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ABSTRACT
Exercise-induced increases in core body temperature could negative impact performance and may
lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling),
during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body
temperature and therefore improve exercise performance. The aim of the present review is to
provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-
cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling
interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding
the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling
technique and compared whether cooling-induced performance benefits are different between
cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes
and coaches with important information regarding the implementation of cooling techniques to
maintain exercise performance and to successfully compete in thermally stressful conditions.
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Introduction

Human core body temperature (Tc) is regulated to
ensure normal body function, while any increase of Tc
above its normal range (set-point) is defined as hyper-
thermia.1-3 During exercise only »20–30% of the pro-
duced energy is converted to mechanical work, whereas
»70–80% of the energy is released as heat.4,5 The exer-
cise-induced increase in heat production typically
exceeds the heat loss capacity and results in Tc eleva-
tion.6,7 Previous studies showed significant increases in
Tc in athletes exercising in cold,8 warm,9 and humid10

environmental conditions. There is evidence of exercise-
induced fatigue beyond a Tc threshold of> 40�C11 and a
Tc>40.5�Cmay lead to the development of heat-related
illnesses such as heat exhaustion, heat injury and heat
stroke.12,13 In addition to the exercise-induced elevations
in Tc, prolonged exercise also increases skin tempera-
ture.14 A combination of an increased core- and skin
temperature, resulting in a lower core-to-skin gradient, is
associated with a decreased exercise performance.14-16

Strategies to reduce the thermal strain prior to, during
and directly after exercise are therefore of great
importance.

Cooling interventions could increase heat storage
capacity (pre-cooling), attanuate the exercise-induced
increase in Tc (per-cooling) and accelerate recovery fol-
lowing intense exercise (post-cooling). In the past decade,
several reviews and meta-analysis have been published
with respect to cooling and exercise. Early reviews were
primarily focused on the effects of pre-cooling on ther-
moregulation and exercise performance.17-21 More
recently, several overviews were published on the benefits
of per-cooling and the differences between pre- and per-
cooling.22-25 However, an important limitation of previ-
ous work is that a comprehensive summary of the poten-
tial benefits of all cooling modalities for different types of
sports performing exercise under different environmen-
tal conditions is missing. Furthermore, additional insight
in the underlying mechanisms that are responsible for
the pre-, per-, and post-cooling benefits is needed.
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Therefore, the aim of the present review is to pro-
vide a comprehensive overview of current scientific
knowledge in the field of pre-cooling, per-cooling and
post-cooling. Based on existing studies, we will discuss
1) the effectiveness of cooling interventions on
improving exercise performance, 2) the underlying
physiological mechanisms and 3) practical considera-
tions regarding the use of different cooling techniques.
This article provides researchers, physicians, athletes
and coaches with important information regarding
the implementation of cooling techniques to maintain
exercise performance and to successfully compete in
thermally stressful conditions.

Methodological considerations

The use of cooling techniques prior to, during or
directly after exercise is widely described in literature,
whereas large differences in study setup were found
across studies. The study protocols differ with respect
to cooling technique (i.e. cooling vests, cold water
immersion, ice slurry ingestion, cooling packs, men-
thol cooling, facial water spray), exercise protocol
(time trial, total distance covered, time to exhaustion,
fixed exercise protocols), types of exercise (endurance

versus strength) and ambient conditions (temperature,
humidity). Furthermore, the sample size and study
population (age, sex, level of fitness) also differed sub-
stantially across studies. This lack of standardization
makes a direct comparision between studies difficult.
A standardized effect size (ES) can be calculated to
compare studies with different study protocols.26 In
the present review, we decided to present relative
changes as well as effect sizes to demonstrate the effect
of cooling on exercise performance.

In addition to the methodological differences
among studies, publication bias could also influence
overall outcomes. Two previous meta-analyses dem-
onstrated a potential publication bias,22,24 whereas
other reviews did not report a potential publication
bias.21,27 This descripancy suggests that publication
bias might be present, which may implicate in an
overestimation of the overall effect of cooling.

Pre-cooling

Pre-cooling can be described as the rapid removal of
heat from the body before exercise to create a larger
heat storage capacity.28 An overview of used cooling
techniques is shown in Table 1. Many pre-cooling

Table 1. Overview of the different cooling techniques.

Cooling
technique

Timing of
cooling

Intervention
temperature (�C)

Advantages of cooling
technique

Disadvantages and practical considerations

Cooling vest Pre-cooling 10–20�C - Light weight - Less aggressive
Per-cooling - Easily applicable in field-based

settings
- Quick decrease in cooling power

- Covers a large part of the body

Ice vest Pre-cooling < 0�C - Aggressive cooling technique - Heavy weight
Per-cooling - Covers a large part of the body - Difficult to use in field-based settings
Post-cooling

Cold water ingestion Pre-cooling 1–5�C - Direct effect on core body
temperature

- Covers a small part of the body

Per-cooling - Easily applicable in field-based
settings

- Less aggressive

Ice slurry ingestion Pre-cooling < 0�C - Direct effect on core body
temperature

- Covers a small part of the body

Per-cooling - Easily applicable in field-based
settings

- Potential gastrointestinal discomfort

Menthol cooling Pre-cooling Not applicable - Easily applicable in field-based
settings

