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Abstract

This study investigates the hemodynamic responses of the cardiovascular system when a rotary blood

pump is operating in the descending aorta, with a focus on the cerebral, coronary and renal autoregulation,

using our in-house cardiovascular emulator. Several improvements have been made from our previous studies.

A novel coronary system was developed to replicate the native coronary perfusion. Three pinch valves

actuated by stepper motors were used to simulate the regional autoregulation systems of the native cerebral,

coronary and renal circulations. A rotary pump was installed in the descending aorta, in series with the heart,

and the hemodynamic responses of the cardiovascular system were investigated with a focus on cerebral,

coronary and renal circulation over a wide range of pump rotor speeds. Experiments were performed twice,

once with the autoregulation systems active and once with the autoregulation systems inactive, to reflect that

there will be some impairment of autoregulatory systems in a patient with heart failure. It was shown that

by increasing the rotor speed to 3000 rpm, the cardiac output was improved from 2.9 to 4.1 L/min as a result

of an afterload reduction induced by the pressure drop upstream of the pump. The magnitudes of changes in

perfusion in the cerebral, coronary and renal circulations were recorded with regional autoregulation systems

active and inactive.
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Nomenclature

Subscripts

ao aortic

dia diastolic

mean mean

pp pulse pressure

sys systolic

Abbreviations and Acronyms

AoP aortic pressure

AV aortic valve

C compliance

CHF congestive heart failure

CeF cerebral flow rate

CeP cerebral pressure

CO cardiac output

CoF coronary flow rate

CoP coronary pressure

CVR cerebrovascular resistance

DA descending aorta

F flow-meter

LA left atrium

LV left ventricle

LM linear motor

LVP left ventricular pressure

MCS mechanical circulatory support

MV mitral valve

P pressure

PV pulmonic valve

Q flow rate

RBP rotary blood pump

RA right atrium

ReP renal pressure

ReF renal flow rate
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RV right ventricle

RVP right ventricle pressure

SCVL simulator of cardiovascular loops

SyF systemic flow

TV tricuspid valve

1. Introduction1

The number of deaths caused by Heart Failure (HF) has decreased during the past decade in developed2

countries, yet HF is still the leading cause of deaths in the world. In the United States, in a ten year period3

from 2001 to 2011, death rates attributable to HF and the actual number of HF deaths declined by 30.8% and4

15.5% per year respectively, yet in 2011 HF still accounted for 31.3% of all deaths [1]. Despite all available5

therapies to this problem, heart transplant is the main option for end-stage HF patients. However, with a6

limited number of heart donors available annually (2500 for USA, 1400 Europe and 300 other countries [2, 3])7

the rate of mortality remains very high for patients on and off the waiting list.8

As a result, Rotary Blood Pumps (RBP)have become vital for end-stage HF patients as a bridge to9

transplantation or destination therapy [4, 5]. One of the challenges with the traditional RBPs is their10

highly invasive implantation procedure which makes many elderly and ill patients ineligible for the surgery.11

This has encouraged many researchers to investigate new approaches with potential for minimally invasive12

surgery [6, 7].13

Transaortic or in-series miniature RBPs, distant from the heart, are one minimally invasive solution [8–14

11]. The implantation of a RBP in the Descending Aorta (DA), in series with the heart, has been of growing15

interest among various groups [6, 8, 12–15]. It was reported that the insertion of an RBP device in the16

descending aorta leads to an improved cardiac output, yet there is a question related to the impact of the17

pressure drop generated upstream of the pump on blood perfusion in the upper extremities, particularly the18

brain and heart [6, 12, 13, 16]. In addition, there is a concern associated with the effect of the pressure rise19

downstream of the pump on lower extremities, particularly the kidneys [17].20

The regional autoregulation systems, which maintain a constant flow rate to vital organs during changing21

local perfusion pressure, are present in many organs of the native cardiovascular system, however thet are22

most pronounced in the heart, brain and kidneys [18]. The cerebral autoregulation is a vital homeostatic23

mechanism to maintain the blood supply to the brain in the event of changing perfusion pressure. For a24

healthy person, the cerebral circulation is autoregulated within wide limits of mean aortic pressure from 6025

to 120 mmHg [19, 20]. The coronary circulation maintains the blood supply to the heart and is autoregulated26

within 45 to 130 mmHg in a healthy person [21]. The renal autoregulation has been extensively investigated27
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in prior studies [22, 23]. In a native human body the renal blood supply is relatively constant when the28

mean arterial pressure varies between 90 and 180 mmHg [22]. It must be noted that various pathological29

conditions, including hypertension, hypotension and a change in arterial CO2 level can alter the upper and30

lower limits of the autoregulated region [24].31

The aim of this study is to investigate the hemodynamic responses of the cardiovascular system when a32

rotary pump is operating in the descending aorta with a focus on the cerebral, coronary and renal circulation.33

