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Abstract—Continuous respiratory monitoring is an important tool for clinical monitoring. The most widely used flow measure 

device is nasal cannulae connected to a pressure transducer. However, most of these devices are not easy to carry and continue 

working in uncontrolled environments is also a problem. For portable breathing equipment, due to the volume limit, the pressure 

signals acquired by using the airway tube may be too weak and contain some noisy, leading to huge errors in respiratory flow 

measures. In this paper, a cost-effective portable pressure sensor based respiratory measure device is designed. This device has 

a new airway tube design, which enables the pressure drop efficiently after the air flowing through the airway tube. Also, a new 

back propagation (BP) neural network based algorithm is proposed to stablise the device calibration and remove pressure signal 

nosie. For improving the reability and accuracy of proposed respiratory device, a through experimental evaluation and a case 

study of proposed BP neural network algorithm have been carried out. The results show that giving proper parameters setting, 

the proposed BP neural network algorithm is capable of efficiently improving the reliability of new designed respiratory device.         

Index Terms—Respiratory monitoring, mainstream, airway flow, respiratory tube, BP neural network 

——————————      —————————— 

1 INTRODUCTION  

ESPIRATION is an important physiological process 
which can maintain the vital signs of people stability. 

Respiratory diseases, such as asthma, chronic rhinosinusi-
tis, bronchiectasis and obstructive sleep apnea, are widely 
prevalent all around the world. According to the survey 
from WHO [1] in 2016, over 235 million people suffer from 
asthma and over 3 million people die each year from 
chronic obstructive pulmonary disease (COPD). To effec-
tively and accurately assess cardiorespiratory functions, 
respiratory monitoring is a key component during the ad-
ministration of respiratory diseases and intensive care unit 
[2-4].  
    Various techiniques have been used to measure respira-
tory flow by now, which can be categoried as two ways: 
direct-mode [5-6] and indirect mode [12-14]. The direct 
way of measuring respiratory flow is typically achieved by 
utilising respirometry devices for monitoring airflow, in-
cluding pneumotachorgraph, heated thermistor, anemom-
etry or nasal cannulae connected to a pressure sensor [5]. 
For instance, we have made some progress in the CO2 con-
centration detected based on the NDIR technology [7-9] 
and the accuracy of CO2 concentration monitoring device 

with pyroelectric sensor can be up to 0.23 mmHg [10-11]. 
Due to the advantage of direct connection and close meas-
ure to the patient airway, these devices are able to accu-
rately measure people’s pulmonary function and further 
precisely deliver monitoring their respiratory flow. But 
this method is easy to cause the respiratory pipeline to be 
polluted, so the precision of the measurement is affected. 
The indirect way of monitoring respiratory flow can rely 
on detecting chest or abdomincal movements using respir-
atory inductance plethysmography (RIP), strain usages or 
magnetometers [12-14]. In comparison with direct-mode, 
due to ease of attachment and comfort, indirect approaches 
are more suitable to continuous respiratory monitoring in 
clinics. However, it is limited by its relatively low accuracy 
and slow responses to patients. Considering that accuracy 
is top priority of most respiratory monitoring systems, in 
this article we chose direct way of measuring respiratory.  

For direct-mode approaches, they require the systems to 
pay great attention to accuracy, calibration, repeatability, 
and precision for strict laboratory measurements. The most 
widely used flow measuring device is nasal cannulae con-
nected to a pressure transducer. The operation principle of 
pressure sensors for measuring respiratory flow is that the 
volume flow can be measured by the pressure drop via a 
flow element, which involves sensing a flow-induced dif-
ferential pressure. The Philips-Respironic family [15] has 
made some early attempts on adding pressure-sensing 
ports on both the proximal and distal sides of the optical 
window in a mainsteam CO2 cuvette. For daily use, due to 
the pursuit of the device’s accuracy, the portability of the 
breathing machine is greatly decreased so it is not easy to 
carry, and needs higher requirements for the environment, 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

R 

———————————————————————————————— 

D. Fan and J. Yang are with the School of Electronic and Infor- 
mation Engineering, Tianjin university, Tianjin, 30072, China (e-mail: 
f5202956@tju.edu.cn; yangjiachen@tju.edu.cn). 

Haojun Huang is with the School of Electronic Information, Wuhan 

University, Wuhan, 430072, China.(email:hhj0704@163.com) 

   Zhihan Lv is with the SIAT, Chinese Academy of Science, Shenzhen, 

518055, China.(email:lvzhihan@gmail.com) 

Po. Yang and J. Qi are with Department of Computer Science, Liv-

erpool John Moores University, Liverpool, UK. E-mail: 

p.yang@ljmu.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/80684213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yangjiachen@tju.edu.cn


2 IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 

 

so the research on a small volume, simple power suppied 
mode and the device which can adapt to various environ-
mental respiration monitoring are very necessary. 

