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Abstract

Real-time learning needs algorithms operating in a fast speed comparable to

human or animal, however this is a huge challenge in processing visual inputs.

Research shows a biological brain can process complicated real-life recognition

scenarios at milliseconds scale. Inspired by biological system, in this paper,

we proposed a novel real-time learning method by combing the spike timing-

based feed-forward spiking neural network (SNN) and the fast unsupervised

spike timing dependent plasticity learning method with dynamic post-synaptic

thresholds. Fast cross-validated experiments using MNIST database showed the

high efficiency of the proposed method at an acceptable accuracy.

Keywords: SNN, rank order coding, unsupervised, STDP, visual pattern

recognition, fast learning

1. Introduction

For human and most of the animal species, reliable and fast visual pattern

recognition is vital for their survival. In most cases, new visual pattern should

be learned in a limited time window to adapt to new environments or changes

promptly. Real-time learning has to learn/perform with limited samples often5

in real time, with no opportunity to learn the whole training samples/database.

Similar learning situation applies to many machine learning scenarios - a rescue

robot needs to learn to recognize individuals on the spot, an identification or
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human recognizing system needs to cope with new criminals in any public ar-

eas, an health-care intelligent machine need to learn to cope with new patients10

quickly with limited information, all of which need to learn in a fast speed in

real time.

To enable a machine to learn visual patterns in real time proposes a huge

challenge - the algorithms underlying should process a large volume of visual

data in an extremely short period of time, which has been proved difficult.15

However, it is also obvious that a biological brain could cope with these large

volume of visual data effortlessly in real time. A human brain may contain

more than 10 billion densely packed neurons that are connected to an intricate

network with numerous spikes are emitted in each millisecond. Although, the

mechanism of how these spikes are generated and processed is still an open20

question - this has not prevented researchers from proposing biological plausible

methods for pattern recognition, as briefed below.

Various coding schemes have been proposed during the last several decades,

such as spike rate-based coding scheme [1],[2], and spike timing-based coding

scheme [3], [4]. A human brain can recognize objects in a few tens of milliseconds25

in a very complicated real-life scenarios [5]. In such a short time window, it is

almost impossible for rate-based spiking neural network to generate meaningful

spiking rate. Because of the existence of repeating spatiotemporal spiking pat-

terns with millisecond precision, both in vitro and in vivo [6], rate-based spiking

neural network would not be able to discriminate the repeating spiking patterns30

from the distractor. On the other hand, the spike timing-based SNN works at

short time window and can extract a repeating pattern with appropriate learn-

ing rule [6]. Furthermore, a spiking pattern itself conveys significant structural

information, which cannot be represented by spiking rate alone. Therefore,

spike timing-based coding scheme, e.g. Rank Order Coding (ROC) scheme will35

be used in this study to translate the features to spiking patterns for fast visual

information processing. These spiking patterns convey unique spatiotemporal

structural information and can be used to distinguish different input images.

To learn these spiking patterns, spike timing dependent plasticity (STDP)

2



[7],[8],[9],[10],[11], a biological process that adjusts the efficacy of synaptic con-40

nections based on the relative timing of post-synaptic spikes and its input presy-

naptic spikes, is one of the most biological plausible learning rule. Like Hebb’s

postulate [12], it emphasizes “Cells that fire together, wire together”. As an

unsupervised learning rule, STDP does not need prior information or teaching

signal in learning. It will adaptively change the synaptic efficacy and try to45

extract the most notable spiking pattern.

There are a few research papers on SNN and spike timing-based coding

scheme for visual pattern recognition [13], [14]. Inspired by HMAX model [15]

which consists of four layers (S1-C1-S2-C2) to simulate ventral stream (V1-V2-

V4-IT), Thorpe et. al [13] have investigated the learning of C1 to S2 synaptic50

connections through STDP and suggested that temporal coding may be a key

to understand the phenomenal processing speed achieved by the visual system.

However, in [13] STDP was not used for spiking pattern recognition but local

feature extraction. In the paper [14], the authors proposed a novel SNN with

supervised learning rule and temporal coding scheme to generate the spike pat-55

tern. The proposed SNN and its supervised learning rule achieved relatively

good classification rate when conducting cross-validation experiments on the

MNIST database. Such supervised learning rule needs prior knowledge before

learning - in many cases, this prior knowledge is hard to obtain.

To address the fast learning issues with biological plausible approaches, we60

propose a novel method taking advantages of SNN and spiking timing-based

coding scheme. Different to [13], in our method, S1 and C1 are only for feature

extraction; features are translated to spiking pattern from C1; STDP is used

after spiking encoding layer for pattern recognition. To further speed up the

leaning process, we only use S1 and C1 to extract visual features. Unsupervised65

learning rule is employed in the proposed method to make it more practical.

Dynamic threshold is introduced to guaranty each training sample can be fully

exploited in learning. Fast cross-validated experiments using MNIST database

are carried out to prove the efficiency and accuracy of the proposed method.

The layout of this paper can be summarized as follows: Section II introduces70
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the framework of the proposed feed-forward spiking neural network. Neuron

model and STDP learning rule are presented in Section III. Section IV depicts

the experimental results, along with the analysis about the results. Finally,

Section V summarizes this paper, discussing the advantages and limitations of

the proposed method.75

2. Framework of the proposed feed-forward spiking neural network

The whole framework of the proposed feed-forward spiking neural network

will be explained in this section. In real world, the visual pattern recognition

scenario often contains vast data dimensions and exists significant variability in

terms of inter-class and intra-class. The first step in almost all visual pattern80

recognition tasks is to reduce data dimensionality, which means more generalized

features need to be generated firstly. The generated features should contain

the most distinguishable and unchangeable characteristics of the original input

image [16], [17]. Until now, the input data are still analog values, which need

to be transferred to spike trains for further learning. We use ROC to encode85

the analog values to spiking trains in this study.

The structure of the proposed feed-forward SNN can be summarized as fol-

lowing: feature extracting layer, spiking encoding layer and output layer. Fig.1

shows the framework of the proposed spike timing-based feed-forward SNN. Fea-

ture extracting layer computes C1 features with different scales and directions90

from input images. ROC scheme transfers those C1 features into spike trains

within the spiking encoding layer. Each input image has its own corresponding

spike pattern after those two layers. In the output layer, STDP learning rule

and winner-take-all strategy have been used to train the synaptic efficacy matrix

with specific selectivity to the input image. Notably, there is only one neuron95

(corresponding to specific class) within each output map in this paper. Below

is the details of the three layers.
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Figure 1: The framework of the proposed timing-based feed-forward spiking neural network.

