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Abstract 

This thesis describes the design and implementation of a unified framework for face 

detection and landmark alignment in arbitrary in the wild images. Traditionally, both of 

these problems have been addressed separately in literature with impressive results 

being recently reported in both of these fields. But, if one was to construct a pipeline 

consisting of a state-of-the-art face detection method followed by a state-of-the-art 

facial landmark localisation algorithm, the overall performance outcome would not be 

proficient enough to be used in high level algorithms such as face recognition and 

facial expression. This is because the accuracy produced by the face detector is not 

sufficiently high enough to initialise the landmark localisation algorithm. 

To address this aforementioned limitation, this thesis aims to propose an approach 

that combines both of these tasks into a single unified algorithm that can be run in real 

time, by utilising the parallel computing architecture of the graphics processing unit 

(GPU). This will be done by using a Cascaded-Regression (CR) algorithm in a sliding 

window fashion. The proposed system will exploit the CR algorithms ability to compute 

the 2D pose of a face from rough initial estimates, in order to generate a Hough-

Transform voting scheme for detecting candidate faces and filtering out irrelevant 

background. The obtained detection surface will then be further refined using SVM to 

yield both face detections and the location of their parts. 

The proposed system for this thesis will be built within the MATLAB environment, using 

a MEX-file which will provide an interface to the proposed CUDA algorithm. The results 

of which, will be tested against current state-of-the-art methods for both face detection 

and landmark localisation. 

We evaluate performance on the most widely used data sets in face detection, namely 

annotated faces in-the-wild (AFW) (Zhu and Ramanan, 2012), Face Detection Dataset 

and Benchmark (FDDB) (Jain and Learned-Miller, 2010) and Caltech Occluded Faces 

in the Wild (COFW) (Burgos-Artizzu, Perona and Dollár, 2013). The empirical results 

demonstrate that the proposed unified framework achieves state-of-the-art 

performance in both face detection and facial alignment, and that our detector clearly 

outperforms all commercial and published methods by a margin of over 10% in 

detection accuracy on the AFW dataset.
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1 Introduction 

 

Figure 1.1: Wales, International Rugby team (selfie) (source: Wales Online, 2015) 

Among all computer vision research topics, the field of human facial image processing 

is one of the most challenging. It covers such a vast area of research that it can be 

broken down into multiple sub-topics such as face detection, recognition, tracking, 

pose estimation, landmark localisation, expression analysis and animation. Much of 

this research has made its way into the modern day consumer market: digital cameras 

for instance use face detection to locate a face or faces in the viewfinder and then fine 

tune the focus and exposure to give the best possible picture. Digital cameras can 

also use expression analysis to detect if a person is smiling, and if so the camera will 

automatically take a picture. 

Facial detection can be described as finding the location and size of a face or multiple 

faces within an arbitrary image, in Figure 1.1 the red bounding boxes show the 

detected faces. Facial landmark localisation can be described as finding the exact 
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location of facial features, such as eyes, lips, nose, jawline etc., in Figure 1.1 these 

are shown as the white facial shapes. 

Facial detection and landmark localisation are both non-trivial problems. This is due 

to the human face being a highly variable, deformable object that can vary drastically 

from image to image, due to pose (scale, rotation and translation), expression, identity, 

occlusion and illumination. Research into solving both detection and localisation has 

traditionally been approached as two separate problems with numerous research 

papers in each field reporting extremely good results for very challenging in-the-wild 

images. However, for many subsequent, higher level tasks, like face recognition, facial 

expression and attribute analysis, what matters most is the overall performance in 

terms of accuracy in landmark localisation. Notably, recent state-of-the-art methods 

for such tasks rely heavily on the accurate detection of facial landmarks, see for 

example Chew, et al. (2012) and Chen, et al. (2013). 

 

Figure 1.2: An example of face detection using the Deformable Part Model (DPM) 
(Mathias et al, 2014). Using the PASCAL VOC protocol of 50% overlap (Everingham, 
et al., 2009), we can see that the woman on the left, although detected, does not pass 
the standard detection protocol. Red bounding boxes are the ground truth, yellow 
boxes are detected faces and green boxes are false positives. 
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Figure 1.3: An example of face detection using the proposed system. Both faces are 
not only fully detected, but are also nearly identical to the ground truth bounding boxes. 
Red bounding boxes are the ground truth, yellow boxes are detected faces and green 
boxes are false positives. 

The problem with using the traditional pipeline of first detecting an unseen face in an 

image and then using its detected bounding box to initialise a landmark localisation 

algorithm is twofold: first the land mark localisation algorithm needs to be trained to a 

specific face detector, so therefore, if the detector is changed at any point in time, then 

the localisation algorithm will also need to be retrained. Secondly, although current 

state of the art detectors can find faces in an arbitrary image with a high degree of 

accuracy as illustrated in Figure 1.2, the reality is the detected bounding boxes that 

are generated do not fit the faces perfectly. This inaccuracy means that the starting 

positions and scales that are obtained from these detected bounding boxes is 

insufficient for initialising a facial localisation algorithm. The reason for this is that facial 

detectors follow the PASCAL VOC precision-recall protocol for object detection, where 

in order for an object to be detected it only needs to have a 50% overlap between the 

ground truth and the predicted bounding box. Although it can be argued that this 

problem can be mitigated by running multiple initialisations of the landmark localisation 

algorithm, it is unclear how to select and/or combine the best fittings in a principled 

manner. 

The aim of this thesis is to address this aforementioned limitation by producing a 

unified solution that jointly addresses both facial detection and landmark detection 
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while at the same time producing a high degree of accuracy in landmark localisation. 

The proposed approach that is used in this thesis is largely motivated by the efficiency 

and robustness of recent Cascaded Regression (CR) approaches in facial landmark 

localisation. Instead of using a face detector to initialise them, the system that is 

proposed in this thesis, will instead, employ them in a sliding window fashion, in order 

to detect the location of all faces in an image. 

This will be accomplished in real time by utilising the parallel computing architecture 

of the graphics processing unit (GPU), and the implementation will be based on using 

NVIDIAs Compute Unified Device Architecture (CUDA). The proposed system will be 

built within the MATLAB environment, using a MEX-file that will provide the interface 

to CUDA. The results of which, will be tested against current state-of-the-art methods 

for both face detection and landmark localisation. 

 

1.1 Aims 

 

Figure 1.4:  Examples of detected faces from the AFW dataset using the standard 
PASCAL VOC protocol of 50% overlap. Red bounding boxes are the ground truth 
and yellow boxes are detected faces. 

As can be seen from Figure 1.4 having an overlap threshold of 50% to detect a face 

can produce a wide degree of inaccuracy in the actual detection of a face. The aim of 

this thesis is to propose a unified solution that jointly addresses both facial detection 

and landmark detection to not just find faces in an arbitrary image but to detect them 

with a high degree of accuracy. This will be achieved by exploiting the ability of the 

Cascaded-Regression algorithm PO-CR (Tzimiropoulos, 2015) to compute the 2D 
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pose of a face from rough initial estimates over a grid which covers the entire image, 

to generate peaks via a Hough-transform voting scheme to find the position of faces 

in an image. Thereby if a face is detected, it will be able to generate a bounding box 

from the final pose estimation, that is close to the ground truth bounding box. 
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2 Related Work 

2.1 Face Detection 

Ever since the ground-breaking work of Viola and Jones (2004), the topic of face 

detection has become one of the most actively researched areas within the computer 

vision community. The results of their work can also be seen in many of today’s high-

tech commercial gadgets, such as digital cameras and smartphones. 

The objective of face detection is to localise and determine the scales of all faces that 

are contained within an arbitrary image. This is not a trivial problem to solve, due to 

variations in pose, illumination, expression and occlusion. In recent years a multitude 

of different methodologies into the problem of solving multi-view face detection have 

been proposed, which have reported a varying degree of success. These 

methodologies can be summarised into three distinct groups, cascade, deformable 

part models (DPM) and Neural Networks. 

The Viola and Jones (2001) detector, which is also called the detector cascade, made 

it possible to rapidly detect up-right faces in real-time with very low computational 

complexity. Their detector was successful because of three reasons: firstly, they 

represented grey scale images in a structure which they called the integral image; this 

allowed Haar-like features to be calculated extremely fast. Secondly, simple classifiers 

where generated by selecting a small number of critical features from a larger set of 

potential features using the adaptive boosting algorithm (AdaBoost) (Freund and 

Schapire, 1995). Finally, to improve the speed of the detector, each search window is 

initially checked against a simple classifier, if the search window passes that stages 

threshold value, it would then become subject to more rigorous testing against more 

complex classifiers. This threshold culling is repeated at each stage in the cascade, 

enabling background regions in the image to be discarded as quickly as possible, with 

little computation. 

While Viola and Jones (2001) detector could accurately find up-right faces of any scale 

in an arbitrary image, they often failed to detect faces with arbitrary poses or that were 

partially occluded. To address the issue of non-upright and non-frontal faces, Viola 

and Jones (2003) proposed a two stage approach, which first estimates the pose of 
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the face with the use of a decision tree, and then uses the corresponding cascade 

detector that is trained on that pose. The problem with using this method is that any 

errors made while evaluating the pose in the decision tree are irreversible. 

Instead of making an exclusive selection of the path for a sample, Huang, et al. (2005) 

multi-view vector boosting algorithm used a width first search (WFS) tree structure, 

where each branching node computes a vector, this allowed the sample to be passed 

into multiple children. By using this soft branching technique, the risk of 

misclassification is greatly reduced compared to Viola and Jones (2003) decision tree 

method. Huang, et al. (2005) multi-view face detector covers an in-plane rotation of 

±45 degrees. To make it rotation invariant they simply constructed 3 more detectors 

at 90, 180 and 270 degrees. 

Most of the recent research into face detectors is based on the DPM structure which 

was originally proposed by (Felzenszwalb, et al., 2008), where a face is defined as a 

collection of parts. These parts are defined via unsupervised or supervised training, 

and a classifier, the so-called latent SVM, is trained to find those parts and their 

geometric relationship. They are usually fine-tuned to work efficiently with Histogram 

of Orientation (HOG) features. 

