View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by University of Lincoln Institutional Repository

Learning to Predict Phases of
Manipulation Tasks as Hidden States

Oliver Kroemer, Herke van Hoof, Gerhard Neumann, and Jan Peters

Abstract— Phase transitions in manipulation tasks often oc-
cur when contacts between objects are made or broken. A
switch of the phase can result in the robot’s actions suddenly
influencing different aspects of its environment. Therefore, the
boundaries between phases often correspond to constraints or
subgoals of the manipulation task.

In this paper, we investigate how the phases of manipulation
tasks can be learned from data. The task is modeled as an
autoregressive hidden Markov model, wherein the hidden phase
transitions depend on the observed states. The model is learned
from data using the expectation-maximization algorithm. We
demonstrate the proposed method on both a pushing task
and a pepper mill turning task. The proposed approach was
compared to a standard autoregressive hidden Markov model.
The experiments show that the learned models can accurately
predict the transitions in phases during the manipulation tasks.

I. INTRODUCTION

Manipulation tasks can generally be decomposed into
a series of discrete and distinct phases [8]. For example,
when lifting a grasped object from a table, the first phase
corresponds to increasing the upward force until it matches
the object’s weight. The second phase begins when the object
breaks contact with the table, at which point it can be moved
freely in the air. Shifts between phases often correspond to
events such as the making and breaking of contacts between
objects [6]. As shown in the lifting example, these shifts
between phases often correspond to discrete changes in the
system’s dynamics. Due to these switches in dynamics, the
effects of a robot’s actions can also change, and the behavior
of the robot should adapt accordingly, e.g., in the lifting
example, the robot should switch from force control to
position control when the phase changes.

Predicting phase switches is an important ability, as these
switches often correspond to subgoals or constraints of the
task. For example, a phase change occurs when a bottle of
water is tilted enough that water starts pouring out. When
performing a pouring task, this phase change represents a
subgoal of the task. However, when carrying the bottle of
water, the contents should not be spilled, and this change in
phase represents a constraint that should not be crossed.

In this paper, we present a probabilistic model for rep-
resenting manipulation tasks with phase changes, and we
explain how the parameters of the model can be learned from
data. The phases of the task are modeled as discrete hidden

All of the authors are members of the Intelligent Autonomous Systems
group at the Technische Universitaet Darmstadt, Germany. Jan Peters is also
a member of the Max Planck Institute for Intelligent Systems
{kroemer, hoof}@ias.tu-darmstadt.de
{neumann, peters}@ias.tu-darmstadt.de

Fig. 1. The Darias robot used in the experiments performing the pepper
mill grasping and turning manipulation task.

variables, each associated to different system dynamics. The
structure of the model is similar to that of an auto-regressive
hidden Markov model (ARHMM) [10]. In the standard
ARHMM the probability distribution over the current latent
phase depends on only the previous phase [14]. In the
proposed model, the probability of the current phase also
depends on the observed state. Thus, the robot can learn
to predict when phase changes will occur. We refer to the
proposed method as an observed state-based transitions auto-
regressive hidden Markov model (STAR). The benefits of the
proposed method over the standard ARHMM approach are
demonstrated on a robot pushing experiment in Section IV.

Previous work on using phases of manipulation tasks has
largely assumed that the phases are predefined [7], [15],
[1]. Debus et al. estimate the contact state for a peg-in-
hole task using an HMM, but they assume the network of
contact states and the descriptions of the states are given
[7]. Romano et. al [15] propose a human-inspired controller
for grasping objects. Their controller consists of several
lower level controllers that correspond to grasping phases [9].
The transitions between these phases occur after the robot
detects specific tactile events. Andrews and Kry proposed a
controller for performing in-hand manipulation based on a
three-phase structure [1].

Learning the phases of a manipulation task has mainly
been done in the context of learning from demonstration,

https://core.ac.uk/display/80684022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

wherein the task is demonstrated by a human [16], [3], [12],
[13], [11], [2]. These approaches make use of the fact that
the human’s behavior changes according to the phase. Pdig
et al. used heuristics to detect when the human’s reference
frames changed, and the manipulation task was segmented
accordingly [12]. In [16], the robot learned to perform
manipulation tasks from human demonstrations using a pa-
rameterized HMM. Ogawara et al. used HMMs to cluster and
recognize different demonstrations of a pouring action [11].
However, rather than determining phase transitions based on
the actions, our goal is to detect transitions based on the
effects of the actions.