2.1. Feature Extracting Layer

It has been shown that visual processing is hierarchical, aiming to build an

invariance to position and scale first and then to viewpoint and other trans-100

formations [18]. In HMAX model [15],[19], the authors proposed a hierarchical

system that closely follows the organization of visual cortex and thus built an in-

creasingly complex and invariant feature representation by alternating between

a template matching and a maximum pooling operation. Basically, this hierar-

chical system can divided into 4 layers: S1 layer, C1 layer, S2 layer, C2 layer.105

The simple S units within S1 and S2 combine their inputs with a bell-shaped

tuning function to increase selectivity. The complex C units within C1 and C2

pool their inputs through a maximum operation, thereby increasing invariance.

C1 units and C2 units mimic the complex cells in V1 and cells in V4. Fig.2

illustrates the template matching and the max pooling layers used in HMAX110

model.

In this paper, for the sake of efficiency and simplicity, we used first two

layers of HMAX model to extract the expected features, which includes S1 and

C1 features. The features extracted from C1 layer can be used to mimic the
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Figure 2: The template matching and the max pooling layers within HAMX model adopted in

this paper. Units with the same color have tied weights and units of different color represents

different filter maps.

complex cells in V1, thus they convey a relatively local invariance. Specifically,115

S1 features can be generated after applying Gabor filters with vary scales and

orientations to the input image, which correspond to the classical simple cells in

the primary visual cortex. It has been shown that Gabor response (Fσ,θ(x,y)) can

provide a good model of cortical simple cell receptive fields (Fig.3 shows Gabor

filter kernels with different scales and orientations), which can be described as120

follows:

Fσ,θ(x,y) = exp

(
−
(
x20 + γ2y20

)
2σ2

)
× cos

(
2π

λ
x0

)
, s.t. (1)

x0 = xcosθ + ysinθ; y0 = −xsinθ + ycosθ (2)

where x and y describes abscissa and ordinate of the input image, respectively.

x0 and y0 represents abscissa and ordinate after rotating θ, respectively. γ

represents aspect ratio, θ depicts the orientation, σ is the effective width and λ

the wavelength. In this paper, we choose the same parameters settings as the125

HMAX model that is using a range of sizes from 7 × 7 pixels to 37 × 37 form

the pyramid of scales, and four orientations (0o, 45o, 90o, 135o) have been used.

Notably, those S1 features have been normalized to a predefined range [−1, 1]

so that input images with the same contrast will generate same S1 features.
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Figure 3: Gabor filter kernels with different scales and orientations.

C1 unit pool over retinotopically organized afferent S1 units from the pre-130

vious S1 layer with the same orientation and from the same scale band. It

corresponds to the cortical complex cells in V1, which convey certain invariance

to local transformation. The vital part of C1 layer is the max pooling opera-

tion, which increases the tolerance to transformation from S1 layer to C1 layer.

Basically, the response rσ,θ(x,y) of a complex C1 unit corresponds to the maximum135

response of its m afferents
(
Fσ,θ(x1,y1)

, · · ·Fσ,θ(xm,ym)

)
from the previous S1 layer

with two adjacent scales:

rσ,θ(x,y) = max
j=1···m

Fσ,θ(xj ,yj)
(3)

In this paper, the first two smallest scales within C1 layer have been used to

generate spike pattern. Fig.4 shows the procedure of generating spike pattern

with the first smallest scale within C1 layer. The whole procedure can be140

summarized as follows: Firstly, the Gabor filter equations described in formula

(1) and (2) have been used to generate S1 layer with adjacent scales and four

different orientations. The parameter settings for the Gabor filters are the same

as HMAX model. Secondly, for each orientation of the S1 layer, a local sliding

window with the size of 8 × 8 has been applied to generate the C1 feature145

- notably, there are overlaps between two adjacent sliding windows and the

overlapping size is 4 × 4. Specifically, for each orientation, all 64 S1 features
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Figure 4: The generating procedure of spike pattern with the first smallest scale within C1

layer as example.

within each scale (2 × 64 S1 features in total) have been extracted to compute

their maximum value. This maximum value will replace the two sliding window

of S1 layer with two different scales. For the second smallest scale, the sliding150

windows size is 10×10 and the overlapping size is 5×5. Throughout the feature

extracting layer, only the most significant S1 feature within the corresponding

sliding window has been selected and all others have been discarded. Such max

pooling operation cannot only ensure the generated C1 feature having certain

local invariance but also deduct the dimension of the whole data set.155

It has been shown that these cortical complex cells tend to have larger recep-

tive fields compared with simple cells within V1 [15]. For each orientation, C1

unit pool over two S1 maps with adjacent filter sizes. Those maps have the same

dimensionality but they are the products of different filters. By sub-sampling

with local cells with predefined sizes, C1 units takes the maximum response160

from the associated cell grid. Thereby, the dimension has been reduced with

this max pooling operation. The bigger the cell grid takes, the lesser the dimen-

sionality of C1 maps will be. Since S1 features have been normalized to [−1, 1],

8



(a) Original image (b) S1 features map (c) C1 fea-

tures map

Figure 5: One input image and its associated S1 and C1 features maps (C1 map has been

enlarged for better viewing).

C1 features will naturally have the range [0, 1]. By doing this, one can easily

design the linear transformation strategy used in ROC scheme. Fig.5 shows the165

Barbara input image and its S1 and C1 features maps (for the sake of simplicity,

only one S1 and C1 map shown here).

In a word, the feature extracting layer used in this paper mimic the cortical

simple cells with S1 units and complex cells in V1 with C1 units. Template

matching operation used in S1 layer generates orientation edge packages with170

certain selectivity, while max pooling operation in C1 layer achieves dimension-

ality reduction and invariance to local transformation.

2.2. Spiking Encoding Layer

There are several commonly used spiking coding schemes: rate coding, tem-

poral coding and population coding. Each coding scheme has its own advantages175

and drawbacks. Rate coding is the most well-known coding scheme, which con-

siders the spiking rate conveys almost all information about the spike trains.

Lots of works has been done with this coding scheme [1],[2],[20],[21]. However,

several studies have shown that this rate coding scheme cannot deal with com-

plicated visual pattern recognition tasks within a relatively short time window180

[22],[23],[24]. From the theoretical point of view, population coding [25],[26] is

one of a few mathematically well-formulated problems in neuroscience. It repre-

sents stimuli by using the joint activities of a number of neurons and thus each
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Figure 6: Rank order coding scheme diagram.

neuron has a distribution of response over some set of inputs. However, the

structural complexity and the learning cost of this coding scheme seem to be185

quite high. Temporal coding scheme considers the specific precise spiking tim-

ing conveys almost all information about the input spike trains. Several studies

have found that the temporal resolution of the neural code is on a millisecond

time scale, indicating that precise spike timing is a significant element in neural

coding [27]. High-frequency fluctuation of firing-rates exhibited in neurons were190

considered as noise in rate coding scheme, however, in temporal coding scheme,

they actually convey vital information about the input spike trains.