A unified approach to face detection, pose estimation and landmark (eyes, eyebrows, 

nose mount and jaw line) localisation using the DPM framework was proposed by (Zhu 

and Ramanan, 2012). Their approach defined a part at each facial landmark and used 

a mixture of tree based structure models to capture the topological changes due to 

varying viewpoints. 

DMP detectors are robust to partial occlusion because they can detect faces even 

when some of the parts are not present. A notable extension to (Zhu and Ramanan, 

2012) which handles occlusion of parts in a more robust way was suggested by (Ghiasi 

and Fowlkes, 2014) where they describe a hierarchical DPM for face detection and 

landmark localisation that explicitly models likely patterns of occlusion and improves 

landmark localisation. Their model can also predict which landmarks are occluded. 

Mathias, et al. (2014) reported in their paper that a properly tuned vanilla DPM face 

detector performs comparably with a multi-channel, multi-view version of the Viola-

Jones detector, and that they both produce state-of-the-art performance on both the 

FDDB and AFW data sets. Therefore, it can be argued that part based approaches 
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are not always superior to standard approaches based on multi-view rigid templates, 

especially when a large amount of training data is available. 

Observing that aligned face shapes provide better features for face classification, 

(Chen, et al., 2014) proposed to combine face detection and alignment into the same 

cascade framework by learning a classifier at each stage, not only on the image, but 

also on the previous stages estimated shape, in what is called shape-indexed features.  

Chen, et al. (2014) along with Mathias, et al. (2014) are the current state of-the-art in 

face detection. 

2.2 Facial landmark localisation 

Finding facial landmarks such as eyes, nose, mouth and chin in arbitrary images is not 

a trivial task. This is due to the subjective morphology of the human face. Human 

faces, even of the same person can vary enormously from image to image, due to 

pose, illumination, occlusion and expression. The human face is typically modelled as 

a deformable object that can vary in terms of shape and appearance. Having accurate 

facial alignment is essential for many higher level applications such as face 

recognition, tracking, animation and expression analysis. 

In computer vision there has been a long history in the field of face alignment, where 

numerous approaches such as Active Shape Models (ASM) (Cootes & Taylor, 1992), 

Active Appearance Models (AAM) (Cootes & Taylor, 1992; Cootes, et al., 2001; 

Matthews and Barker, 2004), Constrained Local Models (CLM) (Cristinacce and 

Cootes, 2006; Saragih, et al., 2011) and most recently cascaded regression-based 

techniques (CR) have been proposed to solve this conundrum, with varying degrees 

of success (Dollar, et al., 2010; Cao, et al., 2012; Tzimiropoulos, 2015).  

One of the earliest works in facial alignment was the ASM which was originally 

proposed by (Cootes & Taylor, 1992). ASMs use a point distribution model (PDM) to 

capture the variations in shape from a training set of images. The PDM is learned off-

line by first applying Procrustes analysis and then Principle Component Analysis 

(PCA). 

A natural successor to ASMs was the AAM which was first suggested by (Cootes, et 

al., 1998). AAMs try to solve the problem of face alignment by capturing the combined 

statistical variations of both shape and texture into a single appearance model using 
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linear regression. A more optimised approach of matching statistical models of 

appearance to images was proposed by (Cootes, et al., 2001), which replaced the 

linear regression model with a more simplified Gauss-Newton gradient descent 

procedure. They assumed that because the Jacobian matrix was being computed in 

a normalised reference frame, it could be considered approximately fixed and thus 

could be pre-calculated by numerical differentiation from the training set. This was 

later showed to perform badly, both in terms of the number of iterations required to 

converge and in the accuracy of the final fit (Matthews and Barker, 2004). 

To avoid the resulting inefficiencies in convergence and robustness during fitting, the 

inverse compositional algorithm (ICA) was proposed by (Matthews and Barker, 2004). 

But, unlike the previous AAMs that jointly built generative models of both texture and 

shape, ICA treated the variations of shape and appearance independently. ICA is 

based on a variation of the Lucas-Kanade (LK) image alignment algorithm (Lucas and 

Kanade, 1981), which is a Gauss-Newton gradient descent non-linear optimisation 

algorithm. 

The problem with the LK algorithm is that it is extremely computationally intensive. The 

reason for this is, because the appearance parameters vary with each iteration and 

hence the Jacobian, the Hessian and its inverse need to also be recalculated. ICA 

solves this problem by reversing the roles of the reference and template images, as 

suggested by (Hager and Belhumeur, 1998), therefore making it possible to pre-

calculate the Jacobian and the inverse Hessian matrix. Because ICA reverses the 

roles of the reference and template images, the update parameters need to be inverted 

before they are composed with the current estimate of the warp parameters. This lead 

to a very efficient fitting algorithm, which achieved faster convergence and enhanced 

convergence properties compared to previous AAMs. 

However, this was later shown to not work very well on unseen images, because the 

learned appearance model had limited expressive power in capturing variations in 

pose, expression, and illumination (Cristinacce and Cootes, 2006). AAMs were also 

shown to be very sensitive to initialisation because of the gradient descent 

optimisation. (Asthana, et al., 2009) 

Because of the inability of AAMs to generalise well to unseen images, recent research 

has been in the use of CLMs which was introduced by (Cristinacce and Cootes, 2006). 
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CLMs are based on ASMs, and use a similar appearance model to AAMs, but instead 

of trying to approximate the image pixels directly, they sample texture patches around 

the individual feature points. CLMs have been shown to be more robust to occlusion 

and illumination compared to AAMs, and they also outperform AAMs in terms of 

landmark accuracy.  A notable extension to CLM is in the seminal work of (Saragih, et 

al., 2011), where they proposed a framework for deformable model fitting, known as 

the Regularized Landmark Mean-Shift (RLMS), which has shown state-of-the-art 

results under uncontrolled natural settings. 

The proposed system in this thesis uses cascade regression (CR) to fit a deformable 

template to each sub-window in a given image. CR is based on Cascade pose 

regression (CPR) which was originally proposed by (Dollar, Welinder and Perona, 

2010). CPR is an iterative regression method that uses the pose estimation from the 

previous regressor in the cascade to calculate the new shape-index features, which 

are to be used as input to the current regressor. Starting from the mean shape the 

pose estimation is gradually refined with each step in the cascade. CPR has been 

shown to produce exceptional results on a variety of tasks and, owing to its efficiency 

and accuracy, it has recently been the focus of investigation by numerous authors for 

the problem of face alignment. 

The idea of using CPR within the field of face alignment was first explored by (Cao, et 

al., 2012) where they used Explicit Shape Regression (ESR) for facial alignment. Their 

approach produced exceptional results in terms of both accuracy and efficiency on the 

Labelled Face Parts in the Wild (LFPW) data set (Belhumeur, et al., 2011). 

Project-Out Cascaded Regression (PO-CR) proposed by (Tzimiropoulos, 2015) uses 

regression to learn and employ a sequence of averaged Jacobian and Hessian 

matrices, one for each iteration, in a subspace orthogonal to the facial appearance 

variation. PO-CR has been shown to produce state-of-the-art performance on multiple 

facial databases. 

The proposed system in this thesis uses PO-CR to fit a deformable model. However, 

the aim of this thesis is not face alignment given a face detection initialisation, but 

joint face and facial landmark detection.
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3 SIFT 

Scale Invariant Feature Transform (SIFT) is an approach for detecting and extracting 

local feature descriptors that are invariant to changes in scale and rotation and partially 

invariant to changes in illumination, noise, 3D viewpoint and affine transformations 

(skew, perspective distortion). SIFT was developed by (Lowe, 2004) and is a 

continuation of his previous work on invariant feature detection (Lowe, 1999). SIFT is 

also patented by the University of British Columbia. 

SIFT can be broken down into four main stages: 

1. Identifying locations of peaks (minima / maxima) in scale space  

2. Keypoint localisation 

3. Orientation assignment 

4. Keypoint descriptor 

 

In our implementation of the SIFT descriptor, the keypoint scale and rotation are not 

needed, and the location of the keypoints are predefined. Therefore, in the next section 

we will just describe Lowe’s (2004) keypoint descriptor.  

3.1 Keypoint Descriptor 

The SIFT descriptor can be described as a 3D spatial histogram of the orientation of 

the gradients in a local neighbourhood around an interest point (keypoint). 

The gradient magnitude 𝑚(𝑥, 𝑦), and gradient orientation 𝜃(𝑥, 𝑦), for all points in the 

selected image 𝐿(𝑥, 𝑦) are computed by using pixel differences 

 
𝑚(𝑥, 𝑦) =  √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))

2
+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))

2
 (3.1) 

 

 𝜃(𝑥, 𝑦) = tan−1 ((𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))/(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))) (3.2) 

 

The gradient magnitude measures the steepness of slope at each pixel in an image, 

for example if the magnitude is a high value it shows that there is a big change, 
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whereas a low value means there is little to no change. The gradient orientation is the 

angle made by the normal vector to the gradient surface in the direction of increasing 

change and is measured in radians. 

The gradient magnitudes, Equation (3.1) and orientations, Equation (3.2) are sampled 

in a neighbourhood around the keypoint location on the selected image. Each sample 

that is added to the histogram is weighted by its gradient magnitude multiplied by a 

circular Gaussian kernel with a standard deviation equal to half the width of the 

descriptor window. Lowe (2004) states that the purpose of the Gaussian window is to 

avoid sudden changes in the descriptor with small changes in the position of the 

window, and to give less emphasis to gradients that are far from the centre of the 

descriptor, as these are most affected by misregistration errors. 

 

Figure 3.1: For each 4x4 sub-region, the gradient magnitudes are weighted with the 
Gaussian filter (blue circle), the result of which is then added to the corresponding bin 
of the sub-region histogram that matches the gradient orientation. (Source: Gil, 2013) 

Lowe (2004) uses a 16x16 local neighbourhood centred on a keypoint that is split into 

4x4 sub-regions of 16 pixels each, Figure 3.1. Each sub-region is characterised by its 

gradient contributions to an 8 bin orientation histogram, where each bin covers a 45-

degree range, giving a total of 360 degrees. The histogram can be sensitive to noise 

if the orientation values are close to the boundaries of a bin, therefore to solve this 

Lowe (2004) uses trilinear interpolation to distribute the value over two adjacent bins. 

Finally, the 16 orientation histograms are concatenated to produce the 128 element 

descriptor vector (16 sub-regions x 8 orientation bins). 

