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An improved search space resizing method for model identification by standard
genetic algorithm
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ABSTRACT
In this paper, a new improved search space boundary resizingmethod for an optimalmodel’s param-
eter identification for continuous real time transfer function by standard genetic algorithms (SGAs)
is proposed and demonstrated. Premature convergence to local minima, as a result of search space
boundary constraints, is a key consideration in the application of SGAs. The new method improves
the convergence to global optima by resizing or extending the upper and lower search boundaries.
The resizing of the search space boundaries involves two processes, first, an identification of initial
value by approximating the dynamic response period and desired settling time. Second, a bound-
ary resizing method derived from the initial search space value. These processes brought the elite
groups within feasible boundary regions by consecutive execution and enhanced the SGAs in locat-
ing the optimal model’s parameters for the identified transfer function. This new method is applied
and examined on twoprocesses, a third-order transfer functionmodel with andwithout randomdis-
turbance and raw data of excess oxygen. The simulation results assured the new improved search
space resizingmethod’s efficiency and flexibility in assisting SGAs to locate optimal transfer function
model parameters in their explorations.

ARTICLE HISTORY
Received 25 February 2016
Accepted 27 January 2017

KEYWORDS
Search space boundary
resizing; predetermined time
constant approximation;
genetic algorithms;
convergence constraints;
premature convergence;
transfer function model
identification

1. Introduction

One of themost common problems that may be encoun-
tered during model’s or control’s parameters optimiza-
tion by optimization algorithms is premature conver-
gence due to search space boundary constraints. An opti-
mization process has prematurely converged to a local
optimum if it is no longer able to explore other parts of
the search space region than the area currently being
explored and there exists another region that may con-
tain a superior solution (Ursem, 2003). Particularly, a set of
transfer function parameters to be optimized for a contin-
uous higher ordermodel distinguishes the dynamic char-
acteristics of the system. At present, some algorithms and
techniques are in application for improving the search
space boundary constraints. Figure 1 illustrates several
common phenomena (factors) to take into account when
the initial population is generated randomly.

The search space selection is one of the grounds that
lead to premature convergence. A well-selected search
space region will bring the elite group within the feasi-
ble region to avoid premature convergence (Rajarathi-
nam, Gomm, Yu, and Abdelhadi, 2015). In fact, well-
selected search space regions will sustain the population
diversity. Preservation of search space and population
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diversity is correlated with sustaining a well balance
between exploration and exploitation (Weise, 2009). An
exploration is applied to examine new and unknown
regions in the search space, and exploitation applies
the previously visited and identified information to
assist to locate the elite solution (Rajarathinam et al.,
2015).

A brief knowledge about a variety of methods of sus-
taining the population diversity and selective pressure to
avoid premature convergencewas described (Deepti and
Shabina, 2012). Nakisa, Nazri, Rastgoo, and Salwani (2014)
presented a comprehensive survey of the various parti-
cle swarmoptimization (PSO)-based algorithms such that
PSO is a computational search and optimization method
based on the social behaviours of birds flocking or fish
schooling. Chaiwat and Prabhas (2011) proposed the
self-adaption technique to control the population diver-
sity without explicit parameter setting. The technique is
based on the competition of preference characteristics in
mating. Based on simulation results, the adaptive tech-
nique has potential to adapt the diversity of the popula-
tion for a given problem without the knowledge of cor-
rect parameter settings. Also, it has a good performance
in finding the solution.

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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Figure 1. Phenomena of initial population.

A number of basic variations have been developed to
solve the premature convergence problem and improve
the quality of solution found by PSO. Suri, Rakesh, and
Pardeep (2013) proposed that the Elitism technique was
augmented within a genetic algorithm (GA) allowing
the best solution from any generation to be carried
across to the new population allowing it to sustain. Social
disaster technique (SDT) was used when premature con-
vergence occurred and the problem of premature con-
vergence may be avoided by creating random offspring
and insertingdiversity in thepopulation (Ramadan, 2013).
This paper attempted to use both concepts of elitism
and SDTs spanning across various generations. A previ-
ous solution was chosen and it has been looked upon
how elitism and SDTs fare towards the same prob-
lem. Malik and Wadhwa (2014) proposed a collabora-
tion of dynamic genetic clustering algorithm and elitist
technique for preventing premature convergence. This
proposed techniqueprovides a strong immunity tomuta-
tion and crossover operators to be trapped in local
optima.

