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Abstract 

Abstract 

This research has first reviewed the current status and future aspects of marine and 

offshore safety assessment. The major problems identified in marine and offshore 

safety assessment in this research are associated with inappropriate treatment of 

uncertainty in data and human error issues during the modelling process. Following the 

identification of the research needs, this thesis has developed several analytical models 

for the safety assessment of marine and offshore systems/units. Such models can be 

effectively integrated into a risk-based framework using the marine formal safety 

assessment and offshore safety case concepts. 

Bayesian network (BN) and fuzzy logic (FL) approaches applicable to marine and 

offshore safety assessment have been proposed for systematically and effectively 

addressing uncertainty due to randomness and vagueness in data respectively. BN test 

cases for both a ship evacuation process and a collision scenario between the shuttle 

tanker and Floating, Production, Storage and Offloading unit (FPSO) have been 

produced within a cause-effect domain in which Bayes' theorem is the focal mechanism 

of inference processing. The proposed FL model incorporating fuzzy set theory and an 

evidential reasoning synthesis has been demonstrated on the FPSO-shuttle tanker 

collision scenario. The FL and BN models have been combined via mass assignment 

theory into a fuzzy-Bayesian network (FBN) in which the advantages of both are 

incorporated. This FBN model has then been demonstrated by addressing human error 

issues in a ship evacuation study using performance-shaping factors. It is concluded 

that the developed FL, BN and FBN models provide a flexible and transparent way of 

improving safety knowledge, assessments and practices in the marine and offshore 

applications. The outcomes have the potential to facilitate the decision-making process 

in a risk-based framework. Finally, the results of the research are summarised and areas 

where further research is required to improve the developed methodologies are outlined. 
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Chapter 1- Introduction 

Chapter 1: Introduction 

Chapter Summary 

It has been ascertained that there is a need for analytical models, which can aid in safety 

assessment, to be effectively integrated into a maritime risk-based system. In addition, 

numerous regulations for ensuring maritime safety have been recognised as being 

reactions to accidents. This makes the system quite deficient in such areas as `human 

element' and `uncertainty' and therefore, the scene of problem definition is set to the 

root causes of contributory factors that could bring about errors or growth 
incidents/accidents. To tackle the causes, two risk-based approaches have been 

recognised and examined in this chapter. Employing any of these approaches should 

establish whether risks are tolerable or need to be reduced further, based on an up to 

standard risk acceptance criteria structured within a risk analysis framework. A risk- 
based framework for maritime safety assessment is then proposed. Finally, this chapter 

presents the goals of the study described in this thesis and establishes a general 

characterisation to the structure of the work. 

1.1 Background 

Ships and offshore installations designed, built, maintained and operated well are 

capable of long, safe, trouble-free and profitable service over their intended life cycle. 

Surprisingly, this has not been the achieved reality and in worst cases, several 

unexpected accidents have occurred. Even with minor examination, a `proactive' and 

`risk-based' stance shows that there is no single previous disaster at sea which could not 
have been either prevented or suppressed in its scale. Thus, headlines on `safety' now 

need a permanent spotlight in the 21 s` century marine and offshore industry more than it 

ever revealed itself in the aftermath. 
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Following many notable marine disasters (e. g. Piper Alpha, Herald of Free Enterprise, 

Estonia), the International Maritime Organization (IMO) reacted positively to ensure 

that such accidents did not repeat (IMO, 2001 a; Wang, 2002). Nevertheless, worrying 

accidents did occur again and this made the IMO realise the need for a better resolution. 

One result of this resolution option is the `formal safety assessment (FSA) concept' 

(IMO, 2002b), which represents a fundamental change from what was previously a 

largely piecemeal and reactive regulatory approach to one that is proactive, integrated, 

and above all based on risk evaluation and management in a transparent and justifiable 

manner (THEMES, 2001). Essentially, the concept provides an elegant route to 

application of well-established risk analysis methods. 

Once data and information is provided, some of the novel risk analysis techniques can 

be developed and used in an integrated manner to yield powerful risk assessments. For 

example, the time between the occurrences of events can be an important parameter 

(Nielsen, 1971) and this can be treated using a cause-consequence diagram (CCD). 

Basically, the CCD method is a tool, which, like fault tree analysis, documents the 

failure logic but has the extra capability enabling the analysis of systems subject to 

sequential failures. In addition the CCD identifies the complete set of systems 

responses to any given initiating event. In principle, incorporate significant features of 

both fault and event trees. Thus, the CCD could well prove to offer a sophisticated tool 

for enriching reliability and with respect to risk contribution tree modelling. 

The nature of the FSA framework requires that relevant accident scenarios be 

established to enable hazard identification exercises, which will then feed into the risk 

assessment of any safety-critical marine and offshore application. Accident databases 

usually provide statistical input to the scenarios, though the information acquired from 

these are somewhat subject to inherent uncertainties and may only be acquired 

incrementally. Decision-making is essential to the risk assessment task and therefore, 

under the realm of uncertainty, Bayesian network (BN) (Jensen, 1993) can be adopted 

to enable a powerful marine and offshore decision-support solution. The focal 

mechanism for this network's inference process relies on the sound Bayes' theorem 

(Groen & Mosleh, 2001) to perform a probabilistic logic/reasoning of the domain. 

Also, BN models can be expanded into influence diagrams for use as a communication 

tool in the decision-making process. 
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Whilst the analysis, under conditions of uncertainty, can adopt a probability-based 

approach due to randomness in the modelling data, another feasible choice is a 

possibility-based approach due to a nature of vagueness. On this note, analysis of safety 

and reliability capabilities of ships and offshore installations can be undertaken in view 

of the fact that fuzzy logic (FL) (Zadeh, 1975) has emerged as a uniquely efficient 

linguistic and numerical tool for safety assessment. In addition to its modelling from 

fuzzy set theory, FL could be combined with evidential reasoning (Yang & Xu, 2002) to 

enable a justified weighted ranking in terms for safety and utility. The possibility 

values of fuzzy set can be transformed into probabilities to enable BN and FL 

integrative modelling via the theory of mass assignment. In-service behaviour of 

safety-critical systems in marine and offshore applications can be investigated using 

these developed modelling techniques. Such techniques can also be applied to address 

the assessment of safety due to the relevant and thoughtful technological 

modifications/added features that are made by designers and the vessel operators. 

1.2 Problem Definition in the Safety Issue 

It is essential for regulations to be set in order to ensure maximum safety to the 

maritime industry. Unfortunately, regulations have been reactive to accidents and prone 

to several deficiencies. The time-honoured causation of historic incidents and accidents 

offers an inadequate setting to resolving safety for complex systems of the likes of 

maritime vessels and installations. 

1.2.1 Deficiencies due to Regulating by Disasters 

A huge amount of the change to regulations and procedures in shipping activity has 

resulted from tragedies. Figure 1.1 gives an event breakdown of the prominent 

consequences in most marine disasters. Obviously, many important lessons have been 

learnt from those past maritime accidents. 
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Maritime disasters 
T 

I 
Loss of life 

and property 

Oil spill 

Onboard 

I 
Environmental 

pollution 

Emission to air Overboard 

Figure 1.1: Consequences in the majority of marine disasters 

Ships such as Titanic, Torrey Canyon, Amoco Cadiz, Herald of Free Enterprise, Exxon 

Valdez, Scandinavian Star, Estonia (Br$felt & Larsson, 2000; Wang, 2002) and others 

shown in Table 1.1, represent highly controversial tragic accidents which led to 

response strategies but left many issues unresolved. The Exxon Valdez case 
(NTSB, 1990), for example, led to the introduction of mandatory requirements for 

double hulls, notwithstanding the fact that it was largely due to a navigational error. In 

fact, it did nothing much to address the human element issue. Therefore, as the 

traditional structure of shipping is being transformed, such an example indicates clearly 

that a system which merely reacts to disasters is basically flawed. 

The accident categories of grounding, stranding, collision, fire and explosion have 

become a driving force for new legislation and the focus of safety training standards. 

Nevertheless, it can be acknowledged from such invariably devised responses that the 

way in which the industry is regulated has evolved in an unstructured manner. 

Regulation has been so much reactive rather than proactive and regulators clearly 

struggle to keep up with the rapid pace of technological and operational developments 

within the industry. As such, a change of regulatory approach is desperately desirable 

in pursuit of "a safety culture". However, this change has to create a proactive rather 

than reactive system of controlling maritime safety and environmental protection, and 

one in which underlying issues such as ̀ human element' and `uncertainty' are no longer 

neglected. The system should further allow for model integration of risk-based 

assessments into the appropriate methodology steps, which are set to meet an acceptable 

risk criterion. 
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Table 1.1: Maritime disasters that greatly influenced worldwide maritime regulations 

Date Vessel/Unit Accident Location Consequence Resolutions 

Sank after a South of SOLAS 
15 April 1912 Titanic collision with Grand Banks 1,503 lives lost Convention 

an iceberg 
8 September Morro Castle 

Caught fire Gulf of New 134 lives lost Fire Safety 
1934 and grounded Jerse 

Grounding Civil Liability 
18 March Torrey and West Coast of 120,000 tonnes Convention 

1967 Canyon subsequent England of spilled oil , 
MARPOL 73/78 

oil spill 

16 March Amoco Cadiz Grounding 
Northern 
Coast of 

223,000 tonnes 
Pollution 

Liability Limits, 
1978 France of spilled oil STCW 78/95 

19 July 1979 
Atlantic Collision 

Trinidad and 287,000 tonnes Tanker Safety 
Express Tobago of spilled oil 

9 September Derbyshire Sank in a North Pacific 44 lives lost 
Bulk Carrier 

Safet 1980 typhoon y 
Herald of Passenger Ferry 

6 March 1987 Free Foundered Zeebrugge 193 lives lost Safety I, ISM 

Enter rise Code 

North-east Safety Case, 
6 July 1988 Piper Alpha Fire after an 

explosion coast of 167 lives lost ALARP 
Scotland Established 

Tanker 
24 March Exxon Ran to a West Coast of 37,000 tonnes Construction, 

1989 Valdez shoal Alaska of spilled oil OPA 90 
Directional 

6 April 1990 
Scandinavian Caught fire Skagerak 158 lives lost Sound 

Star Evacuation 
Grounded in 

5 January Braer 
severe 

weather 
The Shetland 85,000 tonnes Tanker Traffic 

1993 , 
following Isles of spilled oil Routing 

engine failure 
27 September Estonia 

Sank in a South of Uto 852 lives lost Passenger Ferry 
1994 storm (Finland) Safety II 

15 February Sea Empress Grounding 
Milford 

Haven (South 72,000 tonnes HNS 
1996 Wales) of spilled oil Convention 

16 January 
in two Gulf of St. Bulk 

1998 
Flare ing rough during Lawrence 21 lives lost ign & Design 

weather Construction 

12 December Erika Broke in two 
West Coast of 10,000 tonnes Sub-Standard 

1999 France of spilled oil Tankers 

13 November Prestige 
Broke in two 
and sank 6 

Northwest 
Coast of 

77,000 tonnes Establishment 
2002 days later Spain of spilled oil of PSSAs 

where; SO LAS means is the International Convention for the Safety of Life at Sea 

MARPOL is the International Convention for the Prevention of Pollution from Ships 

STCW is the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers 
ISM means international Safety Management 
ALARP means As Low As Reasonably Practicable 
OPA means Oil Pollution Act 
HNS means Hazardous and Noxious Substances 
PSSA means Particularly Sensitive Sea Area 
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1.2.2 Overlooked Contributory Causes of an Undesirable Event 

Many lessons still need to be learnt from the past maritime accidents. There is also no 
doubt that the less dramatic, or less well-publicised accidents, incidents/ near misses, as 

well as certain unsafe acts bringing about errors and those of recovery occurrences, do 

have equally valuable lessons to be learnt from. In fact, it is possible that accidents may 

have propagated from the later and yet these are often overlooked as likely sources of 

the problem with the safety issue in the maritime industry. Thus, within existing 

maritime safety regulations, there are several amendments to be undertaken that may 

prove invaluable in preventing even the likely occurrence of an incident from 

developing any further. 

Unwanted 
consequences 

A 

Accidents 

Incidents / near misses 

Errors and recoveries 

Human 
factors 

Technical 
factors 

Organisational 
factors 

Societal 
factors 

Environmental 
factors 

Figure 1.2: A multiple causation growth model of an accidental event 

It is extremely difficult to prevent accidents in the absence of an understanding as to 

how near misses, incidents or accidents are caused. Prior to the 1980's (Peterson, 
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1996), all the knowledge, tools, and techniques of events existing prior to an accident 

were built on a set of principles that were first derived by Heinrich (1931). Perhaps the 

most important of these principles behind a built model of the causes of an accident is 

the domino theory of accident causation. This principle implies that accidents result 
from a sequence of events and suggests that removal of one single event in this 

sequence of events will prevent an accident from occurring. As such, the domino model 
has been noted as a one-dimensional sequence of events, which has proved to be 

inadequate for complex systems like ships and offshore installations. 

In complex systems, accidents are usually multi-factoral and develop through relatively 
lengthy sequences of changes and errors. This has led to the principle of multiple 

causation. According to Peterson (1978), behind every accident there lie many 

contributing factors, causes and sub-causes. The theory of multiple causation is that 

these factors combine together, in random fashion, causing accidents. Therefore, during 

maritime accident investigations and in the casual modelling studies, there is a need to 

identify as many of these causes as possible, rather than just one for each stage of the 

domino sequence. Figure 1.2 depicts a multiple causation growth model of an 

accidental event in which the combination of contributory human, technical, 

environmental, societal and organisational factors is seen as the root that gives rise to 

the growth chain of hazard-to-accident problems in the maritime industry. Thus, these 

factors are of great importance in the safety modelling of a maritime application. 

1.3 Research Resolution as a Risk-Based Issue 

A risk-based resolution is desirable in offering a holistic and systematic approach to 

developing and thus implementing proactive standards, regulations and strategies to 

protect human, ships, offshore installations, property and the marine environment from 

adverse effects of hazardous situations based on risk assessment. Proceeding on the 

basis of sound criteria, the risks level can be determined for tolerability. 
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1.3.1 Reviewed State of Proactive Safety Practice 

One way of ensuring that action is taken to avert the cause of an incident or accident in 

the maritime industry is the use of a risk-based concept. This is termed `safety case' 

and `formal safety assessment' approach for offshore and marine systems respectively. 

1.3.1.1 Offshore Safety Case Concept 

Most international safety legislative regimes were highly prescriptive before the Piper 

Alpha oil platform disaster in the North Sea, off the UK (in 1988). One of the most 

significant findings of the inquiry into the disaster, headed by Lord Cullen, was that 

prescriptive regulation provides no guarantee of excellent safety performance 
(DOE, 1990). It guaranteed nothing more than compliance to a minimum level. Thus, 

the Lord Cullen Report recommended the establishment of the objective based safety 

case (SC) regime and its concept has ever since been adopted in the offshore oil and gas 
industry. 

The SC (HSE, 1998) is a detailed document that outlines the types of safety studies 

undertaken and the results obtained, and the management arrangements to ensure the 

continued safety of an offshore facility and persons on it. It should demonstrate that the 

operator knows what technical and human activities occur, how they are to be managed 

and how safety will be assured throughout the operating life of the facility. It must also 
identify the methods used for monitoring and reviewing all activities on the facility. 

1.3.1.2 Marine Formal Safety Assessment Concept 

The House of Lords committee, headed by Lord Carver, asserted in 1992 that modem 

science and technology were not being adequately applied in the many fields that affect 

shipping safety and that the time had come for a radical change (House of Lords, 1992). 

In respect of the regulatory regime for shipping, the Carver Report envisaged the 

adoption of safety goals based upon a quantified assessment of risks, costs and benefits, 

coupled with the introduction of a ship SC regime for every commercial vessel. 



Chapter 1- Introduction 

Although, the idea had considerable merit on the basis of such quantified assessments, 

the UK government made clear that to contemplate a SC for every individual vessel 

would be impractical for the foreseeable future as such a regime would put unrealistic 

demands upon the resources of both the regulator and the regulated operator 

(MSA, 1996). Hence, the concept of formal safety assessment (FSA) was proposed. 

FSA (IMO, 2002b) allows a systematic and proactive view to be taken of ship safety 

enabling informed decisions to be made based on the objective analysis of risk. The 

concept involves using the techniques of risk assessment and cost benefit analysis, not 

for individual ships, but as a tool to assist in the International Maritime Organisation's 

(IMO's) decision-making process in formulating new and amended rules for shipping in 

general. The UK reasoned that adoption of FSA would enable safety and pollution 

issues at IMO to be prioritised, and regulations to be derived that are cost effective and 

proportional to risk. 

1.3.2 Basic Definitions to Understanding Risk Evaluation Process 

A risk-based approach for a safety-critical maritime system/unit should be one in which 

any perceived risk to the system can be evaluated so as to reflex where there may be a 

need for possible risk reductions or design modifications (See Section 1.3.3). The 

following basic definitions give clarity to fundamental expressions in the risk evaluation 

process for the system: 

(a) Hazard 

A hazard is defined as a physical situation with the potential for human injury, damage 

to property, damage to the environment, economical loss or some combination of these. 

Hazards are classified according to the severity of their potential effects, either in terms 

of safety, economics or other consequences. Such classifications alone are purely 

subjective and usually require qualification and quantification, by definition of the 

precise form of the hazard and quantified evaluation of the consequences 

(Warner, 1992). 
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(b) Risk 

Risk is a combination of the probability, or frequency, of occurrence of a defined hazard 

and the magnitude of the consequences of occurrence on lives, property and the 

environment. Criteria for acceptability of some predicted risk or measured risk can be 

set voluntarily by the organisation responsible and/or subjected to the hazard, or be set 

mandatorily by some regulatory organisation (Warner, 1992). 

(c) Safety 

Safety is a term that denotes freedom from unacceptable risks/personal harm. 

(d) Reliability 

Reliability is the probability of failure-free operation for a specified length of time. 

1.3.3 Framework for Risk Criteria 

The simplest framework for risk criteria is a single risk level that divides tolerable risks 

from intolerable ones (i. e. acceptable activities from unacceptable ones). Such criteria 

give attractively simple results, but they need to be used very carefully, because they do 

not reflect the uncertainties both in estimating risks and in assessing what is tolerable. 

For instance, if applied rigidly, they could indicate that, an activity, which just exceeded 

the criteria, would become acceptable as a result of some minor remedial measure that 

in fact scarcely changed the risk levels. A more common approach to dividing tolerable 

and intolerable risks is to use two criteria, known as "maximum tolerable" and 

"negligible" levels. These divide risks into three tiers as shown in Figure 1.3 

(HSE, 1992), that is: 

" An intolerable region (above the "maximum tolerable" criterion) within which 

the risk is generally intolerable whatever the benefit may be. Risk reduction 

measures or design changes are considered essential. 
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"A middle band (between the "maximum tolerable" and "negligible" criteria) 

where risk reduction is desirable. In the UK, risks in this region are considered 

to be tolerable only when they have been made "as low as reasonably 

practicable" (ALARP). This requires risk reduction measures to be 

implemented if they are reasonably practicable, as evaluated by cost-benefit 

analysis. 

"A negligible region (below the "negligible" criterion) within which the risk is 

generally tolerable, and no risk reduction measures are needed. 

Unacceptable region 

The ALARP or Tolerability 
region (Risk is undertaken only 

if a benefit is desired) 

Risk cannot be justified except in 

extraordinary circumstances 

Tolerable only if risk reduction is 
impracticable or its cost is grossly 

disproportionate to the 
improvement gained 

Tolerable if cost of reduction 
would exceed the improvement 

gained 

Broadly acceptable region (No Necessary to maintain assurance 
need for detailed work to that risk remains at this level 

demonstrate ALARP) 

Negligible risk 

Figure 13: The ALARP principle framework for risk acceptability 

An extremely important measure that is robust enough to define a maximum tolerable 

risk in absolute terms is the individual risk, i. e., the annual probability of death due to 

accidents onboard a ship. HSE gives the individual risk acceptance criteria as follows 

(Spouge, 1997): 
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" Maximum tolerable risk for crew members is 10-3 (i. e., 1 in 1,000) per year. 

" Maximum tolerable risk for passengers is 10-4 (i. e., I in 10,000) per year. 

" Maximum tolerable risk for public ashore is 10-4 (i. e., I in 10,000) per year. 

However, if all individual risks are below 10-6 per year, this suggests that risks are 

negligible and cost benefit analysis need not be justified (Spouge, 1997). 

One of the main objectives of the SC and FSA approaches is the demonstration (to the 

regulator) that measures are appropriate and adequate to ensure that risks from potential 

major accidents have been reduced to a level `as low as reasonably practicable' 

(ALARP). Nevertheless, it should be noted that the Health and Safety Commission 

(HSC) has proposed replacing the requirement to demonstrate that major accident risks 

are ALARP for the offshore SC with that of a demonstration that such risks are 

estimated and relevant statutory provisions are complied with (HSE, 2002; HSC, 2004). 

In this thesis however, risk criteria will be set, relevant to the vessel and its operational 

context, and in accordance with the ALARP principle. 

1.4 Risk Analysis Methodology 

A safety assessment can provide an effective approach that will serve as the foundation 

for avoiding further maritime disasters and even situations of near misses. Through risk 

analysis, it is possible to identify hazards, assess and then mitigate the associated risk. 

Such an analysis entails the development of a very robust systematic methodology such 

as that generically given by Figure 1.4, based upon the following sequence of activities: 

" Define the system being studied. 

" Identify the hazards associated with that system. 

" Estimate the frequency of the hazards occurring and how each might progress to 

various outcomes. 

" Estimate the consequences associated with each outcome. 
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" Multiply hazard frequency and consequence to obtain the risk associated with 

each outcome. 

" Sum the risks associated with the outcomes to produce an overall risk. 

" Check if risk is acceptable based on the criteria as given by the ALARP 

principle. 

" If risk is acceptable, carry out risk mitigation otherwise modify system. 

In practice, both the SC and FSA approaches apply this risk assessment methodology. 

Therefore, the resulting development of this research can be effectively integrated into 

this aspect of both approaches. It should be noted that the measure of the frequency of 

the hazards occurring is a function that is deduced from its possibility, evidential or 

probability distribution. Thus, with the recognition that quantitative risk assessment is 

not always the most appropriate due to its too prescriptive nature (HSC, 2004), the idea 

should be that risk analysts use effective risk assessment techniques, selected to be 

appropriate to the circumstances. 

System description 

Identify hazards and 
accident scenarios 

Estimate 
frequency of 
occurrence 

Risk 
determination 

Acceptable? 

Ensure risk 
control 

Estimate 
consequence of 

outcomes 

-13- 
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Figure 1.4: Generic process of the risk analysis framework 

An obvious benefit of risk assessment is that the results serve as the basis for a cost- 

effective means for risk mitigation and avoidance. With respect to these, it is often 

possible to undertake actions that will reduce the potential of the occurrence of an 

incident or accident. 
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Figure 1.5: Proposed research framework for risk-based assessments 

In order to implement the outlined risk analysis methodology effectively, Figure 1.5 

gives a proposed framework for which the risk-based assessment settings of this 

research can also be achieved via a cost effective means. It has been developed by 

Recommendations for decision-making 
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moulding the multiple causation growth contributory causes of an undesired event (see 

Section 1.2.2) into the risk analysis process whilst also effecting the treatment of 

uncertainty (a vital issue of problem definition as stated in Section 1.2.1) for the safety 

assessment of the maritime application. Following from this, the final risk that would 
be determined for the application may then be reduced based on the ALARP Principle 

(Section 1.3.3). Cost effectiveness can thus be demonstrated via the assessment of the 

benefits of the risk reduction and the implementation costs for greater risk reduction 

measures (HM Treasury, 1997; Mathiesen, 1997; HSE, 2001) of life saving and 

environmental protection for the safety-critical maritime application. 

Recommendations for decision-making can be provided based on the level of cost- 

effectiveness for each risk control measure that is deemed appropriate and feasible on 

risk reduction scale of the ALARP principle framework. For example, `TRCO', 

`ORCO' and `HRCO' may represent the `technical', `organisational' and `human' risk 

control option (RCO) recommendations that can be respectively implemented. In 

theory, a number (e. g., 1,2,3, etc) may be used after respective to distinguish one RCO 

from another RCOs (e. g., TRCO1, TRCO2, TRCO3, etc, in the technical factors 

category). Furthermore, individual RCOs may be combined, and the end result may just 

be expressed as ̀ RCO' with an attached number (e. g., RCO1, RCO2, TRCO3, etc). 

1.5 Thesis Aim and Objectives 

The overarching aim of this research is to generate proactive risk-based analytical 

models that implement novel techniques within a safety framework. In an attempt to 

achieve this aim, the thesis takes upon the following main objective tasks: 

" To review the current status of safety practice in both marine and offshore 

industry. 

" To establish appropriate data statistics for carrying out risk-based assessment. 

" To identify key risk analysis techniques that are currently in use within the 

maritime industry. 
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" To examine formal safety assessment procedures and review the developments 

of its trial application to ships. 

" To facilitate the incorporation of uncertainty treatment into the maritime 

application domain of risk-based reasoning. 

" To demonstrate how the adoption of Bayesian network (BN) can enable a 

powerful marine and offshore decision-support solution. 

" To demonstrate the application of fuzzy logic (FL) towards evidential reasoning 

synthesis in maritime engineering safety analysis. 

" To investigate the integration of BN and FL for the incorporation of the human 

element into probabilistic risk-based modelling. 

These goals are being established more clearly as the work proceeds through each 

chapter of the thesis. 

1.6 General Scope of Work 

The chapters in this thesis have been organised to express a certain flow of thought or 

line of argument. Figure 1.6 summaries the logical structure of the thesis. Obviously, 

the structure starts off with this introductory platform chapter that gives light into the 

much-needed risk-based approach to marine and offshore safety as its Chapter 1. 

Sourced data for carrying out safety assessment tasks may need to be treated 

statistically, which Chapter 2 demonstrates, before they can be well utilised. Chapter 3 

presents some typical risk analytical techniques that are used in maritime safety and 

reliability assessment studies. In Chapter 4, a structured formal safety assessment 

(FSA) methodology that allows for proactive risk control measures to be permitted is 

presented and this chapter further provides a review of the noteworthy developments in 

the trial application of FSA to some ship types. Chapter 5 explores the incorporation of 

uncertainty treatment into the application domain of risk-based reasoning. Bayesian 

network (BN) is adopted in Chapter 6 to enable a powerful decision-support solution 

under the realm of random uncertainty, whilst fuzzy logic (FL) treats the vague 

uncertainty and then offers a safety analysis solution in Chapter 7 via evidential 
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reasoning synthesis. In Chapter 8, an integrated risk model of BN and FL is achieved in 

a fuzzy-Bayesian network of an induced mass assignment paradigm. Chapter 9 

concludes the thesis with an overall review and also then presents its principal findings, 

major limitations and recommendations for future work of the research. 

Chapter 1: 
Introduction 

ý---------- -- --------------- 

Chapter 2: 
Statistical Data 

Treatment 

___ 
4f 

Chapter 3: 
Risk analytical 

techniques 

4; 

_NV 
Chapter 5: 

Treatment of 
uncertainty 

I 

i 
Chapter 4: 

Formal safety 
assessment 

11 
Chapter 6: 

Bayesian network 
modelling 

I 
At 4 

Chapter 7: 
Fuzzy logic 

modelling 

I 
Chapter 8: 

Fuzzy-Bayesian 

network modelling II 

Chapter 9: 
Conclusion i Figure 1.6: Structure of the thesis 

1.7 Concluding Remarks 

In the field of marine regulations, the high number of casualties and oil pollutions has 

acted as a catalyst in triggering a positive reaction that led to the adoption of reforms 
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designed to improve maritime safety. Nevertheless, such systems have often 

overlooked the areas of several contributory factors (such as the human factor) and their 

causes, which can result into errors, incidents and accidents. Besides, an account of 

uncertainty is not habitually taken into consideration. The approach of SC and FSA is 

currently adopted in the offshore and marine industry respectively to proactively 

establishing safety at sea. 

Preparation and submission of a SC constitute a key strategy in the drive for improved 

safety in the offshore oil and gas industry, whilst FSA for the marine industry delivers 

the maximum level of safety and pollution prevention in a cost-effective manner. Both 

industries apply the ALARP principle as the risk criteria. Furthermore, a risk analysis 

methodology has been presented, which establishes the generic framework upon that the 

safety assessments in this thesis are embarked upon. 

The research aim is to achieve the generation of proactive and integrative risk-based 

assessment models within its safety analytical framework. Hence, several goals have 

been established within a well-structured outline of the chapters in the thesis. 
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Chapter 2: Statistical Data Treatment 

Chapter Summary 

Data for risk and uncertainty modelling usually needs to be treated statistically in order 

to satisfy their use in an application tool. Several useful maritime databases provide 

reliable failure and repair rates, or information/data on accident category types, such as 

the nature and number of occurrences of incidents/accidents. Some supplementary data 

can also be obtained from expert judgement, models or simulations. Failure probability 

distributions are then used to enable the probabilistic modelling of failure and repair 

activities. In the related consequence term, the frequency of occurrence of accidents, as 

obtained from a historical database and the distribution of the numbers of fatalities in 

such accidents are required to give a frequency-number of fatalities graph. The area 

under this graph provides a convenient one-dimensional measure of societal risk, which 

is termed the potential loss of life. 

2.1 Introduction 

Reliable failure and repair data is a paramount item in developing any kind of safety and 

reliability assessment. The existence of these prime data will enable any authority to 

determine the probability of occurrence and the extent of the consequences of a 

hazardous event or its associated failed components and systems. The available data 

will also help to determine the nature of risk analysis methods, such as qualitative or 

quantitative, to be utilised in the process of the maritime risk-based methodology (e. g., 

`safety case' or `formal safety assessment'). 

Various authorities or bodies attend to safety issues from different perspective in order 

to facilitate their own interest. For example, data from classification societies will 

mainly deal from the viewpoint of compliance with various sets of rules and regulations 
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in force. Meanwhile, data from protection & indemnity (P&I) clubs tend to deal with 

the matter from the viewpoint of financial losses due to lack of safety (Sii & Wang, 

2003). When there is insufficient data from the database, then expert judgement, 

physical models, simulations and analytical models may be used to achieve valuable 

results (IMO, 2002b). Nonetheless, any data that is obtained, whether from database or 

otherwise, should always be critically evaluated. 

The obtained data is usually treated from its raw form depending on its intended use 

within the analysis structure. In some cases, such as with accident or initiating events, 

available data may be need to be treated and supplied in terms of frequency per 

ship/installation operating year. The best way to assign a frequency to an event is to 

research industry databases and locate good historical frequency data that relates to the 

event being analysed. Before applying historical frequency data, a thoughtful analysis 

of the data should be performed to determine its applicability to the event being 

evaluated. The analyst needs to consider the source of the data, the statistical quality of 

the data (reporting accuracy, size of data set, etc. ) and the relevance of the data to the 

event being analysed. Also, the data may best be utilised for safety assessment by 

converting a failure or a repair rate into a corresponding probability value. 

Just as data for every error, incident or accident event are required to be treated, it is 

imperative that the data for their developing sequence of events and including their final 

consequences are dealt with. In this sense, every data that would proceed into risk or 

uncertainty analysis would have been completely justified for its suitable use by such 

statistical data treatment. 

2.2 Collection of Failure and Repair Data 

It is essential to obtain reliable statistical failure and repair data of components in order 

to apply safety assessment techniques. Generally, such failure and repair data of 

components can be obtained from field experience, life testing under controlled 

conditions in laboratory and/or laboratory testing of similar components (Misra, 1992). 

The collection of these data based on life tests of ships and offshore installations is 

precluded as a very expensive and labour demanding operation. Extensive use is made 
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of those collected from laboratory tests and field reports on similar components (generic 

data collection programmes). In addition, repair data may also be compiled from the 

agreed judgmental estimates of experts (Misra, 1992). 

It should be noted that, for some components, there is fairly close agreement between 

different data banks and in other cases, there is a wide range of failure rates (Smith, 

1992). The latter may be due to a number of reasons as, for example: 

" Some failure rates involve the replacement of components during preventive 

maintenance whereas others do not. 

" Failure rates are affected by so many factors that a variation in values exists. 

" Although nominal environmental and quality levels are described in some 

databases, the range of parameters covered by these broad descriptions is 

large. 

Great care should be taken to use failure and repair data obtained from data banks to 

reflect the environment to which the product is designed. When no data for a 

component failure mode can be obtained, it may be possible to express the failure in 

terms of fundamental and quantifiable parameters and to analyse it using limit state 

reliability analysis (Wang, et. al, 1993), although there is uncertainty about the relevant 

distributions. 

How critical the reliability of the failure and the repair data is depends on the aims of 

the safety analysis. If the safety analysis aims at obtaining the best absolute estimate of 

system safety, as may be required by statutory requirements, the failure and repair data 

is obviously critical. In such cases, validation of the data becomes as important as the 

validation of the safety assessments themselves, and verification procedures should be 

implemented to ensure that the obtained data for components is reliable. Modification 

of the obtained data may also be required (Figure 2.1). However, when the estimates of 

the system safety are used for comparison purposes, the criticality of such data is greatly 

reduced. Safety analysis is then used to provide the sensitivity of the system safety and 

to indicate the relative benefits of design changes on system performance. 
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Figure 2.1: Sourcing of data for statistical data treatment and representation 

The following sources may be useful for obtaining failure and repair data to carry out 

quantitative safety analysis. 

" FARADIP. THREE (Smith, 1992): This database is a summary of many useful 
databases and shows, for each component, the range of failure values. The 

failure data of various components such as alarms, mechanical items and 
instruments is included in this database. 

" US Military Handbook 217: This data source is produced by the Rome Air 

Development Center under contract to the US Department of Defence and is an 

electronic failure data bank. 

" Nonelectronic Parts Reliability Data - NPRD3 (1985): This document is 

produced by the Rome Air Development Center. It contains field data 

information of electromechanical, mechanical, hydraulic and pneumatic parts. 

" Handbook of Reliability Data for Electronic Components Used in 

Telecommunications Systems HRD4 (1986): This document is produced, from 

field data, by British Telecom's Materials and Components Centre. 

" Electronic Reliability Data - INSPEC/NCSR (1981): This book, published 

jointly by the Institute of Electrical Engineers and the National Centre of 

Systems Reliability (Warrington) in 1981, consists of simple multiplicative 

models for semiconductors and passive electronic components with tables from 

which to establish the multipliers according to the environment, temperature 

and other parameters. 
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" OREDA- Offshore Reliability Data (DNV, 1992): It is a collection of offshore 
failure rate and failure mode data with an emphasis on safety-related 

equipment. It covers a great range of components and equipment. 

" Green and Bourne - Reliability Technology, Wiley, 1972: This book contains 

failure rate data obtained mostly from US and UK atomic energy sources. 

" UK Atomic Energy SRD Data Bank: It contains the generic reliability data of 

various components and is maintained by the SRD (Systems Reliability 

Department) at the UKAEA (UK Atomic Energy Authority at Culcheth), 

Warrington, Cheshire. 

" Lloyds Data Bank (LR, 1982): It mainly covers the failure data in the shipping 

industries. 

" Others: The reliability data of the various electronic and non-electronic 

components may also be obtained from various published papers and books 

such as (Smith, 1985 and 1992). 

It is also becoming useful to record and utilise data from near misses and errors. 
Furthermore, to ensure that there is an accurate applicability of the safety assessment 

carried out, novel techniques should integrate expert judgement with the obtained data 

in a formal manner (See Figure 2.1). 

2.3 Categorisation of Hazardous Events 

For the available data of any resourceful database(s) to be well utilised in a safety 

assessment study, accidents, incidents or errors that might affect or impair the 

seaworthiness of the vessel are categorised according to the nature of their occurrence. 
There resulting consequences can also be categorised similarly 

2.3.1 Category of Major Accidents 

Some of the major maritime accidents can be associated with one or more of the 

following categorises (LMIS, 1995): 
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" Contact and collision: Striking or being struck by another ship or external 

object, regardless of whether underway, anchored or moored. This category 

includes striking drilling rigs/platforms, regardless of whether in fixed position 

or in tow but it does not include striking underwater wrecks. 

" Grounding and stranding: Being aground or hitting/touching shore or sea 

bottom or underwater wrecks. 

" Fire or explosion: Accidents where the initial event is an uncontrolled process 

of combustion characterised by heat or smoke or flame or any combination of 

these, which engulfs sections of or the entire ship. 

" Missing vessel: Ship whose fate is undetermined with no information having 

being received of conditions and whereabouts after a reasonable period of time. 

" War loss and hostilities: Ship lost or damaged as a result of any hostile acts. 

" Heavy weather damage: Ship suffering damage caused by severe weather and 

wave conditions that can occur unexpectedly. 

" Loss of structural integrity: Structural failure resulting in the ingress of water 

and/or loss of strength and/or stability. 

" Flooding and foundering: The ingress of water that leads to ship sinking as a 

result of causes such as heavy weather, springing of leaks and breaking into two. 

" Miscellaneous: Lost or damaged ships that cannot be classified into any of the 

above categories or due to lack of information. For example, an accident 

starting by the cargo shifting (and not as a consequence of events of any of the 

above categories) would typically be classified as miscellaneous. 

The rate of occurrence of such accidents is usually expressed in terms of frequency per 

ship operating year. 

2.3.2 Category of Major Consequences 

The accident categories in Section 2.3.1 have also been known to be the initiating event 

that can lead to one or more of the following serious consequences (LMIS, 1995): 
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" Ship casualty: Breakdown resulting in the ship being towed or requiring 

assistance from ashore, flooding of any compartment and/or structural, 

mechanical or electrical damage requiring repairs before the ship can continue 

trading. 

" Total ship loss: Ship having ceased to exist after a casualty, either due to it 

being irrecoverable (actual total loss) or due to it being subsequently broken up 
(constructive total loss). Constructive total loss occurs when the cost of repair 

exceeds the insured value of the ship. 

" Cargo damage/loss: Commonly by cargo contact with oil spill, fresh water or 

seawater and/or entire shipping package being missing at destination arising due 

to hull penetrations or insufficient/improper securing. 

" Environmental spillages/pollution: Oil spills, general pollution, ecological 
destructions and dangerous gas releases. Spills are generally categorised by size 
(<7 tonnes, 7-700 tonnes and >700 tonnes), although the actual amount spilt is 

also recorded (ITOPF, 2005). 

" Human injury/fatality: Human suffering that requires hospital treatment and 
in the worst of cases, loss of life. In cases were both injury and loss of life are 

combined, weightings such as, for example, 100 minor injuries are equivalent to 

I fatality; and 10 major injuries are equivalent to I fatality, is generally assumed 
(IMO, 1997c). 

This list of consequences is not comprehensive, but rather it provides a representative 

sample that is meant to reflect some of the most unwanted cases during risk 

amplification of a critical event. The rate of occurrence of such consequences is usually 

expressed in terms of casualty, spill or fatality rate per ship year. 

2.4 Data Forms of a Risk Variable 

A risk variable (e. g., hazardous or consequential event) can be measured numerically 

measured from obtained data, otherwise it may be presented in qualitative or linguistic 

form. The measured numerical variable may be either discrete or continuous (See 

Figure 2.2, which also shows the distribution of the outcome/occurrence of an event, x). 
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Figure 2.2: Types of variables and their occurrence distribution 

As can be seen from Figure 2.2, a discrete variable is one in which its values are 

countable. In other words, it can assume only certain values (x; where i=1,2,3,4,5, 

etc) with no intermediate values. In its most basic form, the discrete model defines the 

probability of each individual outcome, P(x, ). A continuous variable is one that can 

assume any numerical value over a certain interval (a to b) or intervals. In its most 
basic form, the continuous model is a mathematical expression (function) useful in 

computing probabilities of certain outcomes, Ax, ). Time and distance are perhaps the 

most common continuous variables. A linguistic variable takes on certain grades such 

as small, medium, big or large over that describes a set interval or intervals. 

2.5 Failure Probability Distributions 

Failure frequency (i. e., rate of occurrence) data supplies the necessary input for carrying 
out maritime risk and uncertainty analysis. On the basis of such frequency/rate, there 

are a number of probability distributions for modelling failures. The most widely used 
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of these for discrete random variables are the binomial and the Poisson distribution. 

The exponential and the normal distribution are most extensively applied to continuous 

random variables. Law & Kelton (1982) and Henley & Kumamoto (1992) are excellent 

sources for additional detailed information on the distribution types. 

2.5.1 Binomial Distribution 

The binomial distribution describes the possible number of times that a particular event 

will occur in a sequence of observation. When there are just two possible outcomes, 

e. g., success and failure, then the binomial distribution is characterised by the equation: 

ýP + 4)n (2.1) 

where; 

p= probability of event occurring (failure). 

q= probability of event not occurring (success). 

n= number of failures in the trial sequence of observation. 

To get probabilities for any one term, put p and q into the formula: 

n! x n-x P(x) __ 
x! (n !P4 

where; 

x is the number of failures. 

2.5.2 Poisson Distribution 

(2.2) 

The Poisson distribution best predicts probabilities of what can be considered `rare and 

random events', where the event is rare relative to the number of times it could possibly 

occur and each event is independent of previous events in the sampling unit (time 
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period or unit of space). The Poisson equation for predicting the probability of a 

specific number of defects or failure (x) in time (t) is (Sherwin, 2004): 

(ý)'e-x' P(x) _ (2.3) 
n! 

where; 

n= number of failure in time (t) 

A= failure rate per hour 

t= time expressed in hours 

P(x) = probability of getting exactly n failures in time t. 

While the Poisson distribution governs the occurrence of random events in time, space, 

volume, etc, the intervals between such events is controlled by the exponential 

distribution. 

2.5.3 Exponential Distribution 

For many items, the relationship of failure rate versus time can be modelled by a 

"bathtub" curve. The idealised "bathtub" curve shown in Figure 2.3 has the following 

three stages: 

" Initial period: The item failure rate is relatively high. Such failure is usually 

due to factors such as defective manufacture, incorrect installation, learning 

curve of equipment user, etc. Design should also aim at having a short "initial 

period". 

" Useful life: In this period of an item, the failure rate is constant. Failures appear 

to occur purely by chance. This period is known as the "useful life" of the item. 

Weardown period: In this period of an item, the item failure rate rises again. 

Failures are often described as wear-out failures. 
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Failure 
rate (X) 

Figure 23: The "bathtub" failure rate curve 

A risk assessment often concentrates on the useful life region of the curve, for which the 

failure rate is constant. In other words, a failure could occur randomly regardless of 

when a previous failure occurred. The failure density function of an exponential 

distribution is as follows: 

fit) = ýe-k (2.4) 

where failure rate X= 1/Mean Time Between Failure (MTBF) and t= time of interest. 

Failure probability of an item at time t is: 

P(t) =I- e-)` (2.5) 

For example, given that the MTBF for an item is 10,000 hours, the failure probabilities 

of the item at t=0,10,000 and 100,000 hours if failures follow an exponential 

distribution can be calculated as follows: 

X= 1IMTBF = 0.00001 per hour. 
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Whent=O, P(0)= 1 -e-k= 1 -e°=0. 
When t= 10,000, P(10,000) =1-ek=1- e-0*0°°1i10,00° = 0.632. 

When t= 100,000, P(100,000) = 1- ek=1- e-0'0°°1x100'000 =1 

From the above calculation, it can be seen that at t=0 the item does not fail until after a 

considerable (i. e., useful) time. 

2.5.4 Normal Distribution 

Normal distributions are widely used in modelling repair activities. The failure density 

function of a normal distribution is: 

f(t) =1 e_(1_0)2 
/2a2 

27L6 
(2.6) 

where p and bare mean and standard deviation oft. When p =0 and a=1, it is called 

the standard normal distribution. The failure density for the standard normal 
distribution is: 

f(t) = e-1Z ýz 
7r 

2.6 Empirical Frequency-Number of Fatalities Graph 

(2.7) 

FN-curves are a graphical presentation of information about the frequency of fatal 

accidents in a system and the distribution of the numbers of fatalities in such accidents. 

In maritime systems, they plot the frequency per vessel operating year F of accidents 

against N or more fatalities (IMO, 1997c), where N ranges upward from 1 to the 

maximum possible number of fatalities in the system. Values of both F and N can 

sometimes range across several orders of magnitude. In fact, FN-graphs are usually 
drawn with logarithmic scales (HSE, 2003). 
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There are two general methods for constructing FN-curves. One method calculates the 

FN-curve directly from empirical frequency data on the past maritime accidents while 

the other develops and uses a probability model to estimate the frequencies. There is a 

spectrum between these extremes, and most practical methods involve a mixture of 

empirical data and modelling (HSE, 2003). In addition, equivalent fatalities for loss of 

life (equating 100 minor injuries to 10 major injuries to 1 loss of life) are approved 

weightings utilised within the maritime field of application (IMO, 1997c). 

Values of F for high values of N are often of particular political interest, because these 

are the frequencies of high-fatality accidents. Society in general has a strong aversion 

to multiple casualty accidents. There is a clear perception that a single accident that 

kills 1,000 people is worse than 1,000 accidents that kill a single person (IMO, 2004). 

Thus, frequency and fatality are combined into a convenient one-dimensional measure 

of societal risk. This is also known as potential loss of life (PLL), which can be 

calculated as follows: 

PLL= EF, N; 
, _ý 

(2.8) 

PLL is a type of risk integral, being a summation of risk as expressed by the product of 

consequence (i. e., fatality) and frequency. The integral is summed up over all potential 

undesired events that can occur. In other words, PLL approximates to the area under 

the FN-curve, as shown in Figure 2.4 (IMO, 2004), although it is typically measured as 

fatality per ship-year. 
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Figure 2.4: Generation of potential loss of life 



Chapter 2- Statistical Data Treatment 

2.7 Concluding Remarks 

Every risk or uncertainty modelling has to be supplied with reliable failure and repair 
data input, which will enable the quantification process to be achieved. A vast amount 

of reliable maritime database is available to serve this purpose. When no data for a 

component failure mode can be obtained, it may be possible to express the failure in 

terms of fundamental and quantifiable parameters and to analyse it using limit state 

reliability analysis, although there is uncertainty about the relevant distributions. 

Casualty includes any accidental grounding, or any occurrence involving a vessel which 

results in damage by or to the vessel, its apparel, gear, cargo, or injury or loss of life of 

any person; and includes among other things, collisions, strandings, groundings, 
founderings, heavy weather damage, fires, explosions, failure of gear and equipment 

and any other damage which might affect or impair the seaworthiness of the vessel. 

Societal risk data are normally presented in the form of an F-N curve the slope of which 

is a measure of the risk aversion towards accidents with multiple fatalities. If injuries 

and fatalities are required to be taken into account in a particular assessment, it is 

helpful to combine these into a single measure of the number of equivalent fatalities. 

The maritime industry makes use of relative weightings of 0.1 and 0.01 for major and 

minor injuries respectively. 

-33- 



Chapter 3- Review of Analytical Techniques 

Chapter 3: Review of Analytical Techniques 

Chapter Summary 

Risk-based modelling for safety assessment of marine and offshore units and their 

systems would necessitate risk analysts to identify hazardous events and enquire into 

their risk causes and consequences via a variety of dependable risk analytical 

techniques. Good use of such tools leads to an improved understanding of the systems 

posing the risks and lays the foundation for planning and taking action to improve 

safety. A general review is provided of the well-established safety and reliability 

assessment techniques as these methods have been widely accepted and applied in the 

industrial setting. A critical review is made of human reliability analysis tools for 

incorporate the human element into risk-based modelling because, not addressing the 

risks posed by human operators means that the risk analysis are necessarily 

underestimates. Finally, literature reviews are undertaken to permit developments for 

modelling techniques that can analysis and treat uncertainties arising from the domain 

model of study and its parametric values. 

