
Model-Free Trajectory Optimization
for Reinforcement Learning

Riad Akrour1 AKROUR@IAS.TU-DARMSTADT.DE
Abbas Abdolmaleki3 ABBAS.A@UA.PT
Hany Abdulsamad2 ABDULSAMAD@IAS.TU-DARMSTADT.DE
Gerhard Neumann1 NEUMANN@IAS.TU-DARMSTADT.DE

1: CLAS, 2: IAS, TU Darmstadt, Darmstadt, Germany
3: IEETA, University of Aveiro, Aveiro, Portugal

Abstract
Many of the recent Trajectory Optimization al-
gorithms alternate between local approximation
of the dynamics and conservative policy update.
However, linearly approximating the dynamics
in order to derive the new policy can bias the up-
date and prevent convergence to the optimal pol-
icy. In this article, we propose a new model-free
algorithm that backpropagates a local quadratic
time-dependent Q-Function, allowing the deriva-
tion of the policy update in closed form. Our pol-
icy update ensures exact KL-constraint satisfac-
tion without simplifying assumptions on the sys-
tem dynamics demonstrating improved perfor-
mance in comparison to related Trajectory Op-
timization algorithms linearizing the dynamics.

1. Introduction
Trajectory Optimization methods based on stochastic op-
timal control (Todorov, 2006; Theodorou et al., 2009;
Todorov & Tassa, 2009) have been very successful in learn-
ing high dimensional controls in complex settings such as
end-to-end control of physical systems (Levine & Abbeel,
2014). These methods are based on a time-dependent lin-
earization of the dynamics model around the mean trajec-
tory in order to obtain a closed form update of the policy as
a Linear-Quadratic Regulator (LQR). This linearization is
then repeated locally for the new policy at every iteration.
However, the linearization of the dynamics might induce a
bias and impede the algorithm from converging to the op-
timal policy. To circumvent this limitation, we propose in
this paper a novel model-free trajectory optimization algo-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

rithm (MOTO) couched in the approximate policy iteration
framework. At each iteration, a Q-Function is estimated
locally around the current trajectory distribution using a
time-dependent quadratic function. Afterward, the policy
is updated according to a new information theoretic formu-
lation that bounds a KL-divergence in closed form.

MOTO is well suited for high dimensional state space and
continuous action control problems. The policy is repre-
sented by a time-dependent stochastic linear-feedback con-
troller which is updated by a Q-Function propagated back-
ward in time. We extend the work of (Abdolmaleki et al.,
2015), which was proposed in the domain of stochastic
search (having no notion of state space nor of sequential
decisions), to that of sequential decision making and show
that our policy class can be updated under a KL-constraint
in closed form, when the learned Q-Function is a quadratic
function of the state and action space. In order to maxi-
mize sample efficiency we rely on importance sampling to
reuse transition samples from policies of all time-steps and
all previous iterations in a principled way. MOTO is able
to solve complex control problems despite the simplicity of
the Q-Function thanks to two key properties: i) the learned
Q-Function is fitted to samples of the current policy, which
ensures that the function is valid locally and ii) the closed
form update of the policy ensures that the KL-constraint is
satisfied exactly irrespective of the number of samples or
the non-linearity of the dynamics, which ensures that the
Q-Function is used locally.

The experimental section demonstrates that on tasks with
highly non-linear dynamics MOTO outperforms similar
methods that rely on a linearization of these dynamics. Ad-
ditionally, it is shown on a simulated Robot Table Ten-
nis Task that MOTO is able to scale to high dimensional
tasks while keeping the sample complexity relatively low;
amenable to a direct application to a physical system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/80684016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Model-Free Trajectory Optimization

2. Notations
Consider an undiscounted finite-horizon Markov Decision
Process (MDP) of horizon T with state space S ⊂ Rds

and action space A ⊂ Rda . The transition function
p(st+1|st, at), which gives the probability (density) of
transitioning to state st+1 upon the execution of action at
in st, is assumed to be time-independent; while there are T
time-dependent reward functions rt : S×A 7→ R. A policy
π is defined by a set of time-dependent density functions
πt, where πt(a|s) is the probability of executing action a
in state s at time-step t. The goal is to find the optimal
policy π∗ = {π∗1 , . . . , π∗T } maximizing the policy return

J(π) = IEs1,a1,...

[∑T
t=1 rt(st, at)

]
, where the expecta-

tion is taken w.r.t. all the random variables st and at such
that s1 ∼ ρ1 follows the distribution of the initial state,
at ∼ πt(.|st) and st+1 ∼ p(st+1|st, at).

As is common in Policy Search (Deisenroth et al., 2013),
MOTO operates on a restricted class of parametrized poli-
cies πθ, θ ∈ Rdθ and is an iterative algorithm compris-
ing two main steps, policy evaluation and policy update.
Throughout this paper, we will assume that each time-
dependent policy is parametrized by θt = {Kt, kt,Σt}
such that πθt is of linear-Gaussian form πθt(a|s) =
N (Kts + kt,Σt), where the gain matrix Kt is a da × ds
matrix, the bias term kt is a da dimensional column vec-
tor and the covariance matrix Σt which controls the ex-
ploration of the policy is of dimension da × da; yield-
ing a total number of parameters across all time-steps of
dθ = T (dads + 1

2da(da + 3)).

The policy at iteration i of the algorithm is de-
noted by πi and following standard definitions, the Q-
Function of πi at time-step t is denoted by Qit(s, a) =

IEst,at,...