To make the descriptor invariant to affine changes in illumination the vector is 

normalised to unit length. Lowe (2004) also thresholds the values of the normalised 
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vector so that no value is above 0.2 and then re-normalises the vector. This is done to 

reduce the influence of large gradient magnitudes and therefore put more emphasis 

onto the distribution of gradient orientations. 
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4 Deformable Global Consensus Model 

The propose system scans an image in a sliding window fashion and for each 

candidate location it fits a generative facial deformable model using the current state-

of-the-art Project-Out Cascaded-Regression (PO-CR) algorithm which was proposed 

by (Tzimiropoulos, 2015). Image locations that converge to the same location cast 

votes for that location in a fashion similar to that of Hough Transform. After 

thresholding the surface of votes, and performing non-maximal suppression (NMS) to 

remove all the low scoring detections that refer to the same face, we end up with only 

a few candidate locations per image. Next we calculate the median shape of the 

candidate locations to produce a single fitted shape. Finally, the support vector 

machine (SVM) scores are calculated by extracting both the Scale-Invariant Feature 

Transform (SIFT) and colour features from around the landmarks of each of the fitted 

shapes. 

The main components of the proposed Deformable Global Consensus Model (DGCM) 

are analysed as follows. 

4.1 Shape model and appearance 

DGCM uses Cascaded Regression (CR) to fit a deformable template to each sub-

window of a given image. The CR method that is used for this purpose is the recently 

proposed PO-CR which has been shown to produce excellent fitting results for faces 

with very large pose and expression variation. PO-CR uses parametric shape and 

appearance models both learned with Principal component analysis (PCA). 

4.1.1 Shape model 

The shape model is first obtained by annotating a set of landmarks that are placed at 

pre-defined locations which best describe the face. This is repeated over a set of 

training facial images. Figure 4.1 shows examples of frontal and profile annotated 

landmarks on various human faces. 
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Annonatated frontal faces from Helen training set 

 

   

   

Annonatated profile faces from ALFW 

Figure 4.1: Examples of annotated landmarks for both frontal and profile faces from 
the Helen and ALFW datasets 
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68 point frontal model 

 

39 point profile model 

Figure 4.2: frontal and profile mean shapes 

Given a set of training facial images 𝐼𝑖 annotated with 𝑢 fiducial points for each image, 

the set of all points defines a vector ∈  ℛ2𝑢∗1. Figure 4.2 shows the 68 point frontal and 

39 point profile mark-up annotations used in this thesis to describe the shape of the 

human face. 

Before any statistical analysis can be performed on the shapes that where obtained 

from the training set, they need to be aligned to the same coordinate frame. This is 

done by using Procrustes analysis, which removes the variations in the shapes due to 

scale, translation and rotation while at the same time retaining all the deformation 

caused by pose variation, identity and expression. Figure 4.3 illustrates the statistical 

distribution of facial feature points sampled from 600 facial images, after Procrustes 

analysis has been applied. 
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Figure 4.3: Statistical distribution of facial feature points. The black dots represent 600 
facial shapes that have been normalised by Procrustes analysis. The red dots signify 
the mean shape. (Wang et.al, 2014) 

Once the shapes in the training set have been normalised, a statistical procedure 

called Principal Component Analysis (PCA) is applied to obtain the shape model which 

is defined by a mean shape 𝑠0 and a set of 𝑛 shape eigenvectors 𝑠𝑖 that are 

represented as columns in 𝑆 ∈  ℛ2𝑢∗𝑛. These shape eigenvectors capture the 

variations due to identity, pose and expression. 

Finally, in accordance with (Mathews and Barker, 2004) a 2D similarity transform is 

appended to the shape model, which has four similarity eigenvectors for scale, rotation 

and translation. 

Using this model, a shape can be instantiated by: 

 𝑠(𝑝) = 𝑠0 + 𝑆𝑝 (4.1) 

 

Where 𝑝 ∈ ℛ𝑛∗1 is the vector of the shape parameters. 

4.1.2 Appearance 

To learn the appearance model that is used in PO-CR, similarity transformations are 

removed from each facial training image 𝐼𝑖 this is achieved by warping the image to a 

reference frame that is defined by the mean shape 𝑠0. As illustrated in Figure 4.4 
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Figure 4.4: Example of a face warped to the mean shape. The left image is the source 
image taken from a training set with the landmarks triangulated using Delaunay 
triangulation, the pixels within each triangle are then warped to the corresponding 
triangle in the mean shape. This gives us the shape-free texture, which is shown in 
the right image 

Next, the local appearance around each landmark is encoded using SIFT (Lowe, 

2004) and all the obtained descriptors are stacked in a vector ∈  ℛ𝑁∗1 which defines 

the part-based facial appearance. 

Finally, PCA is applied on all training facial images to obtain the appearance model 

that is defined by the mean appearance 𝐴0 and 𝑚 appearance eigenvectors 𝐴𝑖 that 

are represented as columns in 𝐴 ∈ ℛ𝑁∗𝑚. Using this model, a part-based facial 

representation can be instantiated by: 

 𝐴(𝑐) = 𝐴0 + 𝐴𝑐 (4.2) 

 

Where 𝑐 ∈ ℛ𝑚∗1 is the vector of the appearance parameters. 

4.2 Deformable model fitting with PO-CR 

We assume that a sub-window of our original image contains a facial image. We also 

denote by 𝐼(𝑠(𝑝)) ∈ ℛ𝑁∗1 the vector obtained by generating 𝑢 landmarks from a shape 

instance 𝑠(𝑝) and concatenating the computed SIFT descriptors for all landmarks.  

To localise the landmarks in the given sub window, the shape and appearance models 

are fitted by solving the following optimisation problem: 

 arg min
𝑝,𝑐

‖𝐼(𝑠(𝑝)) − 𝐴(𝑐)‖2 (4.3) 
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As Equation (4.3) is non-convex, a locally optimal solution can be readily provided in 

an iterative fashion using the Lucas Kanade algorithm that was originally proposed by 

Matthews and Baker, (2004). In particular, given an estimate of 𝑝 and 𝑐 at iteration 𝑘, 

linearization of Equation (4.3) is performed and updates, ∆𝑝, ∆𝑐 can be obtained in 

closed form. Notably, one can by-pass the calculation of ∆𝑐 by solving 

 arg min
∆𝑝

‖𝐼(𝑠(𝑝)) + 𝐽𝐼∆𝑝 − 𝐴0‖𝑃
2  (4.4) 

 

where ‖𝑥‖𝑃
2 = 𝑥𝑇𝑃𝑥 is the weighted ℓ2-norm of a vector 𝑥. The solution to the above 

problem is readily given by  

 ∆𝑝 = −𝐻𝑃
−1𝐽𝑃

𝑇(𝐼(𝑠(𝑝)) − 𝐴0) (4.5) 

 

where the projected-out Jacobian matrix is 𝐽𝑃 = 𝑃𝐽𝐼 and the projected-out Hessian 

matrix is 𝐻𝑃 = 𝐽𝑃
𝑇𝐽𝑃 and 𝑃 = 𝐸 − 𝐴𝐴𝑇 is a projection operator that projects out the facial 

appearance variation from the image specific Jacobian 𝐽𝐼, and 𝐸 is the identity matrix. 

Given that 𝑛 is the number of shape parameters, 𝑚 is the number of appearance 

parameters and 𝑁 is the number of SIFT features, the above algorithm has a 

complexity 𝑂(𝑛𝑚𝑁 + 𝑛2𝑁) per iteration and can be implemented in real-time for a 

single fitting. But, it is too slow to be employed for all sub-windows of a given image. 

The reason for this is because the Jacobian matrix, and the inverse Hessian matrix 

needs to be computed for each iteration. 

PO-CR bypasses this computational burden by pre-computing the averaged 

projected-out Jacobian and Hessian matrices for each iteration using regression. 

In particular, for each iteration 𝑘 PO-CR pre-computes the averaged projected-out 

Jacobian matrix, denoted as  𝐽𝑝(𝑘) as described by (Tzimiropoulos, 2015) which in 

turn, is then used to pre-calculate the averaged projected-out Hessian matrix, denoted 

as  𝐻̂𝑝(𝑘), as follows 

 𝐻̂𝑝(𝑘) = 𝐽𝑝(𝑘)𝑇𝐽𝑝(𝑘) (4.6) 
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Finally, the descent directions, denoted as 𝑅(𝑘) for each iteration can then be pre-

computed by using the inversed average Hessian matrix and average Jacobian matrix 

 𝑅(𝑘) = 𝐻̂𝑝(𝑘)−1𝐽𝑝(𝑘)𝑇 (4.7) 

  

During testing, given a current estimate of the shape parameters at iteration 𝑘, denoted 

as 𝑝(𝑘), the image features 𝐼(𝑠(𝑝(𝑘)))) are extracted and then an update for the shape 

parameters, ∆𝑝(𝑘) can be computed as follows 

 ∆𝑝(𝑘) = 𝑅(𝑘)(𝐼(𝑠(𝑝(𝑘))) − 𝐴0) (4.8) 

 

Since the descent directions 𝑅(𝑘) are pre-computed and 𝐴0 is a constant template 

representing the mean facial appearance, it is possible to precompute the bias term, 

denoted as 𝐶(𝑘) for each iteration 

 ∆𝑝(𝑘) = 𝑅(𝑘)𝐼(𝑠(𝑝(𝑘))) − 𝑅(𝑘)𝐴0 (4.9) 

 

 𝐶(𝑘) = 𝑅(𝑘)𝐴0 (4.10) 

 

which in turn gives the equation 

 ∆𝑝(𝑘) = 𝑅(𝑘)𝐼 (𝑠(𝑝(𝑘))) − 𝐶(𝑘) (4.11) 

 

where 𝑠(𝑝(𝑘)) is the shape at iteration 𝑘, and 𝑅(𝑘) ∈ ℛ𝑛∗𝑁 and 𝐶(𝑘) ∈ ℛ𝑛∗1 are the 

descent directions and the bias term for iteration 𝑘 learned from data using regression. 