3.1 Introduction 

When studying the safety aspects of a large ship or offshore installation, it is almost 
impossible to treat the system in its entirety, owing to nature of its complex engineering 

structure (Sen, et at, 1993; Wang & Ruxton, 1998). A logical approach may be to 

break down the system into functional entities comprising subsystems and components, 

so that the interrelationships can be examined and finally a system safety model can be 

formulated to assess the safety parameters. This will therefore necessitate risk analysts 

to utilise some very well dependable analytical tools and techniques in the formulation 

of the assessment model. 
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A large number of techniques/methods exist for the identification of hazards and hazard 

scenarios as well as for use in risk estimation. These well established methods have 

seen continuous usage within industries because knowledge about the method is well 
documented in the literature (Mannan, 2005) and the analyst's own knowledge increases 

if focused on a basic amount of methods. The methods also lay down foundations for 

the development of novel techniques and may adjust to new applications (Harms- 

Ringdahl, 2001) especially as the depth of technology continuous to increase. They 

differ according to different dimensions (Hauge, 2001), e. g. depth of analysis, way of 

conducting analysis, whether they are quantitative or qualitative, and search method 

used. Obviously, safety assessments should be quantified only to the extent that is 

realistic and practicable (O'Connor, 1993). Which method to use, must be decided for 

each specific project as this enables the analyst to focus on the issue of concern and 

allows the analysis to be undertaken to an appropriate level of detail. Besides, use of 
different techniques might make it easier to both discover new hazards (bottom-up 

approaches, i. e. inductive/forward logic) and find causes for specific hazards (top-down 

approaches, i. e. deductive/backward logic) (Hansen, et al., 2002). 

Failing to addressing the risks posed by human operators mean that the risk analysis are 

necessarily underestimates (Redmill, 2002) and therefore, this calls for human 

reliability analysis (HRA) for the safety-critical maritime application. HRA is the 

method by which the probability of a system-required human action, task, or job will be 

completed successfully within the required time period and that no extraneous human 

actions detrimental to system performance will be performed (Hollnagel, 1994). 

Results of the HRA can then be used as inputs to probabilistic risk assessments, which 

analyses the reliability of entire systems by decomposing the system into its constituent 

components, including hardware, software, and human operators. However, HRA does 

not contribute fully to risk analysis, not only because of its deficiencies but also because 

there is a need for engineering risk analysts to become familiar with the techniques and 

to study human cognition and the models developed to explain human error. This is 

important with respect to modern systems especially as automation has increased rather 

than reduced the problems facing a human operator and the need to assess them. 

Though tricky, HRA needs to be carried out. Yet, it is omitted from many, if not most, 

maritime risk analysis and safety assessments, and their techniques are largely unknown 
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to engineering risk analysts. Further, engineers have little guidance on the subject as 

most safety standards do not advise on it. For example, the influential international 

safety standard, IEC 61508-SER (IEC, 2005) addresses hardware and software 

functional safety in great detail, but offers no advice on human factors. HRA methods 

are in some respects flawed, but if used with care, they facilitate a significant but 

overlooked aspect of risk analysis that needs to be incorporated into modem safety- 

critical marine and offshore applications. 

Uncertainties in risk analysis inputs are propagated through the risk assessment and 

evaluation steps of the safety assessment to obtain estimates of the level of confidence 

in the assessment outcomes (Chauhan & Bowle, 2003). Such uncertainties require 

techniques that can handle its treatment efficiently and effectively for the safety-critical 

maritime systems. The techniques are used to help predict how the systems would 

behave if they were to be hit by unforeseen catastrophic events such as the likes of fire, 

explosions, collisions, and loss of hull integrity (See Chapter 2, Section 2.3.1 for more 

details). Therefore, a review of related work is necessary for the development and 

application of uncertainty analysis methods that can appropriately deal with qualitative 

and quantitative factors of the risk assessment study. A method that can deal with both 

types of uncertainty may be necessary for the incorporation of the human element from 

an appropriate HRA study. 

3.2 Qualitative and Quantitative Safety Assessment 

Based on the requirements of safety analysts and the safety data available, either a 

qualitative or a quantitative analysis can be carried out to study the risks of a system in 

terms of the occurrence probability of each hazard and its possible consequences. A 

severe hazard with a high occurrence probability requires priority attention whilst that 

which is not likely to occur and which results in negligible consequences usually 

requires minimal attention (Aldwinckle & Pomeroy, 1983). 
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3.2.1 Qualitative Safety Assessment 

Qualitative safety analysis is used to locate possible hazards and to identify proper 

precautions (design changes, administrative procedures, etc. ) that will reduce the 

frequencies or consequences of such hazards. It should become an integral part of the 

marine or offshore safety and reliability process. It may be performed with one or more 

of the following objectives: 

" To identify hazards in design and operation. 

" To document and assess the relative importance of the identified hazards. 

" To provide a systematic compilation of data as a preliminary step to facilitate 

quantitative analysis. 

" To aid in the systematic assessment of the overall system safety. 

The general steps in a qualitative system risk assessment are to: 

" Identify significant hazards. 

" Display the above information in a table, a chart, a fault tree or other format. 

The consequences of a hazard can be classified as one of the four severity categories as 

shown in Table 3.1 (Halebsky, 1989). They range from "catastrophic" to "negligible". 

The occurrence probability of a hazard can be described using the levels ranging from 

`frequent" to "remote" as shown in Table 3.2 (Halebsky, 1989). 

Table 3.1: Hazard consequence classification 

Category Description Equipment Personnel Environment 
I Catastrophic System loss Death Severe damage 

II Critical 
Major system 

damage 
Severe injury/illness Major damage 

III Marginal Minor sage tem Minor injury/illness Minor damage 

IV Negligible < Minor system 
damage 

Minor 
in'</illness 

Negligible damage 
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Table 3.2: Hazard probability 

Level Description Frequency 

A Frequent Likely to happen 

B Probable Several times during lifetime 

C Occasional Likely to happen once 

D Remote Unlikely but possible during lifetime 

Engineering judgement and past experience is required to carry out a qualitative risk 

assessment. Measures can be taken to eliminate or control hazards based on the 

information produced from such an assessment. Table 3.3 forms the basis of 

determining design actions based on the combined consequence severity and occurrence 

probability of each hazard (Halebsky, 1989). A catastrophic hazard, for example, 

requires some corrective action regardless of the probability of occurrence, whereas a 

marginal hazard with a remote probability of occurrence would not normally receive 

any corrective action. 

Table 3.3: Risk assessment matrix 

Hazard Severity 
Hazard Probability 

A (Frequent) B (Probable) C (Occasional) D (Remote) 

1- Catastrophic A-1 B-1 C-1 D-1 

2- Critical A-2 B-2 C-2 D-2 

3- Marginal A-3 B-3 C-3 D-3 

Negligible hazard 

4- Negligible No action required 
10 

0 Design action is required to eliminate or control hazards classified as A-1, A-2, A-3, B-1, B-2, and 
C-1. 

" Hazard consequences must be controlled or hazard probability reduced for hazards classified as 
B-3, C-2, and D-1. 

" Hazard control is desirable if cost effective classified as C-3 and D-2. 

" Hazard control is not cost effective for hazards classified as D-3. 

3.2.2 Quantitative Safety Assessment 

The purpose of a quantitative safety analysis is to help the designer to be aware of the 

characteristics of the system and to provide the designer with the quantified occurrence 

probability of each critical failure condition and the associated consequences. 
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Quantitative risk analysis utilises what is known and assumed about the failure 

characteristics of each individual component to build a mathematical model that is 

associated with some or all of the following information: 

" Failure rates 

" Repair rates 

" Mission time 

" System logic 

" Maintenance schedules 

" Human error 

" System layout 

Typical parameters that need to be obtained in a quantitative risk analysis include both: 

" The occurrence probability of each system failure event -A system failure event 

results from simultaneous occurrence of the basic events associated with each of 

the minimal cut sets leading to this system failure. The occurrence probability 

of a system failure event may be calculated on the basis of the identified cut sets 

and failure probability data of the associated basic events. 

" The magnitude of its possible consequences - The possible consequences of a 

system failure event can be quantified in terms of possible loss of lives/human 

injuries, property damage and the degradation of the environment caused by the 

occurrence of the failure event. With respect to the particular operating 

situation, experts normally quantify them. 

Consistency checking is required to validate the results produced from quantitative 

analysis. The following studies are always useful for obtaining the reliable results: 

" Sensitivity analysis. 

" Comparison with prior analysis if possible. 

" Model checking. 
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3.3 Methods for Safety and Reliability Assessment 

A number of well-established safety and reliability analytical methods are useful to aid 

the assessments of a risk-based nature. The appropriate technique(s) that can be applied 

to carryout assessment tasks would depend on the clarified hazards, their available data 

and the stage reached in the analysis. 

3.3.1 Preliminary Hazards Analysis 

A preliminary identification of the system elements or events that lead to hazards is the 

first step of a risk analysis. If it is extended in a more formal manner to include 

considerations of the event sequences that transfer a hazard into an accident, as well as 

corrective measures and consequences of the accident, the study is called a preliminary 

hazards analysis (PHA). PHA was introduced in the late sixties after the US 

Department of Defense requested safety studies to be performed at all the stages of 

product development. They issued guidelines that were applied from 1969 onward 

(DOD, 1969; DOD, 1999). It is also part of the mandatory activities required by MOD 

(1996) and SAE (1996). 

PHA is a qualitative approach that involves a mixture of inductive and deductive logic. 

It is conducted on the basis of information such as casualty statistics and comprehensive 
knowledge of similar systems. A PHA may provide an essential foundation for further 

analysis of individual hazards, with particular reference to fault tree analysis and event 

tree analysis (Sen, et al., 1993). The typical steps of a PHA are described as follows: 

" Identification of hazardous events. 

" Identification of hazardous event causes. 

" Identification of hazardous event effects. 

" Classification of risks. 

" Determination of preventive measures. 
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The format of a typical PHA is as shown in Table 3.4. 

Table 3.4: The format of a typical preliminary hazards analysis 

No.: PHA 

Subsystem name: 

Hazardous condition: 

Possible hazardous event: 

Probable hazardous result: 

Result impacts: People only 

Equipment only , 
both 

Hazard classification: I, II III ' IV 

Recommendations: 

Remarks: 

Prepared by 

Hazard classifications I, II, III and IV stand for catastrophic, critical, marginal and 

negligible, respectively. PHA may be very useful in the problem definition and hazard 

identification phases of the safety and reliability assessment process. It is strongly 

suggested that PHA be carried out in the initial stages of the marine and offshore system 
design process. 

3.3.2 What-if Method 

The intention of "what-if' approach (CCPS, 1992) is to ask questions that will cause a 

multi-disciplinary team to consider potential failure scenarios and ultimate 

consequences that such failures might create. It has also been referred to as scenario 

analysis or deterministic simulation (Groumpos & Merkuryev, 2002). It uses a mixture 

of inductive and deductive logic. 

"What-if' studies may often begin with the words "How could", "Is it possible", etc. 
Other forms of questions are perfectly acceptable. Some studies of this method 
incorporate checklists (DOD, 2000) at the end of the brainstorming to act as "sweeper 

questions", in order to ensure that potential hazards are not omitted. For example, a 

piece of work commissioned by the UK Department of Trade and Industry in 2003 
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required a group of risk experts to utilise a structured what-if technique (SWIFT) to 

ascertain hazards that may result from leaks of CO2 from geological formations 

(Vendrig, et al., 2003). The SWIFT follows a procedure that combines brainstorming, 

structured discussion and checklists to determine potential hazards. As its name 

suggests, SWIFT will generate answers more quickly than HAZOP (see Section 3.3.5) 

but is less thorough in looking at the detail (RINA, 2002). Furthermore, "What-if' 

analysis of a model considers the question: "What happens to the result if a particular 

change to a parameter is made"? If the change of a parameter is small this is also called 

sensitivity analysis: "How sensitive is the result to a small change of a parameter"? 

Generally, the "What-if' approach may be very useful in the problem definition and 

hazard identification phases of the safety and reliability assessment process. 

3.3.3 Parts Count 

The inductive parts count method is often used to produce an upper bound of failure 

probability of a large and complex system. Parts count analysis models predict 

reliability of a system (EPSMA, 2004) by summing the part failure rates, while 

accounting for conditions, such as the environment, stress, and quality of workmanship. 

The failure rates used in the analysis are based on historical data. This analysis is used 

to evaluate configurations in the preliminary design phase when the number of parts is 

reasonably fixed. In addition, the overall complexity is not expected to change 

appreciably during later development and production. This analysis can also be used to 

provide verification data and have generally been used to predict the reliability of 

electronic components. However, the models can be extended to mechanical 

subsystems when appropriate data is available. A parts count analysis assumes the time 

to failure of the parts is exponentially distributed (that is, a constant failure rate). It also 

assumes that all elements of the item reliability model are in series or can are assumed 

to be in series for purposes of approximation. Thus, the general expression for item 

failure rate, them, with this method is given as (DOD, 1995; Telcordia Technologies, 

2001; FAA, 2005): 
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Nta'gi7rQi 

1=1 

where; 

n= number of different generic parts categories; 

Ni = quantity of ith generic part; 

2gi = generic failure rate for the ith generic part; and 

Grp; = quality adjustment factor for the ith generic part. 

(3.1) 

Quality adjustment factors are usually applied to the failure rates to account for items, 

such as differences in application, temperature, and stress (FAA, 2005). For other parts 

such as non-electronics, ,=1 providing that parts are procured in accordance with 

applicable parts specification. The parts count technique may be very useful in the 

hazard identification and risk estimation phases of the safety and reliability assessment 

process. 

3.3.4 Failure Mode, Effects and Criticality Analysis 

Failure mode, effects and criticality analysis (FMECA) is one of the oldest and most 
frequently applied hazard identification methods. It is a combination of failure mode 

and effects analysis (FMEA) and criticality analysis (CA). FMECA was developed in 

1967 by Society of Automotive Engineers to offer criticality analysis for the FMEA 

process (SAE, 1967). The FMEA technique was originally developed in the US 

Department of Defense in 1949 as a mechanism for improving the quality control of its 

weapons and military equipment (Pentti & Atte, 2002). FMEA was used as a reliability 

evaluation technique to determine the effect of system and equipment failures 

(Coutinho, 1964). Failures were classified according to their impact on mission success 

and personnel/equipment safety. The formal application of the technique was quickly 

adopted by the aerospace industry, where it was already used during the 1960s Apollo 

space missions. In the early 1980's, US automotive companies began to formally 

incorporate FMEA into their product development process (Pentti & Atte, 2002). 
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FMECA can be carried out at any indenture level required to examine each failure mode 

of an item and its possible consequences. An FMECA may consist of the following 

steps (DOD, 1980): 

" Define the constraints and assumptions of the analysis. 

" Break down the system to its indenture levels such as the sub-system level and the 

component level. 

" For each item at the level analysed, identify all possible modes of failures and 

respective causes. 

" For each identified failure mode, identify or provide the following information: 

- All the distinctive operating conditions under which failure may occur. 

- The failure rate of the identified failure mode. 

- The effects (consequences) on the safety and operability of the higher levels 

(including the level analysed). 

- The possible means by which failure may be identified. 

- Design provisions and/or actions in operation to eliminate or control the 

possible resulting effects. 

- The severity class of the possible effects where such a class may be defined 

by one of the following linguistic variables: 

Catastrophic: Involving death, system loss and/or severe environmental 
damage. 

Critical: Involving severe injury, major system damage and/or major 

environmental damage. 

Marginal: Involving minor injury, minor system damage and/or minor 

environmental damage. 

Negligible: Involving no injury and negligible damage to the system and 

the environment. 

" Failure consequence probability defining the likelihood that the effects of the 

identified failure mode will occur, given that the failure mode has taken place. 

" Criticality analysis 

Criticality analysis allows a qualitative or a quantitative ranking of the criticality of the 

failure modes of items as a function of the severity classification and occurrence 
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likelihood. So long as the probability of occurrence of each failure mode of an item can 
be obtained from a reliable source, the criticality number of the item under a particular 

severity class may be quantitatively calculated as: 

N 

C=ýE; L; t (3.2) 

where; 

E; = failure consequence probability of failure mode I; 

L; = likelihood of occurrence of failure mode I; 

N= the number of the failure modes of the item, which fall under a particular 

severity classification; and 

t= duration of applicable mission phase. 

Once the criticality numbers of the item under all severity classes have been obtained, a 

criticality matrix can be constructed to provide a means for criticality comparison. Such 

a matrix display shows the distributions of criticality of the failure modes of the item 

and provides a tool for assigning priority for corrective action. Criticality analysis can 
be performed at different system/sub-system levels and the information produced at low 

levels may be used for criticality analysis at a higher level (Wang, et al., 1995). 

An FMECA is an inductive process that involves the compilation of reliability data, 

where available, for individual items. It can be integrated into the hazard identification 

phase of the safety and reliability assessment process and information produced from it 

may also be used to assist in construction of fault trees and also in construction of 
Boolean representation tables (Wang, et al., 1995). To maximise its usefulness as a 
decision making tool, it should be initiated at the earliest stage of design, and then 

updated and expanded to lower levels as the design progresses. In the maritime 

industry, the Det Noske Veritas (DNV) and the American Bureau of Shipping (ABS) 

adopted the requirement for FMEA/FMECA in the mid 1970s and early 1980s (Coggin, 

2001). Furthermore, guidance for dynamically positioned vessels FMEA has been 

provided by IMCA (2002) to provide a practical amalgamation of current regulations, 

operating procedures and good practice. 
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3.3.5 Hazard and Operability studies 

A HAZard and OPerability (HAZOP) study is an inductive technique usually regarded 

as an extended FMECA (see Section 3.3.4) that can be applied by a multidisciplinary 

team to stimulate systematic thinking for identifying potential hazards and operability 

problems, particularly in the process industries (Henley & Kumamoto, 1992). Its basis 

was laid by Imperial Chemical Industries Ltd in 1963 from so-called "critical 

examination" techniques (Kletz, 1974; Lawley, 1974) at the time in which its 

application first became known as operability and hazard studies (Hendershot, et al., 
1998). It was soon after improved upon and to emphasize the importance of process 

safety, the name HAZOP (HAZard and OPerability) was coined (CIA, 1977). The 

technique was then used to run a pilot study on an agricultural chemical manufacturing 

plant that proved a great success (Hendershot, et al., 1998). It went on to arouse greater 
interest and within ten years it had become widely acknowledged as one of the most 

powerful hazard identification technique (CIA, 1977; Henley & Kumamoto, 1992). The 

distinctive features of the HAZOP methodology are: 

"A focus on state variables rather than mechanical components. 

" An emphasis on an expert team approach. 

" An explicit consideration of operator effects. 

"A good foundation for subsequent quantitative risk analysis. 

A HAZOP study investigates the proposed scheme systematically for every conceivable 
deviation, and looks backward for possible causes and forward for the possible 

consequences. It is normally based on a word model and the flow sheet or diagram of 

the system to be examined. The level of detail, depending on the time and merits, 

determines HAZOP study planning and as such, good knowledge of the system is 

essential. HAZOP studies involve normal plant operation, foreseeable changes in 

normal operation, start-up and shutdown, suitability of plant materials and failures of 

equipment and instrumentation. A HAZOP study may involve the following basic steps 
(McKelvey, 1988): 
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1. Define the scope of the study. 
2. Select the correct analysis team. 

3. Gather the information necessary to conduct a thorough and detailed study. 
4. Review the normal functioning of the process. 

5. Subdivide the process into logical, manageable sub-units for efficient study 

and confirm that the scope of the study has been correctly set. 

6. Conduct a systematic review according to the established rules for the 

procedure being used and ensure that the study is within the special scope. 

7. Document the review proceedings. 
8. Follow up to ensure that all recommendations from the study are adequately 

addressed. 

HAZOP studies can be integrated into the hazard identification phase of the safety and 

reliability assessment process and is one of the most commonly used hazard 

identification techniques in the marine and offshore industry (HSE, 2002). The form of 
HAZOP notes closely parallels the requirements of fault tree analysis (see Section 

3.3.6) as a HAZOP study yields a clear identification of top events and a detailed 

description of failure sequences and associated operating conditions. FMECA (refer to 

Section 3.3.4), cause-consequence analysis (refer to Section 3.3.9) and Boolean 

representation analysis (refer to Section 3.3.7) can also make use of the information 

produced from HAZOP studies. In recent years, HAZOP studies have become 

increasingly recognised as an essential part of the process plant design by both the 

process industries (Kennedy & Kirwan, 1998; Tweeddale, 2003) and the regulatory 

authorities (Andrews & Moss, 1993). Thus, it is strongly suggested that HAZOP 

studies be conducted in the initial stages of the process plant design process. 

3.3.6 Fault Tree Analysis 

The idea of analysing potential faults using fault trees was first envisaged by Watson 

(1961) of Bell Telephone Laboratories, as a plan to evaluate the safety of the launch 

control system for the Minuteman missile. Scientists at the Boeing Company led by 

Haasl (1965) improved the technique to a modem theory and then applied it to the entire 
Minuteman Missile System. Other divisions within Boeing realised the usefulness of 
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the results from the Minuteman program and began using the fault tree technique during 

the design of commercial aircraft. In later years the technique was adopted by the 

nuclear power industry (Veseley, et al., 1981) and nowadays its grown to become one 

of the most widely used methods in system reliability analysis (Veseley, et al., 2002; 

FAA, 2005). 

Table 3.5: Commonly used fault tree symbols 

Types Symbol Description 

The OR-gate indicates that the output event occurs if any 
of the input events occurs 

OR-gate 

Logic gates 

The AND-gate indicates that the output event occurs only 

if all the input events occur at the same time 
AND-gate 

The basic event represents a basic equipment failure that 

requires no further development of failure causes 

Input events 

(states) 
The undeveloped event represents an event that is not 

examined further because information is unavailable or 

because its consequences are insignificant 

Description of The comment rectangle is for supplementary information 
state 

Transfer 
out The transfer-out symbol indicates that the fault tree is 

Transfer symbols developed further at the occurrence of the corresponding 
Transfer 

i transfer-in symbol n 
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The fault tree analysis (FTA) is probably the most widely applied technique for hazard 

identification and risk evaluation. Such an analysis is a process of deductive reasoning 

that can be applied to the safety assessment of a system of any size. It is particularly 

suitable for the risk assessment of large marine and offshore engineering systems for 

which the associated undesired (top) events can be identified by experience, from 

previous accident and incident/accident reports of similar products, or by some other 

means. The top events of a system to be investigated in FFA may also be identified 

through PHA (see Section 3.3.1), incident/accident reports, system Boolean 

representation modelling (see Section 3.3.7), etc. The information produced from 

FMECA (see Section 3.3.4) may be used in construction of fault trees. 

FTA provides an engineering capacity to identify potential problem areas, to evaluate 

their overall system impact, and to numerically assess the level of safety inherent in the 

system design. Careful consideration must be given to the selection of the top event; it 

must be sufficiently defined to constrain the fault tree to the specific conditions to be 

investigated. Intimate knowledge of the system design is required to perform a fault 

tree analysis as the analyst must be familiar with the various modes of system 

operations and the types of component failures that can occur. Since a fault tree 

construction is event-based, human error (caused by operators, design or maintenance), 

hardware or software failures, environmental conditions or operational conditions can 

be taken into account (Sen, et al., 1993). The steps in FTA are outlined as follows: 

" Identification of top events. 

" Representation of each top event by means of a fault tree. 

" Evaluation of the occurrence probability of each top event. 

" Determination of critical failure modes. 

Fault trees are built using gates and events (blocks). The symbols used for the most 

common of these (and as used in this research) are given in Table 3.5. In an FTA, an 

event with a catastrophic nature or an event that cannot be tolerated, such as total loss of 

a system, is usually selected as a top event for investigation. The selected top event is 

placed at the top of the logic diagram, and the failure events that lead to the top event 
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are located immediately below in successive levels. The pathways through the fault tree 

diagram represent all the events that give rise to the top event. These pathways are 

known as "cut sets" or "implicant sets" (Bozzano & Villafiorita, 2003). After the 

simplification rules have been applied, the irreducible pathways can be obtained and 

these irreducible pathways are referred to as "minimal cut sets" or "minimum implicant 

sets" (Wang, et al., 2000; 2001). 

The laws for simplifying sets and obtaining the minimum cut sets leading to the top 

event in a fault tree are based on the basic logic gates of AND, OR and NOT being used 

in differing combinations. Suppose """ stands for "AND" and "+" stands for "OR", 

and suppose that "A" and "B" represents the events of "not A" and "not B" 

respectively, then the typical Boolean algebra rules are described as in Table 3.6. 

Table 3.6: Basic rules of Boolean algebra 

Name of the rule AND form OR form 

Identity law A- 1= A A+ 0= A 

Null (or dominance) law A"0=A A+1=1 

Idempotent law AAA A+ A= A 

Inverse law A- A= 0 A+ A= 1 

Commutative law A"B=B"A A+B=B+A 

Associative law (A " B) "C=A" (B " C) (A + B) +C=A+ (B + C) 

Distributive law A+(B"C)=(A+B)"(A+C) A"(B+C)=A"B+A"C 

Absorption A- (A+B)=A A+A"B=A 

De Morgan's law A"B=A+B A+B=A B 

Double Complement law A=A 

Owing to such simplification rules, the occurrence probability of a top event can be 

obtained from the associated minimum cut sets. The following two mini-trees in 

Figure 3.1 are used to demonstrate this. 
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(a) Event occurrence due to an "AND" gate (a) Event occurrence due to an "OR" gate 

Figure 3.1: Logic gate representation in a fault tree 

Suppose P(A) and P(B) are the occurrence probabilities of events A and B respectively. 
If both these event are independent of each other, the occurrence probability of top 

event Z due to an "AND" gate as shown in Figure 3.1(a) is given by: 

P(Z) = P(A " B) = P(A) x P(B) (3.3) 

However, the occurrence probability of top event Z due to an "OR" gate as shown in 

Figure 3.1(b) is: 

P(Z) = P(A + B) = P(A) + P(B) - P(A " B) 

= P(A) + P(B) - P(A) x P(B) (3.4) 

FTA can be used in both reliability and risk assessment. The principles of FTA in both 

of these assessments are the same although in reliability assessment it is usually used 

for measuring system performance while in risk assessment it is used for investigating 

undesirable events with serious consequences. It may be carried out in the hazard 

identification and risk estimation phases of the safety and reliability assessment process 

to identify the minimal cut sets associated with system top events and to assess the 

occurrence probability of each top event in order to assist in design decision making. 
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3.3.7 Decision Table Method (Boolean Representation Method) 

Decision table analysis was initially introduced as an automatic fault tree construction 

technique in the 1970s (Dixon, 1964; Fussel, 1973; Henley, 1992) because its logical 

approach reduced the possibility of omissions of failure causes that could easily occur in 

the fault tree construction. A decision table is a Boolean representation model. 

An engineering system can be described in terms of components and their interactions. 

A component can be described by a set of input events and a set of output events. Each 

output event specifies the state of the output and a set of input events specifies the states 

of inputs. Each event may have several states. For instance, output pressure from a 

valve may be assigned to one of the five states such as "too high", "high", "normal", 

"lox' and "too lox', each of which corresponds to a range of values. The interactions 

of components can be modelled by studying the system process diagram. 

Given sufficient information about a system to be analysed, this approach can allow a 

rapid and systematic construction of a Boolean representation table of the system on the 

basis of the Boolean representation models of the components and their interactions. 

Once components and their interactions have been modelled, Boolean representation 

modelling can be started initially at the component level, progressed up to the 

subsystem level if necessary, and finally to the system level in order to obtain the final 

system Boolean representation description. The final system Boolean representation 

table contains the possible system top events and the associated prime implicants (cut 

sets). Although the construction of such a table is not diagrammatic, as FTA can be, it 

can allow a less cumbersome representation of failure modes for components having 

multiple states, and it can also allow systems with feedback loops to be easily modelled 
(Henley, 1992; Kumamoto & Henley, 1979; Wang, et al., 1993). This method is 

extremely useful for analysing systems with a comparatively high degree of innovation 

since their associated top events are usually difficult to obtain by experience, from 

previous accident and incident reports of similar products, or by other means. 
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3.3.7.1 Simplification of Boolean Representation Tables 

Events or variables used in Boolean representation modelling can be classified in the 

following two categories: 

1. Intermediate events/variables: These are the outputs from a component within the 

system 

2. Primary (basic) events/variables: These are the events/variables that are inputs from 

the system environment or an internal mode of a component. An internal mode of a 

component represents its functioning for which the failure data is known. 

Each primary variable or intermediate variable may have several states. Suppose the 

number of the states of a variable A and a variable B both equal three, as given by F, W 

and N, which stand for `failed", "working" and "normal", respectively. Then the rules 

for Boolean representation simplification, which are absorption (see Table 3.7(a)) and 

merging (see Table 3.7(b)), can be applied to obtain the output of a variable C. The 

symbol "*", as used in Table 3.7, represents a "don't care" state. Such a state is used 

to signify that it makes no difference whichever state the specified input variable is in. 

Table 3.7: Simplification rules for Boolean representation 

(a) Absorption 

AB Co� tW, 
N* 

NN 

High 

High 
4 

AB Covpur 

N* High 

AB C. tl,,,, 
FF High 

FW High 

FN High 

(b) Merging 

4 

AB Co� rp, r 

Fý High 

The input entries of a final system Boolean representation table should be primary 

variables. Therefore, intermediate variables should be eliminated by substitution with 

primary variables. During the elimination process, some intermediate variables may be 

used to replace other intermediate variables. Gradually, all intermediate variables are 

eliminated and a Boolean representation table in which all the entries are primary 
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variables is obtained. At this stage, the simplification of the Boolean representation 

table can be carried out. If the number of the entries of a Boolean representation table is 

large the simplification process may prove time-consuming. Therefore, it is suggested 

that the simplification rules be applied after each intermediate variable is eliminated. 

3.3.7.2 Relationship Between Fault Tree and Boolean Representation Model 

To demonstrate the relationship between fault tree modelling and Boolean 

representation modelling, a simplified example is used. Suppose that an electrical 

circuit system is composed of the three components: "battery", "bulb" and "circuit", as 

shown in Figure 3.2(a), for which the desired outcome is "light". Each of these 

components may be in either a working (W) or failure (F) state. The top event that 

indicates the failure of the electrical circuit system is "no light". Therefore, the fault 

tree leading to this top event is built as shown in Figure 3.2(b), where the basic events 

Fbattery, Fbu/b and Fcircuit stand for the failure state of the respective subscripted 

component. The "OR" gate in the fault tree indicates that if any of Fbattery, Fbu/b and 

Fcircuit happens, then the top event "no light" occurs. 

1 
I 

(a) Circuit's line diagram (b) Circuit's fault tree 

Figure 3.2: Fault tree illustration of an electrical system 

Also, let Wbattery, Wbu, b and Wc;, c.; t stand for the working state of the respective 

subscripted component. By studying all the possible combinations of the both working 

and failure states of the three components, the preliminary Boolean representation table 

is built as shown in Table 3.8. Note that "Y" and "1V" represent "yes" and "no" 

respectively for "light'. After the rules for simplifications and deducing extra prime 
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implicants have been applied to Table 3.8, the final Boolean representation table is 

obtained as shown in Table 3.9. From Table 3.9, it can be seen that if any of Fbanery, 

Fbob and Fci, c�i: happens, top event "no light" occurs. 

Table 3.8: A preliminary Boolean representation table of an electrical system 

Battery Bulb Circuit Light 

Wbattery Wbulb Wcircuit Y 

Wbattery Wbulb r' 
circuu 

N 

Wbattery Fbulb Wcircuit N 

Wbattery Fbulb Fcircuit N 

Fbattery Wbulb Wcircuit N 

Fbattery Wbulb Fcircuit N 

Fbauery Fbulb Wcircuit N 

Fbattery Fbulb Fcircuit N 

Table 3.9: A concluding Boolean representation table of an electrical system 

Battery Bulb Circuit Light 

Wbattery Wbulb Weircuit Y 

Fbattery * * N 

" Fbulb * N 

* * Fcircuit N 

From the above, it can be seen that the same result is obtained using both the fault tree 

method and the Boolean representation modelling approach. From the obtained 

Boolean representation table, it can also be seen that the working condition for the 

system is modelled. In general, the fault tree model is a special case of the Boolean 

representation model, and its analysis process only deals with failure events. Thus, 

when modelling events with multiple state variables, the Boolean representation 

approach is considered to be more appropriate. The Boolean representation approach 

may also be more appropriate to model systems with complicated interrelations between 

components. In terms of the ways the two approaches are applied, the major difference 

is that fault tree analysis is a deductive reasoning process while the Boolean 

representation approach uses the inductive logic, as described previously. 
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3.3.8 Event Tree Analysis 

In many accident scenarios the initiating (accidental) event may have a wide spectrum 

of possible outcomes, ranging from no consequences to catastrophes. In most well 
designed systems, a number of safety functions, or barriers, are provided to stop, or 

mitigate the consequences of potential accidental events. The safety functions may 

comprise technical equipment, human interventions, emergency procedures, and 

combinations of these. Examples of safety functions are: fire and gas detection systems, 

emergency shutdown (ESD) systems, fire-fighting systems, firewalls and evacuation 

systems. The consequences of the accidental event are determined by how the accident 

progression is affected by subsequent failure or operation of these safety functions, by 

human errors made in responding to the accidental event, and by various factors like 

weather conditions, time of the day, etc. 

The accident progression is best analysed by an inductive/bottom-up method. The most 

commonly used method is the so-called event tree analysis (ETA), which was originally 
developed when the risk analysis for the WASH- 1400 nuclear power system was done 

(NRC, 1975). The safety team for the nuclear power system tried to make a FTA from 

the top even "accidental release of radioactivity" but the tree became tremendously 

complex and finally they had to give up. Instead they adapted the more general 
decision-tree formalism from business, so as to break up the problem in smaller pieces, 

and this method became the ETA (Leveson, 1995). 

ETA is a logic tree diagram (Halebsky, 1989) that starts from a basic initiating event 

and provides a systematic coverage of the time sequence of event propagation to its 

potential outcomes or consequences (i. e., forward logic) step-by-step. In the 

development of the event tree, each of the possible sequences of events that result is 

followed from assuming failure or success of the safety functions (Henley, 1992; NRC 

1991) affected as the accident propagates. Each event in the tree will be conditional on 

the occurrence of the previous events in the event chain. The outcomes of each event 

are most often assumed to be binary ('true' or `false' - `yes' or `no'), but may also 
include multiple outcomes (for example, `yes', `partly' or `no'). 
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ETA has been used in the safety and reliability assessment of a wide range of 

technological systems. This analytical technique is a natural part of most risk analysis, 

but may also be used as a design-tool to demonstrate the effectiveness of protective 

systems in vessels. This technique is also used for human reliability assessment. 

The ETA may be qualitative, quantitative, or both, depending on the objectives of the 

analysis and may be developed independently or follow on from fault tree analysis. It 

(ETA) is usually carried out in the following six steps: 

1. Identification of a relevant initiating (accidental) event that may give rise to 

unwanted consequences. 
2. Identification of the safety functions that are designed to deal with the initiating 

event. 

3. Construction of the event tree. 

4. Description of the resulting accident event sequences. 

5. Calculation of probabilities/frequencies for the identified consequences. 

6. Compilation and presentation of the results from the analysis. 

Figure 3.3 shows an event tree for an initiating event "major overheat" in an engine 

room of a ship. If a failure occurs, then this overheat may propagate through the system 

and result in some possible consequences. From this event tree, it can be seen that 

when initiating event "major overheat" takes place, if there is no fuel present to aid 

combustion, then the consequences will be negligible in terms of fire risks. If there is 

fuel present, then it is required to look at if the "detection fails". If the answer is "no", 

the consequences are "minor damage", otherwise it is required to investigate if the 

"sprinkler fails". If the sprinkler works, then the consequences will be "smoke"; 

otherwise it is required to see if the alarm system works. If the alarm system works, 

then the consequences will be "major damage"; otherwise "injuries/deaths" may result. 
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Major 
overheat 

Fuel present 
to aid 

combustion 

P3 

Initiating 
event 

PI 

Yes 

I -PI 

No 

Failed 
detection 

P2 

Yes 

Sprinkle 
fails 

Yes 

I -P3 

Alarm 
system fails 

P4 

Yes 

I -P4 

No 

Consequence 

Injuries/ 
deaths 

Probability 

P1xP2xP3xP4 

Major PI xP2xP3x(I-P4) damage 

Smoke PIxP2x(I_P3) 
No 

1 -P2 
Minor 

No 
damage PI x (I -P2) 

Negligible ý_ pl 
damage 

Figure 3.3: Example event tree for an Initiating event in a ship's engine room 

Quantitative analysis can be carried out on the event tree to assess the occurrence 

probability of each possible resulting consequence. As shown in Figure 3.3, P1, P2, P3 

and P4 are the probabilities for the "yes" condition of `fuel present to aid combustion", 
`failed detection", "sprinkle fails" and "alarm system fails", respectively. I- P1,1 - 
P2,1 - P3 and I- P4 are their "no" condition probabilities. The ETA also gives the 

calculated probabilities of occurrence for all the consequences, i. e., "injuries/deaths", 

"major damage", "smoke", "minor damage" and "negligible damage", that results from 

the analysis. The sum of all probabilities of occurrence for all the resulting 

consequences is equal to 1. 

Such an analysis can be integrated into the hazard identification and risk estimation 

phases of the safety and reliability assessment process. 

3.3.9 Cause-Consequence Analysis 

A technique that possesses the ability to identify the causes of an undesired event and 
from this event develop all possible system consequences is the Cause-Consequence 
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Diagram (CCD) method. This analytical diagram method, also termed Cause- 

Consequence Analysis (CCA), was developed in the 1970s at RISO National 

Laboratories in Denmark (Nielsen, 1971) to specifically aid in the reliability and risk 

analysis of nuclear power plants in Scandinavian countries (Villemeur, 1992a). The 

method was created to assist in the cause-consequence accident analysis of the nuclear 

plants, which involved identification of the potential modes of failure of individual 

components and then relating these causes to the ultimate consequences for the system 

(Nielsen, & Runge, 1974). It has been perceived as being superior to the ETA 

(Villemeur, 1992a) and in addition to this, can account for time delays, which is not a 

feature available in the ETA method. Nielsen (1971) stated that as well as being a tool 

for illustrating the consequences of particular failures, the method could also serve as a 

basis from which the probability of occurrence of the individual consequences could be 

evaluated. The consequences evaluated include those that illustrate the system 

functioning as intended and those that illustrate an undesirable failure sequence. 

The technique has been used as the main analysis tool for conducting safety assessment 

(Nielsen, 1975; Nielsen, et al., 1975; Nielsen, et al., 1977; Taylor, 1977) and for 

assessing the reliability of sequential systems (Andrews, & Ridley, 2001). 
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Figure 3.4: Cause-consequence diagram of a hazardous event 
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CCA is a marriage of fault tree analysis (to show causes) and event tree analysis (to 

show consequences) (Henley & Kumamoto, 1981). CCA is a diagrammatic approach 

as shown in Figure 3.4. Construction of cause-consequence diagrams starts with a 

choice of a critical event. The "consequence tracing" part of a CCA involves taking the 

initial event and following the resulting chains of events through the system. The 

"cause identification" part of a CCA involves drawing the fault tree and identifying the 

minimal cut sets leading to the identified critical event. CCA is extremely flexible as it 

can work forward using event trees and backward using fault trees. 

Although CCA incorporates features from FTA and ETA, it is not commonly used since 

the CCD for a fairly simple process is detailed and somewhat cumbersome. It is mostly 

used when the logic model for the concerned event is simple enough for a graphical 
display. The detailed description and applications of this approach are the same as 
discussed in FTA and ETA. 

3.3.10 Digraph-Based Analysis 

Digraph-based analysis (DA) is an aid in determining fault tolerance, propagation, and 

reliability in large interconnected systems. The technique permits the integration of 

data from a number of individual FMECAs/FMEAs, and can be translated into fault 

trees, described in Section 3.3.6, if quantitative probability estimates are needed (Lapp 

& Powers, 1977; Shishko, 1995). Vaidhyanathan & Venkatasubramanian (1995) have 

used digraph-based models for automated HAZOP analysis. 

A directed graph or digraph exhibits a network structure and resemble a schematic 
diagram. It is on the whole a finite set of nodes together with a finite set of directed 

edges in which each edge can be followed from one node to another. These nodes are 

usually drawn as circles or ovals whilst the edges are drawn as straight or curved lines 

having a terminating arrowhead. Figure 3.5 shows a simple digraph of three nodes that 

are represented by A, B and C. An edge begins from an influencing node and terminates 

at an influenced node. Also, A4B signifies that "A influences B". 

-60- 
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B 

C 

Figure 3.5: A simple digraph 

In a DA, the nodes correspond to the state variables, alarm conditions or failure origins, 

and the edges represent the causal influences between the nodes. Digraph 

representation provides explicit causal relationships among variables of systems with 
feedback loops. From the constructed digraph, the causes of a state change and the 

manner of the associated propagation can be easily found (Umeda, et al., 1980). The 

rules generated from such an analysis can be used as knowledge of an expert system for 

plant operations. 

DA is a bottom-up event-based qualitative technique. DA may be integrated into the 

hazard identification phase of the safety and reliability assessment process and may be 

very efficient for identifying possible causes of process disturbances (Kramer & 

Palowitch, 1987). Digraphs can also be used to model and reconstruct accident 

scenarios of hazardous events. As a result, both hazard analysis and accident 
investigation processes can be improved via modelling event sequences (FAA, 2005). 

3.3.11 Simulation Analysis 

Simulation analysis refers to any analytical method that is capable of imitating the 

behaviour of a real-life system under safety and reliability assessment study. For 

example, Monte Carlo simulation (Cortazar & Schwartz, 1998) is an eminent simulation 

method that uses the idea statistical trials in calculating multiple scenarios (i. e., 

evaluating substantive hypotheses) of the risk-based analytical model by repeatedly 

sampling values from the probability distributions for the uncertain variables to get an 

approximate solution to a problem. There is a random process where some parameters 
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of the process are equal to the required quantities of the problem. Since these 

parameters are not known exactly, many observations are made so that the parameters 

of the process can be determined approximately. Each time a value is randomly 

selected, it forms one possible scenario and solution/outcome to the problem. Together, 

these scenarios give a range of possible solutions/outcomes, some of which are more 

probable and some less probable. Unfortunately, this also means that it is computer 
intensive and best avoided if simpler solutions are possible. Therefore, the most 

appropriate situation to use Monte Carlo methods is when no other solutions exist or 

they are difficult to use. 

Monte Carlo analysis methods are used in the oilfield to estimate the risks involved in 

new exploration projects, evaluation of development schemes and evaluation of validity 

of reservoir models (Cortazar & Schwartz, 1998; Armstrong, et al., 2005). 

3.3.12 Subjective Reasoning Analysis 

Whenever data are sparse for safety and reliability assessment, it may become very 
difficult for the risk analyst to precisely obtain the parameters of basic failure events to 

carry out quantitative analysis using the probabilistic analytical methods outlined above 

since a great deal of uncertainty is involved. Therefore, the need for models that reflect 

subjective reasoning or understanding will dominate choices in parameterisation. 

Subjective reasoning analysis (SRA) may prove relatively easier to deal with such 

problems with uncertainty. An example of SRA is where subjective descriptors such as 

cold, cool, warm or hot is used by the safety analyst to present the value state at which 

the temperature of a room is at. Clearly, it is not accurate to define a transition from a 

quantity such as `warm' to `hot' by the application of one degree centigrade of heat. In 

the real world a smooth (unnoticeable) drift from warm to hot would occur. This 

natural phenomenon can be described more accurately by fuzzy set theory (See 

Chapter 7 for more details). 
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It can be combined with FMECA to form mixed approaches for modelling the safety 

and reliability assessment of a system more efficiently and conveniently. This method 

can be used in the hazard identification and risk estimation phases of the safety process. 

3.4 Selection of Safety and Reliability Methods 

Each phase in the safety and reliability assessment process involves the use of the 

analytical methods outlined previously. Best practice dictates the use of a combination 

of the different methods, since each provides different information about the system 

under consideration. It is realised that use of these safety and reliability assessment 

methods in an integrated manner may make risk assessment comparatively efficient and 

convenient since safety information and the advantages of each method may be more 

efficiently explored by doing so (Wang, et al., 1993). In such integration, one method 

may be used to process the information produced using another method. 

To make full use of the risk assessment methods, an analysis of their input requirements 

and outcomes is required. The possible inter-relationships of the various methods are 
identified as shown in Figure 3.6. This network of data flows (as collected from 

Chapter 2) and these analytical methods constitute a general framework within which 

the safety of a system may be assessed as the design evolves. The outlined analytical 

methods, classified as either top-down or bottom-up event-based as described 

previously, may be applied to study the system states, operational conditions, 

environmental conditions and other design considerations which contribute to the 

occurrence likelihood of the hazardous conditions associated with a ship or an offshore 
installation and define the magnitude of possible resulting consequences. 
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Figure 3.6: Information flow diagram of risk assessment methods 

The selection of the outlined methods, or the decision as to which methods are more 

appropriate for the risk assessment of a particular product, is dependent on the 

following considerations: 

" The level (system, subsystem or component level) of the product breakdown at 

which the hazard identification is carried out. 

" The degree of complexity of the inter-relationships of the items at the 

investigated level of the product breakdown. 

" The degree of innovation associated with the product design (the availability of 

product failure data for risk assessment). 

Expert judizement 

I, 
Fault Tree 
Analysis 
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The applicability of each risk assessment method has been discussed with reference to 

the phases of the safety and reliability assessment process. When there is a lack of 

knowledge or experience regarding the design solution and its possible effects on 

product safety, inductive bottom-up methods, although more time-consuming, should 

yield a higher level of confidence that hazardous system states and respective failure 

modes are identified, otherwise top-down methods may prove more convenient and 

efficient. If, however, it is difficult to describe the basic failure events of a system using 

probabilistic risk analysis methods, subjective reasoning analysis may be more 

appropriate to assess the safety of the system. 

3.5 Critical Review on Human Reliability Analysis Techniques 

As early as the 1960s, the importance of human reliability was realised by Rook (1962) 

who defined as the probability that an agent accomplish successfully his mission under 

fixed time and fixed conditions. Attempts followed to classify human error in industrial 

settings (Swain, 1963; Farmer, 1967). Then during the 1970s and early 1980s, there 

was an increasing awareness of the importance of human-error as a factor in incidents 

and accidents involving complex technologies. This offered significant advances to be 

made in the knowledge of human behaviour so as to quantify the propensity of humans 

to make errors under the conditions of interest. An early model to explain error 

mechanisms was developed by Rasmussen (1983) whilst analysing the errors made by 

seasoned operators on the basis of an extensive review of incident and accident reports 
from hazardous industries. Rasmussen's framework proposed three types of error: 

skill-based, rule-based, and knowledge-based. This framework was built on by Reason 

(1990), who defined the basic error types as being slips, lapses and mistakes. Since this 

time, various approaches have been taken to this area in the past and detailed accounts 

of the history of HRA are given in Villemeur (1992b) and Reason (1990). Recently, 

Kletz (2001) went on to included violations and mismatches to the types of human error. 