[∑T
t′=t rt′(st′ , at′)

]
with (st, at) = (s, a) and

at′ ∼ πit′(.|st′),∀t′ > t. While the V-Function is given
by V it (s) = IEa∼πt(.|s) [Qπt (s, a)] and the Advantage Func-
tion byAit(s, a) = Qit(s, a)−V it (s). Furthermore, the state
distribution at time-step t of policy πi is denoted by ρit(s).
In order to keep notations simple, the time-step (resp. the
iteration number) is occasionally dropped when all the ele-
ments of an equation apply similarly to all of them.

3. Information-Theoretic Policy Update
MOTO alternates between policy evaluation and policy up-
date. At each iteration i, the policy evaluation step gener-
ates a set of M rollouts1 from the policy πi in order to es-
timate from samples the Q-Function Q̃i (Sec. 4.1) and the
state distribution ρ̃i (Sec. 4.3). Using these quantities, an
information-theoretic policy update is derived at each time-

1A rollout is a Monte Carlo simulation of a trajectory accord-
ing to ρ1, π and p or the execution of π on a physical system.

step as a solution of a constrained optimization problem to
compute the new policy πi+1.

3.1. Optimization Problem

The goal of the policy update is to return a new policy πi+1

that maximizes the Q-Function Q̃i in expectation under the
state distribution p̃i of the previous policy πi. In order to
limit policy oscillation between iterations, the KL w.r.t. πi

is upper bounded. The use of the KL divergence to define
the step-size of the policy update has already been success-
fully applied in prior work (Peters et al., 2010; Levine &
Abbeel, 2014; Schulman et al., 2015). Additionally, we
lower bound the entropy of πi+1 in order to better control
the reduction of exploration. The optimization problem to
obtain πi+1 is thus given by the following non-linear pro-
gram:

maximize
π

∫ ∫
ρ̃it(s)π(a|s)Q̃it(s, a)dads, (1)

subject to IEs∼ρ̃it(s)
[
KL
(
π(.|s)|πit(.|s)

)]
≤ ε, (2)

IEs∼ρ̃it(s) [H (π(.|s))] ≥ β. (3)

The KL between two distributions p and q is given by
KL(p|q) =

∫
p(x) log p(x)

q(x)dx while the entropyH is given
by H = −

∫
p(x) log p(x)dx. The step-size ε is a hyper-

parameter of the algorithm kept constant throughout the
iterations while β is set according to the entropy of πit,
β = IEs∼ρ̃it(s)

[
H
(
πit(.|s)

)]
− β0 and β0 is a constant en-

tropy reduction hyper-parameter.

Eq. (1) indicates that πi+1
t maximizes Q̃it in expectation

under its own action distribution and the state distribution
of πit. Eq. (2) bounds the average change in the policy
to the step-size ε while Eq. (3) controls the exploration-
exploitation trade-off and ensures that the exploration in
the action space (which is directly linked to the entropy of
the policy) is not reduced too quickly. A similar constraint
was introduced in the stochastic search domain by (Abdol-
maleki et al., 2015), and was shown to avoid premature
convergence. However, this constraint is even more cru-
cial in our setting because of the inherent non-stationarity
of the objective function being optimized at each iteration.
The cause for the non-stationarity of the objective opti-
mized at time-step t in the policy update is twofold: i)
updates of policies πt′ with time-step t′ > t will modify
in the next iteration of the algorithm Q̃t as a function of s
and a and hence the optimization landscape as a function
of the policy parameters, ii) updates of policies with time-
step t′ < t will induce a change in the state distribution
ρt. If the policy had unlimited expressiveness, the optimal
solution of Eq. (1) would be to choose arg maxa Q̃t irre-
spective of ρt. However, due to the restricted class of the
policy, any change in ρt will likely change the optimization
landscape including the position of the optimal policy pa-

Model-Free Trajectory Optimization

rameter. Hence, Eq. (3) ensures that exploration in action
space is maintained as the optimization landscape evolves
and avoids premature convergence.

3.2. Closed Form Update

Using the method of Lagrange multipliers, the solution of
the optimization problem in section 3.1 is given by

π′t(a|s) ∝ πt(a|s)η
∗/(η∗+ω∗) exp

(
Q̃t(s, a)

η∗ + ω∗

)
, (4)

with η∗ and ω∗ being the optimal Lagrange multipliers re-
lated to the KL and entropy constraints respectively. As-
suming that Q̃t(s, a) is of quadratic form in a and s

Q̃t(s, a) =
1

2
aTQaaa+ aTQass+ aT qa + q(s), (5)

with q(s) grouping all terms of Q̃t(s, a) that do not de-
pend2 on a, then π′t(a|s) is again of linear-Gaussian form

π′t(a|s) = N (a|FLs+ Ff, F (η∗ + ω∗)),

such that the gain matrix, bias and covariance matrix of π′t
are function of matrices F and L and vector f where

F = (η∗Σ−1t −Qaa)−1, L = η∗Σ−1t Kt +Qas,

f = η∗Σ−1t kt + qa.

Note that, for ηΣ−1t − Qaa to be invertible, either Qt(s, .)
needs to be concave is a (i.e. Qaa is negative semidefinite),
or η needs to be large enough (and for a given Qaa such an
η always exists). Efficient algorithms for learning model
parameters with a specific semidefinite shape are available
(Bhojanapalli et al., 2015). However, as it is desired for
the new policy π′t to have a small KL divergence w.r.t. πt,
the resulting η was always large enough in our experiments
and F well defined, without imposing additional constraint
on the shape of Qaa.

