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Abstract

This paper proposes a novel ground vehicle tracking method using an airborne ground moving target

indicator radar where the surrounding geographic information is considered to determine vehicle’s

movement type as well as constrain its positions. Multiple state models corresponding to different

movement modes are applied to represent the vehicle’s behaviour within different terrain conditions.

Based on geographic conditions and multiple state models, a constrained variable structure multiple

model particle filter algorithm aided by particle swarm optimisation is proposed. Compared with

the traditional multiple model particle filtering schemes, the proposed algorithm utilises a particle

swarm optimisation technique for the particle filter which generates more effective particles and

generated particles are constrained into the feasible geographic region. Numerical simulation results

in a realistic environment show that the proposed method achieves better tracking performance

compared with current state-of-the-art ones for manoeuvring vehicle tracking.

Keywords: Manoeuvring ground vehicle tracking, geographic information, variable structure

multiple models, particle filter, particle swarm optimisation

1. Introduction

Airborne surveillance of moving ground targets is one of important capabilities of manned or

unmanned aircraft for both military and civil applications such as search and rescue, border patrol,

and infrastructure protection, in which the use of airborne ground moving target indicator (GMTI)

radar system is of special interest. As mentioned in [1], the GMTI radar system extracts mov-

ing ground target information against a stationary background, providing wide-area, all-weather,

day/night, and real time capabilities.

One important preliminary step for the GMTI based airborne surveillance is to continuously

estimate vehicle’s state information. For instance, in order to analyse if the behaviour of a vehicle

in a surveillance region is normal or abnormal, firstly, its position and velocity need to be extracted
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[2]. For the continuous estimation of vehicle states, the Kalman or Particle filters based on Bayesian

filtering are widely applied [3]. Considering a tracked object could manoeuvre with different move-

ment types, the interactive multiple model (IMM) method was applied for state estimation with

multiple state models [4]. To overcome the issues of the non-linear measurement model and the

non-Gaussian distribution of the noise component, the interactive multiple models particle filter

(IMMPF) was proposed in [5], and the simulation results show the improved performance over the

standard IMM method in [4].

Inspired by the fact that the movement of a ground vehicle is not free but constrained by its

operational terrains, some terrain information can be combined with certain filtering algorithms.

The most widely-used terrain information is the road network, and representative work is shown in

[2], [6], [7] and [8]. In [2], the road constraint was treated as a pseudo-measurement and incorporated

into the extended Kalman filter (EKF) scheme for state estimation of the target moving on the

road. More advanced algorithms were proposed in [6] using the road map information. The

target dynamics was modelled in quasi one-dimensional road coordinates and mapped onto ground

coordinates using linear road segments, and Gaussian sum approximations and a particle filtering

approach were applied and compared. Considering that a moving target is likely to manoeuvre

on the road, Cheng et al. in [7] applied a multiple model framework to describe the movement

of a vehicle, and the unscented particle filtering scheme was proposed for more effective particle

generation. In [8], the road width is considered and the road segments are represented in 2-D

shapes rather than 1-D line representation. Multiple state models were applied to describe the

different vehicle movement and the state model transition probability is set in a state dependent

way. An interactive multiple model auxiliary particle filtering (IMMAPF) algorithm was applied

which exploits the measurement information when drawing particles.

Arulampalam et al. [9] presented a GMTI vehicle tracking problem in which a vehicle could move

on or off road and a variable structure multiple model particle filter (VS-MMPF) was applied. For

the vehicle’s movement on a particular terrain (off-road or a road segment), a corresponding state

model was applied to model the vehicle’s movement in that terrain. The transition probabilities

between state models were set in a state dependent way and the active state models were variable.

In [10], instead of using the generic particle filtering approach, the unscented particle filtering

scheme was applied in the variable structure multiple model framework to achieve a more accurate

state estimation with fewer particles.

In this work, a more realistic scenario is considered in which a vehicle manoeuvres in different

terrain conditions with different movement types. Note that a vehicle’s movement type and position

can be determined by different types of terrain. We exploit both the road topology information and
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the off-road terrain information to aid the GMTI tracking compared with aforementioned works

which only take the road topology information into account. In order to deal with the multiple

movement types of a manoeuvring vehicle, multiple movement modes are considered and related

state models are applied for the vehicle’s movement description in a particular terrain instead of

considering only a single movement mode as in [9] and [10].

The geographic information and multiple modes for movement description are incorporated

into a constrained variable structure multiple model particle filter algorithm, aided by the particle

swarm optimisation (denoted as C-VSMM-PSO-PF) for an accurate GMTI tracking. The proposed

C-VSMM-PSO-PF algorithm applies a particle filtering technique to deal with the non-Gaussian

distribution as well as the non-linear GMTI measurements based on a variable structure multiple

model (VSMM) scheme. Different from the algorithms in [9] and [10], a particle swarm optimisation

technique ([11] and [12]) is introduced to generate more effective particles within a region with

comparatively high measurement likelihood values. Finally, particles obtained by performing the

PSO which violate the geographic constraints are projected into the feasible geographic regions.

