
Physical and neurophysiological factors

influencing dynamic balance:

By

Khaled Jebril Abuzayan

A thesis submitted in partial

fulfilment of the requirements of

Liverpool John Moores University for

the degree ofDoctorate ofPhilosophy

April, 20~O
I



Abstract

..



Abstract

Static and dynamic balance are essential in daily and sports life. Many factors have been
identified as influencing static balance control, two of which are carrying additional
weight and localized muscle fatigue but their influence on dynamic balance in sport
activities has not been fully established. Therefore, the aim of this thesis was to
investigate the characteristics of dynamic balance in sport related activities, with specific

reference to the influence ofbody mass changes and muscular fatigue.

Study one: The objectives of study one (methodological study, n = 5) were to apply the
extrapolated Centre of Mass (XCoM) method and other relevant variables (centre of
pressure, CoP; Centre of Mass, CoM; shear forces, Fh;kinetic energy, KE; momentum, P;
and angular impulse, AI) to investigate sport related \activities such as hopping and
jumping. Many studies have represented the CoP data without mentioning its accuracy so
several experiments were done to establish the agreement between the CoP and the
projected CoM in a static condition. It was found that there was an inaccuracy with the
average difference about 4mm. This meant that the angular impulse could not be reliably
calculated. Its horizontal component, representing the Friction Torque (Q), could be

reliably computed for dynamic balance. The implementation of the XCoM method was
found to be practical for evaluating both static and dynamic balance. The general findings
were that the CoP, the CoM, the XCoM, Fh, and Q were more informative than the other
variables (e.g. KE, P, and AI) during static and dynamic balance. The XCoM method was
found to be applicable to dynamic balance as well as static balance.

Study 2: The objectives of study two (baseline study, n = 20) were to implement Matlab
procedures for quantifying selected static and dynamic balance variables, establish
baseline data of selected variables which characterize static and dynamic balance
activities in a population ofhealthy young adult males, and to examine any trial effects on
these variables. The results indicated that the implementation of Matlab procedures for

quantifying selected static and dynamic balance variables was practical and enabled

baseline data to be established for selected variables. There was no significant trial effect.
Recommendations were made for suitable tests to be used in later studies. Specifically it
was found that one foot-tiptoes tests either in static or dynamic balance are too
challenging for most participants in normal circumstances. A one foot-flat eyes open test
was considered to be representative and challenging for static balance, while adding
further vertical jump and landing tests (two feet flat and one foot flat vertical jump) to the
horizontal jumping and hopping for dynamic balance was considered to be more
representative of sports situations. The main differences between horizontal and vertical
jumping were in anterior-posterior direction.
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Study 3: The objectives of study three (differentiation study, n =20) were to establish the
influence of physical (external added weight) and neurophysiological (fatigue) factors on
static and dynamic balance in sport related activities. This was typified statically by the
Romberg test (one foot flat, eyes open) and dynamically by jumping and hopping in both
horizontal and vertical directions. Statically, added weight increased body's inertia and
therefore decreased body sway in anterior-posterior direction though not significantly.
Dynamically, added weight significantly increased body sway in both mideo-lateral and
anterior-posterior directions, indicating instability, and the use of the counter rotating
segments mechanism to maintain balance was demonstrated. Fatigue on the other hand
significantly increased body sway during static balance as a neurophysiological
adaptation primarily to the inverted pendulum mechanism. Dynamically, fatigue
significantly increased body sway in both mideo-lateral and anterior-posterior directions
again indicating instability but with a greater use of counter rotating segments
mechanism. Differential adaptations for each of the two balance mechanisms (inverted
pendulum and counter rotating segments) were found between one foot flat and two feet
flat dynamic conditions, as participants relied more heavily on the first in the one foot flat
conditions and relied more on the second in the two feet flat conditions.

Conclusion: Results from this thesis are expected to aid towards advancing the
understanding of balance in sport related activities, and can provide a solid foundation for
future work in this area. In particular, a method was established to assess static and
dynamic balance, baseline data for these associations was provided, and differential
adaptations to physical or neurophysiological constraints were found. Valuable
associations between specific variables and the first two mechanisms of balance were
demonstrated.
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Chapter (1) Introduction



1. Introduction

1.1. Background

Balance is understood by almost everyone to be a critical component of skilful

movement. One definition of balance is a "state of equilibrium" (Grimshaw et al., 2006,

p. 161) which can be used to describe the state of a system subjected to opposing forces

that balance each other, so that for any small disturbances the mechanical system returns ,

to equilibrium (Zatsiorsky, 2002, p. 199). Balance is also defined as the ability to

maintain the body's Centre of Mass over its Base of Support (Woollacott and Shumway­

Cook, 2002) whereas a fall is defined by the World Health Organisation as" an event

which results in a person coming to rest inadvertently on the ground or floor or other

lower level." (WHO, 2010).

An improved understanding ofbalance control may help prevent falls (Qu and Nussbaum,

2009). The control of balance in human movement activities such as standing (static

balance) or walking, jumping or hopping (dynamic balance) involves the moment-to­

moment control of forces. For standing and static posture this is often referred to as

postural balance (Gill, 2004). Postural balance ability may vary vastly between people. It

is commonly evaluated by using functional rating scales e.g. Berg Balance Scale or by

recording body sway on a device such as a force platform. Although maintaining a stable

upright posture is often considered a simple task, falling is inevitable and occurs

throughout our lifespan (Corbeil et al., 2001). Many factors have been identified as

influencing balance control, such as aging, body mass and inertial mass distribution
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properties, carrying additional weight, localized muscle fatigue, and decrements in the

quality of sensory input (Jeffrey and Schiffman, 2006).

Typically, the term "body sway" is used to describe the excursions during postural

balance of either the Centre of Pressure (CoP) which is defined as the point of application

of force within the Base of Support (BoS) that a subject applies to the support surface
I

while attempting to stand still; this movement is displayed as a travelling point between

the feet that moves with weight shift or by describing the excursions the Centre of Mass

of the body (CoM) which is known as the balancing point of the body which in static

standing circumstances means all torques are average to zero (Hamill and Knutzen., 2003,

p. 405) while the Base of Support (BoS) can be approximated as the surface area under

and between the feet or the area of contact with the support surface (Hofet al., 2005).

One of the most popular computerized laboratory methods for evaluating human postural

balance is to measure spontaneous body sway while the subject is standing on a force

platform. The basic principle of the force platform test is that movements of the CoP

reflect the horizontal location of the CoM, which is considered true for low-frequency

components ofsway. The frequency of the CoP excursions that accompany body sway for

young healthy subjects is below 1 Hz (Era and Heikkinen, 1985), whereas in some elderly

subjects there may be additional components between 1 and 3 Hz (Lucy and Hayes, 1985;

Hasan et al., 1996; Guerraz et al., 2000). At these higher frequencies the CoP and the

CoM cannot be considered equivalent.
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Conventional measures of body sway, such as root mean-square (RMS) amplitude of the

motion of the CoM or CoP about a mean position, provide single quantities summarizing

overall motion of the body. Other typical parameters in platform measurements are the

mean CoP position (as a reference point), anterior-posterior and lateral excursions of

sway, the length of the sway path, sway velocity and sway area.

Controlling sway relies on sensory information from vision, proprioception and the

vestibular system. Body sway has been measured under variable visual and support

surface conditions, and measures have been reported to identify sensorimotor deficits as

well as to differentiate between functional performance abilities. The Romberg test,

which is a clinical test to identify poor balance (Khasnis and Gokula, 2003), specifically

identifies the inability to maintain a steady standing posture with the eyes closed

compared to eyes opened. Sway has also been analyzed during standing on a foam plastic

covered surface to reduce proprioceptive input (Hytonen et al., 1993) under various visual

conditions, such as blurred vision or the use of only peripheral or central vision (Geurts et

al., 1993).

As noted previously, many studies dealing with postural balance consider the CoP to be

coincident with the projected position of the CoM. These studies have some limitations

because most of them deal with the body during quiet standing which produces a very

low frequency of sway. Hof et al. (2005) introduced a novel method for estimating

balance during movement (generally, referred to as dynamic balance) and applied it to

walking. In this and in sports activities that include rapid movements, such as hopping or

jumping, the velocity of the CoM can influence balance behaviour. Hof et al. (2005)
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introduced a method which is referred to as the "extrapolated Centre of Mass" (XCoM)

method and this takes into account the velocity of the CoM with the subject modelled are

as an inverted pendulum. Hof defined the XCoM as the position of the vertical projection

of the CoM plus a velocity correction factor which together should lie within the BoS.

The XCoM has been studied by Hof in various circumstances such as standing on two

feet or one foot, either with feet flat or on tiptoe (Hof et al., 2005). These experiments

have shown that the body increases its sway rapidly under unstable condition, especially

for the 1 foot tiptoe standing conditions, but has also shown that when balance is

maintained the XCoM still stays within the BoS. Hof's method for dealing with high

frequency body sway is applicable to various situations, including those in sports, for

instance when hopping or jumping, but so far this has not been investigated.

Since balance and stability within sport are important to achieve specific movement

patterns (Grimshaw et al., 2006, p. 161) and most sports are dynamic in nature, postural

control should be assessed using dynamic tests to ensure the application of results.

Furthermore, dynamic balance depends on the relationship between the CoM and the BoS

(Kirtley, 2006, p, 172). This relationship needs to be clarified as in dynamic balance the

CoM is not in a fixed position relative to the body segments and has velocity as well as a

changing the BoS. Therefore, the relationship is dependent not just on the CoM position

but also the state of the CoM position and its velocity (Pai, 2003). Oates. (2007) defined

dynamic stability as the ability to control a moving CoM within a changing BoS.

Consequently, the most important information may not be the current CoM position, but

where it will be in the future in relation to the new BoS. If CoM motion cannot be
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controlled before crossing the BoS boundaries, a step must be taken to maintain stability

(Hasson et al; 2009). Therefore, the velocity of the CoM' should also be considered as

well as the changing BoS. Hof et al. (2005) clarified that in some circumstances, even

though the CoM is above the BoS, balance may be impossible when CoM's velocity is

directed outward. The reverse is also possible: even if the CoM is outside the BoS, but

CoM's velocity directed towards it, balance can be maintained. Hence, the velocity of the

CoM should also be accounted for when evaluating dynamic balance. The XCoM

introduced by Hof et al. (2005) is a suitable measure for use in the above mentioned

circumstances. In summary, evaluating dynamic balance requires understanding the

ability of controlling a moving CoM, position-velocity (XCoM), within a changing BoS.

One ofthe physical factors influencing static and dynamic balance is body mass and mass

distribution. This relates to issues of load carriage and obesity. Carrying loads is an

everyday task; people carry additional loads at home, at work, items while shopping, and

during people's leisure time (e.g. hiking). Many studies have investigated the effect of

added weight upon people's balance in static balance (e.g. standing) while fewer studies

have been done in dynamic balance (e.g. walking). Some studies have suggested that

external loads adversely affect balance control, since such loads resulted in increased

postural sway by increasing the CoP sway during quiet erect stance (Odkvist, 1993). This

increase in postural sway indicates that the whole-body CoM gets closer to the boundary

of the BoS and thus leads to less stability. Others found that static equilibrium is

positively related to mass of the person (Adrian and Cooper, 1995, p. 22). Furthermore,

other studies have focused on the effects of the location of external load mass on balance

control as well as the percentage of the added weight to the total body mass e.g. 10%,

15% or 20% oftotal body mass (Singh and Koh., 2009).
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Dynamically, most researchers who dealt with loading participants with external mass

focused on walking, e.g. schoolchildren (Talbott, 2005) and soldiers (Schiffman et al.,

2005). It has been found that increasing mass (e.g. backpack) makes it harder to initiate

motion and requires greater moments about the axes of rotation to control motion and

alter postural control mechanisms (Maki, 1994), which may lead to the risk of falls and

injuries. There appear to be no published studies, which investigate the effect of added

mass upon sport related activities such as hopping and jumping. Therefore, a better

understanding of the posture and dynamic perturbations induced by additional load

carriage in specific populations is an important topic for investigation.

A neuromuscular factor influencing static and dynamic balance is induced muscular

fatigue due to exercise. Fatigue is commonly experienced by people in daily life and in

sports situations. Fatigue occurs at the time when a target force can no longer be

generated or 'a loss of maximal force generating capacity' is discovered (Vollestad et al.,

1988; Vollestad, 1997). Miller et al. (1995) defined muscle fatigue as the reduction in

maximal force generating capability during exercise. In a sport context, fatigue increases

the complexity of a balance task because it impairs or reduces the force capacity of

muscles and decreases sensitivity of the proprioceptive system (Simoneau et al., 2006).

This has been demonstrated by an increase in medio-lateral body sway oscillations during

static balance tests in the fatigued state (Corbeil et al., 2003). Nardone et al. (1997), using

a treadmill based aerobic fatigue protocol, have reported increases of the sway path of the

CoP and median frequency of the CoP velocity. This suggests that fatigue induces an

increased frequency of actions needed to regulate body sway oscillations. Skilled athletes

were less affected by fatigue, suggesting that skill could attenuate the specific effect of
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fatigue on balance control. Fatigue, therefore, does not always lead to instability. The

balance control system is able to compensate for the early acute effects of fatigue by

increasing the frequency of actions of the CoP velocity and by allocating a greater

proportion of cognitive resources to the balance control task. There is limited information

regarding the effect of fatigue on dynamic balance, despite its considerable importance to

dynamic activities in sport.

Although many studies have investigated static balance in diverse circumstances,

dynamic balance has been discussed mostly based on gait and little has been done on

dynamic balance particularly in sport related movements (other than walking). Moreover,

there is no information about applying the extrapolated CoM approach in sport related

activities (dynamic balance). This project, therefore, aims to determine the characteristics

of dynamic balance in sport related activities, typified by hopping and landing from a

jump. In addition, it aims to establish the influence on dynamic balance of physical

(represented by carrying added weight) and neurophysiological (represented by inducing

fatigue) factors.
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1.2. Aim of the study

To investigate the characteristics of dynamic balance in sport related activities, with

specific reference in the influence ofbody mass changes and muscular fatigue.

1.3. Objectives

1. To apply the extrapolated Centre of Mass (XCoM) method and other relevant

variables for evaluating balance in sport activities such as hopping and jumping;

2. To examine whether the variables developed can reliably characterize dynamic

balance characteristics in young adults and to collect baseline data for further studies;

3. To investigate the effects of changing body mass and mass distribution on the static

and dynamic balance characteristics ofyoung adults;

4. To investigate the effects of muscular fatigue on the static and dynamic balance

characteristics ofyoung adults.
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2. Review of the Literature

2.1. Static balance

Static balance has been an important research topic for several decades. It is commonly

known from Newton's First Law that when a body is in rest (not moving) or in a state of

constant movement (acceleration equal zero), it is also in a state of equilibrium

(Grimshaw et al., 2006, p. 156). Stability is defined as the ability of an object or

individual to remain in a stable position and is commonly referred to as balance (Hamill

and Knutzen, 2003, p. 405). The concept ofbalance is based on the notion that balance is

represented by equilibrium. This definition draws from a balance scale which is used to

determine if two items have equal weights, and typically, losing balance means to fall or

fail to maintain balance. Being in an off-balance situation means to deviate from the

control of balance and inability to control balance. Generally, there are two types of

balance, static and dynamic balance.

Static balance is well reported by many researchers considering quiet standing as a "static

balance" activity. In fact, the upright posture is a continuum of adjustments that are made

in response to a changing environment which is known as body sway (Loram et al.,

2007). Internal forces (generated from muscle contraction, ligaments, joint capsules and

other connective tissue structures) and external forces (inertia, gravity and ground

reaction forces) that are present are constantly monitored and adjusted to prevent

movement and maintain posture. To remain in one position, the forces must be in

equilibrium, that is, the net effect of all of the forces acting on the body and its segments

must be equal to zero (van Asseldonk et al., 2007). It is important to note that the inertial

forces relevant to quiet standing are usually ignored when analysing balance. In quiet
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standing, little or no acceleration is occurring negating the inertia that might be present.

The body, however, does undergo a constant swaying motion or postural sway that can be

considered an indirect measurement of the stability of an object (Talbot, 2005). '

In normal stance, the amount of sway is small and plays a minimal role in altering the

position of the body segments. This sway, however, may become greater when the body

is unstable as sensory receptors and responding output increase to prevent falls. The line

of gravity from the CoM to the axis of a joint determines the internal forces needed to

maintain joint position. When the line of gravity passes directly through a joint axis, no

gravitational torque is created around the joint and additional forces are not needed to

keep the joint in one position. Otherwise, a torque will be developed that will rotate the

body segment requiring an opposing torque to maintain balance (Hamill and Knutzen,

2003, p. 405).

2.2. Neuromuscular factors influencing static balance

2.2.1. Sensory systems

To achieve perfect balance it is necessary for several different systems to interrelate.

Postural stability may be affected by firstly visual input, secondly the vestibular system,

thirdly the proprioceptive inflow and fourthly the locomotor system (Roland et al., 1995).

With respect to postural balance, three sensory systems have a main role: proprioception

vestibular system, and vision:

Proprloceptors are defined as "nerve terminals found in muscles, tendons and joint

capsules, which give information concerning movements and position of the body;
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sometimes the receptors in the labyrinth are also considered proprioceptors" (Dorland's

Illustrated Medical Dictionary, 2003, p. 124). Receptors "are specialized cells or

subcellular structures that change their properties' in response to stimuli" (Latash, 1998, p.

112). Their main function is providing information to other neurons, that is,

environmental information in addition to information on the body part itself. This

information is collected by three kinds of receptors:

• Introceptors: transfers information within the body itself.

• Extraceptors: transfers information from environment.

• Proprioceptors: transfers information about the body segments.

The latter proprioceptors can be found in the muscles, tendons, and joints. Proprioceptors

in the muscles are the muscle spindles, which are sensitive to length and velocity of

muscle stretch. The proprioceptors located near the junction between tendons and muscle

fibres are called Golgi tendon organs, which are due to their specific location in the

tendon and their structure's elasticity (Figure 2.1), are perfect in detecting mechanical

deformation related to the force stretching the tendon. Therefore, they are known as a

force sensor. Another group of proprioceptors are the joint receptors which are known as

particular receptors which are fast in transferring signals (80 mls).
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Spinal cord -------

Muscle----~AA

Sensory neurons

Gol i 1 ndon organ

)
Figure 2.1 location of proprioceptors (Wikipedia, 2010).

The t'e tibular system i compo ed of the en e organ of balance (McGinnis, 1999, p.

7 ). each inner ear (Figure 2.2, right) contain three bony tunnels that are filled with fluid

called endolymph, which provide ignal ba ed on the orientation of the head with

re pect to the direction of the field of gravity (Lata h, 1998, 113). The ve tibular y tern

can be divided according to it dynamic and tatic function :

• Dynamic function when the emicircular ducts allow tracking of head rotation in

space. Thi i particularly important in controlling the reflex control of eye

movements.
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• tatic function plays a very important part in postural control , as the hair cells in

the utricle and the saccule enable to monitor the exact head position in space

(La tash, 1998).

1iddlc car

nerve

Semicircular
canal.

F.3r drum
External
canal

a terior canal

Figure 2.2. The ear and inner ear (left ), the ve tibular system (right) (Wikipedia, 2010).

i ion and Balance

Vision provides most of the information to the brain whic h makes it a reliable source of

information and play a direct and important role in stabi lizing balance by providing the

nervou sy tern with continually updated information regarding the po ition and

movement of body egment in relation to each other and the environment. Thi visual

information i ignificant in po tural control , which can be recognized by bigger way

when people tand with eye clo ed compared to standing with eyes open (Redfern et al.,

1997). When people tand with their eyes clo ed, po tural sway increa e betv een 20%

and 70% ( lagnu on et al., 1990; Paulu et al., 1984). It has al 0 been found that moving

i ual field can induce a pov erful sen e of self-motion and misleading visual cue

induce significant increa es in swaj (Lee and Li hman, 1975). Lord . (2005) Individuals
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with good vision in both eyes have the lowest rate of falls, whereas those with good

vision in one eye but only moderate or poor vision in the other had elevated falling rates

that were equivalent to those of patients with moderate or poor vision in both eyes. It is

clear that information from all three sensory systems need to be integrated to control

balance.

2.2.2. Muscular control of static balance

During upright quiet stance of normal subjects, the body parts act as one rigid structure

without movements and there is very little EMG (electromyographic analysis) activity in

the postural muscles (Rothwell, 1994~ p. 59). In other words, no conscious activation of

muscles by the nervous system is required to maintain balance (Enoka, 1994). Breathing,

heart beats as well as any external force (e.g. gravity) disturbs the equilibrium which

moves the CoM continuously in anterior-posterior and medio-Iateral directions.

Movements can be found at the ankle, hips and neck joints during balance which will

correct each other to maintain balance. In an inverted pendulum model where the body

pivots around the ankle joint, if the CoM is located exactly above the BoS~ then the

system is perfectly balanced. However, as the CoM rotates forward around the ankle

joint, the body will fall over unless it applies a torque at the ankle joint in the opposite

direction (Rothwell, 1994~ p. 60). These rotations will stretch the gastrocnemius and

soleus muscles and produce an opposing torque at the ankle joint whose effect can be

measured by having a subject stand on a force platform (Rothwell, 1994, p. 61).

The reflexes do not contribute directly to the recovery of balance (Kejonen, 2002). The

first response against falling is an automatic reaction, as seen in EMG signals, which
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occurs as a medium-latency muscle response. These reactions are coordinated and

conveyed through vestibulospinal reflexes and affect all muscles of the legs; trunk' and

neck (Allum et 01., 1988). In addition to the medium-latency responses, long-latency

responses have been found to co-occur in the antagonist muscles (Diener et 01., 1986).

Automatic responses can be thought of as "long-loop" reflexes that rapidly respond to

resisting disturbances (Diener et al., 1986). Automatic reactions are context-dependent

and adaptable to the specific balance demands. For example, coordination patterns can be

changed, depending on the reliability of the support surface and recent experience.

In feedback loops of the sensory system, there is an important phase lag between the

controlled variable and controlling variable. This will have an effect on the dynamics of

the system. Typical values of this phase lag for the vestibular or joint proprioceptive

reactive control are 150-250 milliseconds (Winter et 01., 1998).

2.3. Assessing static balance:

Static balance has been commonly assessed by many researches by using the Romberg

test, a clinical test with a specific purpose (Era et al., 1996; Bulbulian and Hargan, 2000)

which is clinically based on bipedal stance, standing with the feet together (the standard

Romberg test). It can be developed to obtain appropriate information of balance

capabilities during standing e.g. with eyes open and eyes closed (Bulbulian and Hargan,

2000), on one foot flat or even one foot tiptoes, either barefoot (Giagazoglou et 01.,2009)

or shod (Goulding et al., 2003; Ramstrand et al., 2010) or both barefoot and shod (De Wit

et al.; 2000). Additionally, the surface can also be changed by testing an individual on

foam (Davis et al., 2009). Comparisons of force platform measures of sway with subject's
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performance using other clinical balance tests have been reported by measuring the forces

needed to maintain upright stance on a force platform, Karlsson and Frykberg. (2000)

found that there was generally a significant correlation (P < 0.01) between measures of

the standard deviation of the horizontal ground reaction force, the standard deviation of

the CoP, and the mean velocity ofthe CoP.

The range of suitable methods commonly depends on the aims of the investigation and

the ability of apparatus which is varied, e.g. functional balance scales are easy to use and

suitable for daily clinical use though not always accurate enough, while modem

laboratory systems with new technologies may provide more detailed information about

postural balance but are expensive. Therefore, there is no single assessment technique that

could be used as a true indicator of the overall integrity of the balance control system

(Winter et al., 1997).

Balanced stance is based on the coordinated movements of body segments and the neuro­

musculo-skeletal system with the interaction of internal and external forces. Therefore,

standing balance can be measured in the laboratory derived from kinematic motion

analysis systems that capture detailed data ofbody movements (Winter, 1995) (e.g. Vicon

motion analysis system). Kinetically, static balance can be measured by platform

measurements that record the forces and the moments of forces developed during

movements, and electrically, by recording the bioelectrical changes associated with

skeletal muscle activity by the EMG (Kejonen, 2002). These systems can be either used
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separately or synchronized together (Winter, 1995) in balance measurements, depending

on the aim ofthe study.

The duration of postural stability testing is fundamental in all laboratory-based

measurements. Typically, in platform measurements, for example, the most frequently

used duration is from 20, 30 or 60 seconds. The measuring time should be long enough to

provide a relevant result, but short enough to avoid fatigue: due to the measurements. For

example, Iverson et al. (1990) found a clear decrement in balance times in the Romberg

test among subjects aged 60 to 90 years due to the earlier onset of fatigue in these elderly

subjects.

2.3.1. Areas of investigations:

Numerous studies have investigated balance in interesting areas. Many researchers

investigated the difference between the sexes. For example, some investigations have

focused on postural balance in only male populations (e.g. Arokoski et al., 2006) while

others have focused on female populations (e.g. Harringe et al., 2008; Ramstrand et al.,

2010) and some in both males and females (Roland et al., 1995; Lebiedowska et al.;

2009). Kinney LaPier et al. (1997) found that differences in body heights of men and

women contribute to poorer postural stability of men compared to women. In several

balance tasks, men exhibited a statistically significant larger range of CoP displacement

than the women (P < 0.01). However, after normalising the data for height, other

researchers found no gender differences were seen (Bryant et al., 2005).
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Balance has also been investigated in varied age populations such as children as young as

3years old (Usui et al., 1995; Deitz et al., 1996), adults and elderly as old as 90 years

(Bulbulian and Hargan, 2000; Iverson et a/., 1990). Varied age populations can also be

informative (Lebiedowska et al., 2009). It has been demonstrated that quiet standing

postural control of children improves with age hence studies reported that in static

balance control 8-year-old children use fewer muscles at lower amplitudes (EMG) when

compared to 4-year-old children (Shambes, 1976). Hytonen et a1. (1993) quantified the

effect of vision and proprioception function on the postural stability at different ages

(ages from 6 to 90 years) and reported that the postural stability is optimal around the

ages of 30 to 60 years. In adults the cooperation of vision, vestibular, proprioceptive

system has become sophisticated thus creating a stable equilibrium whereas at the age

under 10 years, the postural control and synergy are not yet developed and therefore

children sway more than adults (Hytonen et al., 1993).

In a sport context, many researchers have investigated static balance in sports groups.

Bulbulian and Hargan. (2000) examined postural balance of populations of athlete's and

non-athletes. It is commonly known that regular exercises would significantly improve

balance ability. If physical exercises could be implemented among non-athletes, it would

most certainly improve balance and general health. In addition, improved balance ability

would decrease the high incidence of falling and subsequent fractures in the growing

population of elderly people. Furthermore, Harringe et al. (2008) investigated the postural

balance of sport professionals' (top-level gymnasts). Sundstrup et al. (2010) reported that

lifelong football-trained elderly showed superior rapid muscle force characteristics (faster

contraction times) and better postural stability compared with untrained age matched
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individuals, and moreover no deficit could be detected between old individuals engaged

in lifelong football training and the group ofuntrained youngsters. ~

In a clinical context, numerous researchers have investigated postural balance, Almost by

definition clinical research looks at non-healthy individuals e.g. comparing the behaviour

of patients with unstable ankles to that of subjects with healthy ankles during sudden

inversion (Vaes et al., 2002), and investigating muscle reaction times in patients with

Almost by definition clinical research looks at non-healthy individuals e.g. Chronically

unstable ankles (Eechaute et 01., 2009). Giagazoglou et 01. (2009) investigated static

balance control in blind and sighted women subjects. The effect of additional mass upon

balance is also another topic investigated. In pregnancy, postural equilibrium is

significantly affected due to weight gained at the third trimester, hence the total weight

that is gained is approximately 12 to 16 kg, which represents a 16% to 23% increase in

body weight (Butler et 01., 2006). Oliveira et 01. (2009) reported pregnancy induced

significant changes in postural control when pregnant women stood with a reduced BoS

or with eyes closed, particularly in the anterior-posterior direction. Furthermore, weight

and carrying external weight (e.g. carrying school backpack) significantly altered balance

control (Talbot, 2005) as did the position of load carriage in healthy young male

participants (Abe et al., 2004). Blaszczyk et al. (2009) found that obese individuals in

static balance have smaller sway of the CoM than non-obese.

Static balance can also be assessed based on measuring a combination of complex

mechanical factors (e.g. CoM, CoP, BoS and XCoM) (Maki, 1994; Winter, 1995;
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Woollacott and Shumway-Cook, 2002; Hof et al., 2005) in addition to other mechanical

variables (e.g. kinetic energy, momentum; impulse and friction torque).