Based on the complex Box technique, a boundary
search method for optimization problems in the case
of the optimal solution at the boundary was proposed
(Zhu, Li, and Zhang, 1984). It has been demonstrated and
verified, if there is an optimal solution at the boundary
constraint set. Recently, a modified GAs is applied in solv-
ing the n-Queens difficulty on a chessboard (Heris and
Oskoei, 2014). The holismand randomchoices cause solv-
ing difficulties for standard genetic algorithms (SGAs) in
searching a large space. To improve the solving difficulty,
theminimal conflicts algorithm is collaboratedwith SGAs.
The minimal conflicts algorithm gives a partial view for
SGAs by a locally searching space but, the collaboration
of algorithms consumed time for searching.

An analysis and a comparative study on the effect of
applying three boundary extension methods [boundary

extension by mirroring, boundary extension with
extended selection by shortest distance selection, and
boundary extension with extended selection by shortest
distance selection with ageing] from a view point of the
samplingbias is contributed (Tsutsui andGoldberg, 2001).
The studies disclosed that using the smaller samplingbias
had good performance on both functions which have
their optimum at or near the boundaries of the search
space, and functions which have their optimum at the
centre of the search space. However, the named three
boundary extension methods are extending the search
space of lower and upper boundaries simultaneously if
the optimum value is located near or at either boundary,
which may not be necessary. A similar approach called
the self-adaptive boundary search strategy for penalty
factor selectionwithin SGAswas proposed (Wuand Simp-
son, 2002). This approach guides the SGA to preserve
around constraint boundaries and improves the effi-
ciency of attaining the optimal or near-optimal solution.
A penalty factor within a GA is adapted and co-evolved
such that the GA population is adjusted (or forced) to
search around the upper or lower boundaries of the feasi-
ble and infeasible regions. The penalty factor represents
a decision variable within the population string to force
the GA to search an optimal solution without altering
the search space. A technique for resolving the struc-
tural optimization difficulties in quantizing the subjective
uncertainties of active constraints is proposed by fuzzy
logic formulation (Wu and Wang, 1992).

Another method to improve the prematurity and
to sustain the diversity population was proposed by
niche genetic algorithm (NGM) associated with isolation
mechanism (Lin, Hao, Ji, and Dai, 2000). A comparison
study was done on NGM and annealing GA where the
annealing GA has better premature convergence (Tu and
Mei, 2008). However, the annealingGA is time-consuming
by extra procedures. Another method, named accelerat-
inggenetic algorithm (AGA),was proposed to resizing the
feasible region into the elite individual’s adjacent region
for better local searching and convergence (Jin, Yang,
and Ding, 2001). Search space boundary reduction for
the candidate diameter for each link by pipe index vec-
tor and critical pathmethod, alongwithmodified genetic
operator’s derivatives, was proposed (Mahendra, Gupta,
and Bhave, 2008; Vairavamoorthy and Ali, 2005). Further,
an improved AGA based on the saddle distribution by
which adding random individuals into the initial popula-
tion to increase the searching ability of optimal solution
was proposed (Xu, Zhong, and Tang, 2012).

Direct identification of continuous-time, transfer func-
tion models from sampled input–output process data
is considered in this paper. There are some established
continuous-time identification methods, such as using
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instrumental variables and frequency responses (Feng-
wei, Hugues, and Marion, 2015; Garnier and Young,
2004; Rao and Unbehauen, 2006). Continuous-time
identification methods involve the need of special fil-
tering functions to generate the necessary signal time-
derivatives for estimation fromsampleddata (Garnier and
Young, 2004; Rao andUnbehauen, 2006). This is not a triv-
ial task and also, data usually need to be sampled faster
than if discrete-timemodel identification were done (Rao
and Unbehauen, 2006). Nonlinear estimation algorithms
may also be required (Fengwei et al., 2015). This paper
investigates the application of SGAs to the problem
of identifying the parameters of continuous-time mod-
els, specifically Laplace transfer functions including time
delays, without the need for additional signal filtering or
particularly faster data sampling.