In this paper, rank order coding scheme [28],[29],[30], a time-to-first-spike

coding scheme (one kind of temporal coding scheme), has been used to generate

spike trains from the features extracted in the previous layer. Fig.6 shows the195

rank order coding scheme diagram. It can be seen that this kind of scheme only

generate one spike after the corresponding unit receiving the input. The delay

of the spiking timing is a monotonically decreasing function of the input analog

value. Thus, the maximum analog input value corresponds to the minimum

spiking timing delay. Pixels with less Input analog values will not generate spikes200

at all since their spiking timings have already exceeded a predefined time-window

for spiking encoding layer (50 ms for this paper). Through such coding scheme,

only those units with more significant C1 features will be generating spikes.

Notably, only one spike will be generated for each unit in rank order coding

scheme. Such coding scheme is intuitive yet powerful. Given the reference205

timestamp (the beginning time of the encoding procedure), it transforms each

analog value into corresponding relative spike time associated with the reference
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timestamp. Either the onset of external stimuli or the background oscillation can

be considered as the reference timestamp. Although sometimes it is hard to find

these kinds of reference timestamps during the real world learning procedure,210

it is intuitive to use the onset of C1 features as the reference timestamp in

the proposed spiking neural network. Another drawback of the classical rank

order coding scheme is that its distinguishability (or selectivity) remains at a

relatively low level if using the traditional relative coding method [29].

In this paper, we linearly modified the original rank order coding scheme215

so that absolute spiking timing instead of relative spiking timing [29] has been

generated. For one specific feature response (depicted as r) within C1 layer, the

corresponding spiking timing (s) can be computed as follows:

s = p ∗ (max (r) − r) (4)

where max (r) is the maximum value of all related C1 features in the receptive

filed and p is a positive constant within the range from 0 to 1 (p takes 0.25 in220

this paper). Fig.4 also shows the details of the spiking encoding layer. Given

the C1 maps with all four orientations, the formula (4) has been used to com-

pute the exact spiking timing of the corresponding C1 feature. Notably, by

vertically assigning the C1 map, each C1 map with certain orientation has been

transformed to a horizontal vector with the same orientation. Only one scale of225

C1 layer has been shown in Fig.4. In fact, we use the two smallest scales within

C1 layer in the proposed method.

Through spiking encoding layer, C1 features will be transformed into spike

trains. Fig.7 shows one input image and its spike pattern after processing with

the first two layers. Such spike trains can be considered as a spike pattern.230

Therefore, each input image will generate its own unique spike pattern through

the first two layers. Such spike pattern contains specific spatiotemporal struc-

tural information about its input image and thus the selectivity to this specific

input image has been emerged. Ideally, at least from the learning method’s

perspective, one can expect that those spike patterns generated from the same235
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(a) Input image (b) Spike pattern

Figure 7: Input image and its spike pattern generated from the first two layers.

class would somehow looks similar to each other, while spike patterns from vary

classes would be significantly different.

2.3. Output Layer

This output layer includes several neurons and the total number of neurons

is the same as the total classes. The neurons within spiking encoding layer and240

output layer are fully connected so that each output neuron receive synaptic

connections from all the neurons within spiking encoding layer. The output

layer uses winner-take-all strategy so that the first fired neuron will strongly

depress the rest neurons within the output layer from firing spikes and thus the

input image will be considered as the class associated with the fired neuron. So245

there are lateral depression connections appears in the last layer.

The output layer is the only learning layer in the proposed feed-forward

spiking neural network. From above two layers, the spike pattern associated

with the input image will be generated and such spike pattern conveys cer-

tain selectivity to its input image. Specifically, the spatiotemporal information250

embedded within the spike pattern plays an important role in defining such se-

lectivity. The learning method within output layer should fully investigate such

spatiotemporal information and thus use the learning results to distinguish the

testing samples.
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Spike timing dependent plasticity (STDP) learning rule is employed to the255

output layer and it will dynamically changes the synaptic efficacy according to

the learning window. Eventually, the synaptic efficacy matrix will be stabilized

and thus the selectivity will be emerged after the learning procedure. Notably,

the next input image should feed into the feed-forward spiking neural network

only until the current input image has been successfully trained or tested. After260

successfully learning the current input image, the intermediate variables gen-

erated during the training procedure will be reset to default values, except for

the learning efficacy matrix, which would be described in the following section.

This learning efficacy matrix would be updated each time until the very last

training image been feeding into the spiking neural network.265

As described in the above sections, the whole visual pattern recognition

framework contains two important parts: spike pattern generating and spike

pattern learning. According to modified rank order coding scheme, the former

one generates spike pattern based on the C1 features. While the latter one uses

unsupervised STDP learning rule to learn the generated spike pattern and thus270

obtained the final synaptic efficacy matrix with certain selectivity.

Unlike [13], in our method, STDP is used after spiking encoding layer for

pattern recognition and C1 features are translated to spiking patterns (S1 and

C1 are only for feature extraction).

3. Neuron Model and STDP Learning Rule275

Neuron model represents the conduct principle of a spiking neuron. Leaky

integrate-and-fire model (LIF) and Spike Response Model (SRM) are the most

commonly used neuron models [31] in modern spiking neural networks. The

latter one tries to mimic the post-synaptic potential time course to an incoming

spike, which can also be considered as a generalization of LIF model. In this280

paper, leaky integrate-and-fire neuron model has been used, as described in

details in the following sub section.
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3.1. Neuron Model

Leaky integrate-and-fire neuron model acts as a coincidence detector and

the causality between local spikes has been emphasized. When the postsynaptic

neuron receives a spike from its presynaptic neuron, the responding postsynap-

tic potential (PSP) will be generated. One can use certain time course to depict

this dynamic PSP change. In leaky integrate-and-fire model, the post-synaptic

potential will gradually decrease if no spikes received since last received spike.

Therefore, in order to generate a post-synaptic spike, this post-synaptic neu-

ron needs to receive lots of spikes within a relative small time window so that

its PSP can reach the predefined threshold. The dynamic procedure of leaky

integrate-and-fire model can be summarized as follows: when a post-synaptic

neuron receives presynaptic spikes, it will generate dynamic synaptic current

and this dynamic current will thus produce dynamic synaptic voltage. A post-

synaptic spike will fired if the dynamic synaptic voltage reaches the predefined

post-synaptic potential threshold. The dynamic post-synaptic current can be

expressed as follows:

Ii (t) =
∑
j

wij
∑
f

α
(
t− t

(f)
j

)
(5)

where t
(f)
j represents the time of the f -th spike of the j-th presynaptic neuron;

wij is the strength of the synaptic efficacy between neuron i and neuron j. α(t)

is the time course function, which can be expressed as follows:

α (t) = α
1

τ
exp

(
− t

τ

)
Θ (t) (6)

where Θ is the Heaviside step function with Θ (t) = 1 for t > 0 and Θ (t) = 0

else. τ is the time constant. For a given time-varying input current I (t), the

dynamic voltage V (t) can be computed as follows:

V (t) = Vr exp

(
− t− t0

τm

)
+

R

τm

∫ t−t0

0

exp

(
− s

τm

)
I (t− s) ds (7)

where the initial condition V (t0) = Vr and τm is the membrane time con-

stant. R represents the resistance. This equation describes the dynamics of the285
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Figure 8: Schematic diagram of leaky integrate-and-fire model.

membrane potential between successive spiking events. When the membrane

potential reaches the threshold, it will fire a spike, followed by the absolute

refractory period (resets to Vr) and then start to evolve afterwards.