- Best way of application is not yet known

Per-cooling

Facial wind/water
spray

Pre-cooling Wind and water
temperature

- Covers a large part of the body - Difficult to use in field-based settings

Per-cooling 10–20�C - No direct contact with the skin

Cooling packs Pre-cooling <0�C - Aggressive cooling technique - Covers a small part of the body
Per-cooling - Easily applicable in field-based

settings
- Can restrict movement and improve air

resistance
Post-cooling - Heavy weight, less suitable for per-cooling

Cold water immersion Pre-cooling 10–25�C - Covers a large part of the body - Not suitable in field-based settings
Post-cooling - Direct contact with the skin

Cryotherapy Pre-cooling < ¡100�C - Covers a large part of the body - No direct contact with the skin
Post-cooling - Aggressive cooling technique - Expensive

2 C. C. W. G. BONGERS ET AL.



techniques were proven to be effective, ranging from
whole body pre-cooling such as cold water immer-
sion20,29 and cold air exposure30-32 to local cooling
using cooling vests33,34 or cooling packs,35,36 or internal
cooling strategies such as the ingesting of cold water or
ice slurry.20,37,38 Furthermore, a combination of these
cooling techniques (i.e., mixed method cooling), is
often used to obtain a greater cooling power and larger
reduction in Tc.34,36,39

The effects of different pre-cooling techniques on
exercise performance were examined within various
ambient conditions and using different exercise proto-
cols (i.e., endurance exercise vs. (intermittent) sprint
exercise). We previously demonstrated in a meta-anal-
ysis that pre-cooling improves exercise performance in
the heat (ambient temperature >30�C) with 5.7 §
0.9% (ES D 0.44).22 Mixed method cooling appeared
to be the most effective strategy to enhance exercise
performance, followed by cold water immersion, cold
water/ice slurry ingestion, cooling packs and cooling

vests (Fig. 1).22 These findings suggest that vigorous
cooling of a large surface of the body is more effective
than local body and/or less powerful cooling techni-
ques to improve exercise performance.

Ambient conditions could also impact the perfor-
mance benefits associated with pre-cooling. Although
most pre-cooling studies were performed in simulated
heat (>30�C), professional and recreational athletes will
not solely practice and compete in hot ambient temper-
atures, but also in cool and moderate environmental
conditions. Ninety minutes of cold air (0–18�C) expo-
sure prior to exercise in moderate ambient conditions
(18�C) resulted in an increased time to exhaustion32

and an increased 1 hour work rate (172W vs. 161W for
cooling and control respectively).30 In contrast, upper
body pre-cooling using an ice vest did not improve
intermittent sprint exercise in a moderately warm envi-
ronment (22�C dry bulb temperature, 40% relative
humidity).40 Moreover, a decrease in exercise perfor-
mance was found after 30 min of exposure to cold air
(5�C) prior to 30 minutes of cycling at 50% of VO2 max
in a cold ambient temperature (5�C).41 The association
between ambient temperature and pre-cooling induced
performance benefits was reinforced in a meta-analysis
which found greater effects with increasing ambient
temperatures.21

The performance benefits of pre-cooling were
confirmed by another meta-analysis,24 as pre-cool-
ing significantly improved intermittent sprint exer-
cise and endurance exercise performance. However,
pre-cooling deteriorated single sprint perfor-
mance.24 The different impact of pre-cooling on
single vs. intermittent sprint exercise may be
explained by the longer exercise duration (45–
70 sec vs. 40–80 min) and thus higher thermal
stress in the intermittent sprint exercise protocols
(i.e., soccer, field hockey, tennis and volleyball).
Sprint exercise is mainly influenced by muscle tem-
perature and anaerobic metabolism, rather than
thermoregulatory factors.24,42 Cooled muscles have
a decreased voluntary power output and might
have a reduced anaerobic metabolism during sprint
exercise.43,44 In contrast, endurance exercise
includes performance of prolonged activities on a
moderate to high intensity, which results in a
greater thermoregulatory burden than sprint exer-
cise. The benefits of pre-cooling are therefore larger
for endurance athletes than for (intermittent) sprint
athletes.24

Figure 1. An overview of the average performance improvement
(%) (A) and effect size (B) of pre-cooling (black bar) and the bene-
ficial effects of different precooling strategies (gray bars). Data
are presented as mean § standard deviation. The figure is
adapted from our previous meta-analysis.22
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Taken together, the effects of pre-cooling greatly
depend on the cooling strategy, exercise setting and
ambient conditions. The optimal pre-cooling strategy
to improve exercise performance includes a vigorous
cooling technique that covers a major part of the body
and is used during endurance exercise protocols in
hot and humid environmental conditions.