In this paper, we proposed a pressure sensor based 
measuring device which combines the designed airway 
tube with breathing circuits. In order to accurately monitor 
the physical condition of patients, we designed a device 
which combines the respiratory tube with the breathing 
circuit. Our system uses piezoresistive silicon sensor to 
measure airway flow [16]. Considering some issues may 
affect the accuracy of our experimental results, we adopted 
mainstream airway adapter to make the results in real-time 
and with higher fidelity. Accurate sensor and stable cir-
cuits are chosen to enhance the accuracy of our experi-
mental results. The mainstream device can be used for 
monitoring the respiratory flow in patient care, anesthesia, 
and transport. By confirming the device can produce stable 
signals, we carried out targeted experiments depending on 
the proposed device. On the basis of analyzing the experi-
ment data, we proposed the algorithm which is based on 
the back propagation (BP) neural network, and BP neural 
network model is also established. We carried out targeted 
experiments by using the proposed device and confirmed 
that the device was reliable. The main contributions of this 
paper are below:  
1. A cost-effective portable pressure sensor based respir-

atory measureing device is designed. This device has 
a new airway tube design, which enables that the pres-
sure drop can efficiently emerge after the air flowing 
through the airway tube.  

2. A new back propagation (BP) neural network based 
algorithm is proposed to stablise the device calibration 
and remove pressure signal nosie, for improving the 
reability and accuracy of proposed respiratory device.  

3. A through experimental evaluation and a case study 
of proposed BP neural network algorithm have been 
carried out. The results show that giving a proper pa-
rameters setting, the proposed BP neural network al-
gorithm is capable of efficiently improving the relia-
bility of new designed respiratory device.  

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the related work to respiratory flow 
measurement. Section 3 presents the detailed design of de-
vice and method and analysis of calibiration and testing. 
Section 4 describes the experimental analysis and compar-
isons, and Section 5 concludes the paper.  

2 RELATED WORK 

2.1 Mainsteam differential pressure flow sensors   

Given the portability and the requirement of clinical res-
piratory monitoring, the most widely used flow measure-
ment devices are the Fleisch or Lilly-type differential pres-
sure pneumotach [17-18] with a heated microtube or screen 
orifice. For enabling faster signal response and precise time 
alignment between the flow and gas concentration signal, 
these pressure sensor based respiratory devices are main-
stream, located directly on the patient’s endotracheal tube.  
    The measurement of airway flow is based on the method 
of measuring differential pressures between two pressure 

ports which are placed on the airway tube. The Bernoulli 
law is used to determine flow based on the differential 
pressure:  
 

1

2
𝜌𝜈𝐴

2 + 𝜌𝐴 =  
1

2
𝜌𝜈𝐵

2 + 𝜌𝐵                   (1)  

 
Where ρ is the density of air, 𝑣𝐴 and 𝑣𝐵 are the velocities of 
the airflow at the two different ports, 𝜌𝐴   and 𝜌𝐵  are the 
magnitude of the pressure [18].  

Usually, it is quite simple and precise for the monitoring 
of airway flow by measuring the differential pressure. 
However, a common problem in many cases is that the 
pressure signals acquired by using the airway tube may be 
too weak and contain some noise, further leading to huge 
errors in respiratory flow measures. The acquisition of 
pressure signals has a strong relationship with the airway 
tube [30]. As such, the airway tube is the basis of the sys-
tem to acquire pressure signals, the structure of airway 
tube must be taken into consideration and a reasonable 
pipeline directly affects the accuracy of measurement re-
sults.  

 
2.2 Artificial neural networks   

Due to huge uncertainty and noise of sensor signals in res-
piratory flow measures, it is indispensable to employ some 
advance algorithms to improve the classification of respir-
atory states. For respiratory states estimation, many ANN 
based classification methods have been proposed to deal 
with various type of sensing signals, for instance, ANN 
with multilayer perceptron [19], Fuzzy logic with Fuzzy 
Knowledge Base Controller (FKBC) [19], Black propaga-
tion neural networks (BPNN) [20], K-Nearest Neighbour 
(KNN) supervised learning classifer and Support Vector 
Machine (SVM) [21]. Owning to the capability to solve 
nonlinearly separable problems and the flexibility to im-
plement on-chip processor, Artifical Neural Networks 
(ANN) [19-20] are frequently used for classification. The 
conventional ANN can achieve the indispensable conver-
sion and clustering operations routinely and concurrently.  

In this work, BP neural network (BPNN) algorithm [22-
23] are investigated as a potential way for enhancing the 
efficiency and accuracy of respiratory flow meausres. BP 
neural network has many advantages, such as that it has 
the characteristics of self-learning and it is adaptive. More-
over, BP neural network has robustness and generalization 
which makes it widely used in many fields [24-25], such as 
function approximation, pattern recognition, image pro-
cessing, forecasting and other fields. The basic principle of 
the neural network is to put input vector (provided by the 
training sample data) through a series of hidden layers [26] 
and then it will build the relationship between input and 
output data. The forward transmission of input data and 
the reverse transmission of output error data form the in-
formation cycle of BP neural network. BP algorithm modi-
fies the connection weights of neurons on the basis of out-
put error data. The purpose is to make output error data to 
reach an expected range. Hebb learning rule [27] and Delta 
learning rule are the two very classic learning rules for 
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neural network learning.  