The advantages of vehicle tracking using the proposed C-VSMM-PSO-PF algorithm with GIS

information and multiple movement modes are validated via numerical simulations.

This paper is organised as follows. Section 2 presents the geographic information-aided state

model and the measurement model for describing the GMTI tracking problem. Section 3 proposes

the C-VSMM-PSO-PF algorithm. Section 4 shows the advantages of the proposed ground vehicle

tracking method from multiple Monte Carlo simulations in a realistic environment. Conclusions

are given in Section 5.

2. GMTI tracking models

This section introduces the state and GMTI measurement models for a GMTI tracking problem.

Based on these models, certain filtering techniques (such as Kalman or Particle filters [3]) could be

developed for state estimation.

2.1. State model description with geographic information

In a realistic environment, different types of terrain conditions exist, and the movement of a

vehicle is always constrained by its operational terrains whose information could be collected from

geographic information systems (GIS) [13]. When a vehicle moves on the road, it moves along the

road segment and its movement is constrained by the road topology. For off-road movement, a

vehicle could move in a relatively free way but cannot move on inaccessible regions. Thus, different
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state models are required to describe the state evolution of a vehicle according to the vehicle’s

movement characteristics in different terrain conditions.

2.1.1. Off-road state model

As in [14], the state model to describe the off-road movement can be represented as:

xglobal
k = Fxglobal

k−1 +Gwglobal(mk) (1)

with

F =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , G =


T 2/2 0

0 T 2/2

T 0

0 T

 (2)

where xglobal
k = [xglobalk , yglobalk , ẋglobalk , ẏglobalk ] represents the state vector under the real world coor-

dinate system, which includes the real world position ([xglobalk , yglobalk ]) and velocity ([ẋglobalk , ẏglobalk ])

(here we mainly consider tracking the vehicle’s 2-D positions as the height of the vehicle could be

derived directly from the GIS as its 2-D positions are known) and T is the interval between con-

secutive time instances. wglobal(mk) is the uncertain control input of the state model representing

the accelerations in different directions. The representation of wglobal(mk) is related to one of the

movement mode mk. To deal with the vehicle manoeuvring with different movement types (such as

constant acceleration/velocity or stop), more than one movement mode should be considered and

multiple related state models are then be applied to describe the off-road movement.

2.1.2. On-road state model

When a vehicle moves on the road, its movement is determined by the road topology, which

mainly follows the road centerline without deviating largely normal to it. In this work, the road

network is represented by the connection of straight road segments as in [6] and [7], which could

represent the road network in a reasonably accurate way while requiring less computational cost.

When a vehicle moves on a particular road segment lk, its corresponding state model is defined as:

xlk
k = F ′xlk

k−1 +G′wlk(mk) (3)

with

F ′ =


1 T 0

0 1 0

0 0 1

 , G′ =


T 2/2 0

T 0

0 T

 (4)
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where xlk
k = [slkk , v

lk
k , nlk

k ] represents the state associated with the local coordinate system of road

segment lk. As illustrated in Fig. 1, the origin of the local coordinate system is the starting point

a road segment (obtained from the GIS) and two axes are along and normal to the road centerline.

Inhere, slkk represents the coordinate in the axis along the centerline, vlkk is the corresponding velocity

and nlk
k is the coordinate in the axis normal to the centerline. The control parameter wlk(mk) is

related both the road segment and one of the on-road movement modes mk. Similar to the off-

road scenario, multiple movement modes are considered to deal with the vehicle manoeuvring with

different movement types on the road.

n1
o1s1

n3
o3

s3
n2

o2s2
O

X

Y

Figure 1: The representations of local road coordinate systems. o1s1n1, o2s2n2 and o3s3n3 represent local road
coordinates with respect to different road segments. OXY represents the real world coordinate.

2.1.3. State transition between global/local coordinates

A vehicle could transit from off-road to on-road or vice versa, and its state vector representation

needs to be transformed between the global real world coordinate system and local road coordinate

system for dynamic modelling in different terrain conditions. For a local state vector xlt
k , it is

converted to its counterpart xglobal
t in the real world coordinate system as:

xglobalk = xlstartk
+ slkk cos(θlk) (5)

yglobalk = ylstartk
+ slkk sin(θlk) (6)

ẋglobalk = vltk cos(θlk) (7)

ẏglobalk = vlkk sin(θlk) (8)

where xlstartk
and ylstartk

represent the real world coordinate of the starting point of the current road

segment lk on which a vehicle moves and θlk represents the angle of the road segment. xlstartk
, ylstartk

and θlk is obtained from GIS.