Per-cooling

More recently, the use of cooling techniques during exer-
cise became of greater interest. The beneficial effects of
pre-cooling normally attenuate after 20–25 minutes of
exericse.45 Therefore, cooling athletes during exercise
may extend the duration of the performance benefits of a
cooling intervention. Additionally, the thermal strain
during exercise is much higher compared to resting or
warming-up condions,6 which suggests that per-cooling
should have a larger potential benefit on thermoregula-
tion and exercise performance compared to pre-cooling.
We defined per-cooling as any opportunity to reduce
thermal stress during an exercise performance trial. Due
to practical feasibility and sporting regulations, less cool-
ing techniques can be applied during exercise compared
to pre-cooling. Consequently, the effects of per-cooling
were investigated using cooling packs,46-48 cooling
vests,49,50 cold water/ice slurry ingestion,37,51 facial wind
or water spray cooling52,53 and menthol cooling.54-56

Interestingly, menthol cooling could be applied as a
mouth rinse, a gel on the face or as a spray on the clothing
of the athlete.

Four reviews were published with respect to per-
cooling and exercise performance,22-25 of which 3 con-
ducted a meta-analysis. Per-cooling literature predom-
inantly demonstrated improvements in exercise
performance, as 15 out of 21 studies found a positive
effect. In our meta-analyses, we concluded that ice
vest cooling appeared to be the most effective method
followed by cold water ingestion and cooling packs,22

whereas other reviews did not define the most effective
per-cooling technique.23,24 The extrapolation of these
findings were however limited, as only a single study
for ice vest cooling and cold water ingestion was
included in the initial analysis, whereas studies with
an ambient temperature <30�C were excluded.22

Therefore, we repeated our initial meta-analyses and
added 12 recent per-cooling studies to our original
approach (Table 2). On average per-cooling results in
a 9.3% (ES D 0.35) performance improvement

(Fig. 2), which did not differ from pre-cooling (5.7%,
ES D 0.44, p D 0.32). Furthermore, per-cooling using
cold water/ice slurry ingestion appeared to be the
most effective strategy to enhance exercise perfor-
mance (5.7%, ES D 0.88), followed by an ice- or cool-
ing vest (11.1%, ES D 0.67), facial wind or water spray
(18.5%, ES D 0.54), cooling packs (4.4%, ES D 0.33),
and menthol cooling (8.7%, ES D 0.23, Fig. 2). These
findings suggest that per-cooling is effective in
improving exercise performance. However, one must
realize that wearing a (heavy) ice vest (»1 kg)50 or
using facial wind or water spray cooling57 may be fea-
sible in laboratory conditions, but is generally not
practical during competitive, field-based, settings.

It is important to note that we have found a discrep-
ancy between the most effective cooling strategy based
on the relative performance benefits and the effect size.
An explanation for this finding may relate to the low
number of per-cooling studies and subsequently low
number of tested subjects. Hence, the effect-size is
probably a better reflection of the true effects, as it
allows a comparison across studies with different set-
ups and sample sizes. Future per-cooling studies are
needed to confirm the most effect per-cooling strategy.

The ambient temperature seems to impact the
effects of per-cooling, as our analyses revealed a
greater performance benefit in moderate (< 30�C,
24.4 § 4.2�C) compared to hot (� 30�C, 32.3 §
1.9�C) ambient conditions (18.1%, ES D 1.27 vs. 5.9%,
ES D 0.28 respectively, p D 0.015), whereas the effects
of per-cooling in cold ambient conditions have not be
investigated yet. This observation is unexpected,
because the thermal load is larger in hot ambient con-
ditions, 58 which should facilitate the potential benefits
of cooling. However, there is a large variation in per-
formance benefits in the studies performed in moder-
ate ambient conditions, ranging from a small non-
significant negative effect (¡0.6%, ES D 0.08)49 to a
very large positive effect (51%, ES D 1.17)57 of per-
cooling. This variation may possibly be explained by
methodological differences in the exercise protocol
and outcome measures, as a subjective outcome (rate
of perceived exertion) was used as a surrogate for exer-
cise intensity and may therefore influence the time to
exhaustion.52 Alternatively, the moderate training sta-
tus of athletes that were included in these studies may
contribute to the large within subject variability of
performance benefits using facial water spray
cooling.57

4 C. C. W. G. BONGERS ET AL.
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A few studies (n D 5, 24% of per-cooling publica-
tions) found no difference in exercise performance
between the per-cooling and control condition. An
explanation may relate to the cooling power of the
used interventions. One study used an evaporative
cooling vest (»10�C),49 while another study used cold
water ingestion (10�C) to enhance performance.59 The
relatively high intervention temperature may be insuf-
ficient to elicit a performance benefit. Furthermore,
the timing of cooling may explain the absence of an
effect. In a menthol cooling study, the menthol spray
was applied to the participants cycling jersey after
they covered 10 km (62%) of a 16.1-km cycling time
trial.55 Accordingly, the menthol spray could only
impact performance for a relatively short period of
time. Finally, the lack of an effect of per-cooling might
be explained by the short exercise duration (15 min)
of an experiment,48 in which increases in Tc were
insufficient to attenuate exercise performance (peak
Tc D 38.4 § 0.3�C). Taken together, ‘negative-studies’
provide important information to researchers, coaches

and athletes as they may aid in the selection of an
appropriate cooling protocol.

