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Abstract—Roller element bearings are a common component and 
crucial to most rotating machinery; their failure makes up around 
half of the total machine failures, each with the potential to cause 
extreme damage, injury and downtime. Fault detection through 
condition monitoring is of significant importance. This paper 
demonstrates bearing fault detection using widely accessible 
consumer audio tools. Audio measurements from a smartphone 
and a standard USB microphone, and vibration measurements 
from an accelerometer are collected during tests on an electrical 
induction machine exhibiting a variety of mechanical bearing 
anomalies. A peak finding method along with use of trained 
Support Vector Machines (SVMs) classify the faults. It is shown 
that the classification rate from both the smartphone and the USB 
microphone was 95 and 100%, respectively, with the direct 
physically detected vibration results achieving only 75% 
classification accuracy.  This work opens up the opportunity of 
using readily affordable and accessible acoustic diagnosis and 
prognosis for early mechanical anomalies on rotating machines.  

Keywords – roller element bearing; acoustic; fault; defect; detection; 
diagnosis; smartphone; consumer; microphone; vibration; motor; 
comparison; machine learning; support vector machine; SVM 
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I. INTRODUCTION 
All rotating machines employ a method of supporting and 

reducing friction on the rotating shaft. The vast majority use 
roller element bearings due to their excellent operational 
performance. As a component vital to smooth operation, their 
failure can cause extreme damage to other machine components, 
prolonged downtime, heavy repair costs and potential for 
fatality. Approximately half of all rotating machine failures are 
due to issues with the roller bearings making early detection of 
defects a high priority [1]. Bearing damage can also lead to 
performance degradation, excessive vibration, noise and damage 
to other components if left unchecked. This makes online 
condition monitoring highly desirable so potential issues can be 
detected and rectified during scheduled maintenance. Common 
defects include galling, spalling, brinelling, peeling, wear, 
fatigue, overloading, particle ingress and lack of lubrication [2, 
3]. Depending on where the defect occurs it can excite one of the 
four characteristic fault frequencies: ball pass frequency outer 
(BPFO), ball pass frequency inner (BPFI), ball spin frequency 
(BSF) and fundamental train frequency (FTF) [1, 4]. Determined 
by the bearing geometry and rotational speed, these frequencies, 
described in Equations (1) – (4), manifest in both vibration and 

acoustic signals, detectable with appropriate processing 
techniques, albeit in different frequency ranges. 

 (1) 

 (2) 

 (3) 

 (4) 

where  is the shaft speed,  is the number of rollers,  is the angle 
of load from the radial plane,  is the ball diameter, and  is the 
pitch diameter - under conditions of no slippage. 

The frequency and amplitude of such defects provides an 
indication of the presence and severity of the defect with 
harmonics indicating the defect origin [1]. It is important to 
recognise that in the case of a point defect, such frequencies are 
related to how often there is a defect impact and characteristics 
will manifest at different frequencies in the audio and vibration 
frequency spectrums.   

For bearing fault classification, physical vibration sensing 
methods are well established, but advances in computational 
technology and signal processing techniques have allowed 
acoustic methods to be developed, with associated advantages 
viz. being remote to the equipment means acoustic sensors can 
be setup more easily, quickly and safely and are not prone to the 
same issues of vibration or heat damage as with surface mounted 
sensors; acoustic measurements are able to detect faults at an 
earlier stage in their emergence; the acoustic signal is likely to 
contain more defect information such as size and position and 
should give greater accuracy than vibration measurements  [1, 2, 
5, 6, 7].  

Acoustics have been well established as promising for fault 
detection and condition monitoring with research being active 
for at least 2 decades  [1, 2].  However, only relatively recently 
have significant advancements been made compared to earlier 
studies through use of advanced computational hardware, signal 
processing tools and machine learning techniques [2, 6, 8]. 
Furthermore, the uptake of acoustic techniques has been slow 
due to a historic knowledge, confidence in, and reliance on, 
direct vibration sensing systems; with acoustic techniques 
remaining in their relative infancy with regard to widespread 
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familiarity and industry expertise [2, 6]. This paper aims to 
demonstrate the potential simplicity of using acoustic 
technology whilst showing that low-cost and readily available 
devices are able to be employed. Therefore, this paper presents 
an investigation into the use of smartphones and consumer-grade 
microphones for acoustically detecting faults on roller element 
bearings using Fourier transform feature extraction and multi-
SVM classification.  

