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Abstract

In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of
auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity
differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate
upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa.
However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not
follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict
estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw
on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to
the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the
paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal
intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-
continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling
assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10)
using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB
SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase
towards long duration ramps (p,1026). From the modeling, the following central adaptation parameters are derived;
central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.561025 sones
per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects
central neural coding.
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Introduction

Human hearing is known to function over an extremely wide

dynamic range. In contrast, at a neural level the auditory system is

known to have a very limited dynamic range. In auditory

neuroscience, this is known as the dynamic range problem. In this

paper we address a somewhat paradoxical sub-category of the

dynamic range problem which has arisen in psychoacoustics.

Loudness (L) is the perceived intensity (I) of a sound and the just-

noticeable change in intensity is called the intensity just-noticeable

difference (JND). Both loudness and intensity change detection are

typically assumed to operate upon the same neural signal,

generated in the cochlea and transmitted on the auditory nerve.

This assumption gives rise to the intuitive anticipation of a

relationship between loudness and the intensity JND, such that

one may be predicted from the other and vice versa. However,

previous workers [1–3] were not able to provide a unified model

due to the apparently paradoxical observation that loudness

growth, beyond a certain level, is not reflected in improvement in

intensity discrimination performance [3,4]; the large dynamic

range implied by loudness data is in contradiction of the relatively

small dynamic range implied by intensity JND data.

The work of Hellman and Hellman [1,2] and Allen and Neely

[3] resulted in the theoretical construct of the loudness JND, which

represents the just-noticeable change in loudness that corresponds

to the intensity JND, and the assumption that a reciprocal

relationship between loudness and loudness change detection

should exist. Focusing on the intensity discrimination paradigm,

Hellman and Hellman [1] predicted loudness functions for pure

tones from intensity JND data, following the suggestion of McGill

and Goldberg [5,6] that the loudness JND is the square root of

loudness (DLjnd = L0.5). Allen and Neely [3] tested this for tones and

noise using equivalent loudness and intensity JND (DIjnd) data as

follows:

DLjnd~L(IzDIjnd ){L(I) ð1Þ

Using the loudness function of Fletcher and Munson [7] and the

equivalent intensity discrimination data of Riesz [8], Allen and

Neely showed (via Eq. 1) that the square root exponent of Hellman

and Hellman [1] required modification above 20 dB sensation

level (SL) and introduced a ‘saturation of internal noise’ to account
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for the modification. This showed that loudness and loudness

change detection may not be modeled reciprocally and thus, their

paradox was defined.

To illustrate the paradox, Fig. 1 shows a comparison of Miller’s

[4] wide-band noise data for the intensity JND and for loudness

levels as a function of intensity. Miller’s [4] loudness level data are

converted into loudness units (LU), taken from Neely and Allen [9]

according to the loudness function of Fletcher and Munson [7],

and plotted in log(LU) for comparison to the intensity JND. At

medium levels and above, loudness rises while the intensity JND

remains almost constant.

Recent auditory neuroscience literature appears to provide a

promising solution; Dean et al. [10,11], Wen et al. [12] and

Rabinowitz et al. [13] have addressed the dynamic range problem

in terms of adaptive neural coding. It has been demonstrated (in

animals) that central neural adaptation to mean sound level acts to

improve coding of sound at the most likely (mean) sound level,

mitigating neural dynamic range limitations. Dean et al. [10]

showed that input/output functions of neuronal populations in the

inferior colliculus of the guinea pig are able to shift their operating

points to suit the prevailing (most likely) stimulus sound pressure

level. Dean et al. also showed that the result of such neural

adaptation may be characterized as an imperfect dynamic-range

normalization of the neural signal. The general parameters that

define the adaptation process are the time constant (how fast the

adaptation occurs), threshold (central neural dynamic range) and

amount (how much adaptation occurs).

In order to resolve the paradox, in this paper we assume that

central adaptation to mean sound level occurs in humans during

psychoacoustic experiments [14]. We also assume that the small

change that constitutes a typical intensity JND falls at the lower

limit of the fixed central neural dynamic range, and that

adaptation to high mean levels necessarily raises the lower limit

accordingly. This adaptive raising of the lower limit effectively

degrades intensity discrimination performance relative to the

performance limitations imposed by the peripheral processor.

There are no physiological data available to characterize central

adaptation in human listeners. Therefore, in a numerical

optimization sense, the time constant, threshold and amount are

effectively free parameters within an empirical model of central

adaptation. The main object of this paper is to establish, by a

process of optimization, working central adaptation parameter

values from the empirical data available in the psychoacoustic

literature.

While there are data available over a wide enough dynamic

range to establish the free parameters of adaptation threshold and

amount, the majority of psychoacoustic experiments on intensity

discrimination do not control or report the mean sound level over

the entire course of the experiment. Hence, there are no data

available to establish the time constant.

To overcome this problem, we look to the continuous-pedestal

(carrier) paradigm, where the reported pedestal level provides a

good approximation to the long-term average level. Two such

studies exist with data over a very wide dynamic range; one for

tones [15] and the other for noise [4]. Both studies remain

definitive, in terms of data and in terms of phenomena

characterized by the data, and are ideal for our optimization

problem.