Next, a new estimate for the shape parameters that are used in the next iteration are 

obtained from 

 𝑝(𝑘 + 1) = 𝑝(𝑘) − ∆𝑝(𝑘) (4.12) 

 

Finally, after 𝐿 iterations the fitted shape is obtained. Using the above projected-out 

cascade regression method, the fitting can be achieved with a computational cost of 

only 𝑂(𝑛𝑁). Figure 4.5 demonstrates the high level overview of the proposed 

Deformable Global Consensus Model. 
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Figure 4.5: Overview of the proposed Deformable Global Consensus Model. For 
each iteration, if the current threshold is above zero, Hough-Transform voting is used 
to reject any shapes peaks below the threshold. 
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4.3 Training 

For learning 𝑅(𝑘), the training sets of Helen and LFPW plus the available landmark 

annotations of the 300-W challenge where used to generate the frontal model. This 

made it possible to fit faces with very large yaw variation (±70°). Because the frontal 

model could not achieve ±90° yaw, another profile model was generated from 1,000 

manually annotated profile images from the ALFW dataset. 

4.4 Hough-Transform Voting 

The proposed DGCM detects faces via a Hough Transform voting scheme by 

capitalising on the properties of the iterative optimisation procedure employed by PO-

CR. The system scans an image in a sliding window fashion using a step of 10 pixels 

in both the (x, y) dimensions. At each location that is sampled using the sliding window, 

a facial deformable model is fitted using PO-CR. 

Because of the large basin of attraction of regression based approaches, shapes that 

are initialised close to a face will very likely converge with a high degree of accuracy 

to that face. On the contrary, shapes that are initialised to the background will converge 

to random locations. Hence this process will generate a high number of votes for any 

face within an image, while at the same time will score a low number of votes for 

background. 

Voting in the proposed system is performed in a straight forward fashion. At each 

iteration the location of the shapes in the image are found by extracting the 

translational component from 𝑝 and then for each location a vote is cast. Next, for each 

iteration, any shapes that belong to a peak that does not pass the threshold value for 

that iteration are rejected. Finally, because we end up with multiple detections per 

peak, we apply non-maximum suppression (NMS) (Felzenszwalb, et al., 2010) to 

reject all low scoring detections that refer to the same face. After which we are left with 

just a few candidate face locations per image. 

For non-maximum suppression (NMS) we adopt a strategy similar to Felzenszwalb, et 

al., (2010) where we sort scores in descending order, and then iteratively select the 

detection window with the highest score, while eliminating detected windows with an 
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intersection-over-union (IoU) ratio greater than a predefined threshold to the currently 

selected detection window. 

4.5 Final re-scoring 

After the voting phase is finished, we are left with only a few candidate locations. For 

each of these locations, the median shape is calculated form all the corresponding 

shapes of each peak, to produce a single fitted shape for that location. Finally, once 

the final fitted shapes have been obtained, re-scoring of the candidate faces is 

performed by evaluating an SVM that is trained on both the SIFT features, and the U 

channel of the LUV colour space as proposed by (Mathias, et al., 2014).  

4.6 Complexity 

We assume that there are 𝑘 levels of cascade in the PO-CR model. Then, for each 

level, a regression matrix 𝑅(𝑘) is learned with 𝑛 regressors and 𝑁 SIFT features. As 

stated previously, 𝑛 is the number of parameters in the shape model. Therefore, the 

complexity of fitting per sub-window is only 𝑂(𝐾(𝑛𝑁)). 

Because of the large basin of attraction of PO-CR, fitting is performed on a grid of 

equally spaced points, with a stride of 10 pixels in both the (x, y) dimensions. If there 

are 𝐿 locations per image to perform fitting, then the total complexity becomes 

𝑂(𝐿𝐾(𝑛𝑁)) for a single level of the image pyramid. 

Furthermore, since the first level of the cascade is optimised for only scale, rotation 

and translation, and applying a threshold after casting votes in Hough space. The 

proposed method can reject most of the irrelevant background in the image, which in 

turn leaves very few locations to be evaluated in the subsequent levels of the cascade. 

Hence, in practice, the total complexity is 𝑂(𝐿𝐾(𝑛𝑁)) where 𝐾 = 1 and 𝑛 = 4 
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5 CUDA 

In order for the reader to get a good understanding of the fundamentals of parallel 

programming on the GPU, which is used in this thesis, this chapter introduces the 

reader to the hardware and software architecture of the CUDA API. We also invite the 

reader to read Appendix A which gives an in-depth comparison between CUDA and 

OpenCL, and the reasons why CUDA was chosen over OpenCL.  

CUDA stands for Compute Unified Device Architecture and is a parallel programming 

paradigm, the initial CUDA toolkit 1.0 was release in June 2007 (NVIDIA, 2016). 

 CUDA is used to develop software that utilises the power of NVIDIA GPU’s and cannot 

be used on GPU’s made by any other vendor. As well as graphics, CUDA is also used 

in many general-purpose, non-graphical applications that are highly parallel in nature. 

CUDA uses C/C++ as its main programming language, although it also can be 

programed on other languages like FORTRAN and Java. Since the initial release in 

2007, there have been 7 major releases of the CUDA toolkit along with four major 

hardware revisions; Tesla, Fermi, Kepler and Maxwell. 

5.1 CUDA architecture 

 

Figure 5.1: Kepler GK110 Full chip block diagram (Source: NVIDIA, 2012, p6) 
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The architecture of the GeForce 780ti as illustrated in Figure 5.1 consists of 5 Graphics 

Processing Clusters (GPC), each containing 3 streaming multiprocessors (SMX), 

which gives a total of 15 SMX units. Shared 1.5MB L2 cache which can be accessed 

by all SMX units, six 64-bit memory controllers which gives a combined 384-bit 

memory interface, that is connected to 3GB of GDDR5 device memory. A Host 

interface which connects the GPU to the CPU via a PCI-express v3.0 bus and 

NVIDIA’s trademarked GigaThread Engine, which creates and dispatches thread 

blocks to the various SMX units and manages the context switches between threads 

during execution. 

5.1.1 Streaming multiprocessor (SMX)  

 

Figure 5.2: SMX: 192 single‐precision CUDA cores, 64 double‐precision units, 32 
special function units (SFU), and 32 load/store units (Source: NVIDIA, 2012, p8) 

As shown in Figure 5.2, the SMX unit on the GK110 GPU contains a total of 192 single-

precision CUDA cores and 64 double-precision units (DP Unit) which perform 

arithmetic operations in accordance to the IEEE 754-2008 standard. There are also 

32 load/store units (LD/ST) which are used to move data between registers, shared 

memory and global memory, and 16 special function units (SFU’s) which are used for 
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fast approximations of transcendental operations, such as, sin, cosine, reciprocal and 

square root. 

Each SMX also includes 65,536 32-bit registers, an instruction cache, 64 KB of high 

speed memory that can be partitioned between the L1 cache and shared memory by 

the developer, and 48 KB of high speed read only data cache memory that is shared 

by all the CUDA cores on the SMX unit. There are also four warp schedulers and eight 

instruction dispatch units. The warp schedulers make it possible to issue and execute 

four concurrent warps, and the instruction dispatch units make it possible to execute 

two independent instructions of a warp per cycle. 

5.2 Compute Capability 

NVIDIA use a special term called compute capability to describe different hardware 

versions of their GPU’s. As show in Table 5.1 CUDA comes in several different 

versions each mapping to a different generation of GPU. Older GPU architectures will 

not work with a program compiled for higher compute capability devices, however 

CUDA is backward compatible. With each new revision comes new features and 

technical specifications. 

Architecture  Codename Compute Capability Released 

Tesla G80 

GT200 

1.0 

1.3 

2006 

2008 

Fermi GF100 

GF104 

2.0 

2.1 

2010 

2010 

Kepler GK104 

GK110 

3.0 

3.5 

2012 

2013 

Maxwell GM107 

GM204 

GM200 

5.0 

5.2 

5.2 

2014 

2014 

2015 

Table 5.1: CUDA Compute Capability 

5.3 Kernel Functions 

CUDA extends C by allowing the programmer to define C functions which are called 

kernels, these kernels can only be executed on the GPU, but unlike standard C 
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functions they cannot have a return type. The kernel is defined using the __global__ 

declaration specifier and the number of threads that execute within the kernel for a 

given call is specified using the <<<…..>>> execution configuration syntax. 

When a kernel function is launched, it creates an array of multiple threads, these 

threads are mapped to the processor and executed in what NVIDIA call Single-

Instruction, Multiple-Thread (SIMT). This is similar to Single-Instruction, Multiple-

Data (SIMD), but whereas SIMD requires that all elements in a vector execute 

together in a unified synchronous group, SIMT allows multiple threads in the same 

warp to execute independently. 

5.4 Thread hierarchy 

When a kernel is launched, it is organised into a two-level hierarchy of threads, where 

the threads are grouped into blocks called thread blocks, and the thread blocks are 

grouped into a grid, as illustrated in Figure 5.3. There can only be one grid per Kernel. 

The dimensions of the grid, and thread blocks within the grid, are specified via the 

execution configuration parameters at kernel launch time by the developer and cannot 

change throughout the life time of the kernel. 
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Figure 5.3: Thread hierarchy in the CUDA programming model. (Source: NVIDIA, 
developer zone, 2015) 

As can be seen in Figure 5.3, each thread has a unique local index within its thread 

block, and every thread block has a unique index within the grid. To help with the 

indexing of threads within the kernel, CUDA has its own built in variables which are 

described below:  

• gridDim: the dimensions of the grid (measured in blocks).  

• blockIdx: block index within the grid.  

• blockDim: the dimensions of the block (measured in threads).  

• threadIdx: thread index within the block.  

5.4.1 Thread Blocks 

Thread blocks are arranged within the grid in a one, two or three-dimensional 

formation. An example of a two-dimensional grid can be seen in Figure 5.3. The 

maximum amount of thread blocks in each dimension that the grid can encompass is 

limited by hardware. 
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Thread blocks are required to execute independently from one another, this is because 

they are distributed randomly to the various SMX units, as and when resources 

become available. A maximum of sixteen thread blocks can run concurrently in a SMX, 

but there are several factors that limit this amount, such as the amount of threads, 

registers and shared memory used per block. Also, it must be noted that because 

multiple thread blocks execute in parallel, care must be taken to avoid race conditions 

when writing to global memory, this can be achieved with the use of atomic operators. 

5.4.2 Threads 

Thread blocks are made up of a collection of threads which run on the CUDA cores. 