In parallel with attempts to model the causes and mechanisms of human error, risk 

analysts sought to develop methods and techniques (Caccuabue, 1997) to quantify the 

reliability of a human operator as a system component, in order for human-error to be 

accounted for in an overall assessment of the risk associated with a system. Such 
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techniques included: Technique for Human Error Rate Prediction (THERP) (Swain, & 

Guttmann, 1983), Human Cognitive Reliability (HCR) (Hannaman, et al., 1984), 

Operator Action Trees (OATS) (Hall, et al., 1982), Success Likelihood Index 

Methodology (SLIM) (Embrey, et al., 1984) and Human Error Assessment and 
Reduction Technique (HEART) (Williams, 1988). Reason (1990) provides an 

overview, and critique of these techniques. Their differences are noticed when 

considering their goals (identify, quantify or reduce errors (see Kirwan, 1992)), their 

features and the consequences of their applications (Gerdes, 1995). 

In the first place, the techniques approximate to hazard identification methods in that 

they provide ways of analysing operators' tasks and working environments and 
identifying likely causes of error. In the second place, they approximate to hazard 

analysis methods by attempting to attach probabilities to the identified hazards. This 

quantitative approach was not unnatural given that, at the time the techniques were 
developed, industrial risk analyses were mostly probabilistic and HRA techniques were 
intended to achieve similar aims of identifying and analysing risks. Although the 

hazard identification processes were qualitative and based largely on human judgement, 

the techniques were not seen as complete if they did not provide ways of attributing 

probabilities to error occurrences. Besides this quantitative analysis formation on a 

qualitative and judgmental foundation, such first-generation HRA techniques are weak 
because they do not embrace the most recent knowledge of human behaviour. The 

human factors experts have for a long time acknowledged this and called for the 

development of a new generation of techniques. Williams (1985) stated that these 

methods were neither accurate nor easily usable by non-specialists, while at the same 

time its developers have yet to demonstrate, in any comprehensive fashion, that their 

methods possess much conceptual, let alone, empirical validity. Swain (1988) declared 

that all HRA models had serious limitations, are often ill-founded relative to human 

behaviour and the task of calibrating the models had not been seriously addressed. 
Dougherty (1990) agreed and in asserting that inadequate HRA modelling can lead to 

increased risk, called for second-generation methods to be developed and for advances 
in error psychology and cognitive science to be accommodated within the HRA 

framework. Later, Hollnagel (1996) complained of the obsolescence of the state of the 

HRA art and Dear-den & Harrison (1996) expressed the fact that all these approaches 

suffer from their inability to adequately take into account aspects of the human-machine 
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interface that might affect the probability of human-error. However, reliable second- 

generation methods have not yet replaced the first-generation methods. The second- 

generation methods includes, Quantification of Errors of Intention (INTENT) 

(Gertman, et al., 1992), Cognitive Event Tree System (COGENT) (Gertman, 1993), 

Cognitive Reliability and Error Analysis Method (CREAM) (Hollnagel, 1998) and 

Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H) method 

(Gertman, et al., 2004). 

In spite of the serious flaws of current HRA methods within their scope of applicability, 

the HRAs have been highly successful in terms of identifying significant deficiencies 

related to human performance. Thus, genuine success for analysing manual and 

repetitive tasks due to numerous modifications such as new procedures, revision of 

procedures or technical specifications, revised training, installation of additional 

hardware and operator support systems or automated capabilities, and modifications of 

systems (including actuation logic) have resulted from the HRA modelling. These 

findings are in most cases considered as robust in spite of the normally large numerical 

uncertainties. Fortunately, some of these techniques are still being updated, combined 

and evaluated as to their relative effectiveness as a perspective means of improving 

safety culture. It is envisaged that their qualitative effects and incorporation into 

quantified form, based on the consideration of uncertainty, can be enabled via the 

development of a fuzzy-Bayesian network (FBN) modelling. A literature review is 

provided for the FBN in Section 3.6.3. 

3.6 Literature Review on Uncertainty Treatment Techniques 

The previous sections in this chapter have outlined several risk analysis methods that 

are widely applied in maritime risk analysis. Nevertheless, in some situations where 

there is a lack of data, it may be difficult to apply them with confidence to the 

assessment task. Over the recent years, some techniques such as Bayesian network 

(BN), fuzzy logic (FL) and fuzzy-Bayesian network (FBN) have attracted much 

attention in safety assessment and in situations where traditional risk analytical tools 

cannot be applied with confidence due to the high level of uncertainty in data. This 

research work will investigate such techniques. Detail descriptions and case study 
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application of these developed techniques to marine and offshore systems will be given 

in more detail in Chapters 6,7 and 8. 

In this section, a brief review of the BN, FL and FBN is given herein to highlight the 

research progress in the development of such techniques. 

3.6.1 A Review on Bayesian Network 

Until twenty years ago, the issue of ordering possible beliefs, both for belief revision 

and for action selection, was seen as increasingly important and problematic, and at the 

same time, dramatic new developments in computational probability and decision 

theory directly addressed perceived shortcomings. The key development (Pearl, 1988) 

was the discovery that a relationship could be established between a well-defined notion 

of conditional independence in probability theory and the absence of arcs in a directed 

acyclic graph (DAG). This relationship made it possible to express much of the 

structural information in a domain independently of the detailed numeric information, in 

a way that both simplifies knowledge acquisition and reduces the computational 

complexity of reasoning. The resulting graphic models have come to be known as BNs. 

BNs are at the cutting edge of expert systems research and development. Unlike the 

traditional rule-based approach to expert systems, they are able to replicate the essential 
features of plausible reasoning (reasoning under conditions of uncertainty) and combine 

the advantages of an intuitive visual representation with a consistent, efficient and 

mathematical basis in Bayesian probability. Critically they are capable of retracting 

belief in a particular case when the basis of that belief is explained away by new 

evidence. Because of the development of propagation algorithms (Pearl, 1988; Russell 

& Norvig, 2003), followed by availability of easy to use commercial software and 

growing number of creative applications, BN has caught the sudden interest of research 

in different research fields since early 90's. Perhaps the greatest testament to the 

usefulness of Bayesian problem-solving techniques is the wealth of practical 

applications that have been developed in recent years. After about ten years' research, 

BNs have succeeded in creating models for practical applications in areas of intelligent 

decision, safety assessment, information filtering, autonomous vehicle navigation, 
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weapons scheduling, medical diagnosis, pattern recognition, and computer network 
diagnosis. For a nice collection of papers on applications of Bayesian techniques, see 

the March 1995 special issue of the Communications of the ACM (Heckerman, et al., 
1995). Since most real life problems involve inherently uncertain relationships, BN is a 

technology with huge potential for application across many domains. 

Influence diagrams, which further extend the notion of BNs by including decision nodes 

and utility nodes, have been used in human reliability assessment (Humphreys, 1995) 

and decision-making on explosion protection offshore (Bolsover & Wheeler, 1999). A 

good reference work for the computational method underlying the implementation of 

them in Hugin is described in Jensen, et al. (1994). The Hugin software (Jensen, 1993) 

enables a powerful risk assessment solution that is easy to use, flexible, and appropriate 
for use on marine and offshore applications. Other renowned program packages for BN 

building and influencing include MSBNx (Kadie, et al., 2001), created at Microsoft 

Research, and Netica (Netica, 2002), the commercial program developed by Norsys 

Software Corp. 

3.6.2 A Review on Fuzzy Logic 

Forty years ago, it was conceived that items in the real world are better described by 

having partial membership in complementary sets rather than by having complete 

membership in exclusive sets and this notion that gave rise to the theory of fuzzy set 
(Zadeh, 1965). This theory was then applied to traditional logic to develop the concept 

of FL (Zadeh, 1975), a modelling technique which employs human analysis to provide 

an approximate and yet effective means to describe the behaviour of situations that are 

too complex or too ill-defined to allow precise mathematical analysis. Every since, the 

technique has been further developed to include methodologies such as modelling, 

evaluation, optimization, decision-making, control, diagnosis and information (Terano, 

et al., 1992). 

Zadeh (1973) presented fuzzy algorithms for complex systems and decision processes. 

Whilst using this algorithm in an attempt to control a steam engine and boiler 

combination by synthesizing a set of linguistic control rules obtained from experienced 
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human operators, Mamdani (1975) proposed a fuzzy inference system (FIS) in which 

the rule consequence is defined by fuzzy sets. Takagi, Sugeno and Kang (Sugeno, 

1985) later went on to propose an inference scheme in which the conclusion of a fuzzy 

rule is constituted by a weighted linear combination of the crisp inputs rather than a 

fuzzy set. For this reason, Takagi-Sugeno FIS may only need a smaller number of rules 

since their output is already a linear function of the inputs rather than a constant fuzzy 

set. However, the Mamdani-type scheme has emerged as the most commonly used FIS 

owing to the fact that FL systems do not necessarily require mathematical equations to 

establish a relationship between input and output parameters. Such a relationship can 

be set via simple IF-THEN rules that are defined by a knowledge basis. Kosko (1992) 

uses another approach to generate fuzzy IF-THEN rules and shows that the fuzzy sets 

can be viewed as points in a multidimensional unit hypercube. This makes it possible to 

represent a set of inference rules by the guise of a fuzzy associative memory (FAM) in 

an inference matrix or table. This FAM matrix can thus give the risk matrix for a risk 

assessment task. 

FL modelling can be particularly useful where there is no analytical model of the 

relation under consideration and/or where there are insufficient data for statistical 

analysis (Salski, et al., 1996), as it provides a logical means for linguistic computation. 

As such, the logic can be applied to problems in the domains of engineering, business, 

medical and related health sciences, and the natural sciences. Whilst it cannot substitute 

for deterministic modelling techniques, FL does complement the set of such techniques 

and can be coupled to them, thus enabling a better and more extensive risk assessment 

in cases of vague and incomplete project information. 

After an aggregation process of the Mamdani FIS rule consequences, there is a fuzzy set 

for each output variable that needs defuzzification. If the defuzzification is carried out, 

this transforms the fuzzy reality into a crisp one. The emerging crisp reality carries less 

information than the underlying fuzzy reality and moreover, there is an irreversible loss 

of information that may be vital or significant in the assessment task for a safety-critical 

application. With Dempster-Shafer evidence theory (Shafer, 1976) holding a 

connecting relationship to fuzzy set theory, an evidential reasoning (ER) approach 

(Yang & Xu, 2002) may best utilise the aggregated fuzzy output set to establish the 

most useful and practical results of a risk analysis. Besides, the ER approach shows 
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great potentials in handling multiple attribute/criteria decision analysis (Yang & Singh, 

1994; Yang & Xu, 2002) and also in hierarchical evaluation problems (Yang & Sen, 

1993) under uncertainty. In following this setting therefore, FL modelling can thus 

permit the risk-based modelling of safety-critical marine and offshore application 

domains. 

3.6.3 A Review on Fuzzy-Bayesian Network 

The combination words "fuzzy-Bayesian" have seen increasing usage owing to 

developments achieved whilst tackling both vague and random uncertainties within a 

modelling domain. Clark & Kandel (1990) recognised that a FBN may provide a more 
holistic, graphical approach that lends itself well to implementation in expert systems on 

personal and small computers. With Pan & McMichael (1998) putting up thoughts on a 

causal model that could possibly provide a high-level generic architecture for fusing 

data incoming from multiple sensors, an ideal integration of Bayesian probability theory 

(Bayes, 1763) and FL lead to fuzzy causal probabilistic networks (another term in the 

ideology behind FBNs). This was followed through by Pan & Liu (1999) study on 

hybrid BNs (the most general form of BNs demanded by practical applications), in 

which continuous variables and discrete ones may appear anywhere in a DAG. In such 

BNs, discretization of continuous distributions can allow approximate inference in the 

network without limitations on relationships among continuous and discrete variables. 

As explained by Pan & Liu (2000), although all the variables are defined to be discrete, 

the subset of some variables, such as temperature or pressure, for example, can be 

genuinely continuous. On the other hand, it considers FL as an approximate reasoning 

formalism that may be easy to use and possibly sufficient in many ordinary 

applications. Thus, the proposition presented that FBNs may quite possibly realise 

anything FL can do and as well, may inherit the entire rigor, flexibility and other 

superior properties of probabilistic approaches (Pan & Liu, 2000). Furthermore, there is 

the tendency to combine BN and FL modelling techniques so that one will complement 

the shortfall of the other. 

Viertl (1987) explains the necessity of developing a fuzzy Bayesian inference and this 

paved way for the first works on this inference, which come from safety project studies 
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in structural reliability researches (Chou & Yuan, 1993; Frühwirth-Schnatter, 1993; 

Itoh, & Itagaki, 1989). The research results based on two examples, a reinforced 

concrete beam and a structural frame, showed that the fuzzy-Bayesian approach is a 

viable enhancement to the safety assessment of existing structures (Chou & Yuan, 

1993). Nonetheless, that inference suffered from numeric stability problems in trying to 

achieve a justified fuzzy-probability transformation and further overlooked the 

conditional cases that can arise between fuzzy/possibility distribution events. The 

developed theory of mass assignment (MA) by Baldwin, et al. (1996) provide a bi- 

directional transformation platform between Bayesian probability theory and 

possibility/fuzzy set theory, and Dubois & Prade (1997) introduce a Bayesian 

conditioning operation in possibility theory, adapted to the idea of focusing on a body of 
knowledge for a reference class described by some evidences. 

The work carried out so far on FBN cannot suitably be applied in the maritime domain, 

since the renowned leap in possibility-probability distribution inference process, as 
brought about by the theory of MA, is worthy of appropriate modifications to previous 

methodologies. With such modifications in place, the innovative FBN can now rightly 

be based on a more realistic inference process and may as well offer a stable practical 

solution for those domains containing continuous and discrete variables and also those 

of random and vague uncertainties. 

3.7 Concluding Remarks 

As followed from the collection of reliable failure and repair data for which a number of 

useful database sources are ascertained, typical risk analytical methods need to be 

applied in order to conduct safety and reliability assessments. Such an assessment can 

then be carried out qualitatively or quantitatively depending on how much data is or has 

made been obtainable/available, in addition to the competence of expert judgement that 

can be provided to the safety analyst. 

Some of the analytical methods, such as PHA, what-if, part count, FMECA and HAZOP 

are most usefully applied from hazard identification phase, whilst others like FTA, 

decision table, ETA, CCA and DA are used mainly in performing risk estimation. Best 
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practice dictates the use of a combination of different methods, since each method 

provides different information about the system under consideration. These safety and 

reliability techniques can also be used in an integrative manner to produce a more 

efficient and convenient safety assessment, and therefore, they have gained substantial 

acceptance for use in formal maritime safety practice, as can be noticed in Chapter 4. 

Human-error also can be accounted for in an overall assessment of the risk associated 

with a safety-critical maritime system via HRA techniques. First-generation HRA 

techniques such as THERP, HCR, OATS, SLIM and HEART have been developed to 

quantify the reliability of a human operator, although the hazard identification processes 

were qualitative and based largely on human judgement. Their use leads to an increased 

understanding of the human sources of risk that transpired into genuine success for 

analysing manual and repetitive tasks. It is realised that they do not embrace the most 

recent knowledge of human behaviour and therefore, there has been a growing demand 

for the development of new generation methods. Reliable second-generation methods 
have included INTENT, COGENT, CREAM and SPAR-H, but these have not yet 

replaced the first-generation methods. Nevertheless, both qualitative and quantitative 

effects of human influences need to be incorporated into the risk analytical domain 

model. 

The developed techniques of BN, FL and FBN are used in situations where these 

traditional risk analytical tools cannot be applied with confidence due to the high level 

of uncertainty in data. The FBN may also provide the platform for which the human 

element of the safety assessment can be incorporated into risk-based models. More 

details on these developed techniques can be found in Chapters 6,7 and 8. It is 

envisaged that the use of uncertainty analysis in conjunction with risk assessment would 

provide enhanced information for decision makers. 
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Chapter 4: Formal Safety Assessment (FSA) 

Chapter Summary 

Formal safety assessment (FSA) as a method supporting the decision-making for 

maritime legislation offers a more rational approach than the traditional "regulation by 

disaster" method. Its adoption for shipping represents a fundamental cultural change, 
from a largely reactive and piecemeal approach, to one that is integrated, proactive, and 

soundly based upon the evaluation of risk. The incentives that FSA can offer have 

prompted its trial application to high speed passenger catamaran ferries and bulk carrier 

ships for which this chapter briefly reviews the outcome of their risk analysis. In spite 

of highlights reached in these FSA trial developments so far, there are still many 
important hurdles to cross. The chapter further discusses these problems and delineates 

the road that lies ahead in advancing and properly setting FSA in place. 

4.1 Introduction 

In general, improvements in safety have been driven by accidents, that is, the traditional 

"regulation by disaster" approach to safety. It is as though there is the need for the 

shock of a catastrophe to force some corrective action to be taken, and even then the 

results achieved are often proportionate to the political, media and public outrage and 

pressures generated. By introducing a more structured risk analysis process through a 
formal safety assessment procedure, regulators are compelled to examine potential 
hazards and to introduce appropriate measures or standards before a tragedy occurs. 

Formal safety assessment (FSA) is a process of identifying hazards, assessing the 

associated risks, studying alternative ways of managing those risks, carrying out cost- 
benefit assessment of alternative management options, and finally making decisions on 

which option to select (MSA, 1996). The concept of FSA provides an elegant route to 
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application of well-established risk analysis methods (see Chapter 3), already widely 

used in other industries within shipping activities, whereas the proposition of moving 

rapidly towards a safety case regime would be extremely difficult, putting unrealistic 
demands on both the regulator and the regulated. 

In addition to a direct involvement in the FSA Methodology (Section 4.4), the 

application of safety assessment techniques has for many years been actively 

considered, hence promoting the use of such methods in the marine industries 

(Aldwinckle & Pomeroy, 1983; Pomeroy, 1985). In parallel the experience gained in 

the preparation of safety cases for offshore installations has provided experience of the 

application of the key techniques of analysis (Stansfeld, 1994). 

It is important to recognise that any approach suitable for assisting IMO in setting the 

international framework of rules for shipping must be equally valid when looking at the 

Rules for classification. Changes to the Rules for classification are proposed for many 

reasons, including changes in technology and as a consequence of service experience, 

the proposed changes could be tested by using a generic ship type risk model. It is 

possible to set up a number of generic models for this purpose and to assess the benefit 

of the changes. This approach would give greater transparency and objectivity to the 

rule making process of the classification societies. 

4.2 Adoption of Formal Safety Assessment 

In 1992, Lord Carver's report into marine safety raised the issue of a more scientific 

approach to ships and recommended that emphasis be given to a performance-based 

regulatory approach. This introduced the concept of formal ship safety assessment. In 

general, over the last several years the application of formal ship safety assessment has 

reached an advanced stage as a result of several serious marine accidents (IMarE, 1997) 

such as those mentioned tragedies in Chapter 1, Section 1.2.1. The established statutory 

safety regulations that govern ship safety have been in use for many years and these are 

prescriptive in nature. However, they do not reflect the requirements of individual ships 

and a "goal setting" approach involving FSA was thought to be of vital importance. 
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The UK government reasoned that adoption of FSA would enable safety issues at IMO 

to be prioritised, and regulations derived that are cost effective and proportional to risk. 
Thus, in 1993, the UK proposed to the IMO that FSA should be applied to ships to 

ensure a strategic oversight of safety and pollution prevention. The UK Maritime 

Safety Agency (now the Maritime and Coastguard Agency, MCA) developed the 

concept of the FSA, recognising that the uniformity and minimum standards of the 

existing prescriptive requirement must be maintained. 

The principle that FSA should be adopted as a systematic and rational process for 

assessing risks associated with any sphere of activity, and for evaluating the benefits of 

mitigation options has been accepted by IMO and the interim guidelines were approved 
in 1997 (IMO, 1997a). These interim guidelines had since been replaced by an IMO 

approved formal guideline in 2002 (IMO, 2002b). 

4.3 Problem Definition to the Vessel Type 

Prior to undertaking an FSA the problem under analysis and its boundaries should be 

carefully defined. The definition should be consistent with operational experience and 

current requirements taking into account all relevant aspects (IMO, 1997a). In order to 

achieve this, written submissions discussing aspects of the problem definition are 

sought from a number of technical experts. These are presented to a working meeting 

comprising a wider range of expertise in shipping, its operations, and also in human 

factors so as to gain a consensus view. 

4.3.1 Preparation for the Study 

Those aspects that may be considered relevant when addressing ships are: 

" Ship category (e. g. type, length or gross tonnage range, new or existing, type of 

cargo). 

" Ship systems or functions (e. g. layout, subdivision, type of propulsion). 

Ship operation (e. g. operations in port and/or during navigation); 
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" External influences on the ship (e. g. vessel traffic system, weather forecasts, 

reporting, routing). 

" Accident category (e. g. collision, explosion, fire). 

" Risks associated with consequences such as injuries and/or fatalities to 

passengers and crew, environmental impact, damage to the ship or port facilities, 

or commercial impact. 

4.3.2 The Generic Ship Type 

In order to set the context for application of FSA to specific ship types, it is useful to 

define a "generic ship type risk model". This means those features, characteristics and 

attributes which are common to all ships, or relevant to the problem under 

consideration. The generic model can thus be a collection of systems, including 

organisational, management, operational, human, electronic and hardware, which fulfil 

the defined function, and not as an individual ship in isolation. Identified generic ship 
functions are as shown in Figure 4.1 (IMO, 1998). 

Bunkering/ 

storing 

Pollution 

prevention Stability 

Power 
propulsion 

Figure 4.1: Generic ship functions 

The life cycle of the generic ship comprises: 

" Design, construction and commissioning. 
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" Entering port, berthing, unberthing and leaving port. 

" Loading and unloading. 

" Passage. 

" Dry dock and maintenance period. 

" Decommissioning and disposal. 

Generic ship definitions are also used to assist in identification of hazards, underlying 

causes, risk assessments and risk control options. 

4.4 The Formal Safety Assessment Methodology 

FSA is a risk-based tool for the management of safety. The word "risk" is used here to 

encompass consideration of both the likelihood and the consequences of an unwanted 

event. 

The FSA process consists of five individual steps as shown in Figure 4.2 (Riding, 1997; 

IMO, 1997a; 1997b; 2002b). These are: 

Step 1: Identification of hazards (a list of all relevant accident scenarios with 

potential causes and outcomes). 

Step 2: Assessment of the risks associated with those hazards (evaluation of risk 
factors). 

Step 3: Consideration of alternative ways of managing the risks (deriving 

regulatory measures to control and reduce the identified risks). 
Step 4: Cost-benefit assessment of alternative risk-management options 

(determining cost effectiveness of each risk control option). 
Step 5: Recommendations for decision-making (information about the hazards, 

their associated risks and the cost effectiveness of alternative risk 

control options is provided). 

In this context, it is recognised that nowhere in the 5 steps defined above is there a point 

at which a judgement of acceptability is made. Some people have reasoned that, as part 
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of the FSA process, a target level of risk ought first to be established, and that before 

starting on Step 3a judgement be made on whether any risk reduction measures are 

needed at all. There is clearly logic in this approach, particularly at a detailed level. 

However, in the first instance it is more important to be able to identify all hazards, and 

to rank them relative to each other, so that attention can first be given to the more 

significant contributors to total risk. 

Decision makers 

Criteria 

1 
Step 1 
Hazard 

identification 
Ak ilk 

F------------------ 

Step 2 
Risk 

assessment 
ý 

Step 3 
Risk control 

options 

ý)l 

Step 4 
Cost benefit 
assessment 

-ý 4. 

Review 
L-------------------------------------------------------------- 

Figure 4.2: Flow chart of the FSA process 

It should also be pointed out that even with inclusion of risk targets and acceptability 
judgements, the overall safety management process is not complete. To manage risk 

effectively, there needs to be a loop established, whereby the effects of changes based 

upon the decision making of Step 5 are monitored to ascertain whether the desired level 

of safety is being achieved, and if not, further options are examined. However, the core 

process comprises the five steps set out above. It is these objective and rational 

analyses that facilitate systematic judgement, and effective management, of risk 
(Peachey, 1995). 

4 

Step 5 
Decision-making 
recommendations 
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4.4.1 FSA Step 1- Identification of Hazards 

Hazards may or may not have already been realised as accidents. With the passage of 

time, changing technology, and the influence of human factors, new hazards will arise, 

and existing hazards may materialise into accidental events not previously experienced. 

Identification of hazards is therefore a vital first step in the FSA process. Its objective is 

to describe the activity, and identify the hazards that might impair the functions of the 

generic ship type (or subject undergoing FSA analysis). This is achievable by the use of 

standard techniques, such as brainstorming, to identify hazards that can contribute to 

accidents, and by screening these hazards using a combination of available data and 

expert judgement in preparation for Step 2. 

Various techniques exist for hazard identification. The most common of these in the 

shipping industry are: 

" Failure modes, effects and criticality analysis (FMECA), described in Section 

3.3.4 of Chapter 3, which is particularly suitable for hardware systems such as 

machinery controls. 

" HAZard and OPerability studies (HAZOP), described in Section 3.3.5 of 

Chapter 3, which is particularly appropriate for identifying hazards in "soft" 

systems involving activities and operations. 

" Compartment studies in which the effect of an event such as fire or flooding on 

every system or piece of equipment within a compartment, is systematically 

examined. 

Details of other typical hazard identification techniques can be found in Chapter 3. 

4.4.1.1 Hazard Screening 

The purpose of the hazard screening during step I is to provide a quick and simple way 

of ranking hazards. It is a process for establishing, in broad terms, the risk of all 

identified accident categories and accident subcategories, prior to the more detailed 

quantification that will be used in Step 2. 
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Lists of accident categories that have been determined by the Marine Accident 

Investigation Branch (MAIB) as a guide for safety analysis of the generic ship are 
(Brennan & Peachey, 1996; Loughran, et al., 2002; and see also Chapter 2, 

Section 2.3.1): 

" Collision (striking between ships). 

" Contact (striking between ship and other objects). 

" External hazards (natural). 

" External hazards (others). 

" Grounding/stranding. 

" Hazardous substances. 

" Explosion. 

" Fire. 

" Flooding. 

" Machinery failure. 

" Payload related. 

" Loss of hull integrity. 

Having identified the accident categories, their causes are then sorted into risk exposure 

groups of the identified generic ship functions. 

4.4.1.2 Risk Matrix Ranking 

This stage consists of analysis of incident and accident data coupled with expert 
judgement. In order to check the robustness of the resulting hazard rankings and to 

assist in the resolution of the rankings in cases where several hazards have similar 

ranking level, the risk matrix approach is used. 

The FSA guidelines (IMO, 1997a; 2002b) propose a two-dimensional qualitative risk 

matrix as shown in Figure 4.3: 
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Figure 43: A two-dimensional qualitative risk matrix 

Risk level boundaries (Negligible/ALARP/Intolerable) in Figure 4.3 are purely 

illustrative. ALARP is used to refer to where a risk has to be shown that it is "As Low As 

Reasonably Practicable" (See Chapter 1, Section 1.3.2). The FSA guidelines leave the 

selection of the definition of frequency, consequence and the risk level boundaries to the 

member or organisation undertaking the FSA study. 

The risk matrix in the FSA guidelines uses qualitative definitions of frequency and 

consequence that are generally understandable to those interpreting data or making 

future projections. However it leaves definition of the risk level boundaries open as 

there is no IMO or other internationally agreed guidance on defining these boundaries. 

It is proposed for the generic ship FSA study that a risk matrix, based on that in the 

Interim Guidelines is used, but with risk ranking in place of defining risk boundaries. 

Qualitative definitions of frequency and consequence can then be defined from the 

definition of the ship operations and the accident categories selected for the ship's FSA 

study. 

4.4.1.3 Results of Step I 

The output of Step 1 comprises: 

9A prioritised list of hazards and their associated scenarios prioritised by risk 

level. 
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"A preliminary description of the development of causes and effects. 

4.4.2 FSA Step 2- Assessment of Risks 

Once hazards have been identified, the risk associated with the realisation of those 

hazards can be evaluated, so as to ascertain whether those risks are significant. 

Establishing the level of risk involves determining both the frequency of occurrence of 

the event and its severity. For most hazards, such as, fire or explosion, there are several 

possible initialising events, and several possible outcomes, depending upon 

circumstances. This leads to there being numerous different scenarios to evaluate. 

4.4.2.1 Qualitative and Quantitative Risk Assessment 

The process of risk assessment is initially performed qualitatively and later extended 

quantitatively to include data when it becomes available. The interactions and 

outcomes of both these process are seen in Figure 4.4 (ABS, 2000). 

Estimating risk in a qualitative way is done by categorising each of the two components 

of risk descriptively. For example, the likelihood of an event could be described as 

"frequent", "unlikely", "extremely improbable", etc. and its consequence as "minor", 

"major", "catastrophic", etc. The result of a qualitative risk assessment can be 

presented in the form of a risk matrix. 

Qualitative risk assessment can be done using historical data (which reflects past 

experience), and judgement (which can take a forward look), or a combination of the 

two. Subsequently, this qualitative evaluation can be improved upon by quantifying the 

result using appropriate data (for example, error rates, reliability data, accident 

statistics) and analysis or modelling methods (for example, of fire growth) where these 

are available. Quantification is not necessary, however, and meaningful judgements, 

particularly of risk ranking can be made based upon qualitative assessment of risk. 
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Figure 4.4: Modelling process via qualitative and quantitative analysis 

Quantitative risk assessment utilises what is known and assumed about the failure 

characteristics of each individual component to build a mathematical model. From this 

assessment, typical parameters including the probability of occurrence of each failure 

system and possible consequences need to be obtained. Normally quantified by experts 

with respect to the particular situation, consistency checking is required to validate the 

results produced from quantitative analysis. Also, there will inevitably be uncertainty in 

such assessment of risk. This uncertainty does not negate the value of the assessment, 
but needs to be taken into account when considering the results. 

Human error is generally recognised as being a significant factor in many accidents. 

Likewise, human intervention can prevent an incident occurring, or control or reduce 

the degree of escalation. Human factors therefore need to be fully taken into account 

during the risk assessment stage. The objective nature of the risk assessment techniques 

mentioned above, in which contributory factors and alternative outcomes are 

systematically examined, facilitates an objective evaluation of both the negative effect 

of human error and the potentially positive effect of appropriate human intervention. 
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Systematic techniques, such as task analysis (Kirwan & Ainsworth, 1992), are available 
for analysing human behaviour, enabling explicit account to be taken of this factor, even 
if at this time reliable data on human performance is scarce and the resulting uncertainty 
is relatively high. 

4.4.2.2 Risk Modelling 

As with Step 1 of FSA (hazard identification), techniques for the assessment of risk are 

also well established and proven. They include, for example: 

" Fault tree analysis (FTA), described in Section 3.3.6 of Chapter 3, which 

systematically looks at the combinations of circumstances and failures that can 
lead to an accidental event. 

" Event tree analysis (ETA), described in Section 3.3.8 of Chapter 3, which is a 

systematic and logical means of exploring the escalation potential of an 

accidental event to establish all possible outcomes and their severity. 

The construction and quantification of both such event and fault trees can be used to 

build a risk model. An example of a conceptual risk model is the risk contribution tree 

(RCT). The RCT provides a mechanism for displaying diagrammatically the 

distribution of risk amongst accident categories and subcategories, as shown in 

Figure 4.5. 
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Figure 4.5: Example of a risk contribution tree 
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Whilst the example makes use of fault and event tree techniques, other established 

methods could be used if appropriate. 

4.4.2.3 Factors which Influence Risk 

Factors which influence risk include: 

" Stakeholders - "interested entities". 

" Influence diagrams -" regulatory impact diagrams". 

Stakeholders 

Stakeholders are any persons, organisations, company or nation state (as in Figure 4.6), 

which are directly affected by shipping accidents or the cost effectiveness of the 
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industry. Their attitudes and actions are probably the greatest single influence over 

safety. Hence, FSA includes stakeholder identification, and consideration of the impact 

and equality of potential regulatory options for each stakeholder. 

Figure 4.6: Typical stakeholders in shipping venture 

Influence Diagrams 

An influence diagram identifies the influences that affect the likelihood of an accident, 

and enables those influences to be quantified. An influence diagram also provides 

information for use in Step 3 of the FSA process. In the context of developing an 

overview of risk, influence diagrams are complementary to fault and event trees in the 

construction of the RCT. 
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Figure 4.7: A generic influence diagram 

An influence diagram takes account of three different types of influence. These are 

those due to: 

" Human failures. 

" Hardware failure. 

" External events. 

Influencing factors are assumed to exist at three levels as shown in Figure 4.7, that is: 

" Direct level: Factors that directly influence the likelihood of occurrence. 

" Organisational level: Company/organisational level factors that underlie the 

direct level factors. 

" Policy level: The level at which rules and regulations are made, with a view to 

influencing the organisational and direct level factors. 

4.4.2.4 Results of Step 2 

The results from Step 2 can be summarised as follows: 
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" An identification of high risk areas to be controlled. 

" An identification of the principal influences that affect the level of risk. 

4.4.3 FSA Step 3- Risks Control Options 

Having concentrated on identification and assessment of high-risk areas/events, Step 3 

begins the process of managing risk by developing causal chains along the lines, which 

may be expressed as in Figure 4.8 (IMO, 2002b). 

Figure 4.8: Casual chain of a failure event 

Causal chains are required for all potential likely high-risk scenarios in enabling a range 

of risk control measures (RCMs) to be identified. These are either `preventive' control 

measures or those that provide a measure of `mitigation'. In order to assist logical 

thought process about RCMs they are divided into three categories (Canter, 1997). 

" Category A: Fundamental type of risk control, for example, preventive or 

mitigating. 

" Category B: Type of action required and its cost, for example, engineering/ 
design/ procedural/ human. 

" Category C: Confidence placed on measures, for example, passive/active, 
independent/dependent, auditable/non-auditable, quantitative/ qualitative etc. 

(a) Areas Needing Control 

It is aimed to screen the output of Step 2 so that effort is focused on the areas that need 

the most control. The main aspects of this assessment are to review the following: 
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" Review risk level. 

" Review severity. 

" Review probability. 

" Review confidence. 

(b) Risk Control Measures Low 

Generation of RCMs is aimed to: 

" Reduce the frequency of failure. 

" Mitigate of the effort of failure. 

" Alleviate circumstances where failure may occur. 

" Mitigate the consequences of accidents. 

Creating this log involves the following steps: 

(i) Identifying existing RCMs as identified in Step 2. 

(ii) Developing new RCMs for high risk areas identified in Step 2 that are not 

sufficiently covered by existing measures; 

(iii) Ensuring the RCMs are comprehensive and cover all the possible hazards 

and risks. The two tools, `risk attribute' and `causal chains', can be used for 

both steps (ii) and (iii); 

(iv) Entering the RCMs identified into `risk control measures log'. Then, they 

are reviewed with reference to the influence of each individual RCM on 

other high risk areas identified by Step 2. 

(v) Draft of `risk control measures log' is reviewed before generating `risk 

control option log'. Examples of these logs are shown in Table 4.1 and 

Table 4.2 (IMO, 1996). 

(vi) At any stage of the process above, it is necessary to refer back to Step 1 or 

Step 2 of FSA for more information or further analysis. 
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Table 4.1: A typical risk control measures log form 

Ref Risk profile element Description of measures Attributes Assumptions/reasoning 
Outcomes 
Initiating event 1 
Initiating event (2) 

Initiating event (n) 

Magnitude factors 
Event tree node (1) 
Event tree node (2) 

Event tree node (n) 

Progression factor 
Fault tree base event (1) 
Fault tree base event (2) 

Fault tree base event (n) 

Initiating factors 
Fault tree base event (1) 
Fault tree base event (2) 

Fault tree base event (n) 

Human factors 
Influence diagram event (1) 
Influence diagram event (2) 

Influence diagram event (n) 

Step 1 hazards 

Hazards 1 
Hazards (2) 

Hazards n 

Table 4.2: A typical risk control options log form 

Ref. 
Description of risk 

control 
Attributes 

Benefit 
Quantitative Af-n Qualitative 

Supporting 
information 

Note that Of--n represents the change in frequency of fatal accident (f) versus number of 
fatalities (n) (See Chapter 2, Section 2.6 for more details). 
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(c) Risk Control Options 

The output result of risk control option (RCO) details the cost of the options in terms of 

cost types defined by Step 4. It should also show sufficient data on who bears the risk, 

who benefits from the risk reduction and who has to implement the measures. This 

provides the sources of information for the subsequent principles of "risk imposer pays" 

and stakeholders. 

4.4.3.1 Results of Step 3 

The output from Step 3 comprises: 

"A wide range of RCOs, which are assessed for their effectiveness in reducing 

risk. 

" An inventory of interested entities affected by the identified RCOs. 

4.4.4 FSA Step 4- Cost Benefit Assessment 

Cost benefit assessment (CBA) in risk assessment is normally used to assess the 

marginal return of additional safety measures comparing: 

" The cost of implementing the measure. 

" The benefit of the measure, in terms of the risk that would be averted. 

The purpose of CBA is to show whether the benefits of a measure outweigh its costs, 

and thus indicate whether it is appropriate to implement the measure. CBA cannot 

provide a definitive decision, because factors other than risks and costs may be relevant, 
but provide a useful guide. There are several indices that can express cost effectiveness 
in relation to safety of life. In order to compare different RCOs, the risks and costs are 

expressed as a ratio, known as the implied cost of averting a fatality (ICAF). The 

definition is: 
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ICAF = 
Net annual cost of measure 

reduction in annual fatality rate 

The potential loss of life (PLL) values, given in units of lives/vessel/year (see 

Chapter 2, Section 2.6), can then be determined for the system before, b, and after, a, 

the introduction of a risk reduction measure respectively. Then, the reduction in PLL 

can be calculated as: 

Reduction in annual fatalities rate = PLLb - PLLa 

where, 

PLLQ = PLL after RCO is implemented. 

PLLb = PLL before RCO is implemented. 

Other indices based on damage to and affect on property and the environment may be 

used for a CBA relating to such matters. Calculating these indices should also provide 

comparisons of cost effectiveness for the RCOs. 

Costs are estimated as life cycle costs, including initial, operation, training, inspection 

and certification costs. Benefits include reduction of costs for fatalities, injuries, 

environmental damage, clean-up, liability claims, ship deterioration, etc. 

4.4.4.1 Results of Step 4 

The result of the Step 4 comprises: 

" Costs and benefits for each RCM identified in Step 3 from an overview 

perspective. 

" Costs and benefits for those interested entities which are the most influenced by 

the problem under concern. 

" Cost effectiveness expressed in terms of suitable indices, such as ICAF. 
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4.4.5 FSA Step 5- Recommendations for Decision Making 

The overall aim of Step 5 is to collate all the information generated by Steps 1 to 4, to 

assist in the choice of cost effective and equitable changes to regulations. For example, 

information about risk levels before and after implementation of risk control would be 

recorded alongside justification to iterate any part of the process. This step recognises 

FSA to be a tool, not a decision maker, and seeks to enhance the quality of information 

by first considering the cost effectiveness of a proposed option on an industry wide 

basis. A second stage examines whether the effect on all interests involved is equitable 

(that is, one or more interests may be carrying a risk or cost at a level disproportionate 

to expected returns). Given this information, the normal decision making process can 

proceed, taking into account all the social, political and cultural influences that are a 

necessary part of obtaining consensus on an international basis. Hence, there is a 

systematic, robust and auditable basis to guide decision makers. 

4.4.5.1 Results of Step 5 

The results of Step 5 will include: 

" An objective comparison of alternative options, based on potential reduction of 

risk and cost effectiveness, in areas where legislation, procedures or rules should 

be reviewed or developed. 

" Feedback information to review the results of the previous steps. 

4.4.6 Incorporation of the Human Element 

In deriving the generic ship model that forms the basis of FSA it rapidly becomes 

apparent that human factors dominate many of the risk scenarios. Casualty data 

confirms that the general assumptions, which often suggest that around sixty to eighty 

percent of casualties result directly from human error (The Nautical Institute, 2003), are 

valid. It comes as no surprise to any safety analyst that it simply is not possible to 
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separate technical safety from the influence of operators, in the widest sense. The FSA 

methodology does not allow consideration of a technical solution without due regard 
being paid to the interactions with people. 

PROBLEM DEFINITION 

Generic Model 
k-, 

CAccident 
Category under Concerns 

Relevant Regulations 

Step 5 
FINAL RECOMMENDATIONS 

Step 4 
COST-BENEFIT ASSESSMENT 

Cost-Benefit Assessment 

- Consideration of future anticipated trends 
- Techniques from financial management 
- Cost per Unit Risk Reduction (CURR) 

Step 3 

RISK CONTROL OPTIONS 

Risk Control Measures Log 

- Measure description and expected benefits 

- Measure attribute (category A/B/C) 

- Affected stakeholders 
- Relevant hazard ID and node in event tree 

- Preventative/ mitigating attribute 

Step I 
HAZARD IDENTIFICATION 

C Conduction of HAZID Meeting 

C Primary/Secondary Stakeholders 

C Task Inventory - Consideration of human factors 

CFMEA Worksheets -Consideration of structural failures 

C HAZID Worksheets 

- Hazard description 

- Cause and effect 
- Accident scenario 
-Frequency and consequences 

Prioritised List of Accident Scenarios F Risk matrix 

Step 2 

Ir 
e-t-I %4--4 

C Risk Control Options Log 

Preventative attribute (frequency) 

--- . Re-analysis of regulatory impact diagram 
Mitigating attribute (consequence) 

- Re-analysis of regulatory impact diagram 

) 

RISK ASSESSMENT 

Risk Contribution Tree 

- Fault tree analysis 
- Top event occurrence rate 

Event Tree -ý F-N curve 

- Escalation scenario of initial event 
- Nodal probabilities 
- Mitigating attribute 
- Damage to structure, cargo and life 
- Potential risk evaluation 

Casual Chain 

Regulatory Impact Diagram 

- Rating and weighting 
- Preventative attribute 
- RID index 

Figure 4.9: Procedures of formal safety assessment 
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As a result of failure to address such human factors issues, casualty cases have been put 

ever so often in the spotlight. In order to make a step improvement however, any new 

approach to safety needs to target the human factor in a rational and systematic manner. 
FSA adopts this approach by allowing for the human element to be incorporated into its 

process from a human reliability analysis that takes details squarely with the 

contributing factors to human error. 

4.5 Procedure Summary of Formal Safety Assessment 

Figure 4.9 summarises the procedures of FSA as discussed in Sections 4.4.1 to 4.4.5 and 

the flow of inputs/outputs at each procedure. 

Additionally, absolute decisions about acceptability require a degree of confidence in 

both the results of risk analysis, and in the acceptable level of risk, which are probably 

not justified at the present time for an industry as diverse as shipping. This is due partly 

to the paucity of data and resulting uncertainties, and also to the lack of experience of 

using FSA in the shipping industry. The FSA process is therefore probably best seen 

and relied upon as a comparative rather than an absolute method for the time being. 

4.6 Incentive for Utilising Formal Safety Assessment 

FSA involves much more scientific aspects than previous conventions. The benefits of 

adopting FSA as a regulatory tool include (MSA, 1993): 

"A consistent regulatory regime, which addresses all aspects of safety in an 

integrated way. 

" Cost effectiveness, whereby safety investment is targeted where it will achieve 

the greatest benefit. 

"A proactive approach, enabling hazards that have not yet given rise to accidents 

to be properly considered. 
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" Confidence that regulatory requirements are in proportion to the severity of the 

risks. 

"A rational basis for addressing new risks posed by ever changing marine 

technology. 

Furthermore, application of FSA in ship design and operation may offer great potential 
incentive that could: 

" Improve the performance of the current fleet, be able to measure the 

performance change and ensure that new ships are of good designs. 

" Ensure that experience from the field is used in the current fleet and that any 
lessons learned are incorporated into new ships. 

" Provide a mechanism for predicting and controlling the most likely scenarios 

that could result in incidents. 

4.7 Brief Review of FSA Trial Application to Key Generic Ships 

On an international acclaim, large-scale FSA studies have been mainly undertaken for 

high speed passenger catamaran ferries (HSC) and bulk carrier (BC) ships. These 

vessels have been considered an appropriate basis for the FSA approach as they embody 

new technology largely without an extensive historical basis of experience. To this end, 
focus of the studies is deployed only to highlight a brief review to the results in their 

significant progress. 

4.7.1 Trial FSA Application to High Speed Passenger Catamaran Ferries 

The final report of the FSA to HSC (IMO, 1997c), as undertaken by the United 

Kingdom, focused on the safety of passengers and crew. To provide a broad 

perspective, both of hazards and of a variety of different aspect of HSC design, 

construction and operation, the following accident categories were selected for trial 

study: 



Chapter 4- Formal Safety Assessment 

" Collision and contact; 

" Fire; and 

" Loss of hull integrity (including structural failure) 

Event tree for Event tree for Event tree for 
Fire escalation Collision & contact Loss of hull integrity 

Event tree for 
Evacuation 

Evacuation 
Overall F=2x10.3 

Fire/explosion 
Overall F=7.1 x 10"3 

PLL=0.011 lives/vessel/vear 

Collision & contact 
Overall F=7.3 x 10.2 

PLL=1.15 lives/vessel/vear 

Loss of hull integrity 
Overall F=3x 10"3 

PLL=0.00031 lives/vessel/vear 

ýýý 
Contribution fault tree 

Influence diagram 
Contribution fault tree 

Influence diaeram 
Contribution fault tree 

Influence diagram 

rN V*ý-N V-N 
Figure 4.10: Components of HSC risk contribution tree 

Following causes and outcomes of the accident scenarios being identified for 

consideration, the risk analysis of the HSC trial study presents the risk contribution tree 

(RCT), which is briefly outlined in Figure 4.10 (IMO, 1997c), for the three accident 

categories. Overall frequency (F) figures of 7.1 x 10-3 per vessel year for the fire 

category, 7.3 x 10-2 per vessel year for the collision and contact category and 3.0 x 10-3 

per vessel year for the loss of hull integrity (LOHI) category have been derived from the 

sorted incident database (IMO, 1997c). Injury weightings have been applied to 

determine equivalent fatalities and the PLL caused by the occurrence of these failure 

events have then been determined from FN curves. These PLL values are given as 

0.011 lives/vessel/year for the fire category, 1.15 lives/vessel/year for the collision and 

contact category and 0.00031 lives/vessel/year for the LOHI category (IMO, 1997c). 

These results provide an approximation to risk that appear to be realistic for the fire and 

LOHI events but may not be a true representation of risk for collision and contact 

events. The study also assumes that the maximum estimated PLL reduction could be 
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achieved and therefore, seven risk control options (RCOs) were finally ranked for their 

implementation in the trial application of the FSA process (IMO, 1997c). 

Although expert judgement was applied to account for areas of uncertainty, the study 

acknowledges that there remain uncertainties with regards to the numerical evaluations 

for the overall frequency and assumed maximum PLL. 

4.7.2 Trial FSA Application to Bulk Carrier Vessels 

Serious concerns have been expressed about the safety of bulk carriers since a spate of 

sinking in the early 1990's. IMO prompted an international programme of research and 

development culminating in the 1997 IMO SOLAS Conference on Bulk Carrier Safety 

(IMO, 1999). The research had shown that the ships at greatest risk comprised those of 

over 15 years of age, and 150m in length, carrying dense cargoes such as coal or iron 

ore, and built with single side skin construction. The most likely cause of loss was 

considered to be side shell failure causing flooding of cargo holds and leading to overall 

structural failure of the ship due to overloading of the structure. For trial FSA of BC 

vessels, the key hazards relate to failure of watertight integrity (IMO, 2002c), which 

thus implies LOHI. These result from failure related to: 

A: The closing devices provided. 
B: The hull envelope itself. 

C: Inappropriate operations aspects. 