A. Traditional Acoustic Fault Detection Methods 
In [7], experimental results from acoustic and vibration 

signals for seeded defects on the outer race of roller bearings are 
compared in an effort to identify the defect type and estimate its 
size. The test facility employed a piezoelectric Physical Acoustic 
WD sensor (100 – 1000 kHz) and a resonant accelerometer (flat 
frequency response between 0.01 – 8 kHz – Model 236 Isobase); 
sampling rates ranged between 2 – 10 MHz. Despite not 
performing any pre-processing, they were able to detect and 
estimate the size of protrusions on the outer race. Results from 
vibration measurements were unable to detect early defects or 
discern any further information. Another study, [9], investigated 
low speed bearing fault diagnosis using both vibration and 
acoustic signals and comparing the performance of a relevance 
vector machine and a SVM. For data collection, a micro-DSP 
system was created using PCI board with 18-bit, 10 MHz A/D 
conversion and onboard processing sampling at 500 kHz. The 
signal was supplied by a Physical Acoustics R3a AE sensor with 
a frequency range of 25 – 530 kHz. Pre-processing was by 
independent component analysis using the top five components 
as input features. Again, the authors found the acoustic signal to 
give superior classification accuracy to the vibration sensor 
measurements, more so when using the relevance vector 
machine over the SVM. The authors of [10] present a hybrid 
signal processing technique combining ensemble empirical 
mode decomposition with multiscale principal component 
analysis for detecting incipient faults in large-size low-speed 
roller bearings. Four specialised Valpey-Fisher VP-1093 
pinducers with a frequency response of 0.001 – 10 MHz were 
used – these are designed for shock wave applications. This 
method is general in nature allowing it to be applied to a wide 
range of problems; it demonstrated its efficacy using both 
acoustic and vibration measurements, particularly with non-
stationary signals.  The work presented in [11] employs a 
wavelet packet transform on an acoustic signal for fault 
detection and size estimation in roller bearings. The AE 
frequency range for faults were identified as 100 kHz to 1 MHz 
and a Nano-30 Physical Acoustic sensor (good frequency 
response from 125 – 750 kHz) was used being sampled at 2 MHz 
for 5 seconds. Plackett-Burman Experimental Design 
determined the most sensitive parameter from ring down counts, 
peak value, rms, kurtosis, burst duration, crest factor and 
skewness. Wavelet coefficients were calculated utilizing 
DMeyer, Daubechies, Symlets, and Coiflets orthogonal mother 
wavelet families to investigate which wavelet function 
maximizes its Kurtosis to Shannon Entropy ratio. Using the 
continuous wavelet transform and Kurtosis to Shannon Entropy 
ratio as quantitative measurements the optimal mother wavelets 
for signal decomposition were chosen. After applying the 

wavelet packet transform, the signal envelope in different 
frequency bands was calculated using the Hilbert-transform. 
This method delivers excellent fault detection, specialising in 
extracting weak impulse-like fault features heavily masked by 
noise. In [12], acoustic signals were analysed using Hilbert-
Huang transform for feature extraction and an asymmetric 
proximity function and k - nearest neighbour hybrid 
classification algorithm. The authors of [13] looked at acoustic 
and vibration signals, processing using an adaptive line enhancer 
and high-frequency resonance technique. They used a Physical 
Acoustics R15 sensor with a frequency response of 150 kHz 
connected directly to an ALM8 processor which outputs a 
demodulated version similar to that processed with high-
frequency resonance. The work of [14] used a Physical 
Acoustics D9201A sensor with a 20 – 90 kHz band-pass filter 
and 8-bit 200 kHz A/D conversion. Signal processing was by 
high frequency resonance, finding better performance using a 
short-time overlapping energy technique – similar to the method 
to be used in this paper. Several studies [9, 10], have identified 
the limitations of acoustic techniques; requiring high frequency 
(over 100 kHz) response and data acquisition using specialised 
hardware; sampling between 1 and 5 MHz. Low speed 
applications require longer recording durations to capture the 
mechanical defect frequencies giving high data storage and 
processing demands. Consequently, acoustic data is often 
analysed in the hit-based or continuous time spectrum and rarely 
in the frequency spectrum. 