Current hardware supports a maximum of 1024 threads per block which can be 

arranged in a one, two or three-dimensional formation. 

Within a thread block, threads are divided into groups of 32 consecutive threads called 

warps. The order the warps execute in within the block is random. Threads are only 

allowed to communicate with other threads in the same block by the use of shared 

memory. Threads within a warp can also communicate directly with each other using 

warp level intrinsics. For compute capability 3.0 and above, each thread can have 

access to a maximum of 255 32-bit registers that are only visible to the thread that 

they reside in.   

The total number of threads that a given kernel executes is equal to the number of 

threads per block multiplied by the total number of thread blocks. For example, if the 

execution configuration parameters are set to <<<1024, 256>>> then there will be 

1024 thread blocks multiplied by 256 threads, which gives a total of 262,144 threads, 

executing the same kernel. 

5.5 Memory Hierarchy 

In the CUDA programming model for the Kepler architecture, the memory hierarchy is 

composed of four distinct levels, which is illustrated in Figure 5.4. These four levels 

are from top to bottom (fastest to slowest): the thread level, SMX level, a global level 

2 cache and lastly the large global DRAM memory of the GPU. 
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Figure 5.4: Kepler’s memory hierarchy (Source: NVIDIA, 2012, p13) 

The top level of the memory hierarchy is the thread level. All CUDA cores in an SMX 

share a total of 65,535 32-bit registers that are partitioned across all resident thread 

blocks, and each thread has access to a maximum of 255 registers. Depending on the 

complexity of the kernel, if there are no more resources available then the data is 

“Spilled” into what is called local memory. In Kepler local memory is stored in the level 

1 (L1) cache. 

The second level in the memory hierarchy involves shared memory, an L1 cache, and 

the read-only data cache. Present on each SMX unit is 64KB of very fast on-chip 

memory which is split into two partitions. The L1 cache which is reserved for local 

memory accesses such as register spills and stack data, and a user managed partition 

called shared memory which is visible to all treads within a thread block. Depending 

on the type of program the L1 cache and shared memory can be configured by the 

developer to either 16/48KB, 48/16KB or 32/32KB. Shared memory is divided into 

equally sized memory modules, called banks. If multiple treads from the same warp 

access different words that map to the same memory bank, we get what is known as 

a bank conflict. When this happens access to the bank becomes serialised. 

In addition to the L1/shared memory cache, a 48KB read only data cache was 

introduced with devices of compute capability 3.5 and above. This data cache does 

not have the same bank structure as shared memory and can fully support full-speed 
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unaligned memory access patterns. Use of this cache can be managed automatically 

by the compiler if it can determine if the data is read only for the life time of the kernel, 

this is done by qualifying pointers as const and __restrict__, or explicitly by the 

programmer by using the __ldg() intrinsic function. 

The third level in the memory hierarchy contains the global level 2 (L2) cache which 

has a size of 1.5MB. This cache is the primary point of data unification between all 

SMX units on the GPU, servicing all load, store, and texture requests to DRAM and 

providing efficient, high speed data sharing across the GPU. The caching policy which 

is used is called least recently used (LRU), the main intention of which is to avoid the 

global memory bandwidth bottleneck (Farber, 2012, p.113). 

The bottom level in the memory hierarchy is the DRAM. This is the physical device 

memory (3GB GDDR5 on the GeForce 780ti) built on the graphics card. Device 

memory is off-chip and is significantly slower compared to the higher levels in the 

hierarchy. All threads have access to device memory. 

There are also two read-only memory spaces in DRAM which are called constant and 

texture memory, which can also be accessed by all threads of the GPU. Both constant 

and texture memory are cached and optimised for different usages. Constant memory 

is optimised for broadcasting, i.e. when the threads in a warp all read the same 

memory location, whereas texture memory is optimised for spatial locality.  

Constant memory resides in a 64 KB partition of device memory and is accessed 

through an 8KB cache on each SMX. The texture cache is limited to 48 KB per SMX 

unit. Both constant and texture memory are persistent across all kernel launches by 

the same application. 
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6 Implementation 

The proposed system is executed within the MATLAB environment, and Mex-files are 

used to provide an interface to the CUDA C++ algorithms. Figure 6.1 shows a high 

level view of the proposed system. 

 

Figure 6.1: System overview, the red outlined boxes are the Mex functions that are 
used to provide an interface to CUDA C++ 
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Given an RGB image, we first use MATLAB to generate a grey scale image. The RGB 

image is also converted to LUV colour space using the Mex function “colorspace” that 

was created by Getreuer, (2010), and then the U channel is extracted to be later used 

in extracting features for the SVM model. 

The proposed system needs to iterate three times to cover both frontal and profile 

(right and left) faces. The three iterations are as follows: 

1. Frontal 

2. Right profile 

3. Left profile 

As there are only two models used in the system, a frontal and a right facing profile 

model, to cover left facing profile faces, the input images (grey scale, U channel) are 

flipped on the third iteration. 

The current model and grey scale image are next passed into the DGCM Mex function, 

which provides an interface to the CUDA C++ code. DGCM scans the grey scale 

image over multiple scales, in a sliding window fashion using a step of 10 pixels in 

both the (x, y) dimensions. For each scale, all sub-windows are simultaneously fitted 

using the PO-CR algorithm. 

After each iteration of the PO-CR algorithm, votes are cast using a Hough-Transform 

voting scheme for detecting candidate faces and filtering out irrelevant background. 

For each scale, NMS is applied to remove low level peaks that are within the vicinity 

of the maxima peaks. Next, the median of the shapes corresponding to each surviving 

peak is calculated to produce a single fitted shape for each maxima peak. Then the 

surviving candidate shapes are sent back to MATLAB for further processing.  

The remaining candidate shapes are then rescaled back into image space and the left 

facing profile shapes are flipped back to their original direction. Next, NMS is applied 

to the remaining candidate shapes to remove low SVM scoring shapes of faces from 

the wrong scales and then a final NMS is applied on the combined front, left and right 

shapes. Finally, the performance of the system is evaluated. 
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6.1 DGCM 

The proposed Deformable Global Consensus Model (DGCM) as described in Chapter 

4 is implemented in CUDA using two distinct levels of parallelisation. The reason for 

this is because all the windows of the grid are independent from one another, therefore 

they can be processed simultaneously, and this is achieved by essentially dedicating 

one thread block to each instance of the PO-CR fitting algorithm. 

6.1.1 Memory allocation 

All matrices that are used in the DGCM model are allocated in device memory using 

the CUDA function call “cudaMallocPitch”. This guarantees that all the rows of the 

matrices meet the alignment requirements for coalesced memory accesses. This is 

achieved by allocating bytes at the end of each row to guarantee that the beginning of 

the next row starts on a 128 byte memory boundary, as illustrated in Figure 6.2. The 

pitch is the width of the row including padding measured in bytes. 

 

Figure 6.2: 2D matrix allocation. When allocating device memory via the 
cudaMallocPitch function call, rows are padded (yellow blocks) to guarantee that the 
beginning of each row begins on a 128 memory boundary.  

6.1.2 SIFT 

The SIFT descriptor used in this implementation is a variant of Lowes (2004) SIFT 

keypoint descriptor which is described in Chapter 3.1. Where the main difference is, 

instead of having a grid containing 16 blocks, that output a 128 element descriptor as 

shown in Figure 3.1, our variant of Lowes, (2004) descriptor only uses one 8x8 

dimensional block, which outputs an 8 element descriptor. 
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We pre-calculate SIFT descriptors for each pixel in the image and store the results in 

a texture, which is then used as a look up table. We use texture memory because it is 

optimised for 2D spatial locality. The pre-calculated SIFT descriptors are stored in a 

2D layered texture which has a depth of two. As there are eight descriptor elements 

per pixel, each layer contains a RGBA texture to hold four descriptors elements. 

6.1.3 PO-CR 

Given Equation 4.11 and Equation 4.12, the CUDA implementation of the PO-CR 

fitting algorithm can be broken down into just five stages that consist of four bespoke 

kernels, which are, for each iteration 𝑘: 

Stage 1 

Calculate the current estimate of the shape parameters 𝑝(𝑘). Were 𝑠(𝑝(𝑘 − 1)) is the 

shape generated from the previous iteration, 𝑆0 is the mean shape and 𝑄(𝑘) ∈ ℛ2𝑢∗𝑛 

contains the combination of the similarity eigenvectors for scale, rotation and 

translation and the shape eigenvectors 

 𝑝(𝑘) = 𝑄(𝑘)𝑇 ∗ (𝑠(𝑝(𝑘 − 1)) − 𝑆0) (6.1) 

 

Stage 2 

Calculate the current shape 𝑠(𝑝(𝑘)), from the estimate of the shape parameters 𝑝(𝑘) 

that are obtained from Equation (6.1) 

 𝑠(𝑝(𝑘)) = 𝑆0 + (𝑄(𝑘) ∗ 𝑝(𝑘)) (6.2) 

 

Stage 3 

Extract the SIFT features 𝐼 (𝑠(𝑝(𝑘))) ∈ ℛ𝑁∗1 for the current shape, where 𝑁 is the 

number of features. 

 𝐼 (𝑠(𝑝(𝑘))) (6.3) 

 

Stage 4 
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 Update the estimate of the shape parameters. Where 𝑅(𝑘) and 𝐶(𝑘) are the descent 

directions and bias term as described in Chapter 4.2 

 
𝑝(𝑘) = 𝑝(𝑘) − ((𝑅(𝑘) ∗ 𝐼 (𝑠(𝑝(𝑘)))) − 𝐶(𝑘)) (6.4) 

 

Stage 5 

Equation (6.2) is again used to calculate the new shape, using the updated shape 

parameters 𝑝(𝑘) obtained from Equation (6.4) 

With the exception of stage 3, in each stage of the PO-CR fitting algorithm the kernel 

is launched with just one thread block to do all the work in parallel. 

The dimensions of the thread block in Equation (6.1) and Equation (6.4) is (32, 𝑛, 1) 

where 32 is the size of a warp and 𝑛 is the current number of shape parameters 𝑝(𝑘). 

Each row in the thread block calculates the scalar output of the corresponding 

component of 𝑝 

In Equation (6.2) the thread block size depends on the amount of points in the shape 

model, for the 68 point frontal model it is set to (136,1,1) and for the 39 point profile 

model it is set to (78,1,1). 