3.3. Dual Minimization

The Lagrangian multipliers η and ω are obtained by mini-
mizing the convex dual function

gt(η, ω) = ηε− ωβ + (η + ω)

∫
ρ̃t(s)

log

(∫
π(a|s)η/(η+ω) exp

(
Q̃t(s, a)/(η + ω)

)
da

)
ds.

The dual function further simplifies thanks to the quadratic
form of Q̃t(s, a) and by additionally assuming normality of

2Constant terms and terms depending on s but not a won’t
appear in the policy update. As such, and albeit we only refer in
this paper to Qt(s, a), the Advantage Function At(s, a) can be
used interchangeably in lieu of Qt(s, a) for updating the policy.

the state distribution ρ̃t(s) = N (s|µs,Σs) to the function
gt(η, ω) = ηε− ωβ + µTs Mµs + tr(ΣsM) + µTs m+m0,
which can be efficiently optimized by gradient descent to
obtain η∗ and ω∗. The full expression of the dual function,
including the definition of M , m and m0 in addition to
the partial derivatives ∂gt(η,ω)

∂η and ∂gt(η,ω)
∂ω are given in the

supplementary material.

4. Sample Efficient Policy Evaluation
The KL constraint introduced in the policy update gives
rise to a non-linear optimization problem. This problem
can still be solved in closed form for the class of linear-
Gaussian policies, if the learned function Q̃it is quadratic
in s and a. The first subsection introduces the main su-
pervised learning problem solved during the policy evalu-
ation for learning Q̃it while the remaining subsections dis-
cuss how to improve its sample efficiency.

4.1. The Supervised Learning Problem

In the remainder of the section, we will be interested
in finding the parameter w of a linear model Q̃it =
〈w, φ(s, a)〉, where the feature function φ contains a bias
and all the linear and quadratic terms of s and a, yielding
1 + (da + ds)(da + ds + 3)/2 parameters. Q̃it can subse-
quently be written as in Eq. (5) by extractingQaa, Qas and
qa from w.

At each iteration i, M rollouts are performed following πi.
Let us initially assume that Q̃it is learned only from samples
Dit = {s[k]t , a

[k]
t , s

[k]
t+1; k = 1..M} gathered by the execu-

tion of the M rollouts. The parameter w of Q̃it is learned
by regularized linear least square regression

w = arg min
w

1

M

M∑
k=1

(
〈w, φ(s

[k]
t , a

[k]
t)〉−

Q̂it(s
[k]
t , a

[k]
t)
)2

+ λwTw. (6)

The target value Q̂it(s
[k], a[k]) is a noisy estimate of the true

value Qit(s
[k]
t , a

[k]
t). We will distinguish two cases for ob-

taining the estimate Q̂it(s
[k]
t , a

[k]
t).

Monte-Carlo Estimate. This estimate is obtained by sum-
ming the future rewards for each trajectory k, yielding
Q̂it(s

[k]
t , a

[k]
t) =

∑T
t′=t rt′(s

[k]
t′ , a

[k]
t′). This estimator is

known to have no bias but high variance. The variance can
be reduced by averaging over multiple rollouts, assuming
we can reset to states s[k]t . However, such an assumption
would severely limit the applicability of the algorithm on
physical systems.

Dynamic Programming. In order to reduce the variance,
this estimate exploits the V-Function to reduce the noise

Model-Free Trajectory Optimization

of the expected rewards of time-steps t′ > t through the
following identity

Q̂it(s
[k]
t , a

[k]
t) = rt(s

[k]
t , a

[k]
t) + V̂ it+1(s

[k]
t+1), (7)

that is unbiased if V̂ it+1 is. However, we will use for V̂ it+1 a
V-Function Ṽ it+1 learned recursively in time. This might in-
troduce a bias which will accumulate as t goes to 1. Fortu-
nately, Ṽ is not restricted by our algorithm to be of a partic-
ular class as it does not appear in the policy update. Hence,
the bias can be reduced by increasing the complexity of the
function approximator class. Nonetheless, in this paper,
a quadratic function will also be used for the V-Function
which worked well in our experiments.

The V-Function is learned by first assuming that Ṽ iT+1 is
the zero function3, then recursively in time, the function
Ṽ it+1 and the transition samples in Dit are used to fit the
parametric function Ṽ it by minimizing the squared loss∑M
k=1

(
Q̂it(s

[k]
t , a

[k]
t)− Ṽ it (s

[k]
t)
)2

.

In addition to reducing the variance of the estimate
Q̂it(s

[k]
t , a

[k]
t), the choice of learning a V-Function is fur-

ther justified by the increased possibility of reusing sample
transitions from all time-steps and previous iterations.

4.2. Sample Reuse

In order to improve the sample efficiency of our approach,
we will reuse samples from different time-steps and iter-
ations using importance sampling. Let the expected loss
which Q̃it minimizes under the assumption of an infinite
number of samples be

w = arg min
w

IE[`it(s, a, s
′;w)],

where the loss `it is the inner term within the sum in Eq.
(6); the estimate Q̂it(s

[k]
t , a

[k]
t) is taken as in Eq. (7) and the

expectation is with respect to the current state s ∼ ρit, the
action a ∼ πit(.|s) and the next state s′ ∼ p(.|s, a).

Reusing samples from different time-steps. To use tran-
sition samples from all time-steps when learning Q̃it, we
rely on importance sampling, where the importance weight
(IW) is given by the ratio between the state-action proba-
bility of the current time-step zit(s, a) = ρit(s)π

i
t(a|s) di-

vided by the time-independent state-action probability of
πi given by zi(s, a) = 1

T

∑T
t=1 z

i
t(s, a). The expected loss

minimized by Q̃it becomes

min
w

IE

[
zit(s, a)

zi(s, a)
`it(s, a, s

′;w) | (s, a) ∼ zi(s, a)

]
. (8)

3Alternatively one could assume the presence of a final reward
RT+1(sT+1), as is usually formulated in control tasks (Bertsekas,
1995), to which V i

T+1 could be initialized to.