Fault trees and event trees had to be developed for the failure related to A, B and C, in 

order to achieve a RCT for the trial FSA on bulk carrier vessels. These tree-type 

analyses were developed from the statistical base of events contributing potentially to 

the LOHI and their frequency of occurrence over the period 1978 to 2000 (IMO, 

2002a). In the expanded fault tree case of Figure 4.11 (see IMO, 2002c), branch B (hull 

envelope) have been clearly prevailing and suggest the most significant high-level event 

to be that of side shell failure due to fatigue/wastage with 146 identified cases, across all 

sizes of BC, resulting in 113 lives lost. While side shell failure due to collision, 

escalating to loss of structural integrity and sinking, accounts for 26 cases, but has 
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caused 130 fatalities, hatch cover failures account for a total of 40 incidents, which have 

resulted in 565 fatalities. The later appear to be the result of covers being dislodged 

(possibly due to failing securing devices or unsecured hatches), however, their structural 
failure is apparent and cannot be ruled out. 

Loss of hull 
integrity 

ý 

TOP 

Closing devise 
failure 

H-JI et1vel-p- 

side shell 
failure 

Operational 
failure 

I -i 
Figure 4.11: Fault tree of the first level to BC failure of watertight integrity 

Side shell failure in branch B of the LOHI event leading to rapid flooding and 

consequent loss of ship generated a PLL of 2.34 x 10-3 fatalities per ship year (i. e., 94% 

of total PLL, according to IMO (2002c), see Figure 4.12)). The predominance of PLL 

of hatch cover and side shell failure incidents is flagrant with a dramatic impact on loss 

of life from hatch cover incidents which results in approximately 1.5 times more 
fatalities than side shell incidents with 4 times less occurrence. The overall value of 

risk is 1.22 x 10-2 fatalities per ship year (IMO, 2002c). A large number of risk control 

measures (RCMs) have eventually been derived for BCs, including a total of 98 derived 

from the international community (IMO, 2002d). These assessed RCOs are divided into 

three branches given by the ETs and ETs of A, B and C, for which a screening process 

was applied to sort and review potential RCMs and RCOs. In addition to those, two 

evacuation RCOs, i. e., free-fall lifeboat and float-free accommodation, have been 

considered. 



Chapter 4- Formal Safety Assessment 

LOHT 
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Yes 
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No 
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No 
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No 

Side shell 
failure 

No 

Fatalities 

C 
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No 

No 

No 

Total PLL =2.48 x 10-3 
361 fatalities 

Figure 4.12: Event tree showing sequence of events for BC side shell failure 

Cost benefit assessment (CBA) study was applied to calculate and rank 75 of the 98 

derived RCOs for BCs of Handy (Handysize & Handymax), Panamax and Capesize 

types in terms of their cost effectiveness with respect to potential risk reduction 

available (ShipTech A/S, 2002). These have been analysed, quantified and ranked 

according to their net cost of averting a fatality (NetCAF). The criteria on which a RCO 

was selected for recommendation are generally those assessed by the trial application of 

FSA to BC vessels to have a NetCAF being <$3 million US dollar or to provide an 

estimated reduction in risk (i. e., PLL) of the order of 10-4 or better 

(ShipTech A/S, 2002). 

The estimates given above are encumbered with statistical uncertainty. Even though the 

risk contribution from the water ingress scenarios in general is a significant estimate, 

the break down on the underlying scenarios is more uncertain, e. g. the importance of the 

side shell failure scenarios may be over-estimated, whereas the importance of the hatch 

cover failure scenarios may be under-estimated (IMO, 2001b). 
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4.8 Major Hurdles in the Advancement of FSA and the Road Ahead 

After over a decade since FSA surfaced as the accepted marine risk-based approach to 

improving safety of ships, their system and in protecting the environment, the major 

trial FSA studies (IMO, 1997c; 2002a; 2002c) that have been undertaken (Sections 4.8.1 

and 4.8.2 provides a brief review of their risk analysis) still left many issues unresolved 

in the advancement of the approach. Some of the most vital issues are therefore 

outlined in the following sub-sections. 

4.8.1 Incorporation Case of the Human Element 

It is very important to take into account human error problems in FSA. Factors such as 
language, education, training, etc., that affect human error, have increased over the past 

years, especially with the introduction of multi-national crews. Such problems largely 

contribute to marine casualties. On the other hand, crew reductions have increased the 

workload of operators, which in connection with the reduced opportunities for port stay 

and recreation equally increases the probabilities for errors. 

It becomes apparent that FSA's success largely depends on two essential conditions. 
The first condition is the development of a safety culture at all levels of the industry's 

infrastructure, from company managers to vessel operators. The second one is the 

inclusion into the FSA framework itself of further guidance on how human factors 

would be integrated in a feasible manner. 

4.8.2 Availability and Reliability of Data 

The confidence of FSA greatly depends on the reliability of failure data. The 

availability and accuracy of data defines the ease and accuracy with which a project 

such as this can be carried out. The more expert judgement that is used in developing 

risk analysis studies the more subjective the results become and the more open to 
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challenge. Furthermore, the risk analysis task of the reviewed FSA studies, which has 

been briefed in Sections 4.7.1 and 4.7.2, proved to be quite a challenging and lengthy 

one due to the obvious deficiencies in casualty data. 

Nonetheless, it is rare for a study, particularly in the marine environment, to have 

comprehensive data and the approach is almost always one of using data backed up with 

expert judgement; the two approaches are complementary. The application of FSA may 
facilitate the collection of useful data on operational experience that can be used for 

effective pre-active safety assessment. However, international co-operation and co- 

ordination are required with the intention that a new global database will be established, 

controlled and updated by an international regulatory body (i. e. IMO). Such a database 

should be easily accessible by both administrations and analysts/researchers, providing 

reliable data with defined parameters upon which the incoming information has been 

processed. 

4.8.3 Risk Criteria Acceptance and Cost Effectiveness 

The acceptability of risk is a problematic question and likewise, risk communication 

may also be a problematic issue. Large variations also exist in the risk criteria that are 

set around the world, as they depend mainly on local regulators. Up to today, much 

effort is being made by administrations individually, without any co-ordination among 

them. Considering that internationally trading vessels move constantly from one 
jurisdiction to another, it becomes apparent that this lack of co-ordination is bound to 

produce further confusion to the industry, which does not seem willing to accept it. 

The establishment of universally acceptable risk criteria for ships may be achieved 

through a compromise between qualitative and quantitative figures. When quantitative 

risk assessment (QRA) is performed, it is required to use numerical risk criteria. It is 

generally noted that no quantitative criteria in FSA exist even for a particular type of 

ship although the trial applications have used QRA to a certain extent. Therefore, 

numerical risk criteria for FSA application needs to be reviewed for possibility of its 

incorporation in future studies. Nonetheless, the application of numerical risk criteria 

may not always be appropriate/suitable to use as inflexible rules because of 
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uncertainties in inputs. Accordingly, acceptance is unlikely to be based solely on a 

numerical risk assessment. It can therefore only assist judgements and be used as 

guidelines for decision-making. 

It is appropriate to consider the acceptability of risk, as in broad terms, there is risk 

attached to every activity. At one end of the scale, there is a risk level that would be 

considered intolerable, that is, an activity giving rise to the risk can/should not be 

justified. At the other end of the scale, a risk may be so low that the cost and trouble 

involved in further reducing it may be quite unreasonable. Indeed, it would be wrong to 

devote resource to risks that are already acceptably low, when the same investment 

would be better expended on reducing other, greater risk. 

In the decision-making process, criteria may be used to determine if risks are 

acceptable/tolerable, unacceptable/intolerable or need to be reduced to ALARP. In the 

regions between the maximum tolerable and broadly acceptable levels, risks should be 

reduced to ALARP, taking costs and benefits of any further risk reduction into account. 

4.8.4 Complexity Owing to the Use of Cost-Benefit Analysis 

The cost-benefit approach remains controversial when applied to the safety of life and 

the environment, although its use as a platform on which a given option is finally 

selected for implementation is an appealing proposal. In practice, however, it can be 

quite complicated, especially in cases where human lives are involved. The fact that 

ships are manned with multi-national crews, usually officers from developed countries 

and crews from developing ones, and obliged to trade in all parts of the world creates a 

difficulty in selecting the proper human life value for cost benefit analysis. 

Furthermore, the use of different values on different nationalities would have an adverse 

and undesirable effect on both international relations and working conditions onboard 

ships. 

A feasible solution to this problem would involve an international agreement on a 

reliable method of estimating the current value of human life. The international 

regulatory bodies should not only be responsible for the initial deliberations, but also for 
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the constant follow up of the international economic, political and social trends that 

influence that value. 

4.8.5 Treatment of Uncertainty and Expert Judgement 

Accident and incident databases, if available, are very useful for the risk assessment 

exercise. Uncertainty problems however, do arise with older data or data concerning 

distant occurrences (THEMES, 2001). The environmental conditions, cultural habits 

and other singularities like adherence to rules, may differ quite a lot between different 

areas and cultures of the world. Some special types of accidents need an enlargement of 

the scope. 

The FSA procedure utilises expert judgements and expert sessions. The suitable experts 

must represent a broad range of knowledge, domain experience and skills. However, it 

is possible to reduce the use of expert judgement by utilising objective data based on 

engineering analysis as far as possible. 

4.9 Concluding Remarks 

The adoption of FSA by the IMO, together with other recommendations, has introduced 

a new dimension to the way that safety is considered within the shipping community, 

and it is rapidly gaining international acceptance as a solution enabling the application 

of risk based techniques to international shipping. As progress continues, it will 

represent a fundamental cultural change from the present reactive approach to one that 

is proactive and soundly based on an evaluation of risk. 

Although at an early stage and despite considerable confusion in some quarters, FSA 

offers the challenge of working in an industry that will make greater use of risk-based 

approaches. FSA differs from the safety case route recommended in that it aims to 

support the rule making process at a generic level and to provide a logical methodology 

to establishing rules, which may well be predominantly prescriptive. The approach will 

encourage inter-disciplinary approaches to safety and should produce more effective 
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rules, which address the problems identified in a holistic manner rather than in an ad 

hoc way. It will also allow for the aggravating human element to be incorporated into 

its process. 

It is necessary to establish an acceptable risk evaluation criteria based on cost 

effectiveness. It should however be noted that the acceptable cost would be a function 

of and depends on the level of risk. 

In reviewing the risk analysis carried out on the trial application of FSA to HSC and BC 

ships, it has become apparent that there is still plenty of space for improvement on FSA 

application to the maritime field. Areas on which such improvement can be achieved 

include risk criteria acceptance, cost-benefit, life-saving equipment, information 

availability and/or expert judgement, uncertainty treatment and human reliability. The 

later two areas are extremely vital for the practical use of FSA yet these were often not 

tackled in the trial studies. In the proceeding three chapters, the treatment and reasoning 

under conditions of uncertainty is embarked upon. Another chapter, which follows after 

these three, deals with both uncertainty treatment and human reliability. 
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Chapter 5: Treatment of Uncertainty 

Chapter Summary 

Risk cannot be uniquely determined because of various types of uncertainty. The costs 

of ignoring uncertainty can be very high in terms of unwelcome surprises and poorly 

calculated risk-taking behaviour. Thus, it is important to reduce this uncertainty to a 

manageable level and much crucial for maritime risk assessment and decision-making 

to be conducted in the presence of uncertainty. 

There are many potential sources of uncertainty affecting risk. Available knowledge 

that needs to be utilised may be unreliable, incomplete, imprecise, vague and/or 

inconsistent. Moreover, inherent uncertainty is associated with even the most 

comprehensive and useful data for quantified risk assessment in safety-critical maritime 
domains. Various theories have been developed to accommodate the different 

characteristics of uncertainty forms for risk-based modelling. 

5.1 Introduction 

All maritime activities desire the lowest level of risk possible in order to pave way for 

the highest probability of success, profit, or some form of gain (e. g. high performance, 

safety and reliability). Therefore, even when the risk assessment result of a safety- 

critical marine and offshore application indicates the risk level is negligible, acceptable 

or as low as reasonably practicable (ALARP) in criteria (HSE, 1992), such risk 

acceptance must incline towards minimal uncertainty. 

Nearly every assessment encounters situations where data are unavailable or where 

information is available on parameters that are different from those of interest for the 

assessment. The very heart of risk analysis is the responsibility to use whatever 
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information is at hand or can be generated to produce a number, a range, a probability 

distribution - whatever expresses best the present state of knowledge about the effects of 

hazards in some specified setting (NRC, 1994 and 2000). Simply to ignore the 

uncertainty in any analytical process is almost sure to leave critical parts of the process 
incompletely examined, and hence to increase the probability of generating a risk 

estimate that is incorrect, incomplete, or misleading. Therefore, uncertainty is clearly a 
key factor in risk-based modelling. By incorporating uncertainty into the risk 

assessment process, alternative-planning strategies can be viewed more realistically. 

Also, to arrive at a decision in the presence of absolute certainty with respect to all the 

relevant facts and considerations is a luxury rarely afforded to human beings. 

Assumptions must be made about data values and/or about events, which may or may 

not have occurred, and about consequences likely to flow from a given decision. In the 

real world, the consequences of any decision choice made cannot be fully known before 

that choice is made, which means that the ideas of uncertainty and risk have to be 

examined. Many of these assumptions may be made unconsciously or subconsciously. 

Some may be made explicitly, with whatever degree of justification may be adduced. 

Mathematics may be prayed in aid of some assumptions made on statistical bases. 

Otherwise, rule of thumb and accrued experiences serve as a guide (Graham & Jones, 

1988). Thus, decision-making under uncertainty (the theory of how to take those 

uncertainties into account in an optimal manner in decisions) has to also govern an 

important part of risk management. Failure to do so is likely to result in adverse 
impacts on performance, and in extreme cases, impede safety. 

5.2 Uncertainty in Risk Analysis 

The term `uncertainty' has come to encompass a multiplicity of concepts. It typically 

refers to situations in which many outcomes of a particular choice are possible but the 

likelihood (or probability) of each outcome is unknown. Risk is rather different in that 

it can only be measured accurately on the assumption that all the possible outcomes and 

the likelihood (probability) of each outcome occurring are known. Risk can be 

estimated in a variety of ways by assigning probabilities to various possible outcomes. 
In fact, in risk analysis, the uncertainty can be put across as a lack of certainty/precise 
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knowledge as to what the truth is, whether qualitative or quantitative (NRC, 1994 and 

2000), which in turn has important implications to the results of the assessment and to 

what can be achieved at the decision-making. Sometimes these implications are `risk' 

in the sense of `significant potential unwelcome effects on the safety-critical 

performance of the domain application'. Nonetheless, that lack of knowledge creates an 

intellectual problem - that one does not know what the "scientific truth" is; and a 

practical problem - one needs to determine how to assess and deal with risk in light of 

that uncertainty (NRC, 1994 and 2000). 

Scientific truth is always somewhat uncertain and is subject to revision as new 

understanding develops (NRC, 1994 and 2000). In the realistic viewpoint, uncertainty 
in maritime quantitative risk assessment (QRA) might be uniquely large, so it requires 

special attention by risk analysts - one that calls for a clear understanding of where the 

uncertainty comes from, in what form, what repercussion it possesses and how it can be 

dealt with in order to decrease its presence. Therefore, it is crucial for risk assessment 

to be conducted in the face of it. 

5.3 Sourcing and Representing Uncertainties 

It is an essential prerequisite for risk analysts and decision makers to understand the 

nature of perceived threats and opportunities in order to identify hazards, assess and 

manage the attendant risk. Thus, those uncertainties that may give rise and shape the 

risk, threat and opportunity, have to be well sourced and represented in order for them 

to be dealt with appropriately. 

5.3.1 Sources of Uncertainties 

The natural world is the ultimate source of all uncertainty. Therefore, even before the 

risk assessment commences, there are uncertainties attributable to the complexity of 

requirements or implementation (INCOSE/PMI, 2002) and that of people issues in the 

least of cases. Through the course of a risk analysis, there are many potential sources of 
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uncertainty that safety-critical maritime systems must be able to cope with, though most 

can be attributed to one of, 

" Imperfect Domain Knowledge: The theory of the domain may be vague or 

incomplete. Incompleteness necessitates the use of rules of thumb (or 

heuristics), which may not always give optimal or correct results. Even if the 

domain theory is complete, an expert may use approximations or heuristics to 

save time or simplify the problem solving. 

" Imperfect Case Data: Data is collected in the field with different levels of 

accuracy; so naturally, the knowledge accrued ends up being implicitly 

imperfect. Also, data gaps are usually bridged based on a combination of 

scientific data or analyses, expert judgement, and through the use of some 

analogous data that may be the only option available. Therefore, experts, the 

risk analysts and other professionals may disagree over which data is relevant to 

include in risk models, especially when there is conflicting data. This lack of 

consensus can increase uncertainty. Human reports may be ambiguous or 

inaccurate. Evidence from different sources may be missing or in conflict. 

Even if exact data were available, it could be too costly in time or resources to 

get it. Confidence can be increased through consensus building techniques such 

as peer reviews, workshops, and other methods to elicit expert opinion. Cost- 

effective data-acquisition strategies can be developed to achieve decision closure 

where there is adequate data or where further reduction of uncertainty is needed 

and is feasible. 

Whatever the source of uncertainty, safety-critical maritime systems need to be able to 

deal with it. Opportunities for reducing these sources of uncertainty should be noted 

and carried through to risk characterisation. 
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5.3.2 Representation of Uncertainty 

As far as knowledge representation schemes are concerned, a good mechanism for 

representing uncertainty ought to have the following properties (Graham & Jones, 

1988): 

" Consistent and natural semantics. 

" An appropriate level of granularity as required. 

" It should allow appropriate assumptions about independence. 

" An intelligent, meaningful dialogue and knowledge representation manage. 

" Easy and intelligent tracing of aggregation and propagation of uncertainty. 

" It should be store the reasons for its support for or arrival at hypotheses. 

" Second-order measures of uncertainty. 

" It must be able to resolve conflict. 

" For large or real-time knowledge-based system, heuristic control strategies 

must be possible. 

" Cognitive emulation of how experts handle uncertainty may be desirable in 

some cases and should be possible. 

" Its logic should be context dependent. 

At this point it is appropriate to remark on granularity: RULES ARE SUMMARIES. 

In other words the chunking of knowledge represents abstraction, and often this is how 

human experts reduce or eliminate uncertainty. This is very like the idea of disposition 

- implicit quantifiers (Graham & Jones, 1988). Experienced experts often insist that 

they use a rule of thumb that assigns linguistic labels to ranges of numerical inputs. 

Uncertainty expresses a measure of confidence. The three basic methods of 

representing uncertainty are numeric, graphic, and symbolic (Turban, 1992). 

Numeric: The most common method of representing uncertainty is numeric using a 

scale with two extreme numbers. For example, 0 may be used to represent complete 

uncertainty while 1 or 100 represents complete certainty. Although such representation 

seems to be easy to some people, it may be very difficult to others. For example, ship 
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speed, for a given distance and travelling time, may vary considerable depending on 

waves and weather conditions. 

Graphic: Although many experts can describe uncertainty in terms of numbers, such as 

"it is 85 percent certain that ... ", some have difficulties in doing so. By using 

horizontal bars, for example, it is possible to assist experts in expressing their 

confidence in certain events. Such a bar is shown in Figure 5.1. Experts are asked to 

place markers somewhere on the scale. Thus, expert A may express very little 

confidence of the likelihood of occurrence of an event, whereas expert B has much 

more confidence. 

Expert A Expert B 

a 
No (om plcte 

confidence confidence 

(a) Expert confidence on the occurrence of an event 

(b) Probability-like scale 

(c) Scale built around zero 

Figure 5.1: Confidence scales for graphic representation of uncertainty 

Even though some experts prefer graphic presentation, the graphs are not as accurate as 

numbers. Another problem is that most experts do not have experience in marking 

graphic scales (or setting numbers on the scale). Thus, many experts, especially 

managers prefer ranking over graphic or numeric methods. 
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Symbolic: There are several ways to represent uncertainty by using symbols. Most 

experts use a Likert scale approach to express their opinion. For example, an expert 

may be asked to assess the likelihood of occurrence of an event on a five-point scale: 

very unlikely, unlikely, neutral, likely, and very likely. Ranking is a very popular 

approach among experts with non-quantitative preferences. Ranking can be either 

ordinal (i. e., listing items by the order of their importance) or cardinal (ranking 

complemented by numeric values). Managers are often comfortable with ordinal 

ranking. When the number of items to be ranked is large, people may have a problem 

with ranking and also tend to be inconsistent. One method that can be used to alleviate 

this problem is a pair-wise comparison combined with a consistency checker in which 

two items at a time are ranked and checked for consistencies. A methodology for such 

ranking is called the analytical hierarchy process (see Saaty, 1980). 

5.4 A Taxonomy of Uncertainty 

Every uncertainty that present itself in risk analysis belongs to a certain type or types, 

which can further be classed based on their form or parameter. 

5.4.1 Types of Uncertainty 

In modern practice, risk analysis usually incorporates pragmatic uncertainties of both 

the aleatory and epistemic variety. These are described, using the following 

terminology (NRC, 2000): 

5.4.1.1 Aleatory uncertainty 

Aleatory uncertainty is attributed to inherent randomness, natural variation, or chance 

outcomes in the physical world; in principle, this uncertainty is irreducible as the 

knowledge of experts cannot be expected to reduce aleatory uncertainty although their 

knowledge may be useful in getting a better estimate of the magnitude of the variability. 
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This uncertainty is sometimes called, random variability, stochastic variability, natural 

variability, objective uncertainty, or external uncertainty (Parry, 1996 and NRC, 2000). 

Sources of aleatory uncertainty can commonly be singled out from other contributors to 

uncertainty by their representation as randomly distributed quantities that can take on 

values in an established or known range, but for which the exact value will vary by 

chance from unit to unit or from time to time. The mathematical analysis most 

commonly used for aleatory uncertainty is probabilistic. When substantial experimental 

data are available for estimating a distribution, there is no debate that the correct 

treatment modelling for aleatory uncertainty is by way of a probability distribution. 

5.4.1.2 Epistemic uncertainty 

Epistemic uncertainty is attributed to lack of data, lack of knowledge about events and 

processes that limits our ability to model the real world; in principle, this uncertainty is 

reducible with sufficient study and therefore, expert judgement may be useful for its 

reduction. This uncertainty is sometimes called, subjective or internal uncertainty 

(Parry, 1996 and NRC, 2000). 

Epistemic uncertainties can be divided into two major sub-categories: model 

uncertainty and parameter uncertainty (See Figure 5.2). Model uncertainty has to do 

with the degree to which a chosen mathematical model accurately mimics reality; 

parameter uncertainty has to do with the precision with which model parameters can be 

estimated. The mathematical analysis used for treating epistemic uncertainty is 

typically non-probabilistic. 

5.4.2 Sub-Categories of Uncertainty 

Uncertainties may arrive singly or in groups, whether data is collected manually or 

automatically (Graham & Jones, 1988). Policy and risk analysis community has 

classified uncertainty into quantity/parameter and model-based uncertainty (Morgan & 

Henrion, 1990). Figure 5.3 illustrates this classification. 
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Scenario abstraction 

i 

Aleatory uncertainty 1 

Figure 5.2: Processing and treatment of types of uncertainty in risk analysis 

I Model form 
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Figure 53: Uncertainty classification in risk analysis 
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5.4.2.1 Parametric-Based 

The parametric/quantity-based group is given in Table 5.1, which briefly 

defines/explains each sub-classification in the group (Morgan & Henrion, 1990). 

Table 5.1: Quantity type uncertainty definitions in policy and risk analysis 

Uncertainty Sub-classification Definition/explanation 

Arises from random error in direct measurements of a 
Statistical variation 

quantity 

Teamed with systematic error as the difference between the 

Subjective true value of a quantity of interest and the value to which the 

judgment mean of the measurements converges as more measurements 

are taken 
Empirical quantity 

Linguistic Refers to quantities that are not well-specified and could not 
imprecision be empirically measured in principle 

Variability Refers to quantities that are variable over time and space 

Randomness Uncertainty that is irreducible even in principle 

Difference between the assumed quantity value and the real- 
Approximation 

world value 
Quantity over which the decision maker exercises direct 

Decision variable n/a 
control 
Parameter that represents aspects of the preferences, such as 

Value parameter n/a 
those giving benefits, of the decision maker 

Model domain 
n/a Specifies the domain or scope of the system being modelled 

parameter 

Variable used to rank or measure the desirability of possible 
Outcome criteria n/a 

outcomes 

All of the quantity-based uncertainties vary in magnitude, location, or time of 

occurrence as well as in their interactions with each other and have the ability to 

accumulate during the whole process, from data collection through all the different 

assumptions and uncertainties connected to the applied methodology and models. 

Properly designed studies will specify sample sizes that are sufficiently large to detect 

important signals. Unfortunately, many studies have sample sizes that are too small to 

detect anything but gross changes (Smith & Shugart, 1994; Peterman, 1990). 
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5.4.2.2 Model-Form 

Uncertainty associated with the model form refers to the approximations that a model 

provides to a real-world system. In other words, it represents that uncertainty about the 

degree to which a model is an adequate representation of the world for the problem at 

hand. Model form uncertainty is differentiated from (quantity form) model domain 

parameter uncertainty by referring to the actual model itself as opposed to the quantities 

assumed in the model (Morgan & Henrion, 1990). Any model is unavoidably (and by 

definition) a simplification of reality. A real-world system contains phenomena or 

behaviours that cannot be produced by even the most detailed model. The difference 

between the real-world system and such a model is "model form uncertainty". 

Opinions of experts on the appropriate conceptual model configuration may differ. 

Sources of uncertainty that arise primarily during development and application of 

models include: 

" The structure of process models due to errors introduced by oversimplified 

representations of reality (e. g., representing a three-dimensional strut and 

bracket with a two-dimensional mathematical model). 

" The description of the relationship between two or more variables in empirical 

models (e. g., incorrectly inferring the basis for correlations between offshore 

structure and ship-based activity). 

Moreover, any model can be incomplete if it excludes one or more relevant variables 

(e. g., relating ignition to fire without considering the effect of gas release on both those 

exposed to ignition and those unexposed), uses surrogate variables for ones that cannot 

be measured (e. g., using wind speed at the nearest port as a proxy for wind speed at the 

offshore facility), or fails to account for correlations that cause seemingly unrelated 

events to occur much more frequently than would be expected by chance (e. g., two 

separate components of a marine engine are both missing a particular washer because 

the same newly hired assembler carried out the assemble work on them). 
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5.5 Theoretical Methods of Handling Uncertainty 

Methods for analysing and describing uncertainty can range from simple to complex for 

which some appropriate mathematical treatments need to be explored. Selecting the 

appropriate statistics depends on the amount of data available and the degree of detail 

required. Often included are methods of combining and propagating uncertain 

information within a mathematically rigorous structure. More complicated methods 

become necessary when multiple sources of uncertainty must be combined (Phillips & 

LaPole, 2003). 

Some of the more common approaches to representing and handling uncertainty used by 

various reasoning systems today are based on (Klir, 1994; Dubois & Prade, 1988; 

Graham & Jones, 1988; Baldwin, 1996): 

" Probabilistic analysis 

o Classical set theory 

o Probability theory 

o Bayes' theory 

" Evidential reasoning 

o Dempster-Shafer theory 

o Mass assignment theory 

" Possibilistic analysis 

o Interval mathematics 

o Possibility theory 

o Fuzzy set theory 

As with the reasoning technologies they are typically associated with, each approach 

has various strengths and characteristics regarding its representational capabilities. 

Each has different representational characteristics and propagation models. When a 

modelling approach is used, sensitivity analysis can be used to evaluate how model 

output changes with changes in input variables, and uncertainty propagation can be 

analysed to examine how uncertainty in individual parameters can affect the overall 

uncertainty of the assessment. 
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5.5.1 Probabilistic Reasoning Under Uncertainty 

The calculation of one or more point estimates is one of the most common approaches 

to presenting analysis results; point estimates that reflect different aspects of uncertainty 

can have great value if appropriately developed and communicated (EPA, 1996). 

Nonetheless, one aspect that most uncertainty management schemes agree on is that 

single point values of risk are worse than representing both variability and uncertainty. 

Common ways to more adequately express uncertainty are: 

" To represent the level of uncertainty by modifying the probability for 

propositions. 

" To treat it as a separate entity that is affixed to each probability. 

" To represent it as a range of opinions. 

Opinion pooling is particularly effective at assessing the usefulness of information 

produced by human experts (Kahn, 2004). When applied in a hierarchical model, it can 

provide a natural and flexible way to incorporate dependencies among experts while 

acknowledging that they may justifiably disagree. In these models, uncertainty in a 

probabilistic value is represented by a collection of estimates of the quantity and the 

degree of certainty or uncertainty is measured by means of the distribution of values in 

the collection of estimates. 

5.5.1.1 Probability Theory 

If an event has yet to occur, and there is more than one possible outcome, then there is 

clearly some uncertainty about its outcome. Probability theory provides an ideal way of 

handling such uncertainties. Probability gives a measure of the likelihood of an event 

resulting in one possible outcome under one set of conditions. Also, the outcome itself 

is restricted to a binary state {true, false}. Given some history of previous outcomes for 

this type of event one can determine a measure of the probability of this event being true 

when it occurs. If there is no history of previous outcomes and one has no insight into 
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the event itself, then there is total uncertainty with regard to the event outcome. This 

complete uncertainty, which is represented by a uniform prior probability distribution, 

may be assigned to each of the possible outcomes. 

In almost all cases the uniform prior probabilities are unrepresentative of the actual 

outcome probabilities. A better method of obtaining these probabilities is by taking a 
frequency of occurrence approach where it is assumed that the number of times the 

event is encountered tends to infinity. Such an approach is more accurate than a 

uniform prior probability approach but requires a large history of event outcomes. 

For any event A, one can assign a number P(A), called the probability of the event A. 

This number satisfies the following three conditions that act as the axioms ofprobability 

(Papoulis, & Pillai, 2002): 

(i)P(A)>_0 

(ii) P(X) = 1, where X is the (finite) sample space. 

(iii) If AnB=0, then P(A u B) = P(A) + P(B) 

Note that probability axiom (iii) states that if A and B are mutually exclusive events, the 

probability of their union is the sum of their probabilities. 

The following conclusions follow from these axioms: 

(a) Since Auf=X, in using probability axiom (ii) one obtains P(A U Ä) = P(X) _ 

1. But AnfE0 and in using probability axiom (iii), one obtains: 

P(A u A) = P(A) + P(Ä) =1 (5.1) 

(b) Similarly, for any A, An {Q}= {0}. Hence it follows that P(A u {Q}) = P(A) 

+ P((). But Au (0) = A, and thus: 

P(O) =0 (5.2) 
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Whilst such a probability approach is useful for many simple cases, a more complicated 

problem arises when events are not mutually exclusive. (and this means that Equation 

2.7 in Section 2.5.6 of Chapter 2 applies). In these cases conditional probabilities can 
be calculated from Equation 5.3 (the rule of conditional probabilities): 

P(AIB) = 
P(Ar)B) 

P(B) 
(5.3) 

where I denotes "given", so that P(AIB) is the conditional probability that A is true given 

that B is true. 

In one way the conditional probability equation gives some elementary reasoning under 

uncertainty. There may be the uncertainty as to whether A is true, but if it is known that 

B is true, then the conditional probability rule of Equation 5.3 can at least estimate the 

probability P(AIB). 

The rule of conditional probability is extended to give the rule of total probabilities. 
This is shown in Equation 5.4. 

P(B) = P(BO). P(A) + P(Bj. 4). P(Ä) (5.4) 

The rule of total probabilities provides more power in reasoning about discrete events 

that are not mutually exclusive. 

S. S. 1.2 Bayes' Theory 

Bayes' theorem extends the rules of conditional probability and total probability. It 

provides a means of dealing with inference and belief updating in uncertainty situations. 
As can be read from Equation 5.5, the theorem defines a method of calculating the 

conditional, or posterior, probability P(IKE) from known probability P(EIH) and prior 

probabilities P(E) and P(H). 
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Basically, Bayes theorem enables the probability distribution across all independent and 

mutually exclusive H; given new evidence E to be updated. 

P(E I H, )"P(H; ) 
P(HiIE) 

k E P(E I H�)P(H. ) 
n=1 

where; 

P(H, IE) = probability that hypothesis H; is true given evidence E, 

P(EIH; ) = probability of observing evidence E given hypothesis H;, 

P(H; ) =a priori probability of hypothesis H; being true, and 
k= number of hypotheses. 

(5.5) 

In practice P(EIH; ) in Equation 5.5 may be computationally expensive to calculate if all 

evidence is not independent. If the assumption is made that all evidence is independent 

this is referred to as naive Bayes. 

If on the other hand new evidence e, is encountered and E and e are not independent, 

then conditional joint probabilities needs to be taken into account in order to calculate 
P(H; 4E, e). This is shown in Equation 5.6. 

P(ME, e) = PQAE). P(e I E, H) 
P(e I E) 

where; 

P(HIE) = probability that hypothesis H is true given evidence E, 

P(111E, e) = probability that H is true given E and new evidence e, 

P(ejE, H) = probability of observing e given H and E, and 

P(eIE) = probability of observing e given E. 

(5.6) 

The problem with modifying simple Bayes theorem (Equation 5.5) to the conditional 

evidence case (Equation 5.6) is in calculating the joint probabilities. For n pieces of 

evidence there are 2" joint probabilities to be calculated. For reasons of computational 
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speed, storage and knowledge acquisition, the conditional evidence case of Bayes 

theorem is frequently intractable. 

5.5.2 Evidential Reasoning Under Uncertainty 

This section looks at two key uncertainty reasoning theories which use more humanistic 

terms in dealing with information. These theories, namely Dempster-Shafer theory and 

the more sophisticated mass assignment theory, use terms such as evidence, belief and 

plausibility. 

5.5.2.1 Dempster-Shafer Theory 

In a finite discrete space, Dempster-Shafer theory can be interpreted as a generalization 

of probability theory where probabilities are assigned to sets as opposed to mutually 

exclusive singletons. In traditional probability theory, evidence is associated with only 

one possible event. In Dempster-Shafer theory, evidence can be associated with 

multiple possible events, e. g., sets of events. As a result, evidence in this theory can be 

meaningful at a higher level of abstraction without having to resort to assumptions 

about the events within the evidential set. Where the evidence is sufficient enough to 

permit the assignment of probabilities to single events, the Dempster-Shafer model 

collapses to the traditional probabilistic formulation. One of the most important 

features of this theory is that the model is designed to cope with varying levels of 

precision regarding the information and no further assumptions are needed to represent 

the information. It also allows for the direct representation of uncertainty of system 

responses where an imprecise input can be characterized by a set or an interval and the 

resulting output is a set or an interval. 

Belief, Bel and Plausibility, Pl 

Dempster-Shaffer theory allows for the allocation of probability-like weights to a set of 

events to be made in a way that allows statements of ignorance about likelihood of some 
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of the events. From the allocation of weights, two numbers that represent the 

uncertainty data can be obtained: the degree to which an event is supported by evidence 
(belief), and the degree to which there is a lack of evidence to the contrary (plausibility). 

These two numbers are the basis on which any belief-based decision is made. 

For any event A, the degree of belief in A, Bel(A), and degree of plausibility in A, P1(A), 

must satisfies the following conditions that act as the axioms of evidence (Shafer, 1976): 

(i) P1(A) >_ Bel(A) >_ 0 

(ii) Bel(X) = PI(X) = 1, where Xis the (finite) sample space. 
(iii) Bel(A) + P1(Ä) =1 

(iv) Bel(A u B) ? Bel(A) + Bel(B), if A and B are mutually exclusive events 

(v) P1(A u B): 5 P1(A) + P1(B), ifA and B are mutually exclusive events 

The following conclusions follow from these axioms: 

(b) Since AUÄ=X, in using evidence axiom (ii) one obtains Bel(A u A) = Bel(X) 

= 1. But AnÄE0 and in using evidence axiom (iv), one obtains Bel(A u A) _ 

I >_ Bel(A) + Bel(Ä). Thus: 

Bel(A) + Bel(Ä) S1 (5.7) 

(c) Similarly, for any A, An {Q}= {0). Hence it follows that Bel(A u {Q}) _ 
Bel(A) + Bel(O). But Au {0} = A, and thus: 

Bel(Q1) =0 (5.8) 

(d) Since Auf=X, in using evidence (ii) one obtains PI(A U Ä) = P1(X) = 1. But 

AnÄE0 and in using evidence (iv), one obtains PI(A u Ä) =1 <_ P1(A) + 

P1(Ä). Thus: 

PI(A) + Pl(Ä) >_ 1 (5.9) 
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(e) Similarly, for any A, An {Q}= {Q}. Hence it follows that PI(A u {Q}) _ 

PI(A) + P1(0). But Au 101 = A, and thus: 

PI(AS) =0 (5.10) 

Within a belief-plausibility interval lies the precise probability of the event A (in the 

classical sense) such that: 

Bel(A) <_ P(A) 5 PI(A) (5.11) 

A belief measure (or a plausibility measure) becomes a probability measure when all 
focal elements are singletons or the evidences are disjoint. In this case: 

Bel(A) = P(A) = P1(A) (5.12) 

This corresponds to classical probability, where all the probabilities, P(A) are uniquely 
determined for all subsets A of the universal set X (Ramer, 1987). 

The definition of conditional belief is different from the definition of conditional 

probability as given by Equation 5.13 (Halpern & Fagin, 1992): 

Bel(A[B) = 
Bel(A u B) - Bel(B) 

1- Bel(B) 

The conditional plausibility of A given B is (Halpern & Fagin, 1992): 

Pl(AIB)= 
PI(AnB) 

P1(B) 

If Bel is a Bayesian belief function, then: 

Bel(A[B) = 
Bel(A n B) 

= Pl(AIB) 
Bel(B) 

(5.13) 

(5.14) 

(5.15) 
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which coincides exactly with the classical conditional probability P(AIB) defined in 

Equation 5.3. 

Probability Assignment, m 

Dempster-Shafer theory also adds a third measure called the basic probability 

assignment (bpa) that is often denoted by m, which attempts to relate the measures Bel 

and Pl directly to probability theory. This theory's m is unlike the basic probability 

distribution, which is defined over the universe X, in that m is defined over the power 

set of X, P(X). That is: 

m: P(X) -> [0,1] (5.16) 

such that, m(O) =0 and m(A) = 1. 
AEP(X) 

Every set for Ae P(X) for which m(O) >0 is usually called a focal element of m. As 

the name suggests, focal elements are subsets of X on which the available evidence 
focuses. When X is finite, m can be characterised by a list of its focal elements A with 

the responding values m(A). The pair (Z, m ), where 3 and m denote a focal element 

and the associated basic assignment, respectively is often called a body of evidence 
(Türksen, 2004). 

A subset of P(X) containing only the singleton sets, {x} Vx E X, is analogous to the 

basic probability density function. The basic probability density function is therefore a 

restricted case of the Dempster-Shafer theory basic probability assignment. 

It is important to note that the definition of m does not require that m(X) =1 (as the 

basic probability density function does) or that m(A) <_ m(B) when AcB. The later of 

these two cases is important because it gives us more representation power then the 

basic probability density function. Furthermore, no relationship between m(A) and m(Ä) 
is required. 
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Bel, PI and m are related by Equations 5.17 and 5.18, where A is a subset of P(X) 

Bel(A) m(B) 
BF_A 

(5.17) 

PI(A) m(B) (5.18) 
BnAsPJ 

The inverse procedure is also possible. Given, for example, a belief measure Bel, the 

corresponding basic probability assignment m is determined for all AE P(X) by the 

formula: 

m(A) _ (-1)1A-BIBel (B) (5.19) 
BQA 

Total ignorance (Türksen, 2004), is expressed in terms of the basic assignment by m(X) 

=I and m(A) =0 for all A*X. In terms of the corresponding Bel measure, it is exactly 

the same: Bel(X) =1 and Bel(A) =0 for all A#X. However, it is quite different in 

terms of the corresponding PI measure: P1(O) =0 and PI(A) =0 for all A*0. 

Dempster Evidence Combination 

Evidence obtained in the same context from two independent sources, e. g., from two 

experts in the field of inquiry, and expressed by two basic assignments m, and m2 on 

some power set P(X) must be appropriately combined to obtain a joint basic assignment 

m1,2. In general, evidence can be combined in various ways (Sentz, & Ferson, 2002), 

some of which may take into consideration the reliability of the sources and other 

relevant aspects. The standard way of combining evidence is expressed by the formula: 

E m, (A). m2 (B) 

mb2(C) - Aýa=c 
ImA. m B ý ,() 2c ) 

,C #0 (5.20) 

AnB=O 
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Equation 5.20 is known as Dempster's rule of combination. According to this rule, the 

degree of evidence mi(A) from the first source that focuses on set AE P(X) and the 

degree of evidence m2(B) from the second source that focuses on BE P(X) are 

combined by taking the product mi(A) . M2(B) , which focuses on the intersection 

AnB. This is exactly the same way in which the joint probability distribution is 

calculated from two independent marginal distributions and, consequently, it is justified 

on the same grounds (Türksen, 2004). 

In order to obtain a normalised basic assignment mI, 2, the denominator of Equation 5.20 

acts as a normalising factor. Some of the intersections of Dempster's combination rule 

may be empty and the renormalisation of the final probability assignment to redistribute 

probability assigned to the empty set is a contentious operation. The theory of mass 

assignment (Baldwin, 1992) overcomes this problem through the mass assignment 

definition and combination methods. 

5.5.2.2 Mass Assignment Theory 

Mass assignment (Baldwin, 1992 and 1996) unifies probability, possibility and fuzzy 

sets into a single theory. Since this is a large topic for just one section, only the 

underlying theory of mass assignment with respect to probability theory will be 

considered here. Mass assignment approach to fuzzy sets, and hence possibility theory, 

can be found in Section 8.4.1.1. of Chapter 8. 

The mass assignment is similar to Dempster-Shafer theory's probability assignment, but 

is extended to enable mass to be assigned to the empty set. Equation 5.21 defines the 

mass assignment m over the powerset of universe X, P(X). 

m: P(X) -a [0,1] (5.21) 

such that, m(O) z0 and m(A) 
AEP(X) 
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A mass assignment over the power set P(X) defines a family of probability distributions 

over the universe X. The most general mass assignment defines complete uncertainty 

and is shown in Equation 5.22. The most specific mass assignment defines complete 

certainty and is shown in Equation 5.33. 

m(X) =I and m(A) = 0, VA E P(X), A*X (5.22) 

m(A) =I and m(B) = 0, `dB E P(X), B#A (5.23) 

Note in Equation 5.21 the special condition m(() >_ 0 which is less restrictive than the 

m(O) =0 restriction applied to probability assignment. The probability assignment is 

therefore a special case of the mass assignment. The mass assignment is said to be 

complete when m(f) =0 and incomplete otherwise. As with probability assignment, 

incompleteness arises from inconsistency between two pieces of evidence. 

The focal elements A of P(X) are defined as those elements of P(X) which have non- 

zero mass. In contrast to probability assignment, 0 can be a focal element. 

A mass assignment across focal elements is expressed as in Equation 5.24 where Z; is 

the it' focal element and m; is the mass assignment to Z. 

m=3j: m; Ii=1,..., n (5.24) 

Given a universe X the inverse m of mass assignment m is defined by Equation 5.25. 

m=X-3j: m; I i=1,..., n (5.25) 

The properties of mass assignment also follow the basic rules of Boolean algebra (See 

Table 2.6 of Chapter 2). 
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Mass assignment and probability distributions 

A mass assignment represents a family of probability distributions. It is often useful to 

generate one specific probability distribution called the least prejudiced distribution. 

As the name suggests, this distribution is the case when there is the assumption that 

mass assigned to a set A is equally likely to belong to any element in A. As a result, 

mass assigned to A can be distributed equally across all elements in A. More formally, 

given a mass m(A): 

m({B})= 
iýý) `dBEA (5.26) 

In order to obtain a least prejudiced distribution of mass to generate a single probability 
distribution, masses assigned to singletons {B} are now summed and assigned as 

probabilities for B. A probability P(B) is therefore defined as: 

B(B) m(A) 
BEA, AeP(X) JAI 

5.5.3 Possibilistic Reasoning Under Uncertainty 

(5.27) 

This section looks at the theories of Possibility and fuzzy set for reasoning about an 

epistemic state. Both theories are associated with terms such as fuzzy, possibility and 

necessity. The rules of these theories utilises max/min or max/product calculus, which 

are not found in probability theory. 

5.5.3.1 Possibility Theory 

A special branch of evidence theory that deals with bodies of evidence whose focal 

elements are nested is referred to as possibility theory. Special counterparts of belief 

and plausibility measures in possibility theory are called necessity and possible 

measures, respectively. 
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The possibility measure, 11, is defined in the powerset P(X) or universe X and is a 

mapping from P(X) to the unit interval [0,1 ]: 

II : P(X) --+ [0,1] (5.28) 

A possibility distribution, n, on the universe X can be defined such that the following 

mapping holds: 

n: X-+ [o, 1] 

and it is defined for all x r= X as, 

(5.29) 

n(x) = II({x}) (5.30) 

The necessity measure is the dual of possibility and is defined in terms of the possibility 

measure. 

(5.31) N: P(X)-+ [0, l] 

For any set A, the possibility of A, II(A), and necessity of A, N(A), must satisfies the 

following conditions that act as the axioms ofpossibility: 

(i) f7(, 4) ? N(A) z0 

(ii) N(X) =11(X) = 1, for any collection of subsets on the universal set X 

(iii) N(A) + 11(1) =1 
(iv) 11(A) + 11(1) zI 

(v) N(A) + N(Ä) Si 

(vi) 11(A u B) = max[FI(A), FI(B)] 

(vii) N(A n B) = min[N(A), N(B)] 

The concept of conditional possibility distribution function is essential for defining 

possibilistic independence. Two marginal possibilistic body of evidence are said to be 
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independent if and only if the conditional possibilities do not defer from the 

corresponding marginal probabilities. This is expressed by the equations: 

II(A[B) = II(A) (5.32) 

A(BW) = II(B) (5.33) 

for all xE Xand ally E Y, where II(AIB) and A(BW) denote conditional possibilities on 

XxY. 

For more information on possibility theory, see Laviolette & Seaman (1994) and 
Dubois, & Prade (1988). 

5.5.3.2 Fuzzy Set Theory 

Fuzzy sets theory defines real-world concepts and deals with uncertainty that may be 

due to human interpretation or machine measurement. The linguistic term warm, for 

example, has different meanings for different people, and is an example of fuzziness 

due to human interpretation. Measurement of a physical quality, on the other hand, may 
be restricted to a low precision measure by using inexpensive measurement devices, and 
leads to fuzziness in the measured quantity. 

A classical set can be regarded as a grouping together of elements, all of which have at 
least one common characteristic. If an element possesses this characteristic, it belongs 

to the set. If an element does not possess this characteristic, it does not belong to the 

set. In fuzzy set theory, the set is no longer restricted to this binary (yes/no) definition 

of set membership, but rather allows a graduated definition of membership. This means 

that a degree of membership to a set can be specified for each element. This set is then 

referred to as a fuzzy set. 

A fuzzy set F over the universe X is characterized by its membership function A, -(x). 
The membership function µ is defined in Equation 5.34. 
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kt: X-> [0, l] (5.34) 

where xEX. 

For XEX, a number of operations have been defined for fuzzy sets including 

intersection, union and complement, as given by Equations 5.35,5.36 and 5.37, 

respectively. 

µAr, B(x) = min[µA(x), µB(x)l 

µAvB(x) = max[µA(x), PB(X)] 

(5.35) 

(5.36) 

µA-(x) =1- µA(X) (5.37) 

Zadeh's fuzzy set algebra is defined in more detail in (Kosko, 1994). 