The theoretical foundation for our modeling is the excitation

pattern model [16]. The excitation pattern model is an empirical

model of the cochlea and auditory nerve representation of a sound

– hence we may classify it as a peripheral model. The output of this

model may then be integrated in order to calculate loudness [17].

This is known as the integrated auditory nerve formulation of

loudness [7,3].

The excitation pattern loudness model [17] incorporates

functionality, based on peripheral auditory physiology, which

approximates the major phenomena of psychoacoustic theory (i.e.,

cochlear compression, spread of excitation, the auditory filter, etc).

The parameters of the model are set to fit a broad range of

empirical data. We take this model as input to our central model,

much as the auditory nerve is peripheral to the (central) auditory

cortex. We extend the peripheral excitation pattern model to

include a central adaptive representation which we call a central

excitation pattern model. This approach is similar to that of Parra and

Pearlmutter [18], who proposed a central adaptive model of

tinnitus and the ‘Zwicker tone’.

Since the excitation pattern model of loudness is well

established, we optimize the central adaptation parameters of

our central excitation model to relate the fixed parameters of the

loudness model to intensity change detection. In keeping with the

paradoxical data, we make the implicit assumption that loudness,

and loudness change, are coded independently at a central neural

level, based on common input from the auditory nerve.

In the first stage of this study we briefly review the related

literature and describe an analysis of the empirical data based on

simulation of the experiments that produced the data. This

analysis is used to assess the scope of the problem. Next we

propose a central excitation pattern model with a maximum rate-

of-change detector. The free parameters of the model are

optimized to fit the tone and noise intensity JND data over a

wide dynamic range. The resulting optimized model is shown to

perform well at predicting independent pseudo-continuous inten-

sity JND data from the literature. In the Experiment S1 section, an

experiment is reported, based on the detection of linearly ramped

up-down increments in pseudo-continuous noise pedestals. This

experiment shows that slowly-ramped increments are hard to

detect and validates our use of a rate-of-change model. In this

article we provide empirical evidence to support an argument that

loudness reflects peripheral coding, and the intensity JND reflects

central coding.

Methods

We base our analysis, and subsequent modeling, on the time-

varying excitation pattern loudness model of Moore et al. [17,19] –

Figure 1. Loudness versus intensity JND. Miller’s averaged data for
loudness (diamonds) and the intensity JND (circles/triangles) for
broadband noise for two individual listeners, as a function of sound
level (SL). Loudness data (diamonds), presented in log loudness units
(LU), are taken from Neely and Allen who converted them from
loudness level data of Miller using the loudness function of Fletcher and
Munson. Above about 20 dB SL the JND is approximately constant (i.e.,
Weber’s Law) but loudness increases.
doi:10.1371/journal.pone.0057497.g001
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which we term peripheral. The model has been adequately

described by the authors and we do not repeat the description

here except to summarize the temporal integration of the model.

Glasberg and Moore’s time-varying loudness model [19] produces

a time-varying excitation pattern which is integrated over short

time intervals to produce ‘instantaneous loudness’. Two successive

exponential temporal windows are then used to estimate short-

term loudness (STL) with respect to instantaneous loudness, and

long-term loudness (LTL) with respect to STL. STL is used to

account for loudness of brief duration sounds of fixed intensity,

and LTL is used to account for overall loudness impression of

continuous amplitude modulated sounds.

Each temporal window is defined by a pair of exponential

functions and time constants for ‘attack’ and ‘release’ respectively.

The STL integration times are not symmetrical, the attack time is

25 ms and the release time is 50 ms, in order to account for

greater forward masking than backward masking. The attack and

release times for LTL are similarly asymmetrical. The attack time

is 100 ms and the release time is 2 s, allowing for the persistence of

loudness impression after the stimuli has ceased.

Because the present study is concerned with amplitude

modulation for continuous pedestals, we apply the loudness model

using the LTL integration window. While the LTL attack time was

deliberately set [19] to fit data for loudness of amplitude

modulated sounds, the 2 s LTL release time is merely intended

to produce a lasting impression of loudness after the stimulus has

ceased. Since this release time is not justified, in our modeling the

LTL release time was set to 100 ms (the same as the attack time),

which produced a symmetrical temporal window for LTL with

respect to STL. The combination of the two temporal windows

remains asymmetrical due to the asymmetry in the short-term

temporal window.

Magnitude or Envelope?
An important question is whether it is the size or envelope of the

increment that determines the detection threshold. Hellman and

Hellman [1,2] and Allen and Neely [3] have defined the loudness

JND in terms of magnitude of loudness change caused by the

intensity increment (Eq. 1). This means that for envelope ramps

which are long (slow) compared to temporal integration of

loudness the intensity JND is assumed to be constant.

A single study exists which does not support this assumption.