Since the transition probabilities are not time-dependent
they cancel out from the IW. Upon the computation of the
IW, weighted least square regression is used to minimize
an empirical estimate of (8) for the dataset Di = ∪Tt=1Dit.
Note that the (nominator of the) IW needs to be recom-
puted at every time-step for all samples (s, a) ∈ Di. Ad-
ditionally, if the rewards are time-dependent, the estimate
Q̂it(s

[k]
t , a

[k]
t) in Eq. (7) needs to be recomputed with the

current time-dependent reward, assuming the reward func-
tion is known.

Reusing samples from previous iterations. Following a
similar reasoning, at a given time-step t, samples from pre-
vious iterations can be reused for learning Q̃it. In this case,
we have access to the samples of the state-action distribu-
tion z1:it (s, a) ∝

∑i
j=1 z

j
t (s, a). The computation of z1:it

requires the storage of all previous policies and state distri-
butions. Thus, we will in practice limit ourselves to the K
last iterations.

Finally, both forms of sample reuse will be combined for
learning Q̃it under the complete dataset up to iteration
i, D1:i = ∪ij=1Dj using weighted least square regres-
sion where the IW are given by zit(s, a)/z1:i(s, a) with
z1:i(s, a) ∝

∑T
t=1 z

1:i
t (s, a).

4.3. Estimating the State Distribution

To compute the IW, the state distribution at every time-step
ρit needs to be estimated. Since M rollouts are sampled for
every policy πi only M state samples are available for the
estimation of ρit, necessitating again the reuse of previous
samples to cope with higher dimensional control tasks.

Forward propagation of the state distribution. The
first investigated solution for the estimation of the state
distribution is the propagation of the estimate ρ̃it forward
in time. Starting from ρ̃i1 which is identical for all it-
erations, importance sampling is used to learn ρ̃it+1 with
t > 1 from samples (st, at, st+1) ∈ D1:i

t by weighted
maximum-likelihood; where each sample st+1 is weighted
by zit(st, at)/z

1:i
t (st, at). And the computation of this IW

only depends on the previously estimated state distribution
ρ̃it. In practice however, the estimate ρ̃it might entail errors
despite the use of all samples from past iterations, which
are propagated forward leading to a degeneracy of the num-
ber of effective samples in latter time-steps.

State distribution of a mixture policy. The second con-
sidered solution for the estimation of ρ̃it is based on the
intuition that due to to the KL constraint during the pol-
icy update, successive policies are close to each other and
state samples from previous iterations can thus be reused
in a simpler manner. Specifically, ρ̃it will be learned from
samples of the mixture policy π1:i ∝

∑i
j=1 γ

i−jπj which
selects a policy from previous iterations with an exponen-

Model-Free Trajectory Optimization

Algorithm 1 Model-Free Trajectory Optimization (MOTO)

Input: Initial policy π0, number of trajectories per iter-
ation M, step-size ε and entropy reduction rate β0
Output: Policy πN

for i = 0 to N − 1 do
Sample M trajectories from πi

for t = T to 1 do
Estimate state distribution ρ̃it (Sec. 4.3)
Compute IW for all (s, a, s′) ∈ D1:i (Sec. 4.2)
Estimate the Q-Function Q̃it (Sec. 4.1)
Optimize: (η∗, ω∗) = arg min git(η, ω) (Sec. 3.3)
Update πi+1

t using η∗, ω∗,ρ̃it and Q̃it (Sec. 3.2)
end for

end for

tially decaying (w.r.t. to the iteration number) probability
and executes it for a whole rollout. In practice, the decay
factor γ is selected according to the dimensionality of the
problem, the number of samples per iterations M and the
KL upper bound ε (intuitively, a smaller ε yields closer poli-
cies and henceforth more reusable samples). The estimated
state distribution ρ̃it is learned as a Gaussian distribution by
weighted maximum likelihood from samples ofD1:i

t where
a sample of iteration j is weighted by γi−j .

MOTO is summarized in Alg. 1. The innermost loop is
split between policy evaluation (Sec. 4) and policy update
(Sec. 3). For every time-step t, once the state distribu-
tion ρ̃it is estimated, the IWs of all the transition samples
are computed and used to learn the Q-Function (and the V-
Function using the same IWs, if dynamic programming is
used when estimating the Q-Function), concluding the pol-
icy evaluation part. Subsequently, the components of the
quadratic model Q̃it that depend on the action are extracted
and used to find the optimal dual parameters η∗ and ω∗

that are respectively related to the KL and the entropy con-
straint, by minimizing the convex dual function git using
gradient descent. The policy update then directly proceeds
using the aforementioned quantities to yield a new policy
πt+1 and the process is iterated.

In addition to the simplification of the policy update, the
rationale behind the use of a local quadratic approximation
forQit is twofold: i) since Qit is only optimized locally (be-
cause of the KL constraint), a quadratic model would po-
tentially contain as much information as a Hessian matrix
in a second order gradient descent setting ii) If Q̃t in Eq.
(4) is an arbitrarily complex model then it is common that
π′t, of linear-Gaussian form, is fit by weighted maximum-
likelihood (Deisenroth et al., 2013); it is clear though from
Eq. (4) that however complex Q̃t(s, a) is, if both πt and
π′t are of linear-Gaussian form then there exist a quadratic
model that would result in the same policy update. Addi-
tionally, note that Q̃t is not used when learning Q̃t−1 (sec.