The remainder of the paper is structured as follows. We
present the probabilistic model in Section II, and we explain
how the parameters of the model can be learned using
expectation-maximization in Section III. Real robot exper-
iments are presented in Section IV. The experiments include
a comparative evaluation of the proposed model against a
standard ARHMM on a pushing task, and a demonstration
of the proposed method for operating a pepper mill as shown
in Fig. 1.

II. MODELING PHASES OF MANIPULATION TASKS

In the proposed framework, the phases of a manipulation
task are modeled as a discrete hidden variable evolving
over time. Each phase is associated with its own forward
model describing the system. In this section, we introduce
the notation, and we describe the structure of the proposed
probabilistic model. We explain how the parameters of the
model can be learned in Section III.

The observed state of the robot and its environment at time
t are given by the state s; € R"”. The robot then performs an
action a; € R™, which results in the state transitioning to
the next state s;+1 € R". This change in state depends on
the current phase p; € N, which is hidden. In this paper, the
phase corresponds to the hidden state of the HMM, and the
state refers to the observed state.

The effects of performing an action a, in state s; and phase
pr are modeled by the transition probability p(s;+1|s;,ar,pr).
We represent the state transitions p(s;+1|s;,a;,p;) according
to a linear Gaussian model. Therefore, the distribution of the
next state is given by the Gaussian

St+4+1 ™~ e/V(AptSt Jer,at,Zpt),

where A; € R™" B; € R"™ and X; € R"™" are matrices
corresponding to phase p =i.

The probability of the current phase depends on the current
state and the previous phase p(p;|s;,p;—1). The first phase
depends on only the first state p(p;|s;). The dependency
on the previous phase allows the model to represent effects
such as hysteresis. It also allows us to incorporate transient
state information. For example, the making and breaking
of a contact can be detected by dynamic tactile sensing,
indicating a transition to the next phase [9]. However, once
the contact event is over, the sensor’s readings may return to
their previous values even though the phase has changed. At
that point, the model has already switched to the new phase.

The transitions between phases can be modeled using
probabilistic classifiers. We model the phase transition prob-
abilities using logistic regression, i.e.,

oo explugd(s)
p(p: = jlsi,pr-1=1) = Yeexp(wixd(sr))

where w;; € R is a weight vector for transitioning from
p=itop=j,and ¢(s;) is a function mapping the state to
a d dimensional feature vector. Features may, for example,
be a subset of the full state vector or additionally include
the positions of objects relative to each other. Similarly, we
represent the initial phase distribution as

_ gy = _exp(wo;9(s))
plpr=Jlsi) = Yeexp(wokd(s:))

where wy; is a weight vector for each phase.

Given a model of the system, the robot would select
actions according to the current state and phase p(a|s;, ;).
However, in this paper, we are focusing on learning the
phases model from exploratory actions. Hence, the probabil-
ity of an action is modeled as p(a,), and it is assumed to be a
uniform distribution. In an imitation learning scenario, where
the actions are demonstrated to the robot by a human, the
conditional probability p(a|s;, p;) could be used to help infer
phases based on changes in the human’s behavior. Including
the dependency of the action on the state and phase is a
straightforward extension of the theory presented here, but it
is beyond the scope of this paper.

Given the individual components of the model, the prob-
ability of observing a sequence of N samples of states

sy ={s1,...,8n), actions aj.r ={ay,...,ay), phases p;.y =
{p1,...,Ppn), and next states sa.y+1 = {s2,...,Sn+1) is given
by

P(S1N+1,a1:N,PIN) =
N N
P(SI)P(P1|S1)HP(Sr+1|Staat7Pt)P(at)HP(Pt|StaPt—1)-
t=1 t=2
The graphical model of this probability factorization is
shown in Fig. 2. The key difference to an autoregressive
HMM is the additional edge from the current state to the
current phase. As a result of this edge, the transition between
phases depends on the observed state. The graphical model
also illustrates the Markov property of the model: given
the state s, and the phase state p,, all future states are
independent of the states before r — 1. This property is
important, as it will allow us to learn the model parameters
in a computationally efficient manner.