Conversely, xglobal
k is converted back to the local state vector xlk

k for a particular road segment
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lk as:

slkk =
√

(xglobalk − xlstartk
) cos(θlk)

2 + (yglobalk − ylstartk
) sin(θlk)

2 (9)

vlkk = ẋglobalk cos(θlk) + ẏglobalk sin(θlk) (10)

nlk
k =

|yglobalk − xglobalk tan(θlk) + xlstartk
tan(θlk)− ylstartk

|√
1 + tan(θlk)

2
. (11)

2.1.4. Terrain type and movement mode transitions

In a realistic situation, a vehicle moves in different geographic terrains; the movement type

of the vehicle also changes due to its manoeuvring. The transition between different terrains is

modeled in a state dependent way, which is related to the distance between the vehicle position

and the road entry as:

p(rk = on-road|rk−1 = off-road) = exp(−c · d) (12)

where d is the distance to the entry point of the road network and c is a positive constant value.

The transition probability between the on-road and off-road p(rk = off-road|rk−1 = on-road) has a

similar form as in (12), and the only difference is that the distance d is the one to the exit point of

the road.

In this work, we apply a simple Markov jump model to reflect the movement mode transition.

At time instance k−1, we assume that the transition probability to every possible movement modes

mk is equal in order to ensure no bias exists towards a certain movement type.

2.2. GMTI measurement model

A GMTI radar on a UAV platform is assumed to be used, which measures the relative range r

and azimuth angle θ of the tracked vehicle at the time instance t given by:

yk =

rk
θk

 =


√

(xo,k − xglobalk )2 + (yo,k − yglobalk )2 + (zo,k − zglobalk )2

arctan

(
yo,k−yglobalk

xo,k−xglobal
k

) + nk (13)

for a recorded measurement yk, where (xglobalk , yglobalk , zglobalk ) and (xo,k, yo,k, zo,k) represent the real

world position of the tracked vehicle and the observer (GMTI tracker) at time instance k, respec-

tively. nk represents the radar measurement noise.

There are two problems to be considered for GMTI radar as described below.
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2.2.1. Missed detection

A tracked vehicle can-not always be detected, thus its detection will be missed if it does not

exist in the line-of-sight (LOS) region of the GMTI radar or the radial velocity (the projected

velocity along the line between the GMTI and the tracked vehicle) is below than the minimum

detection velocity (MDV) as in [7] (in this case, it is called that the vehicle is within the ‘Doppler

Blind Zone’). In this work, a similar method to [7] is proposed to model the detection probability

considering the effect of the both LOS region and MDV as:

PD =

 0, if vehicle is outside LOS region or radial velocity is below MDV

pd, otherwise
(14)

where pd is a constant between 0 and 1.

2.2.2. False alarms

In some cases, false alarms will be generated since anything on the ground with significant

motion relative to the sensor can trigger a GMTI detection, these false detections are called ‘clutter

detections’. As in [15], it is usually assumed that the number of the clutter detections follows a

Poission distribution and the clutter detections are distributed uniformly across the surveillance

region.

To cope with the missed detections and false alarms, a general measurement likelihood function

as in [15] is applied to incorporate both the detection probability and clutters distribution, which

is represented as:

f(Zk|xglobal
k ) ∝ 1− PD + PD

∑
zk∈Zk

g(zk|xglobal
k )

γc(zk)
(15)

where Zk is the measurement set at time instance k which contains both true measurement and

false alarms (it could also be an empty set with no measurements), γ the expected number of false

alarms per GMTI scan, c(zk) the uniform spatial distribution of the false alarm and g(zk|xglobal
k )

the likelihood function for a measurement element zk ∈ Zk conditioned on the global state xglobal
k ,

which is determined according to (13).

3. C-VSMM-PSO-PF algorithm

From the state and measurement models mentioned in the last section, different filtering meth-

ods could be applied for state estimation. Considering the following two facts: (i) the incorporation

of the geographic information into the state equations can significantly distort the distribution of

the state vector resulting in non-Gaussian system and (ii) the measurement model of the GMTI
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radar is highly non-linear (15), a particle filtering technique is adopted in this work.

A VS-MMPF algorithm was proposed in [9], which applied a particle filtering technique for

the state estimation based on a variable structure multiple model (VSMM) framework considering

multiple state models to describe on/off road movements and transitions between state models be-

ing state dependent. For the generic particle filtering technique, particles are generated only from

predictions by the state models in [9], which introduces outlier particles with low measurement likeli-

hood values. To address this issue, the VSMM-UPF (Unscented Particle Filter) framework [10] was

proposed in which unscented Kalman filters were applied for new particles generation. Although this

method exploits measurement information for new particles generation, as the unscented Kalman

filter is performed for every particle, the algorithm becomes computationally expensive.