3 METHOD 

3.1 Design of the mainstream device  

Given the portability and the requirement of clinical res-
piratory monitoring, the mainstream device has been de-
signed with three functional modules (see Fig.1).  

 

Fig. 1.  Structure of mainstream device 

The pressure sensor is a piezoresistive silicon sensor in 
which the piezoresistors are arranged in the Wheatstone 
bridge configuration to achieve higher voltage sensitivity 
and low temperature sensitivity [28]. Since the signals 
which are acquired from the sensor may be too weak and 
noisy, a band-pass filter amplifying circuit is designed to 
intensify pressure signals and filter the noise [29].  

In general, in this device, sampling and amplifying cir-
cuits are integrated in the same module, and the system 
can directly filter on the lower position machine. The de-
sign helps to improve the portability of the device and high 
integrate of the system to reduce the external circuit inter-
ference which can generate electromagnetic wave of the 
signal. At the same time, the two modules are independent 
power supplied to improve the anti-interference perfor-
mance. So the device is more concise, stronger anti-inter-
ference compared to the similar equipment. 

The design of this device has also considered other en-
vironmental issues’ impacts. First, regarding the influence 
of temperature on respiratory equipment accuracy, the de-
vice we designed will be used in normal daily environmen-
tal temperature conditions. So a cost-effective silicon pie-
zoresistive pressure sensor MS4515 with temperature com-
pensation circuit is chosen to be integrated in this device. 
The operating temperature range of this sensor is between 
0 to 60 degrees. In comparing with common pressure sen-
sors, our device has the feedback circuit with temperature 
compensation, and the pressure curve is calibrated after 
compensating. Also, the analog signal in our device is con-
verted by alternating current AD and direct current DA. 
The second issue is the effect of humidity on the precision 
of the sensor. Some initial experiments are carried out to 
evaluate the change of humidity impacting on the carrier 
signal of AC component and DC component. The experi-
mental results show that humidity change mainly affects 
the strength of AC component; and the airflow intensity 

change mainly causes the oscillation of the DC component. 
Therefore, we have used 3D printing technology to make 
the pipeline replaceable, so it is simply and conveniently 
for users to replace the pipeline, which is seriously pol-
luted. Finally, in order to reduce the effects of the foreign 
body produced when breathing we added filter screen at 
the front of the pressure ports. In order to reduce the influ-
ence of the breathing precision, we calibrated every pipe-
line after installing filter screen, and saved the calibrated 
parameters. 

3.2 Design of BP neural network model   

When we collected the output data of the sensor, we 
found that the data were a set of discrete voltage values; 
and as our device is portable, its performance will be re-
duced compared with the professional equipment, so if we 
want to make use of these data for further processing, we 
must select appropriate algorithm to make up for declining 
accuracy caused by simple hardware equipment, and 
make the results closer to the actual testing result.  

Usually, interpolation method can fit the data of the sen-
sor [30] or the least square method [31-32]. During the ex-
periment, the application of interpolation fitting requires 
the fitting curve through all the points, but our portable 
equipment is not high precision as professional equip-
ment, so the fitting accuracy and resolution of the original 
data are not up to the requirements of professional equip-
ment. If the interpolation method is used to fit the curve, 
the curve will appear a very obvious inflection point, 
which makes the flow in some specific appear relatively 
large error. Using the least square method will also appear 
such a situation. Because the least square method is re-
stricted by the function, so sometimes it will not exactly fit 
the desired function. It requires applying a more profes-
sional fitting algorithm to achieve the results of fitting and 
make the equipment to achieve the best response to the 
change of the weak airflow. 

Also for the universal ventilator sensors, the typical range 

of the fitting is between 0 and 1 psi, the sampling points in this 

range can satisfy the condition of least squares fitting. But in 

some places where the air changes are relatively large so the 
application of piecewise least square method will have a steep 

line, which leads to inaccurate measurement results. Even 

worse, in the actual measurement process, we found that the 

maximum pressure generated by breathing is far less than the 

1psi. In this experiment, we selected 2inH2O as the maximum 

range of the sensor. It is proved that this measurement range 
can well meet the needs of the measurement, the decrease of 

the measurement range of the sensor can shorten the sampling 

accuracy of the least square method to increase the further er-

ror. 

The specific function of the network topology does not 
restrict BP neural network, it is simple, and has high accu-
racy, and it has strong maneuverability, so we selected BP 
neural network as fitting function to fit the data. In this pa-
per BP neural network model is designed as a three layers 
network (see Fig.2), which includes input  
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Fig. 2.  Three layers BP neural network 

layer, output layer and hidden layer. When the actual out-
put data are not in conformity with the expected output 
data, the algorithm turns to transmit in the opposite direc-
tion, from the output layer to the hidden Layer then to the 
input layer and corrects weights and thresholds of each 
layer according to the predictive error gradient. In this 
work, the selected excitation function is hyperbolic tangent 

sigmoid transfer function; the training function is trainlm 

training function. 
 