2.3.2. Balance assessment equipment:

Force platforms:

Humans, in almost all terrestrial movements are acted upon by the ground reaction force

(GRF) provided by the surface. This surface may vary e.g. concrete, s!mdy beach,

gymnasium floor, or grass lawn surface (Hamill and Knutzen, 2003). All surfaces provide

a reaction force equal to the applied force but opposite in direction. Therefore, studying

this phenomenon is fundamental to understand most individual movements. Force

platforms have been most commonly used in sports biomechanics to measure the GRF

and also to quantify body sway (Nashner and McCollum, 1985; Maki, 1994; Blaszczyk et

al., 2000). Force platforms are popular because they are simple to use, very accurate

(Bartlett, 2002, p. 208), do not interfere with movement, and are not unpleasant for the

patient (Roland et al., 1995). They generally consist of piezo-electric sensors mounted at

three or four corners of a plate on which the subject stands. The position of the centre of

force is calculated from the forces measured by each transducer.

Many researchers have measured postural stability by using force platforms (Maki, 1994;

Era et al., 1996 and Blaszczyk et al., 2000). The force components are usually labelled as

Fz, vertical (up), Fy, anterior-posterior (forward-backward) and Fx medial-lateral (side­

to-side) (Figure 2.3).
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Figure 2.3. The force components, Fz, vertical (Fv, up), Fy, anterior- posterior (FAP,

forward-backward) and Fx medial -lateral (FML, side-to-side). .

According to the standards of the International Society of Biomechanics (I B) the force

components are labelled diffe rently as Fy, vertical (up-down), Fx, anterior-posterior

(forward-backward) and Fz medial -lateral (side-to-side). ee figure (Figure 2.4).
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Figure 2.4. Different coo rdina te system of one force plate , also force component in both
Kistler and I B.
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One common procedure to assess balance using a force platform is the calculation of the

movement of the CoP . Recently, commercially produced and economically competitive

balance platforms have become available (Talbot, 2005).

Kinematic analy i y terns:

The Centre of Mass during standing still is controlled by continuously moving. Therefore,

computing the CoM has become essential in studying balance as well as in sports

biomechanics.

C. Ole n 1

(ahlen 2

( I n~ 1I6

Figure 2.5. 3D Kinematic ystern (typical optoelectronic camera confi guration).

Method of computing the CoM can be varied. The centre gravity board can easily

determine the posi tion of the CoM in static posture . Alternatively, the 3D computation

using video digitization of body landmark can determine CoM position used in the
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analysis of human movements (Grimshaw et al., 2006, p. 148). The 3D optoelectronic

motion analysis systems commonly used in biomechanical laboratories use a series of

cameras which project infra-red light onto reflective markers (Figure 3.4). This system

provides sophisticated information and tries to reduce the complexity of data collection

and speed up the process (Grimshaw et al., 2006, p. 306- 307). It also can be integrated

with other apparatuses e.g. force platform, movable platforms and electromyography

(EMG) (Colby et al., 2000).

2.3.3. Variables used to quantify balance:

Quantifying balance is based on measuring variables which are derived from the

following principles:

1. The center ofmass (CoM) which has to be within the Base of Support (BoS).

11. The larger the BoS and the closer the CoM to the middle of the BoS the better the

balance.

iii. Segments (e.g. feet, hands) can be used to maintain balance.

Hence static balance is often characterized by postural sway based on the information that

is gathered from:

a) The trajectory of the CoM, the point which represents the mean position for the

concentration of the entire mass of the body, (Grimshaw et al., 2006, p. 148)

estimated from video-based systems combined with anthropometric information.

b) The Centre of Pressure (CoP) which is defined as the point of application of the

ground reaction force under the feet (Winter, 1995)
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Both CoM and CoP can be evaluated by the root mean square (RMS) over a specified

time period: the CoP trajectory, CoP velocity, range of sway, excursions of sway, the

length of the sway path and sway velocity and sway area (Santos et al., 2008). These

parameters can be represented in the medio-lateral (ML) and anterior-posterior (AP)

directions. The CoP and the CoM" are considered equal if the sway velocity is low. Thus,

the CoP is frequently used in static balance research because of the ease with which this

data can be obtained. Many further variables can be derived from both of the above

mentioned variables (CoP and CoM) e.g. the extrapolated Centre of Mass (XCoM),

Kinetic Energy (KE), momentum (P) and Friction Torque (Q) which might provide

further understanding about static balance. Firstly, The CoM, the BoS and the CoP will be

discussed.

Centre of Mass (CoM):

The body's CoM can be considered as the variable controlled in balance (Morasso et al.;

1999). The trajectory of the CoM cannot be measured directly but can be estimated using

video-based systems combined with anthropometric information based on segmental

method of computing the location of the CoM e.g, whole-body gait analysis using retro­

reflective markers and a camera system at certain sample rate. The CoM is computed as

the centroid of a multi-segments model, a technique commonly used in many studies in

biomechanics based on body segments (head, trunk, 3-segment arms, pelvis, and 3­

segment legs) (Figure 2.6). (Hamill and Knutzen, 2003, p. 389)
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Figure 2.6. An example of 14-Segment model (the Hanavan model).

A video-based system is a time-consuming method to be applied routinely in a clinical

setting and requires expensive equipment. An alternative estimation of CoM position can

only be achieved when restricting the estimation to the vertically projected CoM. Some

studies computed the trajectories of the Centre of Mass based on the calculations of the

trajectories of the CoP (Shimba, 1984). Even though this method is reliable (Kingma et

al., 1995) it is only applicable in static circumstances as long as the participant is in

contact with the force plate. This method is not applicable in testing dynamic balance.

Three approaches have been used to determine the CoM excursion from force-plate data

alone. Levine and Mizrahi. (1996) applied a low pass filter to the CoP displacements.

Another method is the calculation of the second integral of the acceleration, since the

horizontal forces are proportional to the acceleration of the CoM. The difficulty with this

method is the estimation of the initial integration constants. Crowe, 1995; Levine and
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Mizrahi, 1996; and Zat ior ky and king, 1998) developed curve-fitting techniques or

optimization method or made some assumptions to successfully solve the double-

integration problem. A third consists of using inver e dynamic methods which i ba ed on

mechanics equations of motion. Karlsson and Lanshammar (1997) compared the

acceleration gi en by the force plate with those from a kinematic model to stud y postural

movement strategies in the agittal plane. All the e models uniquel y provide the

horizontal displacements of the vertically projected CoM and were often the results of a

planar analy i . The vertical excursions of the CoM were usually considered negligible .

The Ba e of upport (Bo )

To maintain balance, the Co mu t be kept within the 8 0 . The narrowness of the 8 0

make tanding upright quite a challenge. It b comes even more challenging when a

person tand on a single foot flat or moreover, at orne stage when the person stand on

tiptoe. Traditionally, the fea ible movement which can be made to control balanc e are

described in a ingle plane related to the hori zontal position of the CoM : a person has to

confine the projection of the oM within the 8 0 in order for the body to remain

balanced while tanding (Patla et al., 1991). Re earchers measure the 80 cia sically a a

fixed area by drawing the outer edge of the feet/ foot (Figure 2.7) or the area of cont act

between a body and upport urface or ur face (Rothwell, 1994, p. 259).

[
Figure 2.7. The cia ical 8 0 durin g static balance (two feet flat, eyes open) and during
landing in dynamic balance (jum ping on tipto es).
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The available Bo has an anterior and posteri or limit and a medialllateral limit which, in

standing, correspond to the tips of the toes (anterior), the heels (posterior), and the outer

edges of the fifth metatar al of each foot (media l and lateral ) and it can be found by

digitization of the footprint (Talbot, 2005). However, Hof et al. (2005) described their

method of mea uring the effective Bo using a foot pressure recording sy tern

[Foot can 3D Balance, (R can International, Belgium)] (Figure 2.8) by recording the

ext reme boundaries of the Co P. The subject stood on one foot and was asked to shift his

weight a much a po ible laterally, anteriorly, medially and posteriorly and was allowed

to lean on a upport to maintain balance. In this way the boundary of the Bo is recorded

a a loop of th CoP 0 that the relation between Bo area and foot surface can be seen .

Effect ive Bo

Figure 2.8. The effective Bo whi le tanding on one foot flat is smaller than the outer
solid line repre ent ing the cia ical Bo (Hof et al. , 2005).
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Centre of Pressure (CoP)

The CoP can be measured using a force platform or a pressure mat. Although researchers

have criticised the use of the displacement of the CoP as it merely reflects the response of

the neuromuscular system to correct the position of the CoM (Winter, 1995), the CoP is

still the most commonly used indicator in clinical tests of sensory interaction on balance,

mainly due to the fact that it is easy to measure and analyse (Wrisley and Whitney, 2004).

Several balance assessment parameters have been reported using the CoP, focusing on

spatial aspects (e.g., average radial displacement) or on spatio-temporal aspects (e.g., path

length per second, time to boundary, sway area per second, mean frequency and median

frequency) (Cherng et al., 2003).

2.4. Mechanical theories of static balance

During quiet stance, healthy subjects control their upright posture with small movements

made by different segments of the body (Nashner and McCollum, 1985). The optimal

position during balanced stance requires that the CoM is maintained within the BoS.

Increasing the BoS e.g, by keeping feet apart for the lateral direction of body sway and

taking a step for the anterior direction, gives better balance. There are three main

mechanisms to maintain balance (Hof, 2007):

2.4.1. Mechanism 1: Inverted pendulum theory

The balance of standing humans is usually explained by the inverted pendulum model

(Figure 2.9). This model represents the tendency humans have to fall away from their
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point of support on the ground as a stick or inverted pendulum would do. This model can

be used for sagittal plane motion, primarily implying rotation around the ankle joint

(plantar-flexion and dorsi-flexion), and in some cases it has been used for the frontal

plane motion, primarily implying rotation around the hip joint (abduction and adduction).

Figure 2.8 illustrates the inverted pendulum used for static balance when the body is

modelled as a single mass m (CoM) balancing on top of a stick with length 1. Indicated

are the CoP (u) which is the location of the effective ground reaction force, and the

vertical projection of the CoM (x), the body mass line (-mg) and the vertical ground

reaction force (mg). The BoS is the area within which the CoP is confined, and roughly

equals the area of the foot sole.

"... X" Jlma:r
XCoM CoP

..
BoS

Figure 2.9. Simplified inverted pendulum model for use in static balance (Hof et al.,
2005).

People avoid falling by changing the location of the CoP (u), i.e. the controlling variable,

to correct the position of the CoM (x), i.e, the controlled variable (Winter et al., 1998).
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The subject moves the CoP under the foot by changing moments of force around the

ankle joint, causing the CoP to move in phase with the CoM . Despite its simplicity, the

inverted pendulum model has been remarkably successful in many applications (Winter,

1997). This model implie s several important assumptions which allow for its simplicity.

First, all of the mass of the subject is assumed to be concentrated in one point , that is, the

CoM. Second , the height of the CoM is considered constant. Third, the excursion of the

CoM over the pendulum is restricted to a small range , such that , within this range the

motion of the CoM can be assumed to be horizontal motion. Finally, the ground reaction

force (GRF) is the only external force that applies to the body.

2.4.2. Mechanism 2: Cou nter-rotation of segments

The main situation in which the inverted pendulum model does not apply is when arm or

trunk motions are used to aid balance . These motions introduce a shear force (Fj) at the

point of the support (Figure 2. 10) creating a balance restoring mechanism (Otten, 1999) .

Therefore, this mechanism is called the counter-rotation mechanism.

--... Fh

Figure 2.10. The counter-rotation mechanism has a horizontal (Fh) and vertical (Fv)
component (Hof, 2007).
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During standing, people avoid falling by using fast movements to generate shear forces

(Fh) which keeps the CoM within the BoS. Maki and McIlroy (1997) explain the hip

strategy in terms of the generation of shear forces at the feet. Such, flexion-extension or

adduction-abduction in the hip belong to this mechanism, as well as the ann and leg

I

motions that are seen when balancing on narrow supports (Horak, 1997).

2.4.3. Mechanism 3: External support

The use of an external support can be used to apply an external force for example by

leaning against a wall or holding on to a handrail, but also by taking a step (Hof, 2007).

These activities have the same purpose, that is, they lead to a change of the BoS within

which the subject can keep the CoM.

2.4.4. Advances to the Inverted Pendulum theory: The extrapolated Centre of Mass

(XCoM)

The condition for standing balance is usually that the vertical projection of the CoM on

the ground should be within the BoS. Hof et al. (2005) have recently shown that this

condition should be reformulated to take into account not only the CoM position but also

its velocity. Hence, the position of the XCoM equals the CoM position plus a correction

value related to its velocity. Based on inverted pendulum mechanism, it can be used to

determine a 'margin of stability', based on the distance from XCoM to the boundaries of

the BoS. In this concept, a greater distance indicates a more stable situation.

Specifically, the XCoM = Xo + Vo
(,)0
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where Xo is the vertical projection of the CoM, Vo is the horizontal velocity of the CoM

and, Wo is the pendulum frequency defined as

..~ -Jf'""'0 - ­I

where I is leg length and g is the accelerationdue to gravity.

...2.2

2.4.5. Other mechanical variables used for quantifying balance.

Kinetic Energy (KE):

Energy is defined as the capacity to do work, its unit being joules. Kinetic Energy is a

scalar quantity and is the energy of motion. An object which is in motion whether it is

vertical or horizontal motion has kinetic energy. There are two forms of kinetic energy:

Linear Kinetic Energy which is based on the linear velocity and the mass of the object

and is given by the equation

1 Z
KELIn = - * m *vz

Where m is the mass and v is the magnitude ofthe linear speed

... 2.3

The second type of Kinetic Energy is the rotational Kinetic Energy which is based on the

angular velocity and the moment of inertia ofthe object and is given by the equation:

1 Z
KErot = '2 * I * w ...2.4

Where I is the moment of inertia and w is magnitude of the angular speed

Generally, these equations reveal that the Kinetic Energy of an object is directly

proportional to the square of its velocity. The Kinetic Energy is an important mechanical
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variable to investigate balance, particularly when the body applies a shear force to control

velocity, for example when the body decreases its velocity at landing.

Momentum (linear P and angular H):

The key to dynamic stability is the control of the momentum of the CoM. The distribution

of body mass is such that two-thirds of mass is in the head, arms, and trunk. Because of

the large translational and rotational inertia of the upper body, its position and movement

(momentum) can be critical in the overall stability of the upright stance (Winter, 1995).

When there is insufficient lower extremity torque generating capacity, the upper body

momentum may be used to maintain the stability (Jevsevar et al., 1993; Krebs et al.,

1992). There are two forms of momentum: The linear momentum of an object (P) is

defined as the product ofits mass (m) and linear velocity (v):

P=m*v

Where m is the mass and v is the linear velocity

...2.5

The angular momentum (H) is defined as the product of the object's moment of inertia (I)

and its angular velocity (w):

....2.6

Where I is the moment of inertia and 00 is the angular velocity.

Momentum is a vector quantity.
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Impulse (I):

Impulse is defined as "the applied force i (F) multiplied by the time (t) of force

application" (Grimshawet aI., 2006, p. 81). The impulse either results in the increase of

an object's momentum when taking off in jumping or hopping, or a decrease of its

momentum when landing from these activities. The linear impulse is related to the

changes in linear momentum:

...2.7

Where F is the force, t is the time, m is the object's mass and v is the linear velocity.

The angular impulse is the product of torque (M) and time. Significant changes in the

body's angular impulse may result from the action of a large torque over a small time and

vice-versa. Since torque is the product of the magnitude of a force and the perpendicular

distance of that force to the axis of rotation, both of these factors affect the angular

impulse. This is important to keep in mind as the magnitude of a force is measured

accurately by the force platform, but the perpendicular distance of the force to the axis of

rotation depends on the location of the CoP, which is not as accurately measurable (see

later section). This largely prevents this variable from being used in full for balance

assessment.

Friction Torque (Q):

As previously noted, quantifying the angular impulse accurately for the whole body is

difficult because it requires knowledge of the motion of several body segments to

calculate the CoM and accurate measurement ofother variables such as the location ofthe
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CoP. However, the angular impulse involves two torque components. The one due to the

horizontal friction force applied to the ground can be obtained accurately and is directly

related to the counter-rotation mechanism of balance. Hence, calculating the torque (Q)

produced by the friction force will provide important information about the force that

subjects apply to generate angular impulse of the body (Figure 2.11).

Dz

CoP

Figure 2.11. Torque due to frictional force is determined by the height of the CoM (Dz)
and the horizontal ground reaction force component (FML and FAP). These components are
the most important part of the counter-rotation mechanism to maintain balance.

Q = Ffriction * Dz

Where Ffriction is the friction force which is based on:

QML = FML(shearforce) * Dz

QML = FAP(shear force) * Dz
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Where the Medio-lateral force (FML) is Fx, Anterior-posterior force (FAP) is Fy, and the

height of the CoM is Dz.

2.5. Dynamic balance

Dynamic balance is defined as the ability to maintain equilibrium while the body is in

motion or changing from one balanced position to another. Also it is defined as "a

constant adaptation to fo~ces in order to momentarily attain dynamic equilibrium before

adapting and establishing a new equilibrium" (Adrian and Cooper, 1995, p. 22). Like

static balance, dynamic balance can also be quantified by measuring the CoM and CoP in

both medio-lateral (ML) and anterior-posterior (AP) directions. In addition to these

variables many more can be calculated e.g. the extrapolated Centre of Mass (XCoM),

Kinetic Energy (KE), momentum (P), time to stabilization (ITS), dynamic postural

stability index (DPSI) and Friction Torque (Q) which provide further understanding about

dynamic balance.

Conventionally, maintaining balance is described in two dimensional space related to the

horizontal position of the CoM, maintaining the projection ofthe CoM within the BoS in

order for the body to remain balanced while standing (Adrian and Cooper, 1995, p. 22;

Kuo, 1995). This condition alone, however, is not sufficient to guarantee that standing

posture will be sustained. The main difference between the static and dynamic balance is

that the CoM travels out of the BoS area and is not anymore within and above it e.g.

during walking (Kirtley, 2006, p. 170).
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Current studies have considered the horizontal velocity of the CoM in describing the

feasible movements for controlling balance (pai et al., 1992; Hof et al., 2005), as it

governs the destiny ofthe horizontal position of the CoM over the BoS. Standing will not

be maintained when a sufficiently large horizontal velocity exists, even though the

horizontal CoM is currently located within and over the BoS. On the other hand, even if

the CoM is initially located outside the BoS, as in movement termination, upright

standing is still achievable (without falling or resorting to taking a step) when a sufficient

horizontal CoM velocity is directed toward the BoS (Hof et al., 2005). Therefore, in

addition to the position of the CoM with respect to the BoS, the magnitude and the

direction (i.e. toward, not away from, the BoS) of its corresponding velocity may also

provide critical information pertaining to one's ability to control balance in dynamic

situations.

Many studies have investigated static balance while fewer studies have investigated

dynamic balance, most of which have focused mainly on gait analysis and rarely dealt

with sport activities. Therefore, investigating dynamic balance in sport related activities is

important particularly in sport activities such as jumping and hopping.

2.5.1. Variables used for quantifying dynamic balance.

Dynamic Postural Stability Index and Time To Stabilization:

Dynamic measures were developed to overcome the shortcomings of static measures

(Reimann et al., 1999). Dynamic tests are varied from 3-20 seconds during jump landings

(Wikstrom et al., 2005). A 20 seconds period of time is too long and does not represent
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sport activities (Wikstrom et al., 2005). Therefore, 10 seconds trial durations are more

appropriate to assess the dynamic balance in sport related movements. The dynamic

postural stability index (DPSI) can be defined as, an individual's ability to maintain

balance while transitioning from a dynamic to a static state (Goldie et al., 1989).

The time to stabilization (TIS) is defined as the time required to minimize resultant

ground reaction forces (GRFs) of a jump landing to within a range of the baseline. TIS is

an objective postural control measure used in conjunction with a functional jump

protoco1. TIS has been used to investigative the lower extremity stabilization based on

the force measures in various tasks such as forward and medialllateral drop jumps, and

vertical jumps at 50% of maximum height (Colby et al.; 1999; Ross, et al., 2005;

Wikstrom et al., 2005; Sato et al., 2008).

TIS has been used to evaluate the effects of fatigue. Wikstrom et al., (2004) compared

between pre-exercise (baseline) and post-exercise (isokinetic, functional and combined

isokinetic and functional fatigue protocols) the vertical time to stabilization (TTSv),

medio-lateral time to stabilization TISML and anterior-posterior time to stabilization

TISAP. In TISv, there was a significant difference for combined fatigue between

baseline, (2201 and 1562 ms respectively) and post-exercise, (2461 and 1350 ms

respectively). The other two conditions were not significantly different but there was a

trend. This trend was also found in TISML and TTSAP measurements. Colby et al. (1999)

tested TIS during a step down in both healthy subjects and subjects with anterior cruciate

ligament (ACL) injury, in healthy subjects (TTSAP, dominant foot = 1419 ms, non-
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dominant foot = 1877 ms) and for ACL injured subjects (TTSAP, dominant foot = 1998ms,

non-dominant foot = 1876 ms). The key finding was that the ACL group needed

significantly (P = <.001) longer time to stabilize during the step down test, and that ITS

is an indication ofdynamic balance ability. Sato et al, (2008) examined the differences (in

TIS) between volleyball players and rugby players in four different hopping tasks

(medial, lateral, and two forward hops) onto each foot. They found that the rugby group

stabilized more quickly on the right foot, while the volleyball group stabilized more

quickly on the left foot in a medial hop task.

2.6. Factors influencing balance

2.6.1. Added weight and balance:

It is known that static equilibrium is positively related to mass of the object (Adrian and

Cooper, 1995, p. 22), in other words, the mass of an object affects its stability and the

more mass possessed by an object the more force will be required to move or disturb it

(Grimshaw et al., 2006, p. 162). Hamill and Knutzen (2003, p. 395) reported that heavier

individuals have superior balance; many sports in which stability is critical, take body

mass into consideration by dividing the participants into weight divisions. Therefore, in

static balance additional carried weight might help people to maintain balance. Blaszczyk

et al. (2009) found less postural sway in obese subjects and almost all sway indices

negatively correlated with body mass. Davis et al. (2009) found that obese firefighters

had less postural sway, and they compensated posturally when standing on foam by

reducing their sway area by 26% as compared to normal weight firefighters. Grimmer et

al. (2002) revealed that there was a significant relationship between carrying additional

weight and posture. Most studies have recommended that 10% or 15% of total body
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weight load leads to changes in posture mechanisms, and these changes might even occur

below these weights (Grimmer et al., 2002). Moreover, the location of the added mass

was considered as an important factor that affects the erect posture. Many studies have

suggested that the logical choice for the load location would be the closest to the CoM as

possible. Grimmer et al. (2002) suggested that the location of the adolescent's backpack

has to be just at the waist level (CoM location) to minimize postural displacement. This

placement would reduce the excess moments about the body's CoM and thus reduce the

energy required to carry the load (Johnson, 2000).

Much of the literature, which has dealt with the effects of wearing a backpack on human

gait and posture, has focused on children wearing school bags (Talbott, 2005). However,

many adult populations either wear a heavy external load such as a backpack or carry

extra weight in their torso due to life tasks or obesity. Studies have shown changes in gait

because of wearing a heavy backpack in adults (Abe et al., 2004) but few studies have

investigated the postural implications. For dynamic conditions, the trunk forward lean

increased significantly for the 15% and 20% load conditions compared to the unloaded

condition. Furthermore, Qu and Nussbaum. (2009) found that applying external loads

(10% or 15% of total body) led to significant changes in several centre of pressure's

based measures. Increased mass near the torso may increase the risk of injury due to

falling e.g. soldiers, recreational hikers, and even overweight individuals. Carrying

additional mass creates many biomechanical and postural challenges for these people

(Blaszczyk et al., 2009).
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In a clinical context, lightweight individuals generate ankle torque more rapidly and with

a much higher rate of torque development to recover balance. Researchers have indicated

a potential link between obesity and risk of falling during dynamic circumstances

(Wallace et al., 2002). The abdominal circumference, endomorphy and body weight are

the most important factors influencing the performance of military recruits on postural

tests (Fregly et al., 1968). Moreover, body size and shape influence static postural

stability by altering the location of the centre of gravity (Corbeil et al., 2001). It seems

logical that the increased antero-posterior sway observed with obesity represents a

limitation of the ability to control the inertial properties associated with greater fat mass,

rather than an impaired postural control system itself (Hennig et al., 2006). Moreover, an

increased postural sway is not usually conclusive evidence for postural instability

(Blaszczyk et al., 1994). Gymnasts and professional ballet dancers sway more than

control subjects, even though their postural stability control is apparently superior

(Blaszczyk et al., 2009). Hence, further investigation of how and why balance control is

affected by external loads is necessary, in dynamic activities in particular since most of

these studies above have focused on standing posture. One of the main factors influencing

balance is the BoS (contact surface) as the larger BoS the more stable the object. Obese

people maintain balance by modifying their feet structure (BoS) by increasing the contact

area (Matrangola, 2008).

To date, most studies investigating postural control in the obese have employed cross­

sectional study designs and have not considered the potentially confounding effects of

physical activity. Physical activity status has been shown to have a profound influence on

balance performance in adults (Bulbulian and Hargan, 2000), and as such may confuse
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the effect of obesity on postural control. Goulding et al. (2003) reported a significant

negative relationship between body weight, body mass index, percentage of fat and total

fat mass and a clinical balance score. Obesity modifies body geometry that increases the

masses of the different segments, and imposes functional limitations relating to the

biomechanics of activities of daily living such as the limitations related to dynamic

balance control. This supports the idea that overweight can lead to poorer dynamic

balance control in obese people or while carrying additional weight. Given the association

between obesity and physical inactivity (Jebb and Moore., 1999), it is unclear whether the

additional mass associated with obesity results in reduced postural stability, or the greater

adiposity of the obese is the consequence of postural instability and reduced activity

(Hennig et al., 2006).

To date few researches have investigated the effect of additional weight on dynamic

balance. Moreover, no study has investigated the effect of additional weight on dynamic

balance in sport related activities, in particular, jumping and hopping.

2.6.2. Fatigue and balance:

In order to remain in equilibrium, several mechanisms are used by the central nervous

system (CNS). Muscular fatigue is commonly associated with physical activities, which

the CNS has to take into account (Schieppati et al., 2003). Maintaining balance is mainly

the ability to generate forces large enough to maintain stability while performing

voluntary movements (Ledin et al., 2004). It has been reported that fatigue causes

negative postural control in both elderly and young people as well as in people with
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neurological disorders (Schieppati et al., 2003). The level of effect depends on the way in

which fatigue is induced (Enoka and Stuart., 1992).

Previous studies on the effects of fatigue on postural control showed a significant increase

of the CoP sway (Nardone et al., 1997; Winter et al., 1996). It has been demonstrated

experimentally that muscle fatigue affects postural control by increasing the static body

sway (Nardone et al., 1997; Corbeil et al., 2003; Ledin et al., 2004; Reimer and

Wikstrom, 2010). However, the detrimental effect of fatigue on static postural control has

been established (Gribble et al., 2004) since fatigue appears to influence dynamic postural

control (Gribble et al., 2004). The effects of fatigue on dynamic postural control in sport

related movements needs further investigation as little known about how fatigue which is

normally induced in sport activities (e.g. jumping and hopping) may influence control of

posture. Gribble et al. (2004) reported dynamic postural control can be assessed as a

moving center ofmass controlled while one's BoS is changing.

Since fatigue intensity level in very important, Bizid et al. (2009) reported that the

duration between the end of the fatiguing task and the initiation of the balance test might

not cause disturbed balance. Therefore making a pilot study that determines the proper

fatigue intensity protocol is very important as well as assessing the appropriate duration

between the end of the fatiguing sessions and the initiation ofthe balance tests. Wikstrom

et al. (2004) using healthy subjects failed to observe changes under fatigue conditions.

Therefore, examining the effect of intensive localized fatigue may resolve this conflict.
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To date few researches have investigated the effect of localized muscle fatigue (lower

extremity) on dynamic balance. Moreover, no study has investigated the effect of

localized muscle fatigue on dynamic balance in sport related activities, in particular,

jumping and hopping.

2.7. Summary

In summary, investigating the characteristics ofdynamic balance in sport related activities

would appear to be necessary for understanding balance further, by applying the

extrapolated Centre of Mass (XCoM) and other relevant variables for evaluating balance

in sport activities such as hopping and jumping.