Since the regional autoregulation can be impaired in heart failure patients, the hemodynamic response is34

investigated with intact and impaired regional autoregulation. An expected outcome is to estimate what35

level of support is feasible while avoiding the previously mentioned risk of drops in perfusion to the coronary36

and cerebral circulations.37

The objectives of this study are met using our in-house multi-chamber Simulator of Cardio-Vascular38

Loops (SCVL). Cardiovascular simulators offer a more controlled and inexpensive platform to evaluate the39

performance of existing blood-contacting devices as well as new medical concepts, prior to in-vivo studies.40

In recent years, much progress has been made in the design and development of cardiovascular simulators41

with close similarity to a native system for research and training [25–28].42

In the present study, several improvements have been made from our previous studies [6, 12, 13, 29]. The43

coronary perfusion mechanism which causes the heart to be perfused only during diastole was implemented44

using a solenoid valve. In addition, the coronary and renal autoregulation circulations, similar to the cerebral45

autoregulation mechanism presented in our previous study [29], were integrated into the SCVL system, with46

autoregulation limits determined from the clinical data.47

2. Methodology48

The native cardiovascular system of an adult human was emulated using our in-house SCVL system, as49

shown in the schematic digram of Figure 1.50

Four elastic rubber chambers were used to model the native heart chambers. The left and right ventricles51

(LV and RV) had a volume of 100 mL and the left and right atrium (LA and RA) had a volume of 50 mL.52

Four linear motors (P01-37×120 from LinMot, Spreitenbach, Switzerland) were employed to simulate the53

contraction and dilation of the ventricle and atrium chambers. Two trajectory time-varying functions54

extracted from the real time left ventricle and left atrium volume, as described in our previous study [29],55

were employed to actuate the four linear motors. Figure 2 shows the simultaneous graphs of trajectory56

time-varying functions of the ventricles and atria for an intact heart. Each function can be scaled up or57

down in order to replicate various physiological and pathological conditions.58

Four prosthetic heart valves (Medtronic, Minneapolis, Minnesota, USA) modelling the aortic ,mitral,59

pulmonary and tricuspid valves were used to ensure unidirectional flow in the vicinity of each chamber.60
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Figure 1: Schematic diagram of the SCVL system with the coronary, cerebral and renal autoregulation units and an RBP

device in the descending aorta.
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Figure 2: The predefined time-varying trajectory functions of the ventricles and atria, adopted from the study conducted by

Rezaienia et al. [29]

The systemic and pulmonary circulations are replicated using 24 mm diameter rubber tubing, while smaller61

arteries are replicated using 12 mm diameter rubber tubing. A blood analog solution comprising of 65 wt%62

water and 35 wt% glycerol was used as the working fluid, as in the study conducted by Pantalos et al. [27].63

Five pressure transducers (PMP 5074, accuracy ±0.1 FS BSL) from General Electric, Billerica, MA,64

USA were used to simultaneously measure the Left Ventricle Pressure (LVP), Aortic Pressure (AoP), Right65

Ventricle Pressure (RVP), Cerebral Pressure (CeP) and Renal Pressure (ReP). The Coronary Pressure (CoP)66

was defined as equal to the AoP.67

A number of Hoffman clips were used to manually control the systemic and pulmonary resistance level to68

allow tuning of the SCVL system. Three electromagnetic flow-meters (SITRANS F M MAG 1100 F, accuracy69
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Figure 3: Photograph of the coronary perfusion mechanism incorporating a parallel configuration of a solenoid valve and tubing.