4.1) and hence the bias introduced by Q̃t will not propagate
back. For these reasons, we believe that choosing a more
complex class for Q̃t than that of quadratic functions might
not necessarily lead to an improvement of the resulting pol-
icy, for the class of linear-Gaussian policies.

5. Related Work
In the Approximate Policy Iteration scheme (Szepesvari,
2010), policy updates can potentially decrease the expected
reward leading to policy oscillations (Wagner, 2011), un-
less the updated policy is ’close’ enough to the previous one
(Kakade & Langford, 2002). (Pirotta et al., 2013b) refines
the lower bound proposed in (Kakade & Langford, 2002)
yielding more aggressive updates, but both approaches only
considered discrete action spaces. (Pirotta et al., 2013a)
provides an extension to continuous domains but only for
single dimensional actions.

When the action space is continuous, which is typical in
e.g. robotic applications, using a stochastic policy and up-
dating it under a KL constraint to ensure ’closeness’ of
successive policies has shown several empirical successes
(Daniel et al., 2012; Levine & Koltun, 2014; Schulman
et al., 2015). However, only an empirical sample esti-
mate of the objective function is generally optimized (Pe-
ters et al., 2010; Schulman et al., 2015), which typically
requires a high number of samples and precludes it from
a direct application to physical systems. The sample com-
plexity can be reduced when a model of the dynamics is
available (Levine & Koltun, 2014) or learned (Levine &
Abbeel, 2014). In the latter work, empirical evidence sug-
gests that good policies can be learned on high dimensional
continuous state-action spaces with only a few hundred
episodes. The counter part being that time-dependent dy-
namics are assumed to be linear, which might be a simpli-
fying assumption in practice. Learning more sophisticated
models using for example Gaussian Processes was exper-
imented by (Deisenroth & Rasmussen, 2011) and (Pan &
Theodorou, 2014) in the Policy Search and Trajectory Op-
timization context, but it is still considered to be a challeng-
ing task, see (Deisenroth et al., 2013), chapter 3.

Most trajectory optimization methods are based on stochas-
tic optimal control. These methods linearize the system dy-
namics and update the policy in closed form as an LQG. In-
stances of such algorithms are for example iLQG (Todorov,
2006), DDP (Jacobson & Mayne, 1970; Theodorou et al.,
2010), AICO (Toussaint, 2009) and the trajectory opti-
mization algorithm used in the GPS algorithm (Levine &
Abbeel, 2014). These methods face issues in maintain-
ing the stability of the policy update step. DDP, iLQG and
AICO regularize the update by introducing a damping term
in the matrix inversion step, while GPS uses a KL bound
on successive trajectory distributions. These methods share

Model-Free Trajectory Optimization

the same assumptions as MOTO for ρit and πit respectively
considered to be of Gaussian and linear-Gaussian form.
However, the additional linearization of the system dynam-
ics boils down to assuming p(st, at, st+1) – and by exten-
sion the whole trajectory – to be normally distributed.

6. Experimental Validation
MOTO is experimentally validated on a set of multi-link
swing-up tasks and on a robot table tennis task. The exper-
imental section aims at analyzing the proposed algorithm
from four different angles: i) the quality of the returned pol-
icy comparatively to state-of-the-art trajectory optimization
algorithm, ii) the effectiveness of the proposed variance re-
duction and sample reuse schemes, iii) the contribution of
the added entropy constraint during policy updates in find-
ing better local optima and iv) the ability of the algorithm
to scale to higher dimensional problems.

6.1. Multi-link Swing-up Tasks

A set of swing-up tasks involving a multi-link pole with
respectively two and four joints is considered in this sec-
tion. The set of tasks includes several variants with dif-
ferent torque and joint limits, introducing additional non-
linearities in the dynamics and resulting in more challeng-
ing control problems for trajectory optimization algorithms
based on linearizing the dynamics. The state space consists
of the joint positions and joint velocities while the control
actions are the motor torques. In all the tasks, the reward
function is split between an action cost and a state cost.
The action cost is constant throughout the time-steps while
the state cost is time-dependent and is equal to zero for all
but the 20 last time-steps. During this period, a quadratic
cost penalizes the state for not being the null vector, i.e.
having zero velocity and reaching the upright position. Ex-
amples of successful swing-ups learned by MOTO for the
double and quadruple link pole are depicted in Fig. 1.a and
2.a respectively. MOTO is compared to the trajectory opti-
mization algorithm proposed in (Levine & Abbeel, 2014),
that we will refer to as GPS4.

GPS and MOTO both use a time-dependent linear-
Gaussian policy. In order to learn the linear model of the
system dynamics, GPS reuses samples from different time-
steps by learning a Gaussian mixture model on all the sam-
ples and use this model to learn a joint Gaussian distribu-
tion p(st, at, st+1). When comparing MOTO to GPS, and
in order to isolate the choice of learning a linear model of
the dynamics or remain model-free, we give to both al-
gorithm a high number of samples (200 and 400 rollouts

4This is a slight abuse of notation as the GPS algorithm of
(Levine & Abbeel, 2014) additionally feeds the optimized trajec-
tory to an upper level policy. However, in this paper, we are only
interested in the trajectory optimization part.

per iteration for the double and quadruple link respectively)
and bypass any kind of sample reuse.