Examining whether the methods developed can reliably characterize dynamic balance

characteristics in young adults and collecting baseline data for further studies is

warranted. Investigating the effects of changing body mass and the effects of muscular

fatigue on the dynamic balance characteristics of young adults would enable the influence

ofthese factors to be clearly established.
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Chapter (3) Study 1: Developing the
methods for the study of static and

dynamic balance



3. Study 1: Developing the methods for the study of static and dynamic balance

3.1. Introduction:

During upright standing, the body sways in the anterior-posterior (AP) and media-lateral

(ML) directions. This sway is characterized by the excursions of the Centre of Pressure

(CoP, when using a force platform) and the Centre of Mass (CoM when calculated from

motion analysis). In steady standing, both CoP and CoM must be within the Base of

Support (BaS) which can be determined dynamically from a pressure mat instead ofusing

a fixed shape which has previously been used.

Other mechanical variables may be related to balance [such as Kinetic Energy (KE),

momentum (P), impulse (I) and angular momentum (H)] and these need to be quantified

and evaluated in terms of whether they can provide further information about balance. In

addition, it is of interest to establish whether the extrapolated Centre of Mass (XCoM)

method commonly used for static balance can be extended to evaluate dynamic balance in

sport activities such as hopping, and in jumping. Therefore, this study aims to develop

methods to evaluate these mechanical variables that are most suited to investigate

dynamic balance.

3.1.1. Objectives

1. To develop a suitable methods for studying static and dynamic balance in a sport

context;

2. To apply the extrapolated Centre of Mass (XCoM) method to a range of sport

activities such as hopping and jumping;
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3. To investigate which mechanical variables are most suited to investigate dynamic

balance.

3.2. Methods

3.2.1. Participants

The participants in this study were 5 male healthy students at Liverpool John Moores

University (Mean ± SD:- age 24.6 years ±4.5, height 177 em ± 6.3, body mass 72.8 kg ±

6.6). They had no history of problems of postural instability. The main requirement was

to perform normal in a set of different balance tests. Each participant signed the consent

form that complied with the testing information sheet (Appendix 2). A copy of the

consent form was approved by the ethics committee and located in (Appendix I).

3.2.2. Equipment

The ground reaction force (GRF) during various static and dynamic balance activities was

evaluated by using 2 force platforms, the first (Kistler 9281B11, Kistler, Switzerland,

dimensions 400 x 600mm) was level with the floor of the laboratory. The participant was

required either to stand on this platform during standing tests or to land on it in hopping

and jumping tests. The second Kistler force platform (9287B, Kistler, Switzerland,

dimensions 600 x 900mm), was 20 em higher than floor level and positioned next to the

built-in platform. It was used for take-off in the hopping and jumping movements. Both

force platforms recorded ground reaction forces and CoP at 1000 Hz sampling rate (12 bit

NO conversion). (See Figure 3.1 and Figure 3.4).
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Figure 3.1. The force platform (left) and amplifier (right).

The effective Bo \ a mea ured by a pressure mat: Dimensions (1 x 0.4 x 0.008 m) with

active en or surface (0.98 x 0.32 m), the number of sensor is 8192, the sensitivity 0.27 ­

127 / q.cm) and the maximum ample frequency 500 (Hz). The model used was a

Foot can 3D Balanc mat (R scan International, The Belgium) as shown in Figure 3.2.

Figure 3.2. The pre ure mat u ed to measure the effective Bo .

Anthropometric mea urement were made while the participant tood barefoot \ ith heel

15 em apart and ann by ide. Foot angle, 15°, wa fixed and drawn over the force

platform urface that u ed for tanding and landing. Leg length was mea ured from the

sacroiliac joint to the ground level. Elbow, wri t, knee and ankle joints' width and hand

thickne were mea ured with a calliper. All mea urements were made by the same

per on (the author). Both side of the extremities were measured in addition to body mass

and height.
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Whole-body motion analysis was undertaken using 39 (I5-mm) retro-reflective markers

placed on different anatomical locations (Figure 3.3) of the subject's body. These

locations were recorded by a Vicon motion capture system (Figure 3.4) with 8-camera

system (Vicon Peak@ 512) sampled at 100 Hz. A common, commercially available gait

kinematic model was used to compute the CoM (Plug-In-Gait, Vicon Peak®, Oxford,

UK). (See Appendix 3)
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Figure 3.3 . The location of marker on the participan t' body, following the 39-marker
Plug-in-Gait protocol.

The higher level force

platform.

The foot can mat that cover.----1 ....1""'__

the built-in for e platform '----.!'V'"'""- - - - ""\.-,..-

Figure .... .4. The infrared amera u d to track the marker ' locations. In addition, the
high and low level fore platform , and pre ure mat can be een a part of the et-up.
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3.2.3. Procedures

3.2.3.1. Anthropometry

Measurements of stature and body mass were taken in the same manner to standardise

procedures:

I Stature

Measurements of stature were recorded using analogue Leicester height measure (Seea

Ltd., Birmingham, UK). Participants were measured barefoot whilst wearing a stretch suit

prior to starting balance testing. Measurements were recorded to the nearest O.lem.

Body mass

Measurements ofbody mass were recorded using analogue Seca scales (Seea Ltd.,

Birmingham, UK). Participants were measured barefoot whilst wearing a stretch suit prior

to starting balance testing. Measurements were recorded to the nearest O.lkg.

3.2.3.2. Validation of the CoP:

Several trials were done to establish the accuracy of the CoP from force platforms in

relation to the Vieon system data. This was done by applying a pointed rod with five

reflective markers upon a base which lay on the force platform. The location of the CoP

as measured from the GRF was compared with that as calculated from kinematic data of

the markers (reconstructing the bottom tip of the rod) through Caltester software (C­

Motion, USA). This is shown in Figure 3.5.
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"----"

Figure 3.5. Shows the Caltester device (left) and calculated variables: The rod
orientations and the bottom tip of the testing rod are calculated from motion capture. The
axial force vector (with point ofapplication) is calculated from force measurement.

It was found that there was a consistent but relatively small inaccuracy in the

measurement of the CoP. This inaccuracy depended on the amplitude and direction of the

horizontal GRF. It was decided that in future studies an algorithm would have to be used

to correct for this inaccuracy.

Spatial synchronization of forces and motion capture

An important methodological aspect when applying the inverted pendulum theory is the

spatial synchronization between the point of application of forces (CoP) and kinematics

(CoM). Figure 3.6 (A and B) shows both in one graph. Although, the time profiles were

alike (Figure 3.6A), there was a constant shift of the CoP relative to the CoM. This was

found to average 4 mm, and was due to an inaccuracy of the force platform coordinate

system in relation to the kinematic coordinate system. Because of the difference between

the CoP and the CoM, the absolute CoP location becomes an unreliable variable when

used in some calculations, such as the angular impulse variable as previously described.

The CoP can be re-trended to best match the CoM data. This is done in Figure 3.6 B.
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The correction was made by adding the mean differences between the origins of the CoP

and the Co to the CoP data. This offers a better figure for comparison of the CoP and

the CoM in static balance data, wherea in dynamic balance the method of correction was

not suitable due to the change of the location of the CoP in addition to the impact

magnitude. Con equently, in dynamic balance these variables are represented

uncorrected.

m
o 3 1

0 H

3 2 s B
o 32 I

o 3 23

o 3 2 2

m 3 2 1

.J 1

o Time. 11100 ec 2000 25 0 0 o

Figure 3.6. and B) n e.·ample ( tanding, two feet flat, eye open) of the inaccuracy in
spatial ynchronization between kinetic and kinematic coordinate sy terns, shown through
systematic hift between oP and oM in ML direction ( , top graph) . Thi can be
corrected for tatic balance measurement by re-trending the CoP data (B, bottom graph)
(unit = m)
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3.2.4. Pilot work

A few pilot experiments were undertaken to examine the apparatus's functions such a

testing the synchroni ation between systems e.g. kinematic system (Vicon), kinetic

system (force platform ) and pressure mat (R scan); establishing the time required for

each participant e.g. pre te ting (calibration and preparing markers) . In addition, data

were computed to that from the literature in order to ensure its validation.

3.2.4 .1. Ba e of upport (Bo )

The base of support i cia ically interpreted as the outer line of the outer edges of the

feet. In thi tudy, the Bo wa simultaneou ly measured by using pressure

mea urement . From thi data, the Bo could be calculated dynamically throughout the

movement (u ing M TLA B 7.0). Thi method ha provided a new term that can be called

the Junctional ba e oj support. Figure 2.7 show examples of the functional Bo at a

single moment in time from tand ing and from tiptoe landing from aj ump.
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o 005 0 1 0 15 02 0 25 03 035 0 ' 0'5 0 5
M1l ro-posll rior diroC1ion (m)

Figure 3.7. The functional 80 during standing (two feet flat, eye open) and during
tiptoe landing from a j ump (two feet). The cross sign represents the location of the CoP at
that moment in time (the olid arrow indicates the oP) and (the dotted arrow indicates
the Bo ).
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3.2.4.2. Data collection

Data were recorded over 30s for two feet flat standing test and lOs for two feet tiptoe

jumping. Standardized instructions and explanations were given to the participant. The

participant was given an opportunity to practice prior to the measurements. The BoS was

determined by recording the extreme boundaries of the CoP using the RSscan pressure

mat while the subject stood on either two feet flat or two feet tiptoe, and was asked to

lean as much as possible laterally, anteriorly, medially and posteriorly. This was done

both with and without available support.

The balance variables were evaluated under the following conditions;

1. Static: Romberg test with two feet flat, eyes open.

ii. Dynamic: jumping (two feet, take-off) and landing on tiptoes with eyes open.

A series of 3 trials ofeach activity were performed.

3.2.4.3. Data analysis:

The anterior-posterior (AP) and medio-lateral (ML) ground reaction forces were re­

sampled to match the kinematic data. The AP and ML coordinates of the CoP and CoM

were derived from recorded data and filtered with a Butterworth low pass filter at 10Hz.

The velocity of the CoM was calculated using a 3-point central difference differentiation

algorithm (Winter, 1990). From these data, the extrapolated Centre of Mass (XCoM),

linear Kinetic Energy (KE), linear momentum (P), and frictional torque (Q) as outlined in

the literature review were calculated (equations 1-9. chapter 2).
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Treating data from the output of analysis .systems was complex. Microsoft Excel 2003

was used to process both I force plate data (e.g.. Forces and CoP) and the CoM data.

Microsoft Office Excel 2003 was used to apply a customized routine for filtering raw

data, re-sampling the data frequencies of the CoP data (1000 Hz) to match the CoM data

(100Hz). A spreadsheet application was written which ran all calculations, plotted graphs,

while arranging and re-trending data was done by a macro program.

All parameters of static and dynamic postural balance tests were analysed by Microsoft

Excel 2003 software.

Statistical analysis:

For static balance, the mean and RMS values over the three trials were calculated for each

subject as well as the grand mean and standard deviation for each condition.

For dynamic balance, the mean of peak horizontal forces (FML and FAP), Kinetic Energy

(KEtotaJ. KEML' KEAP), Momentum (P) and Friction Torque (Q) and the mean of range of

the CoM, XCoM and CoP of the three trials were calculated for each subject in both ML

and AP directions as well as the grand mean and standard deviation for each condition.
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3.3. Re uIt :

3.3.1.1. Ground reaction force (GRF)

Typical graphical di play are given in Figure 3.8 for shear forces in both F lL and FAP

direction during tatic balance (2-feet flat eyes open) and dynam ic balance (jumping on

tip toe ).
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Figure" . . Illu trat th F, lL and F,\p in two condition: tatic balance (2-feet flat eye
open) and dynamic balan e (Jumping on tip toe ). (Uni t = )

In tatic balan e. both the m dio-lateral (F, Id and anter ior-po terior (FAP) force fluct uate

around a can tant level nominally zero). The e force alue are lower in static balance
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I than in dynamic balance. The FML and FAP charts are similar for the static balance but are

different in profile and in values for the dynamic balance. During take-off (solid arrow)

and landing (dotted arrow) stages in this activity the FML and FAP change their shape. The

FML curve increases during take-off to shift body weight above the preferred take-off foot

for landing. After landing, there is a marked oscillation from positive to negative values

before settling down, indicating a period of instability. The FAP curve increases as body

weight is shifted forward during take-off with a reverse force created during landing to

maint~n balance. The FAP force values are also higher during dynamic balance

particularly during the take-off and landing phases. The values for FML and FAP are given

in (Table 3.1) show that the FAP is greater than the FML in both static and dynamic

activities. The static forces are considerably lower than the dynamic forces. The landing

forces are greater than the take-off forces.

In static balance (2-feet flat eyes open), the mean ofthe RMS values for FML and FAP are

given in Table 3.1 and show that event tough the values are small the FAP is larger than

FML for the static activity.
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In dynamic balance test (Jumping on tip toes), the peaks values for FML and FAP are also

given in Table 3.1 and show that the FAP is larger than FML for in both take-off and

landing phases due to the nature of the event (direction of the jump)

Table 3.1. Mean of RMS of 3 trials (n = 5) of forces in both medio-lateral (ML) and
anterior-posterior (AP) directions for static balance (2-feet flat eyes open) and the mean
ofpeaks ofFMLand FAP for dynamic balance (Jumping on tip toes). (Units =N)

Static (RMS) Dynamic (peak)

Subjects Fl\IL FAP Take-off Landing I
,

(N) (N) FML(N) FAP(N) FML(N) FAP (N)

Subject 1 0.32 3.121 43.07 175.9 86.66 245.8

Subject 2 0.37 2.970 37.13 178.3 88.03 255.1

Subject 3 0.28 3.020 46.18 181.3 85.83 251.2

Subject 4 0.311 3.050 41.79 176.8 80.87 240.0

Subject 5 0.291 2.885 42.57 175.4 85.63 248.5

Grand Mean 0.314 3.009 42.15 177.5 85.40 248.1

SD 0.035 0.088 3.26 2.3 2.70 5.7
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3.3.1.2. Centre of Pre ure ( oP)

Typical graphs Figure 3.9 illu trate the Centre of Pressure in both mideo-lateral (COPML)

and in anterior-posterior (CoPAP) directions during static balance (2 feet flat eyes open)

and dynamic balance (jumping on 2 fee t tiptoes) in relation to the functional Bo (straight

dotted lines).
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Figure 3.9. Illu trate the variable COP lL and OP AP in both in both static balance (2­
feet nat eye open and dynamic balance (jumping on tip toes) and the functional Bo
(dotted lin ). ( nit = m).

The ab olute oP value dep nd on where the feet are placed on the force platform. The

vertical arrow in the dynamic oPAP ( ee figure) repre ent a shift in feet placement. The

range of OPMLvalue i lower in tatic balance than in dynamic balance. The OPMLand

CoPAP ranges are imi lar for tatic balance and represent the steady changes of
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application of force to maintain balance. During take-off and landing stages in dynamic

balance the COPML and the CoPAP change their shape. The COPMLcurve fluctuates during

the take-off due to shifting body weight between feet (dotted line). At landing, the other

foot absorbs the impact (solid line) before settling down. The CoPAP curve increases while

shifting the body weight forward during take-off and show a reverse in direction during

landing to maintain balance. The mean of the RMS values for COPML and CoPAP are given

in Table 3.2 and show that the CoPAP is a bit larger than the COPML for the static activity.

While in dynamic activity, the mean of range for COPML and CoPAP which are also given

in Table 3.2 show that the COPML is larger than CoPAPduring take-off when shifting body

weight over the dominant foot for jumping as the available BoS is larger in ML direction,

during landing the COPML is a bit larger than CoPAP as the available BoS is larger in ML

direction and individual use this obtainable BoS to maintain balance.

Table 3.2. Mean of RMS 3 trials (n = 5) of the CoP in both medio-lateral (ML) and
anterior-posterior (AP) directions for static balance (2-feet flat eyes open) and the mean
ofrange of COPML and CoPAP for dynamic balance (Jumping on tip toes). (Units = m)

Static (RMS) Dynamic (range)
Subject

COPl\IL COPAP Take-off Landing

(m) (m) COPl\lL (m) CoPAP(m) \CoPl\IL(m) COPAP (m)

Subject 1 0.008 0.014 0.073 0.169 0.074 0.148

Subject 2 0.010 0.013 0.096 0.199 0.065 0.144

Subject 3 0.009 0.016 0.085 0.124 0.076 0.159

Subject 4 0.011 0.012 0.098 0.128 0.073 0.161

Subject 5 0.012 0.017 0.094 0.099 0.084 0.168

Grand Mean 0.010 0.014 0.089 0.144 0.074 0.156

SD 0.002 0.002 0.010 0.040 0.007 0.010
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3.3.1.3. entre of 1a (CoM) a nd th e extrapo lated C entre of Mass (XCoM)

T. pical graph Figure 3.10 illu trate the hori zontal components of the Centre of Mass in

the rnedio-lateral CoMML and anterior-posterior CoMAP together with the extrapolated

Centre of a (X oM ,IL. XCoMAP) respectively during static balance (2 feet flat eyes

op n) and dynamic balance (jumping on feet flat) in relation to the functional Bo (dotted

line).
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movements. In dynamic balance, this excursion is amplified particularly for fast

movements (indicated by arrows particularly during take-off (AP) and landing (ML). The

CoM and the XCoM values' are higher in dynamic balance as balanced is being

maintained and movement velocity increases. In static balance, the grand mean of RMS

values for COMML and XCoMML are given in (Table 3.3) and show that the XCoMML is a

bit larger than the CoMML for the static activity and obviously both the CoM and XCoM

trajectory is considerably lower than the dynamic CoM and the XCoM trajectories.

Table 3.3. Mean ofRMS of3 trials (n = 5) of the COMML and the XCoMML in the medio­
lateral (ML) direction for static balance (2-feet flat eyes open), and the mean of range of
CoMML and the XCoMML for dynamic balance (Jumping on tip toes). (units =m)

Static Dynamic (range)

Subject
(RMS) Take off Landing

K=OMML XCOMML COMML XCOMML COMML XCoMl\IL

Subject 1 0.007 0.008 0.03 0.062 0.037 0.067

Subject 2 0.009 0.011 0.024 0.055 0.039 0.059

Subject 3 0.008 0.009 0.029 0.073 0.036 0.078

Subject 4 0.0011 0.012 0.035 0.054 0.04 0.065

Subject 5 0.009 0.01 0.032 0.07 0.038 0.077

Grand Mean 0.007 0.010 0.030 0.063 0.038 0.069

SD 0.003 0.002 0.004 0.009 0.002 0.008

In dynamic balance, the XCoMML is much greater than the CoMML during both take-off

and landing phases due to the accelerated CoM in take-off and CoM in landing; also the

landing CoM trajectories are greater than the take-off. The mean of range for COMML and

XCoMML which are also given in (Table 3.3) show that the XCoMML is larger than
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CoMML during take-off when shifting body weight over the dominant foot for jumping as

the available BoS is larger in ML direction, and also during landing the XCoMML is also

larger than COMML as it travels on available BoS in ML direction which individual use

this obtainable BoS to maintain balance. During landing, the values of mean of range are

larger than take-off values as the landing trajectories excurse larger. The mean of range

for CoMAP and XCoMAP which are also given in (Table 3.4) show that the XCoMAP is

larger than CoMAP during take-off when shifting body weight over the dominant foot for

jumping as the available BoS is larger in ML direction, the XCoMAP is also larger than

CoMAP nearly reaches the available BoS in AP direction that individual use for

maintaining balance.

Table 3.4 Mean ofRMS of3 trials (n = 5) of the CoMAP and the XCoMAP in the anterior­
posterior (AP) direction for static balance (2-feet flat eyes open), and the mean of range
of CoMAP and the XCoMAP for dynamic balance (Jumping on tip toes). (Units =m)

*note: the landing locations are varied from take-off.

Dynamic (range)
Subject Static (RMS)

Take off Landing

COMAP XCOMAP COMAP XCOMAP CoMAP XCOMAP

Subject 1 0.008 0.012 0.257 0.524 0.163 0.196

Subject 2 0.009 0.014 0.28 0.55 0.155 0.179

Subject 3 0.0011 0.015 0.273 0.6 0.148 0.158

Subject 4 0.01 0.016 0.303 0.61 0.137 0.167

Subject 5 0.012 0.017 0.263 0.594 0.146 0.167

Grand Mean 0.008 0.015 0.275 0.576 0.150 0.173

SD 0.004 0.002 0.018 0.037 0.010 0.015

. . .
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3.3.1.4. Momentum (P)

Typical graphs Figure 3. 11 illustrate the total momentum P and its components PML and

PAP in both directions during static balance (standing 2 feet flat eyes open) and dynamic

balance (jumping on 2 feet tiptoes).
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Figure 3.11. Illu trate the PIOta1 and the PML-AP in both static balance (2-feet flat eyes
open) and dynamic balance (jumping on 2 feet tiptoe ). (Units= kg.m.s").

In static balance, the ubjec t ha a low velocity and so the total momentum is low. These

values increa e duri ng th dynamic balance particularly during take-off and landing

pha e . In dynamic balance the P total i high due to the subject needs for a high velocity
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during take-off. The PAP is much higher than the PML because subject's velocity in

anterior-posterior direction is greater than in medio-lateral direction. The PML curve

increases during the take-off when subjects accelerate their CoMML to shift body weight

above the preferred take-off foot (dotted line, see Figure 3.11) and at landing when

absorbing the impact before settling to a steady value. The PAP curve increases while

shifting body weight forward during landing (solid line, see Figure 3.11) and in

maintaining balance during landing.

The mean of RMS ofpeaks values for PTota), PML, PAP and Pv directions are given in Table

3.5 and show that the Ptota! is greater than the PML and Pv and nearly equals the PAP for the

static activities as individuals apply momentum in AP direction.

Table 3.5 Mean of RMS of 3 trials (n = 5) of the PTotal, PML. PAP and Pv directions for
static balance (2-feet flat eyes open) variable =peak. (Units= kg.m.s"),

Subjects Static (Peak)

PTotal Pl\lL PAP Pv

Subject 1 1.068 0.377 1.050 0.0017

Subject 2 1.066 0.399 1.021 0.0018

Subject 3 1.068 0.370 1.041 0.0019

Subject 4 1.068 0.360 1.039 0.0020

Subject 5 1.069 0.380 1.061 0.0023

Grand Mean 1.068 0.377 1.043 0.0019

SD 0.001 0.014 0.015 0.0002
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The mean ofrange ofpeaksvalues for PTotal, PML PAP and Pv for.the dynamic balanceare

given in Table 3.6 show that. The landing momentumvaluesare larger than the take-off;

in take-offphase, the Ptotal is greaterthan the PML and the PAP and Pv are nearly equals to

the Ptotal for the take-offphase as individualsapply large momentum in AP directionand

in V direction due to the nature of event (jumping from higher force platform). In landing

phase, the Ptotal is greater than the PML and the PAP though it is higher than PML, while the

Pv are nearlyequals to the Ptotal as individualsapply large momentumin V direction due

to the nature ofevent (jumping from higher force platform) I

Table 3.6.Mean of range of peaks of 3 trials (n = 5) of the of the Protab PML PAP and Pv
directions for dynamicbalance(Jumpingon tip toes) variable= peak. (Units=kg.m.s" ).

Dynamic (Peak)
Subjects

Take-off Landing

PTotal Pl\IL PAP Pv PTotal Pl\IL PAP Pv

Subject 1 79.08 0.323 29.41 55.71 368.1 0.959 22.27 290.9

Subject 2 81.77 0.381 27.85 56.90 378.5 0.939 25.22 298.7

Subject 3 81.08 0.352 26.01 54.09 367.1 1.019 24.91 295.2

Subject 4 78.21 0.342 28.50 59.29 363.5 0.993 24.73 301.6

Subject 5 81.42 0.374 27.44 58.88 373.1 1.039 23.99 299.3

Grand Mean 80.31 0.353 27.84 56.97 370.1 0.990 24.23 297.2

SD 1.573 0.033 1.264 2.175 5.853 0.041 1.183 4.176
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3.3.1.5. Kin etic Energy (K )

Typical graph Figure 3.12 illustrate the KEtotal and its components the K E ML and the

K E AP in both dir ction during tatic balance (standing 2 feet flat eyes open) and dynamic

balance (jumping on 2 feet tipto ).
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Figur 3.12. 11Iu trate the K I tal - K <, IL and K AP in both tatic balance (2-feet flat eyes
op n) and dynarni balan (jumping on 2 fe t tiptoe ). (Unit = J).

In tatic balan e. the velo ity of th entre of a in the medio-Iateral and the anterior-

posterior are effe tively v ry mall and 0 value for the K E tolal and for the K <ML and the

K ' AP are al 0 mall and r pr ent the tate of tability in this condition. In dynamic

balance the K ' I I I i high r du to the ubject' velocity particularly in K AP because the
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subject's velocity is higher in the anterior-posterior direction, particularly during take-off

and landing phases. The KEML curve increases during the take-off when subjects

accelerate their Centre of Mass in medio-Iateral direction while shifting their body weight

between feet (dotted line) and at the landing phase when absorbing the impact before

settling to a steady value. The KEAP fluctuation increase when subjects shift their body

weight forward during landing (solid line) and create a reverse force during landing to

maintain balance.

The mean of RMS of peaks values for KEtota!, KEML, KEAP and KEv directions are given

in Table 3.7 and show that the peak of KEtOla! is greater than the peak of KEML and the

peak of KEv and nearly equals the peak of KEAP for the static activities as individuals

apply momentum in APdirection

Table 3.7. Mean ofRMS peaks of3 trials (n = 5) of the KEtota! and its components (KEML,
KEAP and KEv) in ML, AP and V directions. Static balance (2-feet flat eyes open)
variable =peak. (Units= J).

Subjects Static (Peak)

KE KEl\IL KEAP KEv

Subject 1 0.0081 0.0014 0.0075 0.0008

Subject 2 0.0079 0.0016 0.0080 0.0007

Subject 3 0.0078 0.0012 0.0077 0.0008

Subject 4 0.0077 0.0010 0.0079 0.0009

Subject 5 0.0078 0.0011 0.0078 0.0008

Grand Mean 0.0078 0.0011 0.0078 0.0008

SD 0.098x 10-.J 0.085x 10-3 0.179x 10·j 0.051x 10·j
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The mean of range of peaks values for KETotal, KEML KEAP and KEv for the dynamic

balance are given in Table 3.8 show that. The landing Kinetic Energy values are larger

than the take-off; in take-off phase, the KEtotal is greater than the KEML, and the KEAP

and KEv are nearly equals to the Ptotal for the take-off phase as individuals apply large

Kinetic Energy in AP direction and in V directions due to the nature of event (jumping

from higher force platform). In landing phase, the KEtotal is greater than the KEML and

the KEAP though it is higher than KEML, while the KEv are nearly equals to the KEtota! as

individuals apply large Kinetic Energy in V direction due to the nature of event (jumping

from higher force platform)

Table 3.8. Mean of range of peaks of 3 trials (n = 5) of the KEtotal and its components
(KEML, KEAP and KEv) in ML, AP and V directions. Dynamic balance (Jumping on tip
toes). (Units= J).

Dynamic (Peak)
Subjects

Take-off Landing

KE KE)IL KEAP KEv KE KEML KEAP KEv

Subject 1 79.08 0.32 29.41 63.25 156.6 0.496 12.14 148.5

Subject 2 81.77 0.38 27.85 62.28 157.9 0.563 11.14 145.7

Subject 3 81.08 0.35 26.01 65.25 157.4 0.470 11.62 151.2

Subject 4 78.21 0.34 28.50 64.28 161.6 0.481 12.70 155.5

Subject 5 81.42 0.37 27.44 67.00 161.5 0.566 11.99 115.5

Grand Mean 80.31 0.35 27.84 64.41 159.0 0.515 11.92 143.3

SD 1.57 0.03 1.26 1.82 2.4 0.046 0.58 16.0

72



3.3.1.6. The Friction Torque (Q)

Typical graphs Figure 3.13 illu trate the Friction Torque QML and the QAP directions

during static balance ( tanding 2 feet flat eyes open) and dynamic balance (jumping tip

toe ).
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Figure" .1". Illu trat th Q. 1Land QAP in both tatic balance (2-feet flat eye open) and
dynamic balance (jumping on 2 feet tipto ) (Unit = .m)

In static balance, the velocity of the entre of Ma in the medio-Iateral and the anterio r-

po terior i very mall . Th repre ent the tate of tabi lity in this condition (2-feet flat

eye open) and indicate that an ankle trategy is u ed. In dynamic balance, QAP is higher
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due to. the subject's velocity particularly in the anterior-posterior direction, when the

subject applies horizontal forces during dynamic balance during the take-off and landing

phases. The QML curve increases during the take-off when subjects accelerate their

CoMML to shift body weight between their feet (dotted line) and at the landing phase

when absorbing the impact before settling to a steady value. The QAP curve increases

when shifting body weight forward during take-off (solid line) and creating a reverse

force during landing to maintain balance.