In Equation (6.3) the thread block size is (256,1,1) and the total number of thread 

blocks used is calculated by the formula 1 +  (((𝑁 / 4)  −  1) / 256) we divide the 

number of features 𝑁 by four because we use vectorise access to read four SIFT 

descriptor elements at a time from texture memory. The value 256 is taken from the 

thread block’s x-dimension. 

6.1.4 CUDA Vector-Matrix multiplication 

In order to solve Equation (6.1), Equation (6.2) and Equation (6.4), we use vector-

matrix multiplication. Given a matrix 𝑀 and a vector 𝑣, it is possible to work out each 

component of 𝑦 by calculating the dot product of row 𝑖 of matrix 𝑀 with 𝑣. 

 
𝑦𝑖 = ∑ 𝑀𝑖,𝑗

𝑛

𝑗=1

𝑣𝑗 (6.5) 
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In parallel computing a dot product can be solved with the use of the reduction 

primitive. Reduction is one of the most used primitives in parallel computing, it is used 

to reduce a data sequence into a scaler value using a binary associative operator. It 

can be used for example to compute the minimum, maximum and sum of two vectors. 

Because reduction involves very little processing, it is beneficial to have each thread 

process multiple elements before doing the actual reduction. This is achieved by each 

thread reading elements in the arrays in a grid-stride loop (Harris, 2013), and can be 

further optimised by using vectorised accesses to global memory. Once the loop is 

completed, then the reduction can be done and the scaler result can be output back 

to global memory. The code used in this thesis for calculating the dot products is based 

on a warp shuffle reduction that was explained by Luitjens (2014).  Figure 6.3 shows 

an example of warp shuffle reduction.  

 

Figure 6.3: Warp reduction using shuffle down, for illustrative purposes this figure only 
shows a half warp (16 lanes). The first parameter of the __shfl_down intrinsic is the 
register to return, the second is the offset from the calling lane of the warp and the 
third parameter is the width of the warp segment which must be of size 2, 4, 8, 16, or 
32. The default size is 32. 
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Figure 6.3 shows how the shuffle down intrinsic is used to build a reduction tree inside 

a warp. The shuffle down intrinsic first calculates the source lane’s ID by adding an 

offset to the calling lane’s ID, and then returns the value held at that location. If the 

source lane is out of bounds or the source thread has finished, then the value in the 

calling thread is returned instead. The value that is returned from the source lane is 

then added to the calling lanes register. Finally, after completing the reduction tree, 

the thread in lane zero contains the sum of the warp. 

6.1.5 Voting 

After each iteration of the PO-CR algorithm, the Hough-Transform voting surface is 

cleared. Next, the location of the shapes in the image are found by extracting the 

translational component from 𝑝 and then for each location a vote is cast within an 

11*11 grid. Thus, generating peaks on the voting surface, as illustrated in Figure 6.5. 

Next, any shapes that belong to peaks that do not pass the threshold for the current 

iteration are rejected, as shown in Figure 6.6 to Figure 6.9. By doing this, it is possible 

to remove most of the background windows within the first few iterations where the 

computational cost of calculating ∆𝑝(𝑘) is relatively cheap. Figure 6.10 shows the SVM 

scores generated for each peak and Figure 6.11 shows the final fitted shape after a 

threshold has been applied. 

 

Figure 6.4: Original image from the AFW dataset 
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Figure 6.5: Hough-Transform voting surface after first iteration 

 

Figure 6.6: Hough-Transform voting surface after second iteration 

 

Figure 6.7: Hough-Transform voting surface after fifth iteration 
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Figure 6.8: Hough-Transform voting surface after tenth iteration 

 

Figure 6.9: Hough-Transform voting surface after fifteenth iteration 

 

Figure 6.10: SVM scores generated for candidate faces 
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Figure 6.11: Final fitted results after threshold has been applied 

In order to remove shapes that have failed the threshold for the current iteration, each 

shape acquires its vote’s score from the Hough-Transform voting surface and stores 

the result in a votes array. Next, an index array is generated by scanning the votes 

array and storing the indices of votes that pass the threshold, the indices of votes that 

fail the threshold are set to minus one, as shown in Figure 6.12. 

 

Figure 6.12: Stream compaction. Any vote score (yellow boxes) with a value equal or 
less than one is set to minus one in the index array, then the function copy_if from the 
thrust library is used to compact the array. 

To compact the index array the function “copy_if” from the Thrust library is used, with 

the predicate parameter set to minus one. The output of which is a compacted index 
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array. Finally, the new compacted index array is used to get the shapes that pass the 

threshold. 

6.2 Support Vector Machine (SVM) 

LIBSVM was used for support vector classification. LIBSVM is an open source library 

developed at the National Taiwan University. Since version 2.8, it implements a 

sequential minimal optimisation (SMO) type algorithm which was proposed by (Chang 

and Lin, 2011). 

SVM belongs to the class of maximum margin classifiers and are capable of solving 

linear and non-linear classification problems. SVMs map data to feature space with 

the use of kernels. There are four basic kernel functions, linear, polynomial, radial 

basis function (RBF) and sigmoid. 

Given a training set of vectors 𝑥𝑖 ∈ ℛ𝑛, 𝑖 = 1, ⋯ , 𝑙  where each vector belongs to one 

of two classes that are identified by the label 𝑦𝑖 ∈ {−1, 1}. The aim of SVM 

classification is to separate both classes with an optimal separating hyperplane in such 

a way that the distance to the support vectors is maximised, as illustrated in Figure 

6.13, called the maximum margin. 

 

Figure 6.13: Optimal separating hyperplane, the three filled in shapes are the support 
vectors (Source: OpenCV, 2016) 
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While optimising an SVM, we are generally looking for two things: a hyperplane with 

the largest margin, and also a hyperplane that produces the minimum amount of 

misclassification errors. 

The penalty parameter 𝐶 is a regularisation parameter that controls the cost of 

misclassification on the training data. Having a low 𝐶 value generates a large margin 

separation hyperplane, at the cost of misclassification. While a high 𝐶 value gives a 

smaller margin if it does a better job of classifying the training points correctly. Finding 

the optimal 𝐶 value while minimising overfitting is generally done with the use of cross-

validation. 

6.2.1 Feature normalisation 

Before using cross validation to find the optimal value of 𝐶, both the SIFT and colour 

features (LUV colour space, U channel) (Mathias et al, 2014) needs to be normalised. 

We found that the best method to normalise these features was to use zero-mean ℓ2-

norm. This is achieved by first, calculating the zero-mean 

 
𝜇 = 1

𝑁⁄ ∑ 𝑥𝑖

𝑁

𝑖=1

 (6.6) 

 

 𝑥𝑖 = 𝑥𝑖 − 𝜇 (6.7) 

 

Next, the features are normalised, and weight adjusted, for SIFT Vectors the value of 

𝑤 is set to 1 and for the colour vectors 0.2 is used 

 𝑥𝑖 = (𝑥𝑖/|𝑥|) ∗ 𝑤 (6.8) 

 

Finally, the normalised SIFT and colour features are combined into a single vector.  

6.2.2 Cross-validation 

LIBSVM has an option –v to set the number of folds to use in cross-validation. For 

example, using –v 5 creates 5-folds, where the training data is split into 5 equally sized 

subsets, and each subset is then tested using a classifier trained on the remaining 4 

subsets.  
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In order to find the optimal 𝐶 value and prevent overfitting, a grid-search on 𝐶 is 

performed using cross-validation. This is done by first scanning a coarse 1-

dimensional grid to find the highest cross validation accuracy region. Then, a finer 

scan is conducted in that region to find the optimal 𝐶 value. Once the optimal 𝐶 

parameter has been found the model can be trained using all the training data. 

6.2.3 Training 

For training the SVM model, a two-step approach was used. First, DGCM scans the 

training sets and then all the fitted shapes are stored in the positive class. The negative 

class is obtained by sorting the votes of the background shapes in descending order, 

next they are truncated it to match the size of the positive class, then a SV is trained.  

Next, DGCM is again used to scan the training sets, but this time it also calculates the 

SVM scores for the shapes. As before, the shapes are split into positive and negative 

classes, but this time the negative class is sorted in descending order using the SVM 

scores. Finally, the negative class is truncated to match the size of the positive class, 

before generating the final SVM model. 

6.2.4 Classification 

Once the optimal separating hyperplane has been found, the SVM can attempt to 

classify unseen data. Given an instance 𝑧 it can be classified by determining which 

side of the decision boundary it belongs to, by computing the following decision 

function 

 
𝑓(𝑧) = 𝑠𝑖𝑔𝑛 ( ∑ 𝑦𝑖𝛼𝑖𝑘(𝑥𝑖, 𝑧)

𝑡𝑜𝑡𝑎𝑙𝑆𝑉

𝑖=1

+ 𝜌) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝜙(𝑧) + 𝜌) (6.9) 

 

where 𝑦 is the training labels, 𝛼 contains the support values, 𝑘(. , . ) is the kernel 

function, 𝜌 is the offset from the origin and 𝑤 defines the normal to the hyperplane.  

 

Within the LIBSVM model that is generated in the training phase, 𝑠𝑣_𝑐𝑜𝑒𝑓 

contains 𝛼𝑖𝑦𝑖, 𝑆𝑉𝑠 contains the support vectors 𝑥𝑖, and – 𝑟ℎ𝑜 is the 𝜌 value 

 

Using a linear kernel 𝑘(𝑥, 𝑧) = 𝑥𝑇𝑧 it is possible to compute 𝑤 explicitly using 

 𝑤 = 𝑆𝑉𝑠𝑇 ∗ 𝑠𝑣_𝑐𝑜𝑒𝑓 (6.10) 
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Therefore, all predictions are simply based on the function. 

 𝑧𝑇𝑤 + 𝜌 (6.11) 

 

If the score is larger than the defined threshold we then classify the candidate 

window as a face. 
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7 Results 

In order to evaluate the performance of our proposed system, all tests were done using 

a NVIDIA GeForce GTX 980 GPU and an Intel I7-4790k CPU, on a PC running 

Windows 8.1 64-bit with 16GB of ram. The proposed system was compiled for GPU 

devices of compute capability 3.5 and above, using CUDA 7.0 development toolkit. 