III. MODEL LEARNING USING EM

Having defined the structure of the model in the previous
section, we now focus on learning the model parameters w,
A, B, and X, which we will refer to jointly as 6 = {w,A,B,XL}.
Given a set of sampled trajectories of states and actions,
we propose using the expectation-maximization (EM) algo-
rithm to estimate the parameters. The EM algorithm iterates
between an expectation step and a maximization step in

Fig. 2. The graphical model of the proposed task representation with
phases. The shaded nodes indicate the observed variables, and the unshaded
nodes are latent. The arrows from the states s pointing to the phases
p indicate that the probability distributions of the phases depend on the
observed states.

order to find maximum likelihood estimates of the model
parameters given that some of the variables are unobserved,
i.e., the phases of the samples are not known. The steps of
the algorithm are explained below.

A. Expectation Step

The first step of the EM algorithm is the expectation
step. In this step, we will need to compute the distribution
over the hidden states, i.e., the phases, given the observed
sequence of variables. In particular, we will need to compute
the distributions p(p; = jlsi.v,a1v) and p(py = i,pi11 =
J|S1:N+1,a1:n) for the computations in the maximization step.
We can compute these marginal probabilities efficiently by
using a forward-backward message passing approach. During
the expectation step, we assume that the parameters 6 of our
model are fixed.

In order to improve the clarity of the methodology below,
we will define z; = {s;,a,} as the observed state and actions
together. For the final sample zy4+1 = sy+1. Thus, we have
P(ze1|pesze) = p(se1|pesse,ar) plarr), and p(pelpr—1,2:) =
p(p:|pi—1,5:) as p; is not conditioned on a;.

We first send a series of messages forward through the
network from ¢t =1 to t = N. The forward messages give the
probability of observing the sequence of states, actions, and
next state up to now and it is defined as

0j(t) = p(zra41,Pr = J)-

The first message, starting at ¢ = 1, is initialized according
to

(1) = p(z2|p1,21)p(p1 = jlz1)p(z1).-

The subsequent messages are computed recursively as

aj(t) :P(ZH—I‘Pt = j7Zt)Zai(f_ 1)P(Pt = j|Pr—1 = i>Zt)-

The second set of messages are sent backwards through
the network from ¢ = N to t = 1. The backward messages give
the probability of observing the remainder of the observed
sequence of states, actions, and next states given the current
phase and next state

Bj(t) = p(zisanlpr = jrzis1)-

We initialize the backward messages at time t = N as

ﬁj(N) =1,

and we recursively compute the messages backwards in time
according to the formula

Bit—1)= ZP(P: =ilp—1 = j,2)p(ze1]Pr = i,2) Bi(2).

Given the forward and backward messages, we can easily
compute the required probabilities. The marginal likelihood
of the phase at a specific point in time is given by

PP = J,21:N+1)
P(z1:N+41)

- _o(0)B(r)
p(pr = jlzine1) = m

PP = jlzine1) =

Similarly, the joint distribution of a phase and the next phase
is given by

p(pr =i,p1 = jlzine1) =

0i(t)p(Pr+1 = jlPr = 6,z041)P(zis2|Per1 = Jrzs1) Bi(t+1)
P(zin+1)

)

where we again make use of the messages computed earlier.
Having computed these probabilities, we can now proceed
to the maximization step of the algorithm.

B. Maximization Step

In the maximization step of the EM algorithm, we must
compute the parameters that maximize the expected log-
likelihood of the observed and hidden variables

One = argmax }_ p(prv|zin+13 00ta) In p(Prn, 21413 6),
p

where the summation is over all possible sequences of
p, and the conditional distributions p(pi.7|s1:7+1,6,14) are
computed using the old model parameters 8,;; as indicated.
By factorizing the joint distribution p(pi.7,s1.7+1/0) and
decomposing the log of a product into a summation of logs,
the maximization problem can be rewritten as

Onew = argmax}_ p(prnlzivi; Ooia) np(21)
P

+ Y p(pinlzing1;0oa) In p(pilz1)
P
N

+ Y Y p(prvlzine: 6oa) In p(zi11pr21)
=1p
N

+ Y plprnlzinei; Ooia) Inp(pilpi-1,2:).
2P

t

The terms of the log functions are however dependent on
only a small set of phase variables. The first term does
not depend on the parameters and it can be removed from

Fig. 3. The robot performing the pushing task. The robot is entering the
second of three phases, wherein it needs to increase the pushing force until
it overcomes the box’s stiction.

the argmax. The majority of factors in each term can be
marginalized out, and the maximization can be rewritten as

6rzew =

argmgleP(Pl |z1:8+1, Oo1a) In p(p121)
P1

N
+ Y)Y p(pilzine1:001a) Inp(zi1] 21)
t=1 pr

N
+ Y X plpi-1.pilzins1:0oia) Inp(pilpr—1, 7).
1=2Pr—14
The marginal distributions p(p;|z1:n+1,600) and
p(Pi—1,Pr|z1:N+1,60014) were already computed during
the expectation step, as explained in Section III-A. The
new parameters can now be computed in a straightforward
manner using weighted linear regression and weighted
logistic regression.