The mean of the RMS values for QML and QAP are given in Table 3.9. and show that they

are similar for the static activity, while, the QAP values are also higher during dynamic

balance particularly during the take-off and landing phases. The range of peaks values for

QML and QAP are given in (Table 3.9.) show that they are similar during take-off phase

while QAP is greater than the QML during landing.

Table 3.9. Mean ofRMS of3 trials (n = 5) ofQML and the QAP in the medio-lateral (ML)
and anterior-posterior (AP) direction Static balance (2-feet flat eyes open) variable =
RMS, dynamic balance (Jumping on tip toes) variable =peak. (Units=N.m)

Static (RMS) Dynamic (Peak)
Subject

Take-off Landing
QML QAP

QML QAP QML QAP

Subject 1 2.485 2.169 187.6 189.5 135.2 273.1

Subject 2 2.316 1.988 185.1 192.3 136.0 295.7

Subject 3 2.375 2.124 181.1 181.7 137.9 284.5

Subject 4 2.416 2.028 190.1 190.1 135.9 297.8

Subject 5 2.316 1.985 188.3 189.7 139.5 293.6

Grand Mean 2.382 2.059 186.4 188.6 136.9 288.9

SD 0.072 0.083 3.456 4.044 0.512 10.221
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3.4. Discussion:

The first objective of the study was to develop the methodology for studying balance;

there are several methodological issues that were addressed. The subjects were five

healthy adult students at Liverpool John Moores University. For the purpose of this study,

the type of subject was not the most critical point. In previous studies concerning the

methodological aspects of balance measurements with motion analysis, the number used

have commonly been similar to that used in this study (e.g. Moraes and Patla, 2005 n = 8,

Aramaki et al., 2001; n =6, Latash et al., 2003; n = 10). Small subject numbers are

appropriate for this methodological study in order to get a balance between data from a

variety ofsubject and processing time.

Technically, all the measurements went well, despite some problems (e.g. disappearing

markers) during landing from jumping when the subject hits the ground. Fast reviews of

the data were done to see every single marker, whether it was still attached or had fallen

from its location. In addition, extra trials were recorded for each condition which allowed

the best to be chosen for analysis.

In this study a systematic shift of the CoP signals from the original location was found in

both the medio-Iateral (ML) and the anterior-posterior (AP) directions. Several Caltester

experiments were done to improve the accuracy of the CoP. Eventually; it was shown that

the CoP did not accurately represent the point of application of force (e.g. Figure 3.6 A

and Figure 3.6 B) relative to the CoM where the average difference was up to 4mm.

Whether the CoP or the CoM was inaccurate was not possible to evaluate within the

scope of this study. However, correcting for these differences was possible in static
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balance. The same method of correction was not applicable to dynamic balance because

of change in position of the feet. The consequences of this were that the CoP remains a

useful variable when used alone, but it cannot be easily included into other calculations

(e.g. angular impulse).

Estimation of the CoM of the multi-segment human body requires kinematic
,

measurement of all body segment displacements and an anthropometric model of the

body (Winter, 1990). The trajectory of the CoM is estimated using a video-based system

combined with anthropometric information and a multi-segment human body method for

calculating the CoM. Individual body segments can be different depending on individual

subject'S anthropometric information. The CoM was calculated using a commercially

available method (plug-in Gait marker set, Vicon, UK). Consequently, this method would

be expected to produce some error in the location of the CoM as it does not reflect

individual differences. This way have let to the above mentioned difference between the

CoP and CoM, but nevertheless, the CoP and the CoM move in harmony tracking each

other (fig 3.6 B). The CoM velocity was considered more important than its exact

location for calculating the following variables: The extrapolated Centre of Mass

(XCoM), the momentum (P) and the Kinetic Energy (KE) which are assumed to be

indicators for assessing balance all of which use the velocity. This is important as most

studies pay no attention to these variables.

The second objective of the study was to apply the (XCoM) method used by Hof et al.

(2005) on static balance to dynamic balance. This implementation was found to be

practical for evaluating both static and dynamic balance and provided the expected
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results: in static balance, the XCoM was within the BoS when the subject maintained

balance, while in dynamic balance, it came close to or exceeded the BoS during take-off

and landing stages which represented the imbalance status at these stages. The level of

destabilisation gradually increased when the BoS decreased. In other words, the XCoM

and the CoM are identical during steady standing while the XCoM diverges from the

CoM at take-off and landing.

The third objective of the study was to investigate other mechanical variables suitable for

the study of dynamic balance in addition to the CoP, the CoM and the XCoM. These

mechanical variables were: The momentum (P) and its components (ML and AP), the

Kinetic Energy (KE) and its components (ML and AP) and Friction Torque (Q) and its

components (ML and AP) and were found to offer suitable variables for interpreting

mechanisms while attempting to maintain balance, whereas the angular impulse was not

considered suitable due the shift issue mentioned previously consequently this uses not

evaluated. The Friction Torque (torque produced by the friction forces) provides

important information about the horizontal force that subjects apply for controlling the

angular impulse of the CoM, which is strongly related to the second balance mechanism

noted in the literature review.

Although calculating the KE and P was achieved, the results showed that the KE and P

are alike. Also, these variables were demonstrated by the vertical component. Because

this leads to further calculation, calculating these variables was not thought to be

important for future studies.
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3.5. Conclusion:

The results indicate that the motion analysis system, force platform and the pressure mat

can be synchronised for collecting data in static and dynamic balance..

• The CoP, the CoM, the XCoM and Q are more informative than the other

variables (e.g. KE, and P) during static and dynamic balance providing additional

information about the postural control mechanisms.

• The XCoM method was found to be applicable to dynamic balance as well as

static balance.

• The functional BoS may be measured synchronously with other variables by using

the RSscan mat over the force platform.

• The friction force (Q) seems to be a good indicator for assessing dynamic balance,

though it is susceptible to systematic errors in forces which are particularly

important for static balance.
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Chapter (4) Study 2: Evaluating the
baseline characteristics of static and

dynamic balance in young adults



4. Study2: Evaluating the baseline characteristics of static and dynamic balance in

young adults

4.1. Introduction:

Quiet standing is widely considered by many researchers as a (static) task, an event

involving no activity. In reality, the upright posture is a continuum of adjustments

(correctional movements) that are made, in response to a changing environment.

Physiological activities are ongoing and internal and external forces that are present are

constantly monitored and adjusted to prevent movement and maintain posture. These

body adjustments in anterior-posterior (AP) and medio-Iateral (ML) directions are

dramatically increased in some circumstances, e.g. on a narrow Base of Support (BoS), a

moving platform, with eyes closed, or in sport related activities such as landing from

jumping or hopping.

External forces acting on the body include gravity and ground reaction forces while

internal forces are generated from muscle contraction andlor passive tension in tendons,

ligaments, joint capsules and other connective tissue structures. To remain stable, the

forces must be in equilibrium, that is, all of the forces acting on the body and its segments

must be equal to zero (Talbott, 2005).

In quiet standing, the body undergoes a constant swaying motion or postural sway that

can be considered as an indirect measurement of stability. In normal stance, such as

standing on two feet flat eyes open, the amount of sway is small and plays a minimal role

in altering the position of the body segments compared to harder conditions e.g. standing
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on one foot tip toes with eyes open. This sway, however, may become greater when the

body is under unstable situations particularly, when the BoS gets smaller and whilst eyes

are closed.

The mechanical variables which are needed to evaluate static balance, such as Centre of

Pressure (CoP), Centre of Mass (CoM), Friction Torque (Q) as well as the extrapolated

Centre of Mass (XCoM), can be extended to evaluate dynamic balance in sport activities

such as hopping and jumping in order to provide a better understanding of the dynamic

balance phenomenon. Previous studies have examined these variables only in static

conditions which offer some data which can be used for comparative purposes, but no

study has evaluated and quantified these variables in dynamic conditions in sport related

activities such as hopping and jumping. Moreover, evaluating these selected variables on

a sufficiently large population (e.g. 20 healthy males) generates baseline data for future

studies. In general, baseline studies help researchers to gain a deeper understanding ofthe

phenomenon they are investigating and the values of the variables which quantify that

phenomenon.

Treating data from the output of analysis systems is complex. Study 1 was a

methodological study which was based on a small population (5 healthy males).

Microsoft EXCEL was suitable to deal with this kind of study e.g. filtering, the retrend of

the CoP data to match the CoM data, run calculations, plot and save files. In this study,

advanced analytical software scripts (MATLAB® 7.4.0, R2007a, The Math Works™)

were necessary for analyzing numerous data files and creating informative plots as well

as organizing structures which are useful in the current study and in future works.
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4.1.1. Objectives

1. To implement Matlab procedures for quantifying selected static and dynamic balance

variables;

2. To establish baseline data of selected variables which characterize static and dynamic

balance activities in a population ofhealthy young adult males;

3. To examine the trial effect on selected variables which characterize static and

dynamic balance.

4.2. Methods

4.2.1. Participants

The participants in this study were 20 healthy male students at Liverpool John Moores

University (age 25.4 ± 4.5 years, height 179 ± 7.2 em, body mass 73.4 ± 7.2 kg). They

had no history of problems of postural instability, passed the stereovision test which

meant that they had no gross problem with stereopsis and fine depth perception (Figure

4.1). The main requirement was to perform normal balance in a set of different balance

tests. Each participant signed the consent form that complied with the testing information

sheet (Appendix 2). A copy of the consent form was approved by the ethics committee

and located in (Appendix 1).

4.2.2. Equipment:

Two force platforms were used as detailed in study 1: the first was a Kistler 9281Bll,

Kistler, Switzerland (dimensions 400 x 600mm) which was built-in and levelled with the
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floor of the laboratory. It was used in standing tests or for landing in the hopping and

jumping tests. The second was Kistler 9287B, Kistler, Switzerland (dimensions 600 x

900mm), whose surface was 20 em higher than floor level and positioned next to the

built-in platform. This was used for take-off in the hopping and jumping movements.

Both force platforms recorded ground reaction forces and the CoP at 1000 Hz (12 bit AID

conversion). Additional markers on the 5th metatarsal joints of the feet/foot were used for

providing the BoS.

Whole-body kinematic analysis using 41 retro-reflective markers and eight cameras

system (Vieon Peak® 512) was performed at 100 Hz wherein the CoM was defined by

using a common, commercially available gait kinematic model was used (Plug-In-Gait,

Vieon Peak®, Oxford, UK).

Anthropometric measurements were made by the same person as documented in study 1.

Both sides of the extremities were measured, but only the right-side values were

presented. Body mass and height were also measured as detailed in study I.

4.2.2.1. Stereo Fly Test:

This test is designed for the evaluation of both gross stereopsis and fine depth perception

because if individuals experience visual problems they have unstable postural control.

The Stereo Fly test (Stereo Optical Company. Inc Chicago, IL 60631 USA) is used as a

standard in stereo testing. Participants were required to wear specific glasses because the

test only works with the use of the stereo glasses. This helps prevent guessing and creates
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a more reliable tereo vision test. The targets test was used in this study (left top of the

book, Figure 4.1).

Figure 4.1 . IlIu trate the tereovi ion equipment, tereo Optical Company. Inc Chicago,
IL 60631

4.2.2.2. Que tionnaire:

For tandardizing participant and avo iding abnormal individuals, a copy of personal

medical hi tory and phy ical act ivity a e sment questionnaire was handed to the

participant 2 day before the te ting day (Appendix 4) .

4.2.3. Prncedur

4.2.3.1. nthropomctry

imilar to the previou tudy, mea urement of stature and body mass were taken in the

same mann r to tandardi e procedure :
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Stature

Measurements of stature were recorded using analogue Leicester height measure (Seca

Ltd., Birmingham, UK). Participantswere measured barefoot whilst wearing a stretch suit

prior to startingbalance testing. Measurements were recordedto the nearest 0.1em.

Body mass

Measurements ofbody mass were recordedusing analogue Seca scales (Seca Ltd.,

Birmingham, UK). Participantswere measured barefoot whilst wearing a stretch suit prior

to starting balancetesting. Measurementswere recorded to the nearest O.lkg.

4.2.3.2. Activities:

Balance variables were evaluated under the following conditions; standing with two feet

flat, on one foot flat, on one foot and two feet tip-toes, and at the start and end of hopping

and jumping manoeuvres. Standardized instructions and explanations were given to the

participant as in study 1 for these activities. The participant was given an opportunity to

practice prior to the measurements.

• Statically, subjects were required to stand with two feet flat, on one foot flat and

on one and then two feet tiptoes (four conditions). A series of 3 trials of each

activity were performedwith eyes open as well as with eyes closed.

• Dynamically, subjects were required to jump and land with two feet flat and on

two feet tiptoes (two conditions) and hop from the higher platform to the lower

platform with one foot flat and on one foot-tiptoes (two conditions).A series of3

trials ofeach activity were performed only with eyes open.
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4.2.3.3. Data collection:

Data were recorded over 60s for two feet flat standing, 15s for two feet tiptoe and one

foot flat for both conditions eyes open and eyes closed, and 10s for jumping and hopping

tests. The BoS was determined using the RSscan pressure mat which recorded the image

of the area of contact between foot/feet and the mat.

Data analysis:

The (AP) and (ML) coordinates of the CoP and the CoM were derived from recorded data

and filtered using low pass Butterworth 10Hz. The velocity of the CoM was calculated

using a 3-point central difference differentiation algorithm (Winter, 1990). From these

data.

• For static balance, the mean of the RMS values over the period of data collection

of (F, CoM, XCoM and CoP in both ML and AP directions) for the three trials

were calculated for each subject in each condition.

• For dynamic balance, the mean of the peaks of horizontal forces (FML and FAP),

and Friction Torque (Q) and the mean of the range of the CoM, XCoM and CoP

ofthe three trials were calculated for each subject in both ML and AP directions.

Matlab scripts (Matlab 7.4.0, R2007a) were developed in conjunction with laboratory

staff (setting the force platform accurately to minimize the shift between the CoP and

CoM which was achieved by computing each mean of (CoP and CoM), and removing the

difference and then replacing it with the calculated value. Also Matlab was used to create

organized functions for analyzing data. These functions can be used with large volumes

ofdata for creating informative organized structures including plots; and all treated output

can be saved as SPSS compatible files.
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1atlab flow diazram:

atlab proce ing data flow i given in the following diagram.

[ Data processing ]

I .Generate a dir ctory tructure for data analy i and copy processed C3D-files into
it

2. Run jv C3DReplace nalogOtT et .m

". Run jv G n rat Triall [umberl.i t.m

Data analy i tanding Balance

1. G nerate 11_D rivativ .mat with iv tandingBalanceDataProces ing.m

2. Gen rat P tabl with ummary variables for tati tical analysis with
iv tandingBalan Data ummary.m ( appendix 6)

Data analy is Landing Balance

---- -
1. n rat Il_D rivativ ~ .mat with jv LandingBalanceDataProce sing.m

2. G nerat P tabl with ummary variable for statistical analysis with
iv Land in~ Balan at ummary.m ( app ndix 6)

Figure 4.2. Iatlab pr ing data flow i given in the follox ing diagram.

*code complied by the author i 10 ated in appendi: 6 (2 examples are given)
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Statistical analysis:

To analyze the postural balance parameters during static and dynamic testing, each:

variable for each condition (static and dynamic balance) was tested for normality of

distribution. Repeated measures analyses of variance (SPSS GLM procedure) were used

to test between trial differences in each condition to determine if there was a trial order

effect (i.e, effect of learning). A contrast analysis was used to illustrate which levels of

the factors are differed. The difference contrast was used between times (trials) to

illustrate any learning effect. The Statistical Package for the Social Sciences (SPSS)

version 17 (SPSS Inc, Chicago, IL) was used to manage and analyze data for statistical

analyses. The alpha level was set a prior at .05 to indicate statistical significance. A

Pearson Product moment correlation was used to test relationships between static balance

tests.
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4.3. Re ult :

4.3.1. The tereo Fly te t

All participant . an wer were correct and therefore they pa sed the test for evaluating the

both gro tereop i and fine depth perception and did not experience any visual

problem that relate to un table postural control.

4.3.2. tatic balanc

4.1.2.1. Ba e of upport (Bo ):

The (80 ) i widely interpreted a the outer line of the outer edge of the feet or the area

of contact between a b d. and upport urface or urface (Rothwell, 1994, p. 259; Hof et

al., 20W) (Figure 4."').

,---­
I

o

1arker

o
o

o

o
o

o

Figur 4.3. Di play an xampl of the Bo during tatic balance (tv 0 feet flat, eye
op n) and th 80 during landing in dynamic balance (jumping on tiptoe ), the marker
are u ed a th 80 b undarie .

In thi tudy, th 8 wa imultaneou Iy mea ur d by using the feet/foot markers as

reference and 0 could b calculated dynamicall throughout the movements. Although,

the R can meth d giv a more d tailed repre entation of the functional Bo , using, the

9



anatomical plug-in gait fee foot markers provide similar inform ation about the Bo (See

Appendix 3). Thi anatomical plug-in gait feet/foot markers method is useful to determine

the Bo and it boundarie, indicating during dynamic activ ities how the Bo (see Table

4.3). All marker repre ented the location of the boundary except the big toe markers used

in a calculation ba ed on their location plus a correction (based on the draw of outl ine of

the fee foot in anterior dire tion)

The figure below how an example of the dynamic Bo for the ML and AP directions at

a single moment in tim for tanding on two feet flat (left) and whe n landing from aj ump

on two feet flat (right).

Th. COP'.! e CoM• •nd the XCoM.
035 1- ..... __ , -"_ -- - - - -- ........ .~- - "- '- - ;""-'';''_ ..;.: ~._ ._ _-- ~._ ..,;.;:.- , ~.~ ~.:.;...;.; ..;.;;..;..~..:.:. ..:.;...;.: ':-::; '.:.::,:.: :.::';';~:':" '~:':'; '''-';'':':

03 .; j ; + ! -
~ 025 : : ··········· ·· .. 1············· ··········!··············· ; -

§ 02 ....: _ :... . : , '--. ; : ----"'"
__ "V" ~ : _ ___ : :! 0 15 "y' ]"" : ···r··· ·····

:~ ,J_-- '- .,- ~ ~~~.~~j...~;..-~-:::~-~=:7~=~:: .~~c::
o 200 400 600 Em um 1200 1400 1500

TlITle, 1/100 sec

The CoPy eCoMy and the XCoMy
D6.-------....------.,.-------r-- - - - - ---.- - - - --,

OJ I~ ~.~ ."':": :7.~.~.~ ._:: ::_.~. ":":' .-:: .":": ~. 77.~.7: .7'. :":. :":"::":' .~ .-:-

E : I

i0: ..---------------_ c - - ~--~- - - [ - - -~ -~~••~ •. ' ••r.,!••-~· · - - -.-.~~t· · -~~- -~t
J - xCCNv

-------------. ---- - -- - - - - -- ' - cr»t
~ ~ ~ 1~

Time. lnOO sec

Legend: MD = (medial) , LT= (lateral). AN = (anterior), PO = (posterior).

Figur 4.4. ll1u trate th medio-lateral (left) and the ante rior-pos terior (right) Bo
(indi at d by arrow) during tanding (two feet flat, eyes open) and during tiptoe landing
from a jump (two feet. right in relation to the oP, Co M and XCoM at that moment in

time.
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4.3.2.2. Centre of Pre ure ( oP), Centr of Mass (CoM) and the extrapolated

Cent re of a ( oM): for tatic balance.

ta tic Balance (2-feet flat , eye open)

Typical graphical di play are given in Figure 4.5 for the Centre of Pressure (CoP),

Centre of Mass ( oM) and the extrapolated Centre of Mass (XC oM) in both directions

ML (x) and AP (y) during tatic balance (2-feet flat, eyes open) in relation to the

functional Bo (stra ight dotted line).

1 FFTCOPI,theCoMI and the XCOMI
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Time, 11100 sec
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............ ..:,. : ; .· .· .· .· .

. ----.---
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E 0.35 ';" .: ; : ~ --COMy

: : : - -XCOMy
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.......: ~. ;:...~ : .
c
E 0.3
u _

Q.
.!! 0.25
."

02 .~ . .. .. . ~ ~ : ~ .
. - - -_...- --- ---- --

o llXXl lDJ
Time, 11100 sec

4000

Figure 4.5.l11u trate th variabl : th ( oP), (CoM) and (X oM) in both media-lateral
( L) and anterior-po terior ( P) dire tion : static balance (2- feet flat eyes open). (Units

= m)

The e variable fluctuate around ea h other continuously which repre ent a state of

equ ilibrium but are ea ily controlled withi n the Bo .
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Sta tic Balance (2-feet flat , eyes closed)

Typical graphical displays are given in Figure 4.6 for the Centre of Pressure (CoP),

Centre of Mass (CoM) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and AP (y) during static balance (2-feet flat, eyes closed) in relation to the

functional Bo (dotted line).

035,...-- - - - ,.-- - - -,--- - ---,-------r-----y------=t
------------ - - - - ----- - - -- ---- - -:--- - ---------;--- -..-----------.------

03

E025
c•S 02 ;....._ - --....

.. 015

01

CoPy.Ih CoMy and Ihe XCoMy

sooo
TIme. 111 00 sec

100)

- - - --- ---- --- - --- - - - -- ---4' - - ---; .
, : -
: -

~ ~ .. .;. ... .'. .-=- --- ....,
: --- ! --- AN

--- PO
; - C

XCOM\'. --COPy-------- ..-- --------------~-------. ------1- - ---
0 15

011

0070

0 42
039

035
E 031

if 027

~ 0 23
} 0 19..,

Figure 4.6 . illustrate the variab les: the (CoP ), (CoM) and (XCoM) in both medio-l ateral
(ML) and anterior-po terior (AP) direction : static balance (2-fee t flat, eyes closed).

(Units = m)

These variable fluctuate around each other continuously as noted for two feet flat eyes

open except there i noticeably more variation.
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ta tic Balance (2-fee t tip toe , eye open)

Typical graphical di play are given in Figure 4.7 for the Centre of Pressure (CoP),

Centre of Ma s (CoM) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and P (y) during tatic balance (2-feet tiptoes, eyes open) in relation to the

functional Bo (dotted line).

O~ _

03

-------- ----

e0 2S

~ 02

c. 015 ---LA

01

-------- ------- ---"---- -------
1500

- CCIP>

lOCO8Xl

02 .. ..._---------------------- -

Figure 4.7. lllu trate the variable: the ( oP), (Co M) and (XCoM) in both medio-lateral
(ML) and anterior-po terior (AP) direction : static balance (2-feet tiptoes eyes open) .

(Units = m).

The charts above illu trate good tability in the ( oP), (CoM) and (XCoM) in the medio-

lateral (M L) during tatic balance whi le the anterior-poster ior (AP) shows large

fluctuation due to the mall available ize of the Bo there are perturbations. The e

variables fluctuate ar und ea h other continuou Iy \ hich represent a state of equilibrium.
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Static Balance (2-feet tiptoe ,eye closed)

Typical graphical di plays are given in Figure 4.8 for the Centre of Pressure (CoP),

Centre of Mas ' (CoM) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and AP (y) during static balance (2-feet tiptoes, eyes closed) in relation to the

functional 8 0 (dotted line).

035 "'- _ _ ,-' _ _ - ---- ... '" .-----,;....;.; - - - - - -- - - - ~ - _.-

03

E.025
c

gO:> t-"-~.......=----~.....,.."...c::.,~,...;:l ..-.~-~~--_.._,,;jpio:::~"'==_---.,;:.--""l
~ 015
ii

01

OClS "'-' __ .... .,_-- "- --------

o ~ ~ ~
fIlM, lnOO$1(

TMCoPJ C J t

01

lDl
T . 1noo

1000

t(D)

1200

-(~

19XJ

- coPy I

1!AX

Figure 4.8 . Illustrate the variable: the (CoP), (CoM) and (XCoM) in both medio-Iateral
(ML) and anterior-po terior (AP) directions: static balance (2-feet tiptoes eyes closed).
(Units = m).

There \ a small perturbation in the ML direction due to the nature of the event (eyes

closed), whereas a a re ult of the small available size of the 80S in the AP direction

these variable fluctuate widely around each other. Particularly the CoPAP diverges to

control the other variable .
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Static Balance (l-foot flat, eye open)

Typical graphical di play are given in Figure 4.9 for the Centre of Pressure (CoP),

Cen tre of Mass (Co ) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and AP (y) during static balance ( I-foo t flat, eyes open) in relation to the

functional Bo (dotted line).

1400 15001200EO)

,me. 11100 sec
The CoPy,lhe CoMy andthe XCOMy

TheCoPx,the CoMx and the XCoMx

- _.". - "'" -, .... -- ....~~ ..."... ,. ... -: , __ ",\,11...,- ;-"- '- .............._.;, .... _ ,,;, ..._..". _ .. __.- .... ,.
: . . . :

026

0.24 ..~.~ --;-:­
o

034 .....------r-----r----....-- - - ,.-- - - ...,-- - - --.-- - - ---r- --,

O~ - ----- - --~-- - --

E 03

c....
-c 02

1200 1400 l50C

Figure 4.9. IIlu trate the variable : the (CoP), (Co M) and (XCoM) in both medio-lateral
(ML) and anterior-po terior ( P) direction : static balance (I-foot flat eyes open). (Units

= m).

As a re ult of the mall ava ilable ize of the Bo in the ML direction there were larger

fluctuation . The e variable flu tuate widel around each other particularly the COPM L

diverges far away to control the other variable . There was smaller perturbation in the AP

direction due to the available ize of the Bo (one foot open ).
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Static Balance (I-foot flat , eye clo ed)

Typical graphical displays are given in Figure 4. 10 for the Centre of Pressure (CoP),

Centre of Ma s (CoM) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and AP (y) during static balance (I-foot flat , eyes closed) in relation to the

functi onal 8 0 (dotted line).

___- _".tt--.-\o,_\_ ..,_----- .......... .,,__- ----

0 34 _ " ,",,,,-
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------- ..... _... _--...-- ..
19))

Figure 4.10. IJIu trate the variable : the (CoP), (CoM) and (XCoM) in both medio­
lateral (ML) and anterior-po terior ( P) directions: tatic balance (I-foot-tiptoes eyes

closed ). (Unit = m).

As a result of the mall available ize of the 80 in the ML direction there were larger

fluctuation . The e variable fluctuate widely around each oth er particularly the COPM L

diverges far away to control the other variables. There was smaller perturbation in the AP

direction due to the available ize of the 80 (one foot) .
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Static Bal an ce (l-foot-tiptoe ,eye open)

Typical graphical di play are given in Figure 4.11 for the Centre of Pressure (CoP),

Centre of Ma s (Co ) and the extrapolated Centre of Mass (XCoM) in both directions

ML (x) and AP 6'J during tatic balance (I-foot-tiptoes, eyes open) in relation to the

functional Bo (dotted line).
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Figure 4.1 1. Illustrate the variable : the (CoP), (CoM) and (XCoM) in both medio-lateral
(ML) and anterior-po terior ( P) direction : static balance (I-foot-tiptoes, eyes open).

(Units = m)

As a result of the small avai lable ize of the Bo in both the ML and AP directions there

were large fluctuation. The e variable fluctuate widely around each other and the CoP

diverge far away to control and oth r variable .
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4.3.2.3. Ground reaction force (GRF) for static ba lance

Typical graphical di plays are given in Figure 4.12 for the shear force in both FML (Fx)

and FAP (Fy) direction during static balance. These forces fluctuate around a constant

level (nominally zero) which repre ents a state of equilibrium. In static balance, the

ranges (double arrow) of the force F IL and FAP are shown.

Static balance (2-feet flat , eye open)

The Forces in both ML(Fx) and)J> (F )

50l)

Tune(sec)
2010

_41.------L----~----__:~----....L------L---.L.-...:....u
o

-2

-3

tatic balance (l-fe t tiptoe , eye open)

The Forces in both ML(Fx) and AP (Fy)

10984 5
Time (sec)

. , OOL-__J....---7---7---~---=---~-_I---..:....!...L.l.---l_---l

o

co

~
Z

Figure 4.12 . Illu trate the applied forces in both the FML and FAP directions in static
balance (Romberg 2-feet flat) and (Romberg l-foot-tiptoes). (Units = N)

The applied force in FMLand FAP value were mall , (range < 10 ewton) during 2-fee t

flat standing. while the appli d force in F IL and FAP values were larger (range 2: 100

ewton) during I-foot-tiptoe tandi ng.
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4.3.2A. Numerical data

The mean and standard deviations of the RMS of the CoM, XCoM, CoP and F are given

in Table 4.1.