0.4% ± 1.0 mm/s) from Siemens, Munich, Germany) were employed to measure the Cerebral Flow (CeF),70

Coronary Flow (CoF) and Renal Flow (ReF), respectively and an ultrasonic flow-meter (Cynergy UF Flow,71

C3, accuracy 3% of reading) (Cynergy UF Flow, C3) was used to measure the Systemic Flow (SyF). The72

sum of these flows gives the Cardiac Output (CO). The vascular distensibility of the systemic and pulmonary73

circulations was replicated using a number of compliance units developed in our previous experiment [29].74

The compliance level for each unit can be adjusted to match the vascular distensibilty of a native system75

for various pathological conditions.76

A parallel configuration of a solenoid valve and narrow tubing was used to model the coronary perfusion77

mechanism, as shown in Figure 3. In a native system, coronary blood flow occurs predominantly during78

diastolic phase when the heart muscles are relaxed and thereby the lumen of the coronary arterioles are fully79

open [30]. The solenoid valve was programmed to be closed during systole and remain open during diastole.80

This allows a small portion of the coronary flow to bypass the valve via the tubing during the systolic phase,81

but the larger portion of the flow occurs via the solenoid valve during the diastolic phase.82

Three autoregulation units were attached to the carotid, coronary and renal arteries, as shown in Figure 1.83

Each unit takes the form of a pinch valve driven by a stepper motor, as shown in Figure 4, and applies84

dilation and constriction to the cerebral, coronary, and renal arteries as occurs in a native system. The flow is85

adjusted to the autoregulated level when the pressure is within the regulated region, using the appropriate86

flow-meter as feedback for the control system. Outside of the autoregulated region, the pinch valve is87

at maximum or minimum dilation depending on whether the pressure is below or above the autoregulated88

region respectively. Clinical data for each autoregulation unit’s pressure/flow profile was taken from suitable89

in-vivo studies [19, 21, 31].90
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Figure 4: Photograph of the autoregulation unit using the stepper motor.

3. Results91

3.1. SCVL Performance92

A healthy condition and a HF condition were replicated in order to evaluate the efficacy of SCVL93

system. For the healthy condition, the four linear motors were operating in full scale according to the94

trajectory functions shown previously in Figure 2. Modelling of the HF condition is more difficult, since in95

this condition the heart’s chambers deform, the LV dilates and mechanism of contraction changes. For this96

study, the HF condition was reproduced by decreasing the minimum displacement of the LV linear motor,97

replicating an increased diastolic LV volume, and decreasing the maximum displacement of the LV linear98

motor, replicating a reduced LV pumping ability. The LV dilation was modeled by integrating a compliance99

unit upstream of the aortic valve, as shown in Figure 1, and increasing its compliance. In addition, the100

vascular distensibility was decreased by reducing the compliance level to simulate a stiffer vascular system101

and the systemic resistance was increased slightly.102

The SCVL was tuned so that the pressure and flow rate in healthy and HF conditions matched the103

corresponding clinical data extracted from suitable clinical publications [30, 32–34].104

Figures 5(a,b) show the experimental AoP, LVP and RVP for the healthy and HF conditions respectively.105

The measured AoP, LVP and RVP waveforms for the healthy condition are 120/82, 120/5 and 30/5 mmHg106

respectively. The measured AoP, LVP and RVP waveforms for the HF condition are 107/74, 107/25 and107

48/25 mmHg respectively. It is evident that the dicrotic notch (incisura), occurring due to a slight back-108

flow into the native left ventricle, has been reflected clearly on the descending limb of the simulated AoP109

waveform. The small pressure bump appearing just before the ascending limb of the LVP waveform is due110

to the systolic contraction of the atrium as occurs in the native system [30].111

The CO for the healthy and HF conditions were recorded as 5.1 L/min and 2.9 L/min and the AoPmean112

for the healthy and HF condition are 95 and 85 mmHg, respectively. The SCVL correctly simulates the113

main physiological features of the pressure waveforms in good agreement with clinical data [30, 32–34]. A114
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Figure 5: (a) The experimental AoP, LVP and RVP waveforms for the healthy condition. (b) The experimental AoP, LVP and

RVP waveforms for the heart failure condition.

smooth waveform is obtained without any signal filtering because the valve closing pressure spikes often115

present in cardiovascular simulators [35] are dampened by the compliance units.116

3.2. Coronary Perfusion Mechanism117

Figures 6(a,b) show AoP and CoF with the SCVL operating in the healthy condition. During the systolic118

phase CoF drops to 50 ml/min and during the diastolic phase it rises to a maximum of 400 ml/min. This119

is in agreement with the observed coronary perfusion in a native system [21, 30].120