A fuzzy set F defined on universe X also induces a possibility distribution on X such 

that, 

µF(A) _ 71(A), VA EX (5.38) 

In this way a fuzzy set and its corresponding possibility distribution are linked. 

5.6 Comparison and Selection of Theory for Inference Processing 

Inference processes generally concern a situation (see Figure 5.4), a part of reality that 

has an interest. In building an understanding of some portion of reality, models are 

created, which consist of simplified representations of situations, in terms of a limited 

number of variables, representing distinct aspects of the situation, and dependencies 

between those variables (Groen & Mosleh, 2001). 
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ý -ý ýý 

Reasoning 

Figure 5.4: Idealised view of inference process 

In order to reason through a risk-based model under conditions of uncertainty, it is 

important to understand the similarities and differences between probability theory and 

possibility theory. Both theories form the basis of the more restrictive evidence theory 

that can be effectively summarised by the representative Figure 5.5. 

Measures 
on Subsets 

ý 

Probability 

z-; ý 

< 

v 
Distributions 

on Points 

Possibility 
Distributions 

Certain 

Figure 5.5: Summary of Dempster-Shafer evidence theory 

Hence, evidence theory can be used as the unified theory to handle both types of 

uncertainty satisfactorily. 
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Basic mathematical properties of all three theories (i. e., probability, possibility and 

evidential) are summarised in Table 5.2. 

Table 5.2: Comparison of mathematical properties for finite sets 

Probability Possibili Evidence 

Measures One type: Two types: possibility, 17 
Three types: belief, Bel, 
plausibility, Pl and 

probability, P and necessity, N probability assignment, m 
When events in X are 
singletons: Bel(A) = P(A) _ 

Body of Consists of Consists of a family of nested P1(A) 
evidence singletons subsets When X contains only nested 

subsets: Bel(A) = N(A) and 
PIA= A 

p: X-+[0,1] n: X-> [0, l] m: X-º[O, 1] 
Unique via the formula via the formula via the formula 
representation P(A) = P(x) 11(A) = max 7[(x) m(A) _ m(x) 

xEA xEA xEP(A) 

Normalization P(x) =I max 7r(x) =1 
EM(X) 

=I 
x¬X x¬X xEP(X ) 

Bel(A u B) >- Bel(A) +Bel(B) 

Additivity P(A u B) = P(A) + Not applicable - Bel(A n B) 
P(B) - P(A n B) Pl(A u B) SPI(A) + P1(B) - 

PIAnB 
Bel(AnB)= 

maxhnin rule Not applicable 
IAA u B) = max[I7(A), 17(B)] min[Bel(A), Bel(B)] 

N(A n B) = min[N(A), N(B)] Pl(A u B) = 
maxP/A, PIB 
Bel(A) = 1- P1(A) 
Bel(A) =PI(A) 

Measures N(A) =1 -17(1) Bel(A) = m(B) 
connectivity 

Not applicable 17(A) <1 N(A) =0 BcA N(A) >O I7(A) =1 PI(A) _Z m(B) 
BnAsO 

11A) +17(Ä)z I 

Complement P(A) +P (Ä) =1 
N(A) + N(A) 51 Bel(A) + Bel(Ä) 51 
max[I1A), 11A)] =1 P1(A) + P1(Ä) >- 1 

N(A)l =0 
Bel(X) =1 and Bel(A) = 0, 
VA#X, xEX 

Total 
i p(x) = 1/IXI, `dx EX lt(x) = 1, b'x EX 

PI(0) =1 and PI(A) = 0, VA 
O X gnorance ,xE * 

m(X) =1 and m(A) = 0, VA ý 
X, xEX 
Bel(AIB) _ 

TI(AIB) = Bel(A u B) - Bel(B) 

Conditioning 
P(A n B) 

P(AIB) = II(A), b'II(A) < II(B) 1- Bel(B) 
P(B) 

[fl(B), 1, ] `d H(A) z 11(B) 

[ 

PI (A n B) 
PI(AIB) = 

PI (B) 
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5.7 Dealing with Uncertainty via Conceptualised Modelling 

The ideal situation would use a single universally capable and accepted uncertainty 

model. Unfortunately, such a model does not currently exist and is unlikely to be 

developed any time soon. 

Process model description should include key assumptions, simplifications, and 

aggregations of variables, although empirical model descriptions should include the 

rationale for selection, and statistics on model performance (e. g., goodness of fit). 

Uncertainty in process or empirical models can be quantitatively evaluated by 

comparing model results to measurements taken in the system of interest or by 

comparing the results obtained using different model alternatives. If important 

relationships are missed or specified incorrectly, risks could be seriously under- or 

overestimated in the risk characterization phase. While simplification and lack of 
knowledge may be unavoidable, risk assessors should document what is known, justify 

the model, and rank model components in terms of uncertainty (Smith & Shugart, 

1994). 

Developing alternative conceptual models for a particular assessment to explore 

possible relationships can reduce uncertainty associated with conceptual models. In 

cases where more than one conceptual model is plausible, the risk assessor must decide 

whether it is feasible to follow separate models through the analysis phase or whether 

the models can be combined into a better conceptual model. It is important to revisit, 

and if necessary revise, conceptual models during risk assessments to incorporate new 
information and recheck the rationale. It is valuable to present conceptual models to 

risk managers to ensure the models communicate well and address key concerns the 

managers have. This check for completeness and clarity provides an opportunity to 

assess the need for changes before analysis begins. 

5.8 Implications of Not Addressing Uncertainty 

Uncertainty must be handled appropriately with a good mix of strategies. If 

uncertainties are not considered, then unrealistic risk estimates are more likely to be 
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obtained. Furthermore, if such information is not provided to decision-makers, there is 

a danger that the assessments made will be considered as fully reliable. The outcome of 

such a result is often a poor/inappropriate decision being made, leading to missed goals 

and opportunities. For example, one major reason for cost overruns is the uncertainty 

inherent in various aspects of the work. This uncertainty can result in a wide range of 

outcomes that in turn may impact project cost and schedule in unfavourable ways. 

Moreover, getting it wrong, even slightly, increases likelihood of unwelcome surprises 

and can often lead to civil or even criminal liability due to negligence. 

Also, if further risk assessments are later performed, yielding different conclusions with 

apparently equal certainty, it may cause a loss of confidence in the risk assessment 

technique. 

5.9 Concluding Remarks 

Both risk and uncertainty are always present in any real-world decision among different 

courses of action. Therefore, developing different courses of action for a decision 

maker, selecting among those courses of action with different costs and benefits, and 

implementing those choices effectively require risks and uncertainties to be accurately 

and objectively recognized, estimated, incorporated, and managed. 

Situations of inherent and/or subjective uncertainties are encountered in a maritime risk 

analytical process. These uncertainties mainly arise due to some variation of the event 

occurrence parameter and the approximation of the model form. Any effective risk- 

based model should be capable of treating its inherent or subjective uncertainties via the 

inference of probabilistic (e. g., probability and Bayes') or possibilistic (e. g., possibility 

and fuzzy set) theories. Dempster-Shafer theory or the theory of mass reasoning may 

also be utilised for reasoning evidentially after either a probabilistic analysis or a 

possibilistic analysis have been conducted. Basically, a good mix of strategy should be 

applied to handle these uncertainties, otherwise there is bound to be a danger that the 

assessments made will be considered as fully reliable. This can lead to inappropriate 

decisions being made, which can result into missed goals and opportunities. 
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Chapter 6: Bayesian Network Modelling 

Chapter Summary 

A powerful practical solution is the most desired output when making decisions under 

the realm of uncertainty on any safety-critical marine or offshore units and their 

systems. A Bayesian network (BN) is shown to realistically deal with those 

encountered uncertainties whilst at the same time making risk assessments easier to 

build, check and also update with data and information typically being obtained 
incrementally. For its application, a well-matched methodology is proposed to 

formalise the reasoning in which the focal mechanism of inference processing relies on 

the sound Bayes' rule/theorem that permits the logic. In this chapter, the method is 

illustrated and its feasibility is shown in a number of applicable maritime cases of 
interest, developed via a commercial computer tool. Some influencing nodal 

parameters in BN models are also further expanded with additional nodes to output 

influence diagrams that are highly intuitive in their effects on the decision. The test 

cases, although kept easy, demonstrates how a BN can facilitate the process for a 

sounder assessment of reliability and safety. 

6.1 Introduction 

If all the information that could be known about a maritime hazardous event/situation 

were obtainable for its risk assessment, then the results of such studies that are 

accurately carried out would not be subject to uncertainty. Instead, data and 
information is typically obtained incrementally. Thus, it is necessary to model the 

assessment domain such that the probabilistic measure of each event becomes more 

reliable in light of the new information being received. In view of this, the domain that 

is represented can be put out in an intuitive visual format as a Bayesian network (BN) 

model. The BN reasoning system can be viewed as the generalisation of prepositional 
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logic and resolution theorem-proving that incorporates the treatment of uncertainty for 

the structure of the complex argument. Probability theory ensures that inferences based 

on a network are sound. 

Reasoning with incomplete knowledge is one of the fundamental features of human 

intelligence and one that is very essential to the risk-based marine community. 
Therefore, competent expert and engineering judgement (to compensate for any lack of 

mature data) incorporated in a BN can aid in providing its solid knowledge base. Also, 

it is worth evaluating the use of BNs as a means of optimisation that combines 

information from diverse sources and permits model reduction. The generic nature of 

this technique means that it can be developed further and applied widely in marine and 

offshore applications. With this philosophy in a logical framework, adopting BN to 

formalise reasoning about system dependability will make assessments easier to build, 

check and certainly update. 

The analogy of BN models can further be expanded/transformed to output influence 

diagrams that are highly intuitive in the decision-making process. Such diagrams aid 

the visibility of a large number of interacting issues and their effects on the decision. 

They can also offer the benefit of a robust practical solution that is required for achieved 

safety at an affordable cost. Hence, the final scheme of the BN can give a model in 

which reasoning is justified whilst it enables a powerful marine decision-support 

solution that is easy to use, flexible, and appropriate for the assessment task. 

6.2 Semantics of a Bayesian Network 

Fundamental to the idea of Bayesian networks (BNs) is the concept of modularity, 

whereby a complex system is built by combining simpler parts of components that are 

related in a causal manner. A BN provides factorised representation of a probability 

model that explicitly captures much of the structure typical in human-engineered 

models. More generally, a BN is a directed acyclic graph (DAG) that encodes a 

conditional probability distribution (CPD) at its nodes on the basis of arcs received. 
Therefore, by definition: 
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"BN" = "DAG" encoded with "CPD" 

The key feature of BNs is that they enable modelling and reasoning about uncertainty 
(Pearl, 1988). This uncertainty can be due to imperfect understanding of the domain, 

incomplete knowledge of the state of the domain at the time where a given task is to be 

performed, randomness in the mechanisms governing the behaviour of the domain, or a 

combination of these. 

6.2.1 Probability Directed Acyclic Graph 

In a directed graph, an edge (arc) goes from one vertex (node), the source, to another, 
the target, and hence makes connection in only one direction. Acyclic implies that such 

a graph contains no cycle. Therefore, if there is a route from one node to another node 
in the graphical structure then there is no way back. 

In a BN structure (i. e. the DAG), nodes (usually drawn as either circles or ovals) 

represent random (i. e., chance) variables, such as events, that take values from the given 
domains. Arcs (normally drawn as either curved or straight lines having a terminating 

arrowhead) are used to represent the direct probabilistic dependence relations among the 

variables. Each influence relationship is described by an arc connecting an influencing 

(parent) node to an influenced (child) node and has its terminating arrowhead pointing 
to the child node. If a node has no parents, then its probability distribution is said to be 

marginal (as lack of a link signifies conditional independence), otherwise it is 

conditional. The graphical network therefore constitutes a description of the 

probabilistic relationships among the system's variables that amount to a factorisation 

of the joint distribution of all variables into a series of marginal and conditional 
distributions. 

For example, the interest in an event A (e. g., an effect) might arise knowing that another 

event B (e. g., a cause) in the same model domain has occurred. As shown in Figure 6.1, 

the BN expresses the fact that A is directly dependent on B (i. e., A ¬13 or B-)A). This 

indicates that B influences A partially or in total, and that A and B are functionally 

related, or they are statistically correlated. 
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Influencing (i. e., parent) 
node B is a cause of A 

Influenced (i. e., child) 
node A is an effect of B 

Figure 6.1: A simple events BN structure of two nodes and an arc 

One of the best features of BNs is that one can incorporate new node(s) as the data 

becomes available. Thus, it follows that one `effect' can be a `cause' of a new/another 

node and a `cause' can also be the `effect' of a new/another node. 

Basically, the graphical structure of a BN depicts a qualitative illustration of the 

interactions among the set of variables that it models. In a task for risk assessment, 

these variables can be propositions about events or events themselves. These events 

may be causal and thus get chained together by the arcs in the network. The structure of 

such a modelled domain in this case would gives a useful, modular insight into the 

interactions among the events and allows for prediction of effects of external 

manipulation. 

6.2.2 Conditional Probability Distribution 

A BN also represents the quantitative relationships among the modelled variables. 

Numerically, it represents the joint probability distribution (JPD) among them. This 

distribution is described efficiently, exploring probabilistic independencies among the 

modelled variables. Each node is described by a probability distribution conditional on 

its direct predecessors that has its values entered into a conditional probability table 

(CPT) associated with the node. The encoded nodes with no predecessors are described 

by prior probability distributions. Those with predecessors are described by posterior 

probability distributions. 
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P(B) 

b, b2 

a, ''. hi P(allk) 

a2 l'ia 'l hl) P(ab) 

P(A IB) 

Figure 6.2: A simple BN with its nodes having a CPT containing two states 

Basically, a typical CPT is a matrix of conditional probabilities. A conditional 

probability is a probability of one event, given that another event has occurred. For 

example, the conditional probability of a parameter, 0, given an observed data, x, would 

be written as P(9 Ix), where the "I" vertical bar is read as "given that" or "given" (the 

indication of conditionality). A typical CPT in a BN associated with an event A being 

directly dependent on an event B is described by its matrix format in Figure 6.2. The 

subscripts "I" and "2" have been used to give clarity in signifying 2 states of the 

specified variable. Thus, a, and b, could say represent a "reliability" state for the 

events A and B respectively whilst a2 and b2 could represent a "failure" state. To obtain 

the quantified value with respect to these states, B is described by prior probabilities 

P(b, ) and P(b2). Since B has an effect on A, then A is conditionally described by its 

posterior probabilities P(a, I b, ), P(a, I b2), P(a2I b, ), and P(a21 b2). 

More generally, for variable A with a set of states (a!, a2,..., a�) and variable B with a 

set of states (b,, b2,..., b,,, ), the conditional probability matrix P(alb) represents the 

conditional probability of A given B as follows: 

P(alb) _ 

P(a, I bl) P(a, I b2 ) ... P(a, I b. ) 

P(a2 I bl) P(a2 I b2 ) ... P(a2 I bm ) 

_P(a. 
1b1) P(a. I bz ) 

... P(a� I b. ) I 

(6.1) 
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More generally, to node A is attached the conditional probability matrix 
P(A I parents(A)), where parents(A) represents the value combinations of the parents of 
A and a global JPD completely specifies the probability assignments to all such 

propositions in the domain. Therefore, a probabilistic model may consists of a set of 

variables X= (XI, X2, 
..., X), which exploits conditional independence to represent the 

JPD over Xhaving the product form (Pearl, 1988): 

P(xl,..., x�) = P(xf I parent(Xi))P(x2 I parent(X2))... P(x� I parent(X�)) 
n 

P(x; I parents(X; )) (6.2) 
ý_ý 

P(xr, x2, ..., x�) gives the JPD and like the CPD, it is a table of values where one entry is 

made for each possible combination of values that its variables can jointly take. The 

JPD for a problem captures the probability information of every possible combination 

of a set of variables, and their states. Once a JPD has been defined for a problem, then 

it is possible, using it along with the axioms of probability, to answer any probabilistic 

query regarding any of the variables. This includes their value given additional 

evidence, that is, their posterior probabilities, although, the space, and consequently, 

time complexity required in representing and manipulating the JPD is exponential in the 

number of variables considered (D'Ambrosio, 1999). For example, the JPD required to 

represent a system with 20 binary values would have 220 (1,048,576) values. This 

causes a problem in the elicitation, storage and manipulation of these values, thus 

making the use of JPDs unfeasible for any practical use. Fortunately, when modelling 

most real systems, advantage is taken of any inherent structure the system has by 

modelling the system as a graph (D'Ambrosio, 1999). 

The number of dimensions and the total size of a CPT are determined by the number of 

parents, the number of states of each of these parents, and the number of states of the 

child node. Essentially, there is a probability for every state of the child node for every 

combination of the states of the parents. Nodes that have no predecessors are specified 
by a prior probability distribution table, which specifies the prior probability of every 

state of the node. 
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6.3 Bayesian Inference Mechanism 

Bayesian inference is a process by which observations of a real-world situation are used 

to update the uncertainty about one or more variables characterising aspects of that 

situation. It relies on the use of Bayes' rule/theorem as its rule of inference, defining 

the manner in which uncertainties ought to change in light of newly made observations. 

This subjective probability theory is only part of the Bayesian inference mechanism. 

Together with the applicable results of such probability concepts as the product and sum 

rules, the concept of conditional independence and the techniques of marginalization, it 

provides the basic tool for both Bayesian belief updating and in treating probability as 

logic. In order to apply these tools, the prior probabilities and the likelihood 

probabilities must be obtained. 

6.3.1 Bayes' Theorem/Rule 

The theorem of Bayes (1763) is one that has been proven to be a coherent method of 

mathematically expressing a decrease in uncertainty gained by (or proportional to) an 

increase in knowledge. As an imperative phase of the probability analysis, this is 

achieved by combining probability distributions or functions of different parameters 

(such as events or specific outcomes) and revising their probabilities when new 

information/data is obtained. The more new information is used, the smaller the 

parameter of uncertainty about those events or their outcomes becomes. 

In order to make probability statements about the model parameters the analysis must 

begin with providing an initial or prior probability estimates for specific outcomes or 

events of interest. Then from sources such as a special report, a database, a case study, 

etc., some additional information (i. e., data or evidence) about the event, or an entirely 

new event(s), is obtained. In light of this new information providing new data belief, it 

is desirable to improve the state of knowledge and thus the prior probability values are 

updated by calculating revised probabilities, referred to as the posterior probabilities 

(These probabilities provide basis for action). Bayes' theorem provides a means for 

making these probability calculations. Essentially, it is a relation among conditional 

and marginal probabilities. 
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Conditional probabilities are essential to a fundamental rule of probability calculus, the 

product rule. The product rule defines the probability of a conjunction of events (e. g., 
for two events, A and B): 

P(A I B)P(B) = P(A, B) = P(BJA)P(A) (6.3) 

Therefore, in dividing Equation 6.2 by P(B), one obtains: 

p(A I B) = 
P(B I A)P(A) 

P(B) 

which is the theorem conventionally known as Bayes' theorem. 

(6.4) 

Each term in Bayes' theorem has a conventional name. The term P(A) is called the 

prior probability of A. It is "prior" in the sense that it precedes any information about B 

and this is what causes all the arguments. P(A) is also the marginal (total) probability 

of A. The term P(A JB) is called the posterior probability of A, given B. It is "posterior" 

in the sense that it is derived from or entailed by the specified value of B. The term 

P(BIA), for a specific value of B, is called the likelihood function for A given B and can 

also be written as L(AIB). The term P(B) is the prior or marginal (total) probability of 
B but also one that provides evidence of interest for the probability update of A. Its 

inverse is usually regarded as a normalising constant. With this terminology, the 

theorem may be paraphrased as: 

likelihood x prior posterior = 
evidence 

(6.5) 

In the general case, a JPD over a set of variables, X= (Xi, X2,..., X�), can be defined 

recursively using the product rule (Equation 6.6): 

P(Xi. X2, 
..., 

X, d = P(Xi [X2, ..., X, JP(X2. ..., XºJ 

= P(Xi I X2, .... X, dP(X2 W3, 

..., 
X, JP(X3, ... , 

Xn) 

= P(XI I X2. ..., Xn)P(X2IX3, ..., X, J... P(Xn-I I X)P(XA) (6.6) 
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This factorisation property of JPDs is referred to as the chain rule of probabilities and is 

one that allows any ordering of variables in the factorisation. Such a rule is especially 

significant for BNs because it provides a means of calculating the full JPD from 

conditional probabilities, which is what a BN stores. For example, the JPD for three 

events, A, B and C, can be expressed more compactly as: 

P(AIB, C)P(B, C) = P(A, B, C) = P(BJA, C)P(A, C) (6.7) 

Then, in applying Equation 6.6, Bayes' theorem specifies for the probability of an event 
A, given the condition that an event B and an event C both occur (B 9A EC) as: 

P(AIB, C) = 
P(B I A, C)P(A I C) 

P(B I C) 

prior, p(6) 

data, x 
rl. J 

(6.8) 

Bayes' rule/theorem states that: 
"The probability distribution of a model 
parameter, 0, after observing data, x, is 
proportional to the likelihood of the data, 

x, assuming that 0 is true, times the prior 
probability distribution of B. " 

Symbolically, this is written as: 

p(6Ix)= n xI )PB C 

p(x) 
Bayesian 
analysis Conventionally, this is read as: 

posterior = 
likelihood x prior 

evidence 

f posterior, p(Ax) 
Inverse of the "Evidence" term is 

normalising constant, a. The "Likelihood 
term expresses a measure of confidenc, 
degree and can be written as 1(0 Ix). 

Thus, in Likelihood Principle: 

posterior =a likelihood (1(0 Ix)) x prior 

Figure 63: An illustration of probability update via Bayes' theorem 

From a statistical viewpoint, the uncertainty associated with a parameter, 0, reduces due 

to the influence of an associated incoming data, x, and Bayes' theorem depicts such a 
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fact as shown in Figure 6.3. Thus, risk assessment of events can be carried out on this 

basis to enhance reasoning that will enable reliable decision-making. 

Bayesian inference proceeds by summarizing the posterior distribution, p(9 Ix). As 

depicted in Figure 6.4, after observing the data, the wide prior distribution is converted 
into the more narrow posterior distribution using the Bayes' rule. 

Figure 6.4: Conversion of the wide prior distribution into a more narrow posterior distribution 

Generally, Bayes' rule can be considered for the problem of estimating values of k 

parameters (causes), 0= (0,, 
..., 

Ok), using n observations (effects), x= {xi, 
..., x�}. In the 

rule then, given the observations x= {x,, ..., x�}, the posterior probability distribution on 
0 can be computed as: 

P(Xi,..., x. 1 0)P(o) 
P(91xr,..., x, j = 

P(x,,..., x�) 
(6.9) 

It then follows also that given the situation if event B has states (bi,..., bm), the posterior 

probability on the event A can be computed from the Bayes' rule as: 

P(A I bl, ..., b�d = 
P(b,,..., b. I A)P(A) 

P(b,,..., b, 
� 
) 

(6.10) 

The process of Bayes' theorem is repeated every time new or additional information 

becomes available, so that as Lindley (1970) puts it, "today's posterior probability is 

tomorrow's prior. " As the number of pieces of evidence increases, the dependence of 
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the posterior on the original estimated prior decreases. This is indeed true and the main 

task of the theorem answers the following question, "Given observations (evidence), 

what is the probability of a particular cause (or variable of interest)? " 

Bayes' theorem has been particularly useful in estimating knowledge about the 

frequency of rare events or making reliability predictions where there is sparse or no 
directly applicable data (Frank, 2000). This has remained evident in dealing with 

uncertainty in expert systems. Being such a robust and extensible method, Bayes' 

theorem can likewise aid in marine and offshore risk assessment for predictive 

reasoning under uncertainty, and therefore, to arrive at a logically justifiable prediction. 

6.3.1.1 Marginalization of Probabilities 

From a table P(A, B) of probabilities P(a;, b) the probability distribution P(A) can be 

calculated. Let a, be a state of A. There are exactly m different events for which A is in 

state a1, namely the mutually exclusive events (af, b, ), ..., 
(a;, b,,, ). Therefore: 

Im P(aý) = !, P(ar' bl )ý1: P(ar Ibl )P(bl ) 
l=l ! _j 

In other words: 

P(ai) 

P(a2) 
P(a, I b, ) P(a, I b2 ) ... P(a, I bm ) 

P(a2 1 bº ) P(a2 I b2) 
... P(a2 I bm ) 

P(bl) 
P(b2) 

(6. l 1) 

(6.12) 

LP(an )J P(a� I b, ) P(a. I b2 ) ... P(an I b. ) I 1'(bm ) 

This calculation is called marginalization (summing out) and expresses the fact that the 

variable B is marginalized out of the JPD, P(A, B) (resulting in P(A)) (Russell & 

Norvig, 2003). The notation is: 

P(A) _ P(A, B) _ P(A IB =bJ)P(B =bJ) (6.13) 
8J 
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Similarly, if P(B, A) is a CPT over A and B, then a CPT over the state space of just B 

can be produced by marginalizing over A, so that, for example: 

z 
P(bi)= P(a;, b, ) =P(bilad P(ai)+P(bjIa2)P(a2) (6.14) 

Marginalization is of utmost importance for all inference in Bayesian probability: 
"integrating out" all "superfluous" variables derives the information about a subset of 
the system's variables. Furthermore, the process of marginalization tackles the problem 

of decision uncertainty explicitly, by preventing overoptimistic predictions (Vellido & 

Lisboa, 2001). 

6.3.1.2 Normalization of Probabilities 

In estimating values of an event A= (a,, ..., a,, ) that is directly dependent on another 

event B, the denominator of the right-hand side of Bayes' theorem gives the probability 

of event B as P(B). True probabilities of an event are supposed to sum to one over its 

entire state space, hence (as from the axioms of probability): P(al) + ,..,, + P(a, ) = 1. 

This formula can be applied to conditional probabilities, as well: P(aj1B) + ,..., + 

p(a� I B) = 1. Using this fact and Bayes' rule for P(411B) and P(a� I B), the following 

equation can be obtained: 

P(B)=P(Blad P(ad +,..., +P(Blad P(a�) (6.15) 

The inverse of Equation 6.15 is known as a normalising constant, ac, that ensures the 

posterior probability over the entire state space (i = 1,2,..., n) sums up to 1. In other 

words; 

a P(B)= P(BI ar)P(ar) 
r=i 

(6.16) 
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Given that event B= (b,..... b,,. ), the term can be computed by summing the numerator 

over all possible event values (See "marginalization" in Section 6.3.1.1) whereby: 

n 

oc' =P(bl,..., b,,, )= P(b,,..., b, 
� 

I ar)P(ar) (6.17) 
r=i 

The process that had just been explained is called normalization since it allows the sum 

of the probabilities of all exhaustive and mutually exclusive values (i. e., marginal and 

conditional terms) to equal 1. As a result of this process, Bayes' theorem can be 

expressed as: 

P(AI B) = xP(BI A) P(A) (6.18) 

Normalization can alter conclusions with respect to probability inferences. Thus, 

without the process of normalization there would never exist a unique maximum 

likelihood (ML) (See Section 6.3.2.2). 

6.3.2 The Likelihood Principle 

The Likelihood Principle (LP) (Fisher, 1922 and Edwards, 1992) states that all the 

relevant information in the model is contained in the likelihood function (which is of 
fundamental importance in the theory of Bayesian inference). Likelihood and log- 

likelihood functions are the basis for deriving estimators for parameters, given data. 

While the shapes of these two functions are different, they have their maximum point at 

the same value. In fact, the value of a parameter that corresponds to this maximum 

point is defined as the maximum likelihood estimate. This is the value that is "mostly 

likely" relative to the other values. This is a simple, compelling concept and it has a 

host of good statistical properties. 
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6.3.2.1 The Likelihood Function 

Sometimes P(BIA) is called the likelihood of A given B, and is denoted L(AIB). The 

reason for this is that if, for example, a j, ..., an are possible states of event A with an 

effect on the event B in which b is known, then and P(bI a, ) is a measure of how likely it 

is that a; is the cause. Likewise, 1(0 Ix) denotes the likelihood of 9, given x. 

"Likelihood" as a solitary term and one of several informal synonyms for "probability" 

is actually the shorthand for "likelihood function", a measure of how well (i. e., 

confidence degree) a given parameter predicts the data. Thus, the most important 

difference between p(xlO) and 1(B I x) is that p(xIO) is the probability of x (for a given 

parameter 0), while 1(0Ix) is a function of 0 (for given observations x). It follows from 

Equation 6.18 then that: 

pie I x> = ac r(e Ix) p<el (6.19) 

As given by Equation 6.19, likelihood function is the instrument to pass from prior 

probability distribution to posterior probability distribution via Bayes' formula (See 

Figure 6.5). Therefore inference must obey the principle about such a function. LP 

essentially holds that the likelihood function, 1(9x), is the sole basis for Bayesian 

inference as the information brought by an observation x about a parameter, 0, is 

entirely represented and contained in this function. Thus the likelihood plays an 
important role in Bayes' theorem, as it is the function that expresses the degree through 

which the data, x, modifies prior knowledge of 0. 

A P(BIz) 

ý 

Figure 6.5: Updating from prior distribution to posterior distribution via likelihood function 
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Since the natural logarithm function, In, is strictly increasing, the maximum value of 
1(OIx), if it exists, will occur at the same points as the maximum value of ln[I(O fix)]. This 

latter function is called the log likelihood function and in many cases is easier to work 

with than the likelihood function (usually because the probability distribution p(xIO) has 

a product structure). 

6.3.2.2 Maximum Likelihood Estimation 

In the method of maximum likelihood (ML), one tries to find a value 8(x) of the 

parameter 0 that maximises 1(0 x) for each x being observed. If this can be done, then 

9(x) is called a maximum likelihood estimate for 0. Thus: 

0(x) = max l(01 x) (6.20) 

The method is intuitively appealing and represents the backbone of statistical estimation 

(Fisher, 1922) in which one tries to find the values of the parameters that would have 

most likely produced the data were in fact observed. 

6.3.3 Propagation of Information Concepts 

Perhaps the most important aspect of BNs is that they are direct representations of the 

world, not of reasoning processes. The arrows in the diagram represent real causal 

connections and not the flow of information during reasoning, as in rule-based systems. 

Therefore, inferences can be derived from BNs by propagating information in any 

direction. Nonetheless, the hardness of inference follows from the fact that the size of 

the configuration space grows exponentially with the number of the variables that are 

marginalized out. 

A graphical model can greatly simplified the representation of the JPD capturing 

dependencies and independencies between variables. For any BN model, conditional 
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independencies and dependency-separation (i. e., d-separation) are key factors that are 

exploited to make inference tractable in order for evidence propagation and belief 

update to be achieved. In fact, d-separation is another method to determine conditional 
independence. However, conditional independence is defined in terms of probabilities 

and d-separation in terms of paths in a graph. On their basis, large computational 

savings in fast BN update algorithms are also achievable. 

6.3.3.1 Condidonal Independence 

Any probability of interest can be calculated from the JPD of the variables. However, a 
BN not only outputs the graphical representation of a joint probability of the variables, 
it also captures properties of conditional independence (i. e., missing arrows that imply 

no direct influence) between variables (See Section 6.2.2). It is able to take advantage 

of the conditional independencies first to represent joint probabilities more compactly 

and efficiently, before the actual conditional probability distributions are numerically 

specified. It is this combination of qualitative information with quantitative information 

of the numerical parameters that makes probability theory so expressive. In other 

words, this combination takes care of reducing the complexity of the probability to be 

computed, by simplifying probabilistic inference of the network. Conditional 

independence also reduces the size of CPTs. 

For example, given two events A and B, A is independent of B if P(AIB) = P(A). 
Independence is symmetric, and therefore it follows that P(BIA) = P(B). The 

independence of A and B can also be expressed as P(A, B) = P(A)P(B). Also, A is 

conditionally independent of B given another event C if P(AIB, C) = P(AC). 

Conditional independence is symmetric, and therefore it follows that P(BIA, C) = 
P(BIC). Now, when many variables are conditionally independent (as in the case of 
Equation 6.6), calculation of joint probabilities using the chain rule can be simplified 

significantly. As a simple example, if A is conditionally independent of B given C, then 
P(A, B, C) = P(AIB, C)P(BIC)P(C) = P(AIC)P(BIC)P(C). 
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6.3.3.2 D-Separation 

Conditional independence characteristics may also be experienced for two variables in a 
BN if evidence about one cannot influence the other. To determine conditional 
independence in this setting, one must also consider all the undirected paths between the 

two nodes. Any node on any of the paths may "block" the dependence along that path, 

and therefore if all the paths between the two variables are blocked at least once, the 

two nodes will be independent (i. e., dependency separated or d-separated). As such, 
the question as to whether two nodes in a BN can influence each other will depend on 
two issues: the type of connections used on paths between the nodes and the kind of 
evidence that has been received. The evidence transmitted will either be in a form 

considered as follows: 

" Hard evidence (i. e., instantiation) for a node Xis evidence that the state of X is 

definitely a particular value; or 

" Soft evidence (i. e., a new distribution) for a node X is any evidence that enables 
the update of the prior probability values for the states of X. 

In considering a node on a path in the network, one can distinguish three types of 

connection: serial, diverging, and converging, as shown in Figure 6.6. Each 

connection has its own propagation properties as follows: 

" In a serial (head-to-tail) connection (i. e., B -C-; M), any evidence entered at 

node A or node B can be transmitted along the directed or undirected path 

respectively (as in Figure 6.6(a)(i)) providing that no intermediate node C on the 

path is instantiated (which thereby blocks further transmission by d-separation 

as in Figure 6.6(a)(ii)). 

" In a converging (head-to-head) connection (i. e., B )CFA), entering hard 

evidence at node B will update node C but will have no effect on node A 

(Figure 6.6(b)(i)). Evidence can only be transmitted between parents, i. e, nodes 
A and B, when the child (converging) node C has received some evidence 
(which can be soft or hard. See Figure 6.6(b)(ii)). 
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" In a diverging (tail-to-tail) connection (i. e., B FC-A), evidence can be 

transmitted between child nodes, i. e, nodes A and B, of the same parent, i. e., 

node C, providing that the parent is not instantiated (Figure 6.6(c)(i)). 

Otherwise, nodes A and B are conditionally independent (i. e., due to d- 

separation) given evidence at node C (Figure 6.6(c)(ii)). 

More generally, it can be said that two variables A and B are d-separated if for all paths 
between A and B there is an intermediate variable C such that either the connection is: 

" serial or diverging and the state of C is known, or 

" converging and neither C nor its descendants have received evidence. 

(i) C unknown, path unblocked (ii) C known, path BLOCKED 

(a) Serial (head-to-tail) connection 

(i) C unknown, path BLOCKED (ii) C known, path unblocked 

(b) Converging (head-to-head) connection 

(i) C unknown, path unblocked (ii) C known, path BLOCKED 

(c) Diverging (tail-to-tail) connection 

Figure 6.6: Serial, diverging and converging connections to a node Con a path 
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The smallest set of nodes that d-separates two nodes, A and B, is called the cut-set of A 

and B (Pearl, 1988). As demonstrated also, d-separation characterises independence 

arising from lack of evidence as well as evidence. Note that any system for reasoning 

under uncertainty must capture these properties, as they are basic attributes of human 

reasoning (Jensen & Lauritzen, 2000). Thus, the notion of d-separation is crucial for 

understanding how the algorithms for probability propagation in BNs actually work. 

Two variables that are not d-separated are said to be d-connected. 

A significant benefit of the Bayesian paradigm is that additional parameters can easily 

be added to a model without seriously adding to the complexity of the statistical 

analysis, provided that those parameters fit into a conditional independence structure. 

This means that provided the dependence of the new parameters to the existing data and 

parameters can be made explicit, assessing the new parameters is often a simple matter 

of additional computing time. Some of the most common models employed in the 

engineering and sciences (such as hierarchies and networks) typically fall into the 

category of conditional independence models. 

6.3.3.3 Patterns of Inference 

How can one infer the (probabilities of) values of one or more network variables, given 

observed values of others? By mathematics, one has to find P(Q =qIE= e), where Q 

is the query variable set (i. e., those variables that are to be the `output' of the network) 

and c is the set of evidence variables (i. e., those variables that are to be the `input' of the 

network). Based on the choice of Q and c, there are four distinct kinds of inference 

patterns, as described below and shown in Figure 6.7: 

" Diagnosis inferences: From effects to causes, also called abductive inferences, 

bottom-up or backward inference. It is opposite to arc direction such that the 

evidence is an effect and the query is a cause. For example: "What is the most 

probable explanations for the given set of evidence? " 

" Causal inferences: From causes to effects, also called predictive inferences, top- 

down or forward inferences. It is same as arc direction such that the evidence is 
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a cause and the query is an effect. For example: "Having observed a parent 

node B, what is the expectation of its child node A? " 

" Inter-causal inferences: Between causes of a common effect. For example: "If 

C's parents are B,,..., B, �, then what is the expectation of B, given both C and 

B? " Namely, what is the belief of the occurrence of one cause on the effect 

given that the other cause is true? The answer is that the presence of one makes 

the other less likely (This phenomenon has been termed "explaining away" 

(Wellman & Henrion, 1993)). 

" Mixed inferences: Combining two or more of the above. 

Query Evidence 

m J 
11 

XQuery 

A, 

Evidence uery Query Q 

(a) Diagnostic (effects to causes) (b) Causal (causes to effects) 

Query Evidence Evidence 

BI C. 0oB. Bt o0o Bm 

Evidence C Query 

Al C. 0o An Al o0o An 

Evidence 

(c) Inter-causal (explaining away) (d) Mixed (or combined) 

Figure 6.7: An illustration of four inference patterns in BNs 

There are basically three types of algorithms for propagating evidence: exact, 

approximate and symbolic (Lauritzen & Spiegelhalter, 1988; Pearl, 1988). By exact 

propagation, it means a method that, apart from precision or round-off errors, computes 

the probability distribution of the nodes exactly. By approximate propagation, it means 

that the answers computed are not exact but, with high probability, lie within some 
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small distance of the correct answer. Finally, symbolic propagation, which computes 

the probabilities in symbolic form, can deal not only with numerical values, but also 

with symbolic parameters. 

6.3.3.4 Belief Update 

Evidence is new information about a random variable that causes a change to its 

probability distribution. Newly available evidence is brought about when a particular 

state of an event happens. The effect of such new evidence will certainly propagate 

throughout the network and thereby cause the posterior probabilities of other events to 

iteratively be recalculated. This is achievable by message posting along the edges 
(Pearl, 1988). Therefore, introducing the notion of evidence is imperative in the 

reasoning with BN. Nonetheless, it is worth noting that the real power and 

generalisation of BN is that entered evidence propagates in both directions, even though 

the graph is directed. 

Suppose there is an interest in a given event C (referred to as the query variable) having 

a joint probability P(c), over C. Before any evidence becomes available, the 

propagation process consists of calculating the marginal probabilities P(C; = cs), or 

simple P(c., for each C;. 

Now, suppose some evidence has become available to the event C. In this situation, the 

propagation process consists of calculating the conditional probabilities P(CG = c; lE = e), 

or simple P(cjle), where c is a set of evidential nodes with known values E=e. 

The newly available evidence, c, can be decomposed into two subsets: 

" El+, the subset of E that can be accessed from C, though its parents (top-down), 

i. e., propagates in the direction of the arcs. 

" c; -, the subset of c that can be accessed from C; though its children (bottom-up), 

i. e., propagates against the direction of the arcs. 

For the probability of Cj = c; given that e=e; + for a parent and e= ej for a child: 

- iss- 
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P(c; je) = P(ci 1 e;, er +)= P(ei- Icr, e; +)1, (c; J er+) 
P(e, 1 e; +) 

(6.21) 

Since C; d-separates c, from E; + (i. e., E; j jcj+, where 11 stands for d-separation), 

conditional independence can be used to simplify the first term in the numerator and 

then 1/P(e; -I e; +) can be treated as a normalizing constant, z, so that: 

P(c; 1 e) = oc P(e; 1 c; ) P(c; 1 e; +) (6.22) 

According to the Bayes' theorem conventional interpretation (Equation 6.3), posterior is 

prior scaled by likelihood and normalized by evidence (so E (posteriors) = 1), thus 

Equation 6.22 can be rewritten as: 

P(c; I e) = cr )y(cd x; (c; ) (6.23) 

where; 

)y(c; ) represents P(e; - Icd, a message passed onto c; as likelihood evidence; and 

ß; (c1) represents P(c; Ie; +), a message passed onto ci as prior evidence. 

To compute the functions N-(c; ) and 100, suppose a typical node C, has parents B= 

{B,,..., Bm} and children A= {A;..... Aý) (see Figure 6.8). 

4 

E, 
from 

parent 
nodes 
of C 

Ti 
message 

from 

parent 
nodes of 

C 

P(CIE) = P(Cj( PE+) 
1�(' 

from 4ic' message 
child from 

nodes ý" o°o "/ ý" child 
of CE nodes of 

Figure 6.8: Evidence propagation via message posting 

C 
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The evidence E; + can be partitioned into m disjoint components, one for each parent of 

Cl: 

+++ E; _ {BBiC 
,..., EB. ý 

} (6.24) 

where the evidence sB is the subset of E; + contained in the B-side of the link B; ) C;. 

Similarly, the evidence E; - can be partitioned into n disjoint components, that is: 

E; _ {E 
ýc ,..., E, ýC 

} (6.25) 

where the evidence g; is the subset of E; contained in the Apside of the link A1<-C,. 
Bic, 

Then, given an instantiation of b= {bi,..., bm} of the parents of C;, r; (cs) can be 

computed (i. e., top-down propagation) via a recursive solution (Pearl, 1986: Castillo, 

etal., 1997). Likewise, given an instantiation of a= {ai,..., a�} of the children of C;, 

)Y(cd can be computed (i. e., bottom-down propagation). 

The CPTs of the events never change by entering new evidence; only the new- 
fangled/belief probability in each of its possible states is determined by the belief 

probability in the states of the nodes to which it is directly connected. The algorithm 

simultaneously updates belief for all the nodes, causing them to become posterior 

probabilities, until the network reaches equilibrium. In other words, the JPD of the 

variables changes each time new information is learnt about the observable variables. 

Such calculations for the propagation of probabilities in a BN are usually tedious 

(Jensen, et al., 1990). Therefore, Hugin is used as the robust BN programming 

environment for modelling and calculations (Jensen, 1993). This software tool allows 

for interactive creation of the network, maintenance of knowledge bases and 

incorporates new, efficient algorithms to support the execution of Bayesian probability 

calculations, thus making a complete probabilistic model. 
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A runtime system provides facilities for easy entering and propagation of information. 

This makes it easy to insert the quantitative data into the network. By running Hugin in 

the compiled mode, it is possible to interact with the network and test whether it works 

properly. In this mode, Hugin calculates prior probabilities for each state in each node 

of the network based on either the qualitative or the quantitative specification of the 

network. Evidence can be entered to the network by manually setting probabilities in 

the network. Each time an input for evidence of change is entered, all the probabilities 

are recalculated. The algorithm repeats until the network reaches equilibrium. In BN 

terminology, this is called propagation of evidence through the network. 

The notion of Bayesian propagation has been around for a long time. However, it is 

only in the last few years that efficient algorithms (Lauritzen & Spiegelhalter, 1988; 

Pearl, 1988) and tools to implement them (Jensen, 1993; SERENE, 1999) have been 

developed. Hence it is only recently that it has been possible to perform propagation in 

networks with a reasonable number of variables. The recent explosion of interest in 

BNs is due to these developments, which mean that for the first time realistic size 

problems can be solved. 

6.4 Influence Diagram 

An influence diagram (ID) was originally a compact representation of a decision tree 
for a symmetric decision scenario: One is faced with a specific sequence of decisions, 

and between each decision one observes a specific set of variables. Nowadays, an ID is 

a BN expanded with utility functions and with variables representing decisions, in order 
to provide decision-making capabilities within the model. The utilities and decisions 

are both represented using nodes of distinguishing shapes in contrast to that of BN 

variables. In fact, the subset of an ID that consists of only chance nodes is a BN. 

Therefore, by definition: 

"ID" = "BN" + {decisions & utilities} 

An ID that uses only these elements is a simple but powerful communication tool, and 

one that can also be used to perform a quantified assessment of the decision problem. It 
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provides an intuitive graphical representation of the decision problem and for it to be 

solved, a strategy (i. e., a decision preference) yielding the highest expected utility has to 
be computed. A strategy is a set of functions; to each decision variable is specified a 
function from which the relevant past returns a decision. The algorithms for probability 

updating can be modified to solving IDs. 

6.4.1 Preferences and Utilities 

Similarly to BNs, IDs are very useful in showing the structure of the domain, that is, the 

structure of the decision problem (Gämez, et al., 2004). The network must be acyclic, 

and there must exist a directed path that contains all decision nodes in the network. 
These decision nodes (usually drawn as rectangles or squares) represent variables that 

are under control of the decision maker and model the decision alternatives available to 

the decision maker. The nodes include a specification of the available decision options 
(i. e., choices). Edges into decision nodes indicate time precedence: an edge from a 

random variable to a decision variable indicates that the value of the random variable is 

known when the decision will be taken, and an edge from one decision variable to 

another indicates the chronological ordering of the corresponding decisions. 

"Utility" is a figure of merit for a decision alternative that reflects how successfully the 

decision-maker's values and preferences will be addressed by implementing that 

alternative. Since decision-makers are interested in making the best possible decisions 

(i. e., the preferences) for an application, utilities are therefore associated with the state 

configurations of the network. Utility nodes (normally drawn as diamond-shaped or 
hexagons) represent these utilities. Each utility node has a utility function that to each 

configuration of states of its parents associates a utility (Utility nodes do not have 

children). Making decisions influences the probabilities of the configurations of the 

network. One can therefore compute the expected utility of each decision alternative 
(the global utility function is the sum of all the local utility functions). The alternative 

with the highest expected utility is chosen; this is known as the maximum expected 

utility (MEU) principle. 
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Figure 6.9: A simple Bayesian decision model 

Figure 6.9 shows a simple ID in which the prior probability distribution of the 

influencing node B determines the conditional probability of the influenced node A. 

The decision D is based on the probability of A, and the utility U is a function of D, 

given the state of B. B and D are independent of each other. 

6.4.2 Maximum Expected Utility 

For an outcome state, S, the expected utility (EU) of a given alternative is that utility of 

a decision-maker facing uncertainty calculated by considering utility in each possible 

outcome state and constructing a weighted average, where the weights are the decision- 

maker's estimate of the probability of each outcome state. In theory then, one can 
imply that: 

"Decision Theory = Probability Theory + Utility Theory" 

In order to assess the decision alternatives in D, a utility table U(D, S) is needed to yield 

the utility for each configuration of decision alternative and outcome state for the 

determining variable. The expected utility (EU) of a given decision alternative d is 

calculated by: 

EU(d) = 1: P(S Id )U(d, S) (6.26) 
s 
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where U(d, S) are the entries of the utility table in the value node U. The conditional 

probability P(SId) is computed from CPT of the determining variable having outcome 

states, seS, given that the decision alternative d is fired. 

There is the presumption from utility theory (Von Neumann & Morgenstern, 1964), and 

as well from decision theory (North, 1968; French, 1988), that humankind is rational 

when inferring subjective value (or utility) from choices (or preferences). This implies 

that decision-makers maximise their utility wherever possible. Based on this, two 

principles are then used to determine the existence of the utility function: 

" Utility principle: If a decision-maker obeys the axioms of utility, then there 

exists a real-valued function, U, that operates on states such that U(X) > U(Y) if 

and only if X is preferred to Y and U(X) = U(Y) if and only if there is no 

preference between X and Y. 