Table 4.1.The mean and the SD of the RMS of the CoM, XCoM, CoP and F in both
medio-lateral (ML) and anterior-posterior (AP) directions in static balance (mean of 20
subjects and 3 trials)

** Most participants lost balance.

COMML XCOMML COPML FML COMAP XCOMAP COPAP FAP
Mean Mean Mean Mean Mean Mean Mean Mean

Tests
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)

I (m) (m) (m) (N) (m) (m) (m) (N)

2FFT (EO) 0.008 0.009 0.011 3.750 0.010 0.011 0.012 6.152

0.001 0.001 0.001 1.118 0.001 0.001 0.002 4.080

2FFT (EC) 0.0093 0.010 0.012 4.916 0.011 0.012 0.013 7.498

0.0003 0.001 0.001 2.512 0.001 0.002 0.001 5.100

2FTtip 0.013 0.014 0.015 7.993 0.011 0.014 0.015 11.94
(EO)

0.002 0.002 0.002 2.979 0.001 0.002 0.001 5.850

2FTtip 0.014 0.015 0.016 10.02 0.013 0.015 0.017 18.26
(EC)

0.002 0.002 0.002 4.289 0.001 0.001 0.002 16.81

IFFT (EO) 0.011 0.012 0.014 13.56 0.016 0.018 0.020 11.22

0.001 0.001 0.001 8.339 0.001 0.001 0.002 4.459

IFFT (EC) 0.012 0.013 0.015 26.89 0.018 0.019 0.021 17.65

0.001 0.001 0.001 20.47 0.001 0.001 0.002 10.69

IFTtip 0.009 0.010 0.011 32.50 0.035 0.037 0.039 27.08
(EO)

0.001 0.001 0.001 17.22 0.001 0.002 0.002 14.87

IFTtip ...... ...... ** ... '" "' ... "'''' "'* **(EC)
.

Legend: 2FFI' = (2 feet jlat), 2FTtip = (2 feet tiptoes), 1FFI' = (2 foot flat), 1FFT = (2
foot-tiptoes), and EO = (eyes open), Ee = (eyes closed)
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4.3.2.5. Trial effects

Centre of Mass;

The results in Table 4.2 for a one way repeated measures ANOVA with one within

subject factor (TRIAL,3 levels) showed that there was no significant main effect of trials

neither in eyes open nor eyes closed conditions for the medio-lateral (ML) and anterior-

posterior (AP) directions. Specific trial-by-trial comparisonsare displayed in Figure 4.13

Table 4.2. Illustrates the F values associated with trial effects of the Centre of Mass
variable in all static balance test in both eyes open and eyes closed conditions and in both
medio-lateral (ML) and anterior-posterior (AP) directions.

Legend: 2FFT = (2 feet flat), 2FTtlp = (2feet tiptoes), 1FFT = (2 foot flat), 1FFT = (2
foot-tiptoes), andEO = (eyes open), EC = (eyes closed)

Conditions CoMML CoMAP

2FFT (EO) F (1.998,37.956) = 1.349,P > .05 F (1.884,35.789) = 1.483,P > .05

2FFT (EC) F (1.855,35.244) = 1.316,P > .05 F (1.792,34.041)= 1.915,p> .05

2FTtip (EO) F (1.910,36.290)= 1.355,P > .05 F (1.841,34.976)=1.088, P > .05

2FTtip (EC) F (1.862,35.378) = 1.293,p > .05 F (1.978,37.582) = 1.142,P > .05

IFFT (EO) F (1.966,37.362) = 1.593,P > .05 F (1.905,36.196) = 1.957,p> .05

IFFT(EC) F (1.982,37.655) = 1.302,p> .05 F (1.750,33.251)=1.814, P > .05

IFTtip (EO) F (1.596,30.325)- 2.158, P > .05 F (1.632,31.015)=1.186, P > .05
.
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Figure 4.13 .The mean and 0 of the RM alues for the COMML and CoMAP in static
balance (2-ft flat eye open , 2-ft flat eyes closed, 2-ft tiptoes eyes open and 2-ft tiptoes
eyes clo ed, l-ft flat eye open, l-ft flat eyes closed, I-ft tiptoes eyes open and I-ft tiptoes
eyes clo ed ).
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Extrapolated Centre of Mass;

The results in Table 4.3 show that there was no significant main effect of trials neither in

eyes open nor eyes closed conditions for the medio-lateral (ML) and anterior-posterior

(AP) directions. Specific trial-by-trial comparisons are displayed in Figure 4.14.

Table 4.3. illustrates the F values associated with trial effects of the extrapolated Centre
of Mass variable in all conditions of static balance test in both eyes open and eyes closed
in both medio-lateral (ML) and anterior-posterior (AP) directions.

Legend: 2FFl' = (2 feet flat), 2FTtip = (2 feet tiptoes), 1FFT = (2 foot flat), 1FFT = (2
foot-tiptoes), and EO = (eyes open), EC = (eyes closed)

Conditions XCoMML XCoMAP

2FFT (EO) F (1.850,35.149) = 0.357, P> .05 F (1.967,37.376) = 1.347, P> .05

2FFT (EC) F (1.768,33.595)= 1.087, P> .05 F (1.862,35.373)= 3.065, P> .05

2FTtip (EO) F (1.899,36.077) = 1.443, P> .05 F (1.855,35.240=1.668, p> .05

2FTtip (EC) F (1.861,35.363) = 1.664, P> .05 F (1.978,37.582) = 1.142, P> .05

IFFT (EO) F (1.967,37.369) = 0.875, p > .05 F (1.612,30.632) = 2.908, p > .05

IFFT (EC) F (1.919,36.461)= 2.402, P> .05 F (1.880,35.712) = 2.466, P> .05

IFTtip (EO) F (1.290,24.507)- 1.351, P> .05), F (1.632,31.015)= 1.632, P> .05

.

103
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, Centre of Pressure (CoP)

The results in Table 4.4 show that there was no significant main effect of trials neither in

eyes open nor eyes closed conditions for the media-lateral (ML) and anterior-posterior

(AP) directions. Specific trial-by-trial comparisons are displayed in Figure 4.15.

Table 4.4. Illustrates the F values associated with trial effects of the Centre of Pressure
variable in all conditions of Static balance test in both eyes open and eyes closed in both
medio-lateral (ML) and anterior-posterior (AP) directions.

Conditions COPl\IL COPAP

2FFT (EO) F (1.596,30.316) = 1.321, P > .05 F (1.884,35.789) = 1.483, P > .05

2FFT (EC) F (1.781,33.831)= 1.451, P > .05 F (1.792,34.041) =1.915, p> .05

2FTtip (EO) F (1.908,36.248) = 1.529, P > .05 F (1.841,34.976)=1.088, P > .05

2FTtip (EC) F (1.842,34.999) - 1.856, P > .05 F (1.978,37.582)=1.142, p> .05

IFFT (EO) F (1.938,36.818)=1.029, p> .05 F (1.905,36.196)= 1.957, p> .05

IFFT (EC) F (1.829,34.743)- 2.777, p> .05 F (1.750,33.251)= 1.814, P > .05

IFTtip (EO) F (1.313,32.945)- 1.129, P > .05 F (1.632,31.015) = 1.186, P > .05

Legend: 2FFT = (2 feet flat), 2FTtip - (2 feet tiptoes), 1FFT = (2 foot flat), 1FFT = (2
foot-tiptoes), and EO = (eyes open), EC = (eyes closed)
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Centre o[ pressure: (CoP)
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Ground reaction forces '

The results in Table 4.5 show clearly that there was no significant main effect of trials

neither in eyes open nor eyes closed conditions for the medio-lateral (ML) and anterior-

posterior (AP) directions. Specific trial-by-trial comparisonsare displayed in Figure 4.16.

Table 4.5.Illustrates the F values associated with trial effects of the Centre of Pressure
variable in all conditions of Static balance test in both eyes open and eyes closed in both
medio-lateral (ML) and anterior-posterior (AP) directions.

Conditions FML FAP

2FFT (EO) F (1.798.34.165) = 1.970,P > .05 F (1.974.37.510) = 0.872, P > .05

2FFT (EC) F (1.979.36.602)= 1.999,p> .05 F (1.511.28.700)= 1.798,p> .05

2FTtip (EO) F (1.851.35.177)=1.192, P > .05 F (1.585.30.121) =1.344, P> .05

2FTtip (EC) F (1.852.35.182) = 1.272,p> .05 F (1.580.30.028)=1.271, P > .05

IFFT (EO) F (1.904.36.184)= 1.512,p> .05 F (1.835,34.872) = 2.015, P > .05

IFFT (EC) F (1.872.35.561) = 1.688,P > .05 F (1.879.35.700)=2.769, P > .05

IFTtip (EO) F (1.852.35.182)= 2.188, p> .05 F (1.917.36.432) =2.41 0, P > .05

Legend: 2FFI' = (2 feet flat), 2FI'tlp = (2 feet tiptoes), 1FFT = (2 foot flat), 1FFT = (2
foot-tiptoes), and EO = (eyes open), EC = (eyes closed)
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Ground reaction force (GRF2
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4.3.3. The correlations between static balance tests:

Fundamentally, this study was designed to select a reliable test that represents the static

balance. Therefore, establishing the correlation between tests was essential to clarify the

relationship between the static tests on the main variables. These are presented in tables

(4.6 - 4.13) and show a variable degree of correlation. The condition producing the most

correlations is the l-Foot flat-eyes open (IFTF_EO). This produced a total of 19

correlations across all tables.

Table 4.6.Matrix ofthe CoMML for static balance tests.

*. Correlation IS significant at the 0.05 level (Z-talled).

**. Correlation is significant at the 0.01 level (2-tailed).

2FrF_EO 2FrF_EC 2FrP_EO 2FTP_EC IFTF EO IFTF EC

2FTF_EC 0.517

2FrP_E0 -0.230 -0.129

2FTP_EC -0.271 -0.162 0.802

1FrF_EO -0.119 0.139 0.897 0.446

IFTF_EC -0.152 0.075 0.715·· 0.466 0.697

IFPT_EO 0.248 0.136 0.017 -0.081 0.008 0.011

. . . . .
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Table 4.7. Matrixof the CoMAP for staticbalance tests.

*. Correlation IS significant at the 0.05 level (2-tatled).

**. Correlation is significant at the 0.01 level (2-tailed).

2FTF_EO 2FTF_EC 2FTP EO 2FTP_EC IFTF EO IFTF EC

2FTF_EC 0.743

2FTP_EO -0.213 0.144

2FTP EC -0.184 0.175 0.752

IFTF_EO -0.458 -0.325 0.733·· 0.750

IFTF_EC -0.453 -0.277 0.693 .• 0.632 0.671·

IFPT EO 0.719 0.735-....- 0.021 0.083 -0.134 -0.094

. . .

Table 4.8. Matrixof the XCoMML for staticbalancetests.

*. Correlation IS significant at the 0.05 level (2-taded).

2FTF_E0 2FTF EC 2FTP EO 2FTP_EC IFTF EO IFTF EC

2FTF_EC 0.303

2FTP EO -0.322 0.134

2FTP_EC -0.113 0.159 0.267

IFTF_EO -0.186 -0.171 0.488· 0.266

IFTF_EC 0.003 -0.434 -0.121 -0.496· 0.408

1FPT_EO 0.256 -0.016 0.083 -0.174 0.368 0.017

. . . .
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Table4.9. Matrixof the XCoMAP for staticbalance tests.

*. Correlation IS significant at the 0.05 level (2-tmled).

**. Correlation is significant at the 0.01 level (2-tailed).

2FTF_E0 2FTF EC 2FTP_EO 2FTP_EC IFTF EO IFTF_EC,

2FTF_EC 0.141 ,

2FTP_EO 0.014 -0.323

2FTP_EC -0.163 0.029 -0.059

IFTF_EO -0.123 -0.391 0.553· 0.243

IFTF_EC -0.188 -0.346 0.186 0.733·' 0.452 ;

1FPT_EO 0.541 0.263 -0.084 0.072 -0.417 -0.125

. . .

Table 4.10. Matrixof the COPML for staticbalancetests.

*. Correlation IS significant at the 0.05 level (2-talled).

**. Correlation is significant at the 0.01 level (2-tailed).

2FTF_E0 2FTF EC 2FTP_EO 2FTP_EC 1FTF_E 0 IFTF EC

2FTF_EC 0.425

2FTP_EO -0.273 0.218

2FTP_EC -0.217 0.079 0.926

1FTF_E0 0.047 -0.250 -0.447· -0.483·

IFTF_EC 0.003 -0.473 -0.189 -0.055 0.401

1FPT_EO 0.246 0.052 -0.205 -0.229 0.235 0.121

. . . .
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Table 4.11. Matrix of the CoPAP for static balance: tests.

*. Correlation IS significant at the 0.05 level (2-talled).

**. Correlation is significant at the 0.01 level (2-tailed).

2FTF_E0 2FfF EC 2FTP EO 2FTP_EC IFTF_EO IFTF_EC

2FTF_EC 0.203

2FTP_EO -0.029 -0.217

2FTP_EC -0.086 -0.083 0.619·

IFTF_EO -0.128 -0.236 0.742 0.539

IFTF_EC -0.199 -0.378 0.566" 0.124 0.508
I

1FPT_EO 0.395 0.323 0.011 0.075 -0.334 -0.121

. . . .

Table 4.12. Matrix of the FML for staticbalance tests.

*. CorrelationIS significant at the 0.05 level (2-tal1ed).

**. Correlation is significant at the 0.01 level (2-tailed).

2FTF_EO 2FTF EC 2FTP EO 2FTP_EC IFTF_EO IFTF_EC

2FTF_EC 0.522

2FTP_EO 0.487 0.275

2FTP_EC 0.526· 0.507 0.363

1FTF_E0 -0.108 -0.023 0.650 0.260

IFTF_EC -0.237 0.351 0.087 0.301 0.270

1FPT_E0 -0.455· 0.113 -0.141 -0.070 0.315 0.355

. . . .
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Table 4.13. Matrix of the FAP for static balance tests.

*.Correlation IS significant at the 0.05 level (2-talled) .

**. Correlation is significant at the 0.01 level (2-tailed).

2FrF_E0 2FrF EC 2FTP_EO 2FTP EC IFTF_EO IFTF_EC

2FTF_EC 0.432

2FrP_EO -0.014 0.441

2FTP_EC 0.173 0.689· 0.328

1FTF_E0 0.522 0.564 0.540· 0.216

IFTF_EC 0.343 0.455 0.254 0.329 0.486-'-,

1FPT_EO 0.474 0.410 0.181 0.584 0.765 0.423

. . . . .

The above tables (4.6-4.13) show correlation matrixes of the main variables (CoM,

XCoM, CoP and F) in both in both medio-lateral (ML) medic-lateral and anterior-

posterior (AP) directions in static balance tests (standing on two feet flat, two feet tiptoes,

one feet flat and one foot tiptoes) in both conditions eyes open and eyes closed tests.
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4.3.4. Dynamic balance

Effect of learning (between trials) i e tablished in this study, and an example of three

trials of 2FT_HJ i shO\\11 in appendix 7

4.3.4.1. entre of Pre ure (CoP), entre of a (CoM) and the extrapolated

entre of Ma (X 0 1): for dynamic balance.

Dynamic balance (2-feet flat horizontal jump)

Typica l graphical di play are gi en in Figure 4.17, Figure 4. 18, and Figure 4. 19. for the

Centre of Pre ure ( oP), entre of a (CoM) and the e trapolated Centre of Mass

(XCoM) in both direction ML (x) and AP 61 during dynamic balance (for 2-feet flat

horizontal jump. 2-feet tiptoe horizontal jump, l-foot flat horizontal hop). The l -foot-

tiptoes horizontal hop could not be achieved by most of the participants.
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Dynamic bal ance (2-feet tiptoe horizontal jump)
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The charts above (Figure 4.17, Figure 4.18, and Figure 4.19) illustrate that in the medio­

lateral direction, as a result of the impact (landing phase) the CoP diverges noticeably to

control the CoM and the XCoM. In the landing phase, the CoP controls the XCoM and

the CoM, and these fluctuate around each other in harmony. The main change is that the

CoP, CoM and the XCoM diverge more and it took a longer time settle down from one

condition to another where there is a smaller size of the BoS.
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4.3 .4.2. Ground reaction force (GRF) for dy namic balance

Typical graphical di play are given in Figure 4.20 for the shear force in both FML (Fx)

and FAP (Fy) direction during dynamic balance activities. These forces fluctuate around a

constant level (nominally zero) which represe nts a state of equilibrium.
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Figure 4.20. Illu irate th applied for e in both the FML and FAP direct ions in both
medic-lateral ( L) and anterior-p terior ( P) directions: Dynamic balance (2-fee t flat
j umping two feet tip toe. jumping) and (l-foot flat hopping) . Landing occurs at the first
deviation from zero. ( rut = )
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Landing in dynamic balance requires the ability to maintain balance. Therefore, during

landing the applied forces in FML and FAP are used in correcting the upright position. In

Jumping on 2-feet flat, the forces were mostly at the landing impact and settled dOM!

after that for the rest of the activity (Figure 4.20A) when there was no necessity for large

forces.
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4.3.4.3. Th e Friction Torque (Q) ;

Typical graphical display are given in Figure 4.21 for the shear force in both Q ML (Qx)

and Q AP (Qy) direction during dynamic balance (2-feet horizontal Jump). These forces

fluctuate around a can tant level (nominally zero) which represents a state of equilibrium.

.Iumping on 2 feet flat
t O n 1ft FTF·K) lh (M ) n d (AP) dll (1 ns

OJ)

Time ( 11100 sec)

I I ,
!

,
-O ~ ~~

~
I

: :
--0 '1

\ ·-l·
~ :

: :

- -; -
: : -

, I I I i V i i I i
0 100 200 DJ AOO 500 600 700 an sn 1

100

50

o
.51)

.100

·150

.20)

·250

Jumping on 2 feet tiptoe

um

loor-- - r-- - r-- - r-- - r-- - r-- --r-- - .,.-- --,-- -?===::;"l
50

o L----------------~
.5)

· 00

·150

.:D)

·250oL----!=--~=--~--~:__-_==;:_:_-~:::_-___=~--...l_.---I.---_:l·

Hopping on t foot flat

«m

--O x
--O.y

llX1_---.-----,-----.---,-----r------,r---~---,----.----,

50

o
50

.100

.150

·200

.250
0
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jumping. two feet tip toe jumping) and ( I-foot flat hopping). (Units = .m)
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Landing in dynamic balance requires the ability to maintain balance. Therefore, during

landing the applied torque in QML and QAP are used to correct the upright position. In

Jumping on 2-feet flat, the forces were mostly at the impact and landing phases and

settled down after that for the rest of the activity when there was no necessity for large

forces. In contrast, it took a longer time to settle down when jumping on 2-feet tiptoe and

even longer in on l-foot flat Table 4.14. This indicates that subjects are increasingly

dependent on mechanism two (counter-rotation segments) for maintaining balance as the

BoS reduced.
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4.3.4.4. Numerical data

The mean and standard deviations of the range of the CoM, XCoM, CoP, and the mean

and standard deviations ofthe peak ofthe F and Qare given in Table 4.14.:

Table 4.14. The mean and the SD of the range of the CoM, XCoM and CoP in both
medio-Iateral and anterior-posterior directions in dynamic balance, also the peak forces
and friction torques in both medic-lateral and anterior-posterior directions

... *Most participants lost balance

CoMML XCoMML COPML FML QML CoMAP XCoMAP COPAP FAP QAP
Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

(SO) (SO) (SO) (SO) (SO) (SO) (SO) (SO) (SO) (SO)

Tests (m) (m) (m) (N) (N.m) (m) (m) (m) (N) (N.m)

'2FFT 0.018 0.028 0.164 18.86 144.3 0.102 0.148 0.171 237.5 639.4

0.004 0.008 0.039 4.236 37.52 0.020 0.030 0.040 46.48 91.89

2FTtip 0.022 0.037 0.180 18.82 67.57 0.140 0.121 0.140 205.9 569.7

0.008 0.013 0.058 9.714 26.37 0.043 0.031 0.043 56.45 105.2

IFFT 0.043 0.057 0.066 29.75 272.6 0.190 0.182 0.155 231.2 498.6

0.023 0.031 0.025 9.015 115.4 0.101 0.130 0.036 34.2 65.5

IFTtip .... ...... .... ...... ... ... ... ... ...... .... ** **
.

Legend: 2FFl' = (2feet flat), 2FI'tip = (2feet tiptoes), 1FFT = (2foot flat).
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4.3.4.5. Trial effects

Centre of Mass

The results in Table 4.15 show that there 'was no significant main effect of trials for all

conditions in both medio-Iateral (ML) and anterior-posterior (AP) directions. Mean and

SD ofrange ofdata for each trial for all tests are illustrated in Figure 4.22.

Table 4.15. Illustrates the trial effects of the Centre of Mass variable between trials in all
conditions ofhorizontal jump tests in both medio-Iateral (ML) and anterior-posterior (AP)
directions.

Conditions COMML CoMAP

2FFT F (1.926,36.586) = 0.324, P > .05 F (1.336,25.376) = 0.189, p> .05

2FTtip F (1.760,33.446)= 1.657, P > .05 F (1.631,30.997)= 1.379, p> .05

IFFf F (1.738,33.030)= 3.130, P > .05 F (1.548,29.416)= 0.969, p> .05

Legend: 2FFI' = (2feetflat), 2FI'tlP = (2feet tiptoes), IFFT = (2footflat).
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Centre orA/as : (CoM)
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Figure 4.22. The mean and D of the OMML and Co MAP in dynamic balance (2-ft flat
and 2-feettiptoe hori zontal jump, and l -ft flat). (Units = m)
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Extrapolated Centre of Mass

,

The results in Table 4.16 show that there was no significant main effect of trials for all

conditions in both medio-Iatera1 (ML) and anterior-posterior (AP) directions. Mean and

SD ofrange ofdata for each trial for all tests are illustrated in Figure 4.23.

Table 4.16. Illustrates the trial effects of the extrapolated Centre ofMass variable between
trials in all 'conditions of horizontal jump tests in both medio-Iateral (ML) and anterior­
posterior (AP) directions.

Conditions XCOMML XCOMAP

2FFT F (1.949,37.036) = 0.901, p> .05 F (1.844,35.033) = 1.559, p> .05

2FTtip F (1.670,31.733)= 2.182, P > .05 F (1.841,34.985) = 0.967, P > .05

IFFT F (1.767,33.568)= 2.747, p> .05 F (1.370,26.039) = 0.800, P > .05

Legend: 2FFl' = (2feet flat), 2FI'tip = (2feet tiptoes), 1FET = (2foot flat).
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Extrapolated entre ofMa : ()(CoM)
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Centre of pressure

The results in Table 4.17 show that there was no significant main effect of trials for all

conditions in both medio-Iateral (ML) and anterior-posterior (AP) directions. Mean and

SD of range ofdata for each trial for all tests are illustrated in Figure 4.24.

Table 4.17. Illustrates the trial effects of the Centre of Pressure variable between trials in
all conditions ofhorizontal jump tests in both medio-lateral (ML) and anterior-posterior

(AP) directions.

Legend: 2FFT = (2feetflat), 2FTtlp = (2feet tiptoes), IFFT = (2footflat).

Conditions COPML COPAP

2FFT F (1.797.34.144) = 2.238, p> .05 F (1.385,25.809) = 0.458, P > .05

2FTtip F (1.615.30.686)= 0.491, p> .05 F (1.993.37.869) = 2.280, P > .05

IFFf F (1.617.30.720)-1.285, P > .05 F (1.494.28.390) = .669, p> .05

.
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Centre ofpres lire: (CoP)
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Figure 4.24 . The mean and D of the OPML and CoPAP in both medio-lateral and
anterior-po terior dir ction : Dynamic balance (2-ft flat and 2-feet tiptoes horizontal
jump, and I-ft flat). ( nit = m)
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Ground reaction forces

The results in Table4.18 showthat therewas no significant main effectoftrials for all

conditions in both medio-Iateral (ML)and anterior-posterior (AP) directions. Meanand

SD of peak of data for eachtrial for all tests are illustrated in Figure4.25.

Table 4.18. Illustrates the trial effectsof force components betweentrials in all conditions
ofhorizontal jump tests in both medio-Iateral (ML)and anterior-posterior (AP) directions.

Conditions Fl\IL(m) FAP(m)

2FFf F (1.869.35.509)= 3.020,P > .05 F (1.886.35.832) = 0.939, P > .05

2FTtip F (1.905.36.187)= 2.681,P > .05 F (1.425,27.071)= 1.188, P > .05

IFFf F (1.539,29.241)= 1.213, P > .05 F (1.260,23.941)= 0.799, P > .05

Legend: 2FFI' = (2feet flat), 2FTtiP = (2feet tiptoes), 1FFT = (2 foot flat).
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Ground reaction force : (GRF)
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Friction torque

The results in Table4.19 showclearly that therewasno significant main effectof trials

for all conditions in bothmedio-lateral (ML) and anterior-posterior (AP)directions. Mean

and SD of peak of datafor eachtrial for all testsare illustrated in Figure 4.26.

Table 4.19. Illustrates the trial effects of the friction torque variable between trials in all

conditions ofhorizontal jump tests in bothmedia-lateral (ML)and anterior-posterior (AP)

directions.

Conditions QML QAP

2FFT F (1.859,35.324) = 2.540, P > .05 F (1.602,30.430) = 0.779, P > .05

2Fftip F (1.905,36.187)= 0.807, P > .05 F (1.425,27.071)= 1.188, p> .05

IFFf F (1.390,26.416)= 2.891, P > .05 F (1.260,23.941)= 0.799, p> .05

Legend: 2FFT = (2feet flat), 2FTtlP = (2feet tiptoes), 1FFI' = (2foot flat).
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Friction torque: (0)
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4.4. Discussion:

The purpose of this study was to implement Matlab procedures for quantifying static and

dynamic balance variables, establish baseline data of selected variables that characterize

static and dynamic balance activities in a population of healthy young adult males and to

examine the trial effect baseline data of selected variables that characterize static and

dynamic balance. This was characterized statically for standing test (two feet flat, two feet

tiptoes, one foot flat with all test conditions with eyes open and eyes closed, and one foot­

tiptoes only with eyes open) and dynamically for horizontal jumping (on two feet flat and

on two feet tiptoes) and for horizontal hopping (on one foot flat only with eyes open).

Choosing the appropriate number of subjects was fundamental for achieving the

objectives, hence a small population doesn't reflect the variation that can occur in the

normal population. Geldhof et al.; (2006) used 20 participants in a test-retest reliability

study. Thus, 20 subjects were considered appropriate for representing balance activity

from a variety of subjects. Since both gross stereopsis and fine depth perception is related

to unstable postural control, all participants were tested and passed the stereovision test.

Calculating the CoM was based on a commercially available method (Plug-in Gait marker

set, Vicon, UK). The trajectory of the CoM was computed based on a video-based system

combined with anthropometric information of the human body (Winter, 1990). Individual

body segments can be different depending on individual subject's anthropometric

information. The Plug-in Gait model is widely accepted as a biomechanical model in both

clinical and research settings for evaluating gait dynamics (Gutierrez-Farewik et al.,
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2006) as well as static and dynamic balance (Reevesa et al.; 2008). Although, The CoM

displacement based on the Plug-in-Gait model has been analysed recently in many studies

(Brostrom et al., 2007; Orendurff et al., 2004) it does not consider the asymmetry of the

human body particularly in the anterior-posterior direction. Talbott (2005) avoided this

issue by representing a plot of the CoM and matching them by displaying the CoP

displacement data on a secondary axis. Consequently, in this study a Matlab script was

used to shift mathematically the CoM toward the CoP to provide assured agreement

between the CoP and CoM data.

A novel method ofcomputing the BoS dynamically was established by adding markers to

the subjects' feet/foot, which were tracked during the tests in both static and dynamic

conditions. This provided a convenient way of establishing the BoS without the need for

additional equipment and data processing.

Basically, this study was designed to implement Matlab procedures for quantifying

selected static and dynamic balance variables. The developed Matlab code can treat

numerous files at once and creates figures in a standardised way. Many individual and

generic Matlab functions were written for processing data and to create SPSS output

which can be then statistically treated.

To establish baseline data of selected variables which characterize static and dynamic

balance activities in a population ofhealthy young adult males, it was fundamental to test

many static and dynamic conditions but necessary to reduce these for further studies.
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Vision is a very important factor in sport activities and testing with eyes open is essential.

Therefore, the eyes closed tests will not be undertaken in future tests. Standing on two

feet flat is an easy task while standing on one foot tiptoes is very difficult. Standing on

one foot flat is challenging enough and commonly used in testing postural balance.

Therefore, standing on one foot flat can be used as a representative test for static balance

that is supported and clarified by establishing a correlation between static tests on the

main variables (e.g. CoM, XCoM, CoP and F) tables (Table 4.6- Table 4.13). This is

supported by the fact that this test condition had the highest number of correlations with

other tests (Table 4.6 to Table 4.13). Therefore, the one foot flat, eyes open test can be

used to represent static balance in the forthcoming study.