This work uses readily accessible equipment sensitive in the 
audible frequency range with much lower sampling rates to 
record acoustic fingerprints of different bearing faults; 
investigating the suitability for fault diagnosis.  

B. Classification & Machine Learning Algorithms 
The performance of any classification algorithm is highly 

dependent on the differentiating features presented for training.  
Several studies [15, 16, 17], have compared the performance of 
SVMs and ANNs for bearing fault classification and concluded 
that SVMs outperform their counterpart with regard to 
accuracy, training time and computational efficiency. The 
authors of [15] compared SVMs with ANNs, optimising their 
parameters using genetic algorithms and finding the ANN to 
require significantly more training time. Both systems were 
capable of 100% accuracy, but the SVM was significantly 
quicker. In [16], results from two classification methods are 
compared; a radial basis kernel SVM optimised for the cost and 
gamma parameters to use the minimum number of support 
vectors, and a three-layer feed-forward artificial neural network 
trained using supervised back propagation. Results indicated 
that the SVM is more readily implemented, and gave better 
results. SVMs tends to perform better than ANNs for this 
application, but only for smaller datasets [17]. Note that 
implementation on real industrial machines would require a 
much larger and more sophisticated data set in which case 
ANNs would likely give better performance. Based on these 
findings, in this study a multi-SVM classification learner is 
employed; negating the effects of different operating conditions 
by training a new SVM for each operational regime.  



 

 

II. METHODOLOGY 
In this section, details of the experimental setup used to 

capture runtime data are given followed by the signal processing 
and machine learning techniques used to analyse the data. 

A. Experimental Setup & Data Acquisition 
A Gunt PT501 bearing fault simulator consists of an electric 

drive motor, shaft with laser tachometer, and bearing housing 
with interchangeable bearings. The bearing housing vibration is 
monitored using a built in single-axis accelerometer mounted 
vertically. The housing is horizontally loaded by winding a 
micrometre screw onto a rubber compression spring mounted to 
the housing edge. A control unit provides power to the motor for 
a user defined speed setting. The vibration accelerometer is 
connected to a OWON VDS3102 USB oscilloscope allowing 
remote sampling using a laptop. Microphone audio 
measurements are sampled using two Audio-Technica AT2020 
USB+ condenser cardioid microphones. These are setup in 
stereo equidistant from and facing the bearing housing. The 
experimental setup is shown in Fig. 1. The seeded bearing 
defects under study are shown in Fig. 2. Smartphone audio is 
sampled using a Samsung Galaxy S7 Edge placed  20 cm away 
with the microphone facing the bearing. This is an intuitively 
sensible positon based on operational ease and optimum sound 
pressure level; closer causes overload of the sensor during louder 
operating regimes and further away permits greater signal 
attenuation. The smartphone position was not fixed in keeping 
with real-world practical operation. 

Table I summarises the experimental setup and equipment 
used. Data is recorded for each combination of speed, load and 
bearing resulting in 24 different operating conditions 

 and 144 different setups 
. The speed setting 

correlates linearly with the actual shaft rpm and are listed at no 
load (as loading the bearing reduces the rpm by approximately 1 
to 2 rpm per mm). The load also correlates linearly, with load 
being applied from approximately 3.8 mm, with settings 4, 5 and 
6 mm corresponding approximately to 5, 18 and 32 N 
respectively.  

B. Signal Processing & Classification 
Fig. 3 gives an overview of the signal processing 

methodology. For each setup, measurements are imported into 
Matlab and the time signal extracted. The data is divided into 
training and testing datasets for the SVM; using the first 4 
datasets for training and a fifth for testing. The smartphone 
dataset signals are divided into two 4-second signals; one for 
training and one for testing. The audio signals are clipped to 8 
seconds from the middle removing unwanted artefacts from the 
beginning and end of the recording. To create a sufficient 
number of observations each signal is divided into ten 1-second 
overlapping observations. Although it is possible to increase the 
classification accuracy by increasing the number of 
observations, it impacts computational time. Fig. 4 shows a time 
plot of the smartphone audio for one of the observations. 
Frequency responses are calculated for each observation sample 
using a Fast Fourier Transform. Fig. 5 shows example 

frequency responses for the same observation. It can be seen 
that the energy content of the signal is primarily contained in 
the 0 – 5,000 Hz range for the acoustic data and 0 – 16,000 Hz 
for the vibration data (not shown). Within these ranges, peaks 
above a set threshold are extracted. The threshold is calculated 
for each operating condition based on bearing A as the mean 
plus the standard deviation (  was found to be optimal). The 
frequency ranges specified above are then divided into bins and 
the peaks in each bin obtained. Fig. 6 shows the peaks above 
the threshold, the bin edges and the mean of the frequency plot. 