A literature review discloses that most GA researched
techniques in general applications have an initial knowl-
edge, or value, of search space parameters or they are
randomly identified by trial and error technique at initial
execution. Further, some research papers are literally not
adjusting the feasible search space region to the centre
if the optimum value is located near or at the bound-
ary. Also, the discussed research information involves
complexmathematical approaches and inevitably can be
time-consuming for convergence. This paper proposes
and investigates a new improved search space method,
named the predetermined time constant approximation
(PTcA), to enhance the SGAs exploration and exploita-
tion towards the global optima for identification of
continuous-time transfer functions. Thismethodemploys
a novel search space boundary extension technique by
PTcA, which guides the search to concentrate on optimal
values within the boundaries of the feasible region of the
solution space and adjusting the feasible region towards
the centre according to the optimum value. Further, the
proposed technique introduces a method to predeter-
mine the initial values of continuous higher order model
parameters according to the transient response, instead
of an initial random selection.

The structure of this paper is as follows; first, the
SGAs convergence states for an optimal value by search
space boundary constraints are discussed. Second, the
approximation process of the predetermined time con-
stant method is discussed. Further, search space bound-
ary extensions for better exploration and for optimal
exploitation are discussed here. Finally, the effectiveness
of the PTcA method is assessed with two processes: a
third-order transfer function with and without random
disturbance and real numerical data from an excess oxy-
gen (EO2) process. Also, a fourth order model for EO2

is compared with the EO2 process data and a third-
order model of EO2 to measure the effectiveness of the

proposed methods. The proposed methods are devel-
oped and tested in simulations based onMatlab/Simulink
models.

2. Prior knowledge of specific problem

In numerous optimization problems, the functional infor-
mation related to the problem may exist, and can fre-
quently be applied a priori to effectively assist SGAs to
execute well in terms of rate of convergence. If there
exists prior information about regions in the search space
where the optimal pointsmaybe located, a percentage of
the population can be initialized by selecting candidate
solutions from these promising regions. This approach
can be applied whenever one searches to improve on
previously identified ‘optimal’ solutions.

As follows, the SGAs commence with a set of poten-
tially above-average solutions, which can significantly
improve the rate of convergenceof the SGAs,whereas the
crossover and mutation operators theoretically ensure
that the SGAs are still able to explore different regions
in the search space (Vlachos, 2000). Such heuristic ini-
tializations of the population should be applied care-
fully in order to avoid premature convergence, the situ-
ation where the SGAs may convergence to a sub-optimal
region in the search space.

3. Convergence constraints by search space
boundary

In most situations, selecting the search space boundary
regions is delicate if there is no prior knowledge of opti-
mum value location. Thus, a randomly selected search
space boundary is a significant factor which leads the
SGAs to often converge and get trapped in local optima,
resulting in sub-optimal solutions. Particularly, if it locates
near the boundary or outside the boundary as illustrated
in Figure 2, where SBLower is lower search boundary,
SBUpper is upper search boundary, �GO is the genetic
operator for convergence precision and Xi is the optimal
value.

The SGAs’ convergences according to search space
boundary constraints can be classified by three states:

• State 1 – If the optimal value(Xi) is located within
a uniformly distributed elite group around region

Figure 2. Schematic diagram of feasible search space boundary
region.
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[Xi − �GO, Xi + �GO] , the genetic operators have
higher probability of converging to the global opti-
mum. Thus, the randomly generated initial population
within the well-distributed elite group search bound-
ary has higher probability exploring and exploiting a
better parent chromosome. Further, the selected par-
ent chromosome will be evaluated by genetic pre-
cision process (selection, crossover and mutation) to
produce fitter offspringwithout any convergence con-
straint.

• State 2 – If the Xi is located near SBLower,
[SBLower, Xi − �GO] or SBUpper, [Xi + �GO, SBUpper] the
SGAs possibly will converge to local minima. The elite
group which is distributed near the boundary may
have located a part of the elite group at the outer
boundary. If the elite group at the outer part has the
genetic information of an optimal value, the genetic
operators will suffer to exploit the optimal value and
the exploration process will retard. As a result, the
search space boundary constraints will lead the SGAs
to converge to local minima.

• State 3 – If the Xi is located outside the boundary
region [Xi < SBLower, Xi > SBUpper], the SGAs will fail to
explore and exploit the optimal value. The simulation
may be retarded and stopped.