3.3. Autoregulation Units121

The performance of the cerebral, coronary and renal autoregulation units are evaluated by applying a122

number of stepwise pressure reductions in the systemic artery and subsequently recording the steady state123

CeFmean, CoFmean and ReFmean. For this study, the performance of only the cerebral autoregulation unit124
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Figure 6: (a) The experimental AoP waveforms for the healthy condition. (b) The experimental CoF waveform for the healthy

condition.
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Figure 7: The performance of the cerebral autoregulation unit from 60 to 120 mmHg, adopted from the study conducted

by Rezaienia et al. [29]. (a) Cerebral flow in the SCVL compared with clinical data [24] and (b) the CVR from the same

experiment.

is presented on the basis that the other two units have the same functionality but different autoregulated125

ranges.126

Initially, the AoPmean was set at 125 mmHg. In systemic resistance incremental reductions were intro-127

duced into the SCVL system. For each step the AoPmean and CeFmean were recorded after ten seconds to128

ensure that the transient flow was settled. The step period on the stepper motor was adjusted to ensure the129

autoregulation response is typically around five seconds as observed in the clinical study [36], although this130

varies slightly depending on the magnitude of the pressure change.131

Figure 7 shows the cerebral autoregulation pressure-flow curve and the corresponding CerebroVascular132

Resistance (CVR). As shown in Figure 7(a), the autoregulated CeFmean is set at 0.71 L/min, as measured in133

the clinical study conducted by Ford et al. [37] for a normotensive human. It is evident that within the au-134

toregulated region, 60-120 mmHg, the cerebral flow remains unchanged. However, outside the autoregulated135

region the CeFmean level is proportional to the AoPmean level, with the autoregulated artery at a maximum136

dilation or a maximum contraction. Figure 7(b) shows that as the AoPmean level gradually decreases, the137

CVR decreases to ensure that the cerebral flow remains unchanged within the autoregulated region.138
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3.4. Integration of a Rotary Pump in the Descending Aorta139

A HF condition was reproduced in which the AoPmean and the CO are 85 mmHg and 2.9 L/min re-140

spectively. A rotary pump simulating a RBP device was implemented in the descending aorta above the141

renal arteries, in series with the heart, as shown in Figure 1. The pump is an in-house bench-top centrifugal142

pump with the hydrodynamic characteristics of 70 mmHg against 5 L/min at 3000 rpm. Five experiments143

were conducted in which the hemodynamic responses of pressures AoP, LVP, CoP, CeP and ReP as well as144

flow rates SyF, CeF, CoF, ReF and CO were recorded with the pump operating over rotor speeds from 0145

to 4000 rpm in increments of 1000 rpm. This was repeated with the regional autoregulation systems active146

and inactive. The results are summarized in Table 1 and Table 2.147

There is an improvement in CO whether or not the regional autoregulation system is active. At 3000 rpm148

the CO has increased by 42%. Since there is a large resistance downstream of the pump, the pressure drop149

upstream of the pump in the aortic arch (see CeP and CoP) is relatively small (-13% at 3000 rpm with150

autoregulation inactive) compared to the pressure rise downstream of the pump (see ReP) which is far larger151

(+106% at 3000 rpm with autoregulation inactive).152

Figure 8 shows the ReP and CeP waveforms as the pump accelerated to 3000 rpm, at which point a153

pressure rise of 82 mmHg is recorded across the pump. The dashed line represents the measured ReP154

waveform downstream of the pump and the solid line represents the CeP waveforms upstream of the pump.155

At T = 3 s, when the pump is switched on, the CeP gradually decreases over the course of ten seconds156

until CePmean reaches a steady level of 88 mmHg. In contrast, RePmean is increased from 80 mmHg for157

HF condition until it reaches the steady level of 170 mmHg. It is also shown that upon insertion of the158

pump, the cerebral pulse pressure (CePpp), and renal pulse pressure (RePpp), determined by subtracting159

Table 1: SCVL Hemodynamic characteristics with active regional autoregulation systems for the healthy and HF conditions

with an MCS device in the DA operating from 0 to 4000 rpm.