3.3 Analysis of the airway tube 

    Considering that the mainstream device must be porta-

ble and real-time, so it is designed by combining airway 

tube with breathing circuits. The airway flow is monitored 

by sampling pressure, which has a strong relationship with 

the airway tube. The main consideration of the airway tube 

design is that the pressure drop can emerge after the air 

flowing through the airway tube. The design of airway 

tube is based on the Bernoulli law and the continuity law:  

𝜌𝑠𝐴𝜐𝐴 =  𝜌𝑠𝐵𝜐𝐵 = 𝑚        (2) 

where sA and sB are the cross sectional area, ρ is the density 

of air, vA and vB represent the velocity of the two ports, m 

is the mass of the airflow.  

    According to the equation 1 and equation 2, we can cal-

culate the pressure drop ∆p:  

∆𝑝 = 𝜌 ∗  
𝑠𝐴

2 − 𝑠𝐵
2

2𝑠𝐴
2𝑠𝐵

2 ∗ 𝑄2        (3) 

where Q is the volume flow.  
Therefore, we should know the pressure drop and 

then we can calculate the respiratory flow.  
In our previous study [9-11], a mesh generator (Gam-

bit) was used to design a computational fluid dynamics 
mesh of the airway adapter and a computational fluid dy-
namics solver (Fluent) was used to simulate the computa-
tional model. But in application, we utilize this mesh gen-
erator method to give an initial experimental evaluation of 

potential pressure ports position, with an approximate 
range. And then, we adapt control variable methods to 
practically evaluate the best position during experiments. 
This is a calibration procedure to determine the final posi-
tion of the pressure hole and make the difference of the 
pressure reach the maximum.  

In order to obtain the pressure signal, the key point 
lies in the design of airway tube. And pressure ports and 
throttling device are hardly to generate the pressure drop 
with high accuracy. Pressure signals are acquired from 
pressure ports and the pressure drop forms before and af-
ter throttling device. Then we need to select the appropri-
ate location of the pressure ports and the throttling device. 
In response to this, several different design solutions of air-
way tube are designed as shown in Fig.3.  

  
(a) Design (1) of location of the pressure ports 

 

(b) Design (2) of location of the pressure ports 

Fig. 3.  Different settings of pressure ports and throttling device 

In Fig.3, the numbers represent the locations of pressure 
ports before and after throttling device, and letters repre-
sent the different locations of the throttling device. Then 
we tested the relationship by using these designed airway 
tubes. Finally, we chose the appropriate airway tube for 
the mainstream device. 

3.4 Analysis of calibration 

The typical calibration techniques are important to remove 
the noisy raised from the positions of differential pressure 
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sensors. In this research work, we have taken some actions 
in designing the pipeline and the position of pressure sen-
sors instead of utilizing traditional algorithm calibration 
procedures.  The focus of this work is to investigate the fea-
sibility of using neural network algorithm in improving 
the measures of a cost-effective wearable device. We as-
sume the output data of BP neural network are a vector 
which is J in length. The actual output of the network is:   

𝑌(𝑛) =  [𝜐𝑗
1, 𝜐𝑗

2, … , 𝜐𝑗
𝐽
]                             (4)        

where 𝜐 represents the output data. 
The expected output of the network is:  

𝑑(𝑛) =  [𝑑1, 𝑑2, … , 𝑑𝐽]                             (5)        

where 𝑛 is iterations. 
 The iterative error signal is defined as:  

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛)                        (6)        

The error energy is defined as:  

𝑒(𝑛) =
1

2
 ∑ 𝑒𝑗

2(𝑛)
𝐽
𝑗=1                       (7)        

    Then we can represent the implementation steps in the 
form of the flow chart (see Fig.4).  

 
Fig. 4.  Process of BP neural network 

For fitting the function curve of voltage and flow rate ac-
curately, it is very important to select the appropriate exci-
tation function and training function. In this paper, we 
chose sigmoid function as the excitation function, and use 
Levenberg-Marquardt (LM) algorithm to train.  

1) Excitation function: The excitation is defined as: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =  
2

𝑒−2𝑛
− 1 (−1 < 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) < 1)         (8) 

 
The output of the function ranges from -1 to 1 as shown in 
Fig.5.  

2) Training function: we chose Levenberg-Marquardt 
(LM) algorithm to train data. LM algorithm is a kind of fast 
algorithm which uses the standard numerical optimiza-
tion, and it is the combination of the gradient descent and 
Gauss-Newton method. LM algorithm not only has the lo-
cal convergence of Gauss-Newton method, but also has the 
global character of the gradient descent method.  

 
Fig. 5.  Function of Tan-sigmoid 

LM algorithm uses the information of two-order deriva-
tive, so it is much faster than the gradient descent method. 