Riesz’s [8] study of the intensity JND is rarely considered, by

today’s standards, to be strictly intensity discrimination. How-

ever, this study was the first to introduce evidence to suggest a

rate-of-change detector process. It involved the detection of

amplitude (or, envelope) modulation produced when two sine-

waves, closely spaced in frequency, are summed to produce a

modulating envelope and is known as the method of beats.

Riesz used continuous 1 kHz signals to test the amplitude

modulation (beat) detection thresholds, as a function of beat

rate, and found the smallest thresholds at a rate of around 3–

4 Hz. He also found that at lower and higher rates of

modulation, the threshold of detection increased almost

symmetrically (on a log-rate scale) about the 3–4 Hz point.

This result is not predicted by Eq. 1. We conducted a

supplementary experiment (see Experiment S1) to confirm the

generality of Riesz’s results as a function of beat rate.

Eq. 1 provides a loudness domain subtraction between loudness

values at two intensity levels, which relates the difference in

intensity to the difference in loudness that is just noticeable by

discrimination. However, for the rate-of-change detector necessary

to explain the data of Riesz [8], this equation must be transformed

into the time domain [20]. This transformation between the JND

domains, for change over a given time frame (Dt), relates change in

intensity DI/Dt to change in loudness DL/Dt. Eq. 1 becomes:

DL

Dt

� �
jnd

~L Iz
DI

Dt

� �
jnd

 !
{L(I) ð2Þ

Choice of Continuous Data
Candidate continuous-pedestal data for increment detection in

noise [4] and in pure tones [15] were selected because of the large

dynamic range covered in both studies (.90 dB), and because

both studies remain definitive. In Miller’s [4] experiment, the

increment envelope for the noise signals was instantaneous (square)

and duration was 1.5 seconds. For the experiment of Viemeister

and Bacon [15], tones contained 10-ms cosine-ramped increments

of 200 ms duration. A full description of the stimuli of the

respective studies is given in the Description of Modeled Experimental

Conditions section.

Weber’s Law states that the ratio of the intensity JND to

intensity should be constant [21]. Miller’s data showed that this

was approximately true for noise signals. However, Weber’s Law

does not generally hold for pure tones, as is demonstrated by the

data of Viemeister and Bacon. The appearance of an ‘almost’

constant ratio for pure tones has been termed the ‘near-miss’ to

Weber’s Law [5,6]. Therefore, the two studies chosen provide a

contrast, both in terms of stimuli properties (tones/noise, envelope

shape, increment duration) and in terms of qualitative character-

ization of the data (Weber’s Law/‘near-miss’) and a compelling

challenge to the intended unified model.

Transformation of Continuous Data
Here we investigate the question of whether temporal integra-

tion of the loudness model is able to unify the two paradigms

sufficiently that we can proceed to optimization of the central

adaptation stage. Using the loudness model we transform I into L,

DIjnd into DLjnd, and finally (DI/Dt)jnd into (DL/Dt)jnd for the

simulated pedestals-with-increments of Miller and of Viemeister

and Bacon. This analysis tells us how much need there is for

central adaptation and the range in which it is necessary.

Fig. 2(a) shows the re-plotted intensity JND data for Miller and

Viemeister and Bacon, illustrating the disparity in function shape

that must be overcome within our model. Fig. 2(b) shows the

loudness functions of intensity for the pedestals of the respective

studies, as estimated using the loudness model. In Fig. 2(b), for

comparison to the loudness model results, we also show the

loudness level data of Miller [4], as converted by Neely and Allen

[9] using the loudness function of Fletcher and Munson [7] (I = SL

+10 dB [4]; 1 sone = 975 LU). The shape of the loudness function

estimated by the loudness model is in good agreement with the

loudness level data of Miller, but the loudness model predicts lower

absolute thresholds than the data of Miller suggests (see Description

of Modeled Experimental Conditions section).

Fig. 2(c) shows the respective estimated transformed data for

DLjnd(L), using Eq. 1. Fig. 2(d) shows (DL/Dt)jnd(L), estimated using

Eq. 2 for Dt = 1 ms. In Fig. 2(d) the two functions are much closer

than the two functions of Fig. 2(c). This shows that, within the

loudness model, the temporal parameters of the stimuli (envelope

and duration) allow us to better unify the DIjnd data between the

tone and noise studies in terms of (DL/Dt)jnd(L). In other words, Eq.

1 does not take into account the envelopes of the stimuli but, using

Eq. 2, the 10-ms cosine-ramped increments in tones (Viemeister

and Bacon) and the instantaneous changes in noise (Miller)

A Central Model of the Intensity JND
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produce similar maximum loudness slopes for a given overall

pedestal loudness.

In Fig. 2(c), we see a disagreement between the transformed

data sets with regards to the smallest DLjnd that is detectable, by a

factor of around two. This disparity would make it difficult to

model using a magnitude of change model. Moore et al. [17]

suggest an absolute threshold of 0.003 sones. Assuming that

absolute threshold and masked threshold are equivalent, this is not

compatible with the minimum loudness JND of around 0.01 sones

shown in the function of Fig. 2(c). Therefore, it is clear that a

magnitude-of-change model, with a threshold of 0.003 sones,

would not explain the data.