In this paper, a dynamic post-synaptic potential threshold has been pro-

posed in the training period. For each input image, we do not set post-synaptic

potential threshold for the first run and collect the generated dynamic voltage

due to the input spike pattern. And then the maximum value of the dynamic

voltage needs to be found after collecting all dynamic voltage within the pre-

defined time window. Finally, the associated post-synaptic potential threshold

has been set to a percentage of this maximum value. By doing this, each input

image can be ensured to be trained during the learning procedure. Such scenar-

ios with only a little part of training samples have been actually used (especially

those training samples with relatively large intra-class variance) will be avoided.

Each input spike pattern will contribute its part to the final learning efficacy

matrix with certain selectivity.

Vthr = k ∗ max(V (t)) (8)

where Vthr is the post-synaptic potential threshold and V (t) represents dy-

namic voltage. max (V (t)) is the maximum value of dynamic voltage within290

the predefined spiking time window and k (0.8 in this paper) depicts a positive

constant within the range [0, 1].

Fig.8 uses the same input image as Fig.7 and shows its spike pattern, dy-
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namic current and dynamic voltage. From Fig.8, it can be seen that the oscil-

lation of dynamic current depends on the closeness of the local spike packages.295

When the post-synaptic neuron receives lots of spikes from presynaptic neurons

in a short time window, the dynamic current will increase dramatically and

then gradually decline if no spikes received afterwards. This dynamic current

will generate dynamic voltage (membrane potential) in the post-synaptic neu-

ron. When the dynamic voltage reaches its predefined post-synaptic potential300

threshold, the post-synaptic neuron will fire a spike, followed by a quite short

refractory period (about 1ms) and then start integrating again. What’s more,

by using leaky integrate-and-fire model, only spikes within a short time win-

dow can stimulate the post-synaptic neuron to fire a post-synaptic spike. Those

presynaptic spikes with much later or earlier have no influence on the procedure305

of generating a post-synaptic spike.

3.2. STDP Learning Rule

Hebb’s postulate [12] may be the most important theory in neuroscience

trying to explain the adaptation of neurons in the brain during the learning

process. It can summarized as “Cells that fire together, wire together”. This310

kind of statement emphasize the causality between pre- and postsynaptic neu-

rons. Hebb emphasized that cell A needs to take part in firing cell B, and such

causality can only occur if cell A fires just before, not at the same time as, cell

B.

Spike timing dependent plasticity (STDP) [7],[8],[9],[10],[11] has been proved

to be a quiet effective learning rule by neuroscientists, which adjusts the effi-

cacy of synaptic connections based on the relative timing of post-synaptic spike

and its input presynaptic spike. Like Hebb’s postulate, it also emphasizes the

causality between pre- and postsynaptic neurons. Actually, it can be considered

as a temporally asymmetric form of Hebb’s rule. In neuroscience, long-term

potentiation (LTP) is a persistent strengthening of synapses based on recent

patterns of activity, while long-term depression (LTD) is an activity-dependent

long-lasting reduction in the efficacy of neural synapses. When a presynaptic
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Figure 9: STDP learning window.

spike fires slightly earlier than the post-synaptic spike, the associated synaptic

efficacy will be potentiated (LTP). While the associated synaptic efficacy will

be depressed (LTD) if the presynaptic synaptic spike fires later than the post-

synaptic spike. The STDP function W (t) can be expressed as follows (t is the

time difference between pre- and postsynaptic spikes):

W (t) = A+ exp

(
− t

τ+

)
for t > 0 (9)

W (t) = −A- exp

(
t

τ-

)
for t < 0 (10)

where A+ and A- represent amplitude of LTP part and LTD part of the learning

window, respectively. τ+ and τ- are time constant for LTP and LTD, respectively.

For biological reasons, it is desirable to keep the synaptic efficacy in a predefined

range. Thus, a soft bound strategy [32],[33] has been used to ensure the synaptic

efficacy remains in the desired range wmin < wj < wmax, here, wmin and wmax

represent minimum and maximum value, respectively. The soft bound strategy

can be expressed as follows (for the sake of simplicity, the lower bound is set to

zero in most models):

A+ (wj) = (wmax − wj) η+ and A- (wj) = wjη- (11)

where η+ and η- are positive constants. Fig.9 shows one example of STDP315

learning window.

To model a biological system, it is desirable to keep the synaptic efficiency
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in a predefined range, for example between [0, 1]. During real implementation,

for the sake of simplicity, the minimum value of the synaptic weight wmin is set

to zero in this paper. Moreover, the C1 features within the feature extracting320

layer have been normalized to [0, 1]. To compute the similarity between the

input features and the corresponding synaptic efficiencies, the maximum value

of the synaptic weight wmax is set to 1 in this paper.

Besides the soft bound strategy, there are two ways of spike-interaction

within STDP learning rule: temporal all-to-all and nearest-neighbor spike-325

interaction. In Eq.(9) and Eq.(10), the first one sums over all presynaptic spike

arrivals and all post-synaptic spikes, while the latter one restricts the interaction

so that only nearest spikes interact. In this paper, after several experimental

tests, we choose the first one in our method as it can achieve much higher

performance compared with the latter one.330

STDP is an unsupervised learning rule, which requires no prior information

or teaching signals. It can adaptively find the desired spike pattern when the

synaptic efficacy matrix remains stabilized. It has been proven that STDP can

reliably find the start of repeating pattern even there are spike jitters or sponta-

neously activities existed [6]. In order to reach stable status for synaptic efficacy,335

the predefined post-synaptic potential threshold needs to be tuned around its

optimum value. If the threshold takes the maximum threshold value, only the

exact same input can generate a post-synaptic spike. It is impossible for the

test samples to be exact same as training sample in real world. Otherwise, if

the threshold takes value around the minimum threshold value, the noise spike340

pattern will mostly be potentiated and thus the wanted spike pattern will be

ignored [31]. In this paper, the proposed dynamic threshold method has been

used to choose the optimum dynamic voltage threshold.

4. Experimental Results and Analysis

In order to validate the proposed spike timing-based feed-forward spiking345

neural network and its unsupervised STDP learning rule, we will use MNIST
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Figure 10: Random examples of MNIST database.

handwritten digital characters database as the training and testing database.