The vetor of weights and thresholds is:  

𝑥 = [𝜔𝑖ℎ(1,1) … 𝜔𝑖ℎ(ℎ, 𝑖), 𝑏ℎ(1) … 𝑏ℎ(ℎ)𝜔ℎ𝑜(1,1) … 𝑏𝑜(0)]𝑇    

                                                                                         (9) 

So the vector which is composed by updated weights and 
thresholds is:  

𝑥(𝑘 + 1) = 𝑥(𝑘) +  Δ𝑥                      (10)    

Where Δ𝑥 indicates the change of weights and threshold. 
LM algorithm is the improved algorithm of the Newton-
Gauss method which is defined as:  

Δ𝑥 = −[𝐽𝑇(𝑥)𝐽(𝑥) + 𝜇𝐼]−1𝐽𝑇(𝑥)𝑒                    (11)    

Where 𝐽(𝑥) is Jacobian matrix, u is damping coefficient, I is 
unit matrix.  
   LM algorithm is similar to gradient descent method, after 
each iterating, reduces the value of coverages. So when the 
algorithm is close to the target error, it is gradually close to 
Gauss-Newton method.  
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   LM algorithm is an efficient algorithm whose basic idea 
of the iterative process allows the error search along the 
direction of deterioration. At the same time, in order to 
achieve the purpose of optimizing the network weights 
and thresholds, we adopted gradient descent method and 
adaptive adjustment method, which can make the network 
convergence and improve the generalization ability and 
convergence speed of the network. 

4 RESULTS AND DISCUSSION 

4.1 Design of the airway tube 

Using the airway tubes made by different design solutions, 
we began to do experiments. After 1 min of warming up 
while the system was powered on, we passed into air at 
one velocity. We collected the data from the system for 
1min after the airflow stabilizing. And then we passed dif-
ferent velocities of air and did the same experiments by us-

ing the same airway tube. We have added the analysis of dif-

ferent velocity values in the section 4.4 Table II and Table III. 

In section 4.1, it only shows an initial experimental estimation 

for observing the performance of the different pressures of the 

pipeline.  

Secondly, we verified the relationship between signals 
and the location of pressure ports and the throttling device. 
On the basis of simulation experiments, we have made differ-

ent types of pipelines. We selected different airway tubes to 
do the experiment and finally we chose the reasonable 
scheme which had the most significant effect of differential 
pressure to design the airway tube. After repeated experi-
ments and combined with simulation results, we finally 
determined the outer diameter of the pipeline is 16mm, the 
internal diameter is 12mm, the length of the pipeline is 
80mm, the pressure hole diameter is 4mm, the two-pres-
sure hole center distance is 18mm. 

While measuring the exhaled gas flow, the control vari-
able method was used to eliminate the interference. We 
just changed the velocities of airflow without any other 
changes. For our simulation, we simulated natural breath-
ing. By changing the flow varying from 0L/min to 
60L/min, we gathered data from both channels of the pres-
sure transducer. Fig.6 shows the changing trends when 
sampling from each pressure port. As the Bernoulli law de-
scribes, when air flows through the throttling device, the 
airflow slows down and the pressure sampling from the 
proximal port increases (see Fig.6 (a)). 

After the airflow passes through the throttling device, 
the pressure on the distal decreases (see Fig.6 (b)). With re-
peated experiments using the airway tube, the desired re-
sults were achieved which suggested that the new airway 
tube that we selected can be used to accurately monitor air-
way flow. According to these designs, the structure of air-
way tube is designed by mechanical drawing software (see 
Fig.7). 

In Fig.7, A represents the improvement of pressure ports 
and filter screen is set to avoid the interference caused by 
condensed water and patient secretions. B represents the 
chamfer edge of the throttling device, turbulence will be 
caused when the airflow gets to the right-angle tube wall. 
In consideration of this case, so we changed the edge of the 

throttling device. We set the chamfer edge of the throttling 
device, which can make the airflow a smooth transition so 
as to avoid turbulence. And next we manufactured the 
tube adopting photosensitive resin material that can form 
a smooth surface through 3D print technology.  

 
 

 

 
Fig. 6.  Relationship between flow and voltage. 

 

 

Fig. 7.  Structure of airway tube 

After the design of the airway tube, we can acquire pres-
sure signals sampling from the airway tube by combining 
with breathing circuits. However, if the pressure signals 
are too weak, it will have an impact on our results. In ad-
dition to the design of airway tube, the amplifier circuit can 
also be used for intensifying the pressure signals. By com-
parison, we chose the chip AD8619 and designed the am-
plifier circuit. In order to acquire better signals, the signals 
produced by the transducer are filtered through adding 
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the bypass capacitor. The calibration of pressure trans-
ducer is one major problem in our study. According to the 
Bernoulli law, the airway flow is in a tightly correlated ex-
ponential relation with the pressure drop. However, 
though the experimental results followed this pattern, the 
mainstream device still contains considerable error that the 
pressure signals may drift. And the signal drift will de-
crease the accuracy of the mainstream device. Therefore, 
we only acquired the differential pressure directly between 
the two pressure ports, after which the differential pres-
sure singles were converted to voltage values (see Fig.8).  