Only 1 study demonstrated a substantial negative
impact (¡11.6%, ESD¡0.17) of per-cooling on exercise
performance.60 In this randomized crossover study, 12
subjects completed 2 time to exhaustion runs at 75% of
VO2 max with and without palm cooling in an ambient
temperature of (30�C). Time to exhaustion was »5.5
minutes longer in the control condition compared to the
palm cooling condition. In contrast, another study
reported that palm cooling improves 30 km cycling time
trial performance in the heat (32�C) with 4 minutes
(6.6%, ESD 1.54).61 Therefore, the effects of palm cooling
are still unclear and future studies are warranted.

Two studies explored the effects of per-cooling on
resistance exercise performance. Intermittent palm
cooling between 4 subsets of leg press resistance exer-
cise resulted in a delayed decrement of average power
output, resulting in a higher power output in the
fourth subset of leg press exercise.62,63 A potential
explanation for this finding may relate to temporarily
overriding sensations of fatigue.62 The peripheral ther-
mal input may result in a lower awareness of effort
while using palm cooling. Therefore, the motor output
to contracting muscles is adjusted, by allowing less
inhibition of the number of activated motor units,
resulting in a higher power output and number of
repetitions.63

Concisely, the majority of per-cooling techniques
are effective in improving exercise performance in the
heat, in which cold water/ice slurry ingestion and
wearing an ice-vest seemed to be most effective in lab-
oratory conditions. It is recommended to use suffi-
cient cooling power and continuous cooling exposure
during the exercise trial to reach an optimal effect.

Combination of pre- and per-cooling

In addition to the studies that examined the effects of
pre-cooling and per-cooling separately, some studies
evaluated the combined effect of both types of cooling.
We previously hypothesized that combining the
advantages of pre-cooling and per-cooling should be
more effective in improving exercise performance
than a single cooling strategy.22 Until now, 5 studies
(with 9 individual comparisons) have examined the
effects of a combination of pre- and per-cooling on
endurance exercise performance. An overall improve-
ment in exercise performance of 5.6% (range: ¡1.7%

Figure 2. An overview of the average performance improvement
(%) (A) and effect size (B) of per-cooling (black bar) and the bene-
ficial effects of different per-cooling strategies (gray bars). Data
are presented as mean § standard deviation.

TEMPERATURE 7



to C23%, ES D 0.63) was found, which did not differ
from pre- and percooling (p D 0.23).

Only 1 study found a negative effect (¡1.7%, ES D
0.18) of using cold water ingestion (3�C) prior to and
during a 20 km cycling time trial in the heat (31�C),
whereas pre/per-cooling using an ice slurry (¡1�C) or
a combination of cold water or ice slurry with a men-
thol solution were effective in improving performance
(3.5%, 5.3% and 8.9% respectively, ES D 0.50, 0.68
and 0.97).64 Furthermore, only 1 study was performed
in moderate ambient conditions (28�C).65 Within this
study, the ingestion of a menthol aromatized beverage
of 3�C was not effective in improving exercise perfor-
mance (3%, ES D 0.32), whereas a menthol ice slurry
(0.2�C) did significantly improve performance (6.2%,
ES D 0.67). This may suggest that vigorous cooling or
a combination of cooling techniques may have a
greater impact on performance, but there is no influ-
ence of ambient temperature on the potential benefits.

Post-cooling

Post-cooling is defined as any opportunity to reduce
the core, skin and/or muscle temperature directly after
exercise, to enhance recovery from exercise and to
reduce the exercise-induced muscle soreness. Different
post-cooling interventions were described in litera-
ture,66 from which cold water immersion (5–15�C) is
most frequently used. Furthermore, cold air exposure
(¡30�C) and local cooling using cooling packs were
reported.67,68 Recently, (whole body) cryotherapy has
been introduced as a popular post-cooling strategy.
Cryotherapy involves exposures to extremely cold dry
air (< ¡100�C) for short periods of time (2–4
minutes).69,70 During cryotherapy individuals wear
minimal clothing, gloves, a woolen headband covering
the ears, a nose and mouth mask and dry shoes and
socks to reduce the risk to develop cold injury.69

In a recent meta-analysis, the effects of post-cooling
were subdivided in subjective and objective outcomes
for recovery.66 It was found that post-cooling applied
directly after exercise improves subjective recovery,
since it lowers the symptoms of delayed onset muscle
soreness after 24 and 96 hours of recovery.66 Cold
water immersion (5–15�C) appeared to be more effec-
tive compared to the other post-cooling strategies
(cold air exposure, cooling packs and cryotherapy).
Post-cooling also reduced subjective rate of perceived
exertion after 24 hours of recovery, but not after