To further address the above issue, this paper proposes the constrained variable structure multi-

ple model particle filter algorithm, aided by the particle swarm optimisation (C-VSMM-PSO-PF).

Firstly, it uses a particle filtering technique based on the VSMM framework considering different

movement types (on/off movements), different movement modes and state-dependent model tran-

sitions between on/off road. The measurement information is incorporated in new particle genera-

tion by applying a particle swarm optimization (PSO) technique to make the outliers converge to

a comparatively high measurement likelihood region. Considering the constraints imposed by the

geographic information, the resultant particles are projected into the feasible regions determined

by the geographic information to meet the constraint conditions. The proposed C-VSMM-PSO-PF

algorithm is divided into the following three main steps as follows.

3.1. VSMM prediction

A set of N particles are initialized at k − 1 as {Xi
k−1 = [xi

k−1, l
i
k−1, r

i
k−1,m

i
k−1]}i=1,...,N , where

each particle Xi
k−1 includes the vehicle status (on/off road indicator rik−1, movement mode mi

k−1,

the particular road segment on which it moves lik−1 (if rik = off-road, lik−1 = global)) and the

vehicle state vector xi
k−1. New particles for the time instance k are predicted according to the

VSMM scheme, which includes:

Status determination: For each particle i, its on/off road indication rik, the road segment

lik if it is on-road and the movement mode mi
k of at time instance k are firstly determined. rik

is sampled according to the probability as in Eq. (12), mi
k is chosen from the possible movement

modes with an equal probability and lik is determined by the following criteria:

lik =


global, rik = off-road

lstart, rik−1 = off-road and rik = on-road

lik−1 rik = on-road

(16)

8



where lstart represents the road segment which is the entry to a road network.

State prediction: According to {lik, rik,mi
k}i=1,...,N and vehicle states {xi

k−1}i=1,...,N in the

particle set, new N vehicle states at the time instance k are predicted according to Eq. (1) (for

rik = off-road) or Eq. (2) (for rik = on-road) and denoted as {xpredict,i,lik
k }i=1,...,N . Note, if rik ̸= rik−1,

the corresponding state vector xi
k−1 needs to be transformed before state prediction.

Status/state adjustment: For a rik = on-road and the along-centerline axis coordinate of

x
predict,i,lik
k (denoted as s) is larger than the length of the road segment lik (denoted as L) or smaller

than zero, a new road segment which connects to the end or start point of the road segment lik

is chosen to replace the original lik. The coordinate in the along-centerline axis of x
predict,i,lik
k is

adjusted to s
predict,i,lik
k − L or −s

predict,i,lik
k . After the VSMM prediction step, a new set of particles

{Xpredict,i
k = [x

predict,i,lik
k , lik, r

i
k,m

i
k]}i=1,...,N is obtained.

3.2. Particle swarm optimisation

Note that vehicle states {xpredict,i,lik
k }i=1,...,N included in the predicted N particles may be ‘out-

liers’ which fall into a very low measurement likelihood region. To mitigate this issue, the particle

swarm optimisation (PSO) [11], a population based stochastic optimisation technique, is applied

to make the predicted vehicle states converge into a comparatively high measurement likelihood

region (as illustrated in Fig. 2) by maximising the likelihood function in Eq. (15).

The predicted states {xpredict,i,lik
k }i=1,...,N are taken as an initial population set for the PSO

algorithm. For the consensus of the vehicle states’ coordinates, all the vehicle states are transformed

into the real word coordinate system as {xpredict,i,global
k }i=1,...,N using Eqs. (5)∼(6). Then, for each

xpredict,i,global
k , a fitness value f(Zk|xpredict,i,global

k ) is estimated. After estimating the fitness values

for the initial population set, the individual best pi
0 for every individual i and global best g0 are

estimated as described in [11]. Based on the individual best and global best, every individual

i moves with a velocity of vi
0, which relates to the difference between the individual i and the

individual/global best, and a new population set is obtained. The velocity vi
0 is . For the new

population set, the same procedure repeats as the initial one to obtain individuals with higher

fitness values. The population set update continues until certain conditions are met (e.g. the

maximum iteration number is reached or the function values for the majority of points are larger

than a pre-specified threshold, as illustrated in more details in the numerical simulations section).