Three features are calculated for the SVM: the total number 
of peaks above the threshold within the specified frequency 
range, the number of peaks in each bin and the product of the 
amplitude of the peaks in each bin. The frequency range for 
each bin is fixed at 100 Hz, giving 50 bins for the acoustic 
frequency range and 160 for the vibration. This gives a total 
number of SVM input features as 101 (total number of peaks, 
count of peaks in each bin and product of peaks in each bin) for 
acoustic and 321 for the vibration. The data is then rearranged 
for input into the SVM, with features representing columns and 
observations representing rows in the input table.  

For each operating condition (speed and load combination) 
a quadratic SVM (2nd order polynomial kernel function) is 
trained using a box constraint of 1, and without standardisation 
of the data. By using a different SVM for each operating 
condition, inaccuracies due to changes of the speed and load are 
eliminated allowing the SVM to differentiate exclusively 
between the bearings. This is reasonable for real-world 
machinery as operating settings will be known. Evaluation of 
SVM accuracy is by k-fold cross-validation using 5 non-
overlapping folds; this splits the observations into folds and 
trains with the out-of-fold observations and validates using the 
in-fold observations and then calculates the average error over 
all folds. Note that the cross-validation is only performed on the 
training dataset for the purpose of preventing under and over 
fitting and increasing SVM robustness. 

For system testing, the exact same processing is carried out 
on the testing data. The respective SVM for each operating 
condition is used with the associated test data input. Finally, 
modal recombination recombines the observations into an 
overall response for each input signal. As there are 10 
observations per signal, a majority of 6 identical responses is 
required. 

There are a number of limitations to this methodology. The 
signals used in this case are all under steady-state conditions – 
real world applications will exhibit both transients and dynamic 
stability. However, this method could be easily expanded to 
include dynamic signals, alternatively a larger dataset would 
allow accurate interpolation between the support vectors which 
should provide a reasonable response. This method does not 
address online condition monitoring, the aim being to detect 
faults as they form and monitor their growth allowing 
maximum use before planned maintenance is required. 
Moreover, only a limited number and type of defect are used. 

  



 

 

 
 

 
Fig. 1. Experimental setup showing; the Gunt PT501, two USB microphones, 

the OWON oscilloscope, and the laptop. The smartphone position is not 
shown as it varied, however, it was placed roughly between the two 

microphones at about the same height as the bearing.  

 
Fig. 2. Damaged bearings from left to right; bearing C showing the inner race 
defect, bearing E showing the roller defect and bearing F showing wear. Note 
there was only a single defect on the inner race of bearing E compared to the 

two defects seen above on bearing C. 

TABLE I. EXPERIMENTAL PROCEDURE 

Setting Description 

Bearings 
NU 204 E TVP2; 
12 rollers at 7.5 
mm diameter & 

34 mm pitch 
diameter 

A New bearing with no damage (reference bearing) 
B Damage to outer race 
C Damage to inner race 
D Damage to roller element 
E Damage to outer race, inner race and roller element 
F Heavily worn bearing 

Speed Setting & 
Equivalent Speed 

Setting: 0 → 298 rpm 
Setting: 2 → 829 rpm 
Setting: 4 → 1341 rpm 
Setting: 6 → 1865 rpm 
Setting: 8 → 2428 rpm 
Setting: 10 → 3050 rpm 

Load Settings 3, 4, 5 and 6 mm 

 Smartphone Microphone Vibration 

Sampling software & 
format 

Android Voice 
Recorder: mp3 

@160 kbps 

Matlab: Matlab 
file 

OWON 
VDS_S2: text 

file 
Sampling rate 44,100 Hz 48,000 Hz 100,000 Hz 
A/D resolution 8-bit 16-bit 8-bit 

Sensor frequency 
response Unknown 20 to 20,000 Hz 1 to 10,000 Hz 

Sensitivity Unknown -19dB ± 4 
(audio circuit) 

100 mV/g & 
1V/division 

Repeats 1 5 5 
All recordings were single channel and of 10 second duration. 