Furthermore, parameter settings of the experiment will be elaborated in de-

tails, followed by the according experiments and discussions. Discussion will be

provided in the final subsection.350

4.1. MNIST database

MNIST handwritten digital characters database [34] is a well known bench-

mark in pattern recognition field. It contains 60000 training samples and 10000

testing samples (all sample size is 28 × 28). It includes 10 classes that is dig-

ital handwritten digits from 0 to 9. Fig.10 shows some examples of MNIST355

database. It can be seen that the database has large intra-class variance, which

could be a real challenge for the proposed method. For instance, the digit 1

and 7 in Fig.10 have different external shape (the fifth digit in the second row

and the sixth digit in the last row have significant different external shape com-

pared with other samples in their class). Sometimes, even human being cannot360

easily recognize some digits of the database. For example, the fifth digit in

the last row could be seen as 4 or 6 and each one can have their own opinion.

Therefore, by testing the performance using this MNIST handwritten digital

characters database, one can conclude the advantages and limitations of the

proposed SNN and its own unsupervised learning method.365

4.2. Parameter Setting

Before elaborating the experimental results, the experimental parameter set-

tings using in the SNN is needed to state first. The time resolution of this

experiment is 0.1ms. In this paper, for the S1 and C1 features of the feature
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extracting layer, we used the same parameter setting as the HMAX model. The370

only different is that only first 2 scales are used in the experiment. For spiking

encoding layer, we use a linear equation and the specific absolutely C1 feature

values to generate the spikes. For the leaky integrate-and-fire model used in

output layer, the α function described in equation (6) has been used to mimic

the time course of the dynamic synaptic current and the time constant τ used375

in the equation is set to 2.5ms. Equation (7) was used to compute the dynamic

synaptic voltage, where the initial condition Vr is 0, the membrane time con-

stant is 10 ms and the resistance R is 0.1 mΩ. The absolute refractory period

is set to 1 ms. For STDP learning of the output layer, the time constant τ+

and τ- are set to 0.0168 and 0.0337, respectively. For soft bound strategy, the380

maximum weight and the minimum weight are set to 1 and 0, respectively. The

positive constants η+ and η- are set to 0.03125 and 0.0265625, respectively.

To increase the level of realism in a neural simulation, spiking neural net-

work (SNN) is often used as the neural network model. Moreover, within SNN,

different parameters are required to regulate different dynamic procedures, such385

as generating dynamic synaptic current, obtaining the dynamic synaptic volt-

age, spike-timing dependent plasticity (STDP) learning procedure. To simulate

a biologically realistic learning procedure, the range of allowable values for each

parameter is often fixed. For instance, the membrane time constant is often

chosen from a range of 10 − 20mV , the absolute refractory period is often set390

to a range of 1− 3ms. Thus, given the predefined ranges, different evolutionary

algorithms (EA) can be used to tune the parameters to their optimum val-

ues. Specifically, to achieve the best classification performance, the parameter

settings described in section 4.2 have been used in this paper.

4.3. Experiments and Discussions395

Ideally, we expect that there are little intra-variance or even no intra-variance

existed in the extracted features. However, such critical need cannot easily be

satisfied. In the following subsections, we will discuss how STDP learning can

handle the scenarios with no intra-variance and large intra-variance, respec-
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tively.400

4.3.1. STDP Learning with no Intra-class Variance

Fig.11 shows dynamic learning procedure of generating selectivity after using

unsupervised STDP learning method. Fig.11 (a) shows the beginning of the

learning procedure. It can be seen that the dynamic synaptic current fluctuates

over the whole time window and the synaptic voltage reaches its threshold at405

about 21ms. The synaptic efficacy weights are relatively random at this stage.

After presenting the same input image (same input image in Fig.7) to the SNN

system about 300 times, the selectivity finally emerged, just as the Fig.11 (b)

shows. At this stage, the synaptic current only fluctuates over the first half time

window and the synaptic voltage fires the spike at about 13ms. What’s more,410

the synaptic efficacy matrix has a special status with most weights take 0 and

the rest take 1 [35], [36]. Therefore, the selectivity to this specific input image

emerges. However, such learning results can be generated only if the intra-class

variance of the input images remains at a reasonable level.

4.3.2. STDP Learning with Relatively Large Intra-class Variance415

In Fig.11, an ideal experimental condition that the input image with no

intra-class variance has been tested with the proposed timing-based feed-forward

spiking neural network and obtained an ideal STDP learning efficacy matrix.

However, in real world, such ideal condition is hardly achieved as vast intra-

class variance existed among the samples. In this paper, we proved that certain420

selectivity to the input can be learned using unsupervised STDP learning rule

even If the intra-class variance level of the input remains at a relatively high

level, as shown in fig.12 (a),(b),(e),(f).

In Fig.12, two groups with two input images have been used to learn the

selectivity using unsupervised STDP learning rule. In fact, input images (a)425

and (e) are the same. The group one uses (a) and (b) as its input images,

(c) and (d) represent dynamic efficacy matrix of 20-th and 200-th iterations,

respectively. (e) and (f) have been fed into group two, and thus obtained its
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(a) Status of the first iteration of STDP learning

(b) Status of the 200-th iteration of STDP learning

Figure 11: Generating selectivity by using unsupervised STDP learning. The resolution for

learning efficacy matrix (x axis) is set to 0.001 so that the maximum value equals to 1.

20-th and 200-th dynamic efficacy matrix, shown as (g) and (h). Here, one

iteration means sequentially fed the two input images into the feed-forward430

spiking neural network one by one. From Fig.12, one can easily concluded

that training samples with more intra-class variance will somehow hard to learn

the selectivity. In other words, the dynamic efficacy matrix can be very hard

to concentrate on the extreme values of 0 and 1 if having high level of intra-

class variance within the training samples. Compared to the same input image435

(a), input image (f) is much more different than the input image (b), thus the

dynamic efficacy matrix of group two had more weights lingering between the

extreme values of 0 and 1.

As mentioned in the above section, a dynamic voltage threshold strategy

has been proposed to guarantee each training sample will be properly learned.440

Table.I shows the correct classification comparison with the proposed dynamic

voltage threshold and the predefined voltage threshold. Notably, the predefined

voltage thresholds have been set within a certain range (10-30 mV ) around its
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: (a) and (b) are input images of group one, (c) and (d) are dynamic efficacy matrix

of 20-th and 200-th iterations, respectively; (e) and (f) are input images of group two, (g) and

(h) are dynamic efficacy matrix of 20-th and 200-th iterations, respectively. The resolution

for learning efficacy matrix (x axis) is set to 0.001 so that the maximum value equals to 1.
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Table 1: Impact of dynamic voltage threshold on recognition rate.

Random test With dynamic threshold
With predifined threshold (mV)

10 20 30

1 0.79 0.71 0.77 0.75

2 0.82 0.75 0.81 0.68

• Note: 0.79 in this table means 79% correct classification rate.

optimum value (20 mV ). It can be seen that the dynamic voltage threshold

strategy can not only ensure learning each training sample properly but also445

generate the best correct classification performance.