Technical details of the PSO are explained in Algorithm 1. r1 and r2 in Algorithm 1 are ran-

dom numbers with Gaussian distribution N(0, 1), and ρ is a zero-mean Gaussian perturbation noise

added to avoid particles being trapped in local optima. The obtained population set after perform-

ing the PSO, {Xoptimised,i
k = [xoptimised,i

k , lik, r
i
k,m

i
k]}i=1,...,N is obtained to replace the original set

{xpredict,i,lik
k }i=1,...,N for a new set of particles.
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Algorithm 1 Particle Swarm Optimisation to obtain more effective particles

Input: {xi
0}i=1,...,N = {xpredict,i,global

k }i=1,...,N is chosen as the initial population set.
1: Set j = 0, pi

0 = xi
0 for i = 1, ..., N , g0 = argmaxpi

0
f(Zk|pi

0) for i = 1, ..., N
2: while Termination condition is not met do
3: j = j + 1
4: for i = 1 to N do
5: vi

j = |r1|(pi
j−1 − xi

j−1) + |r2|(gj−1 − xi
j−1) + ρ

6: xi
j = xi

j−1 + vi
j

7: pi
j =

{
xi
j if f(Zk|xi

j) > f(Zk|pi
j−1),

pi
j−1 otherwise.

8: end for
9: gj = argmaxpi

j
f(Zk|pi

j) for i = 1, ..., N

10: end while
Output: {xoptimised

k }i=1,...,N = gj

Figure 2: The illustration of particle swarm optimisation, which makes particles generated from the state transition
probability converge into a region with comparatively high measurement likelihood value

3.3. Particles projection and state estimation

Finally, the geographic information which constrains the vehicle’s movement is considered.

The geographic constraint regions are sometimes non-linear so, in this work a projection based

method as in [16] which is a simple but efficient technique to deal with different types of con-

straints, is applied to exploit the geographic constraint information. For the particle Xoptimised,i
k =

[xoptimised,i
k , lik, r

i
k,m

i
k] obtained from the PSO optimisation, if the vehicle position is not within the

feasible region (outside the road boundary if rik = on-road or inside the off-road infeasible region

if rik = off-road), then it is projected to the nearest point on the feasible region boundary. In this

way, it is guaranteed that obtained particles meet the geographic constraints. The particles after

projection are denoted as {Xprojection,i
k = [xprojection,i

k , lik, r
i
k,m

i
k]}i=1,...,N .

The probability of a vehicle being on/off road p(rk), the movement mode probability p(mk) and

the state estimation x̂m,r
k corresponding to an off/on road movement type (rk = r) with a particular
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movement mode (mk = m) are obtained as:

p(rk = r) =
∑
i

wi, for i ∈ {j|rjk = r} (17)

p(mk = m) =
∑
i

wi, for i ∈ {j|mj
k = m} (18)

x̂m,r
k =

∑
iwix

projection,i
k

p(mk = m, rk = r)
, for i ∈ {j|rjk = r,mj

k = m}, (19)

where wi ∝ f(Zk|xprojection,i
k ) as in Eq. (15).

The on/off road type (denoted as rvehicle) and the movement mode (denoted as mvehicle) of

the vehicle are determined by achieving the largest p(rk) and p(mk). The final state estimation

of the vehicle is then x̂mvehicle,rvehicle
k . After the state estimation, for every particle i whose rik =

on-road, the vehicle state vector xprojection,i
k is converted back to the local coordinate for the VSMM

prediction at the next time instance using Eq. (9). The outline of the proposed C-VSMM-PSO-PF

algorithm is presented in Algorithm 2.

Algorithm 2 The outline of the C-VSMM-PSO-PF algorithm

Input: N particles are initialised at k − 1 as {Xi
k−1 = [x

i,lik−1

k−1 , lik−1, r
i
k−1,m

i
k−1]}i=1,...,N

•VSMM prediction:
Obtaining the on/off road movement type rik, road segment lik movement modemi

k and predicted

state x
i,lik
k according to corresponding transition probabilities for every particle. Every predicted

state x
predict,i,lik
k is converted to the global one xpredict,i,global

k for PSO.
•PSO:
Taking the predicted vehicle states {[xpredict,i,global

k }i=1,...,N as an initial population, a new set

of vehicle states {xoptimised,i
k }i=1,...,N is obtained from PSO using Algorithm 1

•Particle projection:
For the obtained vehicle state particles xoptimised,i

k whose position is outside the feasible region,
we project the vehicle position to the nearest point on the feasible region’s boundary to obtain
a new set of vehicle state particles {xprojection,i

k }i=1,...,N .
•State estimation:
The final particle set at time instance k is obtained as {Xi

k = [xprojection,i
k , lik, r

i
k,m

i
k]}i=1,...,N .

The on/off road probability, movement mode probability and vehicle state are obtained using
Eqs. (17)∼(19). After the state estimation, the corresponding xprojection,i

k is converted back to
the local road segment state for rik = on-road. The VSMM prediction for the next time instance
is then performed and the above procedure repeats.