" Maximum expected utility (MEU) principle: This implies that a rational 
decision-maker should choose an action that maximises expected utility of 

outcome states. Thus, given that d1, d2,..., dk are the mutually exclusive decision 

alternatives of D, the decision alternative d that gives MEU is: 

MEU(d) = max{EU(d, ), EU(d2),..., EU(dk )} (6.27) 

Evaluation of the ID is done by setting the value of the decision node to a particular 

choice of action (i. e., best risk control option (RCO)), and treating the node just as a 

nature node with a known value that can further influence the values of other nodes. 
The action's utility is calculated, first by calculating the conditional probabilities for the 

parents of the utility node using standard inference algorithm, and then feeding the 

results to the utility function. Hugin will calculate these utilities on the assumption that 

all future decisions will be made in an optimal manner (using all available evidence at 

the time of each decision). Similar considerations also apply to the remaining decisions. 
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Figure 6.10: ID showing decision alternatives and quantified utility 

Figure 6.10 shows the encoded node table for a decision node, D, and a utility node, U. 

D has two alternatives: d, and d2. If a decision is made based on dl, then the expected 

payoff (i. e., U) of outcome states s, and s2 for B is quantified with the value of U(di, s, ) 

and U(d,, s2) respectively. However, if a decision is made based on d2, then U of 

outcome states s, and s2 for B is quantified with the value of U(d2, s, ) and U(d2, s2) 

respectively. The EU (i. e., the sum of the weighted payoffs for the decision alternative) 

for both alternatives can thus be calculated as: 

EU(dj) = P(s, I d, ) U(d,, s, ) + P(sz 1d, ) U(d,, s2) 

EU(d2) = P(s, I d2) U(d2. s, ) + P(s2I d2) U(d2, s2) 

When the values of the variables that are parents of the first decision node in the ID 

have been observed, one expects to know the MEUs for the alternatives of this decision. 

The decision alternative d that provides the MEU is given by: 

MEU(d) = max{EU(d, ), EU(d2)} 

The utility figures are usually given in terms of property, health, finances, liability, 

people, environment, departmental image, public confidence, etc. as applicable to the 

analytical domain. Utility theory can be used in both decision-making under risk 

(where the probabilities are explicitly given) and in decision-making under uncertainty 

(where the probabilities are not explicitly given). The theory can be expanded to 
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application for safety-based marine and offshore decisions through cost-benefit 

evaluation, whereby utmost considerations, for cost-effectiveness, are given to both cost 

and safety (i. e., risk-reduction). In such a case, evaluation of RCOs according to its 

values of Implied Cost of Averting a Fatality (ICAF), rather than the utility figures of an 

outcome state, may enable initial comparing and ranking these options. The more 

attractive options for realisation would be those with the lower ICAFs. The ability to 

map preferences (e. g., RCOs) into a single numerical value for ranking follows from the 

axioms of utility. 

6.5 Proposed Bayesian Network Methodology 

A BN reasoning process has been developed to provide a natural framework for 

maritime risk assessment and decision support. A flow chart of the approach is shown 

in Figure 6.11, and this format ensures that the BN analysis is conducted in a 
disciplined, well managed, and consistent manner that promotes the delivery of quality 

maritime decision-making results. The depth or extent of application of the 

methodology should be commensurate with the nature and significance of the problem. 

Nonetheless, the entire methodology consists of nine key steps that have been 

encapsulated within the following three modules: 

" Module 1: Visual Bayesian Network Modelling (i. e., Steps I and 2). 

" Module 2: Inference Algorithm of Bayesian Analysis (i. e., Steps 3 to 7). 

" Module 3: Reasoning Evaluation via an Influence Diagram (i. e., Steps 8 and 9). 

In building a BN model, one can first focus on specifying the qualitative structure of the 

domain (Module 1) and then on quantifying the influences. When finished, one is 

guaranteed to have a complete specification of the probability distributions. Then 

following evidence propagation (Module 2), an intuitive evaluation for decision-making 

is enabled through added nodes of decisions and utilities (Module 3). Hugin is used as 

the robust BN programming environment for the risk modelling and its probability 

calculations. 
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Figure 6.11: Flow chart of a proposed BN reasoning framework 

It can be recognised that the development for this methodology also provides the 

platform for which ICAF values can be utilised for ranking and choosing the best RCO 
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for a safety-critical maritime system. Explanations for each of the steps in these 

underlying modules are given as follows: 

Step 1- Setting of Domain for Accident Category Information: Very important to 

the BN process is available information and failure data collected from every possible 

source, especially those from regulatory practice, databases and networks, tests, 

experiments physical models, simulations and analytical models. Expert judgement is 

utilised throughout the understanding of the domain and also in assigning valuable 

figures where data are not available. As observed data becomes available it can be used 

to update, refine, or replace the estimates provided by subject matter experts. In this 

sense then, whenever there are uncertainties, e. g. in respect of data or expert judgement, 

the significance of these uncertainties and limitations will be identified, so as to assess 

the degree of reliance which should be placed on the available data. 

Step 2- Creation of Nodes and Establishment of Probabilistic Relations: For the 

first step in constructing the BN, the development of the graphical representation, 

indicating the relevant variables (nodes) and dependencies (arcs), is important, not only 

because it determines the level of detail to be used in the subsequent functional model 

building, but also because it provides a straightforward means of analysing and 

communicating causal assumptions that are not easily expressed using standard 

mathematical notation (Pearl, 2000). 

In general, the problem under consideration is characterised by a number of functions or 

parameters (i. e., the relevant variables). These relate to, for example, a cause event, A, 

or an effect event, B, and can be mapped as labelled nodes into the network pane. 

Identified influence relationships between nodes are established such that an arc 

connection is placed between an influencing (parent) node and an influenced (child) 

node. The terminating arrowhead of the arcs is then set to point at the child nodes. 

Step 3- Formulation of CPTs and Prior Probabilities: The inference consists of 

computing the conditional probabilities with the BN, thus the next step will be to 

specify the states and to input values for a CPT (i. e., the conditional probability matrix) 

of each node. In other words, evidence can be entered to the network by manually 

setting probabilities in the network. The result of the associated tables gives the prior 
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probabilities, such as P(A) and P(B), for the nodes. However, nodes without any 

parents give probabilities that are marginal instead of the conditional ones. 

Step 4- Normalization of Probability Values in the CPT: The probability of 

marginal and conditional terms being true is non-zero and becomes 1 after 

normalization (i. e., The belief values are normalized on a scale from zero to one). Thus, 

the process in this step is to normalize the probability values in every column of CPTs. 

This normalizing (with an encoded inverse value that gives the normalizing constant, cc) 

has to be done independently for each state of each manifestation across the set of 

effects. 

Step 5- Processing of Data via Bayesian Inference Induction: The Bayesian 

inference is enabled via the formula: P(A (B) = oc L(A IB) P(A), which indicates that the 

likelihood function, L(A(B), is the instrument to pass from prior probability distribution, 

P(A), to posterior probability distribution, P(A(B), via Bayes' theory. L(AMB) is induced 

via LP. 

Step 6- Propagation of Evidence: One has to keep in mind that entered evidence 

propagates in both directions, even though the graph is directed. 

Step 7- Generation of Posterior Probabilities: The beliefs computed after evidence 
is entered to improve the state of knowledge and thus the prior probability values are 

updated by calculating revised/updated probabilities, referred to as the posterior 

probabilities, P(AIB). Posterior marginal probabilities, P(A) and P(B) can be obtained 

via the marginalization process. 

If feedback is required due to availability of new data, then the calculated posterior 

probabilities may become the new prior probabilities for future risk assessment. 

However, they proceed forward to provide basis for action. 

Step 8- Creation of Decision Node(s) for Preferred RCOs: Initialising the network 

retracts all findings entered in the risk analysis domain. An ID should be constructed so 

that one can see exactly which variables (represented by discrete chance nodes) are 

known at the point of deciding for each decision node. Where the state of a chance 
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node is known at the time of making a decision, one must add a link from the chance 

node to the decision node. Where the state of a chance node is known before some 

given decision, and this chance node has impact on another chance node which is also 
known before the decision, only the last chance node needs to have a link to the 

decision node. This means that their only need to be a directed path from a chance node 

to a decision node if the chance node is known before the decision is made. 

Evaluation of the ID is done by setting the value of the decision node to a particular 

choice of action (i. e., best RCO), and treating the node just as a nature node with a 

known value that can further influence the values of other nodes. 

Step 9- Creation of Utility Node(s) for Values of Achievable Benefits: The action's 

utility is calculated, first by calculating the conditional probabilities for the parents of 

the utility node using the standard inference algorithm, and then feeding the results to 

the utility function. The utility figures can be given in terms of property, health, 

finances, liability, people, environment, public confidence, etc. When propagating, one 

can follow the expected utility of choosing each decision in the next decision node in 

the decision sequence in the node list pane. The best of the RCOs provides the MEU or 

lowest ICAF value. Hence, the ranking of the RCOs resulting from the domain case 

study can be used by decision-makers at all levels and in a variety of contexts without a 

requirement of specialist expertise. 

6.6 Maritime Application of Reasoning in Bayesian Models 

To illustrate the universal applicability of BNs and IDs to decision problems, it is best 

to imagine trying to model a situation in which causality plays a role but where an 

understanding of what is actually going on is incomplete. Thus things need to be 

described probabilistically and by inference. Therefore, the demonstration of the 

modelling and reasoning perspective of this powerful tool is given in the following 

settings: 

9A typical ship evacuation scenario (a marine case study). 
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" Authorised vessels to floating, production, storage and offloading (FPSO) 

installation collision scenario (an offshore case study). 

6.6.1 Case Study of an Typical Evacuation Scenario 

The safety of people onboard a ship in distress is very much dependent on effective 

emergency escape, evacuation and rescue (EER) operational system (final barrier to 

avoid fatalities) being in place and being enabled in due time. As the EER system in 

place would have to be activated due to the occurrence of some major accident 

situations, a risk contribution tree (RCT) of the underlying situations may well provide 

a suitable platform for putting out a BN evacuation model. The RCT of Figure 4.10 in 

Chapter 4, Section 4.7.1 provides such a modelling platform. However, conditional 

probabilities where not deduced during the trial FSA study, which makes it difficult to 

model this RCT scenario with confidence. Besides, eliciting conditional probabilities 

can be quite problematic without expert being available to provide such inputs and 

sound logic or techniques. As such, a generic solution is being modelled to provide an 

insight of BN modelling to the marine and offshore industry. 
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Figure 6.12: Risk contribution from major hazards leading to a marine evacuation scenario 
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A generic RCT for effecting the evacuation modelling is shown in Figure 6.12. It 

comprises a contribution fault tree and an escalation event tree for the accident category 

of fire, collision and flooding events, together with an evacuation event tree relevant to 

the accident categories. Each contribution fault tree of the RCT also has the integration 

of influencing factors (e. g., technical, organisational and human factors (See Chapter 1, 

Section 1.2.2)). 

The frequency (F) and the potential loss of life (PLL) values shown in Figure 6.12 

represent some generic data that may be derived for these critical events from an 

incident database. Frequency distributions need to be converted into probability 

distributions for use in BN, while the PLLs can be applied in cost effectiveness 

calculations for use in ID. Since a failure frequency, F, in marine assessments is well 

expressed in terms of per vessel operating year, the overall F values in the RCT can be 

considered as their failure rate, A, value. If the failure were to follow an exponential 

distribution, then Equation 2.4 in Chapter 2, Section 2.5.3 can be applied to obtain the 

equivalent probability values for the failure states. This distribution may be used in this 

case study RCT since it is similar to the discrete Poisson distribution when the 

occurrence of the event is zero. So for example, given that a ship has an operational life 

expectancy of 25 years, evacuation being necessary can be calculated as: 

P(evacuation) = 1- e-{1.75 x 10 -2 x 25) = 0.355 

For some typical EER operation, a free-fall lifeboat and a rescue boat may be utilised. 

Thus, a simplified evacuation model to ensure the safety of people onboard a vessel in a 
distress situation can be represented by the BN model in Figure 6.13. Most importantly, 

the aim of this model and the proceeding analysis is to show how BN can be applied in 

marine risk assessment whilst at the same time giving a clearer picture of how a BN 

model actually works. 

Figure 6.13: Simplified BN showing a marine evacuation scenario 
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To start with, this case study setting has been modelled in a perspective such that, 

"evacuation being necessary" does not imply that free-fall lifeboat will not be launched, 

but that there is a high probability on their launch (or usage). This is modelled in the 

BN by filling in a CPT for the `free fall lifeboat" node (Figure 6.14). 

ý 
Edit Functions View 
Evacuation Unnecessary Necessary 

No launch 0.92 '0.04 
Launch 0.08 10.96 

Figure 6.14: CPT for "free-fall lifeboat" 

This CPT is actually the conditional probability of the variable `free fall lifeboat" given 

the variable "evacuation". The possible values (launch or no launch) for `free fall 

lifeboat" are shown in the first column. Note that a probability is provided for each 

combination of events (four in this case). The particular values in this table suggest that 

the use/launch of free-fall lifeboat(s) is unlikely to increase (8% chance), but once 

evacuations are necessary, their use is very likely to increase (96% chance). Now let 

the use/launch of rescue boat(s) be considered. To model the uncertainty about whether 

or not the use of rescue boat(s) will increase when evacuation is necessary, added to the 

graph is a new node "rescue boat" and an arc from "evacuation" to the new node. 
Although there might not be a great chance that the free-fall lifeboats will not be 

launched, the rescue boats may not respond quickly in this setting of the evacuation. 

Therefore, the CPT for "rescue boat" (Figure 6.15) is different from the one for `free- 

fall lifeboat". 

tI T1 

Edit Functions View 

Evacuation Unnecessary Necessary 
No launch 10.95 0.35 
Launch 10.05 0.65 

Figure 6.15: CPT for "rescue boat" 
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The CPT associated with the node "evacuation" is somewhat different in nature. This 

node has no "parent" node in this example, and consequently, only needs to be assigned 

a CPT without conditions (Figure 6.16). 

ý 
Edit Functions View 

Unnecessary! O. 645 
Necessary 0.355 

Figure 6.16: CPT for "evacuation" 

Determining the probabilities of CPTs is done in several ways. In an instance as this 

example, it might be a simple case of assigning the probabilities based on the statistical 

data obtained from a marine incident database, or from experts with good experience to 

predict the subjective probabilities. 

Having entered the probabilities, the BN can now be used to do various types of 

analysis. The most important use of BN in this case study is in revising probabilities in 

the light of actual observations of events (in BN modelling, these are called evidences 

for the maritime BN). 

The values of these conditional probabilities can be used to obtain the unconditional 

probabilities. For example, the unconditional probability that free-fall lifeboats will be 

launched can be calculated as follows: 

P(free fall lifeboat' launch) = (P(free-fall lifeboat' launch I 

no-evacuation) x P(no-evacuation)) + (P(free-fall lifeboat' launch 

evacuation) x P(evacuation)) 

= (0.08 x 0.645) + (0.96 x 0.355) = 4.322 

The rule used here to compute the unconditional probability is called marginal 

probability. Now the unconditional probability that free-fall lifeboats will be launched 

is known to be 0.392 (i. e., 39.2%). 
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By running the BN for this evacuation scenario, as can be seen in Figure 6.17, Hugin 

gives to the left its the node list pane and to the right the modelled network pane. The 

monitor window placed near corresponding node in the network pane gives exactly the 

same as those in the node list pane, thus they are not always necessary (as they can take 

up too much space). They are used mainly for nodes that have special interest. As can 

be seen from the node list pane, as well as that in the monitor window, the 

unconditional probability that rescue boats will be launched is 26.3%. 
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Figure 6.17: BN showing results for unconditional probabilities in evacuation scenario 

Here comes the reasoning exquisiteness of BNs. Suppose the launching of free-fall 

lifeboat is known to increase. In this case the evidence that `free fall lifeboat = launch" 

is entered, and then this evidence can be used to determine: 

" The updated probability of evacuation taking place. 

" The updated probability that the use of rescue boat also increases. 

Using Bayes' rule, the probability of evacuation taking place can be calculated as: 

P(evacuation I free fall lifeboat' launch) 

P(' free - fall lifeboat'launch I evacuation) x P(evacuation) 

P(' free - falllifeboat'launch) 

= 0.96 x 0.355/0.392 = 0.869 
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Using marginal probability, the probability that there will be rescue boat launch (see 

Figure 6.18) can be calculated as: 

P('rescue boat' launch) = (P('rescue boat' launch I no-evacuation) x 

P(no-evacuation)) + (P('rescue boat' launch I evacuation) x 

P(evacuation)) 

= (0.05 x 0.131) + (0.65 x 0.869) = 0,571 
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Figure 6.18: BN showing propagated results when free-fall lifeboat is launched 

fi 

Entering pieces of evidence and using them to update the probabilities in this way is 

called propagation. Figure 6.18 shows the results with "evidence" node for free-fall 

lifeboats being launched represented by an evidence bar in both the node list pane and 

in its monitor window in Hugin. As would be expected, the probability of evacuation 

taking place increases dramatically to 86.9%, when the launch of free-fall lifeboats has 

been observed. This update is due to diagnosis (i. e., bottom-up) inference from the 

`free fall lifeboats" node to the "evidence" node. Furthermore, the updated probability 

of evacuation taking place results in bringing up the probability for launching of rescue 

boats to 57.1 %, by way of causal (i. e., top-down) inference. 

Now, there lies the provision that the major marine accident of fire, collision and 

flooding, which are often variables for external factors, may lead to evacuation. The use 

of such information has to imply that a new node is created and added as parents to the 

evacuation node, for each of these accident categories (Figure 6.19). 
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Collision 

Evacuation 

Flooding 

Figure 6.19: Fire, collision and flooding added as parent nodes of evacuation 

These new root nodes (i. e., nodes without parents) of evacuation require a CPT without 

conditions, as they do not have other influence acting on them (Figure 6.20). 
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Figure 6.20: CPT for each parent node of evacuation 

For the evacuation node, on the other hand, an expanded new CPT is used to reflect the 

fact that it is now conditional on its three parent nodes (i. e., "fire", "collision" and 

`flooding"). In other words, the evacuation CPT provides "P(evacuation I fire, 

collision, flooding)" (See Figure 6.21). 
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Figure 6.21: New evacuation CPT reflecting conditional probabilities due to parent nodes 

Given that in the event of fire or/and flooding an alarm will be triggered, a suitable 

alarm node as child node (shown as the highlighted nodes in Figure 6.22) can each be 

linked from the nodes of "fire" and `flooding" respectively. 
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Flooding 

Evacuation }{ Flooding alarm 

Figure 6.22: A suitable alarm added as individual child node to fire and flooding 

Since each of the new alarm node acts on entirely different accident events, their 

respective CPT provides input values of different conditional probabilities (Figure 

6.23). 
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Figure 6.23: CPT for individual alarm nodes of fire and flooding 

Analysing from the fact that the JPD "P(evacuation, fire, collision, flooding)" is known, 

the unconditional probability that evacuation is necessary, "P(evacuation)" can be given 

by marginalizing out the "fire", "collision" and `flooding" variables. Hugin computes 

the marginal probability as 35.54% or 0.355 (Figure 6.24). Note that Hugin also gives 

the values of 0.304 and 0.19 as the marginal probability of the "fire alarm" and 

`flooding alarm" respectively. 
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Figure 6.24: BN showing marginalised probabilities of evacuation node and its parents 
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In this initialised situation, the root nodes are characterised by their prior probabilities. 

It is shown in Figure 6.24 that the probability of fire being in its destructive state is 

0.20, the probability of collision being in its capsize state is 0.19, and the probability of 

flooding being in its sinking state is 0.09. Suppose it is observed that, "evacuation is 

necessary", then this entered evidence increases the belief in all of the possible causes 

(namely "destructive" for fire, "capsize" for collision, and "sinking" for flooding) based 

on diagnostic inference. Specifically, applying Bayes theorem yields a revised 

probability for fire in destructive state of 0.388 (up from the prior probability of 0.20), a 

revised probability for collision in capsize state of 0.374 (up from the prior probability 

of 0.19), and a revised probability for flooding in sinking state of 0.217 (up from the 

prior probability of 0.09) (Figure 6.25). Nonetheless, these revised probabilities are 

subject to change by the provision of some additional observation(s), for example: 

" The additional evidence firmly on the vessel sinking due to flooding; or 

" The additional evidence that the fire alarm is activated. 
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Figure 6.25: BN showing propagated results of evacuation evidence to its parent nodes 

If additional evidence would be firmly on the vessel "sinking due to flooding" as the 

more likely cause, then adding this evidence and applying Bayes' rule would cause the 

increased probability of "destruction by fire" and "capsize by collision" to drop to 0.208 

and 0.20 respectively (as shown by the monitor windows of Figure 6.26), thus 

`explaining away' the "destruction by fire" and "capsize by collision" as a cause for the 

evacuation. This phenomenon is due to inter-causal inference. 
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Figure 6.26: BN showing propagated results of both evacuation and flooding evidence 

Conversely, if it is discovered that the fire alarm is activated, then entering this evidence 

and applying Bayes' rule would yield the revised probabilities of 0.83 for destruction by 

fire, 0.259 for capsize by collision and 0.144 for sinking by flooding (as shown by the 

monitor windows of Figure 6.27). Thus the odds are that the destructive fire, rather 

than capsize due to collision and sinking due to flooding, has caused the evacuation to 

be necessary. Once again, it is said that the necessary evacuation has been `explained 

away'. 
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Figure 6.27: BN showing propagated results of both evacuation and fire alarm evidence 
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Figure 6.28: BN showing evacuation evidence propagation to free-fall lifeboats and rescue boats 

Now, going back to when only evacuation being necessary is observed, the launch of 

the free-fall lifeboats and rescue boat are seen to have a probability of 0.96 and 0.65 

respectively (Figure 6.28) as induced by causal inference. However, when the 

additional evidence of `flooding by sinking" is entered, these respective probabilities 

remain unchanged (Figure 6.29). It is said that the "evacuation" node d-separates all of 

its respective parent nodes from each other. 
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Figure 6.29: Flooding and evacuation evidence propagation to lifeboats and rescue boats 

The notion of d-separation (which follows from human perception) can also be noticed 

where only evidence is given for `flooding by sinking". In this case, evacuation being 
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necessary increases from a probability of 0.355 (see Figure 6.24) to 0.856 (Figure 6.30), 

but the probability values in the nodes for "fire" and "collision" stay the same (refer to 

Figure 6.24) as they are not the cause for the increase in probability of the "evacuation" 

being necessary. Thus, the path from the "flooding" node to these other nodes is 

blocked at the evacuation node. However, the probability values for the launch of free- 

fall lifeboats being 0.393 and rescue boat being 0.263 (Figure 6.17) increase to 0.834 

and 0.564 respectively (Figure 6.30). 

From the analysis so far, although the launch of "free-fall lifeboat" and "rescue boat" 

both depend on "evacuation" being necessary, "rescue boat" launch appears to output a 

probability value that is less than that of the `free fall lifeboat" launch. The risk analyst 

has the opportunity to do something about this outcome situation. Thus, a decision 

node that depends upon the rescue boat is added into the model, thereby converting the 

network into an ID. This new type of node will permit the modelling of an effective 

decision-support solution that outputs optimal survival for those onboard the vessel. 
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Figure 630: BN showing evidence of flooding being propagated to evacuation 

Before the ID is finished, a utility function, which gathers information for the potential 

benefits that come with the different implementation options, and as well, enabling the 

risk analyst to calculate the expected utility of the optimal survival, needs to be 

specified. Given the outcome state of `free fall lifeboat', a value node of life-saving, 

based on the value of lives saved, is created for specifying these quantitative benefits as 
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a function of the decision. Figure 6.31 presents the overall view of this evacuation 
domain ID. 

Figure 631: Simplified ID showing a marine evacuation domain 

Where a formal safety assessment study has been undertaken for such an evacuation 

scenario, various RCOs can be identified as decision alternatives based on their cost 

effectiveness. For the purpose of this case study, the optimal survival node has been 

issued with four hypothetical alternatives, RCO1, RCO2, RCO3 and RCO4, for which 
the utility value of saving life for the "launch" of "free fall lifeboat" is specified as 
£0.25M, £0.26M, £0.24M and £0.23M respectively. The "no launch" case, on the other 
hand, is quantified as £0.008M, £0.007M, £0.009M and £0.008M respectively. 
Figure 6.32 shows the quantitative inputs for both the optimal survival decision node 

and the life-saving utility node (unit is in 106 GBP). As seen, the tabular format for the 
decision node for optimal survival gives just the listing of the entire decision 

alternatives. 
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Figure 632: Encoded Inputs In both the node of optimal survival and life-saving 
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Hugin can then calculate the expected utility (EU) for all of the RCOs as follows: 

EU(RCO) = P(no-launch of lifeboat I RCO) x U(RCO, no-launch of 

lifeboat) + P(launch of lifeboat I RCO) x U(RCO, launch of lifeboat) 

When no observations are made, the EU values for RCOI, RCO2, RCO3 and RCO4 are 

assigned with £O. I OM, £0.11 M, £0. l OM and £0. I OM respectively (Figure 6.33). On 

another note, if a RCO implies large economic benefits with safety implications, it 

would display a lower Net Cost of Averting a Fatality (Net CAF). Thus, Net CAF may 

be used in place of EU to identify which RCOs are justifiable from a commercial or 

combined commercial and safety point of view. 
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Figure 633: ID showing initialised values for optimal survival EU 

Flooding 

R 

Once any observation is made, it propagates the evidence by message passing and 

therefore updates the free-fall lifeboat probability. This, in turn, recalculates the EU 

values for the four decision alternatives. As the best RCOs are those that give the 

MEUs of optimal survival decision, the RCOs can be ranked accordingly for use in the 

decision-making process. The MEU is calculated as: 
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MEU(RCO) = maoc{EU(RCOI), EU(RCO2), EU(RCO3), EU(RCO4)} 

In a worst-case scenario, collision might cause damage to the structural integrity of the 

vessel. As a result, capsize and flooding might upshot into the sinking of the ship. 

Since those onboard the vessel need to survive such a disaster, the RCOs for optimal 

survival are given a ranking profile according to their MEU. The MEU order ranking is 

RCO2 (£0.23M), RCOI (£0.22M), RCO3 (£0.21M) and RCO4 (£0.20M), as shown in 

the monitor window in Figure 6.34. Thus, the recommendation is for RCO2 and RCOI 

to be given top priority with respect to implementation of the optimal survival strategy. 
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Figure 6.34: ID showing propagated results of both collision and flooding 

A number of entered evidence circumstances for this model can be investigated. For 

example, even with the accidental evidence of all root nodes entered, the calculated 

MEU emerges again with a ranking order of the RCOs as RCO2, RCOI, RCO3 and 

RCO4, although higher MEU values are reached in this setting (as displayed in the node 

list pane of Figure 6.35). 
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Figure 635: ID showing optimal survival MEU after entered evidence on all key root nodes 

In the initialised situate however, it is imperative to determine how "sensitive" the BN 

evacuation model output node results for "evacuation", "free fall lifeboat", "rescue 

boat" and "optimal survival" are to the input change in variation between the range of 

lowest and highest possible value that each key event node of "fire", "collision" or 

`flooding" (as well as any combination of these events) can take. If the model follows 

the real-world phenomena, then an increase/decrease in the rate or probability at which 

of any of its input event(s) may occur would certainly result in the effect of a relative 

increase/decrease in the rate or probability of occurrence of its output events. 

For example, a partial sensitivity analysis for ±20% change to the probability of fire 

spreading can provide a more realistic setting for which risk analysts and decision 

makers can well determine the response in terms of change in magnitude and direction 

of the resulting output events. To conduct this sensitivity analysis, the lowest 

probability value in the range, which is 0.16 (i. e., -20% of the initial probability of fire 

spreading value), replaces the initial input value of 0.20 and then using marginal 

probability, the probability of evacuation being necessary, free-fall lifeboat launch and 

rescue boat launch is calculated as 0.339 (= -4.7% change), 0.378 (= -3.7% change) 

and 0.253 (z -3.8% change) respectively (See Figure 6.36). Likewise, the MEU for 

optimal survival becomes £O. IOM for RCOI, £0.1 OM for RCO2, £0.10M for RCO3 and 

£0.09M for RCO4. 
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Figure 636: ID showing model output values for an initialised -20% of P(flre spreading) 

In repeating the sensitivity analysis calculation after substituting the highest probability 

value in the range, which is 0.24 (i. e., +20% of the initial probability of fire spreading 

value), the probability of evacuation being necessary, free-fall lifeboat launch and 

rescue boat launch is calculated as 0.372 (Aý +4.7% change), 0.406 (z +3.7% change) 

and 0.273 (z +3.8% change) respectively (See Figure 6.37). Similarly, the MEU for 

optimal survival becomes £0.11 M for RCOI 
, 

£0.11 M for RCO2, £0. I OM for RCO3 and 

£0.1 OM for RCO4. 
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Figure 6.37: ID showing model output values for an initialised +20% of P(flre spreading) 
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Figure 638: Effect of varying P(rire spreading) for optimal survival ranking 

From the sensitivity study, the effects of the ±20% variation in P(fire spreading) reveal 

that this input parameter is a linear function with respect to the probability of the 

evacuation model outputs. Although the decision for optimal survival is sensitive to the 

state value of lire spreading), it does not quite reveal the ranking order in the ±20% 

variation setting. 

To well establish the best ranking order for Pyre spreading), a graphical form of the 

sensitivity analysis may be considered. Based on just varying Pyre spreading) through 

[0,1], as can be seen in Figure 6.38, it is clear that RCO2 gives the best decision 

alternative whilst RCO4 gives the worst option to implement. RCOJ appears to overlap 

with RCO3, but in the region of Pyre spreading) equals 0.0 to 0.1 and 0.9 to 1.0, RCO1 

can clearly be identified as a definite better option over RCO3. Therefore, the overall 

decision alternative ranking based on Pure spreading) is given as RCO2, RCOJ, RCO3 

and RCO4. 

6.6.2 Case Study of Authorised Vessels to FPSO Collision Scenario 

To offload oil for shipment to market, a ship-shaped FPSO vessel that is being stationed 

in one location, will typically be routinely serviced by authorised supply/standby 
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vessels and shuttle tankers moored at the stern of the FPSO. Collisions involving 

authorised shuttle tankers with that of the FPSO vessel are known to occur in the North 

Sea (Chen & Moan, 2002). FPSO vessels have a risk profile different from fixed 

platforms and commercial trading tankers and in addition, passing ships also pose a 

collision risk if an FPSO vessel is close to a sailing route. 

Support vessel 
loss of position 

EVENT1 

r-- ýiý ý R=0.0137 
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while empty 
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loss of position 

while full 
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Figure 639: Fault tree to estimate frequency of collisions of an FPSO by authorised vessels 

The frequency of collision between a shuttle tanker and an installation, or storage unit, 

is estimated to be 0.0046/year due to failure of the dynamic positioning system. It is 

assumed that 20 percent (i. e., 0.0009/year) of shuttle tanker collisions occur after 

loading operations are complete and the fully loaded vessel is leaving the field 

(Husky Oil, 2000). This relatively low percentage is due to the fact that the shuttle 

tanker is holding and maintaining position, in order to achieve loading, and is aware of 

the installation's location. In addition, it is usual practice to perform shuttle tanker 

loading operations at a safe distance from the facility. The remaining 80 percent (i. e., 

0.0037/year) of shuttle tanker collisions are assumed to occur while the tanker is empty 

and on approach to the facility. The failure of the dynamic positioning system on a 

maintenance support vessel, causing a collision, is estimated to be 0.0137/year 
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(Husky Oil, 2000). Figure 6.39 gives the fault tree to estimate frequency of collisions 

of an FPSO by authorised vessels. 
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Figure 6.40: BN of authorised vessels-FPSO collision scenario with conditional probability tables 

The evaluation of an FPSO's collision and contact damage risks needs some special 

technique(s), thus a BN, as shown in Figure 6.40, is created in Hugin to model this 

scenario for the FPSO not being able to take measures in avoiding a collision by the 

authorised vessels manoeuvring within close proximity of it. With the ship lifetime and 

overall production system very conservatively set to 20 years of operation for a lifetime 

probability in the Bayesian analysis, appropriate probabilities were assigned into the 

conditional probability tables (CPT) of each node in the model domain. These were 

based on the failure rates derived from WOAD Statistical Report (1998) (see Table 6.1) 

and from the assessments carried out in Husky Oil (2000). 
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Table 6.1: Probability values from failure frequency for offshore mobile units during 1980-97 

Type of Accident 

Failure frequency of 

mobile units (1000 

unit-years) 

Probability (at t= 

20yrs) 

Anchor failure 8.35 0.15 

Blowout 10.73 0.19 

Capsize 6.56 0.12 

Collision 2.78 0.05 

Contact 11.53 0.21 

Crane accident 4.07 0.08 

Explosion 2.78 0.05 

Falling load 8.05 0.15 

Fire 13.02 0.23 

Foundering 5.27 0.10 

Grounding 3.18 0.06 

Helicopter accident 0.60 0.01 

Leakage 3.28 0.06 

List 5.86 0.11 

Machinery failure 1.39 0.03 

Off position 11.53 0.21 

Spill/release 9.44 0.17 

Structural damage 17.09 0.29 

Towing accident 5.86 0.11 

Well problem 14.01 0.24 

Other 2.48 0.05 

When the net is compiled in "run" mode (Figure 6.41), the ship-FPSO collision network 

window is split into two by a vertical separation and this gives the initial situation to the 

left with the node list pane and to the right with the network pane. The probabilities of 

a node in a certain state are viewed double clicking it in the node list pane. 

Given the information that collision with the FPSO takes place, the probability of the 

shuttle tanker and the support vessel being in a loss of position failure state can be 

found. This fact is entered by double clicking the state "impact" of the Collision- 

"FPSO" node (Figure 6.42). The figure shows the probability of the shuttle tanker 

being lost while empty to be most disturbing quantity of the "Shuttle Tanker" node (i. e., 
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49.75%). Likewise, the "Support Vessel" node now indicates an increase in failure 

probability to 64.77%. 
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Figure 6.41: Initial Situation in the BN of authorised vessels-FPSO collision scenario 
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Figure 6.42: Probability of Impact for Collision-"FPSO" set to 100% 

If it is taken that the shuttle tanker completely (100%) maintains its position, then it can 

be seen as in Figure 6.43 that the support vessel would have failed drastically in 

positioning fault (i. e. 91.70%) for there to be a 100% collision impact on the FPSO. 
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Figure 6.43: Collision ~FPSO" Impact probability set to 100% in Shuttle Tank maintained position 
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On another note, where collision on the FPSO occurs at either the shuttle tanker being 

lost while empty (Figure 6.44) or whilst full (Figure 6.45), then the Support Vessel node 

indicates a 50: 50 chance of having a positioning fault or maintaining its position. 

® Authorised vessel FPSO Collision 
R Collision-'FPSO' 

100.00 Impact 

- Missed 
H 40 Shuns Tanker 

0 Loss while Full 
Maintaining Position 

B" Support Vessel 
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Figure 6.44: Collision-"FPSO" impact probability set to 100% in Shuttle Tank loss while empty 
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Figure 6.45: Collision-"FPSO" impact probability set to 100% in Shuttle Tank loss while full 

Evidence identified for nodes being in any state can be added as a node with the links 

attached from it to these nodes. Some resulting events known to occur due to collision 

with an FPSO have been identified herein. Some of these, as highlighted in Figure 6.46, 

include spills/release, ignition, explosion and human injury. Note that the probability 

values shown in the figure are those for the initial situation in the "run" mode. 

When the collision-to-FPSO is set at 100% impact, except that for the Ignition node, the 

failure probability value of each highlighted node is increased (as shown in 

Figure 6.47). Those that have significantly increased by a wider margin are especially 

the Spill/Release node and the Human Injury node. The Ignition node has remained the 

same in probability value, since it is only a piece of evidence for explosion and fire 

outbreak and not a resulting incident of the collision to the FPSO in this scenario. 
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Figure 6.46: Addition of evidence and resulting events from the Collision-"FPSO" situation 
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Figure 6.47: Situation for resulting events from Collision-"FPSO" impact probability set to 100% 

With the Explosion node set to a failure of 100% blast during a 100% impact on 

collision with the FPSO, the probability of 96.66% indicates a high amount in certainty 

for a structural damage to happen (Figure 6.48). The same can be said for the Human 

Injury node, which now has a probability value of 84.26% for being harmed. As such a 

great deal of attention will have to be paid to increasing safety for these represented 

nodes. Thus, the risk analyst and decision makers might find it appropriate to consider 

modelling out an ID for explosion. 
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Figure 6.48: Situation for resulting events with Collision-"FPSO" and explosion failure set to 

100% 
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Figure 6.49: Some added typical evidence for a shuttle tanker loss of position 

Other such pieces of typical evidence as the human element (with states such as "error" 

and "intervention"), weather condition (with sea states of "calm", "harsh" "adverse" and 

"severe") (see Figure 6.49), electrical/electronic aspects, etc., can be made into new 

nodes and added to diversify the range of the BN applicability in this scenario. 

The scenario settings for this case study can enable a dominant decision in a marine and 

offshore risk assessment study. Nonetheless, as extensions to the scenario network may 

Human Factor Weather Condition 
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lie in the discrepancy of the risk analyst and decision makers, the author has chosen to 

keep the network to an acceptable size. It is best however, that the risk analyst is aware, 
in tackling a scenario effectively, of being twisted in the complexities that very large 

BNs bring. 

6.7 Benefits and Limitations of Bayesian Networks 

In Bayesian networks, each representation possesses particular advantages and 
disadvantages which make it more, or less, suitable for its intended purpose. These 

have been recognised and thus outlined in Sections 6.8.1 and 6.8.2 respectively. 

6.7.1 Strengths of Bayesian Networks 

The Bayesian framework offers several advantages over alternative modelling 

approaches. The most important of these advantages are: 

" It provides intuitive visual representation with a sound mathematical basis in 

Bayesian probability that translates genuine cause and effect relationship. 

" Being probabilistic in its approach, it facilitates a meaningful communication of 

uncertainty. It is consistent with the risk assessment paradigm, and allows 
decisions to be made based on expected values. 

" It is capable of combining diverse data, expert judgement and empirical data. 

By incorporating expert judgment, the method is not paralysed by a lack of 

observational data. 

" It allows easy updating of prediction and inference in a statistically rigorous 

manner when observations of model variables are made. Deleting or adding 

new information does not also require the whole network to be revised. 

" The assessment endpoints are chosen so that they are of vital interest to 

stakeholders and decision-makers and can be easily conceived in terms of utility 
for use in formal decision analysis. 
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These particular advantages offered by BNs make it very useful in situations where 

uncertainty is unavoidable - Bayesian methods provide a mechanism to model the 

uncertainty. Thus, such methods can also be used where normal optimisation and 
decision-making techniques are difficult to apply. 

6.7.2 Difficulties of Using Bayesian Networks 

In spite of their remarkable power and potential to address inferential processes, there 

are some inherent limitations and liabilities to BNs. These drawbacks include the 

following: 

" They cannot easily incorporate unobserved variables, owing to the fact that the 

size of the internal CPT for a child node can very quickly become quite large. 

" There is computational complexity/difficulty (filling in of details of numerical 

recipe, computer time, convergence monitoring), which is exponential in the 

number of nodes. These complex models with large numbers of parameters, 

which are often referred to as non parametric (NP), become NP-hard in 

complexity as they approach general multiply-connected networks. 

" Likelihood functions are not always solvable analytically (Rather, heuristics are 

extensively used in practice). 

The complexity of inference is usually associated with large probabilistic dependencies 

recorded during inference. However, a large model is preferable to a smaller one only if 

it provides a sufficiently large improvement of fit to offset the penalty for its additional 

complexity. 

6.8 Concluding Remarks 

A BN could be used to model the components that affect risk and how they interact. 

Besides, its graphical nature makes the assessment model intuitive for users to 

understand. The process of performing Bayesian updating involves selecting a prior 

probability distribution, calculating the normalizing constant, formulating the likelihood 

function, and then calculating the posterior probability distribution. The likelihood 
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function incorporates the objective information whilst the prior distribution can include 

subjective information known about the distributions of the model parameters. 
Therefore, the posterior distribution incorporates both the objective and subjective 
information into the distributions of the model parameters. Hence, BNs are well suited 
for modelling maritime safety-critical systems prediction and risk analysis. 

The proposed BN methodology has been used to combine evidence from different 

information sources for the quantitative assessment of a generic ship evacuation 

scenario and that of authorised vessels to FPSO installation collision via the Hugin 

program tool. This program software allowed for the probabilities of states of nodes 
based on observed information to be adjusted and it propagated such changes through 

the network to update the conditional probabilities at each node. It was also possible to 

show all the implications and results of a complex Bayesian argument based on the 

underlying Bayes' theorem. This theorem is the fundamental principle governing the 

process of logical Bayesian inference that determined what conclusions can be made 

with a degree of confidence based on the totality of relevant evidence available. The 

probabilistic predictions of the case studies can be used to give stakeholders and 
decision-makers a realistic appraisal of the chances of achieving desired outcomes. The 

results also indicate that BNs give a sound and transparent approach modelling marine 

operational risk. Thus, BN is an integrative model that can be used effectively within 
the existing decision-making process. The evacuation study BN was further expanded 

with life-saving utility and optimal survival decision nodes that permitted the rapid 
development of a practical maritime decision model, and one in which the value of IDs 

as a highly intuitive communication tool has been confirmed. IDs provide a compact 

alternative to decision trees such that, during review, persons who are not risk analysts 

are able to interpret the diagrams and propose improvements to the decision model. 
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Chapter 7: Fuzzy Logic Modelling 

Chapter Summary 

In dealing with complex and ill-defined systems of a maritime application, modelling to 

support human reasoning for the purpose of risk assessment requires the effectiveness 

of a systematic logic-based approach. Floating production, storage and offloading 
(FPSO) installations, for example, combine traditional process technology with marine 

technology, and thus are quite dependent on technical design and operational safety 

control. Such safety-critical dependencies require novel approaches to properly analyse 

the risk involved. Hence, a proposed framework utilising fuzzy logic, as the 

mathematical tool for approximate reasoning, and evidential reasoning approaches is 

provided for modelling the assessment task. 

As based on fuzzy set theory, the model enables subjective uncertainties to be described 

mathematically and further processed in the analysis of the structures. The forms of 

membership functions that could be used in representing fuzzy linguistic variables to 

quantify risk levels are presented. A case study of collision risk between FPSO and 

shuttle tanker due to technical failure during tandem offloading operation is used in this 

chapter to illustrate the application of the proposed model. Furthermore, the obtained 

results from the case study provide confirmation that at various stages of offshore 

engineering systems design process, the framework of incorporated approximate 

reasoning is a well-suited and convenient tool for attaining reliable risk analysis. 

7.1 Introduction 

The safety of a large maritime engineering system is relatively affected by the growing 

technical complexity regarding its design to operation phase, and even in its 

maintenance. Thus, an ample amount of reliable data needs to be provided in order to 
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determine a probabilistic value of all the failure mode variables that are necessary for 

conducting its safety analysis. Realistically, not all the variables may have the 

necessary numerical data and those available may be somewhat imprecise that there 

may be no simple mathematical model to implement them. Such variables might have 

to be supported immensely by the knowledge of experts (such as marine engineers and 

safety analysts), which means that the obscure nature in their knowledge representation 

will have to be analytically taken into account. For example, the field experts may 

precisely describe the occurrence of a specified failure mode for the system as 

`reasonable frequent' or `highly unlikely', for which the possible value falls within an 

accepted interval of a scale. 

The incorporation of subjective terms leads to both the uncertainty that can be attributed 

to vagueness of the system's ill-defined boundaries and that of ambiguity where there 

are several choices associated with a given condition. The employment of fuzzy logic 

(FL) is a powerful and versatile tool tolerant of imprecise, ambiguous and vague 

data/information, and one for which its reasoning builds this understanding into the 

process rather than just tacking it onto the end. It utilises the concept of a linguistic 

variable, that is a variable whose values are not numbers but words or sentences in a 

natural or synthetic language (as built from the system's qualitative assessment), and 

provides a framework for dealing with such variables in a systematic way. Its rule-base 

would naturally allow for the linguistic attributes to be specifically guided towards a 

justified output result. Thus, FL opens the door to the application of the linguistic 

approach in a wide variety of problem areas, which do not lend themselves to precise 

analysis in the classical spirit. 

In FL, one can apply the input parameters from a hazard identification worksheet. In 

the typical case, a defuzzification process is used to obtain a crisp output result brought 

about my aggregating the degree to which all the rules are activated. For example, a 

risk priority number or a criticality number could be the defuzzied result of a fuzzified 

input that combines failure mode occurrence, severity and detectability (as taken from a 

failure mode, effect and criticality analysis (FMECA) worksheet) in its rule-base. As 

weighted ranking may better be utilised from analysis having multiple experts and 

attributes, instead of a crisp output, an evidential reasoning process may be used to 

synthesis the aggregation. A multiple experts and attributes scenario of the collision 
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risk between an FPSO and a shuttle tanker due to technical failure during tandem 

offloading operation can utilise this approach for its maritime safety analysis. 

7.2 Logic Approach of Approximate Reasoning 

Approximate reasoning (AR) uses fuzzy sets and FL to model human reasoning (Zadeh, 

1975). It lacks the precision of the exact reasoning in classical logic but it may be more 

effective in dealing with complex and ill-defined systems. Its max-min composition 

(Mamdani, 1974) plays an important role in inferential rules based on generalised 

modus ponens. 

7.2.1 Basis of Fuzzy Set Theory 

Fuzzy theory holds that all things are matters of degree, and also reduces black-white 

logic and mathematics to special limiting cases of grey relationships. Mathematically 

fuzziness means multivalence so that multivalued fuzziness corresponds to degrees of 
indeterminacy or ambiguity, partial occurrence of events or relations. Introduced by 

Zadeh (1965), as a modest extension of the classical notion of set, the notion of fuzzy 

set proved to have far-reaching, unexpected impact. The idea is that unlike crisp set, 

which is completely determined by an indicator function taking values in (0,1), a fuzzy 

set is characterised by a membership function taking values in [0,1] - 

7.2.1.1 Fuzzy Set 

A fuzzy set is represented by a membership function defined on the universe of 
discourse. The universe of discourse is the space where the fuzzy variables are defined. 

Formally, a fuzzy set A in a universe of discourse U is expressed as a set of ordered 

pairs: 

A= {(x, flA(x) Ix in U} (7.1) 
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where pA(x) is the membership function that gives the degree of membership of x in the 

fuzzy set A. This indicates the degree to which x belongs in set A. 

A fuzzy set A is said to be normal if there exists xeX such that PA(x) =1 (It is said to 

be subnormal otherwise). 

7.2.1.2 Membership Function 

A membership function (MF) is a curve/shape that defines how each point within the set 

of any element in the universe of discourse is mapped to a value between 0 and 1. This 

value is called membership value or grade/degree of membership. A MF value of zero 

implies that the corresponding element is definitely not an element of the fuzzy set, 

while a value of unity means that the element fully belongs to the set. A fuzzy set 

whose MF only takes on the values zero or one is called crisp. 

n-function Z-function I S-function 
(i) Single-valued, or singleton (ii) Triangular 

(iii) Rectangular (iv) Trapezoidal 

u(x) 

X1 X2 X3 X4 X5 

(b) Membership functions on a 
fuzzy scale 

(v) Z-function NO n-function (vii) S-function 

(a) he various shapes of a membership fimction 

Figure 7.1: Various forms of fuzzy membership function 
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MFs can provide graphical representation of the magnitude of participation for each 

expert knowledge input. It can associate a weighting with each of the inputs that are 

processed, define functional overlap between inputs, and ultimately determines an 

output response. The feasible shapes of the parameters' membership functions are 
defined only in the application context and as perceived by expert. Figure 7.1(a) shows 

the various forms in which a typical MF may take. In safety modelling, those of Figure 

7.1(a) (i) to (iv) (i. e., singleton, triangular, rectangular and trapezoidal MFs) are 

perceived to be appropriate in the representation of expert knowledge. As used on a 
fuzzy scale (Figure 7.1(b)), these are described as follows: 

" Singleton MF: A single deterministic value, x3, with 100 % certainty. 

