2006) 

scheme around Warsash and in the higher Test terraces are set out in the text. Profile projected along 

N135°E with distance measured from zero at SU 31595 29000.  

   

 
Figure 11. The terrace stratigraphy of the River Test in the Test Valley region as assigned by this study. 

Suggested upstream correlation between deposits in BGS map sheets 315 (Southampton) and 299 

(Winchester) are shown as discussed in the text. Profile projected along N135°E with distance 

measured from zero at SU 31595 29000. 

  

Figure 12 shows the location of reassigned logs, around Warsash as discussed above 

and in the wider Test as discussed below, and the corresponding terrace mapping 

revisions that resulted. Data records that have been reassigned are numbered as in 

Table 9.  
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Figure 12. Mapping of the terrace stratigraphy of the River Test in the Test Valley region as reassigned 

by this study. Numbers show locations of borehole records and fieldwork data reassigned as in Table 9 

and discussed in the text. Dashed lines show extent of mapping alterations. The fragmentary deposits of 

the higher terraces are labelled: Bi: Bitterne; M/RF: Midanbury/Rownham’s Farm; CH: Castle Hill; 

TH/NH: Toot Hill/Netley Hill; LL/WE: Lordswood Lane/West End differentiated by dotted lines. 

 
Table 9. Adjustments made to terrace correlations and borehole data points in the Test Valley region 

record. Columns 3, 4 and 5 show the mapping schemes of Edwards and Freshney (1987)/Booth (2002), 

Westaway et al. (2006)/Harding et al. (2012) and PASHCC (Bates et al. 2004, 2007; Bates and Briant 

2009; Briant et al. 2012) respectively. Columns 6 and 7 show the revised attribution and rationale. 

  Previous mapping   

Fig. 

Note Reference BGS 

Harding  

et al. PASHCC 

Revised 

terrace Rationale 

1 SU40NW86 & 87 Terrace 2 Hamble Terrace 2 Broadlands 

Farm 

Altitudinally more consistent 

with B. Farm in the locality 

2  SU50SW21 & 26; 

CHRD SBH3 

Terrace 2 Hamble Terrace 2 Mottisfont/ 

L. Warsash 

Altitudinally more consistent 

with Mott./LW in the locality 

3 SU50SW16 Terrace 3 Mottisfont/ 

L. Warsash 

Terrace 3 Hamble Altitudinally more consistent 

with Hamble in the locality 

4 North Warsash 

boreholes (see 

text) 

Terrace 3 Belbin/ 

U. Warsash 

Terrace 3 Belbin/ 

U. Warsash 

Long profile shows two 

terraces at Warsash; mapped 

as Terrace 3 by the BGS 

5 SU50NW214 Terrace 3 Belbin/ 

U. Warsash 

Terrace 3 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality  

6 SU31SE263, 264, 

346, 347, 348 and 

349 

Terrace 6 Nursling Terrace 6 Belbin/ 

U. Warsash 

Altitudinally more consistent 

with Belbin/U. Warsash in the 

locality  

7 SU31NE371D, E 

and G 

Terrace 4 Belbin/ 

U. Warsash 

Terrace 4 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality  
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8 SU50NW467, 

469, 470 and 471 

Terrace 5 G. Wood/ 

M. Moor 

Terrace 5 Nursling Altitudinally more consistent 

with Nursling in the locality  

9 SU41SW476 & 

477 

Terrace 6 Nursling Terrace 6 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality. 

10 SU50NW177 & 

178 

Terrace 6 Nursling Terrace 6 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality; 

could be edge of terrace 

11 SU50NW186 Terrace 6 Nursling Terrace 6 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality 

12 SU50NW353 Terrace 6 Nursling Terrace 6 Bitterne Altitudinally more consistent 

with Bitterne in the locality. 

13 SU41SE301, 303, 

306, 317, 322, 

324, 368-69, 371 

Terrace 9 Toot Hill/ 

Netley Hill 

Terrace 9 Toot Hill/ 

Netley Hill 

Altitudinally more consistent 

with Toot Hill/ Netley Hill 

14 Dunbridge area 

(see text) 

Terrace 

2/3 

Mottisfont/ 

L. Warsash 

Belbin/ 

U. Warsash 

Terrace 4 

 

Terrace 5 

Mottisfont/ 

L. Warsash 

Belbin/ 

U. Warsash 

Altitudinally discernable into 

M/LW and B/UW; fits revised 

long profile projection of Test 

terraces 

15 SU32 SE96, 98 

 

Terrace 4 Belbin/ 

U. Warsash 

Terrace 4 G. Wood/ 

M. Moor 

Altitudinally more consistent 

with GW/MM in the locality. 