48 hours of recovery, whereas similar benefits were
observed across different post-cooling techniques. In
contrast, there was no evidence that post-cooling had
an impact on objective recovery outcomes such as
blood lactate, creatinine kinase and c-reactive protein
concentration.66 These findings were confirmed in a
Cochrane review, which are recognized as the highest
standard in evidence-based health care resources.
Whole body cold water immersion did not impact
maximal strength and maximal power output after 1
to 72 hours of recovery.71 Moreover, no difference in
biomarkers for muscle damage (creatine kinase) and
inflammatory response (interleukine-6 and c-reactive
protein) were found directly post-exercise and after
96 hours of follow-up.71

Another Cochrane review focused solely on the
effects of whole body cryotherapy on exercise recov-
ery.69 Four randomized controlled trials were
included, with a total of 64 physically active predomi-
nantly male subjects. The cryotherapy intervention
consisted of an exposure to an ambient temperature
ranging from ¡110�C to ¡195�C for 3 minutes.
Results demonstrated lower levels of delayed onset
muscle soreness after 1 hour, 24 hours and 48 hours
of recovery in the cryotherapy condition compared to
passive rest.69 Objective improvements in recovery
after cryotherapy were assessed using a maximal
strength measurement. Interestingly, significantly
greater maximal strength (range: 5.6% to 12.6%) was
found at 24 to 120 hours after post-cooling compared
to control.69 Additionally, another study demon-
strated that 5 d of cryotherapy (¡110�C for 2 min)
after a normal daily training program (3 hours) in
highly trained athletes induced an increase in anti-
inflammatory interleukin-10 and a decrease in the
pro-inflammatory interleukin-8 and interleukin-2,
suggesting that cryotherapy improves recovery after
exercise by reducing the inflammatory response.72 In
contrast, 2 minutes of cryotherapy (¡135�C) did not
impact on plasma interleukin-6 levels after a competi-
tive elite rugby match.73 Although the effects of cryo-
therapy on the inflammatory response were not
consistent, post-exercise cryotherapy seems to attenu-
ate inflammatory response after exercise.

In summary, post-cooling lowers the subjective
symptoms of delayed onset muscle soreness, in which
cold water immersion is most effective (Fig. 3). In con-
trast, cryotherapy did impact on objective recovery
outcomes such as muscle strength and biomarkers for
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muscle damage in some studies, whereas cold water
immersion did not impact on these objective out-
comes. Additionally, cryotherapy may reduce the
exercise-induced inflammatory response.

Theories and mechanisms for pre- and per-
cooling benefits

The basis of pre-cooling and per-cooling strategies is to
reduce heat stress of the thermoregulatory system prior
to and during exercise by increasing the heat storage
capacity.17,21 Pre-cooling aims to lower Tc prior the onset
of exercise, thereby increasing the margin for metabolic
heat production and heat gain.17 The pre-cooling-
induced heat buffer enables athletes to perform more
work before the critical limit for Tc is reached. Per-cool-
ing aims to attenuate the exercise-induced rise in Tc,
which delays the onset of hyperthermia-induced
fatigue.22

Critical core temperature theory

It has been shown that muscle power output, and thus
heat production, is reduced by elevations in Tc.74 The
reduction inmuscle power output is regulated by the cen-
tral nervous system to protect the body to develop heat
stroke.74,75 In fact, there may be a neural safeguardmech-
anism to terminate exercise once a critically high Tc
(»40�C)76 is obtained. This critical core temperature

theory is supported by the observation that subjects quit-
ted exercise at a similar Tc, but after dissimilar exercise
durations, following repeated exercise bouts at different
exercise intensities and starting temperatures.11 Although
the study participants voluntary ceased exercise at a Tc of
40.1 § 0.1�C, the hyperthermia-induced fatigue should
not be considered as an all-or-none action.77 It appears to
be more likely a dynamic process of progressive inhibi-
tion of the brain areas responsible for motor activation
with increasing Tc that, together with sensory feedback
from the exercising muscles and the cardiovascular sys-
tem, provokes hyperthermia-induced fatigue during
exercise in the heat.77,78 Therefore, a reduction in Tc prior
(pre-cooling) or during (per-cooling) exercise may be
effective in delaying the hyperthermia-induced fatigue.
Pre-cooling predominantly results in a reduced Tc at the
end of exercise compared to the control condition, 22

whereas the majority of per-cooling research have found
performance improvements without reductions in Tc.22

Therefore, it is likely that othermechanisms are responsi-
ble for the beneficial effects of per-cooling.

Anticipatory theory

The rate of heat gain is continuously detected by
our body, which could anticipatorily adjust the
work rate to ensure that the exercise can be com-
pleted within the homeostatic limits of the body.18,22

Figure 3. Overview of the effects of post-cooling on recovery from prolonged exercise, in which the effects were divided in subjective
and objective outcomes. The ‘arrows’ represents a beneficial effects of post-cooling (" D higher, # D lower), whereas the ‘ D sign’
represents no impact of post-cooling.
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More specifically, muscle activation during exercise
in the heat may be reduced as a feed forward down-
regulation of muscle drive as an anticipatory reac-
tion to avoid the development of heat-related
illnesses.79 This anticipatory concept is supported
by a previous study, in which subjects completed 2
20 km self-paced time trials, one in the heat (35�C)
and one in the cold (15�C).79 In the hot conditions,
subjects reduced power output after 30% of time
trial completion, whereas a similar phenomenon
occurred at 50% of time trial completion in the cool
condition. Furthermore, the rate of Tc increase was
comparable between both conditions (0.085 §
0.030�C/km vs. 0.070 § 0.017�C/km, p > 0.05).79