4. Predetermined time constant approximation

To improve the choice of search space boundaries for
optimal model parameters identification, a new bound-
ary resizing technique without a complex mathemat-
ical constraint is introduced here, named PTcA. The
proposed PTcA method provides a prior knowledge of
higher order poles coefficients of a transfer function,
named initial predetermined time constant (Tsp(Initial))
value from the dynamic response of a process. Apply-
ing the Tsp(Initial) value gives an approximation of the
elite group distributionwithin a feasible boundary region
by resizing the boundary region at the initial stage.
This gives the genetic operators opportunity to locate
the optimal parameter values rapidly without any con-
straint. Therefore, identification of denominator polyno-
mial coefficients which provide a foundation for deter-
mining a system’s dynamic characteristics is primarily
considered here.

Consider a system can be modelled by the general
order differential equation

an
dny
dtn

+ an−1
dn−1

dtn−1 + · · · + y = Kpf (t − θ), (1)

where f (t − θ) is the input signal or forcing function with
timedelay, θ , y(t) is theoutput signal andKp is theprocess
gain. Assuming zero initial conditions, y(0) = 0, y′(0) =
0, . . . , and taking the Laplace transform of Equation (1)

gives the general order transfer function of the form

G(s) = Y(s)

F(s)
= Kp

ansn + an−1sn−1 + · · · + a1s + 1
e−θs,

(2)
where an . . . a1 are coefficients of the denominator poly-
nomial which is particularly defining the components in
the homogeneous response. For the PTcA method appli-
cation, the denominator of Equation (2) is approximated
as follows:

G(s) = Y(s)

F(s)
= Kp

(Tsp(Initial)s + 1)n
e−θs. (3)

By applying the PTcA method, the coefficients of the
denominator polynomial, an · · · a1 in Equation (2) are to
be substituted with Tsp(Initial) values in the expansion of
Equation (3)

G(s) = Y(s)

F(s)
= Kp

Tsp(Initial)nsn + Tsp(Initial)n−1sn−1

+ · · · + Tsp(Initial)1s + 1

e−θs.

(4)

As discussed earlier, it is difficult to approximate the
higher order model’s denominator polynomial coeffi-
cients without a prior knowledge. However, the initial
value of Kp and θ can be easily approximated by observ-
ing the magnitude of a step response from C(t) = 0 to
C(t) = Css ± δ(%) and delay of transmission from t=0
to t = θ , respectively. Therefore, only the denominator
polynomial coefficients are considered here.

The PTcA method can be divided into two sup-
processes. First sub-process is an identificationofTsp(Initial)
from a dynamic step response for initial boundary set-
ting. The identification process is illustrated in Figure 3
and described as follows:

• Selecting ts(δ%), where ts is settling time and δ is
the settling band in % (δ = 1, 2 and 5). The selection
of desired δ is according to the raggedness of the
dynamic response. The ts is defined as α, settling time
constants for which the response remainswithin δ%of
the final value. This can be approximated as: ζωnts ∼=
α. Hence, the ts(δ%) = 1%, 2% and 5% → α = 5, 4 and
3, respectively.

• Estimating the process’s dynamic response period
(DRP)(t1−0). AtC(t) = 0(t=0) toC(t) = Css ± δ(%)(t=t1),
where Css is the final steady-state value.

• Approximating a Tsp(Initial) = DRP(t1−0)/α(δ%).
• Applying Tsp(Initial) according to the respective

transfer function coefficients, ansn + an−1sn−1 + · · · +
a1s + 1 → Tsp(Initial)nsn + Tsp(Initial)n−1sn−1 + · · · +
Tsp(Initial)1s + 1.
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Figure 3. Sub-process of Tsp(Initial) identification from a dynamic step response.

Figure 4. Sub-process of search space boundary optimization by
Tsp(Initial).

The second sub-process of PTcA method is the search
space boundary optimization by resizing the upper and
lower search boundary based on Tsp(Initial). As illustrated
in Figure 4, the SBO is optimum search space boundary,
SBLower is lower search boundary and SBUpper is upper
search boundary. An optimum search space boundary as
illustrated in Figure 4 can be expressed as

SBO = {SBO; SBLower ≤ Tsp(Initial) ≤ SBUpper}. (5)

For an SBO, the SBUpper and SBLower are extended by
100% and 75% from Tsp(Initial), respectively. Especially,
100% of extension for SBUpper is required as the optimal
solution can bemostly located close to the upper bound-
ary region. Such a search space extension is required for
SGAs to explore the elite groups which are uniformly
distributed within boundaries and to exploit the Xi.