16 GTC03 TP1, 2, 3, 

4 

Terrace 4 Not 

specified 

Terrace 7 Nursling Altitudinally more consistent 

with Nursling in the locality. 

17 YTC03 TP1 

YTC03 TP4 

Terrace 4 

Terrace 

5/6 

Bitterne Terrace 7 

Terrace 8 

Bitterne Altitudinally more consistent 

with Bitterne in the locality. 

18 SPW03 TP1, 2, 3, 

4 

Terrace 

5/6 

Midanbury/ 

R. Farm 

Terrace 8 Midanbury/ 

R. Farm 

Altitudinally more consistent 

with M/R.F in the locality. 

 

In order to tackle the mapping issues in the region, areas of agreed attribution of 

terrace extent were used to provide a foundation for re-interpretation. The Broadlands 

Farm Terrace of the Test consists of extensive fluvial landforms and sediments that 

form a coherent, identifiable terrace body. The Hamble Terrace also survives in 

extensive spreads of fluvial gravels at the downstream end of the course of the Test, 

and projects upstream at a higher level than the Broadlands Farm Terrace. As such the 

Broadlands Farm and Hamble Terraces formed the foundation for constructing the 

remainder of the Test terrace sequence. 

 

The extent of the Broadlands Farm Terrace as assessed by this study remains largely 

unchanged from previous schemes, possibly with an additional recognition of the 

terrace at Fawley. Borehole records show two possible terrace levels (Hamble and 

Broadlands Farm) with a degraded surface between them, making it difficult to 

attribute the location of the bluff or transition between the two levels. Examining the 

long profile projection downstream from the Broadlands Farm Terrace (Figure 11) 

appears to support a Broadlands Farm Terrace attribution for the lower gravels at 

Fawley on altitudinal grounds, which would extend the extent of the terrace in the 

area (Figure 12; Table 9, note 1). The extent of the Hamble Terrace as assessed by 

this study similarly remained largely unchanged to previous schemes, with only minor 

adjustments necessary.  

 

The upstream extent of the Mottisfont/Lower Warsash Terrace in BGS sheet 315 is 

unchanged, while at its downstream end around Warsash the Hamble, Belbin/Upper 

Warsash and Ganger Wood/Mallards Moor Terraces are recognised in deposits 

previously mapped as the Mottisfont/Lower Warsash Terrace as described above 

(Figure 12; Table 9, notes 2, 3, 4 and 5). The upstream projection of the Lower 
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Warsash Terrace into the Winchester map sheet (299) is consistent with correlation 

with the lower terrace level at Dunbridge, the Mottisfont terrace of Harding et al. 

(2012). This interpretation contrasts with the PASHCC scheme correlation of Terrace 

3 in BGS sheet 315 with Terrace 4 in sheet 299 (see Table 1). 

 

Boreholes in the Nursling Terrace at Southampton General Hospital record bedrock 

altitude more consistent with the Belbin/Upper Warsash Terrace locally and in long 

profile (Figure 12; Table 9, note 6). The mapping of the Belbin/Upper Warsash 

Terrace here is extended further northeast to incorporate this data. The Belbin/Upper 

Warsash Terrace shows variation in bedrock height and gravel thickness around 

Nursling (just upstream of Southampton) suggesting that the Ganger Wood/Mallards 

Moor Terrace is present (Figure 12; Table 9, note 7). Boreholes SU31NE371D, E and 

G more easily project downstream to the Ganger Wood/Mallards Moor Terrace and 

are reassigned accordingly. The upstream projection of the Upper Warsash Terrace 

into the Winchester map sheet (299) is consistent with correlation with the higher 

terrace level at Dunbridge, the Belbin terrace of Harding et al. (2012). This 

interpretation contrasts with the PASHCC scheme, which correlates Terrace 4 (sheet 

315) with Terrace 5 (sheet 299) (see Table 1). 

 

The Ganger Wood/Mallards Moor Terrace is extended between the Belbin/Upper 

Warsash Terrace and Nursling Terrace north of Warsash as discussed above. 