For testing dynamic balance the existing horizontal jumping tests are useful for

establishing baseline data of selected variables which characterize dynamic balance

activities in a population of healthy young adult males. Due to the complexity ofjumping

on tiptoes and most subjects found this difficult and therefore failed to execute it

successfully, the two feet tiptoe horizontal jump will not be used in the forthcoming

study. instead vertical jumps (e.g. 2 feet flat vertical jump and one foot flat vertical hop)

will be used which will widen the investigating into dynamic balance. An interesting

pattern emerged when generally comparing jumping (two feet flat) and hopping (one foot

flat). In one foot flat horizontal jump, the excursions of CoM, XCoM, and CoP were

larger than in two feet flat horizontal jump, suggesting that the one foot flat condition is a

less stable condition. However, shear forces and Qwere smaller in one foot flat compared

to two feet flat, suggesting that in one foot flat mechanism two (counter rotating

segments) is utilized to a lesser extent to recover balance. This indicates interesting
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f differential effects of condition (one foot flat versus two feet flat) related to the different

balance mechanisms.

The trial effect (baseline data) of selected variables (CoM, CoP, XCoM, F) which

characterize static and dynamic balance was established by testing the differences

between the trials. The results show clearly that there was no significant main effect of

trials neither in eyes open, eyes closed conditions nor in medio-Iateral (ML) and anterior­

posterior (AP) directions. In other words, participants replicate similarly in each trial

which means the mean of the trials can be used for analysis.
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4.5. Conclusion

The main finding can be summarized as following:

• Using Matlab procedures for quantifying selected static and dynamic balance is

practical for handling such large data (e.g. analysis, plotting and producing SPSS

output)

• Baseline data of selected variables which characterize static and dynamic balance

activities was established for a population of healthy young adult males.

• No significant trial effect was found between repetitions on selected variables

which characterize static and dynamic balance.

• The functional BoS can be measured by using additional markers to the feet/ foot.

• Testing with eyes open is related to sport activity. Furthermore, one foot flat is a

representative test of static balance.

• Tiptoes tests, either in static or dynamic balance are too challenging for most

participants in normal circumstances.

• An interesting differential effect of condition (one foot flat versus two feet flat)

was observed related to the utilization of different balance mechanisms.

• The results of this study can be used for the comparative purpose m the

forthcoming study.
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external mass and fatigue upon static and

dynamic balance



5. Study 3: The effects of adding external mass and fatigue upon static and

dynamic balance

5.1. Introduction

One ofthe physical factors influencing static and dynamic balance is body mass and mass

distribution e.g. carrying loads and obesity. The effects of carrying external mass on static

and dynamic balance has been investigated in many studies mostly in children population

(e.g. carrying school's backpack, Singh and Koh., 2009), fewer studies have investigated

that in adult populations (Grimmer et al., 2002) and in these some have dealt with

military manoeuvres (Heller et al., 2009). Since jumping and single-leg hop stabilization

tests are challenging and most closely mimic athletic performance (Wikstrom et al., 2004)

and no study has yet investigated adding external mass in relation to a sport activity

(jumping I hopping), it makes this a suitable topic for further studies.

Fatigue is one of the main factors influencing balance. Fatigue is commonly experienced

by people in daily life and in medical situations. Miller et al. (1995) defined muscle

fatigue as the reduction in maximal force generating capability during exercise. In a sport

context, fatigue increases the complexity of a balance task since it impairs or reduces the

force capacity of muscles, decreases sensitivity of the proprioceptive system, and

increases body sway (Simoneau et a/., 2006). There is limited information regarding the

effect of fatigue on dynamic balance, despite its considerable importance to dynamic

activities in sport. Therefore the aim of this study was investigating the effects of adding

external mass and inducing localised fatigue on static and dynamic balance.
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5.1.1. Objectives

1. To investigate the effect of carrying additional weight (15% of total weight) upon

static and dynamic balance activities in healthy young adult males;

2. To investigate the effect of inducing intensive localized fatigue (lower extremity)

upon static and dynamic balance activities in healthy young adult males.

5.2. Method

5.2.1. Participants

The participants in this study were twenty healthy males (age 23.9 ± 5.5 years, height 178

± 5.8 em, body mass 74.1 ± 5.7 kg), of which 6 participants took part in the previous

study (study 2). They had neither history of problems of postural instability nor gross

problem with stereopsis and fine depth perception, and the main requirement was to

perform normal balance in a set ofdifferent balance tests.

Participants were required to avoid strenuous exercise for at least forty eight hours prior

testing to avoid fatigue. Any participants who had experienced previous lower extremity

surgical repair and/or current injury or pain affecting the lower extremity that altered

participation were excluded from the study. Each participant signed the consent form that

complied with the testing information sheet (Appendix 2). A copy of the consent form

was approved by the University Ethics Committee and located in (Appendix 1).
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5.2.2. Instrumentation

Two force platforms were used as detailed in study 1 and 2: the first was a Kistler

9281B11, Kistler, Switzerland (dimensions 400 x 600mm) which was built-in and

levelled with the floor of the laboratory. It was used in the standing tests or for landing in

the hopping and jumping tests. The second was Kistler 9287B, Kistler, Switzerland

(dimensions 600 x 900mm), whose surface was 20 em higher than floor level and

positioned next to the built-in platform, and was used for take-off in the hopping and

jumping movements. Both force platforms recorded ground reaction forces and the CoP

at 1000 Hz (12 bit AID conversion) and were time synchronised with the Vicon motion

analysis system (See Figure 3.1 and Figure 3.4).

Anthropometric measurements were made by the same person as documented in study 1

and 2. Both sides of the limbs were measured. These values were essential to compute the

Centre ofMass. Body mass and height were also measured as detailed in study 1 and 2. A

total of eight high resolution cameras (lOO Hz) were used to track the reflective markers

during the test to calculate the CoM which was calculated using a commercially available

method (plug-in-Gait marker set, Vicon, UK) as detailed in study 2 (Figure 3.4). They

were also used to track the dynamic trajectories of the BoS during the events. The BoS

was measured using additional feet markers developed in study 2 (see Appendix 3).
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5.2.3. Procedures

5.2.3.1. Anthropometry

Similarto previous studies, measurements of statureand bodymass were taken in the

samemannerto standardise procedures:

Stature

Measurements of stature were recorded using analogue Leicester height measure (Seca

Ltd., Birmingham, UK). Participants were measured barefoot whilst wearinga stretchsuit

prior to startingbalancetesting. Measurements were recorded to the nearest 0.1em,

Body mass

Measurements of body mass were recorded using analogue Seca scales (Seca Ltd.,

Birmingham, UK). Participants were measured barefootwhilstwearing a stretchsuit prior

to starting balancetesting. Measurements were recorded to the nearest O.lkg.

5.2.3.2. Jump Height Assessment:

Standardization is essential in testing, in horizontal jumping tests, participants were

instructed to take-off and land on a fixed location. Also in vertical jumping tests they

were asked to jump to a certainheight (75% ofmaximumjump) whichwas determined as

follow:-

After a warm up, vertical jump trials were assessed by using a simplified vertical jump

measurement method (Figure 5.1), based on three concepts A: standing height, B: the

maximum jumn and C: 75% ofmaximum jump.
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••••, Marker

---1 Measuring tape I

Figure 5.1. Shows the determination of the 75% ofmax VI.

Steps to find the 75% ofmaximum vertical jump:

A. Stand underneath a ball (at the height of subject), and record the measurement on

the measuring tape (A).

B. Raise the ball above the subject, and ask him to perform maximum jumps

(bringing the ball to a height at which the subject reaches the ball at the apex of

flight by the tip ofthe head). This is the 100% maximum jump.

c. Work out the difference, and only use 75% of the maximum jump.

This method has been used in previous study related to vertical jumping (Vanrenterghem

et al., 2004).

After finding the maximum vertical jump height, 75% of this distance was calculated and

used in all vertical trials. This procedure was used for every individual participant to
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standardize the efforts of jumping. The average maximum vertical jump performance for

the participants was 42.1 ± 8.9 em (range 32 ern to 53.5 em).

5.2.3.3. Added weight Prot ocol

A weighted vest was prepared for carryi ng the added loads (Figure 5.2). After

establishing the partic ipant's total body mass , 15% of that mass was calculated (to nearest

0.45 kg), then added to the weighted vest. Loads were added into the pocket of the vest

about the estimated location of the Centre of Mass (about 57% of the total height). This

vest was tightened enough to ensure the constancy of the markers on its locations. On

account of the weighted jacket, orne markers were positioned as required in Plug-in Gait

but on the jacket instead. The e markers are: [the C7 (Back of neck), the TIO (Upper

back), the RBAK (Right back) which is optional, the RSHO and the LSHO (right and left

shoulder)] .

Figure 5.2. hows both the weighted vest and the participant while wearing it loaded.
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5.2.3.4. Fatigue protocol:

The participants were required to warm up prior to undertaken the fatigue protocol. The

warm up consisted ofpedalling on a cycle ergo-meter at a self-selected light intensity for

five minutes followed by higher intensity for three minutes.

The participants were then instructed to perform 1~ maximum effort non-stop vertical

jumps; 8 squats while lifting a weight followed by 8 calf-raise exercises while still having

the weight on shoulder. After that, the participants were then instructed to lunge 8 times 8

on each foot while holding dumbbells. These exercises were repeated 3 times. Although

the subjects were encouraged to perform the whole session they were asked to inform the

experimenter if they have felt they had already reached the target of fatigue on the Borg

scale of 17-20 Appendix 5 (Borg, 1998).

5.2.3.5. Questionnaire:

A copy of personal medical history and physical activity assessment questionnaire was

handed to the participant 2 days before the testing day (see Appendix 4). This was

identical to the one used in study 2.

5.2.4. Pilot work

A few pilot experiments were undertaken to examine weight carrying manoeuvres and

periods of time for the fatigue protocol. Also, establishing estimated time for each

participant to complete the tests.
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5.2.5. Data collection:

5.2.6. Activities and Testing Protocol:

Standardized instructions and explanations were given to the participant as in study 1 and

2. Each participant was given an opportunity to practice prior to the measurements, and

perform three trials fo~ all conditions:

.:. statically: standing still on one foot flat for 35s eyes open (Rom, IFFT)

.:. dynamically:

a) Vertical jumps! hops: two feet flat vertical jump (2FFT-VJ) and One-foot

flat vertical hop (IFFT-VJ) conditions, take-off and landing on the same

force platform. To standardise efforts, the height of approximately 75% of

subject's maximum vertical jump was required.

b) Horizontal jumps! hops: two feet horizontal jump (2FFT-HJ) and one foot

horizontal hop (IFFT-HJ) both conditions take-off from the higher force

platform to land on the lower built-in force platform at a specified location

(standardising efforts).

Unsuccessful trials that included loss of balance, extreme asymmetry, or other

procedural errors were kept for future work in order to give further information about

balance and falls in sport related activities. Only correct trials were computed in this

study.
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5.2.6.1. Randomization:

To avoid bias, a Latinsquare was used to counterbalance the conditions (

Figure 5.3) whichprovide a uniqueorder for administrating tests..

Baseline
S S S S S

Weighted
S S S S S

Fatigue
S S S S S

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Rom 1ft 1 2 3 4 5 2ftVJ 1 2 3 4 5 1ft HJ 1 2 3 4 5

IftVJ 2 3 4 5 1 1ftHJ 2 4 1 5 3 Romlft 2 3 5 1 4

1ft HJ 3 4 5 1 2 Rom 1ft 3 5 4 2 1 2ftHJ 3 5 4 2 1

2ftVJ 4 5 1 2 3 2ftHJ 4 1 5 3 2 1ftVJ 4 1 2 5 3

2ftHJ 5 1 2 3 4 IftVJ 5 3 2 1 4 2ftVJ 5 4 1 3 2

Figure 5.3. Showsthe table of the Latin squarefor 5 participants of5 tests in 3 conditions.

Note: the above table is an example and was changedfor every single participant.

5.2.7. Data analysis:

The (AP) and (ML)coordinates of the CoP and the CoM were derived from recorded data

and low pass filtered at 10 Hz. The velocity of the CoM was calculated using a 3-point

central difference differentiation algorithm (Winter, 1990). From these data;

• For static balance, the mean of the RMS values of all variables (CoM, XCoM and

CoP in both ML and AP directions) for the three trials were calculated for each

subjectas well asthe grand meanand standarddeviationfor each condition.

• For dynamic balance, the mean of peaks of horizontal forces (FML and FAP), and

Friction Torque (Q), and the mean of the range of the CoM, XCoM and CoP of

the three trials were calculated for each subject in both ML and AP directions. In

addition the mean and SD of Dynamic Postural Stability Index and Time to

Stabilization werecomputed.
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5.2.7.1. Stability indices:

For dynamic trials, stability indices are based on the RMS deviation of the force variable

from its baseline value (nominally equal to zero) for the medio-lateral, anterior-posterior,

and body weight (BW) for the vertical force. These are universal calculations of dynamic

stability and sensitive to changes in all 3 directions:

Generally,

For component forces: -

PSI = ""[L(O - X)2/ n], or = RMS (X)

PSIML= -V [L (0 - FML)2 / n],

PSIAP= -V [L (0 - FAP)2 / n],

PSIv= -V [L (BW - Fv) 2/ n],

Where n is the number ofdata points. This gives the Dynamical Postural Stability Index

(DPSI) as:

(Wikstrom et al., 2005)

Calculation of DPSI was based on 3s data post-landing (touchdown force platform). The

average values from the 3 successful trials of each of the dependent variables were

presented.

5.2.7.2. Computing Time to stabilization (TTS):

For dynamic trials, stabilization time for each of the forces (FML' FAP and Fv) and CoP

signals was calculated using the technique of sequential estimation from time of landing.

The algorithm calculated a cumulative average of the data points in a series by
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successively adding 1 point at a time. So after the first point, the average of the first 2

data points was calculated; then the average of the first 3 data points was calculated, and

so on. The last calculation was simply the mean ofall points in the series. At the time the

sequential average remained within one quarter of the SD of the overall series, the

participant was considered to be stable. The stabilization time, was selected as the point

where this occurred. This calculation is based on sequential analysis of data points within

the first 3s after touchdown on the force platform (Colby et al., 1999; Wikstrom et al.,

2005).

Computing TIS was based on a Matlab script which dealt with the whole set of force

data, this method was suitable with horizontal activities (jumping and hopping) whereas

in vertical activities (jumping and hopping) where participants start from the same force

platform, calculating the TIS was not applicable and required a complex routine to start

computing TIS after the flight phase.

5.2.7.3. Using Matlab

Matlab scripts (Matlab 7.4.0, R2007a, .m files) were developed in conjunction with

laboratory staff in order to create organized functions for analyzing data. These functions

can be used with numerous data for creating informative organized structures including

plots, and all treated outputs were saved as SPSS files.
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5.2.7.4. Statistical Analysis

To analyse the postural balance parameters during static and dynamic testing, each

variable for each condition (baseline, added weight and post fatigue) was tested for

normality of distribution. If data were found to be non-normal or skewed, a log

transformation was used to correct it. Repeated measures analyses of variance (SPSS

GLM procedure) were used to test between trial differences in each condition to

determine if there was a trial order effect (i.e, effect of learning). The statistical model

was a repeated measures of ANOVA with two within subject factors [CONDITION, 3

levels] and [TRIAL, 3 levels]. If there was a significant main effect a contrast analysis

was used to illustrate which levels of the factors differed.

The simple contrast was used to compare between the reference value (baseline) with the

other conditions (added weight and post fatigue) whereas the difference contrast was used

between times (trials) to illustrate any learning effect.

The Statistical Package for the Social Sciences (SPSS) version 17 (SPSS Inc, Chicago,

IL) was used to manage and analyze data. The alpha level was set at .05 to indicate

statistical significance.
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5.3. Resul t :

5.3.1. tatic balance

5.3.1.1. tanding balance te t (l -foot flat)

Typical graphical di play are given in Figure 5.4 for the Centre of Pressure (CoP),

Centre of Mass (CoM) and the extrapolated Centre of Mass (XCoM) in medio -lateral

(ML) and anterior-poster ior (AP) direc tions during static balance (lfoot flat , eyes open).

These variable were characteri ed by the mean and standard deviation of the RMS

values for each variable and are given in Table 5.1.
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Figure 5.4 The variable oP, CoM and XCoM in the ML (x) and the AP (y) directions
are illustrated for tatic balance ( I-foot flat, eyes open ). (Units = m). Dashed lines
indicate the boundarie of the Ba e of upport (BOS)
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The above figures illustrate a static balance condition (I-foot flat, eyes open). It is seen

that the CoP (green line) follows the other variables (XCoM and CoM) during the whole

event, but sometimes the XCoM is slightly separated from the CoM where there is a fast

correction was used by the CoP which is indicated by the arrow (Figure 5.4). Otherwise,

(for this slow movement) they are close together to represent stable circumstances.

Table 5.1. Mean and standard deviation of the RMS value of each variable in both the
medio-lateral (ML) and anterior-posterior (AP) directions during static balance (l-foot
flat, eyes open) for baseline, added weight and fatigue conditions.

Variables Baseline Added weight Fatigue

Mean SD Mean SD Mean SD

CoMML(m) 0.0081 0.008 0.0079 0.018 0.0104 0.011

CoMAP(m) 0.0073 0.005 0.0081 0.009 0.0080 0.008

XCoMML(m) 0.0082 0.005 0.0086 0.009 0.0089 0.007

XCoMAP(m) 0.0079 0.006 0.0099 0.005 0.0095 0.008

COPML(m) 0.0091 0.017 0.0091 0.014 0.0100 0.007

COPAP (m) 0.0108 0.005 0.0115 0.005 0.0116 0.010
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Figure 5.5 illustrate th data for the Po tura l Stability Index.
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Figure 5.5. The mean and 0 of the CoM lL and CoMAP in stat ic balance ( I-foot flat eyes
open). (Units = m) (** indicate a ignificant differences from baseline at p < .01)

For the variable a ML, contra t ana lyses showed that there was a significant main effect

of condition (F (1.77-1.33 .701) = 32.349, P < .01). Fatigue was greate r than baseline (F (I, 19) =

41.467, P < .01). dded weight did not differ from baseline (F ( 1, 19) = 0.339, P > .05).

There was no ignificant main effect of trial for the baseline, added weight or fatigue

conditions.

For the variabl 0 1 l AP, contra t analyses showed that there was a signi ficant main effect

of condition (F (1.5 I. 0.00) = 11.229, P < .01). Fatigue was greater than basel ine (F (I , 19) =

11.056, P < .0 1). dded weight did not differ from base line (F ( 1, 19) = 0.282, P > .05).

There wa no ignificant main effect of trial for the baseline, added weight or fatigue

conditions.
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Figure 5.6 illu trate the data for the Extrapolated Centre of Mass:
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Figure 5.6. The mean and 0 of the XCo MML and XCoMAP in static balance (l -foot flat
eyes open). (Unit = m) (** indicate a igni ficant difference from baseline at p < .01)

For the variable r OM,IL. ontra t analyse showed that there was a significant main

effect of condition (F ( 1.996. 37.916) = 60.860, P < .01). Fatigue was greater than baseline (F

(1. 19) = 92.r 4. p < .01). dded weight did not differ from baseline (F (I. 19) = 0.033, p >

.01). There was no ignificant main effect of tria l for the baseline, added weight or fatigue

conditions.

For the variable X oivlAP, contra t analy e showed that there was a significant main

effect of condition (F (1.756. 33.372) = "3. 120, P < .01). Fatigue was greater than baseline (F

(1.19) = 32.772. P < .01). dded weight did not differ from baseline (F ( I, 19) = 3.428 , P >

.05). There wa n ignificant main effect of trial for the baseline, added weight or fatigue

conditions.
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Figure 5.7 illu trate the data for the Cent re of pres ure:
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Figure 5.7. The mean and 0 of the CoP 1L and CoPAP in static balance ( I -foot flat eyes
open). ( nit = m (** indicate a ignificant difference from baseline at p < .01)

For the variable oP IL contra t analy e howed that there was a significant main effect

of condition (F (1.465,27 . "I) = 1-, -29, P < .01). Fatigue was greater than baseline (F (1, 19) =

21.531, p < .01). dded weight did not differ from ba eline (F 0 , 19) = 1.337, P > .05).

There wa no ignificant main effect of trial for the baseline , added weight nor fatigue

condition .

For the variable CoP AP ontra t anal)' e howed that there was a significant main effect

of condition (F (1.0 9,20.691) = 1-.235, P < .01). Fatigue was greater than baseline (F 0 ,1 9) =

13.756, P < ,01). dded weight did not differ from baseline (F ( I , 19) = 1.646, p > .05).

There wa no ignificant main eff ct of trial for the baseline, added weight or fatigue

condition .
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Table 5.2. The agreement between the main variables in study 2 (baseline) and study 3 in
the same condition (Romberg- lfoot flat) in both medio-Iateral (ML) and anterior­
posterior (AP) directions.

Variables t df sig

COMML -1.690 19 .107

COMAP 1.192 19 .248

XCOMML -.514 19 .613

XCOMAP .952 19 .353
!

COPI\IL .553 19 .587

COPAP 1.629 . 19 .120

The above table (Table 5.2) shows no significant differences between the result of the two

studies (study 2 and study 3) in all main variables in both media-lateral (ML) and

anterior-posterior (AP) directions. Therefore, data of study 3 represents typical data in

investigating static balance.
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5.3.2. Dyn amic balance

Effect of carrying additional weight and localised muscle fatigue (between conditions) is

established in thi tudy, and an example of three trials is shown in appendix 8.

5.3.2.1. wo feet horizontal jump (dynamic balance)

Typical graphical di play are given in Figure 5.8 for the Centre of Pressure (CoP),

Centre of Mass (Co ) and the extrapolated Centre of Mass (XCoM) in medio-lateral (x)

and anterior-po terior (y) direction dur ing dynamic balance (2 feet hor izontal jump).

These variable \ ere characteri ed by thei r range .
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Figure 5.8. The variable oP, 0 and CoM in the ML (x) and the AP (y) directions
are illu trated for dynamic balance (2-feet flat hori zontal j ump). (Uni ts = m) Dashed lines
indicate the boundarie of the Ba of upport (BO )

The abo e figure illu trate the whole vent (for 2 feet horizontal jump). The solid arrows

indicate the start of landing pha e. Due to nature of the eve nt (horizo ntal jump), the
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XCoM diverges away from the CoM during take-off phase which represents its nature

(rapid movement ~ ...... ). After the landing ( t), the XCoM'start gradually to close with

the CoM which also represents its nature (slow movement). These movements necessitate

the CoP to follow them to be stable. Mean and standard deviation of the standard

deviation across time for each variable are given in Table 5.3.

Table 5.3. Mean and standard deviation of the range of each variable in both the medio­
lateral (ML) and anterior-posterior (AP) directions during dynamic balance (Two feet ,
horizontal jump) for baseline, added weight and fatigue conditions.

Variables Baseline Added weight Fatigue

Mean SD Mean SD Mean SD

PSIML(N) 1211 128 1327 143 1353 169

PSIAP(N) 2551 105 2786 117 2938 168

PS1v(N) 3001 74 3194 190 3192 87

DPSI (N) 3065 158 3283 224 3282 135

TTSML(ms) 701 81 905 112 963 116

TTSAP(ms) 1494 59 1539 95 1543 104

TTSV(ms) 2847 162 2938 109 2966 90

CoMML(m) 0.019 0.002 0.021 0.002 0.021 0.002

CoMAP(m) 0.122 0.013 0.166 0.047 0.180 0.052

XCOMML(m) 0.028 0.006 0.031 0.006 0.033 0.006

XCoMAP(m) 0.169 0.009 0.177 0.006 0.193 0.029

COPML(m) 0.169 0.024 0.202 0.033 0.215 0.034

COPAP(m) 0.163 0.017 0.178 0.024 0.202 0.022

QML(N.m) 16.86 2.666 18.46 3.208 19.91 3.501

QAP (N.m) 263.8 26.94 283.8 24.84 316.5 35.04

FML(N) 125.4 45.35 155.8 50.69 175.9 53.62

FAP (N) 682.1 90.41 773.7 114.4 879.1 160.2
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Figure 5.9 illu trate the data for the Postural tability Indices.
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Figure 5.9. The Po tural tability Index (P IML, P l AP, P Iv and DPSI) and Dynamic
Postural tability Inde.· (DP I) in dynamic balance (2-feet flat horizontal jump). (**
indicate a significant di fference from ba eline at p < .01)

For the variable P IML contra t analy e howed that there wa a significant main effect

of condition (F (1.723,32.729) = .6 4, P < .0 1). Fatigue wa greater than base line (F (I, 19) =

12.4 11, P < .01), imilarly, added weight \ a also greater than baseline (F ( I, 19) = 16.899,

p < .0 1). There wa no ignifi ant mai n effect of trial for the baseline , added weight and

fatigue condition .
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For the variable PSIAP contrast analyses showed that there was a significant main effect of

condition (F (1.592,30.249) = 48.339, P < .01). Fatigue was greater than baseline (F 0, 19) =

64.098, P < .01), similarly, added weight was also greater than baseline (F (1,19) =55.900,

P < .01). There was no significant main effect of trial for the baseline, added weight and

fatigue conditions.

For the variable PS1vcontrast analyses showed that there was a significant main effect of

condition (F (1.628,30.927) = 22.620, P < .01). Fatigue was greater than baseline (F (1,19) =

64.540, P < .01), similarly, added weight was also greater than baseline (F (1,19) = 27.598,

P < .01). There was no significant main effect of trial for the baseline, added weight and

fatigue conditions.

For the variable DPSI contrast analyses showed that there was a significant main effect of

condition (F (1.973,37.494) = 21.355, P < .01). Fatigue was greater than baseline (F (I, 19) =

33.632, P < .01), similarly, added weight was also greater than baseline (F (1,19) = 34.381,

P < .01). There was no significant main effect of trial for the baseline, added weight and

fatigue conditions,
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Figure 5.10 i11u trate the data for the time to stabil ization.
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Figure 5.10. The Time to
feet flat horizontal jump).
at p < .01)

tabilization (IT ML, TT AP and TTSv) in dynamic balance (2­
nit = ). (** indicate a ignificant difference from baseline

For the ariabl IT tL ontra t anal)' e howed that there wa a significant main effect

of condition ( (I. 6.3 06) = " .4_7. P < .0 1). Fatigue \ a greater than baseline (F (I , 19) =

85.440. P < .001). irnilarly. add d weight wa also greater than baseline (F ( I. 19) =

46.980, P < .00 I) . Ther wa no ignificant ma in effect of trial for the baseline added,

weight or fatigue onditi n .
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For the variable TISAPcontrast analyses showed that there was a significant main effect

of condition (F (1.837,34.911) =7.255, p < .01). Fatigue was greater than baseline (F (1,19) =

12.068, p < .01), similarly, added weight was also greater than baseline (F (I, 19) = 12.938,

p < .01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.

For the variable TISv contrast analyses showed that there was a significant main effect of

condition (F (1.842,3S.002) = 8.387, P < .01). Fatigue was greater than baseline (F (I, 19) =

12.970, P < .01), similarly, added weight was also greater than baseline (F (I, 19) = 8.091, P

< ,01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.
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Figure 5.11 illustrates the data for the Centre of Mass.
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Figure 5.11. The range of the entre of Mass (COMML) and (the CoMAP) in dynamic
balance (2-feet flat horizontal jump). (Unit = m). (** indicates a significant difference
from baseline at p < .01)

For the variable 0 ML contra t analyse showed that there was a significant main effect

of condition (F (1.5 1.30.043) = 44 .277, P < .01). Fatigue was greater than baseline (F (1,1 9) =

83.096, p < .01), imilarly, added weight was also greater than baseline (F (1, 19) = 28.701,

p < .01) . There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variable 0 AP contra t ana ly e howed that there was a significant main effect

of condition (F (1.105,20.997) = 21.2 8-, P < .01). Fatigue was greater than baseline (F (I, 19) =

27.003, p < .01), imilarly, added weight wa also greater than baseline (F ( I , 19) = 18.018,

p < .01). There wa no ignificant main effect of trial for the base line , added weight or

fatigue condition .
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Figure 5.1 2 illustrates the data for the extrapolated Centre of Mass.