7.1 Performance measures 

For face detection, faces are only considered detected if the intersection-over-union 

(IoU) ratio between the ground truth and the detected bounding box/ellipse exceeds 

0.5 (50%) (Everingham et al, 2009). Given a detected bounding box 𝐵𝑑 and ground 

truth bounding box 𝐵𝑔𝑡 the area of overlap 𝑎𝑜 can be found using the formula 

𝑎𝑜 =
𝑎𝑟𝑒𝑎(𝐵𝑑 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑑 ∪ 𝐵𝑔𝑡)
 

 

where the intersection 𝐵𝑑 ∩ 𝐵𝑔𝑡 is the area of overlap between the detected and 

ground truth bounding boxes and the union 𝐵𝑑 ∪ 𝐵𝑔𝑡 is the sum of the areas of both 

bounding boxes minus the intersection. 

To evaluate the performance of our experiments for face detection on the AFW 

dataset, we use a precision-recall (PR) curve to extract the relationship between the 

detection rate (recall) and detection accuracy (precision). 

Precision and Recall are defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where true positives 𝑇𝑃 are faces that are correctly classified. False positives 𝐹𝑃 is 

where the detector wrongly classifies background as a face, and false negatives 𝐹𝑁 

are faces that are not detected. 
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For the facial landmark experiments, the proposed system DGCM is compared against 

the combined state-of-the-art pipeline of Head-Hunter (Mathias et al. 2014) and PO-

CR (Tzimiropoulos, 2015). To measure the performance of landmark localisation, tests 

where done using the point-to-point Euclidean distance (pt-pt error) which is 

normalised by face size and report the cumulative curve corresponding to the fraction 

of images for which the error was less than a specific value as proposed by (Zhu and 

Ramanan, 2012).  

7.2 Face detection 

To evaluate the performance of face detection, two of the most popular “in the wild” 

datasets where used. 

 AFW (Zhu and Ramanan, 2012) the annotated faces in-the-wild (AFW) dataset 

is built from images from Flickr. It consists of 205 images with a total of 474 

annotated faces (Mathias et al. 2014), the images within this dataset tend to 

contain cluttered background and faces with large variations in both viewpoint 

and appearance 

 FDDB (Jain and Learned-Miller, 2010) the Face Detection Dataset and 

Benchmark (FDDB) dataset consists of 2,845 images, with a total of 5,171 

ellipse face annotations. This dataset includes very challenging low resolution, 

out of focus and occluded faces. 

7.2.1 Annotated faces in-the-wild 

On the AFW dataset we compare the performance of our proposed detector against 

current published and commercial state-of-the-art methods including: Head-Hunter 

(Mathias et al. 2014), DPM (Mathias et al. 2014), SquaresChnFtrs-5 (Mathias et al. 

2014), Tree Parts Model (TSM) (Zhu and Ramanan, 2012), Structural Models (Yan et 

al, 2013), Shen et al (2013) and commercial systems Face.com and Face++. 
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Figure 7.1: Precision-Recall curve of different evaluation methods on the AFW dataset. 
With Intersection-over-Union (IoU) overlap set to 50% 

 

Figure 7.2: Precision-Recall curve of different evaluation methods on the AFW dataset. 
With Intersection-over-Union (IoU) overlap set to 75% 
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As illustrated in Figure 7.1, on the AFW dataset with the IoU overlap set to 50%, we 

show that our detector is comparable to both current commercial and published state-

of-the-art methods. To further show the accuracy of our proposed detector, we 

increased the IoU overlap to 75%, and as can be seen in Figure 7.2, our detector 

clearly outperforms all commercial and published methods by a margin of over 10% in 

detection accuracy. 

7.2.2 Face Detection Dataset and Benchmark 

FDDB defines two types of evaluations: the discrete score and continuous score. For 

evaluating the discrete score, it counts the number of true positives (detected faces) 

against the number of false positives. Detected faces are only considered as true 

positive if the IoU ratio to the ground truth ellipse exceeds 0.5. In the continuous score 

evaluation, it evaluates the accuracy of the detected bounding ellipse against the 

ground truth ellipse, by using the IoU ratio as the matching metric. 

 

Figure 7.3: FDDB Discrete scores. 
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Figure 7.4: FDDB Continuous scores (true positive ratio is IoU between detection 
ellipse and ground-truth ellipse.) 

On the FDDB dataset we compare the performance of our proposed detector against 

the current published state-of-the-art methods including: CasCNN (Li et al, 2015), 

DP2MFD (Ranjan, Patel and Chellappa, 2015), Faceness (Yang et al, 2015), 

HeadHunter (Mathias et al. 2014), JointCascade (Chen et al, 2014), MultiresHPM 

(Ghiasi and Fowlkes, 2015) and XZJY (Shen et al, 2013).  

For discrete scores, as show in Figure 7.3, the performance of our system seems to 

be on par with that of published state-of-the-art methods. For continuous scores, 

Figure 7.4, we show that our detector outperforms all published state-of-the-art 

methods for accuracy. 

7.3 Landmark localisation 

To evaluate the performance of landmark localisation a large number of experiments 

where conducted on the most challenging facial databases. 

 AFW (Zhu and Ramanan, 2012) as described in 7.2. 

 COFW (Burgos-Artizzu, Perona and Dollár, 2013) the Caltech Occluded Faces 

in the Wild (COFW) dataset contains 507 annotated faces that are set in real 



MCD11211426 John McDonagh    51  

  

 

world conditions. The faces tend to have large variations due to pose and 

expression, and over 23% of faces have various degrees of occlusion. 

 

Figure 7.5: Accumulated point-to-point error, relative to size of face, for 474 annotated 
faces from the AFW dataset.  

 

Figure 7.6: Accumulated point-to-point error, relative to size of face, for 507 annotated 
faces from the COFW dataset.  

For landmark localisation, as can be seen in Figure 7.5, the proposed system of this 

thesis, DGCM, shows comparable performance to that of the state-of-the-art pipeline 

of Head-Hunter (Mathias et al. 2014) and PO-CR (Tzimiropoulos, 2015) on the AFW 
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dataset. Also, Figure 7.6 clearly shows that DGCM outperforms the combined pipeline 

of Head-Hunter and PO-CR by approximately 20% on the COFW dataset. This is 

because of the inaccuracies of head-hunter’s face detector, which makes it a lot harder 

for the PO-CR fitting algorithm to fit to occluded faces. 

7.4 Execution times 

All experiments were done on a 640*480 VGA image from the AFW dataset 

(2844520516.jpg). The image pyramid was calculated using the formula 

𝑐𝑒𝑖𝑙((1 1.1𝑠𝑐𝑎𝑙𝑒⁄ ) ∗ 𝑖𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒) and a step size of 10 pixels was used. 

Scale 
factor 

Grid size Initial number 
of windows 

Frontal 
 Time ms 

Right Profile 
 Time ms 

Left Profile 
 Time ms 

2.14 138 x 103 14214 96.092201 81.077698 71.068100 

1.95 125 x 94 11750 79.075699 68.065300 60.057598 

1.77 114 x 86 9804 72.069099 59.056801 57.054901 

1.61 104 x 78 8112 64.061401 48.046101 50.048000 

1.46 94 x 71 6674 55.053101 41.039101 43.041000 

1.33 86 x 64 5504 45.043098 34.032600 37.035702 

1.21 78 x 59 4602 39.037201 32.030701 37.035801 

1.10 71 x 53 3763 36.034599 32.030701 34.032398 

1.00 64 x 48 3072 32.030899 27.025900 29.028099 

0.91 59 x 44 2596 31.029499 27.025900 27.025299 

0.83 53 x 40 2120 26.025200 23.022100 22.021400 

0.75 49 x 37 1813 27.025700 24.023001 20.019199 

0.68 44 x 33 1452 24.023199 20.019400 17.016300 

0.62 40 x 30 1200 21.019899 17.016100 15.014400 

0.56 37 x 28 1036 19.018299 16.015400 14.013200 

0.51 33 x 25 825 16.015301 13.012700 13.012500 

0.47 30 x 23 690 10.009600 14.013200 13.012400 

0.42 28 x 21 588 13.012500 13.012700 8.008000 

0.39 25 x 19 475 14.013400 14.013200 8.007400 

0.35 23 x 17 391 13.012200 13.012700 8.007700 

      

Total execution time in ms 732.702095 616.591304 583.559397 

Table 7.1: Scaling factors and resulting grid dimensions of a VGA image, with 
execution times for frontal, right profile and left profile models measured in 
milliseconds 
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Table 7.1 shows the execution times to scan for faces (frontal and profile) of size 80*80 

to image size in a VGA image. For each layer in the image pyramid we include the 

timings for image resizing, generating SIFT images, scanning and returning the results 

to MATLAB. All execution times are measured in milliseconds. We show the individual 

timings for each layer of the pyramid and the total times for frontal plus left and right 

profile faces. 

7.5 Images 

Below are some examples of images with extreme pose, expression and occlusion 

from the AFW, FDDB and COFW datasets, which show how accurate the proposed 

system is at unified facial detection and landmark localisation. 

7.5.1 AFW 
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7.5.2 FDDB 
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7.5.3 COFW 
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8 Conclusion 

This thesis proposes a novel approach to face detection and landmark localisation 

which is termed the Deformable Global Consensus Model (DGCM). DGCM is largely 

motivated by the efficiency and robustness of recent Cascaded Regression (CR) 

methodologies in facial alignment. But, whereas standard approaches use a face 

detector to initialise them, the proposed system of this thesis instead, utilises them in 

a parallel fashion, order to detect the location of faces in an arbitrary image. 

We report comparable performance to that of published state-of-the-art face detection 

algorithms, but as can be seen in Figure 7.2, Figure 7.4 and Figure 7.6 we also show 

that the proposed system also detects faces with a higher degree of accuracy. We 

also report significant improvement over the standard face detection/landmark 

localisation pipeline when performance is measured in terms of landmark localisation.  

We also demonstrate that real-time scanning of an arbitrary VGA image can be 

achieved as long as the face size is known in advance, Table 7.1. 