Estimates of the parameter matrices A and B can be
computed using weighted linear regression. We begin by
defining a matrix X that has one column per sample and
each column consists of the concatenated state s and action

a of the sample
X — |: S1 ... SN :|
aj ... an

Similarly, we define a matrix Y, which also has N columns,
each corresponding to a sampled next state

YZ[SZ SN+1].

The new estimates of the parameter matrices are then given
by

[/;; } =ywx" (xw;x")"!
where the T indicate the transposes of the matrices, and W; is
a diagonal matrix, wherein the ™ diagonal element is given
by Wl = p(pr = j|si:N+1, 001a)- Often, the A matrix may be
trivial to define and one wishes to learn only the effects of the
actions B. In this case, the columns of Y are defined as the
changes in states for each sample ;1 —As;, and X contains
only the actions g,. The computation of B; is then the same

as before. The new estimates of the covariance matrices are
given by

XX p(pi = jlstnat, 0oia) (siv1 — i) (sie1 — M)
Y PPk = jlstn+1,601a)

where u;; = Ajs;+ Bja; is the expected next state given the
updated A and B matrices.

The phase transition parameters w are computed using
weighted logistic regression. Logistic regression does not
have a closed-form solution and the weight vectors need
to be computed iteratively using gradient decent. However,
the optimization is convex and, therefore, a global optimal
solution can be easily found. To compute the gradient for
transition from p;,_; =i we define three matrices: 1) S is
a matrix with the columns containing the features of the
sampled states ¢(s,). 2) The matrix L contains the weights
from the E step and it has elements given by [L];; = p(p,—1 =
i,pr = jlz1:n+1;6014)- 3) The third matrix P has the same
form as the L matrix, but it contains the predictions p(p, =
Jlse,pr—1 =) given the current weights w. The gradient of
the weighted log-likelihood with respect to w are given by
the elements of the matrix

T =

)

G=S(P-L).

Regularization is added to both the linear regression and
the logistic regression in order to avoid overfitting and to
improve the model’s ability to generalize to new situations.

After the maximization step has been completed, the
algorithm computes the expectation step again with the new
parameters. The process iterates between the two steps until
the model has converged to a solution.

IV. EXPERIMENTS

The proposed method was implemented and evaluated on
a real robot, as shown in Fig. 1. The robot consists of two
Kuka lightweight robot arms, and two five-fingered DLR-
HIT II hands. The arms were controlled using task-space
impedance control, while the fingers were controlled using
joint-space impedance control [4]. The robot’s vision system
is based on a Microsoft Kinect sensor.

A. Pushing an Object

The first experiment was designed as a benchmark task to
compare the performance of the proposed STAR method to a
standard ARHMM. The robot was given the task of pushing
a filled box across the table in a straight line, as shown in
Fig. 3. The hand was initially not in contact with the box,
and the box was initially located at various distances relative
to the robot’s hand. The state space consisted of the position
of the robot’s hand, the desired position of the hand, and the
position of the box. The position of the box was tracked using
the Kinect sensor. The features ¢ included the position of the
hand relative to the box and the position of the hand relative
to the desired position. The pushing action was defined as
a change in the end-effector’s desired position by 1 cm and
the same action was applied at every time step. Ten trials of

the task were recorded for learning the model, and each trial
contained 30 pairs of states and actions.

For this experiment, the A matrices are trivial to define,
and hence only the B matrix was learned. The B matrices
were initially set randomly. For comparison, a standard
autoregressive hidden Markov model (ARHMM) was also
learned. This model is similar to the one shown in Fig. 2,
except that the arrows from the states s to the phases p
are removed. Hence, the phase transition probabilities of the
ARHMM only depend on the previous phase p(p;|p;—1), and
they are therefore modeled as a stochastic matrix. The initial
distribution p(p;) was modeled as a vector summing to one.
Both methods were initialized with the same parameters in
order to obtain a fair comparison.