Condition Healthy, 0 rpm HF, 0 rpm HF, 1000 rpm HF, 2000 rpm HF, 3000 rpm HF, 4000 rpm Units

∆P – – 5 36 82 130 mmHg

AoPmean 95 85 82 78 74 68 mmHg

AoPsys 116 107 104 101 98 95 mmHg

AoPdia 82 75 71 67 62 55 mmHg

CoPmean 95 85 82 78 74 68 mmHg

CePmean 105 94 92 89 88 80 mmHg

RePmean 90 80 97 125 170 220 mmHg

CePpp 34 32 33 34 36 41 mmHg

RePpp 27 25 28 29 41 45 mmHg

CeFmean 0.71 0.71 0.71 0.71 0.71 0.70 L/min

CoFmean 0.22 0.22 0.22 0.22 0.22 0.21 L/min

ReFmean 1.21 1.20 1.19 1.19 1.21 1.46 L/min

SyFmean 2.97 0.77 0.97 1.13 1.98 2.25 L/min

CO 5.11 2.90 3.09 3.25 4.12 4.62 L/min
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Table 2: SCVL Hemodynamic characteristics with inactive regional autoregulation systems for the healthy and HF conditions

with an RBP device in the DA operating from 0 to 4000 rpm.

Condition Healthy, 0 rpm HF, 0 rpm HF, 1000 rpm HF, 2000 rpm HF, 3000 rpm HF, 4000 rpm Units

∆P – – 5 36 82 130 mmHg

AoPmean 95 85 81 78 73 65 mmHg

AoPsys 116 107 102 100 96 90 mmHg

AoPdia 82 75 71 65 59 47 mmHg

CoPmean 95 85 81 78 73 65 mmHg

CePmean 105 94 93.5 90 85 75 mmHg

RePmean 90 80 98.3 119 165 215 mmHg

CePpp 34 32 27.9 32 36 44 mmHg

RePpp 27 25 25.2 31 32 30 mmHg

CeFmean 0.71 0.70 0.69 0.65 0.59 0.49 L/min

CoFmean 0.22 0.22 0.22 0.20 0.17 0.13 L/min

ReFmean 1.21 1.21 1.31 1.60 2.06 2.6 L/min

SyFmean 2.97 0.78 0.91 0.94 1.22 1.37 L/min

CO 5.11 2.91 3.13 3.39 4.04 4.59 L/min

the systolic from the diastolic pressure at these circulations, rise by 12% and 30% respectively.160

Figures 9 shows the transient responses of the CoF, CeF, ReF and CO when the pump is switched on at161

3000 rpm and regional autoregulation systems are active. Figure 9 (a) shows that with the pump at 3000 rpm162

there is no variation in CoF. Figure 9 (b) shows that the CeF drops by 8% at T = 12 s, however since CeP163

remains within the cerebral autoregulated region (60-120mmHg), the CeF is autoregulated and returns to164

the initial steady state level of 0.71 L/min at T = 28 s. It is evident that at T = 18 s there is a slight165

overshoot in the CeF, before reaching the steady state level. Aaslid et al. [36] in a clinical study on humans166

demonstrated that the CeF overshoot occurs due to the delay in the autoregulation system compensating167

for a change in the aortic pressure. Figure 9 (c) shows that the ReF rises by 45% at T = 13 s to 1.65 L/min,168

however, since RePmean remains within the renal autoregulated region (90-180 mmHg), the autoregulation169

system compensates and the CeF returns to the initial level of 1.2 L/min by T = 28 s. Figure 9 (d) shows170

that with the pump operating at 3000 rpm, CO gradually increases from 2.9 L/min and reaches the steady171
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Figure 8: The transient responses of CeP and ReP with the pump operating at 3000 rpm at T = 3 s.
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Figure 9: (a) The transient responses of the CoF waveforms (b) CeF waveforms, (c) ReF waveforms, (d) CO with the pump

operating at 3000 rpm.

level of 4.1 L/min over the course of 25 s. The perfusion pressure to the cerebral and coronary circulations172

remained within the autoregulated regions at all levels of support, so when the autoregulation systems were173

active there was no drop in CoF or CeF.174

At 4000 rpm AoPmean falls by around 20%. The fall in AoPmean can result in reduced perfusion to175

vital organs when regional autoregulation systems are inactive in this scenario. CeF falls 31% at 4000 rpm,176

from 0.71 L/min to 0.49 L/min, while CoF falls 41% from 0.22 L/min to 0.13 L/min. The drop in CoF is177

larger than the drop in CeF because of the increased pulsatility; AoPdia falls by more than AoPmean, so the178

drop in coronary perfusion, which primarily occurs in diastole, is exacerbated. The large pressure increase179

downstream of the pump causes an increase in renal perfusion. When the autoregulation systems are on,180

renal flow is unaffected at speeds from 0 to 3000 rpm, however at 4000 rpm there is an increase of 22%.181