So, power output was adjusted well before reaching
the critical limiting Tc. Therefore, the anticipatory
response of the body may allow that exercise can be
completed safely without the development of pre-
mature fatigue or heat stroke.79

Core to skin temperature theory

Another mechanism that may contribute to the per-
formance improvements following cooling relates to
skin temperature and core to skin temperature gradi-
ent. This is confirmed by a recent study that exam-
ined time to exhaustion in 4 different groups runners
that exercised under different ambient conditions
(18�C, 26�C, 34�C and 42�C).14 A significant longer
time to exhaustion was found in the 18�C and 26�C
condition, with a greater core to skin temperature
gradient but similar finishing Tc compared to the
34�C and 42�C condition.14 Therefore, the core to
skin temperature gradient has been identified as an
important determinant for exercise performance in
the heat, in which a larger gradient is advantageous
for heat loss.80,81 The ability to sustain endurance
exercise performance at a Tc above the critical Tc
(>40�C) may be explained by the preservation of a
cool skin temperature, which ensures a sufficient core
to skin temperature gradient and the ability to stimu-
late heat loss.81 These findings suggest that retaining
a large core to skin temperature gradient may be
even more important than keeping Tc below the crit-
ical Tc to preserve exercise performance. Therefore,
any opportunity to reduce skin temperature prior to
or during exercise may be beneficial to increase the
core to skin temperature gradient and improve exer-
cise performance.

Cardiovascular and metabolic mechanisms

Next to the direct effects of cooling on thermoregulation
and exercise performance, cooling has also an indirect
impact on performance via cardiovascular and metabolic
mechanisms. Heat stress during endurance exercise is
characterized by an increased metabolic82 and cardiovas-
cular strain.83 Moderate heat strain is associated with a
reduction in lactate threshold, which is a valid predictor
for exercise performance in the heat.84 The heat stress-
induced downwards shift in lactate threshold as well as
the increased blood lactate accumulation observed during
heat stress may be an explanation for performance decre-
ments during heat strain.38,85 Next to metabolic strain,
heat stress induces an increase in skin blood flow to dissi-
pate heat, which leads to a reduction in left ventricular
stroke volume and limits muscular blood flow and oxy-
gen delivery at the exercising limbs.83 Cooling reduces
the stress on the metabolic and cardiovascular system19

as Tc reductions may inhibit blood lactate accumulation
and increase the lactate threshold.38 Furthermore, a lower
Tc has been shown to reduce heart rate at a given work-
load,31,32 and to reduce the cutaneous circulation that
inhibits cardiac filling.38

Psychophysiological mechanisms

Several studies used menthol application to investigate
the effects of changes in thermal perception without
changes in Tc and skin temperature.,54,55 Menthol is
thought to stimulate a cool feeling 52,56 via stimulation
of cold receptors located in the skin86 or oropharyn-
geal cavity.54 The head and neck region appears to be
the best area for menthol cooling,46,48,52 due to a
greater density of cold-sensitive afferent thermal
receptors.87 Moreover, the mucous membranes of the
oropharyngeal cavity are also sensitive for menthol.54

As a result, oral application of menthol may enhance
cold sensation in the mouth.88 The menthol-induced
cold perception may permit a higher self-selected
exercise intensity and subsequent exercise perfor-
mance improvement.86,89 Interestingly, a single men-
thol administration on the skin in resting conditions
induces a greater increase in cutaneous vasoconstric-
tion, rectal temperature and heat storage compared to
oral menthol application and a control condition.90

These results suggests that the modified perceptual
signal is stronger than the physiological signal. As a
result, the physiological system is overruled, leading to
an increased metabolic rate and thus an increased
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heat production. Therefore, atlethes should be careful
while using techniques that evoke a false thermal
afferent signal as the discrepance between cold percep-
tion and actual Tc / skin temperature may increase the
risk to develop heat-related illnesses.

Proposed mechanisms for post-cooling

In many sports, intensive training periods are alter-
nated with strenuous competition phases, in which
athletes have to maintain their best performance level
for longer periods. Therefore, it is important to stimu-
late a fast recovery period between intense bouts of
exercise. Exercise-induced physiological stress is
related to hyperthermia, muscle damage, oxidative
stress, inflammation and nervous system fatigue,
which can result in a reduced performance potential.91

This reduced capability to perform exercise might be
explained by an increased muscle soreness and a
decreased muscle function,92 a disturbed muscle reac-
tion time or muscle stiffness that persists for several
days.91,93 The application of cold directly after exercise
(post-cooling) is often used to improve post-exercise
recovery.66,94 Different proposed mechanisms for the
recovery benefits of post-cooling were described,
including a reduction in inflammatory response,95 a
decrease in cardiovascular strain,96 and a decrease in
muscle temperature and muscle damage.97 However,
the exact mechanisms through which post-cooling
affects recovery from exercise are not well understood.
Therefore, several suggested potential benefits of post-
cooling on exercise recovery are described below.