**

0.3'nn-.--- - - - - - - - - - - ----,

FatiqueWeiQhtBaseline

'vv

**
'00- **

...,-

-

00-

'vv I0.0

0.3

_ 0.2

~
:i!:
o
o
X

0.1

**

WeiqhtBaseline

_ 0.2
.J
:i!:-:i!:
o
o
X 0.1

Figure 5.1 2. The range of the XCo IL and XCo 1AP in dynamic balance (2-feet flat
horizontal j ump). (Unit = m/ ) (** indicate a significant difference from baseline at p <
.0 1)

For the variable OMML contra t analyses showed that there was a significant main

effect of cond ition (F (1.2 '8.2 .9Q.t ) = 17.06 1, P < .0 1). Fatigue was greater than baseline (F

(1.19) = 19.1'"'8, P < .0 1), imil arly, added weight was also greater than base line (F (I , 19) =

16.130, p < .0 1). There wa no ign ificant main effect of trial for the baseline, added

weight or fati gue co ndition .

For th e va riable X 0 t AP ontra t analy e howed that there was a significant main

effect of conditi on (F (1.1 60, 22.03 ) = 10.522, P < .01). Fatigue was greater than baseline (F

(I , 19) = 10.3 12, P < .0 I), irnilarly, added \ eight was also greater than ba eline (F ( I, 19) =

12.907, p < .01 ). There wa no ignificant main effect of trial for the baseline, added

weight or fati gue condition .
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Figure 5.13 illustrates the data for the centre of pressure.
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Figure 5.13 . The range of the COPML and Co PAP in dynamic balance (2-feet flat horizontal
j ump). (U nits = m/s) (** indicate a s ignificant difference from baseline at p < .01)

For the va riable Co P IL contras t analyse showed that there was a significant main effect

of condit ion (F (1.929, 36.658) = 33.787, p < .0 1). Fati gue was greater than baseline (F (1, 19) =

35. 145, p < .0 1), imilarly, added weight was also greater than baseline (F (1, 19) = 32.527,

p < .01 ). There \ a no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the vari able Co PAP contra t analyses showed that there was a significant main effect

of condition (F (1.789, 33.990) = 34.441 , P < .0 1). Fat igue was greater than baseline (F (I, 19) =

85.42 8, p < .01), irnilarly, added we igh t was also greater than baseline (F (1, 19) = 7.585 , P

< .05). There was no significant main effect of trial for the baseline, added weight or

fati gue con dit ion .
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Figure 5. 14 illu trate the data for the friction torque.
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Figure 5.14. The peak of the Q ML and Q AP in dynamic balance (2-feet flat hori zontal
jump). ( nit = I I.m) (** indicate a igni ficant difference from baseline at p < .0 1)

For the ariable Q IL contra t analyse showed that there was a significant main effect of

condition (F (1.2 -to N .390) = 47.472, P < .01). Fati gue was greater than baseline (F (1. 19) =

65.616, p < .0 1), similarly, added weight was also greater than baseline (F (1. 19) = 27.349,

p < .0 I). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variable Q AP contra t analy howed that there wa a significant main effect of

condition (F ( 1.660. 31.5-t6) = 26.112, P < .0 1). Fatigue was greater than baseline (F ( I. 19) =

38.321, p < .01), imilarly, added weight wa al 0 greater than baseline (F (1. 19) = 8.872, P

< .0 1). There wa no ignificant main effect of trial for the baseline, added weight or

fat igue condition .
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Figure 5.15 illustrates the data for the ground reaction forces .
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Figure 5.15. The peak of the FML and FAP in dynamic balance (2-feet flat horizontal
jump). (Uni ts = ) (** indicate a significant difference from baseline at p < .01)

For the variable F lL contrast analy es showed that there was a significant main effect of

condition (F (1.533,29.136) = 31.430.795, P < .01) . Fatigue was greater than baseline (F (1, 19)

= 37.735, p < .01), imilarly added weight was also greater than baseline (F (I, 19) =

24.144 , p < .01). There wa no ignificant main effect of trial for the baseline, added

weight or fatigue conditions.

For the variable FAP contrast analy e showed that there was a significant main effect of

condition (F (1.566.29.752) = 35.269, P < .01). Fatigue was greater than baseline (F (I, 19) =

36.41 0, P < .01), similarly, added weight was also greater than baseline (F (I , 19) = 31.661,

p < .0 I). There wa no ignificant mai n effect of trial for the base line , added weight or

fatigue condition .
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5.3.2.2 . Tv 0 feet vertical jum p (dy namic balance)

Typical graphical di play are given in Figure 5.16 for the Centre of Pressure (CoP),

Centre of Mas (CoM) and the extrapolated Centre of Mass (XCo M) in medio -lateral (x)

and anterior-posterior (y) direction during dynamic balance (Two feet vertical jump).

These variable were characteri ed by the range or peak values as appropriate for the data.
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Figure 5.16. The variab le oP, oM and XCoM in the ML ( r) and the AP (y) directions
are illu trated for dynamic balance (2-feet flat vert ical jump). (Units = m). Dashed lines
indicate the boundarie of the Ba e of upport (Bo )

The above figure illu trate the whol event (for 2 feet vertical jump). The single arrows

indicate the tart of landing pha e. Due to nature of the event (vertical jump), the XCoM

diverge away from the oM during take-off pha e which represents it nature (rapid

movement ..... ). after the landing pha e ( t), the XCoM start gradually to close with the
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CoM which also represents its nature (slow movement). These movements necessitate the :

CoP to follow them to be stable. Mean and standard deviation for each variable are given

in Table 5.4.

Due to Matlab functions that were written based on whole set of data of one force

platform (used for landing in horizontal activities) the DPSI and TIS were not computed

for vertical activities as the subjects used the same platform for landing as for take-off.

Table 5.4. Mean and standard deviation of the range of each variable in both the medio­
lateral (ML) and anterior-posterior (AP) during static balance (Two feet flat vertical
jump). For baseline, added weight and fatigue conditions.

Note: neither the Tl'Snor the DPSlwas evaluatedfor subjects In vertical events.

Baseline Added weight Fatigue
Variables

Mean SD Mean SD Mean SD

CoMML(m) 0.022 0.005 0.024 0.005 0.027 0.006

CoMAP(m) 0.118 0.011 0.153 0.034 0.169 0.036

XCoMl\IL (m) 0.026 0.005 0.031 0.006 0.032 0.006

XCoMAP(m) 0.16 0.008 0.170 0.015 0.178 0.018

COPML(m) 0.162 0.022 0.195 0.030 0.205 0.04

COPAP (m) 0.159 0.016 0.181 0.021 0.194 0.021

QML(N.m) 15.859 2.545 18.41 3.125 19.33 4.025

QAP (N.m) 203.7 20.39 288.0 28.94 292 26.44

FML(N) 105.3 45.73 152.4 49.89 163.7 45.99

FAP (N) 582.1 90.9 778.3 121.7 796.5 118.6

.
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Figure 5.17 illustrates the data for the Centre of Mass.
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Figure 5.17. The CO M L and COMA? in dynamic balance (2-feet vertical jump). (Units =

m) (** indicates a significant diffe rence from baseline at p < .01)

For the variable CoM~II. contra t analyses showed that there was a significant main effect

of condition (F (1.453,27.598) = 27.75 5, P < .0 1). Fatigue was greater than baseline (F (I , 19) =

37.17 1, p < .01), similarly, added weight was also greater than baseline (F (1, 19) = 18.855,

p < .0 I). There was no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variable CoM Al' contra t analyses showed that there was a significant main effect

of condition (F (1.657.31. 479) = 45.117, P < .0 I) . Fatigue was greater than baseline (F ( I, 19) =

75.271 , p < .01), similarly, added weight was also greater than baseline (F (1, 19) = 20.823 ,

p < .0 I). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .
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Figure 5.18 illustrate the data for the extrapolated Centre of Mass.
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Figure 5.18. The XCoM~IL and XCoMAP in dynamic balance (2-feet flat vertical jump).
(Units = m/ ) (** indicate a significant difference from baseline at p < .0 I)

For the variable X 0 ML contra t ana lyses showed that there was a significant main

effect of condition (F (1.2" , 23.9Q..t ) = 17.06 1, P < .01). Fatigue was greater than baseline (F

(1, 19) = 16.130, P < .01), imilarly, added wei ght was also greater than baseline (F (I , 19) =

19,138, P > .05). There wa no significant main effect of trial for the baseline, added

weight or fatigue conditions.

For the variable X 0 AP contra t analyses showed that there was a significant main

effect of condition (F (1.160.22.038) = 10.522 , P < .01). Fatigue was greater than baseline (F

(I, 19) = 10.313 , P < .01). imilarly, added weight was also greater than baseline (F (I , 19) =

12.907 , P < .01). There wa no ignificant main effect of trial for the baseline, added

weight or fatigue condition.
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Figure 5.1 9 illustrates the data for the centre of pressure.
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Figure 5.19. The CoP lL and CoP AP in dynamic balance (2-feet flat vertical jump). (Units
= m) (** indicate a igni ficant difference from baseline at p < .01)

For the variable CoP lL cont ra t analyses showed that there was a significant main effect

of condition (F ( 1.929, 36.65) = 33.787, P < .01). Fatigue was greater than baseline (F ( I, 19) =

35.145, p < .01), imilarly, added weight was also greater than baseline (F (I , 19) = 32.527,

p > .0 1). There was no significant main effect of trial for the baseline, added weight or

fatigu e conditions.

For the var iable CoPAP contrast analy es showed that there was a significant main effect

of condition (F (1.789,3 .990) = 34.41 1, P < .01). Fatigue was greater than base line (F (1,1 9) =

85.428, p < .01), imilarly, added weight was also greater than baseline (F ( 1, 19) = 7.585 , P

> .05). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue conditions.
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Figure 5.20 illustrate the data for the friction torque.
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Figure 5.20. The peak of the Q ML and Q AP in dynamic balance (2-feet flat hori zontal
jump). (Unit = .01-

1) (** indicates a ignificant difference from baseline at p < .01)

For the vari able Q ML contra t analy e howed that there was a significant main effect of

condition (F (1.2 4, 24.390) = 47.472, P < .0 1). Fatigue was greater than baseline (F (I , 19) =

65.616, p < .01), imilarly, added weight wa also greater than baseline (F (I , 19) = 27.349,

p < .0 1). There \ as no significant ma in effect of trial for the base line, added weight or

fatigue conditions.

For the variable Q AP contra t analyses howed that there was a significant main effect of

condition (F (1.660,3 1.546) = 26.1 12, P < .01). Fatigue was greater than baseline (F (I, 19) =

38.321, p < .01), similarly, added \ eigh t was also greater than baseline (F (1,19) = 8.872 , P

< .0 1). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .
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Figure 5.2 1 illu trates the data for the ground reaction forces .
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Figure 5.21. The FMLand FAP in dynamic balance (2-feet flat vertical jump). (Units = )
(** indic ates a significant difference from baseline at p < .01)

For the variable F lL contra t analy es showed that there was a significant main effect of

condition (F (1.533,29.136) = 31.430, P < .01). Fatigue was greater than baseline (F ( I, 19) =

37.735 , p < .01), similarl , added weight was also greater than baseline (F (1. 19) = 24. 144,

p < .01). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue conditions.

For the variable FAP contra t analyse showed that there was a significant main effect of

condition (F (1.566.29.752) = 35.269, P < .01). Fatigue was greater than baseline (F ( I . 19) =

36.410, P < .01), similarly, added weight was also greater than baseline (F ( I , 19) = 31.661 ,

p < .01). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue cond itions.
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5.3.2.3. One foot horizontal hop (dynamic balance)

Typical graphical di plays are given in Figure 5.22 for the Centre of Pressure (CoP),

Centre of Mass (CoM) and the extrapolated Centre of Mass (XCoM) in medio-lateral (x)

and anterior-posterior ( ) direction during dynamic balance (One foo t horizontal hop).

These variable were characteri ed by their range or peak va lues as appropriate for the

data.
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Figure 5.22. IIlu trate the vari able oP, CoM and XCoM in the ML (x) and the AP (y)
direction are illu trated for dynamic balance (I -foot flat hori zontal hop). ( nits = m).
Dashed line indicate the boundaries of the Base of upport (BoS)

The above figure illu trate the whole event (fo r 1 foot hori zontal hop ). The single-dotted

arrow ind icate the tart of landing phase. Due to nature of the event (horizontal jump),

the XCoM diverge av ay from the oM during take-off pha e which represent s its nature

A
(rapid movement ..-.), after the landing phase ( : ), the XCoM start gradually to close
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with the CoM which also represents its nature (slow movement). These movements'

necessitate the CoP to follow them to be stable, Mean of the standard deviation for each

variable are given in Table 5.5.

Table 5.5. Mean and standard deviation of each variable in both the media-lateral (ML)
and anterior-posterior (AP) during static balance (One foot horizontal hop). For baseline,
added weight and fatigue conditions.

Variables Baseline Added weight Fatigue
I

Mean SD Mean SD Mean SD \

PSIML(N) 2465 211 2714 102 2755 94

PSIAP(N) 1726 49 1792 36 1797 46

PSIv(N) 2456 182 2597 187 2579 179

DPSI (N) 2465 211 2714 102 2755 94

TTSML(ms) 658 53 732 99 789 138

TTSAP(ms) 1631 46 1690 49 1699 37

TTSv(ms) 2670 223 2797 137 2799 166

CoMML(m) 0.046 0.006 0.048 0.006 0.050 0.006

CoMAP(m) 0.164 0.020 0.174 0.022 0.194 0.023

XCoMML(m) 0.057 0.017 0.065 0.015 0.077 0.013

XCoMAP(m) 0.143 0.016 0.161 0.014 0.177 0.012

COPJ\lL (m) 0.169 0.024 0.202 0.033 0.214 0.034

COPAP(m) 0.155 0.023 0.173 0.022 0.193 0.025

QML (N.m) 28.84 7.695 34.22 7.205 37.84 10.83

QAP (N.m) 227.0 29.46 247.2 31.30 258.0 32.67

FJ\lL(N) 242.9 93.40 264.8 93.57 292.1 86.35

FAP (N) 460.8 55.70 501.1 53.22 532.6 66.37
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Figure 5.23 illu trate the data for po tural stability indices.
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Figure 5.23 . The Po tural tabi lity Index (P IML, P l AP, PSIv and DP I) and Dynam ic
Postural tability Index (D P I) in dynamic balance (I-foot horizontal hop). (** ind icates
a significant differen e from ba el in at p < .01 and * indicates a significant differences

from ba eline at p < .05)

For the variable P I 1L ontra t analy e howed that there was a significant main effect

of condition (F (I 952. 37.0s-t) = 9. - 2, P < .0 1). Fati gue was greater than baseline (F (1,19) =

19.04 , p < .0 I ). dded weight did no t ignificantly differ from baseline (F ( I , 19) = 1.660,

p > .05). There wa no ignificant main effect of trial for the baseli ne, added we ight or

fat igue condition .
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For the variable PSIAP contrast analyses showed that there was a significant main effect of

condition (F (1.300. 24.709) = 5.572, p < .05). Fatigue was greater than baseline (F (1. 19) =

7.342, P < .05), similarly, added weight was also greater than baseline (F (1.19) = 4.780, p

< .01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.

For the variable PSIv contrast analyses showed that there was a significant main effect of

condition (F (1.628.30.927) = 22.620, P < .01). Fatigue was greater than baseline (F (1. 19) =

64.540, P < .01), similarly, added weight was also greater than baseline (F (1,19) =27.598,

P < .01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.

For the variable DPSI contrast analyses showed that there was a significant main effect of

condition (F (1.973,37.494) = 21.355, P < .01). Fatigue was greater than baseline (F (I, 19) =

33.632, p < .01), similarly, added weight was also greater than baseline (F (1.19) =34.381,

p < .01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.
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Figure 5.24 illu trate the data for the time to stabilization.
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Figure 5.24. The Tim to tabilization (IT ML, IT AP and IT v) in dynamic balance
(1foot horizontal hop). ( nit = ). (** indicate a significant difference from baseline at

p < .01)

For the variabl lL ontra t anal)' e howed that there was no sign ificant main effect

of condition (F ( I. -t6. 5.6 ) = " .427. p < .0 1). Fatigue was greate r than baseline (F (1, 19) =

85.440, P < .0 S). wh rea add d weight did not significantly differ from baseline (F ( I, 19)

= 46.980. P > .0 -) . Th r wa no ignifi ant main effect of trial for the baseline, added

we ight or fatigue ondition .
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For the variable TISAP contrast analyses showed that there was a significant main effect

of condition (F (1.837,34.911) = 7.255, p < ~01). Fatigue was greater than baseline (F (1,19) =

12.068, p < .01), similarly, added weight was also greater than baseline (F 0,19) = 12.938,

p < .01). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.

For the variable TISv contrast analyses showed that there was a significant main effect of
I

\

condition (F (1.842, 3S.002) = 8.387, P < .01). Fatigue was greater than baseline (F (I, 19) =

12.970, P < .01), similarly, added weight was also greater than baseline (F (I, 19) =8.091, P

< .05). There was no significant main effect of trial for the baseline, added weight or

fatigue conditions.

182



Figure 5.25 illustrates the data for the Centre of Mass.
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Figure 5.25. The 0 IL and 0 p in dynamic balance ( l -feet hori zontal hop). (Units =

m) (** indicate a ignificant diffe rence from baseline at p < .01)

For the variable 0 ~I L contra t analy e howed that there was a significant main effect

of condition (F (1.401. 26.625} = 11.r9, p < .01). Fatigue was greater than baseline (F ( I, 19) =

39.134 , p < .01). Wherea added weight did not significantly differ from baseline (F (I . 19)

= 3.252,. p > .05). Th re wa no ignificant main effect of trial for the baseline, added

weight or fatigue condition .

For the variable oMt\p contra t analy e howed that there was a significant main effect

of condition (F (1.399 ,26. I) = 7 ."94, P < .01 ). Fatigue was greate r than baseline (F ( I, 19) =

86.055, P < .0 I). imilarly, added weight wa also greater than baseline (F (I , 19) = 46.166,

p < .01). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .
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Figure - .26 illu trate the data for the ex trapolated Centre of Mass.
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Figure - .26. The X oM , tL and
( nit = ) (** indicate a
indicate a ignificant diff ren

r oM AP in dynam ic balance (l -foot flat horizontal hop).
igni ficant difference from baseline at p < .0 I and *
from ba eline at p < .05)

For the variable j oM ,1L ontra t ana ly e sho wed that there was a significant main

effect of condition (F (I. ", ".20') = 10.0 17, p < .0 1). Fatigue was greater than baseline (F

(1, 19) = 20.083 P < .01). Wh rea added we ight did not significantly differ from baseline

(F (I . 19) = 2.561, P < .0 S). There wa no significant main effect of trial for the baseline,

added weight or fatigu condition.

P contra t analy e showed that there was a significant main

effect of condition (F (I. 5. 6.693) = 60..... , p < .0 1). Fatigue was greater than baseline (F

(1, 19) = 87.401 P < .01 dd d weight wa al 0 greater than baseline (F ( I, 19) = 33 .966, P

< .01). There was no ignifi ant main effect of trial for the baseline, added weight or

fati gue condition .
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Figure 5.27 illustrate the data for the centre of pressure.
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Figure 5.27. The oP IL and COPA? in dynamic balance (I-foot flat hori zontal jump).
( nits = m) (** indicate a ignificant difference from baseline at p < .01 and * indicates
a significant diff renee from ba eline at p < .05)

For the ariable oP IL ontra t ana ly e howed that there was a significant main effect

of condition (F (1.92936.65 ) = ......... 7 7, P < .0 1). Fatigue was greater than baseline (F ( I, 19) =

35.145, p < .01). dded weight wa also greater than baseline (F (I , 19) = 33.527, p > .0 1).

There wa no ignificant main effect of trial for the baseline, added weight or fatigue

conditions.

For the variable oPA? contra t analyse howed that there was a significant main effect

of condition (F (1.7 2.32.916) = .... 0.602, P < .0 1). Fatigue was greater than baseline (F ( I, 19) =

34.642, P < .01), irnilarly . added weight was also grea ter than baseline (F (I , 19) = 21.479,

p < .0 1). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .
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Figure 5.28 illu trate the data for th friction torque.
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Figure 5.2 . The peak of the Q ML and Q AP in dynamic balance (2-feet flat horizontal
jump). ( nit = 1.m-l

) (** indicate a ignificant difference from baseline at p < .0 I)

For the variable Q ML contra t analy e howed that there was a significant main effec t of

condition (F (1.776.33. 40) = 10.192, p < .0 I). Fatigue wa greater than ba eline (F (I. 19) =

10.275, p < .0 I), irnilarly, added weight wa also greater than baseline (F (1. 19) = 10.044 ,

p < .0 I). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variable AP ntra t analy e howed that there was a significant main effect of

condition (F (1.660.3 1.546) = 10. '" I, P < .0 1). Fatigue wa greater than ba el ine (F (I , 19) =

15.9 13, P < .01), imilarly, add d \ ight was also greater than baseline (F (1, 19) = 7.4 16, p

< .05). There wa no ignificant main effect of tria l for the baseline, added \ eight or

fat igue condition .
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Figure 5.29 illu trate the data for the ground reaction forces.
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Figure -.29. Th F, IL and FAP in dynam ic balance (1-foot flat horizontal jump). (Units =

) (** indicate a ignificant diffe rence from ba eline at p < .01)

For the variable FML ontra t analy e howed that there was a significant main effect of

condition (F (1.639. 31.134) = 6. -93. p < .01). Fatigue was greater than baseline (F (I , 19) =

7.218, p < .0 - ). dded weigh t wa al 0 greater than baseline (F ( I, 19) = 4.878, P < .05).

There was no ignificant main effec t of trial for the baseline, added weight or fatigue

conditions.

For the variable FAP ontra t analy e howed that there was a significant main effect of

condition (F (1603,30.462) = 16.007. P < .01). Fatigue wa greater than ba eline (F (I , 19) =

14.719, P < .0 1). imilarly . added weight wa al 0 greater than baseline (F ( I . 19) = 19.795 ,

p < .01). There wa no igni ficant main effect of trial for the baseline, added weight or

fatigue condition .
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5.3.2.4. One foot flat vertical hop (dynamic)

Typical graphical di play are given in Figure 5.30 for the Centre of Pressure (CoP),

Centre of a (0 ) and the e..trapolated Centre of Mass (XCoM) in medio-lateral (x)

and anterior-p o terior (y) direction during dynamic balance (One foot vertical hop).

These variab le were characteri ed by the range or peak values as appropriate for the data.
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Figure 5." 0. Illu trat th variabl oP, CoM and XCoM in the ML (x) and the AP (y)
direction are illu trated for dynamic balance (I-foot flat vertical hop). (Units = m).
Dashed line indicate the boundarie of the Base of upport (Bo ).

The above figur illu trate the who le event (for 1 foot flat vertical hop). The single-

dotted arrow indi ate th tart of landing pha e. Due to nature of the event (vertical

jump), the oM diverge away from the CoM during take-off phase whic h represents its

nature (rapid movement ....) v n out of the Bo instantly at the flight phase. After the

....
landing pha e ( : ). the olvl tart gradually to cIo e with the CoM which also represent
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its nature (slow movement). These movements' necessitate the CoP to follow them to be

stable. Mean of the standard deviation for each variable are given in Table 5.6.

Table 5.6. Mean and standard deviation of range of the variables in both the medio-lateral
(ML) and anterior-posterior (AP) during dynamic balance (One foot flat vertical hop) for
baseline, added weight and fatigue conditions.

Note: neither the TISnor theDPSlwas evaluatedforsubjects in vertical events.

Variables Baseline Added weight Fatigue

Mean SD Mean SD Mean SD

CoMML(m) 0.035 0.007 0.046 0.005 0.05 0.007

CoMAP(m) 0.036 0.008 0.045 0.01 0.051 0.013

XCoMML(m) 0.045 0.007 0.055 0.005 0.059 0.007

XCoMAP(m) 0.046 0.008 0.053 0.01 0.061 0.013

COPML(m) 0.068 0.009 0.07 0.013 0.076 0.012

COPAP (m) 0.048 0.015 0.57 0.012 0.66 0.018

QML(N.m) 36.12 4.423 40.72 4.929 44.97 6.691

QAP (Nan) 40.01 5.685 43.67 6.772 45.43 7.462

Fl\lL(N) 180.8 10.14 192.0 10.48 201.7 19.72

FAP (N) 312.4 33.86 333.4 39.75 354.7 35.79

.
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Figure 5.31 illu trate the data for the Centre of Mas .
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Figure 5.'" I. Illu trate the m an and 0 of the CoMML and CoM AP directions in dynamic
balance ( l -fe t verti al jump). ( nit = m) (** indicates a significant difference from
baseline at p < .0 I)

For the variable 0 1, u, ontra t analy e howed that there was a significant main effect

of condition (F (1.7"0.33 . 60) = I ~.'" 6, p < .01). Fatigue was greater than baseline (F (1, 19) =

19.757 p < .01). imilarly. added weight wa al 0 greater than baseline (F ( 1, 19) = 7.484 , P

< .05) . There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variable oMr\p ntra t analy e hox ed that the re wa a significant main effect

of condition ( (1. 42. '" - .00_) = 1.024, P < .01). Fatigue was greater than ba eline (F

(1, 19) = 61.476. p < .0 I). dded weight wa al 0 greater than basel ine (F (1, 19) = 8.694 ,

p < .01) . There wa no ignifi ant main effect of trial for the base line , added weight or

fatigue condition .
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Figure 5.32 illu trate the data for the extrapolated Centre of Mass.
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Figure 5.32. The X 0 1ML and XCoMAP in dynamic balance (2-feet flat vertical jump).
(Units = m/s) (** indicate a ignificant di fference from baseline at p < .01)

For the variable X 0 1ML contra t analyses showed that there was a significant main

effect of condition (F (I 747. 33.194) = 92. 00, P < .01). Fatigue was greater than baseline (F

(1,19) = 39.14 ,p < .01). dded weight was also greater than baseline (F ( I, 19) = 14.251, P

< .0 1). There was no ignificant main effect of trial for the baseline, added weight or

fatigue condition .

For the variabl X oM P contra t analyses showed that there was a significant main

effect of condition (F (1.770, 33.622) = 27.1 85, P < .01) . Fatigue was greater than baseline (F

(I , 19) = 26.634, P < .01). irnilarly, added weight was also greater than baseline (F ( I, 19) =

28 .311 , P < .01). There wa no ignificant main effect of trial for the baseline, added

weight or fatigue condition .
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Figure 5.33 illustrate the data for the centre of pressure.
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Figure 5.33. The oP IL and CoPAP in dynamic balance (1-foot flat vertical hop). (Units =
m) (** indicate a significant di fference from baseline at p < .01)

For the variable OP~IL contra t ana ly e showed that there was a significant main effect

of condition (F (1.277. 2H-t9) = 6.113, P < .05). Fatigue was greater than baseline (F ( I, 19) =

6.848, p < .05) , wherea added weight did not significantly differ from baseline (F ( I , 19) =

2.901, P > .05). There \ a no ignificant main effect of trial for the baseline, added

weight or fatigue condition.

For the ariable OPAl' contra t ana ly e howed that there was a significant main effect

of condition (F ( I 70 . 32A-t9) = "'7.920, P < .01). Fatigue was greater than baseline (F ( 1, 19) =

53.763, P < .01), imilarly, added weight was also greater than baseline (F (I , 19) = 17.763 ,

p < .01). There wa no ignificant main effect of trial for the baseline, added weight or

fatigue condition .
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Figure 5.34 illustrate the data for the friction torque.
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Figure - .34. The peak of the Q.1Land QAPin dynamic balance (I -feet flat vertical jump).
(Unit = .m" ) (** indicate a ignifi cant difference from baseline at p < .0 1)

For the variable QMLcontra t analy e howed that there was a significant main effect of

condition (F (1.461.27.757) = -6. -9, p < .01). Fatigue was greater than baseline (F (I . 19) =

58.211, p < .0 1), imilarly. added weight wa al 0 greater than baseline (F (1. 19) = 51.908,

p < .01). There was no ignificant main effect of trial for the base line, added weight or

fatigue condition .

For the variable Q P ontr t analy e howed that there was a significant main effect of

condition (F (16 6.32.232) = 24. -97, p < .0 1). Fatigue was greater than baseline (F (I , 19) =

24.600, p < .0 1). imilarly, added weight wa also greater than baseline (F ( 1, 19) = 24.593 ,

p < .01). There wa no igni ficant main effect of trial for the base line, added weight or

fatigue condition .
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Figure 5.35 illustrate the data for the ground reaction forces.
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Figure 5.35 The peak of the F l L and FAP in dynamic balance (I -foot flat vertical hop).
(Units = 1) (** indicate a ignificant diffe rence from baseline at p < .01)

For the variable F u, contra t analy e howed that there was a significant main effect of

condition (F (1.196.22.719) = 17.122. P < .0 1). Fatigue was greater than baseline (F (I . 19) =

13.469, P < .01). Added wight wa al 0 greater than basel ine (F (I , 19) = 53.779, P < .05).