After transforming the data further into (DL/Dt)jnd, in Fig. 2(d)

we see that the smallest (DL/Dt)jnd is much more in agreement

between the two stimuli (,561025 sones/ms). Thus, we confirm

that our choice of decision variable [(DL/Dt)jnd] is useful. The

slopes of these functions, below about 0.25 sones, are relatively flat;

between 0.005–0.25 sones there is a slope of around 0.00005

sones/ms but between 0.05 and 2.5 sones there is a far greater

slope. These two observations conform to the two necessary

conditions of constructing a central, adaptive rate-of-change

model; i) that the (DL/Dt)jnd functions must be close together

(equivalent) and ii) that both functions must be approximately

constant in the range below an equivalent loudness threshold (i.e.,

the two functions represent the same central dynamic range). The

point where the two functions take on a marked increase in slope

(,0.25 sones) is the starting point in our search for a common

threshold parameter value. During the subsequent optimization,

we take the value 5.561025 sones/ms of (DL/Dt)jnd as a constant

for our modeling. This might be taken to represent internal noise

level.

Central Excitation Pattern Model
A general block diagram of the proposed central excitation

pattern model and rate-of-change detector is given in Fig. 3.

Glasberg and Moore [19] provided a loudness model that operates

on the temporal waveform of a given sound to produce a time-

dependent loudness function. We extend this model to produce a

time-dependent central loudness contrast function which can be

used to predict those changes in the intensity of a sound that may

be detectable. It should be noted that our definition of central

loudness (change) is purely functional/notational, in order to

maintain some consistency with the previous literature regarding

the loudness JND.

Central Loudness Adaptation
Due to our confinement to the continuous pedestal paradigm,

we are able to assume that mean level is approximately the same as

the reported level of the pedestal. Therefore, only two free

parameters are needed to define central adaptation (CA) in our

model; threshold (TCA) and normalization amount (a). The value

of a determines central threshold shift that results from mean

peripheral loudness exceeding the central adaptation threshold

(i.e., exceeds the central dynamic range). Consistent with long-

term central adaptation to the prevailing sound level [10–13],

central adaptation is implemented in the form of a partial

normalization of any time-varying loudness function (L) which has

a mean loudness (L) above the central adaptation threshold, TCA.

Since we are concerned with continuous pedestals, mean loudness

Figure 2. Transformation results for the noise data of Miller [dashed grey line] and the pure-tone data of Viemeister and Bacon
[solid red line]. A Average intensity JND data. B Estimated loudness functions [L(I)] for the stimuli (pedestals). Triangles represent Millers loudness
data (I = SL +10 dB), converted to sones (1 sone = 975 LU) from the calculated values of Neely and Allen. C Eq. 1: Estimated transformation of DIjnd

[pane A] to DLjnd. D Eq. 2: Estimated transformation of DIjnd [pane A] to (DL/Dt)jnd. The two magnitude-of-loudness-change functions in C are not
consistent at low levels – there is an offset, but the rate-of-loudness-change functions in D are closer, indicating that the temporal parameters
(duration, envelope) of the stimuli represented in D allow the stimuli to be unified. In D, below ,0.25 sones the functions are approximately zero
slope [i.e., (DL/Dt)jnd is constant].
doi:10.1371/journal.pone.0057497.g002
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refers to a single value for tonal pedestals and an average over an

arbitrarily long time frame for noise pedestals. The use of the

mean loudness for adaptation threshold in continuous pedestals

also provides for smoothing of instantaneous loudness changes in

noise pedestals. The conditional normalization used to produce

the central loudness function, LCen, is

LCen~
L

(1{a)LzTCAaL=L

�
for

for

LvTCA

LwTCA

ð3Þ

Central Loudness JND
Unlike tonal pedestals, noise pedestals include inherent loudness

changes which must be taken into account [22–24]. In our model

we treat each noise signal as deterministic (and repeatable), or

frozen [25,26] and we base detection on the difference between

the maximum value of DLCen for the pedestal and the maximum

value of DLCen during an increment/decrement applied to that

pedestal.Consistent with Eq. 2, the threshold constant is defined in

sones per ms and the proposed threshold expression is

DL

Dt

� �
jnd

~ max
DDLCenD
Dt

� �
inc

{ max
DDLCenD
Dt

� �
ped

ð4Þ

where the pedestal signal is denoted (DLCen/Dt)ped, and the

pedestal-plus-change signal is denoted (DLCen/Dt)inc. Thus, given a

fixed (constant) value for (DL/Dt)jnd, Eq. 4 may be solved by

adjusting the increment size so as to affect (DLCen/Dt)inc.