" Triangular MF: A triangular distribution defined by a most likely value, x3, 

with a lower least likely value, x1, and an upper least likely value, x5. 

" Rectangular MF: A closed interval defined by an equally likely range between 

x2 and x4. 

" Trapezoidal MF: A trapezoidal distribution defined by a most likely range 

between x2 and x4, with a lower least likely value, x1, and upper least likely 

value, x5. 

The idea of using fuzzy membership function is to map the parameter constraint to 

membership grade between the scaled intervals. The closer the membership is to one 

the better the solution is for that constraint. The rules use the input membership values 

as weighting factors to determine their influence on the fuzzy output sets of the final 

output conclusion. 

7.2.1.3 Operations With Fuzzy Sets 

The basic connectivity operations in fuzzy set theory include union, intersection, 

complement, Cartesian product and composition. These operations are given for two 

fuzzy sets A and B with membership value at x, denoted by µA(x) and µB(x) respectively 

as follows: 
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" Union of A and B: uA, B = max{AA(x), AB(x)}. The union of A and B produces 
fuzzy set C with membership values that are the maximum of the component 

values. 

" Intersection of A and B: AAnB = min {µA(x), µB(x)}. The intersection of A and B 

produces fuzzy set C with membership values that are the minimum of the 

component values. 

" Complementation of A: LA(x) =1- AA(x). The membership values of the 

complementary set f are just I- the corresponding membership values of A. 

" Cartesian product of A and B: µA x B(x) = (/L x e(x))m where eA x B(x) 

min [µ', 4(x), ft'B(x)) for the Cartesian space i =1,2, ..., in and j=1,2, ..., n. 

" Composition: µo eAx B(X) = max(min {µc(x), µ`'A x B(x)) ). The composition of the 

membership functions for the fuzzy subset C and the Cartesian product of the 

subsets A and B, is the maximum membership value obtained from the minimum 

membership values of all subset. 

Furthermore, Boolean algebra rules, which are common in classical set theory, also 

apply to fuzzy set theory. 

7.2.2 Composition of a Fuzzy Variable 

A fuzzy number is a quantity whose value is imprecise, rather than exact as is the case 

with "ordinary" (single-valued) numbers. The concept of a fuzzy number plays a 
fundamental role in formulating quantitative fuzzy variables. These are variables whose 

states are fuzzy numbers. When, in addition, the fuzzy numbers represent linguistic 

terms that are interpreted for a particular context, the resulting constructs are usually 

called linguistic variables. 
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7.2.2.1 Linguistic Variable 

A linguistic variable differs from a numerical one in that its values are not numbers, but 

words or sentences in a natural or artificial language. Since words, in general, are less 

precise than numbers, the concept of a linguistic variable serves the purpose of 

providing a means of approximated characterization of phenomena, which are too 

complex, or too ill-defined, to be amenable to their description in conventional 

quantitative terms (Zadeh, 1975). 

PERFORMANCE 

Very small 

10 22.5 32.5 45 55 67.5 77.5 90 100 

v (perf)rmance scores) ý----- Base variable 

Figure 7.2: An example of a linguistic variable 

Every linguistic variable is characterised by the name of the variable, the set of names 

of linguistic terms that refer to a base variable ranging across a universe of discourse, U, 

a syntactic rule (which usually takes the form of a grammar) for generating the 

linguistic terms and a semantic rule that assigns each linguistic term its meaning, which 

is a fuzzy set on U. Figure 7.2 shows an example of a linguistic variable that represents 

a system performance (Klir & Yuan, 1995). The fuzzy numbers, whose MFs have the 

usual trapezoidal shapes, are defined on the interval [0,100], which is the range of the 

base variable. Each of them expresses a fuzzy restriction on this range. 
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7.2.2.2 Linguistic Terms 

A linguistic term is characterized by its term set. The linguistic term for system 

performance in Figure 7.2 can be defined by the term set T, the set of names of 
linguistic values of performance, in the following way: T(performance) = {very small, 

small, medium, large, very large). 

Three to seven terms are often appropriate to cover a linguistic term. Rarely, one uses 

less than three terms, since most concepts in human language consider at least the two 

extremes and the middle in between them. On the other side, one rarely uses more than 

seven terms because humans interpret technical figures using their short-term memory. 

The human short-term memory can only compute up to seven symbols at a time 

(Broadbent, 1975 and Miller, 1956). Another observation is that most (definitely not 

all) linguistic variables have an odd number of terms. This is due to the fact that most 
linguistic terms are defined symmetrically, and one term describes the middle between 

the extremes. Hence, most fuzzy logic systems use 3,5, or 7 terms. 

Fuzzy linguistic terms can be of several types (Turksen, 1992): 

" Fuzzy predicates, such as heavy, large, old, small, medium, normal, expensive, 

near, smart, and the like. 

" Fuzzy truth-values, such as true, false, fairly true, or somewhat true. 

" Fuzzy probabilities, such as likely, unlikely, very likely, or extremely unlikely. 

" Fuzzy quantifiers, such as many, few, most, or all. 

Usually, depending on the problem domain, an appropriate linguistic term set is chosen 

and used to describe the vague or imprecise knowledge. The elements in the term set 

will determine the granularity of the uncertainty, that is the level of distinction among 

different sizes of uncertainty (Delgado, et. al, 1998). 
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7.2.3 Background of a Fuzzy Logic System 

FL systems are knowledge/rule-based systems constructed from human knowledge in 

the form of fuzzy IF-THEN rules (Wang, 1997). The rules output an IF-THEN 

statement in which some words are characterised by continuous membership functions. 

For example, the following is a fuzzy IF-THEN rule: 

IF likelihood of a hazard is frequent AND severity of 

occurrence is catastrophic, THEN risk level is high. 

The frequent, catastrophic and high are characterised by the membership functions. 

The starting point of constructing a fuzzy logic system (FLS) is to obtain a collection of 
fuzzy IF-THEN rules from human experts or based on the domain knowledge. As a 
fuzzy system is constructed from a collection of fuzzy IF-THEN rules, the next step is 

to combine these rules into a single system. Different fuzzy systems use different 

principles for this combination. An important contribution of fuzzy system theory is 

that it provides a systematic procedure for transforming a knowledge base into a non- 
linear mapping. 

7.2.4 Components of a Fuzzy Logic System 

A FLS consists of four components: fuzzifier, fuzzy rule base, fuzzy inference engine, 

and defuzzifier. Since a multi-output system can always be decomposed into a 

collection of single-output systems, a FLS is considered for a multi-input-single output 
(MISO) case, where U=U, x U2 x ... x Up c RP is the input space and VcR is the 

output space. A fizzy relation R(U, V) is a set in the product space UxV and is 

characterized by the membership function µR (x, y), where xeU, and yeV, and 

AR(x, y) E[O, 11. 
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7.2.4.1 Fuuifier 

The fuzzifier converts each piece of input data to degrees of membership by using one 

or several membership functions. It is defined as a mapping from a crisp (real-valued) 

point x* EUc RP to a fuzzy set A' in U. The fuzzifier thus matches the input data with 

the conditions of the rules to determine how well the condition of each rule matches that 

particular input instance. There is a degree of membership for each linguistic term that 

applies to that input variable. 

7.2.4.2 Fuzzy knowledge/Rule Base 

A fizzy knowledge/rule base consists of a set of fuzzy IF-THEN rules. It is the core of a 
FLS in the sense that all other components are used to implement these rules in a 

reasonable and efficient manner. Basically, the representation of imprecise knowledge 

can be collected and delivered by a human expert (e. g., decision-maker, designer, 

process planner, machine operator). This knowledge, expressed by (k = 1,2, ..., K) 

finite heuristic fuzzy rules of the type MISO, may be written in the form: 

RMiso : IF xi is Ai and x2 is AZ and ... and xN is Aýk, , THENy is Bk (7.2) 

where 
{A; }" (fuzzy sets in U, c R) denotes the values of input linguistic variables 

{x, }", (conditions) and B* (fuzzy sets in Vc R) stands for the value of the independent 

output variable linguistic variable y (conclusion). 

In a FLS framework, there are three major properties of fuzzy rules (Wang, 1997). 

These are outlined as follows: 

I. A set of fuzzy IF-THEN rules is complete if for any xcU, there exists at least 

one rule in the fuzzy rule base, say rule Rk in the form of Equation 7.2, such that 

N4 (XI) *0 for all i= 1,2, ..., n (7.3) 
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where Ný (x, ) is the membership value associated with x; is Aý . 

Intuitively, the completeness of a set of rules means that at any point in the input 

space there is at least one rule that "fires", that is, the membership value of the 

IF part of the rule at this point is non-zero. 

2. A set of fuzzy IF-THEN rules is consistent if there are no rules with the same 

IF parts but different THEN parts. 

3. A set of fuzzy IF-THEN rules is continuous if there do not exist such 

neighbouring rules whose THEN part fuzzy sets have empty intersection. 

7.2.4.3 Fuzzy Inference Engine 

In fuzzy inference, all rules are fired. It carries out a mapping from fuzzy set A' in U to 

fuzzy set B' in V and consequently determines how the system interprets the fuzzy 

linguistics. It stores the rules as fuzzy associations in a matrix that maps fuzzy set A to 

fuzzy set B. Such a matrix forms the fuzzy associative memory (FAM) for the system 

(Kosko, 1992). 

To arrive at conclusions for inference systems, the FAM matrix has to be computed 

such that the ký' IF-THEN rule is interpreted as an implication R: A -4 B or R=AxB 

and when a set of fuzzy inputs {A, }", (or observations) are given to the inference 

system, the fuzzy output B' (or conclusion) may be symbolically expressed as: 

B'=(A,, A2,..., AN)°R (7.4) 

where symbol `°' denotes the composition rule of inference (CRI), e. g., the sup-^ or 

sup prod (sup-. ) of fuzzy relations. Alternatively, the CRI of Equation 7.4 is easily 

computed as: 
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B'=(AN 0 
... 

°(AZ'(A, ýR)) (7.5) 

Thus, given fuzzy set A' (which represents the premise x in A') and fuzzy relation A -* 

B in UxV (which represents the IF x is A THEN y is B), a fuzzy set B' in V (which 

represents the conclusion y is B') is inferred as (Wang, 1997): 

fUs'(Y)=sup rt1JA'(4µA-ºa(x, Y)] (7.6) 
x¬u 

where the sup represents the sup-" composition. 

The inference mechanism that produces the output from a collection of rules is 

determined by two factors (Mamdani, 1974 and Larsen, 1980): 

1. `min' or `algebraic product' implication operators, and 

2. `max-min' or `max product' composition operators. 

The global relation aggregating all rules from k=1 to K is given as: 

R= alsoIK , (Rk , so ) 
(7.7) 

where the sentence connective also denotes any t- or s-norm, e. g., min (A) or max (v) 

operators) or averages. 

Since any practical fuzzy rule base constitutes more than one rule, the key question here 

is how to infer with a set of rules. In composition-based inference, all rules in the fuzzy 

rule base are combined into a single fuzzy relation in UxV, which is then viewed as a 

single fuzzy IF-THEN rule. There are two views for what a set of rules should mean. 

The first one views the rules as independent conditional statements and the reasonable 

operator for combining the rules is union. The second one views rules as strongly 

coupled conditional statements such that the conditions of all rules must be satisfied in 
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order for the whole set of rules to have an impact. In this case the operator intersection 

should be used to combine the rules. 

7.2.4.4 Defuzzification 

At the defuzzifer, the input is a fuzzy set (i. e., the aggregated output fuzzy set), and the 

output is a crisp value obtained by using some defuzzification method such as the 

centroid, height, or maximum. 

In maritime assessment work, this processing is a computational simplicity that can be 

used when to the output required is a risk priority number, a criticality number or to 

automate a controller. It is however unsuitable to derive the risk control measures or 

options for which the level of risk or safety has to be known. Therefore, the aggregated 
fuzzy conclusion for a risk modelling output is best processed by synthesis. 

7.3 Evidential Reasoning Synthesising Approach 

The evidential reasoning (ER) approach provides a more versatile way in which a 

multiple criteria decision analysis (MCDA) problem with uncertainties can be modelled. 
It uses evidence-based reasoning processes to reach a decision and its evaluation 

process is based on the Dempster-Shafer (DS) theory, which is well suited for handling 

incomplete assessment of uncertainty. The DS theory can model the narrowing of the 

hypothesis set with the accumulation of evidence. In other words, it will become more 
likely that a given hypothesis is true if more pieces of evidence support that hypothesis. 

The ER criteria aggregation process is in general a non-linear process and, compared to 

the traditional weighting MCDA methods, the non-linearity is decided by the weights of 

criteria and the way each criterion is assessed (Yang and Xu, 2002a). Furthermore, the 

ER framework not only provides flexibility in describing a MCDA problem, it also 

prevents any loss of information due to the conversion from a distribution to a single 

value in the modelling process. 
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7.3.1 Safety Analysis Synthesis 

To express the subjective safety more explicitly, linguistic variables such as "poor", 

"average", `fair" and "good" can be used. For instance, it may be quite clear to state 

that the safety of a failure mode is to a large extent "good". Such linguistic variables 
("poor", "average", `fair" and "good") are referred to as safety expressions. The safety 

expressions may also be characterized by membership degrees to each element in U. 

The fuzzy safety description of an event can then be mapped back onto the defined 

safety expressions. The safety, S, can then be obtained as follows: 

S(S) = ((ßl, 'poor'), (ß2, `fair'), (ß3, `average'), (04, `good')} 

where ß. (m = 1,2,3 or 4) represents the extent to which the safety of the event belongs 

to the mth safety expression. 

A safety model or an operation process is usually a hierarchical structure with multiple 

layers where: 

" Judgments on an event at the bottom level of the hierarchy made by multiple 

experts need to be synthesized. 

" Safety synthesis needs to be carried out at the next level. 

" Safety synthesis is progressed up to the top level where the safety estimation of 

the system can be obtained. 

The hierarchical structure of a safety model can be formulated by studying the system 

under investigation. The system is composed of its constituent subsystems, which can 

be further broken down to the component level. Each component is associated with 

certain failure modes. The subsystems, components and failure modes may carry 

different weights when synthesizing the safety of the system in such a hierarchy. 

The weight of an element in a synthesis level may be judged on a subjective basis in 

terms of its contribution to the safety of the associated element in the upper level. The 

technique that is used to carry out the synthesis is the evidential reasoning approach, 
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which is based on the principle that if more pieces of evidence (each may carry different 

weight) support a hypothesis then it is more likely that the hypothesis is true (Yang & 

Sen, 1994; Yang & Singh, 1994; Yang, 2001; Yang & Xu, 2002b). The evidential 

reasoning approach has the advantage of synthesizing safety estimates without loss of 

any data and also that uncertainties in safety estimates are handled in a rational manner. 

Suppose M,, (m = 1,2,3 or 4; n=1, ..., or N is a degree to which S(S�) (safety judged 

by expert n) supports the hypothesis that the safety evaluation associated with a failure 

event is Hm (Hi = "poor"; ; H2 ý= `fair"; H3 = "average"; e"; or H4 = "good"). Then, M' 

can be obtained as follows: 

M'=), xß � (7.8) 

where )`, is the normalized relative weight of expert n in the safety estimation process. 

Suppose M, (n = 1, ..., or N) is the remaining belief unassigned after commitment of 

belief to all H. (m = 1,2,3 and 4) for S(S� ). M, N can be obtained as follows: 

4 

M. H =1-1: M. Iff M_1 
(7.9) 

Suppose MME (m = 1,2,3 or 4; n=1, ..., or N) represents the degree to which the 

safety associated with the event belongs to H. as a result of the synthesis of the 

judgments produced by safety analysts 1, ... , and n. Suppose MM, " represents the 

remaining belief unassigned after commitment of belief to all H. (m = 1,2,3 and 4) as a 

result of the synthesis of the judgments produced bysafety analysts 1, ... , and n. The 

algorithm for synthesizing the analysts' judgments to obtain the safety evaluation 

associated with the event can be stated as follows (Yang & Singh, 1994; Yang & Sen, 

1994): 

Initial conditions: MM; = M; MMIH = M; 
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{H, �} MMý , =K�+, (MM� Mý , +MMn Mn , +MMH Mý ,) 

m=1,2,3,4 

{H} MMý ,= K�+l MM, Mn l 

44 -1 

K�+1= 1-E y MMTM�, 
T=I R=1RsT 

n=1,..., N-1 

N- 1 iterations of the above algorithm are required to obtain the degree (i. e., MMn ) to 

which the safety evaluation associated with the event belongs to H, � (m = 1,2,3 and 4). 

The safety evaluation associated with the failure event can then be presented in the 

following form: 

S(Sthe 
event) = {(NI 

, 
"poor"), (132, `fair"), (03, "average"), (ß4, "good')) 

(7.10) 

whereto (m = 1,2,3 and 4) is equal to MMN . 

It is worth mentioning that the order in which safety estimates are combined does not 

make any difference in terms of the final synthesis using the above algorithm. It is also 

worth mentioning that the sum of 0" (m = 1,2,3 and 4) may not be equal to I at the end 

of synthesis using the above algorithm. This is because there may be still some 

unassigned belief to S(S, *e event) due to the incompleteness of the safety estimates that are 

combined. The evidential reasoning algorithm has the advantage that in theory the total 

unassigned belief decreases as more safety estimates are synthesized. 

In a hierarchical structure with multiple layers, the above synthesis can be used to 

obtain the safety estimate for an event at the bottom level. Then the evidential 

reasoning algorithm can be used again to obtain safety synthesis at the next level in the 

hierarchy. Such a synthesis can be eventually progressed up to the top level where the 

safety associated with the system can be obtained as follows: 
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S(S) =1 (ß1, "poor"), (ß2, ̀ fair"), (ß', "average"), (ß4, "good")} (7.11) 

where ß'" (m = 1,2,3 or 4) represents the extent to which the safety of the system 
belongs to the mth safety expression. 

7.3.2 Utility Based Synthesis 

Cost can also be modeled in a similar manner. Given the relative importance of cost 

against safety, the safety and cost estimates can be synthesized, using the evidential 

reasoning approach, to obtain the preference estimate U(i) associated with 
design/operation option i as follows: 

U(i) _ {(µt,, 
, "slightly preferred'), (µý, , "moderately preferred"), (µý',; 

, 

`preferred"), (µü, , "greatly preferred") (7.12) 

where each pu; (m = 1,2,3,4) represents an extent to which the utility associated with 

design/operation option i belongs to the mth utility expression ("slightly preferred, " 

"moderately preferred, " "preferred, " or "greatly preferred'). 

7.3.3 Decision Preference Synthesis 

Preference degree P; associated with design/operation option i is obtained by (Wang et 

al., 1996): 

444 

Pr= j>ü, xKJ+ 1-, Nür x '/. x ýKJ (7.13) 
J=I J=t J=l 

where K1, K2, K3, K4 are the utility degrees associated with the four utility expressions, 

respectively; (1 - ý_, per) describes the remaining belief unassigned after 

commitment of belief in the synthesis of cost and safety descriptions; and %x 
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jsI Kj is the average value of the Kß. It is worth mentioning that K1, K2, K3, K4 may 

not be fixed for different applications and they may be determined by appropriate expert 
judgments. 

Obviously, the larger P; is the more desirable design/operation option i. The best 

design/operation option with the largest preference degree can be selected on the basis 

of the magnitudes of P; (i = 1,2, ..., D) if there are several design options available in 

the design process. Furthermore, If more design objectives such as reliability are dealt 

with, this method can be easily extended to carry multiple objective decision-making. 

This method may be more appropriate for use in situations where a design of a maritime 

engineering product is at the initial stages or there is a lack of adequate data for use in 

quantitative risk assessment. 

7.4 Proposed Fuzzy Logic Safety Modelling Methodology 

A generic framework for modelling system safety using an integrated approximate 

reasoning (AR) and evidential reasoning (ER) approach as depicted in Figure 7.3, 

consists of seven major steps. It emulates the reasoning process for synthesising human 

expert judgements within a specific domain of knowledge, codes and standards based 

on the guidelines and company policy using an AR approach, which is FL-based. In 

addition, an ER approach is used in the later stage of the framework to handle the safety 

synthesis of the system with complexity involving multi-experts, or multi-attributes, or 

a combination of both. 
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The proposed framework for modelling system safety for risk analysis, as shown in 

Figure 7.3, consists of seven major steps as follows: 
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Step 1- Establishment of Experts Real-Valued Hazard Data: Anticipated and 
identified causes or factors to technical failure of an engineering system are collected 
for multiple attribute and experts knowledge. As related to the experts' linguistic 

interpretation, their crisp values are then entered from database knowledge for the 

obtained failure parameters. 

The inputs are now directed into a process that determines the degree to which they 

belong to each of the appropriate fuzzy sets via MFs. The algorithm uses either 

symmetric singleton, rectangular, triangular or trapezoidal MFs (see Figure 7.1) 

uniformly distributed by each universe of discourse. 

Step 2- Fuzzified Input Set to Extract Rules: The next step is to take inputs and 
determine the degree to which they belong to each of the appropriate fuzzy sets via 

membership functions. Based on 
{A, k }N, (fuzzy sets in U, cR), which denotes the 

values of input linguistic variables {x, }N, (conditions), rules can be extracted for the 

antecedent such as "xl is A; and x2 is AZ and ... and xN is AN ". Thus, µ (x, ) gives 

the membership value associated with the input x; is A, k 
. 

Step 3- Extraction of Rules from Input Fuzzy Set: Based on the input fuzzy 

variables, rules can be extracted for the antecedent/premise, which is denoted as "x is 

A". Moreover, since each given rule has more than one part in a MISO system, fuzzy 

logical operators of "AND" or/and "OR" are applied to evaluate the composite firing 

strength of the rule. 

Step 4- Formulation of IF-THEN Rule-Base: Once the inputs have been fuzzified, 

the degree to which each part of the antecedent has been satisfied for each rule is 

recognised. If a given rule has more than one part, the fuzzy logical operators are 

applied to evaluate the composite firing strength of the rule. 
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A fuzzy relation R(U, V) is a set in the product space UxV and is characterized by the 

membership function µR (x, y), where xEU, and y off V, and µR (x, y) E [0,1]. Fuzzy 

relations play an important role in fuzzy inference systems. FL uses notions from crisp 
logic. Concepts in crisp logic can be extended to FL by replacing 0 or I values with 
fuzzy membership values. A singleton fuzzy rule assumes the form "if x is A, then y is 

B, " where xEU and YEV, and has a membership function µR (x, y), where /AAB(x, y) 

E [0,1]. The IF part of the rule, "x is A" is called the antecedent or premise, while the 

THEN part of the rule, "y is B", is called the consequent or conclusion. Interpreting an 
IF-THEN rule involves two distinct steps. The first step is to evaluate the antecedent, 

which involves fuzzifying the input and applying any necessary fuzzy operators. The 

second step is implication, or applying the result of the antecedent to the consequent, 

which essentially evaluates the membership function IhA , B(x, y). 

Step 5- Evaluation of Rules for Output Fuzzy Set: To produce safety evaluation for 

each cause to a technical failure at the bottom level of a hierarchical system, the 

consequent/conclusion as denoted by `3 is B" is formed for the output fuzzy variable of 

the MISO system. Its output set can be defined using fuzzy safety estimate sets in the 

same way as the fuzzy inputs. The implication method of the minimum or the product 

then shapes the output MFs on the basis of the firing strength of the rule. This input for 

the implication process is a single number given by the antecedent, and its output is a 
fuzzy set. 

Step 6- Aggregation and Normalisation: Aggregation is a process whereby the 

outputs of each rule are unified. Aggregation occurs only once for each output variable. 
The input to the aggregation process is the truncated output fuzzy sets returned by the 

implication process for each rule. The output of the aggregation process is the 

combined output fuzzy set. 

The input of the aggregation process is the list of truncated output functions returned by 

the implication process for each rule. The output of the aggregation process is one 
fuzzy set for each output variable. As this method is always commutative, the order in 
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which the rules are executed is not important. The max (maximum) method is applied 

to the aggregation of consequent, ̀ y is B", across the rules. 

The normalization is required to make the sum of weights equal to 1. This is achieved 

by dividing each membership value in the fuzzy conclusion set by the sum total of all 

membership values in the set. 

Where defuzzification is used for obtaining a single number output, the input for the 

process is a fuzzy set (the aggregated output fuzzy set), and the output of the 

defuzzification process is a crisp value obtained by using some defuzzification method 

such as the centroid, height, or maximum. 

Step 7- ER Synthesis of Weighted Indices for Ranking: For the ER synthesis, it is 

highly unlikely for selected experts to have the same importance, as the weights of 

importance need to be utilised. The assessment of weight for each expert is an 

important decision for the analyst to make in view of the safety of the system under 

scrutiny. Each expert is assigned with a weight to indicate the relative importance of 

his or her judgment in contributing towards the overall safety evaluation process. The 

analyst must decide which experts are more authoritative. Weights are then assigned 

accordingly. 

The final component describes the calculation of overall risk level ranking index. Then 

the identified potential causes are ranked on the basis of their ranking index values, or 

multi-attribute-multi-expert safety synthesis as performed. 

7.5 Case Study of Collision Risk for Shuttle Tanker to FPSO Unit 

The collision cases that have occurred between FPSO and shuttle tanker in tandem 

offloading operation has caused agrowing concern in the North Sea as well as the rest 

of the world. Several recent incidents between FPSO and shuttle tanker have clearly 

witnessed a high likelihood of contact between vessels in tandem offloading. The large 

masses involved make the collision risk significance. 
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Tandem offloading from a spread moored FPSO is a high-risk operation, especially as 

the DP shuttle tanker can pose a threat of collision to the FPSO with potential serious 

consequences. Moreover, several recent collisions have caused a growing concern that 

leaves the operation deserving proactive safety scrutiny. Therefore, a novel safety 

model for collision risk analysis of FPSO and tanker offloading operation is being 

presented in this case study. The collision risk caused by various technical 

malfunctions is modelled by using an approximate reasoning approach. This model 
further provides guides to identify and assess the failure prone situations where man 

machine interaction happened and resulted in most collision incidents. 

7.5.1 FPSO/Shuttle Tanker in Tandem Operation 

FPSO (Floating production, storage and offloading) vessels are the state-of-the-art 

platforms utilised in the process for production, treatment and delivery of crude oil at 

offshore oil and gas fields worldwide. These vessels tend to be of ship-shape hulls, and 

therefore they are maintained on station by anchors and mooring lines. Shuttle tankers 

can be used to export processed oil from these vessels via `tandem' mooring 

configuration and this is very popular in the North Sea. 

A shuttle tanker in its tandem operational phases (i. e. approach, connection, off-loading, 
disconnection and departure) off-takes the processed oil from the FPSO with utmost 

safety precautions. During tandem offloading, the shuttle tanker must stay connected 

and keep on maintaining its separation proximity to the FPSO, e. g. 80m behind, by use 

of a DP system. The frequency of offloading operation may range from once every 3 to 

5 days, depending on the production likelihood, storage capacity of FPSO, and shuttle 

tanker size. Normal duration of operation is in the order of 20 hours based on FPSO 

storage and oil transfer likelihood, though suitable environmental conditions are 

required. The FPSO is continuously weathering around its turret located either 

internally or externally. In harsh environments, due to waves and wind, it is also 

subject to significant low frequency motions in horizontal plane (surge, sway and yaw) 

(Chen & Moan, 2002). Since tankers with a DP system have greater uptime in harsh 

environments and are also more practical, they have become widely applied. 
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7.5.2 Collision Risk Experiences 

Before the turn of the millennium, some 500 ships were reported to have collided with 

offshore installations in the UK sector for the last 25 years duration (HSE, 1999). Over 

96% of the collisions have involved attendant vessels such as shuttle tankers other 

authorised vessels. Among these have been recent impact cases in the North Sea 

involving FPSO and shuttle tanker incidents (Leonhardsen et. al, 2001) as follows: 

" Shuttle tanker Futura collided with Gryphon FPSO on 260' July 1997. 

" Shuttle tanker Aberdeen collided with Captain FPSO on 120i August 1997. 

" Shuttle tanker Nordic Savonita collided with Schiehallion FPSO on 250i 

September 1998. 

" Shuttle tanker Knock Sallie collided with Norne FPSO on 50i March 2000. 

The later of these FPSO-shuttle tanker collision cases, a 154,000 dwt shuttle tanker at 

0.6 m/s impact velocity, had its impact energy as high as 31 MJ (Helgoy, 2002). 

Recognising the large masses and subsequently the large impact energy involved in 

such incidents, the damaging potential can relatively be intensified and thus the risk 

associated is significant. In the worst-case scenario, catastrophic consequences in terms 

of loss of life, environmental impact and business risk are reasonably foreseeable. 

Furthermore, stern damage on the FPSO may cause penetration and flooding in the 

machine room. Moreover, with the widely adopted FPSO design, e. g. Gryphon, 

Captain, Norne, Asgard and etc. (Kerr-McGee Oil, 1995 and Statoil, 1995), the living 

quarters are located in the bow area, thus the flare towers, which have to be located in 

the stern area, are vulnerable to tanker impact. The worst scenario could therefore be a 

major tanker collision that topples down FPSO's flare tower on stern. This can initiate 

a chain of events with severe fire and explosion on both vessels. The majority of 

reported incidents are caused by station-keeping related technical failure such as 

propulsion (thrusters, propeller, engine, generator, pitch-control device), DP, position 

reference sensor, and operation or maintenance of these systems. 
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7.5.3 A Fuzzy Rule-Based Evidential Reasoning Safety Modelling 

In this section, safety assessment is carried out on risk introduced by the collision of 
FPSO and shuttle tanker during tandem offloading operation. It is based on risk caused 
by technical failures, although it should be noted that operational failures are recognised 

as one of the major causes of collision. 

7.5.3.1 Linguistic Expression of Collision Risk Input Parameters 

One realistic way to deal with imprecision is to use linguistic assessments. The main 

artificial intelligence mechanism behind a typical fuzzy safety model is its fuzzy 

inference engine. A fuzzy inference engine comprises the selection or development of 

the typeltypes of fuzzy membership function used to represent risk levels and fuzzy rule 
bases to generate fuzzy safety estimates. The linguistic variables are employed in the 

development of fuzzy membership function for each input parameter. The goal of fuzzy 

linguistic variables is to represent the condition of an attribute/parameter at a given 
interval. 

Based on experience and judgment combined with grading evaluation guidelines, the 

assessment team assigns numeric values to each attribute/parameter for fuzzy set input. 

These numeric values are based on a ten-point scale as anchored by linguistic variable 

and descriptors provided by evaluation. The ten-point scale is indicative of performance 
in regards to industry standard, minimum Code requirements, and good marine practice. 

The three attributes/parameters for fuzzy set input, which can be considered for 

modelling failure modes, are failure likelihood, consequence severity and failure 

consequence probability (Sii, et. al, 2005). These can be combined via a rule-base to 

find degree of failure, or degree to which safety level can be achieved. 

Failure likelihood, L, describes the failure frequencies in a certain time, which directly 

represents the numbers of failures anticipated during the design life span of a particular 
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system or an item. Table 7.1 describes the range of the frequencies of the failure 

occurrence and defines the fuzzy set of L. To estimate L, one may choose to use such 
linguistic variables as "very low (L, )", "low (L2)", "Reasonably low (L3)", "average 

(L4)", "Reasonably Frequent (LS)", 'frequent (L6)" and "hiS'hlY. f re4uent (L7)" 

It is noted that the evaluation criteria for failure likelihood can be modified according to 

different requirements in codes and standards and different aspects of platforms such as 
fire, explosions, structure, safety system, etc. 

Table 7.1: Failure likelihood 

Failure likelihood 
Rank Failure likelihood, L Meaning (general interpretation) 

(1/year) 

2 1 2 3 3 
is unlikely but possible during 

< 10_S , , , , Very low, L1 
lifetime 

4 Low, L2 Likely to happen once during lifetime 0.25 x 10- 

5 Reasonably low, L3 Between low and average 0.25 x 10 

6 Average, LK Occasional failure 10 

7 Reasonably Frequent, LS Likely to occur from time to time 0.25 x 10- 

8,8,9 Frequent, L6 Repeated failure 0.125 x 10-' 

9,10 Highly frequent, L7 
Failure is almost inevitable or likely to 

> 0.25 x 10' 
exist repeatedly 

Consequence severity, C, describes the magnitude of possible consequences, which is 

ranked according to the severity of the failure effects. One may choose to use such 
linguistic variables as "negligible (Cl)", "marginal (C2)", "moderate (C3)", "critical 

(C4)" and "catastrophic (Cs)". Table 7.2 shows the criteria used to rank the 

consequence severity of failure effects. 
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Table 7.2: Consequence severity 

Meaning (generic marine and offshore Rank Consequence severity, C 
structure/system interpretation) 

At most a single minor injury or unscheduled 

1 Negligible, C, maintenance required (service and operations can 

continue). 
Possible single or multiple minor injuries or/and minor 

system damage. Operations interrupted slightly, and 2,3 Marginal, CZ 
resumed to its normal operational mode within a short 

period of time (say less than 2 hours). 

Possible multiple minor injuries or a single severe injury, 

moderate system damage. Operations and production 4,5,6 Moderate, C3 
interrupted marginally, and resumed to its normal 

operational mode within, say no more than 4 hours. 

Possible single death, probable multiple severe injuries or 

major system damage. Operations stopped, platform 

closed, shuttle tanker's failure to function. High degree of 
7,8 Critical, C4 operational interruption due to the nature of the failure 

such as an inoperable platform (e. g. drilling engine fails to 

start, power system failure, turret mooring system failure) 

or an inoperable convenience subsystem (e. g. DP, PRS). 

Possible multiple deaths, probable single death or total 

system loss. Very high severity ranking when a potential 

failure mode (e. g. collision between FPSO and shuttle 9,10 Catastrophic, Cs 
tanker, blow-out, fire and explosion) affects safe platform 

operation and/or involves non-compliance with 

government regulations. 

Failure consequence probability, E, defines the probability that ensued consequences 

gives the occurrence of the event. For E, one may choose to use such linguistic terms as 
"highly unlikely (E1)", "unlikely (E2)", "reasonably unlikely (E3)", "likely (E4)", 

"reasonably likely (E5)", "highly likely (E6)" and "definite (E7)". Table 7.3 shows the 

possible criteria used to definite the linguistic terms for describing and ranking E of 
failure effects. 
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Table 7.3: Failure consequence probability 

Failure consequence Rank Meaning 
probability, E 

The occurrence likelihood of possible consequence is highly 

1 Highly unlikely, El unlikely given the occurrence of the failure event (extremely 

unlikely to exist on the system or during operations). 

The occurrence likelihood of possible consequences is 

unlikely but possible given that the failure event happens 
2,3 Unlikely, , E2 

(improbable to exist even on rare occasions on the system or 

during operations). 

The occurrence likelihood of possible consequences is 

reasonably unlikely given the occurrence of the failure event 4 Reasonably unlikely, , E3 
(likely to exist on rare occasions on the system or during 

operations). 

It is likely that consequences happen given that the failure 
5 Likely, E4 event occurs (a programme is not likely to detect a potential 

design or operations procedural weakness). 

It is reasonably likely that consequences occur given the 

of the failure event (i. e. exist from time to time on 
,7 6,7 Reasonably likely, ES 

the system or during operations, possibly caused by a 

potential design or operations procedural weakness). 
It is highly likely that consequences occur given the 

occurrence of the failure event (i. e. often exist somewhere on 
8 Highly likely, E6 the system or during operations due to a highly likely 

potential hazardous situation or design and/or operations 

procedural drawback). 

Possible consequences happen given the occurrence of a 
failure event (i. e. likely to exist repeatedly during operations 9,10 Definite , E7 
due to a anticipated potential design and operations 

procedural drawback). 

With reference to the above fuzzy descriptions of L, C and E, it may be observed that 

the linguistic variables are not exclusive, as there are intersections among the defined 

linguistic variables describing L, C and E. Inclusive expressions may make it more 

convenient for the safety analysts to judge a safety level. 
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7.5.3.2 Input Fuzzy Variable Semantics for Collision Risk 

In taking the form of the defined MFs, the three attributes/parameters for fuzzy set input 

are expresses by the following sets: 

L= {L1, L2, L3, L4, L5, L6, L7} 

C= {C1, C29 C3, C49 Cs} 

E ={EI, E2, E3, E4, E5, E6, E7} 

l. o 
L, L2 L3 L4 LS La 1-7 

EZ 

ý 

2468 10 L 

(a) Fuzzy set definition for failure likelihood, L 

C3 C4 C5 

Yxxx 
1.0 

2468 10 C 

(b) Fuzzy set definition for consequence severity, C 

E3 E4 

X>OOK 
lV\ 

1.0 
t 

02468 10 ý 
(c) Fuzzy set definition for failure consequence probability, E 

Figure 7.4: Fuzzy input set definition for risk-based analytical modelling 
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Overlapping functions, as shown in Figure 7.4, are used to represent various linguistic 

variables for all attributes because the experts and the literature concurred that in the 

analysis of the risks associated with a failure event/mode, the risk levels may have 

"gray" or ill-defined boundaries (Bell & Badiru, 1996). 

7.5.3.3 Fuzzy Associative Matrix of Collision Risk Fuzzy Conclusion 

Safety estimate, S, is the only output fuzzy variable used in this study to produce safety 

evaluation for each cause to a technical failure at the bottom level of a hierarchical 

system. It is described linguistically by the variables "poor", `fair", "average", and 
"good". 

For an independent fuzzy variable, such as S, the rule size grows geometrically 

according to: 

RMlso = 7c x 5c x 7E = 2455 (7.14) 

The relationship between fuzzy sets and rules is normally shown in a fuzzy associative 

memory/matrix (FAM) (i. e., the overall risk matrix for the variables). A FAM encodes 

the fuzzy rules. Each dimension of the matrix represents the fuzzy sets assigned to an 
independent variable. The cubic FAM of Figure 7.5 shows the 245 rules in its Cartesian 

product space format as obtained from the 7L x 5C x 7E input combinations. 
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(b) Assembled unit of all the Cartesian granule 
space in the safety expression rule-base. 

F-M- 
(c) Rule-base of all Cartesian granule space indicated 

on each level of the failure likelihood (L) axis. 

Safety expression, S: Good, 
S, 

J Average, Fair, Poor, 
S2 S3 S4 

i 

Figure 7.5: Cube FAM matrix for safety expression rule-base 
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By first varying {E, }ý through each of its linguistic variable steps, whilst keeping 

{C; }; 
, constant, on each level of {Lj 1,7=1 

, then going next through each linguistic 

variable step in {C; }5 
, and keeping it constant whilst varying {E, },, all rules and their 

respective rule number, Rk, labels can be obtained for k=I to k= 245 (see Figure 7.5(a 

& b)) from their respective Cartesian granule in the safety expression rule-base. In 

other words, the k`h rule is given by the expression: 

24 
Rk }k=51 

= IF: Lis {L; }, 7_, 

Therefore: 

AND C is {C; }j AND E is {E; }ý ; THEN: S is {S 
. 
}' 

l j=1 

(7.15) 

R, = IF: L is L, AND C is Cl AND E is E,; THEN: S is S, 

R2=IF: LisL, AND Cis Cl AND E is E2; THEN: SisS, 

R245 = IF: L is L7 AND C is C5 AND E is E7; THEN: S is S4 

All 245 rules in the safety expression rule base have been assembled as given in Figure 

7.5(c) and as detailed in Tables 7.4(i)-(vii). 

Table 7.4(i): All IF-THEN rules for when "failure likelihood" is "very low" 

Ri L; C; E; S; Rk 1.; C, E; S; R* I,; C; E; S; R4 L; C; S; Rk L; C; E; S; 

1 E, S, 8 E, S, 15 E, S, 22 E, S2 29 E, S2 

2 E2 S, 9 E2 S, 16 E2 S, 23 E2 S2 30 E2 S2 

3 E3 Si 10 E3 S, 17 E3 S, 24 E3 S3 31 E3 S3 

4 L, C, E4 S2 11 L, C2 E4 S2 18 L, C3 E4 S2 25 L, C4 E4 S3 32 L, C5 E4 S3 
5 E5 S2 12 E5 S, 19 E5 S2 26 E5 S3 33 E5 S3 

6 E6 S2 13 E6 S2 20 E6 S3 27 E6 S4 34 6 S4 

7 

1 

F., S2 14 E7 S2 21 E7 S3 28 E7 S4 35 Eý S4 
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R, t L; Ci E; S; Rk Lj Ci Ei Si Rk L, CJ El Sj Rk L; CJ Er Sj Rk L; Cl Ei Sj 

36 E, S, 43 E, S, 50 E, S, 57 E, S2 64 E, S2 

37 E2 S, 44 E2 S, 51 E2 S, 58 E2 S2 65 E2 S2 

38 E3 S, 45 E3 S, 52 E3 S, 59 E3 S3 66 E3 S3 

39 L2 C, E4 S2 46 l-2 C2 E4 S, 53 L2 C3 E4 S2 60 L2 C4 E4 S3 67 L2 C5 E4 S3 
40 E5 S2 47 E5 S, 54 E5 S2 61 E5 S3 68 E5 S3 
41 E6 S2 48 E6 S2 55 E6 S3 62 E6 S4 9 E6 S4 
42 E, S2 49 E7 S, 1 1 56 E S 63 E7 S4 

H 

0 77 1S4 

Rk Lj C, E; Sj Rk L; Cf Et Sj Rk Lt CJ E; Si Rk L, CJ Ei Sj Rk L; C; E1 Sj 
71 E, S, 78 E, S, 85 E, S, 92 E, S2 99 E, S2 

72 E2 S, 79 E2 S, 86 E2 Si 93 E2 S2 10 E2 S2 

73 E3 S, 80 E3 S, 87 E3 S, 94 E3 S3 101 E3 S3 
74 L3 Cl E4 S, 81 L3 C2 E4 S2 88 L3 C3 E4 S1 95 L3 C4 E4 S3 102 L3 C5 E4 S3 
75 E5 S2 82 E5 SZ 89 E5 

S2 96 E5 S3 103 E5 S3 
[ 

E6 S, 83 E6 SZ 90 E6 S3 97 E6 S4 104 E6 S4 

77 E7 SZ 84 E7 SZ 91 E, S3 98 E, S4 105 Eý S4 

R, t Li Ci Ei Sj Rk Li Ci E! Sj Rk L1 CJ Ei Si Rk Li C1 Ei Sj Rk L; Ct E1 Sl 
106 E, S, 113 Ei S2 12 E, S, 127 Ei S2 13 Ei S2 

107 E2 S2 11 E2 S2 121 E2 S2 128 E2 S2 135 E2 S2 

108 E3 S, 11 E, S2 122 E3 SZ 12 E3 S3 13 E3 S3 
109 L4 Ci E4 S3 11 L4 C2 E4 S3 123 L4 C3 E4 S3 13 L4 C4 E4 S3 137 L4 CS E4 S3 

110 E5 S3 11 ES S 12 E5 S3 131 E5 S3 138 E5 S4 
111 E6 S, 11 E6 S3 125 E6 S3 132 E6 S4 139 E6 S4 

112 E7 S3 11 E7 S3 12 E7 S3 133 E7 S4 14 Eý S4 
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Table 7.4(v): All IF-THEN rules for when "failure likelihood" is "reasonably frequent" 

Rx L1 Cr Ei Si Rý Li Ci Ei Sj Rä L; Ci Ei Sj Rk L, C; Ej Sj Rt L, Ci Ei Sj 

141 E, S2 14 155 E, S2 162 E, S2 169 Ei S2 

142 E2 SZ 14 15 E2 S2 163 E2 S2 17 E2 S; 

143 E, S2 15 157 E3 S, 164 E3 S3 171 E; S3 

144 L5 Ci E4 Si 151 L5 C2 

J 

158 L5 C, E4 Sý 165 L5 C4 E4 S3 172 L5 C5 E4 S4 

145 E5 S, 15 15 E5 S3 16 E5 S4 173 E5 S4 

146 E6 Sj 153 16 E6 S, 167 E6 S4 17 E6 S4 

147 Eý Sa 1 E7 S, 161 Eý S, 168 Eý S4 175 Eý S4 

Table 7.4(vi): All IF-THEN rules for when "failure likelihood" is "frequent" 

R, t Li Ci Ei Sj Rk Li C, Ei Sj Rk Li Ci Er Sj Rk Lr Cr Ei Sj Rk L; Cj Ei Sj 

176 E, SZ 183 Ei S2 19 Ei S2 197 Ei S2 0 Ei S2 

177 E2 S2 18 E2 S2 191 E2 S2 198 E2 S3 05 E2 S3 

178 E3 S2 18 E3 S2 192 E3 S2 199 E3 S3 0 E3 S3 

179 L6 Cl E4 S3 18 Ld C2 E4 S3 193 L6 C3 E4 Si 0 L6 C4 E4 S3 07 L6 C5 E4 S4 

180 E5 S3 18 E5 S3 19 E5 S3 01 E5 S4 08 E5 S4 

181 E6 S3 E6 S3 195 E6 S3 E6 S4 09 E6 S4 

182 Eý S3 

MI8 

E7 S3 19 E, 7 S4 

E03 

E, S4 1 Eý S4 

Table 7.4(vii): All IF-THEN rules for when "failure likelihood" is "highly frequent" 

Rk L; C; E; S; Rk L; C; S; Rk L; C; E; S; Rk L; C; E; S; Rk Li C; E; S; 

211 E, S, 1 Ei S2 25 Ei S2 32 Ei S2 39 Ei S2 

12 E2 S_ 1 E2 S2 i26 - 
E2 S2 33 E2 S3 4 E2 S3 

13 E, S: 2 E3 S2 27 E3 S2 3 E3 S3 41 E3 S3 

14 L7 Cl E4 S, Ti L7 C2 E4 S3 28 L7 Cl E4 S3 35 L7 C4 E4 S3 42 L7 C5 E4 S4 

215 E5 S, 2 E5 S3 2 E5 S3 3 E5 S4 43 E5 S4 

216 E6 S3 23 E6 S3 3 E6 S3 37 E6 S4 E6 S4 

17 E, S3 E7 S3 E7 54 38 E7 S4 45 E7 S4 

7.5.4 Potential Causes of Collision Risk Technical Failures 

Collision of an FPSO and a shuttle tanker scenario can largely be initiated by technical 

failures and escalated through operational failures (or visa versa). These technical 
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failures, such as in malfunction of propulsion system, can occur owing to the following 

four major causes (Chen & Moan, 2002): 

" Cause 1 (ai): Controllable pitch propeller (CPP) failure. 

" Cause 2 (a2): Thruster failure. 

" Cause 3 (a3): Position reference system (PRS) failure. 

" Cause 4 (a4): Dynamic positioning system (DPS) failure. 