There wa no ignificant main effect of trial for the baseline, added weight or fatigue

condition .

For the variable FAP contra t analy e hov ed that there was a significant main effec t of

condition (F ( 1.479.2 .092) = 11.457, P < .0 1). Fat igue was greater than baseline (F ( I . 19) =

11.704, P < .01). dded weight wa al 0 greater than baseline (F (I , 19) = 10.759, P < .01).

There wa no igni ficant main effect of tria l for the baseline, added weight or fatigue

condition .
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5.4. Discussion:

The purpose of this study was to establish the influence of physical (external added
I

weight) and neuromuscular (fatigue) factors on static and dynamic balance in sport

related activities. This was typified statically by the Romberg test (one foot flat, eyes

open) and dynamically by jumping and hopping in both forward and vertical directions.

Choosing the appropriate number of subjects w~s fundamental for studying the aspects of

balance measurements with motion analysis, because a small population doesn't reflect

the variation that can occur in the normal population. Many studies have used numbers of

subjects similar to this study (e.g. Wikstrom et al., 2005; n=18, Qu and Nussbaum, 2009;

n= 12, Singh and Koh, 2009; n=17, Arellano et al., 2009; n=23). Thus, 20 subjects were

considered appropriate for representing balance activity from a variety of subjects.

Choosing the appropriate added mass to be carried by participants was important. Some.

studies have loaded recreational hikers with 12% to 47% of their total body mass (Lobb

2004), others recommended using 10%, 15% or 20% of total body weight (BW) (Cheung

and Hong, 2001; Abe et al., 2004; Singh and Koh, 2009; Arellano et al., 2009), most of

which indicate significant changes. The lack of an effect on postural stability when

carrying lighter loads has been reported by others (Palumbo et al., 2001) and may be due

to the ability of the body to adjust to the smaller load. Therefore, the added weight was

considered to be appropriate to elicit a suitable balance response which was 15% of total

body weight.
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Deciding the appropriate effective fatigue such as type (concentric), location (lower

extremity), duration (short period) was also: important. Many studies indicated that

fatiguing the lower extremity was associated with significant increases in postural sway

(Ochsendorfet al., 2000; Ramsdell et al, 2001; Gribble and Hertel, 2004). Davidson et al,

(2004) found that the duration of the induced fatigue effects on postural control have

varied from near immediate recovery extended to 10-20 min after the end of the fatiguing

exercise for lower extremity fatigue. Moreover, many studies assessing the impact of

fatigue on postural control have focused primarily on the induction of fatigue through
I

relatively short-duration exercise (Dickin, 2007). Therefore, this study was designed to

determine the effect of short-duration intensive fatiguing exercise localized at the lower

extremity, and that within 10 minutes after the fatiguing exercise.

5.4.1. Statically

In the static balance test (one foot flat, eyes open), the present findings are in agreement

with previous results (Blaszczyk et al., 2009). Although by adding weight sway did not

significantly differ from baseline, there was a trend in that participants' postural sway in

the AP direction reduced while carrying added mass. The XCoMAP decreased by -2.51%,

the CoPAP by -3.64%. The degree of stability is higher when the body mass is greater

(Ribas and Guirro, 2007). This mechanically is due to increase of inertia and therefore

postural balance may well be preserved (Blaszczyk et al., 2009). Increasing mass (e.g.

backpack) makes it harder to initiate motion and requires greater moments about the axes

of rotation to control motion and alter postural control mechanisms (Maki, 1994). As a

consequence, AP postural stability is not necessarily better despite reduced sway.
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While an increase of body mass resulted in asmall functional adaptation of the control of

the erect posture, participants' postural sway increased post fatigue in both medio-Iateral

and anterior-posterior directions. The CoMML increased by 4.5% and the CoMAP by 5.6%;

the XCoMML increased by 8.9%; and the XCoMAP by 10.6%; the COPML increased by

4.4% and the CoPAP by 6.0%. Fatigue increases the complexity of a balance task because

it impairs or reduces the force capacity of muscles, decreases sensitivity of the

proprioceptive system, and increases body sway (Simoneau et al., 2006). The results

agreed with other studies which found an increase in body sway oscillations during static
\

balance tests in the fatigued state (Nardone et al., 1997; Corbeil et al., 2003). Increased

postural sway is an indication of perturbed balance. Consequently, fatigue negatively

affected postural stability.

In summary, carrying additional weight increased subject's inertia and tended to decrease

their sway amplitude and therefore stabilized them in static conditions. In contrast, fatigue

increased subjects sway indicating greater instability.

4.3.2. Dynamically

In summary, the differences between the baseline and the added weight condition were as

follows: The CoMML increased by 27.3% and the COMML by 2.2%; the XCoMML

increased by 7.9%, and the XCoMAP by 2.4%; the COPML increased by 24.9% and the

CoPAP 15.3%. Also, the other related variables were affected during dynamic balance e.g.

the time to stabilization increased by 29.1%. In post-fatigue, the differences between the
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baseline and the fatigue condition were as follows: The CoMML increased by 32.9% and

the CoMAP by 2.5%; the XCoM~n. increased by 19.1%, and the XCoMAP by 3.3%; also

the COPt.n. was increased by 30.2% and the COPAP 19.7%. Time to stabilization was also

affected during dynamic balance as the time to stabilization increased by 37.3%. In other

words, both added weight and fatigue seemed to lead to reduce stability. However, as will

be described below, a more detailed interpretation reveals some interesting concepts.

Results for vertical. and horizontal jumping/hoping were similar, but more explicitly

evident for the horizontal jumping/hopping. As expected, the main differences between

horizontal and vertical jumping were in the AP direction. The variables CoM, XCoM,

CoP, Q and F were all larger in horizontal jump than in vertical jump, both at baseline

and under added weight or fatigued conditions. In horizontal jumping and hopping, there

were significant differences between baseline and added weight. The larger main effect of

condition was found in the antero-posterior direction during the landing phase (Figure

5.8, Figure 5.16, Figure 5.22 and Figure 5.30). The translation of the CoM considerably

increases its velocity which is important considering the feasible movement for the

control of one's balance (Pai et al.; 1992). During the take-off phase, the body generates

velocity required for flight. As a matter of fact, it creates a significantly diverged

XCoMAP that exceeds the boundaries of the BoS at take-off (due to nature of movement).

Pai and Patton (1997) reported that forward movement (e.g. take-off of jumping or

hopping) would be initiated if the CoM exceeds the boundaries of the BoS. Even though

the XCOMML did not exceed the boundaries of the BoS it also diverged away from it as

subjects move their COMML laterally at take-off as well as after landing. Upon landing,

the movements must be decelerated to stabilize the body's CoM. Although this can be

easily achieved in normal circumstances (baseline), in the added weight condition the
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XCoM instantly travels outside the BoS particularly in the AP direction (XCoMAP).

Consequently, the CoP excursion was significantly larger in added weight compared to

baseline, but insufficient to recover balance. Dragging the XCoM back within the BoS

necessitates the body to generate shear forces at the BoS that are used to decelerate and

stabilize the CoM. This was found to be the case at baseline and increasingly under added

weight. The larger main effects of added weight on shear force were also found in the two

feet horizontal jump. For the two feet horizontal jump added weight condition TIS was

also significantly greater than baseline. In other words, subjects require longer time of

force production than in the normal condition to remain in equilibrium by dragging and

holding the CoM within and over the BoS.

The differences between baseline and lower extremity fatigue were similar to those

reported above for added weight. The larger main effect of condition was found in the AP

direction due to large and fast movement of the CoM during take-off to landing phase.

During the take-off phase, the XCoMAP exceeds the boundaries of the BoS though the

XCoMML did not exceed the boundaries of the BoS. During landing, to stabilize the

body's CoM which can be easily achieved in normal circumstances (baseline), after

inducing fatigue the XCoM was initially outside the BoS particularly in the AP direction.

Consequently, the CoP excursion was significantly larger in post fatigue compared to

baseline. In order to recover balance, considerable shear forces had to be generated at the

BoS to decelerate and stabilize the CoM. TIS was also significantly greater than baseline

indicating that more time was needed to maintain balance.
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5.5. Conclusion:

The investigation of the effect of carrying additional mass (15% of total body mass) and

inducing intensive localized fatigue (lower extremity) upon static and dynamic balance

variables in healthy young adult males was informative in different ways.

Added weight (15% oftotal body weight):

.:. Statically, decreased body sway in AP direction though not significant.

Indication that increased inertia impacts on behaviour of the mechanical system

rather than behaviour ofneurophysiological system.

•:. Dynamically, significantly increased body sway in both ML and AP

directions as an indication of instability. This challenges mechanism one (seen

through increased CoP excursion) and requires utilization of mechanism two in

order to maintain balance (seen through increased shear forces and Q).

Fatigue (localized at the lower extremity):

.:. Statically, fatigue significantly increased body sway indicating greater

instability while primarily utilizing mechanism one. This is an Indication of

neurophysiological_adaptation.

•:. Dynamically, significantly increased body sway in both ML and AP

directions as an indication of instability. Advanced utilization of mechanism

two is demonstrated through increased shear forces and Q, as well as increased

TIS.
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6. General discussion and Future work

6.1. General discussion

This thesis presented a number of discrete studies, which investigated characteristics of

static and dynamic balance in sport related activities and eventually the effects ofphysical

(carrying additional weight) and neuromuscular (effect of localized muscular fatigue)

factors influencing these characteristics.

In study 1, methods incorporating mechanical variables to quantify static and dynamic

balance were developed. This was achieved in a sport context, applying the XCoM

method to activities ranging from standing still to jumping and hopping. It was

established that CoP, CoM, and XCoM are informative 011 mechanism 1 (inverted

pendulum). This can be facilitated through measuring RMS during static balance, and

measuring excursion range during more dynamic activities such as hopping and jumping.

In the latter dynamic activities, shear forces and their respective moments were found to

be informative measures on mechanism 2 (counter rotating segments) for maintaining

balance after landing. Implementation of the XCoM was practical for evaluating both

static and dynamic balance and provided the expected results: in static balance, the

XCoM was within the BoS when the subject maintained balance, while in dynamic

balance it travels close to the boundaries of the BoS during take-off and landing stages.

In study 2, the baseline characteristics of static and dynamic balance in young adults in

sport related activities were evaluated. This was achieved by establishing baseline data of
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selected variables which characterize static and dynamic balance activities in a population:

of healthy young adult males and examining the.trial effect on these variables. Matlab

procedures were developed and used for quantifying selected static and dynamic balance

variables.

No significant trial effect was found between repetitions. It was established that the

functional BoS can also be measured by using additional markers to the feet/ foot, and

that using Matlab procedures for quantifying the selected variables for static and dynamic

balance is practical for handling large data sets (e.g. analysis, plotting and producing

SPSS output). Moreover, it was found that testing with eyes open is related to sport

activity and standing one foot flat is a representative test for static balance while standing

on tiptoes tests, either in static or dynamic balance, are too challenging for most

participants in normal circumstances. The baseline data from this study was considered

suitable for comparative purposes in the forthcoming study.

In study 3, the investigation presented the establishment of the influence of physical

(carrying an external added weight of 15% of total body mass) and neurophysiological

(fatigue induced to the lower extremities) factors on static and dynamic balance in sport

related activities. Overall, the effect on static balance of carrying additional weight was

that it increased subjects' inertia, tended to decrease their sway, and therefore stabilizes

them in static conditions. In contrast, the effect of fatigue on static balance was that it led

to increased sway as an indication of reduced stability. These effects on static balance

seemed to largely confirm previous findings. A key innovative aspect of this thesis was

applying the XCoM in sport related activities such as jumping and hopping. Here, it was
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found that upon landing XCoM exceeded the IBoS boundaries both under added weight

and fatigue. If only mechanism one (inverted pendulum) applied, the participants would

lose their balance. However, considering that in all trials participants did not lose their

balance and did not alter their BaS (either through taking a step or using an external

support), this was an indication that participants had to use mechanism two (counter

rotating segments) to maintain their balance. Interestingly, a differential adaptation for

each of these mechanisms was found between one foot flat and two feet flat conditions,

such that participants relied more heavily on mecllanism one in the one foot flat

conditions and relied more on mechanism two in the two feet flat conditions.

6.2. Summary points:

• This thesis provided substantial insight in evaluating static (standing) and dynamic

balanceGumpingand hopping) in sport related activities

• The CoP, the CoM, the XCoM, shear forces, and their respective moments are

more informative than other variables (e.g. KE, and P) during both static and

dynamic balance providing valuable information about the postural control

mechanisms,

• The investigations showed that there was a significant difference in static balance

tests between normal circumstances and post fatigue, when there was no

significant difference in static balance test between normal circumstances and

carrying 15% ofthe total body mass.

• The investigations showed also a significant difference in dynamic balance

between normal circumstances and both while participants carrying 15% of total

body mass and post fatigue.
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It is suggested that results from this thesis aid toward advancing the understanding of

balance in sport related activities, and can provide an initial foundation for future work in

this area.

6.3. Future work

The key findings ofthis thesis provide valuable insights into the application of the XCoM

approach for assessing balance in a sports context.

Adaptations due to training can now be investigated through a focused methodology. For

example, comparison can be made between non-trained population and athletes who

undergo inherent balance training as part of their sports discipline (e.g. ballet dancers,

gymnasts).

The focused study of balance during specific technical skills in sport (e.g. side cutting

manoeuvres, standing reception in volleyball, and floor routines in gymnastics) can now

be undertaken. The importance of accurate recordings, quantifying relevant variables,

supplying sufficiently synchronised and automated data processing routines, and

appropriate interpretation in terms of the available balance mechanisms was demonstrated

in this thesis. This serves as a solid starting point towards studying balance in more sport

specific technical skills.

It is expected that future developments of the methodology may require advanced

complexity, for example by measuring the CoP through a combination of pressure and
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force platform recordings, by measuring the Base of Support through a combination of

pressure and kinematic recordings, or by simultaneously recording muscle activation

patterns through surface electromyography. Regarding the latter, there is scope for

associating muscle activation patterns of ankle plantar flexors and dorsiflexors to findings

related to mechanism one, and for associating muscle activation patterns of hip extensors

and flexors to findings related to mechanism two.
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Chapter (8) Appendices



Appendix 1. Form ofconsent

EC3

LIVERPOOL JOHN MOORES UNIVERSITY

ronsr OF CONSENT TO TAKE PART AS A SUBJECT IN A MAJOR
PROCEDURE OR RESEARCH PROJECT

Titleof project/procedure:

Physical and neurophysiological factors influencing dynamic balance.

It .••••••••••••••••••••••••..•••.•..••••••..•••.•...••••..•••.••....•....•................................ agree to takepart in

(Subject's full name)" the above named project/procedure, the details of which have
been fully explained to me and described in writing.

Signed .........•.•..•....•....................................... Date: ·.···.

(Subject)

I, KIIALED JEBRIL ABUZAYAN certify that the details
of this (Investigator's full name)"

Project/procedure have been fully explained and described in writing to the subject named
above and have been understood by him/her.

Signed ••..•.••.•••••••.•......•.......•.•.......................•

(Investigator)

Date .

I, •.....•...•.•.......................................................................................... certify that the details
of this (\Vitness' full name)

Project/procedure have been fully explained and described in writing to the subject named
above and have been understood by him/her.

Signed •..•••.....•••..•••...•......••............................ Date .

(\Vitness)

NO The witness must be an independent third party.

• Please print in block capitals
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Appendix 2. Participant Information Sheet

Volunteers should be informed before the. start of the procedure or experiment or

interview about the procedure usinga participant information sheet.

This shouldbeginby statingclearly:

• the nameand academic locationof the experiment

• the nature, purposeofthe project/study

• description ofthe participant's involvement in terms understandable to the participant

• the right to withdraw from the project/study at any time without prejudice to access to

services which are already being provided or may subsequently be provided to the

participant

Pleasefind attached a suggested styleparticipant informationsheet.
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Participant Information Sheet

Name ofexperimenter: Khaled Jebril Abuzayan _

Supervisor: Professor Adrian Lees._---------
Title ofstudy/project:

Physical and neurophysiological factors influencing dynamic balance.

Purpose of study: To investigate the characteristics of dynamic balance in sport related
activities, with specific reference to the influence of body mass changes and muscular
fatigue.

Procedures and Participants Role: You will be asked to perform a series of activities
which involve static and dynamic balance. Static balance activities will include standing
still on 1 foot. Dynamic balance activities will include hopping and jumping taking off
from one surface (e.g, on an elevated plat form 20 em) and landing on to another (e.g.
ground). You will be required to wear a body suit so that reflective markers can be placed
on. These markers will be recorded by a motion analysis system in the laboratory. At the
same time ground reaction forces will be recorded from force platforms. Several trails of
each activity will be performed both with eyes open and eyes closed. The session is
expected to take about 2 hours. You will be given the opportunity to stretch, warm up and
practice the activities demonstrated to your before data collection.

In study (3) you will be required to wear a weighted jacket (max 15 kg) which will not be
uncomfortable. Testing procedures will be the same as those outlined above.

In study (3) you will additionally be required to undertake a fatigue exercise of the ankle
joint muscles (repeated plantar-flexion of both ankles). Testing procedures will be the
same as those outlined above.

Please Note:

All participants have the right to withdraw from the project/study at any time
without prejudice to access of services which are already being provided or may
subsequently be provided to the participant.
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Appendix 3. The plug-in gait markers set

RWRA.

RWRB

The additional fifthmetatarsal markers
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PLUGIN GAIT l\lARKER SET

Upper Bod)'

Head Alarkers

LFIID Located approximately over the left temple

RFIID Located approximately over the right temple

LBIID Placed on the back of the head, roughly in a horizontal plane of the front head
markers

RBIID Placed on the back of the head, roughly in a horizontal plane of the front head
markers

Torso Markers

C7 7thplaced on the 7th cervical vertebrae

TIOplaced on the 10ththoracic vertebrae

eLAV Clavicle JugularNotchwherethe clavicles meet the sternum

STRN Sternum Xiphoid process of the Sternum

RBAKRight BackPlaced in the middle of the right scapula.

Arm Markers

LSIIO Placed on the Acromio-clavicular joint

LUrA Placed on the upperarmbetween the elbowand shoulder markers.

Should be placed asymmetrically with RUPA

LELB Placed on lateral epicondyle approximating elbowjoint axis

LFRA Placed on the lower arm between the wrist and elbowmarkers. Should be placed
asymmetrically with RFRA

L\VRALeftwristmarker A Leftwristbar thumbside

L\VRB LeftwristmarkerB Leftwristbar pinkie side

The wristmarkers are placed at the endsofa bar attached symmetrically witha wristband
LFIN placed on the dorsum ofthe handjust belowthe headof the second metacarpal

Lower Body

Petvts
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LASIplaced directly over the left anteriorsuperior iliacspine

RASI Placed directly over the rightanterior superior iliacspine

LPSI placed directly over the left posterior superior iliac spine

RPSI Placed directly over the right posterior superior iliac spine

Leg4\(a,"trs

LKNE Placed on the lateral epicondyle ofthe left knee

LTill Place the marker overthe lowerlateral 1/3 surface of the thigh,

LANKPlaced on the lateral mal

FootMarkers

LTOE Placed overthe second metatarsal head

LIIEE Placed on the calcaneous

LSMT Placed on the Sth the mid tarsal joint, Should be placed asymmetrically with
R5~IT
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Appendix 4. Participant Que tionnaire

Participant Questionnaire

Liver poo l John Moores University
R esearch Institute for

por t and E xe r cis e Sciences

Ph y ical and phy iologica l factor influencing dynamic balance

Per onal Detail & Iedical and Life tyle A sessment questionnaires

Please Read Carefully

Th main purpo e of thi que tionna ire is to find out about your health statu and lifestyle

habit . Information that you provide will be treated as highly confidential and u ed only to

determine your uitability to part icipate safel y and effectively in this study.

PI a c notc: Thi que tionnaire i an important part of the study. We request that you

an w r all que tion a accurately and as honestly as po sible. Most que tions can be

an wered by either placing a circle around the appropriate response, a tick in the box

provided, or a hort wri tten re ponse
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1) Personal information:

Home: _

Mobile: _

Email:, _

2) Personal Medical History Assessment (circle answer)

Have you ever been instructed to perform physical activity only recommended by a
doctor? Yes No

Ifyes, please give details, including dates _

1. Do you have reduced eye sight or had an eye operation? Yes No

Ifyes, is that because
D

It is hard to read a textbook up close
D

It is hard to see clear in the distance (short sightedness)
D

You are colour blind

Other than the previous
D

Do you wear glasses for this? Yes No

Ifyes, is there a difference in the level ofcorrection for both eyes? Yes No

2. Do you have reduced hearing ability? Yes No

Ifyes, has this been diagnosed by your doctor? Yes No

3. Do you sometimes lose your balance due to Dizziness
Yes No

Stumbling over an object Yes No

Walking up/down stairs, pavement, sloping ground ... Yes No

Unexpected obstacle Yes No

Other than the previous Yes No

Ifyou sometimes lose your balance, has this ever led to a fall?
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(evenwithout injury)?

4. Doyouever lose consciousness?

Yes No

Yes No

S. Have you ever beenseverelybreathless as a result oflow/moderate levelexercise?
Yes No

6. Doyou suffer from high or low blood pressure?

If yes, which one?

Yes No

Low High

Yes No7. Have you ever been told your blood cholesterol is too high?

lf'yes, plC3SC state your cholesterol level (if known) _

8. Doyou suffer from diabetes?

If'yes, howis it controlled (pleasetick)

a) Dietary means D
c) Oral medication D

b) Insulininjection

c) Uncontrolled

Yes No

D
D

9. Doyou suffer from asthma.or any respiratory disorders? Yes No

Please givedetailsofcondition and any medication taken including inhaler__

Is the breathing condition madeworseby exercise?

If'yes, what levelofexercise(pleasecircle) low moderate strenuous

Yes No

Yes No10. Doyou haveany musculo-skeletal problems?

lf'so, please givedetailsofcondition _

II. Doyou suffer from any ofthe following: ­

IIiV/AIDS

JIepatitis B or C

Or any otherdisease transmitted by blood
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Duration (to the nearest 5mins)

Haemophiliac Yes No

Chronic'sdisease Yes No

Thyroid Problems Yes No

Adrenal Problems Yes No

Pituitary Problems Yes No

12.Are youcurrently takingprescribed medication? Yes No

If'yes,givenameand dosage

3) PhysicalActh'it)p Assessment
,

1. Considering a typical 7-day period (week), how many times do you do the following
kinds of exercise for during your free time (write on each line the appropriate number).
Please also indicate whlch activity (circleor add to the list).

Timesper \Veek

a) Strenuous Exercise

(Heart beats rapid)')

(e.g. running, jogging,hockey, football, soccer,

Squash, basketball, crosscountryskiing, judo,

Roller skating, vigorous swimming, vigorous longer distance cycling)

b) Moderate Exercise

(Not Exhausting)

(e.g. fast walking, baseball, tennis, easycycling,

volleyball, badminton, easy swimming,

alpine skiing, popular and folk dancing)

c) Mild Exercise

(Minimal Effort)

(e.g. )'0£3, archery, fishing fromriver bed,

bowling, horseshoes, golf,easy walk)
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2. Considering a typical '-day period (week), during your leisure time, how often do you
engage in regular activity long enough to work up a sweat with your heart beating
rapidly?

Often D Sometimes D Never/Rarely

D
3. Are you currentlyengagedin moderateor intensetraining? Yes No

If yes, please detail training schedule including type of activity, intensity, number of
sessions per weekand durationofeach session

Ifno, rove )'OU previously engagedin moderate or intense training?

lfyes,pleasegivedetailsofyour schedule:

Yes No

Intensit)' Number of times

per week

Duration of each session

(to nearest 5 minutes)

What year did )'OU start training? _

1I0w longago did )'OU stop training? _

25. PIe3Se detail any further information you would like to tell us _

Participant signature:

Thank you for completing this questionnaire
Oncecomplete please return to :.

KhaledAbuzayan,

MovementFunctionResearch Laboratory

Research Institute for Sport and Exercise Sciences,

Liverpool John MooresUniversity, HenryCottonCampus,

15-21 WebsterStreet,

Liverpool,L3 2ET

Tel:07825698575 E-mail: K.Abuzayan@2006.ljmu.ac.uk
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Appendix 5. Borg's scale

6 No exertion at all :

7 Extremely light

8

9 Very light

10

11 Light

12

13 Somewhat hard

14

15 Hard

16

17 Very hard

18

19 Extremely hard

20 Maximal exertion
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Appendix 6. A Matlabscript and functions that were modifiedor writtenby the author

(the highlighted parts were modified or writtenby the author)

AD/e. The boldline in tile 11lghllghtedsection is an example ofafunction written by the
author andgiven ill details overleaf:

Function of Summary of Landing Balance

, jvsDataSummaryLandingBalance
I
I

, Script to process landing balance data from c3d files based on COP
data and COM data

, Required:

, Structure AllDerivatives from jvsDataAnalysisLandingBalance.m

, jvfSPSSSubjectListing.m

% save4spss.m, uigetVariable.fig, uigetVariable.m (in Matlab root
folder)

clear all; clc

% (1) Load Matfile

myOir - uigetdir;

cd(myDir): , change directory

myFile - uigetfile ('·.mat','Load the matfile'):

load (myFile)

% (2) Get summary data for all files in structure

[mySubjectList,SubjectNames] - jvfSPSSSubjectListing(AlIDerivatives);

fprintf('done l\n')

[SI,SINames] - jvflandingSI(AlIDerivatives);

fprintf('done 2\n')

[TTS,TTSNames] - jVflandingTTS(AllDerivatives);

fprintf('done 3\n')

[COPrange,jvfrange_COP_LandingNames] ­
jvfrangeCOP_FP1_Landingl(AllDerivatives);

\fprintf('done 4\n')

(CoMrange,jvfrangeXCOMNames) - jVfrangeCOM(AllDerivatives);

fprintf('done 5\n')
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(XCO range ,j vf r ange XCOM_La nd i ng Na me s ] =

j v f r a geXCO _Landing1( AIIDe riva t i ve s ) ;

~ r in f ( 'done 6 n ')

x kg axQ_LandingNames ]

one ..,

kgbmaxQ_Landing (AIIDerivatives) ;

ing1 ame s) kgbminQ_Landing (AIIDerivatives) ;

r

r

, )

'nF_Landing ames)

9 n I )

axF La ing ames)

one 10 n ' )

kgbmaxF_Landing (AIIDerivatives) ;

( 3) Co ile da file f or SPSS from summary data

Co i e da a array and varname cell array

yDa a - [SI TTS COPrange CoMr a ng e XCOMrange maxQ minQ minF maxF);

arna es = (S bject ame s j vfl a nd i ngSl jvflandingTTS
range COP Lan ing ames j v f r a ng eCOM Landing1 jvfrange COP Landing

ax La ing ames kgbminQ_Landi ngNa;es kgbminF_LandingNames
a es ' ;

a e 0 SP S ile

save4 ss( yData ,myVarnames)
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An .'ample ofa atlab func tion written by the author.

Function (kgbmaxQ ) f or c alcula t i n g the maximum of the Q variable.

es) = kgbmaxQ(S)
c e s _ FPl (S )
throu h mat-file compiled through
';'ng.

e standard deviation of the Force data of Force
i ng
alancing during period after landing + 1 second

3 e c on s
he eha vio u r of balancing during standing .

s ruc ures according to jvsDataAnalysisLanding .m .

5 a a r d deviations of forces in x , y and z of FPl
es - cell array with variable names

e initiate output array

) .• imi ng . St at u s , ' r e j e c t' ) % If file was rejected , all

he relevant fields from the structure :
ea (S ( ) . . x , S ( k ) . Q • y) ;

S{ 1 .Timi n g ;
e a a to selected time interval
( yTi ming.S atus , ' e d i t e d', ' e x a c t' )
ce'l( yTiming .Landing + myTiming .AnalogFrameRate*l) ;

a era timi ng start
eil{ yTiming .Landing + myTiming .AnalogFrameRate*3) ;

ra e ra e t i mi ng end
eal( x (my St a r t : myEnd ) , y (mySt a r t : myEnd ) ) ;

X 1.

ve A s fr om the time
(' s nan ( [ x y )) , 2) ;

- [ ];
[ ) ;

e s values :
, . ax ([xy)) ;

series :
%i nd i c e s of nan

r ra y wi h varia Ie names
' a x ' , rnax y '} ;
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Appendix 7. Effect of trials (1, 2, and 3) 2FTF_HJ

Trial (1) 2FT HJ CoP •. CoM. o~d tho XCOM.
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A ndix . . ff f ondition (ba eline, weight, and fatigue) 2FTF_HJ
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