Fig.13 shows the dynamic learning procedure using the proposed SNN and

its STDP learning rule for one class. It is worth to note that one iteration

in this experiment means sequentially feed 50 different training samples within

certain class one by one. From Fig.13, it can be seen that the dynamic status450

only have a very limited changes. However, even the intra-class variance in

the experiment remains at a relatively high level, the training samples are not

totally independent (e.g. totally random samples), and thus such seemingly

random learning efficacy matrix may contains certain selectivity to the input.

One question still needs to answer - to achieve the optimal performance, how455

many iterations should the STDP learning method run? We will answer this

question in the following subsections with carefully designed experiments.

4.3.3. Experiments on MNIST Database

There are total 60,000 training samples in MNIST database, as mentioned

above, given a real-time learning circumstance, it is hard to fully exploit the460

whole database with limited time. We will use a cross validating method to

test the proposed algorithm and to answer the above question. Cross validating

method, which randomly selects limited samples for training and testing, creates
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(a) The first iteration (b) The 5-th iteration (c) The 10-th iteration

Figure 13: Learning efficacy matrix with large intra-class variance. The resolution for learning

efficacy matrix (x axis) is set to 0.001 so that the maximum value equals to 1.

a scenario most similar to a real-time learning situation.

From the MNIST, we randomly choose 50 different training samples for465

each class and 100 different testing samples to test the correct classification

rate. In the following experiments, each test follows the same procedure men-

tioned above. For fair comparison, each iteration within each test uses the same

randomly chosen training samples and testing samples.

Table.II shows the corresponding correct classification rate performance when470

using the experimental conditions mentioned above. Average correct classifica-

tion rate also has been added in the table. It can be seen that, with one iteration

only, almost all the tests achieved the highest performance. This suggests that

the proposed learning method is suitable for real-time learning.

Fig.14 shows standard error performance using different iterations. It can475

be seen that, along with increasing of iterations, the correct classification rate

gradually decreases. Tests with one iteration only seems to convey the least

standard error. Such characteristic indicates the learning methods with one

iteration only are more reliable than that with more iterations.

Why more iterations have not led to better performance in this case? This480

is because, for precisely timed spikes (meaning small temporal jitter of the

pre- and postsynaptic spikes), the synaptic weight will be tuned according to

STDP learning window. Specifically, the synaptic weight saturates close to
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Table 2: Cross validation with different iterations in 10 ran-

dom tests.

Tests
Number of iterations

1 2 3 4 5

1 0.81 0.85 0.81 0.76 0.71

2 0.83 0.78 0.75 0.72 0.74

3 0.81 0.87 0.88 0.87 0.87

4 0.8 0.81 0.81 0.78 0.76

5 0.84 0.8 0.8 0.78 0.77

6 0.8 0.78 0.74 0.73 0.72

7 0.81 0.8 0.78 0.77 0.75

8 0.84 0.81 0.78 0.8 0.79

9 0.81 0.79 0.74 0.74 0.73

10 0.84 0.79 0.78 0.79 0.79

Average 0.819 0.808 0.787 0.774 0.763

• Note: 0.81 in this table means 81% correct clas-

sification rate.

its maximum value if the presynaptic spikes arrived before the postsynaptic

neuron is firing. If the timing is the other way round, the synaptic weight485

will be approximately zero. Therefore, for precisely timed spikes, the result

performance will become better if increasing the learning iterations.

However, if the temporal jitter of the pre- and postsynaptic spikes escalated,
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Figure 14: Standard error performance using different iterations.

the synaptic weight will take an intermediate value determined by non-Hebbian

terms rather than STDP learning window [37]. In this paper, we choose C1490

features instead of more abstracted features to get the best balance between

learning speed and performance. Since the generated C1 features within the

proposed SNN still contain relatively large intra-class variances (means relatively

large temporal jitter of pre- and postsynaptic spikes), increasing the iteration

times implies the level of the temporal jitter of pre- and postsynaptic spikes is495

increased, which may lead to the poor performance with more iterations.

STDP learning will generate the perfect learning efficacy matrix if there are

no intra-class variance or the intra-class variance remains at a relatively low

level, which indicates the extracted features should have a relatively high level

invariance. However, in real world, such strict demand can hardly be achieved.500

In most cases, those extracted features will still contain relatively large intra-

class variance. Therefore, it is desirable to find a reasonable learning method

to deal with those features with relatively large variance, and still obtain a

satisfactory performance in the end.
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Table 3: Performance comparison of three methods(%).

Method Correct rate Wrong rate Unknown rate

The proposed method 82 ± 2 18 ± 2 0

Tempotron rule [14] 78.5 ± 1.85 18.35 ± 1.85 3.15 ± 1.64

SVM [14] 79.33 ± 2.03 18.15 ± 1.69 2.53 ± 2.04

In paper [14], the authors used a supervised temporal learning rule (named505

Tempotron Rule) to train the MNIST database (almost same experimental con-

ditions as this paper) and achieved 79% correct classification rate in the end.

Unlike this state-of-art learning method, the proposed algorithm uses unsuper-

vised STDP learning rule with dynamic post-synaptic potential threshold during

the learning procedure. Dynamic post-synaptic potential threshold guarantees510

that each training sample will be properly learned.

What’s more, since the proposed method uses a more pervasive unsuper-

vised learning rule, no prior information or teaching signals are needed in this

paper. Table.III and Fig.15 show the final classification performance comparison

of three different methods. It can be seen that the unknown rate of the pro-515

posed method is 0, which means each testing sample would be recognized as one

possible class. Compared with Tempotron Rule, the proposed method achieves

better correct rate at around 82%, while still remains slightly less wrong rate.

Finally, Table.IV shows the speed test results for the training and testing peri-

ods respectively. It can be seen that the learning and testing speeds are quite520

impressive - 21.3 fps in training and 17.9 fps in testing, both can be operating

in real time.

In real world, there are at least two critical restrictions determining a learn-

ing methodology. One is time limit, often there is not enough time to learn,

especially in real time scenarios. Second restriction is the size of data can be ac-525

28



Figure 15: Performance comparison of three methods.

cessed given time restriction - for example, a learning algorithm can only access

to a few data points or encounter a few events. Our proposed method performs

much better when the number of iteration and data size are both restricted - a

situation very similar to that a human brain faces.

For those methods that may have achieved better performance on the MNIST530

database, all of them have assumed that they have enough time to learn all the

database with unlimited iterations before carry out a test. This is impossible

in real world. In any cases of a real world situation, new visual pattern should

be learned in a limited time window to adapt to new environments or changes

promptly. Moreover, given a real-time learning circumstance, it is hard to fully535

exploit the whole database with limited time. Therefore, to enable a machine

to learn visual patterns in real time proposes a huge challenge - the algorithms

underlying should process a large volume of visual data in an extremely short

period of time, which has been proved difficult. However, it is also obvious that

a biological brain could cope with these large volume of visual data effortlessly540

in real time. Inspired by this phenomenon, we propose a novel method taking

advantage of spiking neural network (SNN) and spiking timing-based coding

scheme. Moreover, an unsupervised STDP learning method is employed in the

proposed method to make it more practical. Fast cross-validated experiments

using MNIST database are carried out to prove the efficiency and accuracy of545

the proposed method.
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Table 4: Running speed tests.

