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Dispersal is a fundamental requirement for all organisms, indeed theoretical arguments show that 

dispersal is still required even in a uniform and predictable environment, and it is obviously a key 

mechanism by which plants respond to climate change (Hamilton & May, 1977; Huntley & Webb, 

1989). In bryophytes, spores provide an especially important means of dispersal (Glime, 2014; Porley 

& Hodgetts, 2005), and are often small enough to potentially be moved between continents in the 

atmosphere (Wilkinson et al, 2012). However, waterbirds are also major vectors for a broad range of 

plant types (Green et al., 2016), and it is likely that bryophyte spores are dispersed by migratory 

waterbirds, both by epizoochory (external dispersal on plumage or feet) and endozoochory (internal 

dispersal after ingestion and survival of transit through the gut). Indeed, Proctor (1961) showed 

experimentally that spores of the liverwort Riella americana survive gut passage through Mallards 

(Anas platyrhynchos).  

Spores are not the only potential units of dispersal. As bryophytes are totipotent, in principle a new 

plant can arise from any small fragment – even from a single cell (Porley & Hodgetts, 2005). The 

potential for dispersal of such fragments was illustrated by Parsons et al (2007), who extracted and 

cultured numerous viable bryophyte fragments (including Acroprium sp.) from the faeces of the 

spectacled flying fox (Pteropus conspicillatus). These fragments were possibly ingested by the bats 

while grooming (Parsons et al, 2007). However, many migratory bird species could potentially move 

bryophyte fragments far greater distances than fruit bats. There is some evidence for ectozoochory 

of fragments by migratory waterbirds. Potentially viable Sphagnum leaf fragments and a Bryopsid 

leaf fragment were recovered from the plumage of American golden plover (Pluvialis dominica), 

semipalmated sandipiper (Calidris pusilla), and red phalarope (Phalaropus fulicarius; Lewis et al. 

2014a), although importantly their viability was not confirmed. Long distance dispersal by these 

trans-equatorial migratory shorebirds has been proposed as the explanation for the bipolar 

biogeographical distributions of many bryophytes (Lewis et al. 2014a, 2014b).This is a potentially 

important mechanism given the difficulty in moving between hemispheres if relying on wind 

dispersal (Wilkinson et al, 2012). However, we are unaware of any record in the literature of 
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endozoochory of bryophyte fragments being internally transported in birds. Here we describe 

evidence of endozoochory from a study of the role of waterbirds in plant dispersal in North West 

England during 2016. 

Fresh faeces were collected after flushing monospecific groups of waterbirds that were resting on 

the land, with each sample corresponding to a different individual. Faecal samples were visually 

inspected in the field, removing any soil or plant fragments adhering to the outside of the faeces, 

before being placed in a zip-lock bag then transported back to the laboratory, where they were kept 

in a fridge until processing (with a delay of up to one week). All the moss fragments described below 

looked potentially viable (i.e. they were still green), and came from within the dropping. They were 

extracted after sieving using deionised water and a 125 µm mesh, followed by examination of 

material under a binocular microscope. The sieve size and low magnification means that propagules 

< 100 µm in diameter (such as those recorded by Lewis et al. 2014a) were not quantified. Large moss 

fragments were placed on non-nutrient agar in Petri dishes to attempt to confirm viability.  

Fragments were recovered from three different locations. Five samples of Mallard faeces were 

collected from Sefton Park, Liverpool on 21.06.2016 (53°22'45"N, 2°56'17"W). A vegetative fragment 

of moss was extracted from one sample but it failed to grow on agar. Twelve samples of mallard 

faeces were collected from Fell Foot, Lake Windermere (Fig. 1), in the English Lake District on 

26.06.2016 (54°16'32"N,2°57'9"W). Vegetative fragments of moss were extracted from 4 samples 

(with a total of 5 fragments). All the fragments were placed on agar on 30.06.2016. One of these 

fragments grew, proving viability, and was maintained for six weeks. This moss was identified as 

Didymodon insulanus (Fig. 1), a common moss in the region and one often found at lowland lake 

margins, especially on concrete and brickwork, as indeed was the case at this site. This demonstrates 

not only that viable-looking fragments can be recovered from bird faeces, but that at least some of 

these fragments are able to grow into new plants.  

In addition, 37 samples of Lapwing (Vanellus vanellus) faeces were collected from Budworth Mere, 

Cheshire (53°17'21"N, 2°31'11"W), on 14.07.2016. A moss fragment was extracted from one sample, 

but failed to grow on agar. In total, over this time period in our wider study we looked at 430 faecal 

samples, collected from 10 species of waterbirds, but no other samples were observed to contain 

large moss fragments. While the mallards may have deliberately ingested moss while feeding, in the 

case of the lapwing the moss may have been accidently ingested, as this species mainly feeds on 

ground-living invertebrates (Cramp & Simmons, 1983). Bryophytes have previously been recorded as 

food items for dabbling ducks (Owens 1972), diving ducks (Bartonek & Murdy 1970) and especially 

migratory geese (Fox et al. 2006, Stech et al. 2011). 

Given that birds in general, and waterbirds in particular, can fly long distances and often have high 

population sizes (e.g. there are around 4,500,000 Mallards in North-West Europe, Wetlands 

International, 2016) they are potentially important dispersers of bryophyte propagules both by 

endozoochory and ectozoochory – be these spores or vegetative fragments as described in this 

paper. Birds that migrate long distances in a short time, such as geese and other waterbirds which 

breed in the Arctic but overwinter in Britain – are likely to be particularly important bryophyte 

vectors. Given the high abundance of waterbirds it is likely that large numbers of viable vegetative 

fragments are moved around in this way, as previously estimated for dispersal of angiosperm seeds 

(Soons et al. 2016). Co-dispersal of other organisms by vertebrates is an area in need of far greater 



investigation (Tesson et al. 2016), as indicated by the fact that the first record of endozoochory of 

bryophyte fragments by birds has not been published until the 21st Century! 
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Fig caption. 

Fig 1a. Didymondon insulanus fragment from Fell Foot growing on agar.  
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Fig 1b. The site at Fell Foot on Lake Windermere from which the mallard faeces containing D. 

insulanus were collected. Several moss species, including this one, are growing on the wall at the 

edge of the lake. Windermere is the most human influenced of the many lakes in the English Lake 

District and one of the most well studied lakes in the world, with a freshwater biology laboratory 

being opened on the lake shore in 1931 (Moss, 2015). 



 