When the autoregulation systems are inactive, the renal flow increases proportional to the pressure.182

4. Discussion183

The SCVL was used to accurately replicate clinical pressure waveforms and flow rates for healthy and HF184

conditions. The novel parallel configuration of a solenoid valve and narrow tubing ensured the coronary was185

primarily perfused in diastole, as in the native system. The autoregulation units, when active, successfully186

maintained clinically accurate flow rates in cerebral, coronary and renal circulations and this technique can187

be used to simulate arterial constriction and dilation in other parts of the body, such as skeletal muscles or188

intestines [18].189
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With an integrated RBP, operating over a wide range of rotor speeds in the DA, it was observed that the190

pressure rise generated downstream of the pump was several times higher than the pressure drop generated191

upstream of the pump. This is because the resistance in lower extremities was much larger than the192

resistance between the LV and the pump. As demonstrated in previous studies [6, 12, 13, 29], the pressure193

drop induced by the pump reduces the afterload pressure and thus improves the CO. It was reported in our194

previous work [13] that the afterload reduction due to a pump operating in the descending aorta results in195

a greater ejection with the same LV contractile energy, leading to an improvement in LV performance.196

If the comparatively low pressure drop in the aortic arch is replicated in-vivo, it suggests that a beneficial197

level of support could be applied without significant perfusion drops in cerebral and coronary circulations.198

With regional autoregulation inactive, a 3000 rpm pump speed resulted in a 42% increase in CO with drops199

of 17% and 23% in CeF and CoF. Any regional autoregulation activity would reduce these perfusion drops.200

The pressure rise downstream of the pump improves perfusion to the kidneys. Studies on HF patients201

showed that the mortality rate is more closely associated with the worsening of renal function than any202

other established risk factor such as left ventricular ejection fraction [38]. It is reported the worsening renal203

function is strongly related to the hemodynamic stability of the renal blood flow [39]. Clinical data on the204

kidney’s response to sustained high pressure in humans could not be obtained although it is noted that the205

renal circulation has a high upper limit to its autoregulation system, at 180 mmHg, which was exceeded in206

our experiment only at the 4000 rpm level of support.207

With the rotary pump operating in series with the heart, it was observed that the flow pulsatility in all208

circulations was improved. This is in contrast to the traditional LVAD implantation, where increasing the209

level of pump support attenuates the pulsatility [6]. Clinical studies show that the flow pulsatility has a210

positive effect on recovery of cerebral, renal, and coronary systems functionality in patients with HF [40–42].211

However, the pulsatility also results in a lower AoPdia which presents a risk to coronary perfusion. A larger212

perfusion drop was observed in the coronary circulation than in the cerebral circulation during RBP support213

in the SCVL with regional autoregulation inactive.214

In this paper the response of the SCVL to a rotary pump in the descending aorta with and without215

regional autoregulation systems is compared. The debate of whether and to what extent autoregulation216

systems are impaired in HF is still ongoing and there was no clear answer from the authors’ literature217

search. Descending aorta RBP has been investigated in animals [16] and man [8] by Reitan et al.. They218

found that with their percutaneous catheter-based pump in the descending aorta of calves, no variation in219

the coronary perfusion was observed. A drop of 15% in CeF was observed, however in the same study the220

author emphasized on existing differences between the human and animal cerebral functionality and they221

predicted that the human cerebral autoregulation system would ensure a sufficient blood supply down to222

AoPmean of 60 mmHg. In the study in man, such invasive measurements could not be taken.223

No other studies on the regional autoregulation involve in-series RBP device insertion. There are stud-224
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ies [43, 44] showing clearly that the regional autoregulations, particularly cerebral autoregulation is partially225

impaired in severe HF. However, other studies [45] claim that many patients with moderate to severe HF con-226

dition have a normal regional autoregulation due to the redistribution of the blood flow in the cardiovascular227

system. In addition, there are studies [44, 46] show that, in some cases after the RBP implantation or heart228

transplantation, the impaired regional autoregulation has been improved, following CO re-establishment.229