As illustrated in Figure 4, the Tsp(Initial) is only applied
for initial search boundary resizing and the first SGAs exe-
cution. Further search space boundary resizing is decided
by the previously executed sub-optimal value (X ′

i ), which
is presumed as the next value for Tsp. The sub-process

of search space boundary adjustment and an optimal Xi
identification can be stated as follows:

• Initial attempt – Identified Tsp(Initial) according to the
respective denominator polynomial coefficients are
applied with 100% extension on SBUpper. The SBLower
is extended to approximately 95% instead of 75% for
better exploration at the beginning stage. Execute the
SGAs.

• Second attempt – Genetically identified X ′
i by initial

attempt (first execution) of respective denominator
polynomial coefficients are applied for next execution
to extend (with, Tsp = X ′

i ) accordingly (SBUpper to 100%
andSBLower to 75%) tooptimize SBO. Execute the SGAs.

• Subsequent attempt – Continuing the SGAs execution
with unchanged boundary search approximation by
second attempt, until optimal Xi andminimum sum of
square error (SSE) attained.

• *Subsequent attempt – If the extended boundary in
the second attempt is not an SBO, consecutive bound-
ary resizing is essential until SBO is achieved. Then,
continuing the SGAs’ execution until optimal Xi and
SSE are attained.

5. Simulation results

To illustrate the non-complexity and effectiveness, the
proposed timeconstant approximationmethod is applied
on two example processes; a third-order transfer func-
tion with and without disturbance and real numeri-
cal data from an excess oxygen (EO2) process step
response.

5.1. Process 1 – third-order transfer function

For simulation study, the following transfer function of
a third-order process is selected with the process gain,
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Kp = 10

G(s) = 10
15s3 + 78s2 + 6s + 1

. (6)

The particular motive of selecting this third-order
transfer function is that it has a real pole at −5.1245 and
a pair of complex poles at −0.0378 ± 0.1076i, which are
exhibiting a significant oscillatory response as illustrated
in Figure 5. Also, to assess the PTcA method’s flexibilities
and effectiveness, the third-order transfer function coeffi-
cients are moderately small parameters. So, an appropri-
ate search space boundary extension is required.

According to the third-order process step response in
Figure 5, an extension on the search space boundaries
are approximated for Kp ∈ [5 : 15] for better exploration
as the Kp = 10. For better approximation of polynomial
coefficients, the DRP(t1−0) = 123 − 0 s = 123 s . Selecting
ts(δ%) = 1%, as the desired α is 5, gives the Tsp(Initial) =

24.6 s. Therefore, the Tsp(Initial) for the third-order polyno-
mial coefficients can be approximated by

Tsp(Initial) = 24.6;→ (Tsp(Initial)s + 1)3 → (Tsp(Initial)s)
3

+ 3(Tsp(Initial)s)
2 + 3Tsp(Initial)s + 1

→ 1.728 × 106s3 + 4.32 × 104s2

+ 3.6 × 102s + 1. (7)

Based on Table 1, the SGAs explored well the entire
search space boundaries and exploited the elite group
within the chosen boundary region, Xi − �GO, Xi + �GO

for Tsp values of S2 and S1 at the initial attempt. This
can be seen by the consistency of the Tsp values of S2

and S1 in further executionwith readjusted boundaries at
the second attempt. Therefore, further resizing of search
boundary is not required as the X ′

i will evolve well within
SBO to attain the Xi. This has enhanced the exploitation of

Figure 5. Transient step response of third-order transfer function real and model process.

Table 1. Simulation results of third-order transfer function executions.