Using a fixed value of (DL/Dt)jnd extracted from Fig. 2d

(5.561025 sones/ms) a manual, iterative optimization process was

conducted by using the central model to predict the value of DIjnd

for each data point of the two studies using given parameter values

of threshold TCA and a. Within each iteration the entire range of

stimuli for both studies was simulated. For each simulation within

a given iteration, Eq. 4 was evaluated numerically using the model

to find DIjnd. The predicted value of DIjnd was compared to the

respective data point and an error term calculated. For each

iteration the average error term was calculated over the two

datasets. This process was repeated, with adjustments made to the

free parameters (TCA and a) in order to minimize the error terms

until both slopes of the respective minima for each free parameter

were located – i.e., until the values of TCA and a were optimal. The

JND for the change in intensity (DIjnd) is expressed as

JND~10log10(1z
DIjnd

I
) ð5Þ

Results and Discussion

In this section we describe the results of the optimization process

and of the proposed central excitation pattern model applied to a

further set of pseudo-continuous intensity JND data from the

literature (see Description of Modeled Experimental Conditions section).

For each separate simulation, within the optimization and within

the simulation of the pseudo-continuous data, stimulus waveforms

were produced to exactly replicate the documented conditions of

the respective study. This explicitly included level and envelope.

For comparison, empirical data for intensity JND values are also

presented in terms of intensity in the form of Eq. 5. Data are

plotted on a logarithmic scale to allow easier determination of

Weber’s Law characteristics, whilst retaining the familiar numer-

ical scale of classical literature for the intensity JND. Goodness-of-

fit measures are given, for each dataset, in the form of two-tailed

Pearson correlation coefficients (r, p) and root-mean-square error (e,

dB). A description of the experimental conditions for each study is

given in the Description of Modeled Experimental Conditions section.

Central Adaptation Parameters; Optimization Results
From the optimization, the following values were found:

TCA = 0.215 sones, and a = 0.95 (i.e., resulting in 95% normaliza-

tion using Eq. 3). The TCA value of 0.215 sones (approximately

25 dB SPL in the 1 kHz pure-tone case) corresponds relatively

well to the known dynamic range (approximately 35 dB) of

primary auditory nerve fibers [27,28]. The 95% normalization of

the central loudness function is approximately consistent with the

known sub-optimal adaptation behavior of auditory neurons [10–

13]. In summary, the parameters found appear reasonable.

Fig. 4(a) shows the resulting central loudness (red line) as a

function of peripheral loudness (grey, dashed line), illustrating the

result of the optimization and the effects of central adaptation. In

order to show the effect of central adaptation on the estimated

intensity JND functions, Figs. 4(b, c) show the rate-of-change

predictions of the unaltered peripheral model (grey, dashed line)

compared to the optimized central excitation pattern model (red

line) for the data of Viemeister and Bacon (Fig. 4b) and Miller

(Fig. 4c). The fit of the optimized central excitation pattern model

Figure 3. Block diagram of the central excitation pattern model
and rate-of-change detector process. The area indicated as
peripheral contains the loudness model of Glasberg and Moore [19]
and the area indicated as central contains the proposed additions of the
present study.
doi:10.1371/journal.pone.0057497.g003
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PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e57497



to the data of Viemeister and Bacon is good (r = 0.99,

p = 1.8610213, e = 0.04 dB), as is the fit to the data of Miller

(r = 0.94, p = 1.461025, e = 0.19 dB). The growth of loudness for

both cases (tones/noise) gives a good prediction below central

adaptation threshold. However, in both cases, the unaltered

peripheral model results diverge strongly from those of the

optimized central model above approximately 0.2 sones and the

peripheral model fails to hold to the data at higher levels. As can

be expected from looking at Fig. 4(b/c), the value of TCA is

relatively tightly controlled by the fact that a larger value would

increase the error for the data of Viemeister and Bacon (Fig. 4b)

and a smaller value would increase the error for the data of Miller

(Fig. 4c). The value of alpha is also relatively tightly constrained by

the fact that smaller values would cause the functions to tend

towards the under-estimation of the peripheral model output, and

the fact that for larger values the model would tend towards

Weber’s Law for the tonal data.

This modeling result is interesting because the ‘near-miss’ is

often attributed to a combination of cochlear compression and

spread of excitation [16,29], where high-pass noise or high-

frequency tones are used to eliminate the near-miss, and hence it is

anticipated that the spread of excitation featured in the excitation

pattern model should lead to a near-miss. The modeling result for

the unaltered peripheral model does not produce a compelling

near-miss and so it appears that the addition of central adaptation

is necessary to fit the data. To repeat the statement made by Allen

and Neely [3], this account of the near-miss seems different to the

spread-of-excitation hypothesis.

Results of Supplementary Experiment
Fig. 5a shows the results of the supplementary experiment (see

Experiment S1). Group mean thresholds for the 10 listeners are

given, including error bars representing 95% confidence intervals.

The trends shown in the data are significant (p = 9.5561028,

Friedman Rank Sum Test). The results, plotted on a logarithmic (time)

scale, show symmetry about the half-ramp of 100-ms ‘best

detection point’ which appears equivalent to that shown around

3–4 Hz by Riesz (Fig. 5b). Furthermore, the results confirm

Riesz’s general finding that slow ramps are hard to detect. It

should be noted that short-term (trace) memory [30] may play a

role in the results at very long ramps (i.e., .4 seconds), in that the

listener is forced to assess the intensity change within the short-

term memory window (trace).