4. Numerical Simulations

The advantages of the proposed C-VSMM-PSO-PF algorithm are evaluated by numerical sim-

ulation study. We simulate a scenario that a UAV platform with the GMTI radar tracks a highly

manoeuvring vehicle in a realistic environment (a region of Lindifferon, St. Andrews in the United
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Kingdom). The simulated vehicle trajectory is plotted as the blue line in Fig. 3. The satellite image

in Fig. 3 is geo-referenced with the British National Grid (BNG) coordinate system to represent

the real world position (the origin of this coordinate system is located at 49◦N, 2◦W ). x and y axes

represent the distance to the origin along the East and North direction, respectively.

The on/off road transition, movement modes transitions and velocity amplitude variations cor-

responding to the simulated vehicle movement are plotted in Fig. 4. The time interval between

two consecutive time instances is one second and the vehicle’s movement lasts for 87 seconds. The

vehicle moves in a highly manoeuvring way, which approximates a realistic scenario wherein a

vehicle moves in different terrain conditions and does not always follow a particular manoeuvring

type. The state models corresponding to on/off road movements have forms of Eqs. (1) and (2) as

© 2013 GoogleImage © 2013 Getmapping plc
Figure 3: The trajectories of the simulated UAV (red stars) and vehicle (blue line) movements. The satellite image
is taken from Google Earth and geo-referenced.
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Figure 4: The transitions of the vehicle’s movement types. (a) on/off road movement transitions (b) velocity and
movement mode variations

described in Section 2, and three types of movement modes (CV, CA and Stop) are considered in

this work. The control parameter wglobal(mk) for the off-road movement with different movement
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modes is presented in Eq. (20).

wglobal(mk) ∼ N(w|0,

(0.1)2 0

0 (0.1)2

) for (mk = CV )

wglobal(mk) ∼ N(w|0,

(15)2 0

0 (15)2

) for (mk = CA)

wglobal(mk) =

−ẋglobalk

−ẏglobalk

 for (mk = Stop)

(20)

where wglobal(mk) is assumed to follow Gaussian distribution for CV and CA movement mode.

The standard deviations of the components of wglobal(mk) are set to be small for CV to reflect

the movement with a constant velocity and those for the CA mode are set large to deal with the

vehicle manoeuvring. For the Stop model, the control parameter is set to a deterministic value to

guarantee the velocity to become zero.

Similarly, the control parameter wonroad(mk) of the on-road state model corresponding to dif-

ferent on-road vehicle in Eq. (21) is set as:

wlk(mk) ∼ N(w|0,

(0.1)2 0

0 σ2
n(lk)

) for (mk = CV )

wlk(mk) ∼ N(w|0,

(15)2 0

0 σ2
n(lk)

) for (mk = CA)

wlk(mk) =

−vlkk

0

 for (mk = Stop)

(21)

where the standard deviation for the first component of wlk(mk) (representing the acceleration

along the road centerline) is set in the same way as in the off-road movement scenario. The second

component of wlk(mk) represents the change of the normal distance for consecutive time instances

whose standard deviation σn(lk) is related to the width of the particular road segment lk (obtained

from the GIS) for CV and CA movement modes.

A GMTI radar sensor is assumed to be mounted on a moving Unmanned Aerial Vehicle (UAV)

platform for monitoring. We simulate the UAV loitering at an altitude of 200 m where the circle

radius is 100 m and angular speed is π/20 rad/s (the UAV trajectory in the 2-D overlook plane

is marked as red stars in Fig. 3). Measurements of the GMTI radar are simulated according to

Eq. (13) with a Gaussian noise being added to the relative range and angle between the vehicle and

the UAV platform. The Gaussian noise is assumed to have zero mean and the standard deviations

13



for r and θ are: σr = 5 m and σθ = 0.05 rad, respectively. It is assumed that the vehicle is always

within the line-of-sight of the sensor. If the radial velocity between the vehicle and the GMTI radar

is smaller than the threshold (set to 1 m/s in this work), no vehicle measurements are obtained;

otherwise, corresponding measurements are generated with a detection probability of pd which is

set to be 0.9. The expected number of false alarms (γ in Eq. (15)) is set to 2 and false alarms are

assumed to be spatially equally distributed across the surveillance area in Fig. 3.

The geographic information for the surveillance area is obtained from the GIS. In the GIS,

different types of terrains such as the off-road wood/building regions or the road network and

their corresponding geographic information (area of a terrain region, real world positions, region

boundary, etc.) are available from corresponding geographic datasets. Figure 5 represents the

visualisation of different types of terrain regions on a geo-referenced image in the surveillance area,

obtained from the Ordnance Survey OpenData [17]. Based on this simulation scenario, evaluations

© 2013 GoogleImage © 2013 Getmapping plc
Figure 5: The presentation of different types of terrains on a georeferenced image. Terrain information is obtained
from GIS.

are performed as described below.