Item Running time(s) Equivalent to frames per second

Training 23.32 21.3

Testing 5.63 17.9

• Note: the above results are the mean value of 10 random tests

gathered from a laptop with Intel 3rd Gen Core at 2.5 GHz, 8G

RAM and 128G SSD. The whole training procedure includes

500 frames/samples represent total 10 classes (50 samples for

each class) and the whole testing procedure includes 100 sam-

ples.

4.4. Discussion

From a broader perspective, the bio-inspired visual pattern recognition or

similar applications can be considered as simulating the complicated biologi-

cal processing mechanism. Many researches have been deployed to mimic the550

complicated processing procedure of the mammalian brain. In paper [38], the

authors proposed a synaptic weight association training (SWAT) algorithm for

spiking neural networks, which merges the Bienenstock-Cooper-Munro (BCM)

learning rule [39] with spike timing dependent plasticity (STDP) [40]. Such rule

yields a unimodal weight distribution where the height of the plasticity window555

associated with STDP is modulated causing stability after a period of train-

ing. Other papers [41], [42], [43], [44] combines the self-organizing map (SOM)

, a neural network algorithm to create topographically ordered spatial repre-

sentations of an input data set using unsupervised learning, with spiking neural

network to mimic the feature maps found in mammalian cortices. Moreover, the560

authors in [45] propose a novel unsupervised approach for exemplar extraction

through structured sparse learning, which not only considers the reconstruction

capability and the sparsity, but also the diversity and robustness. The effec-
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tiveness of this method has been verified by experiments of various examples

including traffic sign sequences. Within visual cortex, it is known that neurons565

are silent most of the time, firing only occasionally (sparse firing). Sparse firing

is a hallmark of neurons at almost all stages of visual cortex. Like those meth-

ods mentioned above, the proposed spiking neural network and its unsupervised

STDP learning method can be considered as another try for simulating the pro-

cessing procedure of the mammalian’s brain. Besides mimicking mammalian570

brain, many researchers pay their attention to those lower organisms, such as

locust or fly [46], [47], [48], [49]. However, such methods did not transform the

analog input data into spiking patterns and thus lack the advantages of the

spiking neural network.

Real-time learning proposed significant challenge to machine learning meth-575

ods with limited processing time and huge data sets. Inspired by biological

visual brain, the spike pattern generated by temporal spike coding conveys sig-

nificant spatio-temporal information about the input data, which can be used

for the visual pattern recognition task, as demonstrated above. It is also impor-

tant to note that STDP can not only used in feature extracting layers to learn580

the connection between C1 S2 ([13]), it can also be used in learning spiking

patterns after spiking encoding layer as demonstrated in this study. Using only

the C1 and S1 for feature extraction, avoiding complicated and time consuming

high level feature extraction, a spike timing-based SNN can achieve acceptable

recognition rate after fast STDP learning. Feature extraction mechanisms in585

human or animal’s brain remains active research field in both neuroscience and

computer vision. It can be predicted that with more natural feature extrac-

tion schemes revealed and integrated into the SNN structure in the future, the

recognition rate and learning efficiency will be further improved.

5. Conclusion590

Real-time learning needs algorithms operating in a fast speed comparable to

human or animal, however this is a huge challenge in processing visual inputs
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at milliseconds scale. In the above chapters, we proposed a novel real-time

learning method by combing the spike timing-based feed-forward spiking neural

network (SNN) and the fast unsupervised spike timing dependent plasticity595

learning method with dynamic post-synaptic thresholds. Fast cross-validated

experiments using MNIST database showed the high efficiency of the proposed

method at an acceptable accuracy. Our research may also add to the further

understanding of the dynamic processing procedure existed in brain’s ventral

stream.600

Acknowledgements

The authors have been supported by EU FP7 project LIVCODE(295151),

HAZCEPT(318907), EU Horizon 2020 project ENRICHME(643691) and

STEP2DYNA(691154).

References605

[1] F. Rieke, R. Warland, D.de Ruyter van Steveninck, W. Bialek,

Spikes:Exploring the neural code, MIT Press, Cambridge, MA, 1996.

[2] M. N. Shadlen, W. T. Newsome, Noise, neural codes and cortical organi-

zation, Curr. Opin. Neurobial. 4 (1994) 569–579.

[3] J. M. Brader, W. Senn, S. Fusi, Learning Real-World Stimuli in a Neu-610

ral Network with Spike-Driven Synaptic Dynamics, Neural Computation

19 (11) (2007) 2881–2912.

[4] P. U. Diehl, M. Cook, Unsupervised learning of digit recognition using

spike-timing-dependent plasticity, Frontiers in Computational Neuroscience

(2015) 99.615

[5] S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual

system, Nature 381 (6582) (1996) 520–522.

32



[6] T. Masquelier, R. Guyonneau, S. J. Thorpe, Spike timing dependent plas-

ticity finds the start of repeating patterns in continuous spike trains, PLoS

ONE 3 (1) (2008) e1377.620

[7] W. Gerstner, R. Kempter, J. L. van Hemmen, H. Wagner, A neuronal

learning rule for sub-millisecond temporal coding, Nature 386 (1996) 76–

78.

[8] K. Kitano, H. Cteau, T. Fukai, Sustained activity with low firing rate in

a recurrent network regulated by spike-timing-dependent plasticity, Neuro-625

computing 4446 (2002) 473–478.

[9] H. Markram, J. Lubke, M. Frotscher, B. Sakmann, Regulation of synaptic

efficacy by coincidence of postsynaptic aps and epsps, Science 275 (1997)

213–5.

[10] F. Henry, E. Dauc, H. Soula, Temporal pattern identification using spike-630

timing dependent plasticity, Neurocomputing 70 (1012) (2007) 2009–2016.

[11] A. Shahim-Aeen, G. Karimi, Triplet-based spike timing dependent plastic-

ity (TSTDP) modeling using VHDL-AMS, Neurocomputing 149, Part C

(2015) 1440–1444.

[12] D. O. Hebb, The Organization of Behavior: a neuropsychological theory,635

Wiley, New York, 1949.

[13] T. Masquelier, S. J. Thorpe, Unsupervised learning of visual features

through spike timing dependent plasticity, PLoS computational biology

3 (2) (2007) e31.

[14] Q. Yu, H. Tang, K. Tan, H. Li, Rapid feedforward computation by temporal640

encoding and learning with spiking neurons, IEEE Trans. Neural Networks

and Learning Systems 24 (10) (2013) 1539–1552.

[15] S. Thomas, W. Lior, B. Stanley, R. Maximilian, P. Tomaso, Robust object

recognition with cortex-like mechanisms, IEEE Trans. Pattern Anal. Mach.

Intelli. 29 (3) (2007) 411–426.645

33



[16] Y. Bengio, Learning deep architectures for ai, Found. Trends Mach. Learn.