Tsp(S3) Tsp(S2) Tsp(S1)

Exe SBU SBL SBU SBL SBU SBL X ′
i (S

3) X ′
i (S

2) X ′
i (S

1) SSE Gen

1 29,774 10 3630 10 148 2 141.3 76.75 7.439 60.092 70
2 280 35 150 20 15 2 42.55 77.73 6.281 8.4924 50
3 85 12 150 20 15 2 23.25 77.67 6.182 7.7894 30
4 50 5 150 20 15 2 22.98 77.69 6.179 7.7899 20
5 50 5 150 20 15 2 21.23 77.67 6.157 7.8149 20
6 50 5 150 20 15 2 22.18 77.67 6.189 7.7915 30
7 50 5 150 20 15 2 21.98 77.68 6.197 7.6025 25
8 50 5 150 20 15 2 21.41 77.69 6.171 7.6171 35
9 50 5 150 20 15 2 23.53 77.67 6.186 7.7898 25
10 50 5 150 20 15 2 22.62 77.68 6.175 7.7914 15
11 50 5 150 20 15 2 23.49 77.69 6.183 7.7895 20

Note: The bold values indicate the iteration and models chosen with lowest SSE.
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an optimal Xi at each subsequent attempt by the SGAs for
these parameters.

On the other hand, the simulation results reveal that
the elite group of PTcA values of S3 are distributed near
SBLower region. This is clearly noticeable at the first, sec-
ond and third execution results that the Tsp value of S3

is remaining around SBLower. This caused the SGAs to fail
to exploit an optimal Xi and converge to local minima
as a part of the elite group is located outside SBLower
(state 2). As a result, three adjustments on boundaries,
especially on SBLower, are required to optimize the SBO
and to bring the elite groups within a feasible bound-
ary region. As expected, the boundaries are optimized
and the elite groups are explored well at the fourth exe-
cution. Further SGAs execution enhanced an optimal Xi
exploitation.

The flexibilities and effectiveness of the PTcA method
is further assessed on the third-order transfer function

model with 5% random disturbance. Initially, identified
transfer function coefficients without the disturbance
are applied on the third-order model with disturbance.
The simulation results in Figure 6 and Table 2 reveal
that the exploration of elite groups and exploitation
of an optimal Xi for the third-order model with dis-
turbance is a very similar process without disturbance.
Notice that the peak time in Figures 5 and 6 is the
same for all waveforms because the imaginary part of
the model poles remains the same (Table 3). Never-
theless, the identified model responses, with and with-
out noise, closely match the response of the actual sys-
tem as shown in Figures 5 and 6. Thus, the effective-
ness of the PTcA method is well demonstrated in opti-
mizing the SBO and exploiting the Xi with or without
disturbance.

Based on minimum SSE, the selected third-order
model transfer function without (Equation (7)) and with

Figure 6. Transient responses of third-order transfer function real and model with 5% disturbance.

Table 2. Simulation results of third-order transfer function with 5% disturbance executions.

Tsp(S3) Tsp(S2) Tsp(S1)

Exe SBU SBL SBU SBL SBU SBL X ′
i (S

3) X ′
i (S

2) X ′
i (S

1) SSE Gen

1 29774 10 3630 10 148 2 380.4 82.03 11.27 150.832 90
2 760 95 165 20 22 3 95.15 77.78 6.296 60.1486 78
3 190 24 155 20 13 2 25.29 77.57 6.211 33.4558 43
4 50 6 155 20 13 2 24.02 77.57 6.196 33.4456 37
5 50 6 155 20 13 2 24.67 77.58 6.049 33.4481 32
6 50 6 155 20 13 2 24.05 76.33 6.398 33.4452 28
7 50 6 155 20 13 2 26.14 77.91 6.215 33.4627 22
8 50 6 155 20 13 2 24.25 77.51 6.198 33.4459 30
9 50 6 155 20 13 2 22.99 77.58 6.186 33.4503 21
10 50 6 155 20 13 2 22.89 77.58 6.183 33.4511 42
11 50 6 155 20 13 2 22.76 77.84 6.114 33.4596 34

Note: The bold values indicate the iteration and models chosen with lowest SSE.
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Table 3. Poles of third-order transfer function models.