 

Fig. 8. Airway tube and breathing circuits 

4.2 Calibration and testing 

Normally, each ventilator needs a calibration before use. In 
previous studies, we have designed and experimented dif-
ferent types of ventilators for children, adults, and the el-
derly. The results show that while the ventilator models 
can be different, their calibration curves are slightly differ-
ent. It implies that the choices of different calibration meth-
ods have no apparent impact on the errors of fitting curves. 
In this work, we are currently designing a software for au-
tomatic calibration of the curve. The standard flow meter 
is used for calibration. 
    The experiment focused on the data of 60 groups, with 
flow changing from 1L/min to 60L/min slowly at the in-
terval of 1L/min to collect the corresponding voltage val-
ues. The flow data were divided into two groups, the odd 
numbers of the flow data were trained and the dual num-
bers of the flow data were tested. 

After training, we inputted testing data to the neural net-
work to describe the shape of the fitting curve and calcu-
late the accuracy index. The neural network used in this 
calibration consists of two layers, the hidden layer and the 
output layer. As the design, the hidden layer contains 20 
neurons. The iterations are 6 times, and the time is 1s. 
When the iterations reach 6 times, the value of the gradient 
is 0.00496. Fig.9 expresses the fitting degree between both 
of the training and testing data and the real output data. 
With the increasing of iterations, the minimum mean 
square error is declining, which is less than when iterations 
reach 6 times. Then it will stop learning, the specific curves 
will finally get. 

 

Fig. 9. Predictive and actual data 

Fig.10 shows the condition of the network during the 
learning process. We can see the specific gradient change 
of LM algorithm with the increase of iterations directly. 
Mu is the mean of normal distribution, which is similar to 
error.With the increase of iterations, if the error value in-
creases, then the mu value will increase accordingly, so 
when the value of mu is too large, the learning process 
should be stopped.  

 

Fig. 10. Condition of the network 

    Fig.11 shows the output data which are acquired after 
BP neural network training and from the experiment re-
spectively. We can observe the error directly. The distance 
between the majority of the output data and the actual out-
put data is short, only a small numbers of data happen to 
jump. The trend of fitting curve will not be affected and the 
relationship between the flow rate and the voltage will be 
reflected by the trend of the curve. So we can conclude that 
the training of the neural network is accurate.  
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Fig. 11. Predictive and actual data 

However, a noticeable issue is that the data in Fig.11 we 
collected can be fitted by traditional calibration methods 
like least square method in the literature [31-32]. It is be-
cause these data in Fig.11 are mainly collected from a con-
trollable lab environment, not from practically uncontrol-
lable environments. The advantages of proposed BP neural 
network over traditional least square methods on accuracy 
have been not fully reflected with these data set. However, 
the device of our developed in this paper is a low-cost 
wearable equipment for uncontrollable environments. It 
means that the data from practical application may be 
more sensitive and noisy. The utilisation of BP neural net-
work has some advantages over traditional calibration 
methods in these cases. In the future work, we will take 
more experiments on real applications and validate the 
proposed BP methods. 

Regarding the measure of overall accuracy of the data of 
60 groups, we use RMSE (Root Mean Square Error) and RE 
(Range of Error), Absolute Error (AE) to measure the pre-
dicted voltage data over 60 gourps with both our proposed 
BP neural network method and traditional least square 
method [31]. The results are shown in Table.I. It could re-
flect that the over all accuracy performance of our method 
can reach the same level to the state-of-the-art least square 
fitting method. Also, we have calculated the absolute error 
and percentage of error and plotted them in the Fig.12 and 
13.  

Table.I RMSE and RE arrange of predicted voltage. 

Accuracy  Proposed 

Algorithm 

Least Square 

method [51] 

RMSE (V) 0.061 0.059 

RE (V) (-0.17, 0.12) (-0.19, 0.13) 

AE (V) 0.759 0.736 

    
From Fig.12 we can see that in BP neural network, alt-
hough the training output data have a relatively large error 
in individual data, but the fluctuation of training error is 
very small. Finally we got the absolute error 0.7594, this 
figure is very intuitive to show the overall accuracy of neu-

ral network training. Fig.13 shows the percentage of the er-
ror between the testing output and the actual output data 
after BP neural network processing for 30 sets of testing 
data. The mathematical formula is defined as: 

𝑚−𝑛

𝑚
                        (12) 

where m is the testing output data and n is the actual out-
put data. From Fig.13 we can directly infer that the result 
is corresponded with Fig.12. They both produce large error 
in 4L/min, 12L/min and 40L/min. But it only happens in 
the very few data, and it can’t affect the good fitting func-
tion of our neural network. 
 