4.1. PSO termination conditions

In our work, the termination conditions of the PSO in our proposed C-VSMM-PSO-PF algo-

rithm are set as:

(i). Values of measurement likelihood function (15) for a certain amount of particles (50%

of whole particle number set in the algorithm implementation) are no smaller than a particular

threshold (set by 0.1), or

(ii). The maximum allowed iteration number (denoted as imax) is reached. Condition (i)

guarantees that a certain percentage of particles are not ‘outliers’, but in a comparatively high

measurement likelihood region with proper levels of likelihood function values and condition (ii)

determines the maximum allowed execution time of PSO algorithm.
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For a comprehensive analysis, we evaluate the influences of different numbers of imax on the

performance of our algorithm. The comparison results are shown as in Table 1, from which we can

see that as imax increases we can obtain smaller mean and standard deviation of RMSE errors.

However, as imax reaches to a certain value, the additional increasing of imax will not gain too

much improvements. For example, as the imax increases from 5 to 10, there is a reduction of 3.46

(corresponding to 24% reduction) of the RMSEs mean. And as the imax increases from 10 to 20,

the reduction of the RMSEs mean is 0.12 (corresponding to only a 1% reduction). In our work,

imax = 10 is chosen for the implementation of the C-VSMM-PSO-PF algorithm and used for the

evaluations in the following sections.

Table 1: The performance comparison for different estimation algorithms.

imax value
Mean Std Computation time

(meters) (meters) (seconds)

0 19.14 2.90 3.18
5 14.53 2.05 3.66
10 11.07 1.15 4.30
20 10.95 1.07 4.49

4.2. Geographic information evaluation

Next we analyze the effect of incorporating the geographic information in terms of the tracking

performance. The proposed C-VSMM-PSO-PF algorithm is compared with its counterpart without

incorporating any GIS information. If no geographical information is used, the state model in Eq.

(1) is always applied to describe the vehicle movement (no road information is applied) and there

are no geographic constraints. Otherwise, different models as mentioned in Section 2 are applied

to describe the on/off road movements and the infeasible region (including the woods, building and

high slope regions as marked in Fig. 5 and regions outside the road boundary when the vehicle

moves on road) are exploited to constrain the particles as in Section 3.

50 trials of Monte-Carlo simulations are performed. For each Monte-Carlo simulation, one

tracking result against the ground truth trajectory is obtained for each approach (with/without

geographic information) and 50 different tracking results for each approach are obtained. At every

time instance, the 50 times averaged root mean square errors (RMSEs) between tracking results and

ground truth trajectory are plotted in Fig. 6 (a) and averaged on/off road probabilities are plotted

in Fig. 6 (b). From the results, we can see that estimated on/off road probabilities coincide with

the groundtruth ones and smaller RMSEs are obtained during the majority of time instances by the

aid of different types of geographic information. We also calculate the RMSEs between the whole
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ground truth trajectory and the tracked results for each approach. The mean and covariance of 50

RMSEs are summarised in Table 2, from which we can see that by incorporating the geographic

information, improved tracking performance is obtained with more than 40% improvement of the

mean tracking error.

On-road

Off-road

(a)

(b)

Figure 6: The 50 times averaged RMSEs and on/off road probabilities for every time instance. (a). the comparison
of 50 times averaged RMSEs at every time instances for approaches with/without geographic information (b). the
50 times averaged on/off road probabilities.

Table 2: The estimation performance comparison with and without the geographic information.

Mean Std
(meters) (meters)

No geographic information 19.42 2.43
Geographic information 11.07 1.15

4.3. Evaluation of incorporating multiple movement modes

We analyze the advantage of considering different movement modes (mt = AC,mt = CV and

mt = Stop) and applying corresponding state models (as in Eqs. (20)) and (21)) for describing

both the on/off road movements. We compare our multiple movement mode scheme with the one

in [9] and [10] which only considers a single movement mode for vehicle movement description. For
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the single movement mode scheme, the mode mt = AC is chosen for comparison considering the

corresponding state model’s ability to catch up with the vehicle manoeuvring highly.

For a quantitative analysis, 50 Monte-Carlo simulations are performed for vehicle tracking.The

mean and standard deviation of RMSEs between the tracking results and ground truth trajectory

for single and the multiple movement mode scheme are presented in Table 3, from which we can

see that a significant improvement (more than 50% over the mean of RMSEs) is obtained by

considering multiple movement modes. Besides, the movement type of vehicle is also estimated

by the proposed multiple model scheme. The probabilities of the ‘stop’ and ‘non-stop’ movement

modes are estimated and presented in Fig. 7. It is observed that modes with larger estimated

probabilities at different time instances are consistent with the ground truth ones as in Fig. 4 (b).