Elsewhere, minor adjustments to the extent of the Ganger Wood/Mallards Moor 

Terrace are made at Titchfield Park (Figure 12; Table 9, note 8), Westwood Park 

(Figure 12; Table 9, note 9) and Locks Heath (Figure 12; Table 9, notes 10 and 11). 

The upstream projection of the Ganger Wood/Mallards Moor Terrace into the 

Winchester BGS map sheet incorporates two boreholes at Abbotswood, mapped as 

the Belbin/Upper Warsash Terrace but immediately north of a spread of the Ganger 

Wood/Mallards Moor Terrace. These boreholes are reassigned to Ganger 

Wood/Mallards Moor here (Figure 12; Table 9, note 15). The Ganger Wood/Mallards 

Moor Terrace then seems to project further upstream above the higher terrace level at 

Dunbridge (interpreted here as Belbin/Upper Warsash) but below the next highest 

terrace level recorded at Great Copse to the north. The Ganger Wood/Mallards Moor 

Terrace therefore appears to be absent from the northern extent of the Test long 

profile projection. The reach of the Nursling Terrace in the sequence remains as 

previously mapped. A number of re-attributions downstream refine the lateral extent 

of the terrace however, such as at Southampton General Hospital mentioned above, 

reducing the apparent elevation discrepancies seen in long profile projection (Figure 

10). The upstream projection of the Nursling Terrace into the Winchester BGS map 

sheet is consistent with correlation with PASHCC test pits GTC03 TP1 to 4, 

previously mapped (Booth 2002) as Terrace 4 (Figure 12; Table 9, note 16).  

 

The Bitterne to Lordswood Lane/West End Terraces are poorly represented in the 

borehole archive. The only available data upstream in BGS sheet 299 (Winchester) 

are six PASHCC logs. Apart from the adjustments mentioned above, the remainder of 

the sequence remains largely as originally attributed by BGS mapping. The 

exceptions are a minor extension to the Bitterne Terrace (Figure 12; Table 9, note 12) 

and a group of boreholes that are mapped as the Castle Hill Terrace. When plotted in 

the Test long profile the latter group project to a level above Terrace 9 further 

upstream, indicating that at least the northeast portion of the terrace body in which 

they are located is more likely attributable to the Toot Hill/Netley Hill Terrace (Figure 
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12; Table 9, note 13). Generally the limited number of borehole records available 

does not provide enough detail to be sure of the attribution of the Bitterne to 

Lordswood Lane/West End Terraces; instead they indicate plausible height ranges and 

correlations only. The upstream projection of the Bitterne Terrace into the Winchester 

BGS map sheet seems consistent with correlation with PASHCC test pits YTC03 TP1 

and 4, previously mapped (Booth 2002) as Terrace 4 (TP1) and 5/6 (TP 4) (Figure 12; 

Table 9, note 17). The Midanbury/Rownham’s Farm Terrace projects upstream to 

PASHCC test pits SPW03 TP1 to 4, also previously mapped (Booth 2002) as Terrace 

5/6 (Figure 12; Table 9, note 18). However these correlations can be stated with less 

confidence than with those of the lower terraces in the Test sequence.  

 

9. Discussion 
 

9.1 The stratigraphy and chronology of the Pleistocene sediments at Warsash 
 

The terrace stratigraphy of the River Test at Warsash has been reassessed as described 

above, with revised attributions to the Hamble, Mottisfont/Lower Warsash, 

Belbin/Upper Warsash and Ganger Wood/Mallards Farm Terraces in the area (Figures 

8 and 11). The new stratigraphic detail has provided a more robust framework for the 

spatial and temporal distribution of the Palaeolithic record. These changes are 

significant for understanding the characteristics of the archaeology of the Warsash 

region as discussed in section 9.2. The revisions have also allowed a broader 

reassessment of the Palaeolithic archaeology of Warsash and its place in the Lower-

Middle Pleistocene settlement history of southern Britain (Davis et al. 2016).  

 

Two of the luminescence ages produced here are consistent with previous age 

determinations and stratigraphy. Samples HAP10-03Qz (Mottisfont/Lower Warsash 

Terrace) and BRW08-02Qz (Hamble Terrace) are stratigraphically consistent, 

although uncertainties overlap. BRW08-02Qz is comparable to the youngest age 

already reported for the Hamble Terrace in the Test region of 203 ±17.7 ka (MIS 7c-

6) (Bates et al. 2004), although one of the Mottisfont/Lower Warsash Terrace age 

calculations (HAP10-03Qz) also falls within the PASHCC study’s range of MIS 8-6 

for the Hamble Terrace (with a weighted mean of 217 ±22 ka (MIS 7)). BRW08-

02Qz and the PASHCC results indicate a MIS 7 age for the deposition of the Hamble 

Terrace. The age estimate for HAP10-03Qz is comparable to the attribution of MIS 9-

8 for the Mottisfont terrace at Dunbridge, based on OSL-dates (Harding et al. 2012). 