4.3 The parameter of BP neural network 

For LM algorithm, the parameters that need to be consid-
ered are the hidden layers, threshold, learning step and 
maximum iterations. 
1) The number of the hidden layers: We select the hidden layer 
as 5 layers, 50 layers to record the output results in order 
to analyze and to compare. When the number of layers is 
selected as 5, the iterations of the neural network are more 
than 20 times, and sometimes are about 30 times, so we can 
judge that the fitting effect is not ideal. When the number 

 

Fig. 12. AB error of BP neural network 

 

Fig. 13. Error percentage of BP neural network 

of layers is 50, the iterations are 3 times, it is satisfactory, 
but the absolute average value error of BP neural network 
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is 8.9315(see Fig.14), and the value cannot reach a steady 
state. When the number of hidden layer is 20, the iterations 
can reach the ideal requirement, and the output error is 
0.7594, which means that the neural network expresses a 

good performance. Indeed, there are some significant errors 

in Fig.12, however, it is because the flow is unstable and eas-

ily affected by many minor factors in practical environment. 

It is inevitable to remove these errors from device completely 

in real cases. 

 

Fig. 14. AE error of BP neural network with 3 iterations 

2) The selection of the threshold: The neural network can 
change the threshold so as to make the fitting better. But 
taking the smaller the threshold into account, the larger the 
iterations required. Therefore, the choice of the threshold 
is based on the actual situation to judge. When the thresh-
old is 4*10−6, the iterations are 6 times and the Sum of ab-
solute value of the testing output data error is 0.7594. And 
when the threshold is 4*10−7, the iterations are 18 times 
and the Sum of absolute value of the testing output data 
error is 0.4266. When the threshold is 4*10−8, the number 
is 34 and 0.2395 respectively. Finally, combining with the 
iterations, the selected threshold is 4*10−6. 

3) The selection of the learning step: In this experiment, we 
chose different steps, and then chose the best learning step 
according to the results. We found that the Sum of the ab-
solute value of testing output error data was 0.7594 when 
the learning step size was 0.01. Comparing with 2.2351 
when the learning step was 0.2 and 1.4325 when the learn-
ing step was 0.1, we could easily judge that the most suita-
ble step size was 0.01 and then concluded that the Sum of 
the absolute value of output error became larger and larger 
with the step size increasing, which indicates that the fit-
ting process was getting worse and worse. In practice, the 
smaller the learning step size is, the more iterations re-
quired to build a neural network, and the longer time it 
will take, so the result is relatively better. If the learning 
step is longer, the result of the neural network will be 
worse, and the number of iterations will be less. To sum 
up, we select the learning step as 0.01.  

4.4 Analysis of experiment results 

In this experiment, we sat the temperature as 23±5◦C, 
the relative humidity t <=2% and kept the Environmental 

stability, we randomly selected a volunteer for the respira-
tion experiment. The volunteer wore breathing masks 

(BMC-FM) which connected to our device through hose, the 

sensor collected respiratory pressure then converted the dif-

ferential pressure into analog voltage signal. The slave com-

puter sended the analog signal to the host computer through 

the serial port. Firstly, we filtered the received data to make 
them stable, to improve the sensitivity of the device, we sat 
the 12-sampling data as a circular queue, every time we re-
ceived a new data we putted it into the tail of the queue, 
and then threw away the first data of the queue, each out-
put data was always the current arithmetic average of the 
12 data in the queue.  After data filtering we got the trend 
of the breathing which was calculating by the BP neural 
network Fitting function.   

In order to determine the effect of the filtering, we 
putted the data which were directly received by the serial 
port into the BP neural network Fitting function to get the 
trend of the breathing, and then we saw the outcome from 
Fig.15. From Fig.15 we could see that the jumping of data 
significantly decreased after flitering. 

Then we evaluated the accuracy and uncertainty of the 
system by doing experiments.we chose 6 different flows in 
this environment and for each flow we did experiment for 
10 times. We calculated the mean value and standard de-
viation by the formula (see TABLE II): 

𝑆 =  
1

𝜐
√

∑ (𝑉𝑖 −  𝜐)10
𝑖=1

10 − 1
                         (13) 

where S is standard deviation, V and v is sample data and 
mean value.  

Then we changed BP network filtering function to the least 
square method to fit the function of the received signal, re-
peat the above experiment to obtain data (see TABLE.III).  

Table.II Exmperimatal data analysis with our proposed 
BP neural network method. 

Voltage 

Signals(L/Min) 

Mean Standard 

Deviation 

RMSE 

10 10.51 0.054 0.059 

15 15.36 0.023 0.026 

20 20.52 0.068 0.066 

25 25.34 0.052 0.051 

30 30.33 0.034 0.036 

35 35.17 0.008 0.009 

Table.III Exmperimatal data analysis with traditional 
least square method [31]. 