Simulation of Pseudo-continuous Experiments
A selection of contemporary intensity JND studies were chosen

to test the generality of the model in conditions where the

continuity constraint held only loosely but where other parameters

important to temporal integration theory were varied. We call

these studies pseudo-continuous because the pedestals used would

be considered continuous if they were not gated on and off. We

also include our supplementary experiment (see Experiment S1).

None of these studies varied (roved) the listening level within

experimental runs, so the long-term average level should be

reasonably close to the reported pedestal levels.

Fig. 5a shows the predictions of the model (dashed grey line)

compared to the results of the supplementary experiment.

Generally, the model predictions are reasonably close (r = 0.94,

p = 4.861023,e = 0.9) to the data. The model predicts an

approximately symmetrical curve about the ‘best-detection’ rate.

The large intensity JNDs at high and low rates of change and best-

detection half-ramp duration of 100 ms are in good quantitative

agreement. Within the model, Riesz’s paradigm and that of the

supplementary experiment are shown to be equivalent.

Fig. 5b shows a comparison of the predictions of the model

(dashed grey line) with the data of Riesz’s first experiment which

determined beat-modulation intensity JND as a function of beat

frequency for continuous ,1 kHz pedestals. The shape of these

data are similar to the experimental data of the supplementary

experiment, in that it shows a log-time symmetrical non-

monotonic JND as a function of beat rate, where low beat rates

are as hard to detect as high beat rates. The shape and form of the

function produced by the model is similar (r = 0.93, p = 1.461025,

e = 0.19 dB) to that of Riesz’s data, particularly in terms of a

minimum JND point and symmetrical shape about the minimum.

We note that Riesz’s data as a function of level, which almost hold

to Weber’s Law above about 60 dB SL, do not appear consistent

with other more recent data [20,3] and so we do not attempt to

model them here.

Fig. 5c shows the predictions of the model (dashed grey line)

compared to the mean data of Plack et al. [31]. These data show

the effect of duration on brief, linearly ramped increments in noise

pedestals (see Description of Modeled Experimental Conditions section for

further details). The model shows good agreement with the data

(r = 0.92, p = 7.561022, e = 0.84 dB) in terms of shape, but a small

over-estimation is evident.

Fig. 5d shows the predictions of the model (dashed grey line)

compared to the mean data of Gallun and Hafter [32]. These data

describe the effect of brief linearly-ramped increments on 477 Hz

Figure 4. Optimization results; peripheral versus central model. A Central loudness (solid red line) for continuous pedestals, as a function of
peripheral loudness (dashed grey line), illustrating the saturating effect of central adaptation (Eq. 3). B, C Comparison of estimated intensity JNDs
from the peripheral and central excitation pattern rate models respectively. B circles: the averaged 1-kHz continuous pure-tone increment-detection
data of Viemeister and Bacon and C is the individual (circles and triangles) continuous-noise increment-detection data of Miller.
doi:10.1371/journal.pone.0057497.g004
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pure tone pedestals (see Description of Modeled Experimental Conditions

section) and so is the pure tone equivalent to the data of Plack et al.

[31]. The model shows good agreement with the data (r = 0.99,

p = 7.761022, e = 0.1 dB).

Fig. 5(e, f) shows selected datapoints from Oxenham’s [33] data

for brief increments and decrements (respectively) in pure-tones

compared to the predictions of the model (dashed grey line). These

data characterize the effect of duration and background (masking)

noise on the pure tone intensity JND. The data show a monotonic

decrease of JND with increase in duration and a parallel shift

upwards in the JND for the addition of masking noise. In our

central excitation pattern modeling of these data, we treat the sum

of masking noise and tonal pedestal as a single signal and we look

for a threshold increase in the maximum loudness slope caused by

the increment in the tonal pedestal component. Generally, the

model provides reasonable, if not ideal, qualitative and quantita-

tive account of the data (r = 0.89, p = 2.661028, e = 0.19). For the

signals presented in noise, central adaptation provides for an

increase of the JND consistent with the data.

Table 1 provides a summary of the goodness of fit measures

described above and for the overall fit to the whole data set

(r = 0.91, p,1610216, e = 0.09 dB). Outside of the error margins

discussed in the Error Margins section, some error in the modeling

of the pseudo-continuous data may be explained in terms of

assumption of the continuous-levels approximation. It may be that

the central adaptation contribution is excessive in these cases.

Summary
The main objective of this study was to establish parameters of a

central adaptive model able to relate loudness to the intensity JND.

The fit of the model is good, even in the case of pseudo-continuous

data, and the adaptation parameters obtained are plausible with

regards to the neuroscience literature.