The Mottisfont Terrace appears correlative to the Lower Warsash Terrace based on 

luminescence dating and the long profile presented above (Figure 11). The results 

produced here suggest aggradation of the Mottisfont/Lower Warsash Terrace during 

MIS 8 followed by the Hamble Terrace during MIS 7. An age estimate of MIS 8 for 

the aggradation of the Mottisfont/Lower Warsash Terrace may suggest that the 

Warsash handaxe assemblage derives from MIS 9 or earlier. It is noted that further 

dating studies are required to address the methodological issues identified above; 

therefore, any correlations attempted here are tentative and have to be treated with 

caution.  

 

Finally, the quartz sample HAP10-02Qz and feldspar sample WAC10-03Fs both 

appear too young. Both derive from the same fluvial terrace as HAP10-03Qz, located 

in neighbouring gravel pits at Warsash at similar altitude, yet HAP10-02Qz produced 

an indicative age of 119 ±10.7 ka (MIS 5e-5d) and WAC10-03Fs an age of 55 ±5.4 ka 
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(MIS 4-3). This may be due to inhomogeneity of samples not detected by ICP-MS 

analysis or other problems that are inherent in the bedrock geology of the catchment. 

The dose rates calculated for HAP10-02Qz and WAC10-03Fs are higher than those 

calculated in the PASCHH studies (Schwenninger et al. 2006, 2007), which reported 

rates of 0.81-1.19 (Gy ka-1) for the majority (10) of Test samples; they are also around 

3 to 4 times those of BRW08-02Qz and HAP10-03Qz (Table 7). The PASCHH 

project did produce two samples with higher rates of 1.61 and 2.31 (Gy ka-1), 

comparable to those for samples HAP10-02Qz and WAC10-03Fs, but these were 

based on Neutron Activation Analysis (NAA) rather than in situ gamma spectrometry. 

For sample HAP10-02Qz, applying a dose rate towards the lower range measured by 

PASHCC (~0.81-0.90 Gy ka-1) would produce an age estimate similar to HAP10-

03Qz of around 230-250 ka. For sample WAC10-03Fs a lower dose rate of ~0.45-

0.50 Gy ka-1 would be required.   

 

Each of the three recent attempts to date terraces in the Test sequence, PASHCC, 

Harding et al. (2012) and this study, have encountered issues with the results 

obtained. This study acquired likely minimum ages of 229 ±23.7 (MIS 8-7) for the 

Mottisfont/Lower Warsash Terrace and 200 ±22.8 (MIS 7-6) for the Hamble Terrace, 

comparable with results from the PASHCC project. Two rejected ages appear to have 

unrealistically high dose rates. The PASHCC ages are acknowledged to be 

problematic above the lowest terraces sampled (Bates and Briant 2009; Briant et al. 

2012), In calculating the slightly later attribution of MIS 9-8 for the Mottisfont/Lower 

Warsash Terrace at Dunbridge, Harding et al. (2012) excluded four ages ranging from 

456 ±101 ka to 393 ±62 ka as being unreliable. The remaining four ages ranged from 

335 ±45 ka to 262 ±43 ka (MIS 11-7) and were not stratigraphically consistent. The 

methods applied here indicate a high rejection rate of samples and aliquots within 

samples which would not have been detected in the PASHCC and Harding et al. 

(2012) studies. Further work is needed to investigate why so many problems have 

been encountered in attempts to use luminescence dating in the Test Valley.   

 

Understanding the chronology of the Test sequence remains problematic above the 

Mottisfont/Lower Warsash Terrace. Previous work by Bates et al. (2004; cf. 

Westaway et al. 2006) has proposed a correlation between the Nursling Terrace of the 

River Test and a cold-stage before or after the MIS 13 Goodwood/Slindon Raised 

Beach (Roberts and Parfitt 1999) (i.e. MIS 14 or 12). In such a scenario it is likely 

that at least the Bitterne Terrace and above of the Test sequence were deposited prior 

to MIS 13. More chronological tie-points above the Mottisfont/Lower Warsash 

Terrace are required to construct a robust stratigraphic sequence for the Test. 