Figure 7: The 50 times averaged stop/non-stop probabilities for every time instance.

Table 3: Performance comparison with different state model schemes for movement description.

Mean Std
(meters) (meters)

Single movement model 25.82 5.73
Multiple movement models 11.07 1.15

4.4. Algorithm evaluation

Finally, we compare the proposed method with other particle filtering based algorithms, which

include: VSMM-PF [9], VSMM-UPF [10] and the extension of the differential evolution-Markov

chain particle filtering [18] for variable structure multiple models framework (VSMM-DEMC-PF).

For a fair comparison, all the methods incorporate the GIS information by projecting invalid parti-

cles into the feasible region and the algorithms then become constrained versions of them (termed
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as C-VSMM-PF, C-VSMM-UPF, and C-VSMM-DEMC-PF). 50 trial Monte-Carlo simulations are
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Figure 8: The comparison of RMSEs at different time instances between different algorithms.

performed and the corresponding RMSEs at different time instances for different algorithms are

plotted in Fig. 8. The mean and variance of RMSEs, between the whole ground truth trajectory

and 50 tracking results by different algorithms are represented in Table III. For every algorithm,

the averaged computation time for each trial is also presented for efficiency analysis.

From the results, it can be observed that the C-VSMM-PF algorithm exhibits the worst tracking

accuracy. The RMSEs are larger than its counterparts during the majority of time as shown in Fig.

8 (a), and it has largest mean and standard deviation of the RMSEs as shown in Table III. This

is because no measurement information is exploited for particles generation in the C-VSMM-PF

algorithm. The generated particles are likely to be less effective outliers and thus resulting in a

poor state estimation result.

The C-VSMM-UPF and C-VSMM-DEMC-PF make use of measurement information for more

efficient particle generation. However, compared with those two, the proposed method (C-VSMM-

PSO-PF) achieves even better performance as shown in Table III. It also shows much higher com-

putational efficiency than C-VSMM-UPF. Here, the reduction in the computational cost is due to

the avoidance of the time-consuming unscented Kalman filtering process for every particle. It is

worthwhile noting that the proposed method achieves much better performance than C-VSMM-

UPF when the vehicle stops (time instances 26-36 and 77-87 seconds) from Fig. 8 (a). This is
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because when the vehicle stops, no measurements related to the vehicle will be received according

to the characteristic of the GMTI radar. For the C-VSMM-UPF algorithm, only the mode transi-

tion probability and the state model are applied to obtain the mode and vehicle state. However,

the PSO technique integrated in the proposed method makes the particles converge to the high

measurement likelihood region, which corresponds to the Doppler blind zone with small velocities.

Table 4: The performance comparison for different estimation algorithms.

Algorithms
Mean Std Computation time

(meters) (meters) (seconds)

C-VSMM-PF 19.14 2.90 3.18
C-VSMM-DEMC-PF 14.09 2.34 4.19

C-VSMM-UPF 13.94 1.72 18.14
C-VSMM-PSO-PF 11.07 1.15 4.30

Lastly, similar to the proposed method, the C-VSMM-DEMC-PF generates more effective par-

ticles by maximising the measurement likelihood by applying the DEMC algorithm. Compared

with the DEMC algorithm, the PSO algorithm makes use of the individual best and global best

information to generate new populations (as explained in Algorithm 1), rather than generating new

populations randomly as for the DEMC. In this way, more effective particles with high measure-

ment likelihood values are generated by the proposed C-VSMM-PSO-PF scheme. As shown in Fig.

8 (b), the RMSEs for the proposed algorithm is smaller than those for the C-VSMM-DEMC-PF

during the majority of the time.

5. Conclusions

This work has proposed a novel method for manoeuvring ground vehicle tracking using a GMTI

radar. It is considered that in a realistic scenario a tracked vehicle’s movement is constrained by the

geographic conditions and it may manoeuvre in different ways. More comprehensive on/off road

geographic information is exploited to constrain the movement of the tracked vehicle according to

the environment, and multiple movement modes are applied to describe the vehicle manoeuvring

on/off road. Based on the geographic information and multiple movement modes, the C-VSMM-

PSO-PF algorithm is proposed which incorporates the PSO scheme into the VSMM-based particle

filtering scheme to obtain more effective particles by exploiting the measurement information in a

more efficient way. Comprehensive numerical simulations on a realistic scenario are performed to

demonstrate the advantages of the proposed method.
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