Figure 5. Simulation of pseudo continuous data; miscellaneous. Predictions of the central excitation pattern model (dashed grey line) for
various data; A group mean thresholds of the supplementary experiment (circles); noise pedestals with up-down ramps, at half-ramp durations of 5,
10, 100, 1000, 10000 and 50000 ms and at an overall listening level of 33 dB SPL (rms). Error bars represent 95% confidence intervals. The trends
shown in the data are significant (p = 9.5561028, Friedman Rank Sum Test). B Just-noticeable difference for envelope modulation of a 1 kHz tone, as a
function of beat frequency, produced with the method of beats by Riesz for a listening level of 50 dB SL. C Just-noticeable difference for detection of
symmetrical, linearly-ramped increments in 20-dB spectrum-level noise pedestals, as a function of half-ramp duration (one-sided) - averaged data of
Plack et al. (circles). D Just-noticeable difference for increment detection in 477 Hz pedestals, as a function of increment duration at a peak level of
60 dB SPL - averaged data of Gallun and Hafter (circles). E, F JND for increment and decrement detection in 4 kHz pedestals respectively, as a
function of duration at a listening level of 55 dB SPL - averaged data of Oxenham for 500 ms pedestals presented in quiet (circles), 0 dB (triangles)
and 20 dB (squares) spectrum level noise.
doi:10.1371/journal.pone.0057497.g005

Table 1. Goodness of fit measures for the central model.

r P e

Viemeister & Bacon, 1988 0.99 1.8610213 0.04

Miller, 1947 0.94 1.461025 0.19

Oxenham, 1997 0.89 2.661028 0.5

Riesz, 1928 0.93 4.861024 0.15

Present study 0.94 4.861023 0.9

Plack et al., 2006 0.99 1.161022 0.84

Gallun & Hafter, 2006 0.99 7.761022 0.1

Overall 0.91 ,1610216 0.09

Pearson correlation coefficients (r, p) and rms error (e) for central excitation
pattern rate modeling results compared with the data.
doi:10.1371/journal.pone.0057497.t001
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Our supplementary experiment has shown that large intensity

JNDs are obtained at very low rates of intensity change,

confirming the generality of Riesz’s findings.

In the context of our modeling, we have shown that the spread

of excitation explanation alone is not sufficient to produce a near-

miss. Central adaptation has been used to simultaneously explain

data featuring approximate examples of Weber’s Law and the

near-miss, and to explain the effects of masking noise on increment

and decrement detection.

In 1997, with impressive foresight, Allen and Neely suggested

that the locus of their paradox might be the central nervous

system. We have made explicit the argument that loudness reflects

peripheral neural coding, and the intensity JND reflects central

neural coding.

Supplementary Experiment

The following experiment was designed to replicate the rate-of-

change-detection paradigm of Riesz [8], within the more

controlled conditions of linearly ramped increments in noise

pedestals, and to confirm the generality of his rate findings. The

use of linear ramps in broadband noise removes possible

confounds, relating to unwanted detection cues of the beat-

detection paradigm employed by Riesz.

Ethics Statement
Participants were voluntary, unpaid and gave informed verbal

consent before the experiment. Participants were free to withdraw

at any point. Tests were run on an ad-hoc basis. Written consent

was not deemed necessary due to the low (safe) sound pressure

levels employed in the test but the consenting volunteers were

documented. The experimental protocol (including consent) was

approved by the ethics committee of Queen Mary University of

London.

Stimuli
All stimuli were generated digitally at 24 bit resolution. A pair of

Beyerdynamic DT100 isolating headphones were used to present

the stimulus to the subjects, which was played back directly from a

computer at a sampling rate of 44,100 Hz. Presentation was diotic

(same in both ears). The pedestal was a broadband (0-20 kHz)

Gaussian noise, presented at an overall level of 33 dB SPL (rms). In

the target interval, symmetrical, linearly-ramped envelopes with

half-ramp durations of between 5 and 50,000 ms were added to

the noise pedestals. Half-ramp durations of [5, 10, 100, 1000,

10000, 50000] ms were used. The increment consisted of a linear

increment ramp immediately followed by a linear decrement ramp

of equal duration. The increments were located in the temporal

center of the target pedestal. For half-ramp durations of 1 second

or below, pedestals were of 4 seconds. For half-ramp durations of

10 seconds, the pedestal was of 24 seconds. For half-ramp

durations of 50 seconds the pedestal was of 104 seconds. Both

target and reference intervals were gated with 10-ms raised-cosine

ramps.

Procedure
An adaptive three-down one-up, two-interval forced-choice

(2IFC) procedure was employed which estimates the 79.4%

correct identification [34]. Each trial consisted of two observation

intervals, one of which was selected at random to contain the

target increment. The inter-stimulus interval was 3 seconds. The

level of the increment was defined as the maximum difference (in

dB) between the pedestal and the target. The starting value was 20

dB. The initial step size was 5 dB for the first 4 reversals and was

subsequently halved. A reversal was defined as an increase in

increment size following a decrease, or vice-versa. Three

consecutive correct identifications of a ramp resulted in a

reduction in size of the increment and one incorrect answer

resulted in an increase. After 12 reversals, threshold was taken as

the arithmetic mean of the last 10 reversals.

After each trial, subjects were provided with correct/incorrect

feedback on their responses. Trials were undertaken in blocks

lasting no longer than 20 minutes. Due to the large number of

relatively long duration trials necessary, blocks were often

interrupted with a break period of 15 minutes, after which the

block continued until either the next rest period or completion.