 

9.2 Implications for the terrace stratigraphy and Palaeolithic archaeology of the 

River Test 
 

The terrace stratigraphy of the River Test has been reassessed as described above, 

with revised correlations of terrace levels between BGS sheets 299 (Winchester) and 

315 (Southampton) (Figure 11). The results suggest agreement with the correlation of 

Lower and Upper Terraces at Warsash with the Mottisfont and Belbin Terraces 

upstream as per Harding et al. (2012) (cf. the PASHCC model). The Hamble and 

Ganger Wood/Mallards Moor Terraces downstream are not recognised in the 

Dunbridge area. Correlations have also been proposed for the Nursling, Bitterne and 
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Midanbury/Rownham’s Farm Terraces while recognising that the latter two terraces 

are poorly represented in the dataset.  

 

Table 10 shows the revision of terrace attribution for some significant Palaeolithic 

archaeological sites located at Warsash, Dunbridge and elsewhere in the Test region. 

The revisions proposed by this study have a number of implications for the 

understanding and interpretation of the archaeological record. Two implications in 

particularly are of consequence: the relationship of terraces of the River Test upstream 

at Dunbridge and downstream at Warsash; and the terrace attributions of individual 

assemblages in the Warsash area. 

 

The earliest archaeological evidence in the Test region, and potentially the Solent 

region as a whole, is the three handaxes found at Towns Pit, Southampton Common 

(Davis 2015; Table 10), which retains its attribution to the Midanbury/Rownham’s 

Farm Terrace here. The upstream correlation of River Test terraces between the 

Southampton BGS map sheet and the Winchester sheet favoured here results in a 

reattribution of the Great Copse, Mottisfont artefacts (Table 10) from the Bitterne 

Terrace (Terrace 7 of PASHCC) to the Nursling Terrace. Two major sites at Romsey 

remain in the Belbin/Upper Warsash Terrace in the revised terrace scheme (Table 10). 

The important sites at Dunbridge and Kimbridge are attributed to Belbin/Upper 

Warsash and Mottisfont/Lower Warsash respectively (Table 10), and downstream 

sites at Warsash remain in the Mottisfont/Lower Warsash and Hamble Terraces 

(Table 10) as in previous schemes (Edwards and Freshney 1987; Westaway et al. 

2006).  

  

The revisions to the terrace mapping in and around Warsash enable some of the 

Warsash archaeological material to be assigned to specific terraces. As discussed 

previously, the majority of the Warsash record lacks locality data, with just a small 

amount that has a specific pit recorded. Davis’s (2013; Davis et al. 2016) recent 

review has established that the four gravel pits discussed by Burkitt et al. (1939) are 

all located in areas of the Mottisfont/Lower Warsash Terrace (Figure 2). Therefore, all 

of the Mogridge Collection that can be demonstrated to have been collected prior to 

1939 can be assigned to the Mottisfont/Lower Warsash Terrace. Further, all gravel 

pits in the Warsash area prior to 1945 were restricted to areas of the Mottisfont/Lower 

Warsash Terrace (Davis et al. 2016). So any artefacts collected prior to 1945 can be 

assigned to Mottisfont/Lower Warsash. After 1945, quarrying in the region exploited 

gravels of the Hamble and Mottisfont/Lower Warsash Terraces. Therefore artefacts 

with only a general Warsash provenance recovered after 1945 cannot be assigned to a 

specific terrace. On this basis, 254 handaxes and 30 Levallois artefacts can be 

associated with the Mottisfont/Lower Warsash Terrace, 51 handaxes with the Hamble 

Terrace, while 194 handaxes and 4 Levallois artefacts cannot be assigned to a specific 

terrace. 

 

It is therefore likely that the Levallois material from Warsash is exclusively associated 

with the Mottisfont/Lower Warsash Terrace. It is also clear from the condition of the 

artefacts – the majority of the Levallois material is fresh and patinated, contrasting the 

typically rolled and stained handaxes – that the Levallois assemblage has a different 

taphonomic history to the handaxes associated with the same terrace (Ashton & 

Hosfield 2010; Davis et al. 2016). The high degree of rolling and staining among the 

Mottisfont/Lower Warsash Terrace handaxes strongly suggests that they originated 
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within terrace gravels, an assertion that is supported by the observations of Burkitt et 

al. (1939), who stated that two of their three series of handaxes were recovered from 

the basal gravels. If an MIS 8 age for the Mottisfont/Lower Warsash Terrace is 

accepted, these are likely to have been reworked from earlier deposits of at least MIS 

9 age.  