Models P3 P2 and P1
Damping
ratio

Real −5.1245 −0.0378 ± 0.1076i 0.331
Without disturbance −3.4564 −0.0389 ± 0.1079i 0.339
With disturbance −3.0921 −0.0408 ± 0.1085i 0.352

(Equation (8)) disturbance are:

G(s)(without disturbance)

= 9.997
21.98s3 + 77.68s2 + 6.197s + 1

, (8)

G(s)(with disturbance)

= 9.976
24.05s3 + 76.33s2 + 6.398s + 1

. (9)

By comparing the identified Tsp coefficientswith third-
order transfer function model’s parameters, the S2 and
S1 values have 98% similarity. But, the S3 value only has

54% of similarity. According to Table 3 and Figure 7, the
complex poles of all third-order models illustrate that the
imaginary parts are considerably constant. But, the real
part is slightly moved along the real axis, causing a small
change in the damping ratio for these roots. These small
changes in the complex poles are consolidated with the
differing position of the other real root.

5.2. Process 2 – excess oxygen (EO2)

Raw numerical data of excess oxygen (EO2) was collected
from a real industrial furnace by an empirical technique
for 1000 s with 5 s intervals. As illustrated in Figure 8, the
process response of EO2 is exhibiting an approximate
first-order plus dead-time dynamic system. The datawere
gathered by the step input of increasing air ratio from 9.5
to 10.5 in volumetric (ft3).

As discussed earlier, the polynomial coefficients of
the continuous real time transfer function are primarily

Figure 7. Roots of 3rd-order transfer function of real and identified models with and without 5% disturbance.

Figure 8. Step response of EO2.
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considered here for optimal model identification by the
PTcA method. The process gain (Kp) and transport delay
(θ ) can be approximated by close observation of the EO2

real plant transient response. As illustrated on the tran-
sient response of EO2, Kp ≈ 1.54 and θ ≈ 160 s . As a
result, an extension on the search space boundaries are
approximated for Kp ∈ [1 : 2] and θ ∈ [50 : 200]. If a pro-
cess has transport delay, then the DRP needs to be calcu-
lated from t = θ to t= t1. For better approximation, the θ

is selected 100 s. Thus, for the EO2 dynamic response, the
DRP(t1−θ) = 700 − 100 s = 600 s . Selecting ts(δ%) = 1%,
as the desired α is 5, gives the Tsp(Initial) = 120 s.

For instance, the third-order Tsp(Initial) polynomial coef-
ficients model can be approximated as

Tsp(Initial) = 120;−→ (Tsp(Initial)s + 1)3 → (Tsp(Initial)s)
3

+ 3(Tsp(Initial)s)
2 + 3Tsp(Initail)s + 1

→ 1.728e6s3 + 4.32e4s2 + 3.6e2s + 1. (10)

Based on the second sub-process of the PTcAmethod,
initially approximated as S3, S2 and S1 polynomial coeffi-
cients by Tsp(Initial), respectively, are applied to extend the
SBUpper (100%) and SBLower (75%), S3 ∈ [4.32e5 : 3.456e6],
S2 ∈ [1.1e4 : 8.6e4] and S1 ∈ [90 : 720] to improve the
search mechanism to locate the optimal Xi.

According to the PTcA technique, genetically iden-
tified X ′

i by the second execution for the respective
polynomial coefficients illustrates that the resized search
boundary by initially identified X ′

i at first execution is
SBO (Table 4). Therefore, further resizing of the search
boundary after second iteration is not required as the
X ′
i will evolve well within SBO to attain the Xi. As illus-

trated in Table 4, the distribution of elite groups within
the boundary region [Xi − �GO, Xi + �GO], the exploita-
tion of optimal Xi and the consistency of the X ′

i values
of S2 and S1 in further execution by SGAs are exhibiting
similar process characteristics as the third-order transfer
function model.

Table 4. Third-order model polynomial coefficient approximation by SGAs execution.

Tsp(S3) Tsp(S2) Tsp(S1)

Exe SBU SBL SBU SBL SBU SBL X ′
i (S

3) X ′
i (S

2) X ′
i (S

1) SSE Gen

1 3.5e6 10 8.6e4 10 7.2e2 10 8088.2 10085 178.73 0.86796 70
2 1.6e4 2e3 2e4 2e3 3.5e2 40 4039.7 14074 180.02 0.49128 20
3 1.6e4 2e3 2e4 2e3 3.5e2 40 2699.7 13304 180.38 051873 40
4 1.6e4 2e3 2e4 2e3 3.5e2 40 4875.7 14995 183.64 0.49413 40
5 1.6e4 2e3 2e4 2e3 3.5e2 40 8187.7 14524 181.41 0.48654 20
6 1.6e4 2e3 2e4 2e3 3.5e2 40 8079.1 16513 184.16 0.53421 35
7 1.6e4 2e3 2e4 2e3 3.5e2 40 4330.5 14555 177.2 0.5109 90
8 1.6e4 2e3 2e4 2e3 3.5e2 40 4137.2 15028 181.88 0.48758 22
9 1.6e4 2e3 2e4 2e3 3.5e2 40 9903.9 16043 182.3 0.51771 80

Note: The bold values indicate the iteration and models chosen with lowest SSE.