For the longest half-ramp duration (50 s) such breaks were

occasionally taken in the course of a single threshold determina-

tion. On two occasions, within a block, the break was extended

overnight and the block was continued on the following day. Prior

to the test, each subject was given a brief demonstration to

familiarize themselves with the interface and procedure and was

allowed a single practice run.

Listeners
Ten unpaid volunteer subjects served as listeners in the

experiments. Seven male subjects and three female subjects took

part. The mean age of the subjects was 29 (min: 20, max: 36,

standard deviation: 5.9). All reported normal hearing and some

reported limited previous experience of participating in listening

tests. All participants were naı̈ve about the purpose of the test.

Description of Modeled Experimental Conditions

For direct comparison with the results of Viemeister and Bacon

[15], the model was used to obtain detection thresholds for

increments of 200 ms in continuous 1 kHz tones over the intensity

range from threshold to 85 dB SPL. The increments were gated

with 10-ms raised-cosine ramps.

Miller [4] measured increment detection thresholds for two

subjects using continuous, wide-band noise signals. The noise

signals were specified as having power spectrum of 65 dB from

150 to 7,000 Hz and were incremented for 1.5 sec. duration at

intervals of 4.5 sec. Since Miller did not specify the spectrum

outside of this range, in our modeling a band pass filter was used to

reduce the energy outside of this range by 12 dB per octave. We

assume that the increment envelope is square (instantaneous). Best

fit to the data was found where SL was converted to SPL to be

consistent with the threshold predicted by the (peripheral) loudness

model (SPL = SL + 4 dB).

For comparison to the results of Oxenham [33], we used the

model to obtain intensity JND thresholds as a function of

increment and decrement duration at 55 dB SPL at durations

between 4 and 200 ms. Thresholds were obtained both in quiet

and in wide-band noise of 0 and 20 dB spectrum level. Increments

and decrements in 4 kHz pure-tone pedestals of 500 ms were gated

using raised-cosine ramps of 2 ms.

For comparison to the results of Plack et al. [31], the model was

used to obtain thresholds for detection of brief symmetrically-

ramped increments in a 20 dB spectrum-level broadband (0 - 20

kHz) noise pedestal. The ramps were linear and of durations

between 2.5 and 20 ms. Increments were centrally located within

the pedestal.

To test the model against the results of Gallun and Hafter [32],

we employed 477 Hz pure tone pedestals and obtained thresholds

for detection of brief symmetrical increments of durations between

10 and 85 ms, gated with 10-ms cosine ramps. Pedestals of 1000
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ms were used and the increments were centrally located within the

pedestal.

Error Margins

There are several potential sources of error or confusion in the

recreation and modeling of the experimental conditions of the

studies reviewed in this paper. First, since much of the data were

originally presented in terms of SL, the question of thresholds is

important. Riesz [8], for example, did not obtain absolute

thresholds for his subjects but took them from an earlier work

by Fletcher and Wegel [35]. Fletcher and Wegel did not describe

the method or statistical calculation by which they obtained their

thresholds. In any case, the thresholds are sufficiently different to

those obtained with modern experimental methods and equipment

that some margin must be allowed to account for this.

Furthermore, Miller [4] obtained absolute thresholds for his noise

stimulus but did not specify the procedure by which he obtained

the absolute thresholds.

Second, there is significant variation in statistical level used to

define intensity JND threshold. Miller, for example, defined the

threshold according to a 50% correct location on the psychometric

function, whereas Viemeister and Bacon defined the threshold at

the 70.7% correct point. For our supplementary experiment we

define threshold at the 79.4% correct point. The model, which is

based on loudness data from modern studies [17] is likely to

provide error in the estimation of intensity JND values for earlier

studies.

Third, the data of Miller [4] were taken with noise stimulus that

is only defined as having a spectrum of +-5dB in the range of 150

Hz to 7,000 Hz. Although the +-5 dB appears reasonable for

Gaussian noise, this description does not allow any reasonable

assumption to be made about the spectrum of noise outside of the

bandwidth specified. Further, Miller did not specify the spectrum

of the noise after it had been passed through the filter of the

headphone receiver. Generally, the data of the studies reviewed

here were obtained with various headphone receivers and other

apparatus whose influence is not known.

Fourth, the experimental population size involved in the studies

reviewed is highly limited; 2 subjects for Miller, 3 subjects for

Viemeister and Bacon, 4 subjects for Oxenham and 3 subjects for

Riesz.

Since the intensity JND as a function of listening level is known

to be a steep function at low levels, the question of absolute

thresholds for a given listener or for a population is critical. Where

modeling error is shown in offset but not in slope (i.e., there is an

offset in the SPL axis) it is possible that variance in individual

thresholds is the source of the error. This is particularly likely in

light of the small population sizes described above.

Limitations
The loudness model used here features relatively complex

functionality; the transfer function of the outer and middle ear

filter is relatively discontinuous, the auditory filters change shape

(asymmetrically) with level and many aspects of the nonlinear

input/output function are frequency dependent. Our results are

therefore somewhat dependent on this model. However, alternate

peripheral models should, in principle, produce similar results as

far as they show an equivalent (or better) fit to loudness data.
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