2 (1) (2009) 1–127.

[17] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and

new perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013)

1798–1828.650

[18] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A

theory of object recognition: Computations and circuits in the feedforward

path of the ventral stream in primate visual cortex.

[19] T. Christian, T. Nicolas, C. Matthieu, Extended coding and pooling in the

hmax model, IEEE Trans. Image Processing 22 (2) (2013) 764–777.655

[20] W. Gerstner, Population dynamics of spiking neurons: fast transients,

asynchronous states and locking, Neural Comput. 12 (2000) 43–89.

[21] N. Brunel, F. Chance, N. Fourcaud, L. F. Abbott, Effects of synaptic noise

and filtering on the frequency response of spiking neurons, Phys. Rev. Lett.

86 (2001) 2186–2189.660

[22] S. J. Thorpe, Spike arrival times: a highly efficient coding scheme for neu-

ral networks, Parallel processing in neural systems and computers, North-

Holland. (1990) 91–94.

[23] W. C. Butts, D. A., J. J. et al., Temporal precision in the neural code and

the timescales of natural vision, Nature 449 (7158) (2007) 92–95.665

[24] R. B. Stein, E. R. Gossen, K. E. Jones, Neuronal variability: noise or part

of the signal?, Nat. Rev. Neurosci. 6 (5) (2005) 389–397.

[25] S. Wu, S. Amari, H. Nakahara, Population coding and decoding in a neural

field: a computational study, Neural Comput. 14 (5) (2002) 999–1026.

[26] S. Bohte, H. La Poutre, J. Kok, Unsupervised clustering with spiking neu-670

rons by sparse temporal coding and multilayer RBF networks, IEEE Trans-

actions on Neural Networks 13 (2) (2002) 426–435.

34



[27] S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual

system, Nature 381 (1996) 520–522.

[28] A. Delorme, J. Gautrais, R. van Rullen, S. Thorpe, Spikenet: a simulator675

for modeling large large networks of integrate and fire neurons, Neurocom-

puting 26 (1999) 989–996.

[29] A. Delorme, L. Perrinet, S. Thorpe, Networks of integrate-and-fire neurons

using rank order coding, Neurocomputing 38-40 (2001) 539–545.

[30] A. Delorme, S. Thorpe, Face identification using one spike per neuron:680

resistance to image degradation, Neural Networks 14 (6-7) (2001) 795–803.

[31] W. Gerstner, W. M. Kistler, Spiking neural models, Cambridge University

Press, Cambridge, MA, 2002.

[32] M. C. W. van Rossum, G. Q. Bi, G. G. Turrigiano, Stable hebbian learning

from spike time dependent plasticity, Journal of Neuroscience 20 (88) (2000)685

12–21.

[33] J. Rubin, R. Gerkin, G. Bi, C. Chow, Calcium time course as a signal for

spike-timing-dependent plasticity, J Neurophysiol 93 (2005) 2600–13.

[34] http://yann.lecun.com/exdb/mnist/, accessed: 2013-09-30.

[35] R. Guyonneau, R. VanRullen, S. J. Thorpe, Neurons tune to the earliest690

spikes through STDP, Neural Computation 17 (4) (2005) 859–879.

[36] R. Guyonneau, R. Vanrullen, S. J. Thorpe, Temporal codes and sparse rep-

resentations: a key to understanding rapid processing in the visual system,

Journal of Physiology, Paris 98 (4-6) (2004) 487–497.

[37] W. M. Kistler, J. L. van Hemmen, Modeling synaptic plasticity in con-695

juction with the timing of pre- and postsynaptic action potentials, Neural

Computation 12 (2) (2000) 385–405.

35

http://yann.lecun.com/exdb/mnist/


[38] J. Wade, L. McDaid, J. Santos, H. Sayers, SWAT: A Spiking Neural Net-

work Training Algorithm for Classification Problems, IEEE Transactions

on Neural Networks 21 (11) (2010) 1817–1830.700

[39] E. L. Bienenstock, L. N. Cooper, P. W. Munro, Theory for the development

of neuron selectivity: orientation specificity and binocular interaction in

visual cortex, Journal of Neuroscience 2 (1982) 32–48.

[40] D. Liu, S. Yue, Visual pattern recognition using unsupervised spike timing

dependent plasticity learning, in: 2016 International Joint Conference on705

Neural Networks (IJCNN), 2016, pp. 285–292.

[41] B. Ruf, M. Schmitt, Self-organization of spiking neurons using action poten-

tial timing, IEEE Transactions on Neural Networks 9 (3) (1998) 575–578.

[42] N. Manukyan, M. Eppstein, D. Rizzo, Data-Driven Cluster Reinforcement

and Visualization in Sparsely-Matched Self-Organizing Maps, IEEE Trans-710

actions on Neural Networks and Learning Systems 23 (5) (2012) 846–852.

[43] C.-C. Hsu, S.-H. Lin, Visualized Analysis of Mixed Numeric and Categori-

cal Data Via Extended Self-Organizing Map, IEEE Transactions on Neural

Networks and Learning Systems 23 (1) (2012) 72–86.

[44] T. Rumbell, S. Denham, T. Wennekers, A Spiking Self-Organizing Map715

Combining STDP, Oscillations, and Continuous Learning, IEEE Transac-

tions on Neural Networks and Learning Systems 25 (5) (2014) 894–907.

[45] H. Liu, Y. Liu, F. Sun, Robust exemplar extraction using structured sparse

coding, IEEE transactions on neural networks and learning systems 26 (8)

(2015) 1816–1821.720

[46] F. C. Rind, D. I. Bramwell, Neural network based on the input organization

of an identified neuron signaling impending collision, Journal of Neurophys-

iology 75 (3) (1996) 967–985.

36



[47] S. Yue, F. Rind, Collision detection in complex dynamic scenes using

an LGMD-based visual neural network with feature enhancement, IEEE725

Transactions on Neural Networks 17 (3) (2006) 705–716.

[48] S. Yue, F. Rind, Redundant Neural Vision Systems -Competing for Colli-

sion Recognition Roles, IEEE Transactions on Autonomous Mental Devel-

opment 5 (2) (2013) 173–186.

[49] B. Hu, S. Yue, Z. Zhang, A rotational motion perception neural network730

based on asymmetric spatiotemporal visual information processing, IEEE

Transactions on Neural Networks and Learning Systems PP (99) (2016)

1–19.

37


	Introduction
	Framework of the proposed feed-forward spiking neural network
	Feature Extracting Layer
	Spiking Encoding Layer
	Output Layer

	Neuron Model and STDP Learning Rule
	Neuron Model
	STDP Learning Rule

	Experimental Results and Analysis
	MNIST database
	Parameter Setting
	Experiments and Discussions
	STDP Learning with no Intra-class Variance
	STDP Learning with Relatively Large Intra-class Variance
	Experiments on MNIST Database

	Discussion

	Conclusion