Inflammatory response

Exercise induces metabolic stress in the active skeletal
muscles, resulting in an increased generation of reac-
tive oxygen species (ROS).98 ROS can denaturate pro-
teins, nucleic acids and lipids, resulting in a
destabilization of muscle cell structures such as the
sarcolemma,99 and the excitation-contraction cou-
pling system.100 Damage to these structures modifies
the muscle contraction kinetics, thereby reducing the
force-generating capacity and exercise performance.101

Furthermore, a destabilized sarcolemma makes the
muscle fibers more permeable,101 which increases the
potential to develop muscle fiber edema.102 Edema
increases the mechanical stress on muscle fibers, by
impairing the oxygen delivery and waste removal,
while it also causes muscle soreness.103 Simultaneously

with the muscle damage by ROS and muscle fiber
edema, an exercise-induced inflammatory response is
initiated that causes secondary muscle damage. This
type of muscle damage is caused by inflammation in
response to exercise and not the exercise per se, which
results in muscle soreness and a lower muscle force
generating capacity in the days after exercise.104 Cold-
induced vasoconstriction of the muscle vasculature
and a decreased muscle tissue temperature due to
post-cooling may cause reductions in cellular, lym-
phatic, and capillary permeability, which reduces the
fluid diffusion into the interstitial space and decreases
the risk of muscle fiber edema.91,95 Moreover, the
decreased fluid diffusion, due to cooling, may assist in
diminishing the acute inflammatory response to mus-
cle damage. A lower inflammatory response is associ-
ated with less pain and lower decrease in muscle force
generation.105 Furthermore, the lower inflammatory
response after post-cooling can be defined as an
increase in an anti-inflammatory cytokine (IL-10),
and a decrease in pro-inflammatory cytokines (IL-2,
IL-8 and prostaglandin E2).

106 Therefore, post-cooling
may have an anti-inflammatory response and may be
effective in reducing secondary muscle damage, and
may therefore enhance muscle recovery.

Cardiovascular & thermoregulatory mechanisms

The implementation of post-cooling directly after a
strenuous bout of exercise resulted in a faster reduc-
tion in heart rate and core, skin and muscle tempera-
ture.68,107 As a result of the faster decrease in heart
rate, the cardiovascular strain during recovery is less.
In addition, the rapid decrease in skin temperature,
due to vigorous whole body cooling (cold water
immersion or cryotherapy), causes a peripheral vaso-
constriction of the skin. This leads to a diminished
peripheral blood flow, resulting in a circulatory shift
to the central blood circulation and a quick recovery
of the central blood volume.69 The augmented central
blood volume and flow increases the ability of an ath-
lete to remove waste products, such as lactate, and
therefore may enhance recovery from exercise.

Additionally, post-cooling may immediately reduce
the amount of muscle damage. Directly after exercise
the muscle fibers are stressed, due to an increased
energy demand to repair structural exercise-induced
damage and replace energy stores.98 The use of post-
cooling decreases the muscle tissue temperature, which
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causes a decrease in muscle metabolism and therefore a
decrease in muscle energy demand.98 Accordingly, the
experienced metabolic stress by a muscle may be
reduced due to a lower disparity between oxygen sup-
ply and oxygen demand. Furthermore, metabolic stress
increases the mitochondrial energy production, which
significantly contributes to the ROS production of a
muscle cell.108 Reducing the mitochondrial energy pro-
duction by post-cooling may limit the ROS-medicated
muscle damage after strenuous exercise. Therefore, it
can be suggested that cooling may decrease the muscle
stress directly after exercise, resulting in lower muscle
soreness.

Furthermore, some studies described an association
between muscle tissue temperature and nerve conduc-
tion velocity.109,110 Post-cooling is known to reduce the
sensory and motor nerve conduction velocity,111 which
is associated with an increased pain tolerance and a
decreased pain sensation.110 Therefore, a post-exercise
decrease in muscle temperature induced by cooling
may have a temporary hypoalgesic effect, which attenu-
ates the subjective perception of muscle soreness.

Taken together, post-cooling may enhance recovery
from strenuous exercise by reducing the intramuscular
temperature and muscle metabolism to reduce the meta-
bolic stress and ROS generation associated with muscle
damage, while local vasoconstriction may reduce the for-
mation of edema, the inflammatory response and the
associated secondary muscle damage. The subjective
pain response tomuscle soreness may be diminished by a
cooling-induced decrease in nerve conduction velocity.