 

With regards to the Levallois material, Burkitt et al. suggest that at least some of it 

originated in fine-grained deposits overlying the terrace gravels and therefore post-

dates terrace formation. The fresh condition of the artefacts fits with this 

interpretation. A similar situation is found at several sites of the Middle Thames, such 

as Creffield Road and Yiewsley (Scott et al. 2011). There, fresh Levallois artefacts 

have been observed to rest on, or in sediments that overlie, Lynch Hill gravels that 

contain rolled handaxes (Brown 1889, 1895). Ashton et al. (2003) argue that the 

Levallois material was either discarded on the margins of the floodplain prior to 

downcutting during late MIS 8, or discarded post-downcutting on the terrace surface 

adjacent to the new floodplain during MIS 7. If a parallel situation is found at 

Warsash, then the fresh Levallois material may date to late MIS 8 or MIS 7. 

 

 
Table 10. Major Palaeolithic artefact site locations as assigned in previous schemes and the revised terrace 

stratigraphy of the River Test. Site location precision key: [A] Accurate; [E] Estimated; [G] General. Artefact 

numbers key: H Handaxes; L Levallois; O Other. Previous terrace scheme and previous MIS model key: 1 

Edwards & Freshney 1987); 2 Westaway et al. (2006); 3 PASHCC (Bates et al. 2004, 2007; Bates and Briant 

2009); 4 Harding et al. (2012). Westaway et al. (2006)/ Harding et al. (2012) terrace nomenclature: 

Mottisfont/LW: Mottisfont/Lower Warsash; Belbin/UW: Belbin/Upper Warsash. Attributions in bold indicate 

revised terrace correlations and/or MIS age modelling as discussed in the text. Site location and artefact data 

from Davis (2013).  

Site location 

[Precision] 

     Artefacts 

 H        L       O 

Previous terrace 

schemes 

Harding et 

al. MIS 

model  

Revised terrace 

scheme 

Probable 

MI Stage 

[Range]  

Town Pits, [A] 

Southampton Common  

3 0 0 Terrace 8 1 

Rownham’s Farm 4 

14 4 Midanbury/ 

Rownham’s Farm 

?16-15 

[>13] 

Great Copse, 

Mottisfont [A] 

1 0 3 Terrace 7 3  

Not specified 4 

- Nursling ?14-12 

Chivers Gravel Pit, 

Romsey Extra [A] 

100 3 18 Terrace 4 1 

Belbin/UW 2, 4 

9b 4 Belbin/ 

Upper Warsash 

?9  

 [12-9] 

Belbin's Pit, Romsey 

Extra [A] 

200 3 9 Terrace 4 1 

Belbin/UW 2, 4 

9b 4 Belbin/ 

Upper Warsash 

?9  

 [12-9] 

Dunbridge:        

Dunbridge Hill [A] 1000 5 0 
Belbin/UW 2, 4 

Terrace 5 3  
9b 4 

Belbin/ 

Upper Warsash 
?9  

[12-9] 

Hatt Hill  [E] 1 0 0 

RMC Gravel Pit [A] 0 0 5 

Kimbridge, Mottisfont 

[A] 

77 0 9 Mottisfont/LW 2, 4 

Terrace 4 3  

8 4 Mottisfont/  

Lower Warsash 

8 [8-7] 

Warsash: 

Fleet End Pit [A] 

 

20 

 

13 

 

2 

Terrace 3 1, 3 

Mottisfont/LW 4 
8 4 

Mottisfont/  

Lower Warsash 
8 [8-7] 

New Pit [A] 15 4 0 

Park’s Pit [A] 10 0 0 

Button’s Pit [E] 0 0 1 

Dyke’s Pit [A] 2 0 0 

Hook Lane [G] 1 0 0 

Newbury’s Pit [A] 6 0 1 Terrace 2 1, 3 

Hamble 2, 4 

6 4 Mottisfont/  

Lower Warsash 

8 [8-7] 

Warsash: General        200 13 43 

Terrace 2 or 3 1, 3  

Hamble or 

Mottisfont/ LW 4 

6 or  

8 4 
Mottisfont/  

Lower Warsash 
8 [8-7] 
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Site location 

[Precision] 