 

Fig. 3. Signal processing methodology. 

 

Fig. 4. Smartphone audio one second time plot for all bearings at speed 6 and 
load 5. Note the clearly visible audio spikes visible for bearings C and D; 

inner race and roller defects respectively.  

 

Fig. 5. Smartphone frequency plot for all bearings at speed 6 and load 5. 
Note the differences from that of bearing A are primarily related to the 

defects present and characterise the fault frequencies in the audio 
frequency spectrum. However, there will also be small differences caused 

by tiny changes in operating conditions, setup, etc. 

 

Fig. 6. Smartphone peaks plot for all bearings at speed 6 and load 5. 
Vertical lines represent bin boundaries, and the horizontal line shows the 

mean of each signal. Note the cut off threshold was the mean plus one 
standard deviation. 
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III. EXPERIMENTAL RESULTS 
Table II shows the cross validation classification accuracy 

from the training data averaged across all operating conditions, 
it is clear the system performs very well. Table III shows the 
classification accuracy from the testing data categorised by 
bearing, speed and load. The values are a percentage of correct 
classification across all the observations. Table IV shows the 
count of the misclassified signals after all the observations have 
been regrouped using modal recombination. It can be seen that 
with modal recombination the accuracy is increased further. 
Furthermore, it highlights where misclassifications occur most. 
For the smartphone data this is at low loads with a total of 6 
misclassifications out of 144 inputs; 4 and 2 of those at load 
settings 3 and 4 mm respectively.  

For the microphone data, regrouping the observations gives 
perfect classification, but examining the signal majorities 
revealed that the performance is only just good enough to 
achieve this. Whilst the vibration accuracy has increased to 75% 
it still exhibits some misclassifications, particularly between 
bearings A and B. This is likely due to the outer race fault not 
producing sufficiently strong vibrations to allow differentiation. 
At a load setting of 6 mm the vibrations are sufficient to 
significantly increase the classification accuracy.  

The results clearly show significantly greater classification 
accuracy of the acoustic signals compared with the vibration 
measurements. Fig. 7 shows that as the speed increases the 
classification accuracy is better for both acoustic and vibration 
signals. It is notable that the sound level indicator displayed 
during recording with the smartphone was at its maximum 
value for speed settings 8 and 10 when load was applied. This 
might be a cause for the degradation in accuracy for the 
smartphone results compared to the microphone, and if so could 
be rectified by positioning the smartphone further away 
reducing the sound pressure to within its most sensitive range. 
Fig. 8 shows greater classification accuracy as the load 
increases. The acoustic performance is increasingly better than 
vibration at low loads and speeds. Fig. 9 shows that bearing E 
was the most difficult to classify. This is expected as it exhibits 
the combined faults of bearings B, C and D. Examining the 
misclassifications reveals they are usually attributed to bearings 
B, C, or D i.e. a fault is still detected as it not misclassified as a 
healthy bearing. Clearly the most important differentiation is 
between a healthy and unhealthy bearing state; bearing A and 
the other five bearings. This is where the acoustic method 
outperformed the vibration with no misclassifications; 
compared to the vibration with 7 unhealthy signals classified as 
healthy and 9 healthy signals classified as unhealthy (out of 144 
inputs). 

There is sufficient information in the acoustic signals to 
detect the faults under all operating conditions, particularly at 
low load and speed, where the vibration only started to achieve 
reasonable performance at high load. Moreover, there are no 
misclassifications between healthy and unhealthy bearings with 
the acoustic signals, whereas approximately 5% of vibration 
signals are misclassified as healthy. 