Voltage 

Signals(L/Min) 

Mean Standard 

Deviation 

RMSE 

10 11.68 0.076 0.081 

15 15.36 0.023 0.025 

20 22.50 0.084 0.086 

25 26.42 0.074 0.073 

30 31.71 0.254 0.262 

35 36.52 0.039 0.041 
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Fig. 15. Respiratory data curve 

From Table II and III, it appears that with using our pro-

posed BP neural network method and the traditional least 

square method [31], the standard deviation and RMSE will 

gradually decrease as the increment of voltage signals. But 

our proposed methods have lower standard deviation and 

RMSE than least square method [31]. When the voltage sig-

nals are within low input, this difference is not apparent; 

but when the voltage signals are outputted within high 

value, our method performs better accuracy than least 

square method. It means that the proposed neural network 

fitting function is capable of making the equipment more 

stable. Through the above analysis, we got the conclusion 

that the appropriate filter ing and fitting algorithm could 

effectively improve the performance of the device. Finally, 

we examined the continuity and accuracy of the real-time 
application of the device. We randomly selected an adult 
in the same respiration experiment and showed his breath-
ing data which was dynamically displayed on the host 
computer (See Fig.16). 

 

Fig. 16. The result of the master computer  

Through the display of the respiratory waveform of the 
host computer and combined with the previous experi-
ments, we could clearly infer that the waveform is conti-
numm and accurate, the respiratory parameters of the 
tested person can be measured effectively. Comparing 
with the parameters of the breathing machine at home and 
abroad and through the verification of the clinical experi-
ment, we could prove that our device can meet the require-
ments of accuracy and uncertainty. 

5. DISCUSSION AND FUTURE WORK 

The experiments show that although the processing 
speed of the neural network algorithm is slower than the 
simple method of fitting, but taking into account of the 
practicality and accuracy of the device, we improved the 
design of the pipeline and the filter algorithm of the host 
computer and slave computer to make sure the data are 
suitable for the algorithm. At the same time as the respira-
tory frequency of human is slow, so the speed of the sensor 
data update is relatively slow too, so the processing speed 
of the computer is not particularly high, this makes us pay 
more attention in the design of the algorithm on the pro-
cessing accuracy rather than processing speed. The most 
important reason is that because of the instability of the 
respiratory data so it is difficult to use specific formula to 
express, which requires us to look for a simple network to-
pology, but also has high accuracy, and it is easy to imple-
ment and has strong operability. In the process of training, 
we only considered the hidden layer, learning step size, the 
maximum number of iterations and threshold, in the fu-
ture experiments, we should consider more parameters, 
and enhanced the reliability of the equipment in the fur-
ther experiments. Finally considering the temperature and 
humidity effects on the experimental results, in the future 
research, we should not only improve the hardware, but 
also consider improving the software to reduce the cost of 
the equipment. 

In addition, the design of circuit schematic and PCB lay-
out is indeed an important component of this wearable de-
vices. However, the key contribution of this article will 
mainly the effect of the BP neural network algorithm on 
the accuracy of the respirator and the perfection of the 
pipeline; the algorithm is also suitable for other similar 
principles. So, we did not address the detailed information 
about hardware design in this article, and rely on our pre-
vious work of designing hardware device in [10-11]. The 
involvement of human subjects including respiratory re-
lated diseases in further experiment is also very important 
to verify the efficiency of proposed method. However, in 
practice, due to the ethical and safety issues, it is very dif-
ficult to invite more patients to verify the proposed method 
in uncontrolled environment. At present, our volunteers 
are healthy adults who are randomly selected in our uni-
versity. Hence, the main effect of this paper is to demon-
strate the feasibility of applying an BP neural network al-
gorithm and pipeline for improving the performance of a 
cost-effective wearable device.  

Regarding the specification of equipments, we also ex-
amine the equipment in other laboratories where they used 
Bell type gas flow calibration equipment in China Metrol-
ogy Institute. For our ventilator, we used small standard 
flow meter and gas tank which can generate a steady flow. 
It is very convenient for us to carry out experiments to im-
prove the accuracy. Our pipeline is made by 3D printing 
technology, which is cheap and convenient replacement. 
At the interface of the pipe, there is a sponge for filtering 
water vapor and our breathing pipe is replaceable for pe-
riod. 

In future, above mentioned limitations will be further 
studied. We will work on a further verification of proposed 
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methods in the real systems, including interference factors, 
design for adults and children, the use of breathing pipe 
cycle. Additionally, considering a trend of intergrating this 
device into internet of things enabled healthcare system 
[33-36], we will focuse on the work of connecting this de-
vice into a hetegenous internet of things environment, and 
cooperate with the hospital for clinical testing and date 
analysis in the future.  

6. CONCLUSION 

We describe a mainstream device for monitoring the res-
piratory flow in this paper. Respiratory flow monitoring 
with differential pressure methods can provide valuable 
information for diagnosis. New airway tube is designed 
when the acquisition of pressure singles is taken into con-
sideration. BP neural network is used to fit the experi-
mental results, and good linear relationship is obtained. It 
is proved that comparing with the least square method, BP 
neural network can be used in more complex function 
which is used for calculating the target value. A host of ex-
periments and tests show that the designed mainstream 
device can accurately monitor respiration and acquire sta-
ble and real-time signals. 
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