Cooling and exercise-induced hyperthermia

Next to the effects of pre- and per-cooling on exercise
performance, using cooling prior to or during exercise
may also attenuate the increase in Tc and reduce the risk
to develop heat-related illnesses. We previously described
that the finishing Tc was lower in the cooling condition
compared to the control condition for pre-cooling
experiments (38.9 vs. 39.1, p D 0.03), but not for per-
cooling experiments (38.9 vs. 38.9, pD 0.91).22 After add-
ing recently published per-cooling studies to our initial
analysis (Table 2), we still did not find a difference in fin-
ishing Tc between the per-cooling and control condition
(38.7 vs. 38.7, pD 0.95). Based on these data, wemay sug-
gest that pre-cooling is effective in reducing thermal
stress and lowering the final Tc, whereas it is not known
whether pre- or per-cooling reduces the risk to develop

heat-related illnesses. The greater metabolic work due to
the cooling-induced performance benefit may also con-
tribute to the comparable Tc between the cooling inter-
vention and control conditions. Furthermore, one must
realize that none of the included studies reported any
heat-related disorders among their participants. This sug-
gests that our body is well able to use internal heat loss
mechanisms to cope with an increase in Tc and to avoid
critical high Tc that may lead to health problems.

Practical considerations of cooling

The International Association of Athletics Federations
World Championships of 2015 were held in Beijing, with
expected ambient temperatures between 26–33�C.112 In
a cohort study preceding theWorld Championships, 957
athletes (49% of registered athletes) were included and
asked to fill in a precompetition heat strategy question-
naire.112 Based on the questionnaire, approximately 52%
of the athletes have a prearranged pre-cooling strategy,
from which ice slurry ingestion is most prevalent
(24%).112 Additionally, approximately 47% of the athletes
planned to use cold water immersion as a recovery strat-
egy.112 These findings highlight the popularity of cooling
strategies in professional athletes, but also emphasize that
more athletes could benefit from cooling interventions
while competing in the heat.

The feasibility and applicability of implementing
cooling interventions during training and competition
is probably more important than its efficiency in
improving exercise performance.21,39 The balance
between efficiency and feasibility is reflected in the used
pre- and post-cooling strategies applied during the Ath-
letic World Championships.112 Cold water/ice slurry
ingestion and cold water immersion are not the most
effective pre-cooling strategies, but can be easily applied
in field based settings. In contrast, the use of per-cool-
ing was not observed during this World Champion-
chip. Internal cooling can be particularly suitable as a
per-cooling strategy in competitive settings. However, a
potential problem of these internal cooling methods is
that the intake of large volumes of cold water/ice dur-
ing exercise may cause gastrointestinal discomfort in
some of the subjects.113 Athletes should therefore
experiment with the use of internal cooling during reg-
ular training sessions, to avoid any discomfort during
competitive settings. An alternative easy applicable
cooling intervention is the use of local cooling strate-
gies. Cooling packs and evaporative cooling vests are
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very portable and can be implemented very easily prior
to competition as a pre-cooling strategy. Moreover,
local cooling as well as internal cooling have the practi-
cal benefit that it can be used simultaneously while ful-
filling their normal preparations for competition. For
post-exercise cooling strategies, cryotherapy may be an
effective alternative to cold water immersion. However,
it is important to use a maximal exposure duration of
2 to 4 minutes,73 since longer durations do not affect
thermal and cardiovascular responses, but increase
thermal discomfort of the participants.114 Furthermore,
access to cryotherapy is limited, which make it less
applicable for recreational athelethes.

Conclusion

Exercise-induced increases in Tc can negatively
impact exercise performance and can lead to develop-
ment of heat-related illnesses. The use of cooling tech-
niques prior to, during or after exercise may attenuate
the rise in Tc and may enhance exercise performance.
Within this review, we demonstrated that pre-cooling
as well as per-cooling are effective in improving exer-
cise performance in both moderate and hot ambient
conditions. More specifically, using a mixed method
pre-cooling strategy is most effective in improving
exercise performance of athletes, whereas cold water/
ice slurry ingestion is most favorable per-cooling strat-
egy. Vigorous cooling techniques that cover a large

part of the body, or techniques that can be applied fre-
quently, appear to be the best for improvement of
exercise performance. An overview of the benefits of
cooling interventions is presented in Figure 4. The
beneficial effects of pre-cooling and per-cooling may
be explained by thermoregulatory as well as cardiovas-
cular and metabolic mechanisms. Post-cooling is pri-
marily focused on facilitating recovery after a
strenuous bout of exercise, in which whole body cold
water immersion is most effective in reducing the sub-
jective rate of muscle soreness. Furthermore, cryother-
apy may have a positive effect on objective outcomes
of exercise recovery such as an increased maximal
muscle strength and a decreased inflammatory
response, whereas these effects were absent after cold
water immersion. Taken together, any opportunity to
reduce thermal strain prior to, during and/or directly
after exercise is an effective strategy to improve time
trial performance, exercise capacity and recovery from
a stressful bout of exercise.

Abbreviations

ES Effect size
Per-cooling Cooling during exercise
Pre-cooling Cooling prior to exercise
Post-cooling Cooling directly after exercise
ROS Reactive oxygen species
Tc Core body temperature

Figure 4. Infographic of the feasibility and effectivity of pre-, per- and post-cooling strategies. The effectivity of cooling techniques is
classified as small (C), moderate (CC) or large (CCC).
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