Fig. 1.b compares GPS to two configurations of MOTO
on the double link swing up task. The same initial pol-
icy and step-size ε are used by both algorithm. However,
we found that GPS performs better with a smaller initial
variance, as otherwise actions quickly hit the torque limits
making the dynamics modeling harder. Fig. 1.b shows that
even if the dynamics of the system are not linear, GPS still
manages to improve the policy return, and eventually finds
a swing-up policy. The two configurations of MOTO have
an entropy reduction constant β0 of .1 and .5. The effect
of the entropy constraint is similar to the one observed in
the stochastic search domain by (Abdolmaleki et al., 2015).
Specifically, a smaller entropy reduction constant β0 results
in an initially slower convergence but ultimately leads to
higher quality policies. In this particular task, MOTO with
β0 = .1 manages to slightly outperform GPS.

Next, GPS and MOTO are compared on the quadruple link
swing-up task. We found this task to be significantly more
challenging than the double link and to increase the diffi-
culty further, soft joint limits are introduced on the three
last joints in the following way: whenever a joint angle
exceeds in absolute value the threshold of 2

3π, the desired
torque of the policy is ignored in favor of a linear-feedback
controller that aims at pushing back the joint angle within
the constrained range. As a result, Fig. 2.b shows that GPS
can barely improve its average return (with the torque limits
set to 25, as in the double link task.) while MOTO performs
significantly better. Finally, the torque limits are reduced
even further but MOTO still manages to find a swing-up
policy as demonstrated by Fig. 2.a.

In the last set of comparisons, the importance of each of
the components of MOTO is assessed on the double link
experiment (torque limit set to 10). The number of roll-
outs per iteration is reduced to M = 20. Fig. 1.c shows
that: i) the entropy constraint provides an improvement on
the quality of the policy in the last iterations in exchange
of a slower initial progress, ii) importance sampling greatly
helps in speeding-up the convergence and iii) the Monte-
Carlo estimate of Q̂ti is not adequate for such a small num-
ber of rollouts per iterations, which is further exacerbated
by the fact that sample reuse of transitions from different
time-steps is not possible with the Monte-Carlo estimate.

Finally, Fig. 2.c aims at finding where the balance lies be-
tween performing a small number of rollouts per iterations
with small policy updates and vice versa. To do so, we
start with an initial M = 20 and subsequently divide this
number by two until M = 5. In each case, the entropy
reduction constant is set such that, for a similar number of
rollouts, the entropy is reduced by the same amount, while
we choose γ′ = γM/M ′ to yield again a similar sample de-

Model-Free Trajectory Optimization

x-axis [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
-a

x
is

 [
m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) (b) (c)

Figure 1: a) Double link swing-up policy found by MOTO. b) Comparison between GPS and MOTO on the double link swing-up task
(different torque limits and state costs are applied compared to 1.c) and 2.c). c) Relevance of MOTO components; minus sign in the
legend indicates the abscence of either the entropy constraint (EC), importance sampling (IS) or dynamic programming (DP).

x-axis [m]
-4 -3 -2 -1 0 1 2 3 4

y
-a

x
is

 [
m

]

-4

-3

-2

-1

0

1

2

3

4

(a) (b) (c)

Figure 2: a) Quad link swing-up policy found by MOTO. b) Comparison between GPS and MOTO on the quad link swing-up task
with restricted joint limits and two different torque limits. c) MOTO on the double link swing-up task for varying number of rollouts per
episode and step-sizes. All plots of Fig. 1 and 2 are averaged over 15 runs.

cay after the same number of rollouts have been performed.
Tuning ε, however, was more complicated and we tested
several values on non-overlapping ranges for each M and
selected the best one. Fig. 2.c shows that, on the double
link swing-up task, a better sample efficiency is achieved
with a smaller M . However, the improvement becomes
negligible from M = 10 to M = 5. We also noticed a
sharp decrease in the number of effective samples when
M goes to 1. In this limiting case, the complexity of z1:i

increases with the increase of the number of policies com-
posing it, and might become a poor representation of the
data-set. Fitting a state-action distribution that is more rep-
resentative of the data might be the subject of future work,
in order to increase the sample efficiency of the algorithm,
which is crucial when applied to physical systems.

6.2. Robot Table Tennis Task

The considered robot table tennis task consists of a sim-
ulated robotic arm mounted on a floating base, having a
racket attached to the end effector that has to return using

Figure 4: Robot table tennis setting and a forehand stroke learned
by MOTO upon a spinning ball.

a forehand stroke incoming balls to the opposite side of the
table (Fig. 4). The arm has 9 degrees of freedom compris-
ing the six joints of the arm and the three linear joints of
the base allowing (small) 3D movement. Together with the
joint velocities and the 3D position of the incoming ball,
the resulting state space is of dimension ds = 21 and the
action space is of dimension da = 9 and consists of direct
torque commands.

We use the analytical player of (Mülling et al., 2011) to
generate a single forehand stroke, which is subsequently
used to learn from demonstration the initial policy π1. The

Model-Free Trajectory Optimization

(a) (b) (c)

Figure 3: a) Comparison on the robot table tennis task with no noise on the initial velocity of the ball. b) Comparison on the robot table
tennis task with Gaussian noise during the ball bounce on the table. c) Comparison on the robot table tennis task with initial velocity
sampled uniformly in order to variate the ball position by circa 15cm at hitting time.

analytical player consists of a waiting phase (keeping the
arm still), a preparation phase, a hitting phase and a re-
turn phase, which resets the arm to the waiting position of
the arm. Only the preparation and hitting phase will be re-
placed by a learned policy. The total control time for the
two learned phases comprises 300 time-steps at 500hz, al-
though for the MOTO algorithm we subsequently divide
the control frequency by a factor of 10, average the torque
commands of every 10 time-steps and use these quantities
as the initial bias for each of the 30 policies; while the gain
matrices are initially set to zero. By doing so, the initial
policy will capture the basic template of a forehand stroke
but does not contain any correlation between the torque
commands and the state entries such as the ball position.