     Artefacts 

 H        L       O 

Previous terrace 

schemes 

Harding et 

al. MIS 

model  

Revised terrace 

scheme 

Probable 

MI Stage 

[Range]  

Warsash: General        
194 

 

4 

 

34 

 

Terrace 2 or 3 1, 3  

Hamble or 

Mottisfont/ LW 4 

6 or  

8 4 

? Hamble or 

Mottisfont/  

Lower Warsash 

7 [7-6] or  

8 [8-7] 

 

9.3 Methodological approaches to constructing long profile projections and 

correlations 
 

In regions where diagnostic lithological, biostratigraphical or chronological data are 

scarce, whether due to minimal variations in clast input into the fluvial system over 

time, preservation issues, or the availability of sedimentary exposures or datasets, 

terrace remnants may be correlated by means of altitudinal position along the river’s 

palaeo-course alone (Briant et al. 2012). Such long profile correlations of terrace 

bodies are usually based on downstream projections of approximately straight or 

slightly concave upward gradients (Gibbard 1985; Briant et al. 2012). This has been 

the case in the Test Valley, where interpretation of the terrace stratigraphy and 

important downstream correlations of often fragmentary terrace units has been reliant 

on limited, and methodologically different, datasets as discussed above. Two recent 

terrace stratigraphies have been constructed for the River Test using contrasting data 

to describe the terrace deposits. Post-depositional modification may affect methods 

based on modern terrace ‘surfaces’ (i.e. ground level), which may not be 

representative of former terrace aggradations. Methods based on the thickness of 

underlying sedimentary deposits need to account for topographical variation in the 

palaeo-floodplain or changing terrace thickness between the front and back of an 

outcrop. Where datasets are sufficiently large, an assessment can be made on the 

representative nature of each sedimentary record in relation to the framework as a 

whole. Comparison of Figures 10 and 11 shows that a more robust terrace stratigraphy 

can be constructed by use of sedimentary data (in this case bedrock elevation and 

terrace deposit thickness) rather than ground surface data. Such an approach is 

dependent on sufficient data-coverage and it has been demonstrated that the use of 

GPR can be an effective method to close larger data gaps. The method is time 

efficient and allows extensive data capture. Synthetic boreholes (Hatch 2014) can be 

used to summarise linear datasets and enable integration with other data types, such as 

borehole records and sedimentary logs. 

 

10. Conclusions 

 

This study has produced revised terrace stratigraphies for the Warsash area and the 

wider River Test based upon an extensive and robust set of data. Geomorphological 

subdivision of the terrace sequence has been carried out after careful assessment of 

long profiles of stratigraphic data collected from boreholes, new fieldwork and 

previous studies in the region. The new stratigraphic detail at Warsash has produced a 

more robust framework for the spatial and temporal distribution of the Palaeolithic 

record, enabling closer interrogation of technological and typological patterning. The 

revised stratigraphy of the wider region has also clarified correlations between 

archaeologically important sediments of the Test Valley and proposed upstream 

correlations between fragmentary deposits on two BGS map sheets. The stratigraphic 

framework produced has provided the foundation for reassessment of the 

characteristics and chronology of the Palaeolithic record of the region, and enabled it 
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to contribute more fully to understanding the Lower-Middle Pleistocene settlement 

history of southern Britain.  

 

Finally the study has highlighted broader methodological issues that remain in both 

the use of luminescence methods in the River Test region and in the construction of 

long profile projections of terraces generally. The comprehensive suite of tests applied 

during the dating programme of this study demonstrated the complicated 

luminescence properties of the fluvial sediments of the River Test. Where rigorous 

test procedures have not been applied in previous studies the ages produced should be 

treated with some caution. Similarly, the construction of stratigraphic frameworks 

requires careful assessment of the data. Where the use of geomorphological methods 

are necessary, such as in the Solent region, it has been shown that the data used to 

define and correlate terraces will impact the resulting stratigraphic model. 

Uncertainties may be mitigated, to a degree, by the availability of sufficient closely-

spaced data to enable confidence in the representative nature of data-points within a 

terrace landform.  

 

Important detail has been added to the terrace stratigraphy of the Warsash area and 

broader Test Valley, enabling a more rigorous interrogation of Middle-Late 

Pleistocene hominin settlement history and technology of the region. However, more 

chronological control is still required in order to further refine the stratigraphic model 

presented here for the evolution of the River Test and the archaeological record it 

contains. 
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