Both ARHMM and STAR were able to successfully seg-
ment the training data into three phases: 1) the hand is in free
space and the box is stationary. 2) the hand is in contact with
the box and both are stationary while the force (proportional
to the distance between the hand and the desired position)
ramps up to overcome friction. 3) the hand is pushing the box
and both are moving together. Different initial parameters
were tested, but the results were consistent. The methods
therefore performed equally well on the training data.

We also attempted learning the STAR model with different
numbers of phases. When only two phases were used, the
model still found one of the phases, but the other two phases
were merged together resulting in an underfitted model.
Using four phases resulted in redundant models, where one
of the actual phases would be modeled by two model phases.
Often these two phases would switch between each other
at every time step, and they would model similar system
dynamics. As the number of phases increases, the number
of samples allocated to each becomes fewer, and the quality
of the individual models decreases. Incorporating a method
for merging similar models would therefore be beneficial.
Another approach to selecting the appropriate number of
parameters is to use cross-validation.

In order to evaluate and compare the two 3-phase models’
abilities to predict trajectories, we recorded another ten
pushing trajectories using the same procedure. For each of
these test trials, we initialized the learned models with the
initial states and sampled 50 trajectories from each model.
Thus, 500 trajectories were sampled from each model. These
sampled trajectories were compared to the actual recorded
trajectories, and the absolute error in the predicted positions
of the box and the hand were computed. The errors are
shown in Fig. 4. At the end of the trajectory, the RMS errors
in position were 3.85 cm for STAR and 11.19 cm for the
standard HMM.

As one would expect, the errors increase for both models
as the prediction horizon increases due to the accumulation
of errors. However, the proposed method ultimately performs
better due to its more accurate predictions of when phase
transitions will occur based on the observed state. The results
indicate that the proposed STAR representation is a better
model of the manipulation task than a standard ARHMM.

— ARHMM
— STAR
LA
—_ -
3 11
S 10t //”
S LY
c "
2 1/
kS "
g 5 /
< A
a A
/1
//
// ed
0 ‘ ‘
0 5 10 15 20 25 30

Prediction Steps

Fig. 4. The plots show the absolute errors in predicting the position
of the box and the robot hand during the pushing task. The predictions
are initialized with only the starting state of the trajectory. The red line
represents the performance of the HMM model, and the blue line shows the
performance of the proposed method. The error bars indicate one standard
deviation.

B. Operating a Pepper Mill

In the second experiment, we investigated using the pro-
posed method to detect the phases when grasping and turning
a pepper mill. In order to perform the task, the robot held
the pepper mill with its left hand, and it used the right hand
to turn the mill, as shown in Fig. 1. Using the compliance
of the fingers, the robot was shown a suitable grasp of the
top of the pepper mill (Fig. 5), which was then used to
define an eigengrasp, i.e., a grasp synergy [5]. The first
action dimension corresponds to changing the desired hand
configuration according to the eigengrasp. The second action
dimension corresponds to rotations of the hand around the
axis of the pepper mill. The state space contains the desired
hand orientation and finger configuration, as well as the
recorded values. The measured joint torques of the fingers
were also projected into the lower-dimensional space of the
eigengrasp. These projected torques were included in the
state. The final element of the state vector contained the angle
of the pepper mill’s rotation. The rotation was measured
using a webcam and an augmented reality marker mounted
on the bottom side of the pepper mill. The features ¢
corresponded to all of the recorded data, except for the angle
of the pepper mill. Data was recorded of the robot performing
15 grasp-twist-release trajectories of varying lengths and
with different amounts of grip. A model with three phases
was learned.

The three learned phases seem to correspond to: 1) the
hand is open, 2) the hand has made contact with the
peppermill, and 3) the hand has applied a firm grasp and
it can turn the pepper mill. The B matrices indicate that
rotating the hand has almost no effect on the pepper mill
in the first two phases. In the third phase, the pepper mill
rotates together with the hand. This phase was also active for
91% of the samples in which the pepper mill was turned. The

Fig. 5. The grasp used during the pepper mill grasping and turning
experiment.

proposed model was therefore able to learn when the pepper
mill can be turned, without relying on the angle of the pepper
mill.

The learned model also describes how phase transitions
change the effects of attempting to close the hand. In the
first phase, changing the desired finger configuration resulted
in the fingers moving. In the third phase, the fingers’ joint
torques increased instead and the fingers moved only a small
amount. The learned model therefore captures the restricted
movement of the fingers when grasping the pepper mill.