Figure 9. Two global optima of Xi values of S3 for EO2 process.
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Based on the initial attempt, the elite groups of X ′
i

values of S3 are uniformly distributed around Xi − �GO

region. The simulation results shows that the X ′
i values of

S3 are still continuously evolvingwithin theboundary SBO
region at each execution. Therefore, further readjustment
of SBO boundaries is not required as the elite groups are
still within the boundary range (state 1) as discussed in
Section 3. So, for the third-order model of EO2, the X ′

i val-
ues by the fifth execution are selected as the SSE and Gen
(generation) is minimum and optimal (Xi). The identified

transfer function of fifth and eighth execuations are

G(s)(fifth execuation)

= 1.555
8187.7s3 + 14524s2 + 181.41s + 1

e−109.36s, (11)

G(s)(eighth execuation)

= 1.5504
4137.2s3 + 15028s2 + 181.88s + 1

e−107.17s. (12)

Figure 10. Transient responses of two global optimal values with real process of EO2.

Figure 11. Transient responses of third and fourth order models with real process of EO2.
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Table 5. Roots of denominator of EO2 model orders.

Model
orders Roots of denominator Error criterion (SSE)

3 −1.761;−0.00627 ± 0.00548i 0.48654
4 −0.0082 ± 0.0412i;−0.0064 ± 0.0052i 0.45175

However, the inconsistency of S3 shows that there are
two optimal values of X ′

i (X
′
i = 8187.7; 4137.2), which fre-

quently appear within the SBO region at first, second,
fourth, fifth, sixth, seventh and eighth execution. Accord-
ing to the transfer function of fifth and eighth execu-
ations, the Kp, θ and the polynomials of S1 and S2 are
exhibiting 97.5% of similarities, approximately. While, the
S3 is exhibiting 50.5% of similarity. This illustrates that the
Kp, θ and the coefficients of S1 and S2 are not consoli-
dated with S3 in attaining two Xi. This has been verified
by simulation results in Figures 9 and 10 for both opti-
mal X ′

i values of S
3 attaining a minimum SSE (iterations

5 and 8 in Figure 9 and Table 4). Furthermore, the incon-
sistency of S3 demonstrated that the SGAswith improved
boundaries were well sustaining the population diversity
by exploring the feasible search region and exploiting to
optimal Xi.

A similar process of optimal model parameter identi-
fication by PTcA method was also applied for a fourth
order model. As illustrated in Figure 11, the fourth order
model response is exhibiting the effectiveness of the
PTcA method in exploring the search space region to
exploit the Xi for S1, S2, S3 and S4. Based on the EO2

model responses, the fourth order model is well fitted
with the real data response. According to Table 5, the
third-order model’s real pole and pair of complex poles
are exhibiting inconsequential domination in character-
izing the response, which causes a rise in the error crite-
rion compared to the fourth order model. However, the
fourth order model with another pair of complex poles is
enhancing the extrapolation on the real data characteris-
tic and achieves a lower SSE.

6. Conclusion

Theproposedpredetermined timeconstant (PTcA)method
enhanced the optimization of search space boundaries
for global optima convergence. The response’s dynamic
period and settling time provide better presumption of
an initial Tsp value for search space optimization. The
extended SBUpper and SBLower for an optimal search
boundary (SBO) derived from an initial Tsp brought the
elite group within a feasible bounded search region. Fur-
ther, SGAs execution improved the exploration of elite
groups to locate and exploit the optimal values for the

identified model parameters. As expected, the polyno-
mial coefficients of all estimated models are optimized
well by SGAs. Further work includes assessing the per-
formance of the method on other process data and sta-
tistical comparisons of the method with other conven-
tional algorithms for continuous-time transfer function
estimation.
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