Whether or not regional autoregulation is impaired due to heart failure, this study has indicated that the230

pressure drop in the upper extremities is relatively low (10-12 mmHg at 3000 rpm) even without regional231

autoregulation.232

There are many advantages, compared to the existing LVAD in-parallel configuration, that makes this233

approach worthy of investigation. Implantation in the descending aorta is less invasive and possibly can be234

performed via a left thoracotomy. As a result, the operation would be less expensive and potentially can be235

done in district general hospitals. Also, this technique may reduce the chance of stroke. For the in-parallel236

configuration, the thrombi released from the LVAD outlet graft, can be transported along the blood stream237

through the ascending aorta toward the brain, thereby increasing the chance of stroke [47]. With a RBP238

in the descending aorta, thrombi would be directed to the lower extremities rather than upper extremities,239

thus reducing the chance of stroke. However there are some concerns about the in-series implantation which240

needs further examination through more in-vitro and in-vivo tests. For instance, the level of support should241

clearly be limited to avoid excessive pressure drops upstream and rises downstream, otherwise perfusion in242

the cerebral, coronary, and renal circulations may become more impaired than before implantation.243

5. Limitations244

One limitation of this study is the lack of appropriate clinical data on impairment of regional autoreg-245

ulation in HF. How these systems are affected during HF is an unresolved question which has significant246

implications for the suitability of descending aorta RBP support. Consequently, we repeated our experi-247

ment with and without regional autoregulation systems active to give a best-case and worst-case scenario for248

in-series support. While the data used here for cardiovascular parameters were collected from a variety of249

sources, it was not possible to collect all required data from a single individual and the resulting simulations250

accurately replicate the cardiovascular system of a typical human adult.251

For this study the preload (Frank-Starling mechanism) and afterload (autonomic nervous system) sen-252

sitivity of the ventricles were not modelled in the SCVL. Preload and afterload sensitive motors have been253

implemented into other cardiovascular simulators [25, 26, 28]. Implementation of these features in the SCVL254

is necessary to give a more comprehensive understanding of the hemodynamic effects of an RBP device in255

the DA. Theoretically, in a native system pressure rise generated downstream of the pump, would cause256

a high preload pressure in the right atrium which would lead to further improved cardiac output due to257
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the Frank-Starling mechanism. In addition, the pressure drop upstream of the pump, would trigger the258

autonomic nervous mechanism which consequently would lead to the redistribution of blood toward the259

upper extremities as a result of increased vasoconstriction in the major arterial system [45]. In this study260

the effect of a rise in hydrostatic pressure due to the horizontal position of the system was not considered. In261

a supine position, an increased hydrostatic pressure leads to a rise in preload which consequently improves262

the cardiac output, provided that the Frank-Starling is intact [18].263

Although the previous studies show that the improvement in renal flow may have a positive impact on264

renal functionality [39, 48, 49], yet the clinical consequence of an the increased renal pressure observed in265

this study is not known. An in-vivo study [50] on a dog showed that the incremental increase in renal266

pressure, directly affects the peritubular capillaries in the kidneys and that leads to a rise in urine flow and267

subsequently urinary sodium excretion. In-vivo tests are mandated in order to evaluate the effect of the268

pressure rise and extra renal perfusion on kidney functionality.269

6. Conclusions270

This study showed the use of a novel coronary mechanism and autoregulation units in the SCVL. The271

improved SCVL system is able to emulate the behaviour of the heart during healthy and HF conditions in272

close agreement to the existing clinical data and allows measurement of pressure and flow in cerebral, coro-273

nary and renal circulations. Certainly, having more clinical data, for instance on impairment of the regional274

autoregulation, would improve the results. The perfusion in these regional circulations may be affected by275

an RBP device operating in the descending aorta. The extent of changes in perfusion is determined by the276

level of support and the efficacy of the regional autoregulation systems. Our work suggests that a beneficial277

level of support is possible at 3000 rpm without detrimental effects on the cerebral and coronary perfusion,278

but only with unimpaired regional autoregulation. In a future study, we will replicate impaired cerebral,279

coronary and renal autoregulaton in the SCVL once suitable clinical data has been obtained. It is our280

intention to integrate the autonomic and Frank-Starling mechanisms to the SCVL system and investigate281

the hemodynamic responses of the whole system in detail with an RBP operating in the descending aorta.282
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