Three settings of the task are considered, a noiseless case
where the ball is launched with the same initial velocity, a
varying context setting where the initial velocity is sampled
uniformly within a fixed range and the noisy bounce setting
where a Gaussian noise is added to both the x and y veloc-
ities of the ball upon bouncing on the table, to simulate the
effect of a spin.

We compare MOTO to the REPS policy search algorithm
(Peters et al., 2010) and the stochastic search algorithm
MORE (Abdolmaleki et al., 2015) that share a related
information-theoretic update. Both algorithms will opti-
mize the parameters of a Dynamical Movement Primitive
(DMP) (Ijspeert & Schaal, 2003). A DMP is a non-linear
attractor system commonly used in robotics. The DMP is
initialized from the same single trajectory and the two al-
gorithms will optimize the goal joint positions and veloci-
ties of the attractor system. Note that the DMP generates a
trajectory of states, which will be tracked by a linear con-
troller using the inverse dynamics. While MOTO will di-
rectly output the torque commands and do not rely on this
the inverse dynamics model.

Fig. 3.a and 3.c show that MOTO converges faster than

REPS and to a smaller extent to MORE in both the noise-
less and the varying context setting. This is somewhat sur-
prising since MOTO with its time-dependent linear policy
have a much higher number of parameters to optimize than
the 18 parameters of the DMP’s attractor. However, the re-
sulting policy in both cases is slightly less good than that
of MORE and REPS. Note that for the varying context set-
ting, we used a contextual variant of REPS that learns a
mapping from the initial ball velocity to the DMP’s param-
eters. MORE, on the other hand couldn’t be compared in
this setting. Finally, Fig. 3.b shows that our policy is suc-
cessfully capable of adapting to noise at ball bounce, while
the other methods fail to do so since the trajectory of the
DMP is not updated once generated.

7. Conclusion
We proposed in this paper a new trajectory optimization al-
gorithm that unlike other state-of-the-art algorithms does
not rely on a linearization of the dynamics. Yet, we are
able to derive an efficient policy update by locally fitting a
Q-Function, and outperform state-of-the-art trajectory op-
timization methods on the more challenging tasks. One of
the main addition that would ease the transition from simu-
lation to physical systems concerns the safety of the explo-
ration. On a more technical side, the use of a more complex
function for the estimation of the V-Function could be in-
vestigated to allow for a more refined bias-variance trade-
off.

Acknowledgments
The research leading to these results was partially funded
by the DFG Project LearnRobotS under the SPP 1527 Au-
tonomous Learning.

Model-Free Trajectory Optimization

References
Abdolmaleki, Abbas, Lioutikov, Rudolf, Peters, Jan R,

Lau, Nuno, Pualo Reis, Luis, and Neumann, Gerhard.
Model-based relative entropy stochastic search. In
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28, pp. 3523–3531.
Curran Associates, Inc., 2015.

Bertsekas, Dimitri P. Dynamic Porgramming and optimal
control. Athena Scientific, 1995.

Bhojanapalli, Srinadh, Kyrillidis, Anastasios T., and Sang-
havi, Sujay. Dropping convexity for faster semi-definite
optimization. CoRR, abs/1509.03917, 2015.

Daniel, C., Neumann, G., and Peters, J. Hierarchical Rela-
tive Entropy Policy Search. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2012.

Deisenroth, M. and Rasmussen, C. PILCO: A Model-
Based and Data-Efficient Approach to Policy Search.
In 28th International Conference on Machine Learning
(ICML), pp. 465–472, 2011.

Deisenroth, M. P., Neumann, G., and Peters, J. A Survey
on Policy Search for Robotics. Foundations and Trends
in Robotics, pp. 388–403, 2013.

Ijspeert, A. and Schaal, S. Learning Attractor Landscapes
for Learning Motor Primitives. In Advances in Neural
Information Processing Systems 15, (NIPS). MIT Press,
Cambridge, MA, 2003.

Jacobson, David H. and Mayne, David Q. Differential
dynamic programming. Modern analytic and compu-
tational methods in science and mathematics. Elsevier,
New York, 1970. ISBN 0-444-00070-4.

Kakade, Sham and Langford, John. Approximately optimal
approximate reinforcement learning. In Machine Learn-
ing, Proceedings of the Nineteenth International Con-
ference (ICML 2002), University of New South Wales,
Sydney, Australia, July 8-12, 2002, pp. 267–274, 2002.

Levine, Sergey and Abbeel, Pieter. Learning neural net-
work policies with guided policy search under unknown
dynamics. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N.D., and Weinberger, K.Q. (eds.), Advances
in Neural Information Processing Systems 27, pp. 1071–
1079. Curran Associates, Inc., 2014.

Levine, Sergey and Koltun, Vladlen. Learning complex
neural network policies with trajectory optimization. In
Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pp. 829–837, 2014.

Mülling, K., Kober, J., and Peters, J. A Biomimetic Ap-
proach to Robot Table Tennis. Adaptive Behavior Jour-
nal, (5), 2011.

Pan, Yunpeng and Theodorou, Evangelos. Probabilistic
differential dynamic programming. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems 27, pp. 1907–1915. Curran Asso-
ciates, Inc., 2014.

Peters, J., Mülling, K., and Altun, Y. Relative Entropy Pol-
icy Search. In Proceedings of the 24th National Con-
ference on Artificial Intelligence (AAAI). AAAI Press,
2010.