 

TABLE II.  MULTI-SVM TRAINING DATA CROSS VALIDATION ACCURACY 

 Smartphone Microphone Vibration 
Mean Accuracy (%) 99.97 99.97 99.75 
Standard Deviation 0.02 0.03 0.01 

TABLE III. OBSERVATION CLASSIFICATION RESULTS (%) 

 Smartphone Microphone Vibration 

Bearing 

A 96.25 95.83 63.75 
B 95.83 96.25 57.08 
C 87.50 95.83 82.08 
D 97.08 93.75 72.50 
E 90.83 95.00 68.33 
F 95.42 99.58 85.83 

Speed Setting 

0 90.42 90.83 50.42 
2 93.75 97.08 75.00 
4 93.75 97.08 72.92 
6 97.92 95.42 81.25 
8 91.67 97.08 75.42 

10 95.42 98.75 74.58 

Load Setting 
(mm) 

3 86.67 92.78 65.00 
4 94.17 95.28 68.89 
5 97.22 97.78 69.72 
6 97.22 98.33 82.78 

Overall Accuracy (%) 93.82 96.04 71.60 

TABLE IV. GROUPED SIGNAL ERROR COUNT 

 Smartphone Microphone Vibration 

Bearing 

A 0 0 7 
B 0 0 10 
C 2 0 4 
D 0 0 6 
E 2 0 5 
F 2 0 3 

Speed Setting 

0 1 0 11 
2 1 0 3 
4 1 0 7 
6 0 0 3 
8 2 0 4 

10 1 0 7 

Load Setting 
(mm) 

3 4 0 10 
4 2 0 13 
5 0 0 9 
6 0 0 3 

Total Misclassified 6 0 35 

Overall Accuracy (%) 95.83 100 75.69 

TABLE V.  MOTOR CONTROL CLASSIFICATION RESULTS 

 Smartphone Microphone 

Overall Accuracy (%) 97.50 100 



 

 

The ability of the smartphone and microphone to 
outperform the vibration signal not only demonstrates the 
efficacy of acoustics but also the suitability of this type of 
consumer equipment for bearing fault diagnosis and similar 
applications. Whilst for real applications the training database 
and processing requirements exceed the capabilities of 
smartphones, these devices are suitable for data acquisition 
which can then be uploaded for processing to then deliver the 
classification result. 

The use of multi-SVM classification based on the operating 
conditions lead to a significant increase in the classification 
accuracy and was just as easy to program. This method of 
programming can be easily expanded to allow interpolation for 
dynamic signals. When classifying between bearings, the 
ability to differentiate exclusively between them without 
inaccuracies caused by different operating conditions is one of 
the main contributing factors to the high classification 
accuracies achieved. 

IV. EXTENSION TO MOTOR CONTROL SYSTEM DIAGNOSTICS 
The case studies have been extended to include 

consideration of current controller dynamics. Unstable current 
dynamics in brushless pulse modulation machines, for instance, 
is a relatively common issue under widely varying operational 
conditions or when commissioning controllers.  In the most 
severe circumstances, inappropriately controlled currents can 
lead to permanent demagnetisation of the motor as well as 
damage of the power electronics. A brushless dc motor is setup, 
controlled using a digital PWM current controller with a 10kHz 
PWM frequency. The current controller is known to exhibit 
transient instability under some operating conditions creating 
high frequency torque transients. The smartphone and audio 
microphones are used to sample audio under two operating 
conditions both healthy and unhealthy states. The smartphone 
records 3 samples of 10 seconds, and the microphones record 5 
samples of 3 seconds. The signals are processed exactly as 
previously discussed. Table V shows the results – with only a 
single observation misclassification with the smartphone (based 
on 40 observation inputs. Fig. 10 shows a current instability 
captured using an oscilloscope. The acoustic setup was easily 
transferred to a different machine for this investigation, whereas 
the vibration probe could not be transferred to a different 
machine without considerable work and high risk of damage.  

V. CONCLUSION 
This paper set out to demonstrate the potential simplicity of 

acoustic bearing fault detection compared with previous works 
and compare results with vibration measurements. The setup and 
method is proven to deliver extremely good classification 
accuracy with easy to setup independent sensors and reduced 
computational demands. The multi-SVM approach was shown 
to be extremely effective for allowing differentiation exclusively 
between the bearings. The method also shows great applicability 
to motor control system diagnostics. The suitability of consumer 
audio recording tools opens up bearing fault diagnosis to a much 
wider audience with improved cost/benefit performance. 
  

 
Fig. 7. Speed setting classification performance based on Table III. 

 
Fig. 8. Load setting classification performance based on Table III. 

 
Fig. 9. Bearing classification performance based on Table III. 

 
Fig. 10. Oscilloscope save showing motor PWM current – instability 

visible between 21 and 31 milliseconds.  
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