 

 

 

Figure 8.1: FDDB dataset. Example of low resolution missed faces. Yellow ellipses 
show faces that are detected, and red ellipses show faces that are not detected 

Even though the proposed system is more accurate than current state-of-the-art 

systems, it is still not without its problems. One of the main problems was that PO-CR 

was trained with just two high resolution models, one model for frontal and another for 

profile faces. As can be seen in Figure 8.1, this lead to a lot of missed detections in 

the FDDB dataset. Having a second low resolution model trained for both frontal and 

profile faces should rectify this problem.
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10 Appendix A 

There are two main API’s that can be used to program the GPU, they are CUDA by 

NVIDIA and the open computer language (OpenCL) which is owned by Apple and 

managed by the Khronos group. Khronos (2015) state that “OpenCL™ is the first 

open, royalty-free standard for cross-platform, parallel programming of modern 

processors found in personal computers, servers and handheld/embedded devices.” 

This means that OpenCL can not only be used on GPU’s by NVIDIA and AMD, it can 

also be used on all multi-core CPU’s, mobile GPU’s and Cell Broadband Engine (BE) 

processors. Whereas CUDA will only work on GPU’s that are made by NVIDIA, a 

complete list of GPU’s that CUDA is compatible with can be found at 

https://developer.NVIDIA.com/cuda-gpus. 

GPU 

Supplier 

Market share this 

quarter 

Market share last 

quarter 

Market share last 

year 

AMD 22.5% 24.0% 35.0% 

Matrox 0.00% 0.10% 0.10% 

NVIDIA 77.5% 76.0% 64.9% 

S3 0.00% 0.00% 0.00% 

Total 100% 100% 100% 

Table 10.1: Discrete graphics chip market share 2015 (Source: Jon Peddie Research, 
2015) 

If we compare the market for discrete GPU’s for desktop personal computers, Table 

10.1. We can see that according to analysts from Jon Peddie Research (2015) who 

are an industry research and consulting firm for graphics and multimedia, that the 

dominate vendor is NVIDIA with a market share of 77.5%. It can also be seen that the 

market share of AMD is in decline. 

Although OpenCL can run on a variety of GPU’s and CPU’s that are manufactured by 

different vendors, they all require a variety of different optimisations and extensions to 

fully support their different architectural features in order to maximise performance. 

Therefore, porting OpenCL code from one vendor to another is not a straight forward 

task. 

https://developer.nvidia.com/cuda-gpus


MCD11211426 John McDonagh    68  

  

 

10.1 CUDA and OpenCL Performance comparison 

A fair comparison between CUDA and OpenCL can only be achieved on an NVIDIA 

graphics card as CUDA is not compatible with any other vendor. But, this is not 

currently possible, as NVIDIA has not implemented OpenCL 2.0 into their driver set. It 

was reported by AnandTech (2015) that NVIDIA have only just recently added support 

for OpenCL 1.2 into their driver release, version 350.05 on April 2015. Therefore, this 

thesis will summarise the results of recent performance comparisons from peer 

reviewed published papers. 

Research undertaken by (Karimi et al, 2010) into the performance comparison 

between CUDA and OpenCL in data transfer to and from the GPU, kernel execution 

and end-to-end application running times, was done by implementing a Monte Carlo 

simulation of a quantum spin system with quantum bit (qubits) sizes ranging from 8 to 

128. This was accomplished using an NVIDIA GeForce GTX-260 GPU. To profile the 

application, they split it into six stages 

1. Setup GPU 

2. Read input 

3. Copy data to GPU 

4. Execute kernel on the GPU 

5. Copy data beck to the host 

6. Process returned data on CPU and output results 

Table 10.2 summarise of the results that they achieved and is broken down into 3 

parts. Kernel Running Time (step 4), Data Transfer Time (steps 3 and 5) and End-To-

End Running time (steps 1-6). 
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Qubits Kernel Running 

Time 

Data Transfer 

Time 

End-To-End Running 

Time 

CUDA OpenCL CUDA OpenCL CUDA OpenCL 

8 1.96 2.23 0.009 0.011 2.94 4.28 

16 3.85 4.73 0.015 0.023 5.39 7.45 

32 7.65 9.01 0.025 0.039 10.16 12.84 

48 13.68 19.80 0.061 0.086 17.75 26.69 

72 25.94 42.17 0.106 0.146 32.77 54.85 

96 61.10 71.99 0.215 0.294 76.24 92.97 

128 100.76 113.54 0.306 0.417 123.54 142.92 

Table 10.2: CUDA and OpenCL GPU kernel execution, data transfer and application 
running costs. All times are measured in seconds (Source: Karimi et al, 2010). 

Although CUDA and OpenCL where both executed with nearly identical code, it can 

be seen from Table 10.2 that CUDA’s kernel execution and data transfer times are 

consistently faster than OpenCL. They did not give any reasons as to why CUDA 

performed faster than OpenCL. 

Other research by (fang et al, 2011) also performed a comparison between CUDA and 

OpenCL using 16 different benchmark tests, ranging from synthetic to real-world 

applications. They ran all their experiments on the NVIDIA GTX280 and GTX480 GPU. 

For a unified comparison in performance between CUDA and OpenCL they used a 

normalised performance metric 

𝑃𝑅 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑂𝑝𝑒𝑛𝐶𝐿

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑒𝐶𝑈𝐷𝐴
 

 

Where 𝑃𝑅 < 1 then CUDA’s performance is considered to be better than OpenCL.  
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Figure 10.1: Unified performance comparison of selected benchmarks using NVIDIA’s 
GeForce GTX 280 and GTX480. It is assumed that CUDA and OpenCL have a similar 
performance if the result lies between 0.9 and 1.1 (Source: fang et al, 2011) 

As can be seen in Figure 10.1 initial tests show that CUDA performs up to 30% better 

than OpenCL. With the most notable difference being the fast Fourier transform (FFT) 

where CUDA’s performance was 5 times faster than OpenCL. The reason why CUDA 

out performed OpenCL according to (fang et al, 2011) is because of the differences 

between CUDA and OpenCL compilers provided by NVIDIA. They found that the PTX 

code generated by the CUDA compiler was better optimised. But, after optimising the 

OpenCL kernels they found that the differences in performance where mostly 

negligible. 

Recent research by (Bernabé et al, 2012), performed a comparison between CUDA 

and OpenCL by implementing a 3D Fast Wavelet Transform (3D-FWT), this was done 

using an NVIDIA Tesla™ C2050 GPU, which is based on the Fermi architecture. For 

their tests they split the algorithm down into 5 stages as can be seen in Table 10.3, 

and for each stage CUDA performed better than OpenCL. Particularly interesting is 

the huge difference in the transfer times to and from the GPU, where CUDA performed 

approximately two to five times faster than OpenCL.  
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3D-FWT 

Frame size 

512x512 1Kx1K 2Kx2K 

CUDA OpenCL CUDA OpenCL CUDA OpenCL 

1. CPU to GPU transfer 11.62 25.19 45.6 86.38 181.63 325.52 

2. 1D-FWT on frames 2.11 3.53 4.18 6.64 7.73 11.73 

3. 1D-FWT on rows 2.37 3.85 2.39 5.89 2.39 6.97 

4. 1D-FWT on cols 2.29 3.80 6.86 9.82 25.15 29.29 

5. GPU to CPU transfer 10.82 50.75 41.58 167.66 164.68 637.96 

Table 10.3: CUDA and OpenCL execution times for a tiled 3D-FWT implementation 
on an input video containing 64 frames of increasing sizes. All times are measured in 
milliseconds. (Source: Bernabé et al, 2012). 

The reason for this according to (Bernabé et al, 2012), is because OpenCL has a large 

environmental setup overhead, and that the huge discrepancy in transfer times is 

because OpenCL is designed for general compute devices. 

Other research conducted by (Komatsu et al, 2010) was done where they selected 

two programs from the NVIDIA GPU Computing SDK 3.0, a bandwidth test and matrix 

multiply, plus three CUDA programs from the parboil benchmark suite (The Impact 

Research Group, 2015), Coulombic Potential (CP), Magnetic Resonance Imaging Q 

(MRI-Q), and Magnetic Resonance Imaging FHD (MRI-FHD). They ported the CUDA 

code from these programs to OpenCL as faithfully as possible, by only changing 

syntax/API calls where needed. 

In their initial tests using a NVIDIA Tesla C1060 GPU. Figure 10.2, showed that CUDA 

ran all the algorithms several times faster than OpenCL, with the exception of the 

bandwidth test which was near identical in speed. 
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Figure 10.2: Initial benchmarks for CUDA and OpenCL, running near identical kernel 
code on an NVIDIA Tesla C1060 GPU. (Source: Komatsu et al. 2010) 

The reason why the bandwidth test was nearly identical is because only API calls 

where invoked to transfer data. Therefore, they suggested that the cost in invoking 

API calls in OpenCL is almost the same as for invoking them in CUDA. 

 

Figure 10.3: Performance of benchmarks after applying manual optimisations. 
(Source: Komatsu et al. 2010) 

They then investigated two ways to increase the speed of OpenCL, first they manually 

optimised the PTX code that was generated by the OpenCL compiler, and secondly 

they applied automatic optimisations to the compiler by enabling the “-cl-fast-relaxed-

math” option. The results of which can be seen in Figure 10.3. Which shows with the 

exception of CP the results are close, with CUDA been slightly faster. 

The reason according to (Komatsu et al, 2010) as to why the CP algorithm performs 

so badly in the automatically optimised compiler is because the intrinsic instruction 
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“rsqrt” was not utilised. They conclude that the perceived differences in performance 

is caused by the optimisation capabilities of the compilers. 

As OpenCL can be used on multiple GPU’s (Komatsu et al, 2010) also compared an 

AMD Radeon HD 5870 against the NVIDIA Tesla C1060 using the same tests as 

before. They concluded that although OpenCL works on various GPUs/CPU’s the 

code for each device will need to be further optimised to achieve maximum 

performance. 

10.2  Conclusion 

Although OpenCL has stronger cross platform support, and is nearly identical in 

performance compared to CUDA. In this thesis the preferred API that is to be used to 

implement the proposed system is CUDA. The reasons for this decision are because, 

(1) CUDA’s development and profiling tool sets are far more mature compared to 

OpenCL’s, (2) with the release of CUDA 7.0 the C++11 standard is fully supported by 

the nvcc compiler, (3) stronger documentation and on-line support, (4) NVIDIA 

currently dominate the market for desktop PCs. 