The weight vectors w indicate when the phase transi-
tions occur. The phase transitions 1 — 2 and 2 — 3 have
large positive weights corresponding to the joint torques. In
contrast, the largest weights for the transitions 3 — 2 and
2 — 1 correspond to the joint angles. Therefore, the phase
transitions seem to be controlled by the measured torques
during grasping and the measured joint angles when releasing
the object.

The quality of the model depends on the initial parameter
setting, and the EM algorithm is known to find only local
optima rather than the global optimum. The learned model
sometimes transitions from phase two to phase one when
the hand was rotated, even though one would expect it to
remain in phase two. A more accurate model of the task
could potentially be learned by incorporating more phases,
but this approach would also require more data to avoid
overfitting.

In the future, we plan to have the robot use the STAR
models in order to efficiently learn to perform manipulation
tasks. Given the promising results of Romano et al. [15],
we also plan to incorporate dynamic tactile signals into the
proposed framework to detect certain phase transitions more
accurately.

V. CONCLUSIONS

In this paper, we presented a probabilistic model for
representing manipulation tasks with multiple phases. The
phases were represented as hidden variables corresponding
to different system dynamics. We explained how the model

parameters could be learned from a set of trajectories using
the expectation-maximization algorithm. Unlike a standard
autoregressive hidden Markov model, the proposed model
incorporates the observed state variables when predicting the
transitions between the hidden phases.

The proposed method was implemented and used to learn
the phases of a pushing task and a pepper mill turning task.
The results showed that the state-based transitioning allows
the robot to predict the phase changes more accurately,
resulting in better predictions overall.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7-ICT-2013-10) under grant agreements 610878
(3rdHand) and 610967 (TACMAN)

REFERENCES

[1] S. Andrews and P.G. Kry. Goal directed multi-finger manipulation:
Control policies and analysis. Computers and Graphics, 37(7):830 —
839, 2013.

[2] K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann. A sensor
fusion approach for recognizing continuous human grasping sequences
using hidden markov models. IEEE Transactions on Robotics,
21(1):47-57, 2005.

[3] J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins. Learning from
demonstration using a multi-valued function regressor for time-series
data. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pages 328-333, Dec 2010.

[4] Zhaopeng Chen, Neal Y. Lii, Thomas Wimboeck, Shaowei Fan,
Minghe Jin, Christoph Borst, and Hong Liu. Experimental study on
impedance control for the five-finger dexterous robot hand dlr-hit ii.
In IROS, pages 5867-5874. IEEE, 2010.

[5] Matei Ciocarlie and Peter Allen. Hand posture subspaces for dexterous
robotic grasping. The International Journal of Robotics Research,
28:851-867, 07/2009 2009.

[6] M. Cutkosky and J.M. Hyde. Manipulation control with dynamic
tactile sensing. In proceedings of International Symposium on Robotics
Research, 1993.

[7]1 Thomas Debus, Pierre E. Dupont, and Robert D. Howe. Contact
state estimation using multiple model estimation and hidden markov
models. In Bruno Siciliano and Paolo Dario, editors, ISER, volume 5
of Springer Tracts in Advanced Robotics, pages 517-526. Springer,
2002.

[8] J.R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strategies
in object manipulation tasks. Curr Opin Neurobiol, 16(6):650-659,
December 2006.

[9] Roland S. Johansson and Randall J. Flanagan. Coding and use of
tactile signals from the fingertips in object manipulation tasks. Nature
reviews. Neuroscience, 10(5):345-359, April 2009.

[10] K. Murphy. Switching Kalman filters, 1998.

[11] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi. Modeling
manipulation interactions by hidden markov models. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 2,
pages 1096-1101 vol.2, 2002.

[12] A. L. Pais, Keisuke Umezawa, Yoshihiko Nakamura, and A. Billard.
Learning robot skills through motion segmentation and constraints
extraction. HRI Workshop on Collaborative Manipulation, 2013.

[13] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards
associative skill memories. In IEEE-RAS International Conference
on Humanoid Robots, 2012.

[14] L. R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257—
286, February 1989.

[15] Joseph Romano, Kaijen Hsiao, Giinter Niemeyer, Sachin Chitta, and
Katharine J. Kuchenbecker. Human-inspired robotic grasp control with
tactile sensing. IEEE Transactions on Robotics, 27:1067-1079, 2011.

[16] Leonel Rozo, Pablo Jiménez, and Carme Torras. A robot learning
from demonstration framework to perform force-based manipulation
tasks. Intell. Serv. Robot., 6(1):33-51, January 2013.