Pirotta, Matteo, Restelli, Marcello, and Bascetta, Luca.
Adaptive step-size for policy gradient methods. In
Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K.Q. (eds.), Advances in Neural Infor-
mation Processing Systems 26, pp. 1394–1402. Curran
Associates, Inc., 2013a.

Pirotta, Matteo, Restelli, Marcello, Pecorino, Alessio, and
Calandriello, Daniele. Safe policy iteration. In Das-
gupta, Sanjoy and McAllester, David (eds.), Proceedings
of the 30th International Conference on Machine Learn-
ing (ICML-13), volume 28, pp. 307–315. JMLR Work-
shop and Conference Proceedings, May 2013b.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael I., and Moritz, Philipp. Trust region policy opti-
mization. In Proceedings of the 32nd International Con-
ference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pp. 1889–1897, 2015.

Szepesvari, Csaba. Algorithms for Reinforcement Learn-
ing. Morgan & Claypool, 2010.

Theodorou, E., Tassa, Y., and Todorov, E. Stochastic Dif-
ferential Dynamic Programming. In Proceedings of the
29th American Control Conference, (ACC 2010), Balti-
more, Maryland, USA, 2010.

Theodorou, Evangelos A., Buchli, J., and Schaal, S. Path
Integral Stochastic Optimal Control for Rigid Body Dy-
namics. In ieee international symposium on approximate
dynamic programming and reinforcement learning (ad-
prl2009), 2009.

Todorov, Emanuel. Optimal control theory. Bayesian
Brain, 2006.

Todorov, Emanuel and Tassa, Yuval. Iterative local dy-
namic programming. In IEEE Symposium on Adap-
tive Dynamic Programming and Reinforcement Learn-
ing, ADPRL 2009, Nashville, TN, USA, March 31 - April
1, 2009, pp. 90–95, 2009.

Model-Free Trajectory Optimization

Toussaint, M. Robot Trajectory Optimization using Ap-
proximate Inference. In Proceedings of the 26th Interna-
tional Conference on Machine Learning, (ICML), 2009.

Wagner, Paul. A reinterpretation of the policy oscillation
phenomenon in approximate policy iteration. In Shawe-
Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., and
Weinberger, K.Q. (eds.), Advances in Neural Informa-
tion Processing Systems 24, pp. 2573–2581. Curran As-
sociates, Inc., 2011.

Model-Free Trajectory Optimization for Reinforcement Learning
(Supplementary Material)

Riad Akrour1 AKROUR@IAS.TU-DARMSTADT.DE
Abbas Abdolmaleki3 ABBAS.A@UA.PT
Hany Abdulsamad2 ABDULSAMAD@IAS.TU-DARMSTADT.DE
Gerhard Neumann1 NEUMANN@IAS.TU-DARMSTADT.DE

1: CLAS, 2: IAS, TU Darmstadt, Darmstadt, Germany
3: IEETA, University of Aveiro, Aveiro, Portugal

8. Dual Function
Recall the quadratic form of the Q-Function Q̃t(s, a) in the
action a and state s

Q̃t(s, a) =
1

2
aTQaaa+ aTQass+ aT qa + q(s). (9)

The new policy π′t(a|s) solution of the constrained max-
imization problem is again of linear-Gaussian form and
given by

π′t(a|s) = N (a|FLs+ Ff, F (η∗ + ω∗)),

such that the gain matrix, bias and covariance matrix of π′t
are function of matrices F and L and vector f where

F = (η∗Σ−1t −Qaa)−1, L = η∗Σ−1t Kt +Qas,

f = η∗Σ−1t kt + qa.

With η∗ and ω∗ the optimal Lagrange multipliers related
to the KL and entropy constraints, obtained by minimizing
the dual function

gt(η, ω) = ηε− ωβ + (η + ω)

∫
ρ̃t(s)

log

(∫
π(a|s)η/(η+ω) exp

(
Q̃t(s, a)/(η + ω)

))
ds.

From the quadratic form of Q̃t(s, a) and by additionally
assuming that the state distribution is approximated by
ρ̃t(s) = N (s|µs,Σs), the dual function simplifies to

gt(η, ω) = ηε− ωβ + µTs Mµs + tr(ΣsM) + µTs m+m0.

Where M , m and m0 are defined by

M =
1

2

(
LTFL− ηKT

t Σ−1t Kt

)
, m = LTFf−ηKT

t Σ−1t kt,

m0 =
1

2
(fTFf − ηkTt Σ−1t kt − η log |2πΣt|

+ (η + ω) log |2π(η + ω)F |).

The convex dual function gt can be efficiently minimized
by gradient descent and the policy update is performed
upon the computation of η∗ and ω∗. The gradient w.r.t.
η and ω is given by5

∂gt(η, ω)

∂η
= cst + lin + quad

cst = ε− 1

2
(kt − Ff)

T
Σ−1t (kt − Ff)− 1

2
[log |2πΣt|

− log |2π(η + ω)F |+ (η + ω)tr(Σ−1t F)− da].

lin = ((Kt − FL)µs)
T

Σ−1t (Ff − kt).
quad = µTs (Kt + FL)TΣ−1t (Kt + FL)µs

+ tr(Σs(Kt + FL)TΣ−1t (Kt + FL))

∂gt(η, ω)

∂ω
= − β +

1

2
(da + log |2π(η + ω)F |).

5cst, lin, quad, F , L and f all depend on η and ω. We dropped
the dependency from the notations for compactness. da is the
dimensionality of the action.