These causes can be modelled for risk analysis to be performed through the proposed 
integrated AR and ER methodology in Section 7.5. There are five experts (i. e., el, e2, e3, 

e4, e5, ) taking part in the safety assessment. For the purpose of safety modelling, the 

input parameters of L, C and E, will be fed to the proposed safety model in terms of 

µj(x) in any one of the four forms in Figure 7.1(a) (i) to (iv). Pertaining to the level of 

ambiguity and uncertainty associated with the case as perceived by a particular expert, 

the selection of forms of membership function by each expert is dependent upon 

subjective judgment made. 

7.5.5 Expert Judgment Input Membership for Potential Causes 

On the basis of the qualitative assessment made by each expert, the safety estimate, S, of 

each technical failure for each cause can be assessed. Therefore, upon their subjective 

judgment, the assessment made by each expert, {e, }r due to each potential cause, 

{a, }1 
, is as provided in Table 7.5. 

All of these subjective judgment made can be expressed diagrammatically. For 

example, the input membership judgement made for potential cause a, by expert el is as 

shown diagrammatically in Figure 7.6. 

Expert #1 used triangular form of membership function to address the inherent 

uncertainty associated with the data and information available while carrying out 

assessment on the three input parameters. L is described triangularly as (6.5,8.0,9.5) 

on the fuzzy scale as shown in Figure 7.6(a). The most likely value is 8.0,6.5 and 9.5 
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are the lower and upper least likely values, respectively. It has membership degrees of 
0.2 in the "Average", 0.7 in the "Reasonably frequent", 0.7 in the "Frequent ", and 0.25 

in the "Highly frequent", respectively. As for C (see Figure 7.6(b)), it is described 

triangularly as (7.5,8.5,9.5). 8.5 is the most likely value, 7.5 and 9.5 are the lower and 

upper least likely values used to represent C. It has membership degree of 0.75 in the 

"Critical" and 0.78 in the "Catastrophic". E is triangularly represented as (5.5,7.0, 

8.5), with 7.0 as its most likely value, 5.5 and 8.5 as its lower and upper least likely 

values (see Figure 7.6(c)). It has its membership degrees of 0.2 in the "Likely", 1.0 in 

the "Reasonably likely". 0.6 in the "Highly likely" and 0.2 in the "Definite", 

respectively. 

Table 7.5: Expert judgment input membership values for each potential malfunctioned cause 

ar ej Mx) L C E 

1 Triangular 16.5,8,9.5) 17.5,8.5,9.5) (5.5,7,8.5} 

2 Triangular {5.5,7.5,9) {7,8.5,10} 15,7.5,9.5) 

1 3 Closed interval (6,8) (7,9) {6.5,9} 

4 Trapezoidal {5.5,6.5,9,10) 15.5,7,8,10) 15,7,8,8.5) 
5 Single deterministic {7.75} (8.25) {7.6} 

1 Triangular (6,7,7.5) {6.5,7,8) (4.5,5.5,6) 

2 Triangular 16,6.5,8) (7,8,9) (6,7.5,8) 

2 3 Closed interval (5.5,5.5,7.5,7.5) (6,6,8,8) {6,6,8,8} 

4 Trapezoidal (5,6,7,8) (5,7,8,9) 15,6,7,9) 

5 Single deterministic (7.15) {7.95) {7.25} 

1 Triangular {6.5,7,7.51 {8,8.5,9) (5-5,7,8) 

2 Triangular (6,7.5,8) (7.5,8,9.5) 15,6,7) 

3 3 Closed interval (6.5,6.5,8,8) 17,7,7.5,7.51 (6.5,6.5,7.5,7.5) 

Trapezoidal (6,7,8,9) {5,7,8,8.5) (6,7,8,9) L [±5 

Single deterministic (7.5) {7.2) {7.1) 

1 Triangular (7,7.5,8) (7.5,8.5,9) 16,7,7.5) 

2 Triangular (6.5,7,8) (6.5,7,8.5) (5.5,6,7} 

4 3 Closed interval 17,7,9,9) (7.5,7.5,9.5,9.5) 17,7,8,8) 

4 Trapezoidal 16.5,7,7.5,8) (6,6.5,7,8) 16.5,7,7.5,91 
5 Single deterministic {7.95) {8.25) {7.9} 
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Figure 7.6: Expert #1 fuzzy input set definition for CPP failure 

7.5.6 Risk assessment of the Input Membership for Potential Causes 

The risk assessment carried out by each expert on each collision risk potential cause is 

depicted in Table 7.6, as given for each {L; }, I, {C; }; , and 17 . 
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Table 7.6: Risk assessment made by each expert for each potential malfunctioned cause 

al ei 
L, C1 Er 

Li 7 L2 L3 L4 L5 L, 6 L7 Cl C2 C3 C4 Cs Ei E2 E3 E4 E5 E6 Eý 

ei - - - 0.20 0.70 0.70 0.25 - - - 0.75 0.78 - - - 0.20 1.00 0.60 0.2 

e2 - - 0.17 0.50 
65 

0.85 
0.58 - - - - 0.80 0.80 - - - 0.28 0.8 

0.85 

0.50 
0.50 

al 
e3 - - - 1.00 

1.00 

0.25 
0.75 - - - - 1.0 1.0 - - - - 1.00 1.00 1.00 

e4 0.30 0.75 1.00 1.00 0.65 - - 0.60 1. 0.68 - - - 0.34 1.00 1.00 0.30 

es - - - - 0.62 0.37 - - - - 0.75 0.25 - - - - 0.45 0.60 - 

ei - - - 0.50 1.00 0.20 - - - 0.35 1.00 - - - . 25 0.75 0.65 - - 

e2 - 0.70 0.75 0.30 - - - - 1.00 0.5 - - - - 0.80 0.70 - 
a2 e3 0.50 1.00 1.00 0.25 - - - 1.00 1.0 - - - - 1.00 1.00 - 

e4 0.50 1.00 1.00 0.35 - - - 0.65 1.0 0.50 - - - 0.50 1.00 0.65 0.32 

es - - - - 0.95 0.05 - - - - 1.01 - - - - - 0.8 0.20 - 

ei - - - 0.35 1.00 0.20 - - - - 0.7 0.70 - - - 0.20 1.00 0.50 - 

e2 - - - 0.40 0.85 0.40 - - - - 1.00 0.6( - - - 0.50 1.0 - - 
a3 e3 - - - 0.50 1.00 0.50 - - - - 1.00 - - - - - 1.0 0.50 - 

e4 - - - 0.50 1.00 0.65 - - - 0.65 1.00 0.35 - - - - 1.0 1.00 0.50 

es - - - - 0.75 0.25 - - - - 1.00 - - - - - 0.90 0-10 - 

ei - - - - 0.80 0.40 - - - - 0.75 0.65 - - - - 1.00 0.35 - 

e2 - - - 0.30 1.00 0.35 - - - 0.35 1. 0.2 - - - 0.35 1.00 - - 
a4 e3 - - - - 1.00 1.00 - - - - 1.01 1.00 - - - - 1.00 1.00 - 

e4 - - - 0.35 1.00 0.40 - - - 0.70 1.00 - - - - - 1.00 0.80 0.40 

1 es - - - - 0.52 0.48 - - - - 0.75 0.25 - - - - 0.15 0.85 - 

An example is used to demonstrate the rule evaluation processes in the fuzzy inference 

engine of the proposed safety model for risk analysis. The evaluation made by 

expert #1, ei, on collision risk caused by the CPP failure, al, is used here to demonstrate 

the procedure involved in fuzzy inference engine. The "truth value" of a rule is 

determined from the conjunction of the rule antecedents. With conjunction defined as 

`minimum', rule evaluation then consists of determining the smallest (minimum) rule 

antecedent, which is taken to be the truth value of the rule. This truth value is then 

applied to all consequents of the rule. If any fuzzy output is a consequent of more than 

one rule corresponding to a particular safety expression, then that output is set to the 

highest (maximum) truth value of all the rules. 
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The 245 rules in the rule base that are used in this study are listed in Table 7.4(i)-(vii) of 

this report. The risk matrix for this study is given Figure 7.5(b) and provided in an 

exploded format as shown in Figure 7.5(c). 

7.5.7 Approximate Reasoning Evaluation of Safety Estimate 

The evaluation of S made by five experts, {e; }J for collision risk between FPSO and 

shuttle tanker due to CCP caused technical failure, at, are performed separately 

according to the general safety modelling framework using the approximate reasoning 

approach. The evaluation of S made by expert #1, el, with the following parameters is 

performed as shown in Table 7.7. 

7.5.7.1 Fuzzify Inputs 

In this evaluation, 245 rules are considered; however, only 32 rules are fired 

contributing to the actual evaluation process in this particular case. These 32 rules are 

rule numbers 130,131,132,133,137,138,139,140,165,166,167,168,172,173,174, 

175,200,201,202,203,207,208,209,210,235,236,237,238,242,243,244,245. 

The fuzzification process results are given in Table 7.6. 

In this manner, each input variable is fuzzified over all the qualifying membership 
functions required by the rules. 

7.5.7.2 Apply Fuzzy Operator 

The antecedents of the 32 rules are evaluated. For example, in applying rule #130 the 

three different pieces of the antecedent (L is "average (L4) ", C is "critical (C4)" and E 

is "likely (E4)") yield the fuzzy membership values (NL, 130, , UC, 130, PE. 13o) = (0.20,0.75, 

0.20) respectively. The fuzzy AND operator it = min(, uL,, Pc,, /4E, ) simply selects the 

minimum of the three values, that is, 0.20. The application of the fuzzy operator 
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generates the results as shown in columns 2-4 of Table 7.7 for each rule involved in the 

evaluation process. 

Table 7.7: Safety expression results of analysis membership values from rule evaluation process 

Rk NL Ac µe Si l; r (min) 

130 0.20 0.75 0.20 Fair 0.20 

131 0.20 0.75 1.00 Fair 0.20 

132 0.20 0.75 0.60 Poor 0.20 

133 0.20 0.75 0.20 Poor 0.20 

137 0.20 0.78 0.20 Fair 0.20 

138 0.20 0.78 1.00 Poor 0.20 

139 0.20 0.78 0.60 Poor 0.20 

140 0.20 0.78 0.20 Poor 0.20 

165 0.70 0.75 0.20 Fair 0.20 

166 0.70 0.75 1.00 Poor 0.70 

167 0.70 0.75 0.60 Poor 0.60 

168 0.70 0.75 0.20 Poor 0.20 

172 0.70 0.78 0.20 Poor 0.20 

173 0.70 0.78 1.00 Poor 0.70 

174 0.70 0.78 0.60 Poor 0.60 

175 0.70 0.78 0.20 Poor 0.20 

200 0.70 0.75 0.20 Fair 0.20 

201 0.70 0.75 1.00 Poor 0.70 

202 0.70 0.75 0.60 Poor 0.60 

203 0.70 0.75 0.20 Poor 0.20 

207 0.70 0.78 0.20 Poor 0.20 

208 0.70 0.78 1.00 Poor 0.70 

209 0.70 0.78 0.60 Poor 0.60 

210 0.70 0.78 0.20 Poor 0.20 

235 0.25 0.75 0.20 Fair 0.20 

236 0.25 0.75 1.00 Poor 0.25 

237 0.25 0.75 0.60 Poor 0.25 

238 0.25 0.75 0.20 Poor 0.20 

242 0.25 0.78 0.20 Poor 0.20 

243 0.25 0.78 1.00 Poor 0.25 

244 0.25 0.78 0.60 Poor 0.25 

245 0.25 0.78 0.20 Poor 0.20 



Chapter 7- Fuzzy Logic Modelling 

7.5.7.3 Apply Implication Method 

Implication is implemented for each rule. A consequent is a fuzzy set represented by a 

membership function, p,,, which weights appropriately the linguistic characteristics that 

are attributed to it. The consequent is reshaped using a function associated with the 

antecedent, which is a single value. The input for the implication process is a single 

value given by the antecedent, p� and the output is a fuzzy set. The following 

expression is used to generate the membership value of the consequent S for rth rule: 

p(H,,; n=1,2,3,4)�=pr 

For rule #130,4u(H2; `fair (S3)')130 = µ130 = 0.20 (i. e., membership value for the 

particular safety expression "Fair (S3) " is 0.20 for rule #130). This result is given in 

column 6 of Table 7.7. 

7.5.7.4 Aggregate All Outputs 

In this step, the fuzzy sets that represent the outputs of each rule are combined into a 

single fuzzy set and this only occurs once for each output variable prior to 

normalisation. All 32 rules have been placed together to demonstrate how the output of 

each rule is combined, or aggregated, into a single fuzzy set (whose membership 
function assigns a weighting for every output value (S)). 

The aggregation of consequents, i. e. S across the rules is expressed as follows for 1th 

expert of the f* potential cause to a technical failure: 

S(e, {aj)) = {max(ßi, SI); max(ß1r, S2); maz(03,., S3); maz(ß4, r, sa)} 

(7.16) 

where r=],..., R = number of rules fired in the evaluation. 

- 239 - 
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S assessed by Expert #1, el, for potential cause #1, a,, to a technical failure has the 

result as follows: 

S(el(ai)) = {max(0, Si); max(O, SZ); max(O. 2, S3); max(O. 2,0.25,0.6,0.7, S4)} 

Therefore; 

S(el(ai)) = {0, Si; 0, S2; 0.2, S3; 0.7, S4)} 

The output can be interpreted in such a way that S of the system is S3 (i. e., Fair) with a 

belief degree of 0.20 and S4 (i. e., Poor) with a belief degree of 0.70. 

7.5.7.5 Normalise Safety Estimate 

Since the aggregation of a fuzzy set encompasses a range of output values represented 

in different linguistic variables associated with varied memberships, it must be 

normalised before feeding S to the evidential reasoning framework for further 

evaluation in a hierarchical manner. It is worth noting that defuzzification is not 

required here in this study. 

Then the safety estimate is normalised according to the expression given as follows: 

rr 
/ 

ýI, 
t 

ý2d ý3r, 
1 /'4, t S(et (ar ))- 

Dr ' D, ' D, ' Dr rrt1 

4 

where Al = ZQý 
Z (i. e., the degree of safety level for the i expert). 

R=I 

(7.17) 

Note that the fuzzy aggregation function is ß-anonymous as this gives the same 

importance to the opinion of all experts. However, assessment for weight of importance 

is necessary for an overall safety result to be achieved. 
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The normalisation gives S= {0.0, Si; 0.0, S2; 0.2223, S3; 0.7777, S4}. It is obvious that 

the derived S belongs to S3 (i. e., Fair)" and S4 (i. e., Poor) with a belief of 22.23 % and 
77.77%, respectively. 

The similar computation is performed for safety assessment performed by the other four 

experts using the proposed approach for the CCP caused technical failure and the other 

three potential causes to technical failure. The results attained for all the caused 

technical failure, {a, }ý_,, by five experts, {e, Y, 
=,, are shown in Table 7.8. 

Table 7.8: Safety estimate by each expert for each potential malfunctioned cause 

a L C E S normaLsed ,ß ý eý S, S2 S3 S4 

ei 
(6.5,8.0, {7.5,8.5, {5.5,7.0, 0 0 0.2223 0.7777 9.5) 9.5) 8.5) 

e2 
(5.5,7.5, {7.0,8.5, {5.0,7.5, 0 0 0.4348 0.5652 9.01 10) 9.5) 

al 
e3 6.0,8.0) 7.0,9.0 6.5,9.0 0 0 0.5 0.5 

e4 
{5.5,6.5, {5.5,7.0, {5.0,7.0, 0 0 0.4286 0.5714 9.0,10.0} 8.0,10.0} 8.0,8.5} 

es 7.75 8.25 7.6 0 0 0 1.00 

ei 
(6.0,7.0, {6.5,7.0, {4.5,5.5, 0 0.1515 0.4545 0.3939 7.5) 8.0) 6.0) 

e2 
(6.0,6.5, {7.0,8.0, (6.0,7.5, 0 0 0.4828 0.5172 8.0) 9.0) 8.0 

a2 
e3 

(5.5,5.5, {6.0,6.0, {6.0,6.0, 0 0.20 0.40 0.40 7.5,7.5} 8.0,8.0 8.0,8.0} 

e4 
(5.0,6.0, (5.0,7.0, 15.096.09 0 0.20 0.40 0.40 7.0,8.0 8.0,9.0 7.0,9.0 

es {7.15} (7.95) {7.25} 0 0 0 1.00 

e' 
(6.5,7.0, {8.0,8.5, {5.5,7.0, 0 0 0.3333 0.6667 7.5) 9.0} 8.0) 

e2 
{6.0,7.5, (7.5,8.0, {5.0,6.0, 0 0 0.3703 0.6297 8.0) 9.5) 7.0) 

a3 e3 
(6.5,6.5, (7,7,7.5, {6.5,6.5, 0 0 0.3333 0.6667 8.0,8.0 7.5) 7.5,7.5 

e4 
{6.0,7.0, (5.0,7.0, (6.0,7.0, 0 0 0.3939 0.6061 8.0,9) 8.0,8.5) 8.0,9.0) 

es (7.5) 7.2 7.1 0 0 0 1.00 

ei 
{7.0,7.5.0, {7.5,8.5, {6.0,7.0, 0 0 0 1.00 8.0) 9.0) 7.5) 

e2 
{6.5,7.0, (6.5,7.0, {5.5,6.0, 0 0 0.7407 0.2593 8.0) 8.5) 7.0) 

a4 
e3 

{7.0,7.0, {7.5,7.5, {7.0,7.0, 0 0 0 1.00 9.0,9.0 9.5,9.5 8.0,8.0 

e4 
(6.5,7.0, (6.0,6.5, {6.5,7.0, 0 0 0.4444 0.5556 7.5,8.0 7.0,8v 7.5,9.0 

es (7.95) (8.25) (7.9) 0 0 0.3750 0.6250 
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7.5.8 Evidential Reasoning Synthesis of Safety Estimate 

According to the generic framework for modelling system safety shown in Figure 7.3, 

the modified ER algorithm is used to synthesise the information thus produced to assess 

the safety of the whole system. This step is concerned with safety synthesis of a system 

at various configurations such as: 

" Multi-attribute safety synthesis - The synthesis of safety estimates of various 

causes to a technical failure done by an expert, or 

" Multi-expert safety synthesis - The synthesis of safety estimates of a specific 

cause to a technical failure done by a panel of experts, or 

" Multi-attribute-multi-expert synthesis -A combination of the above two. 

A window-based and graphically designed intelligent decision system (IDS) based on 

an ER approach is used to synthesise safety estimates. 

7.5. &1 Multi-Expert Safety Synthesis 

Table 7.9 show the results of multi-expert safety synthesis on collision risk between 

FPSO & shutter tanker due to the CPP, thrusters, PRS and DP caused technical failure, 

obtained using the evidential reasoning approach. The synthesis is carried out using 
different relative weights of importance configurations among experts (experts with 
different weights). 

To calculate risk ranking index values associated with various causes to technical 

failure, it is required to describe the four safety expressions, i. e., IS,, S2, S3, S4} using 

numerical values. Experts can designate the numerical values associated with the 

defined safety expressions. Suppose K1, K2, K3, K4 represent the unscaled numerical 

values associated with S1, S2, S3, S4, respectively. Then K1, K2, K3, K4 can be 

represented as follows: 

(K1, K2iK3, K4)= {1,0.8,0.6,0.2) 

- 242 - 
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Table 7.9: Safety synthesis for the different relative weights of importance among experts 

at 
Weight, k of each expert, el Synthesised Sj 

el e2 e3 e4 es S, S2 S3 S4 

1 1 1 1 1 0 0 0.2776 0.7224 

5 4 3 2 1 0 0 0.3124 0.6876 

a, 1 2 3 4 5 0 0 0.2342 0.7658 

4 5 1 2 3 0 0 0.2557 0.7442 

3 4 5 1 2 0 0 0.3311 0.6689 

1 1 1 1 1 0 0.0942 0.3333 0.5725 

5 4 3 2 1 0 0.1009 0.4205 0.4786 

a2 1 2 3 4 5 0 0.0848 0.2433 0.6719 

4 5 1 2 3 0 0.0626 0.3520 0.5854 

3 4 5 1 2 0 0.0968 0.3772 0.5260 

1 1 1 1 1 0 0 0.2438 0.7562 

5 4 3 2 1 0 0 0.2960 0.7040 

a3 1 2 3 4 5 0 0 0.1896 0.8140 

4 5 1 2 3 0 0 0.2486 0.7514 

3 4 5 1 2 0 0 0.3334 0.6666 

1 1 1 1 1 0 0 0.2699 0.7301 

5 4 3 2 1 0 0 0.2283 0.7717 

a4 1 2 3 4 5 0 0 0.3095 0.6905 

4 5 1 2 3 0 0 0.3595 0.6405 

3 4 5 1 2 0 0 0.2235 0.7765 

The risk ranking index value Ri associated with cause i to technical failure can be 

defined as follows: 

4 

x Kr for i=1,2, ..., d (7.18) 
I=ý 

where d is the number of causes to technical failure. 

Obviously, the R; values obtained using the above expression can only show the relative 

risk level among all potential causes identified under study. The smallest R; is ranked 
first as it deserves more attention to reduce its potential risk to ALARP. The largest R; 
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is ranked last to draw least attention and minimum effort for risk reduction measure 

consideration. A smaller R; means that cause i is having relatively higher risk level and 

deserves more attention at the early design stages/or the early stages of designing 

operational strategies. The R; value for each potential cause to technical failure by a 

panel of experts carrying different relative weights is calculated and shown in 

Table 7.10 (raw results) and Table 7.11 (ranking). 

Table 7.10: Raw safety ranking (multi-attribute: expert with different weights) 

Weight, Ranking of a, 
e, e2 e3 e4 es a, a2 a3 a4 

I 1 1 1 1 0.33040 0.38984 0.29752 0.30796 

5 4 3 2 1 0.32496 0.42874 0.31840 0.29132 

1 2 3 4 5 0.29368 0.34830 0.27584 0.32380 

4 5 1 2 3 0.30226 0.37649 0.29944 0.34470 

3 4 5 1 2 0.33244 0.40896 0.33336 0.28940 

From Table 7.11 it can be noted that regardless of the weight difference between each 

expert allocated, the potential risk caused by thruster failure, a2, is always the lowest. 

As the relative weights, >� of the panel experts change as {)y; k; X3; )14; X5} = {5,4,3,2, 

1), DPS caused technical failure is ranked first, whereas the potential risk induced by 

PSR and DPS are ranked second and third, respectively. As the relative weights change 

to {1,2,3,4,5), then PSR, a3, is ranked first, CPP, al, second, DPS, a4, third and 

thrusters, a2, last. The results of other weight configurations are depicted in Table 7.10. 

Table 7.11: Safety ranking (experts with different weights) 

Weight, k Ranking of a, 

el e2 e3 e4 es a, a2 a3 a4 

I I I 1 1 3 4 1 2 

5 4 3 2 1 3 4 2 1 

1 2 3 4 5 2 4 1 3 

4 5 1 2 3 2 4 1 3 

3 4 5 1 2 2 4 3 1 
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The ranking results for risks due to various potential causes as assessed by a panel of 

experts may help designers understand the anticipated technical problem in question so 
that an improved risk reduction measure is to be incorporated in the new design or a 

more innovative design is to be carried out to reduce the potential risk as estimated. 

7.5.8.2 Multi-Attribute Safety Synthesis 

Table 7.12 shows the results of multi-attribute safety synthesis by each expert, {e, }5 
, 

on the four anticipated causes to the technical failure, {a, }; 
,, which result in collision 

between FPSO and shuttle tanker. The result produced by expert #1, el, is as follows: 

multi-attribute safety synthesis (e, ) = {0, Si; 0.02891, S2; 0.21430, S3; 0.75674, S4} 

The results produced by other experts are also shown in Table 7.12. 

Table 7.12: Multi-attribute safety synthesis by each expert 

ei 
Synthesised Sj 

st S2 S3 S4 

ei 0 0.02891 0.21430 0.75674 

e2 0 0 0.50900 0.49099 

e, 0 0.03943 0.27750 0.68304 

e4 0 0.03989 0.40832 0.55178 

e5 0 0 0.06283 0.93716 

Suppose a unity of relative weight of importance is given to the panel of experts, i. e., 
{X1; )g; X3; X4; 1 }= (1,1,1,1,1). Based on the general framework, the multi-attribute- 

multi-expert safety synthesis = {0, Si; 0.01660, S2; 0.25640, S3; 0.72697, S4}. 
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7.5.8.3 Multi Attribute Multi-Expert Safety Synthesis 

The multi-attribute-multi-expert safety synthesis = {0, S1; 0.01776, S2; 0.28779, S3; 

0.69440, S4} with a variance in weights among experts as {X1; Aei X3; )4; N} = (5,4,3, 

2,1). The results of multi-attribute-multi-expert safety synthesis for other weight 

variance configurations are depicted in Table 7.13. 

Table 7.13: Multi-attribute-multi-expert safety synthesis by experts carrying different weights 

Weight, k Sj (Synthesised) 
el e2 e3 e4 es S, S2 S3 S4 

1 1 1 1 1 0 0.02891 0.21430 0.75674 

5 4 3 2 1 0 0.01776 0.28779 0.69440 

1 2 3 4 5 0 0.01517 0.22057 0.76423 

4 5 1 2 3 0 0.01125 0.28106 0.70766 

3 4 5 1 2 0 0.01721 0.27383 0.70892 

Such results clearly give the estimate of the four causes leading to the technical failure 

in an FPSO-shuttle tanker collision risk scenario. Thus, appropriate design action can 
be taken accordingly. 

7.6 Pros and Cons of Using Fuzzy Logic for Risk Analysis 

Although such FL technique is possibility rather than probability based, it operates over 

the same numeric range. It possesses several potential benefits and limitations as have 

been recognised and thus outlined in Sections 7.7.1 and 7.7.2 respectively. 

7.6.1 Advantages of Fuzzy Logic Risk Modelling 

The main features and advantages that the proposed FL based framework offers over 

other alternative modelling approaches are that: 

" It is conceptually easy to understand with "natural" mathematics. 
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" It is tolerant to vague or imprecise data. Its use of fuzzy set theory is 

particularly adapted to the representation and manipulation of imprecision and 

uncertainty of the linguistic labels that define the criteria of the classes. 

" It presents a flexible way of dealing with different forms of uncertainty. For 

example, there is a lot of freedom in choosing the membership functions of 

fuzzy sets. 

" It is more intuitive than differential equations, and enables analysts and 

decision-makers to capture knowledge of how the system behaves in everyday 

linguistic terms (i. e., based on natural language). 

" Though, making use of heuristics, it still offer a convenient way to express and 

make the most of the experience of experts' common sense knowledge. 

" It has the ability to model any very complex or highly non-linear function to any 

arbitrary degree of accuracy. 

" It is based on rules (i. e., rule-based logic) that can be specified with a natural 

language. Basically, the laws are naturally broken down into individual IF- 

THEN statements that lend themselves to parallel processing. 

When basic probability or the Bayesian concept is not considered suitable for tacking a 

risk-based assessment, FL techniques can be used to complement the probability 

concept. Nonetheless, it can also be mixed with this conventional technique, as well as 

others, e. g., evidential reasoning approach (as verified in the undertaken study of the 

framework). 

7.6.2 Disadvantages of Fuzzy Logic Risk Modelling 

Despite their sensational and potential ability to address risk assessment, certain 

drawbacks can be attributable to the FL approach. These limitations include the fact 

that the approach: 

" Needs system/process expert to design solution. 

" Needs to select balance of inputs and membership functions. 
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" May give combinatorial explosion as the number of fuzzy variables or fuzzy sets 
increase, the number of rules increases exponentially. This can quickly make 

the fuzzy system(s) slow, confusing, and difficult to maintain. 

" Needs to choose best rule evaluation process from quite a number of 

possibilities. 

" Is leading to relative values for comparing options at a design stage and not 

absolute values. 

Compared to other classical risk-based techniques, FL requires higher computational 

effort due to the complex inference mechanisms needed. Nonetheless, utilising Fuzzy 

Logic Toolbox in Matlab6.5 (The MathWorks, 2005) can result in reasonable run times. 

Finally, FL is certainly not optimal, nor recommendable, for risk analysis when there 

are a lot of data that could be used to inform a probabilistic approach that can yield a 

satisfying result. 

7.7 Concluding Remarks 

The use of interval mathematics and possibility distribution such as approximate 

reasoning method is a departure from conventional probability-based techniques which 

rely rather heavily on randomness and frequency to quantify risks on engineering 

systems. The framework proposed in this study outlines and explains a philosophy for 

subjective safety modelling for offshore risk analysis using approximate reasoning and 

evidential reasoning approaches. Various forms of membership functions that could be 

used in representing fuzzy linguistic variables to qualify risk levels have been discussed. 

The background of approximate reasoning based on fuzzy-logic-techniques and 

evidential reasoning approach is outlined. 

Fuzzy set theory enables uncertainties to be described mathematically and possessed in 

the analysis of a system. The safety assessment of systems described takes into account 

non-stochastic uncertainties and subjective estimates of objective values by expert 
judgements based on fuzzy set theory. It is possible by this means to obtain reliable 

safety related descriptions of the system under scrutiny for further processing with 

confidence. 
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The proposed framework offers a great potential in safety assessment and decision 

support of maritime systems, especially in the initial concept design stages where the 

related safety information is scanty or with great uncertainty involved. Safety 

assessment using approximate reasoning approach can formulate domain human 

experts' experience and safety engineering knowledge; at the same time information of 

difference properties from various sources can be transformed to become the knowledge 

base, used in the FL inference process. The results obtained from the case study on 

collision risk between FPSO and shuttle tanker have demonstrated that such a 

framework provides safety analysts and designers with a convenient tool that can be 

used at various stages of the design process of offshore engineering systems in 

performing risk analysis. The method described forms a supplement to concepts and 

methodologies already in use for offshore safety assessment. 

The safety culture in many industries including the maritime sector in the UK has been 

changing over the last several years. In general, many industries are moving towards a 

"goal setting" risk-based regime. This gives more flexibility to safety engineers to 

employ the latest risk modelling techniques and decision making/optimisation tools. It 

may be very beneficial that many advances that have been developed and are being 

developed in general engineering and technology are further explored, exploited and 

also applied in order to facilitate risk modelling and decision-making. 
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Chapter 8: Fuzzy-Bayesian Network 

Chapter Summary 

The incorporation of the human element into a probabilistic risk-based model is one that 

requires a possibilistic integration of appropriate techniques and/or that of vital inputs of 

linguistic nature. Whilst fuzzy logic is an excellent tool for such integration, it tends not 

to cross its boundaries of possibility theory, except via an evidential reasoning 

supposition. Therefore, a fuzzy-Bayesian network (FBN) is proposed to enable a bridge 

to be made into a probabilistic setting of the domain. This bridge is formalised by way 

of the mass assignment theory. A framework is also proposed for its use in maritime 

safety assessment. Its implementation has been demonstrated in a maritime human 

performance case study that utilises performance-shaping factors as the input variables 

of this groundbreaking FBN risk model. 

8.1 Introduction 

In risk analysis, cause-effect relationships are vital for achieving the modelling process. 

Thus, modelling in a network format becomes useful as it also gives an intuitive vital 

representation that mimics the domain of the real-world. The most useful form of such 

a model is a casual diagram or network usual termed a directed acyclic graph (see 

Chapter 6), which uses nodes for representing distribution knowledge of variables and 

arcs for representing casual influences between nodes. If the data for a nodal variable is 

sufficient enough to enable the quantitative reasoning, then the form of the data (e. g. 

given as frequency of occurrence of the event) can be converted into a probability 

distribution for the analysis. The inherent uncertainty due to randomness then makes 

this a random node that can typically be applied in a Bayesian network (BN) 

(Pearl, 1988 and as given in Chapter 6). On the other hand, if information associated 

with a node exhibits uncertainty that is vague, ambiguous or fuzzy, then it cannot be 
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represented precisely by a probability distribution. Thus, fuzzy logic (FL) 

(Zadeh, 1975) may have to be utilised to achieve some a possibility distribution via a 

rule-base inference engine that permits the subjective reasoning (See Chapter 7). 

When, for example, two nodes are both defined by possibilistic values, they exhibit 

conditional possibility and fuzzy set theory features. If they are both defined by 

probabilistic values, they exhibit conditional probability and Bayes' theory features. 

The obvious problem within the casual network arises when a fuzzy event node has a 

casual influence connection with that of a random event node. In this case, Bayes' 

theorem cannot be applied for the casual influence due to the fuzzy event present in the 

conditional connection. Therefore, a method of converting from possibility-to- 

probability distributions is most desirable. If such a method can provide bi-directional 

characteristics, then the fuzzy nature of variable can always be recouped. The theory of 

mass assignment (Baldwin, et al., 1996) has been proven to offer one such feature. 

Hence, the causal formalism of using a combined fuzzy and Bayesian approach can be 

made possible. The resulting proposed route is given by the model name - "fuzzy 

Bayesian network". In recent research, developments and applications, FL and BN 

have both emerged as powerful and effective tools for reasoning under conditions of 

uncertainty. Thus, it is certainly quite appropriate to investigate the amalgamation of 
both techniques. 

The amalgamation of FL and BN may well prove to provide the pioneering means of 
incorporating human factors/elements in a probabilistic risk analysis model domain. 

Obviously, such an accomplishment is bound to be a key improvement to the safety in 

the marine and offshore industry especially as human error has a substantial impact on 

the reliability of complex systems. While much attention has been placed on improving 

the design, construction, and operations of maritime operating equipment based on 

casualties, the human factor element remains the predominate contributing cause of 

accidents (The Nautical Institute, 2003) within each phase. Certainly, the marine and 

offshore industry cannot afford to simply accept that this situation is inevitable. 
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8.2 Fuzziness and Probability 

Probability and fuzziness are related but different concepts. Fuzziness is a type of 
deterministic uncertainty, which describes the event class ambiguity. Fuzziness 

measures the degree to which an event occurs, not whether it occurs. An issue is 

whether the event class can be unambiguously distinguished from its opposite. 
Probability arouses from the question of whether or not an event occurs. Moreover, it 

assumes that the event class is crisply defined and that the law of non-contradiction (i. e., 

AnÄ=0, where A is a set in the finite space) holds. Kosko (1990) shows that 

fuzziness occurs when the law of non-contradiction (and equivalently the law of 

excluded middle, i. e., Aui=X, where X is the universe of discourse) is violated. 

However, it seems more appropriate to investigate the fuzzy probability for the latter 

case (Dubois & Prade, 1993), than to completely dismiss probability as a special case of 
fuzziness (Kosko, 1990). 

A fuzzy probability extends the traditional notion of a probability when there are the 

outcomes that belong to several event classes at the same time but to different degrees. 

It is important to note that neither fuzziness nor probability governs the physical 

processes in nature, though they are orthogonal concepts that characterize different 

aspects of human experience (Dubois & Prade, 1993). 

8.3 Comparison of Axioms of Probabilistic and Possibility-Based Methods 

The objective of this section is to identify the differences in the axioms of probability 

and possibility and the impact of these differences on how probabilistic and fuzzy set 

methods model uncertainties and assess the reliability of a system. 

Fuzzy set methods use possibility, which measures the degree to which an event is 

feasible, to quantify the likelihood this event will occur. One can think of possibility as 

complementary to the degree of surprise if an event occurs (Chen, et al., 1999). 

Possibility ranges from zero to one, like probability. 
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A key axiomatic difference between possibility and probability is that the possibility of 

a union of events (disjoint or overlapping) is equal to the maximum of the possibilities 

of the individual events, whereas the probability of a union of disjoint events is equal to 

the sum of the probabilities of these events. This leads to the following observations 
(Chen, et al., 1999): 

1. The possibilities of an event and its complement may add up to more than one, 

whereas the probabilities of an event and its complement must add up to one. 

2. The possibility of failure of a system, consisting of identical, independent 

components connected in series, is equal to the possibility of failure of one 

component, whereas the probability of failure of the system increases with the 

number of components. 

3. The possibility of failure of a system, consisting of identical, independent 

components connected in parallel, is equal to the possibility of failure of a single 

component. 

4. From observation 2, it is concluded that the possibility of an event can be 

smaller than its probability. For example, even if the possibility of failure of 

each component is greater than the corresponding probability, a system with 

enough components will have a possibility of failure smaller than its probability 

of failure. This result is counterintuitive - since one may reason that the 

possibility of an event should be greater or equal to its probability because if an 

event is probable it should also be possible. 

According to observation 2, a fuzzy set method is likely to underestimate the chance of 
failure of a system with a large number of independent failure modes. On the other 
hand, it can be too conservative in systems for which the failure region is very small 

compared to the range of the uncertain variables. Therefore, compared to fuzzy set 

methods, probabilistic methods may provide a more accurate estimate of the chance of 
failure if there is enough data to model random uncertainties accurately and modelling 

errors are small. 
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On the other hand, it is easier to determine the most conservative fuzzy set model than 

to determine the most conservative probabilistic model that is consistent with given 
information about a problem. A primary reason is that, although the area below the 

probability density function of a random variable must be equal to one, there is no such 

constraint on the possibility density function. 

8.4 Proposed Semantics for a Fuzzy-Bayesian Network 

The key feature of the proposed Fuzzy-Bayesian networks (FBNs) is that they enable 

modelling and reasoning about uncertainty that can be due to a combination of inherent 

vagueness and randomness. Hence, essential to their formalism is the idea of relating, 

combining and converting possibilitistic values into their probabilistic counterpart for 

use within the same model framework. As such, it is quite possible that the proposed 
FBN modelling may realise anything FL can do and also inherit the entire rigor, 
flexibility and other superior properties of probabilistic approaches. 

8.4.1 Possibility-Probability Directed Acyclic Graph 

A FBN provides factorised representation of a possibility-probability model that 

explicitly captures both a logical and network structure typical in human-engineered 

models. More generally, a FBN is a directed acyclic graph (DAG) of a BN nature that 

allows for the encoded probability distribution of a node to be derived from its fuzzy 

derivation. The fuzzy-to-probability distribution conversion is normally induced via a 

suitable algorithm, e. g., by mass assignment (MA) formalism. 

(a) A fuzzy (i. e., possibilistic) 
event chance node 

(b) A Bayesian (i. e., 
probabilistic) event chance node 

Figure 8.1: Proposed nodal representation for fuzzy and Bayesian chance events 
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Figure 8.1(a) gives a proposed nodal representation for a fuzzy event, A. Such a node 
basically obtains its prior probability input from a fuzzy set output. In order to enable 

this conversion of probability distribution, a conversion inference via MA is utilised. 

The typical representation of a random event, B, in a BN is as shown in Figure 8.1(b). 

To understand how they are utilised in a FBN, it is worth having the most basic formats 

of their representation within the network. These are as given in Figure 8.2(a)-(d). 

Figure 8.2: Representations of proposed FBN structure for two nodal events 

As expected, from a Bayesian viewpoint, a direct probabilistic inference linking from 

Event G to Event F is represented by a line of its terminating arrowhead resting on the 
later. An optional direct possibilistic inference (not shown in Figure 8.2) may be 

represented as a dashed terminating arrowhead line between fuzzy events. Such an 

optional possibilistic inference can enable a means to which a comparison study can be 

effected between conditional possibility and conditional probability of the fuzzy events. 

8.4.2 Conditional Probability of Fuzzy Events 

For a probability distribution P(. ) on a finite universe X, the conditional probability off 

given g can now be defined as the expected value of the conditional probability of the 

focal elements for mass assignment of f, mf, given the focal elements for mass 
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assignment off, mg, relative to P(. ) and assuming that the joint MA generated by f and g 
is given by mf x mg (Baldwin et al., 1996). The idea behind this is that since the 
definitions for f and g are uncertain there is also uncertainty regarding to which 
(classical) conditional probability P(f I g) refers. If the assumption is made that the two 
definitions come from different and independent sources, then mf x mg gives us a 

probability distribution across possible conditional probability values. In this case a 

natural estimate for P(f g) is to take the expected value of this distribution. 

For P(. ), a probability distribution on a finite universe X, and f and g fuzzy subsets ofX 

such that g is normalized, the conditional probability off given g is defined by: 

P(f l 8) _ Ey P(F, n Gj) 
P(Gj) t(F, )mg(G, ) (8.1) 

Fc 

where ml, {F; };, and mg, {G; }; are the MAs and focal elements for f and g, respectively. 

Now for any normalized fuzzy set g, a posterior distribution result from conditioning on 

g can be clearly defined, according to Equation 8.1. This is referred to as the least 

prejudiced distribution (lpd) of g with respect to the prior P(x). 

More formally: 

b'x E X; lpds (x) = P(xIg) = P(x) Y. m 
((G 

j) (8.2) 
c,: xcc, PGj) 

Indeed it can be shown (Baldwin et al., 1996) that the probability off given g as defined 

in Equation 8.1 is equivalent to the probability off relative to the distribution lpdg on X 

(Zadeh, 1968), that is: 

I'(f 18) _ 2: Juf(x)IPdB(x) 
xýn 

(8.3) 

where Ni(x) is the membership function of the fuzzy subset f on X. 
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The notion of lpd provides a mechanism by which a fuzzy set can be converted into a 

probability distribution. In the absence of any prior knowledge, the lpd might be 

relative to the uniform prior on knowing that g naturally infers the distribution lpdg. If, 

however, fuzzy sets are to serve as descriptions of probability distributions, the 

converse must also hold. In other words, given a probability distribution, it will be 

required to hold that there is a unique fuzzy set conditioning on which this distribution 

yields. 

8.5 Mechanism for Fuzzy-Bayesian Conversion 

Fuzzy-Bayesian inference is not quite direct as one would like to imagine. Instead, it 

relies on the use of the theory of MAs to play the central role. Therefore, the inferential 

pattern goes from a fuzzy set into MAs, and then from MAs into the prior probabilities. 

With Bayesian inference being enabled, the likelihood probabilities must be provided 

by the likes of this similar means. Likewise, the concept of conditional independence is 

applied to simplify the joint probability distribution of the modelling domain. 

8.5.1 Basics of Mass Assignment 

MA unifies probability, possibility and fuzzy sets into a single theory termed mass 

assignment theory (MAT). If two or more groups of MAs are necessary to provide a 

single MA, then operations of MAT would have to be applied. 

8.5.1.1 Mass Assignment Theory 

The theory of MAs has been developed by Baldwin (see Baldwin, 1992; Baldwin et al., 

1995) to provide a formal framework for manipulating both probabilistic and fuzzy 

uncertainties. Without such a theory, the construction of systems capable of handling 

uncertainty in a unified manner may be difficult. 
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The motivation for considering MAs (Baldwin, 1991; 1992; Baldwin, et al., 1995) is to 

provide semantics for membership functions of fuzzy sets. Essentially, the idea is that a 
fuzzy (or vague) concept is simply a concept for which the definition is uncertain or 

variable (across, say, a population of voters (Williamson, 1994)). Each possible 
definition corresponds to a subset of the universe of discourse and a probability 

distribution MA across these definitions can then be defined. Given such a distribution, 

the focal sets are taken to be those with nonzero mass. In fact, for the above definition 

the added assumption is made that the uncertainty is only regarding the degree of 

generality or specificity of the definition so that the focal sets form a nested hierarchy. 

The membership value of an element is then defined as the sum of the masses for the 

focal sets containing that element. Given these constraints, there is a unique MA 

corresponding to any fuzzy set. Note that a slightly different perspective on the above 
is to view the definition of a vague concept as a random set into the power set of the 

universe and the MA as its distribution (Goodman, 1985; Kreinovich, 1997). 

A MA on a finite set Xis a function m: P(X) -+ [0,1] such that Es'ý7x m(S) = 1. Note 

that mf has the property that it is nonzero only on some sequence of subsets of X{Sj} 

such that Sj c S; + j. Such MAs are strongly related to consonant basic probability 

assignments, which in actual fact represent a family of probability distributions. 

Furthermore, mfsatisfies Zs, ýx m(S) = µß(x). Now this is a fundamental requirement of 

any MA corresponding to f. 

8.5.1.2 Operations of Mass Assignment 

One of the most attractive features of MA theory is that operations of MA are defined in 

a way compatible to set operations. They include the complement (), meet (n), and 

join (v). Given two MAs, m(A) = {M;: ml} and m(B) = {MM: mj}, on universal set X, 

the general definitions of these operations are stated as follows: 

" Meet of m(A) and m(B) is the intersection: m(A) n m(B) = {xk : yk}, where the 

new focal elements are given by xk = Mi n M; and yk =Zy, , respectively. 
l, l ; x(I=xk 



Chapter 8- Fuzzy-Bayesian Network 

" Join of m(A) and m(B) is the union: m(A) u m(B) = {xk : yk), where the new 

focal elements are given by xk = M; u Mj and yk = yj , respectively. 
Q; xi =xk 

" Complement of m(A) is the complementation: m(A) = m(fl =X- A), VA E 

P(X). Also, the focal elements of m(A) are the complements of the focal 

elements of m(A). 

y,, = m; Vi and yU = mj Vi are referred to as the row and column constraints 

respectively. It can be noted that the complement is determined uniquely. However, 

the meet and the join operations are not determined uniquely because of possible 

combinations of redistribution of mass over new focal elements as determined by taking 

either intersection (meet) or union (join) of original focal elements. 

8.5.2 Inferential Relationship 

In order to enable inference via MA from a fuzzy set (FS) weights have to be assigned 

by a population of voters or a panel of experts to every fuzzy subset, p1, /p2, ..., p, on 

the universe of discourse. In this layer, each weight, w;, by members can be either 0 or 
1. This can then be transformed to the corresponding MA, i. e., ml, m2, ..., m,,, at the 

MA layer on each focal element, x,. In contract to the basic probability assignment in 

Dempster-Shafer (DS) theory, 0 can be a focal element. At the probability distribution 

(PD) level, w; -a [0,1 ] and Ew, =1. 
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Fuzzy set 

Fuzzy set layer 

ýC 
0 . ýy 

.5 b 
ä1 

Probability distribution 

w; =0or1 

Mass assignment layer 

w; = 11Ix, l or 0 

Probability distribution layer 

w; -+ [0,1], Ew; =1 

Figure 8.3: Illustrative overview of a FS-MA-PD inferential relationship 

Figure 8.3 gives a mapping overview of the FS-MA-PD inferential relationship. 

Sections 8.5.2.1 to 8.5.2.3 provide the breakdown of this inferential process. Note that 

the entire inferential process is bi-directional. The key advantage offered by the bi- 

directional nature is that the originally normalised output fuzzy set values can be 

obtained from the achieved probability distribution values and vice-versa. 

8.5.2.1 Fuzzy Set-Mass Assignment Relation 

Let S be a sample space. Then, a mass assignment ms associated with S is a function 

from the power set, P(X), to an interval of real numbers such that ms : P(X) -> [0,1] and 

EAcS m. s(A) = 1. A subset AcS is referred to the focal element for mass assignment ms 

if ms(A) > 0. Given a normalized discrete fuzzy subset F= x1/p + ... + x�/µ� over S, it 

can be denoted that µ= pf(x; ). Without loss of generality for the normalised fuzzy 

subset, one can assume that: 

Then a MA with nested focal elements {xi,..., xi} for i=1, ..., n can be derived as: 

mss(A) = pa - p; + i, if A= {x1, 
..., x; } (8.4) 
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In effect then the definition of MA is a weakening of the definition of DS basic 

probability assignments to allow for the possibility of allocating nonzero mass to the 

empty set. Besides the fact that the calculus beyond the verification role is enhanced, 

the MA theory furnishes the calculus to handle imprecision, whereas the theory, due to 

DS, deals mainly with uncertainty caused by lack of information from probability point 

of view. 

8.5.2.2 Mass Assignment-Probabilities Relation 

In MA theory, there exists the relation between a discrete probability distribution, e. g., a 

normalized histogram, associated to elements of a sample space, S, on the power set, 
P(X), and a least prejudiced probability distribution, lpdA, (i. e., a selection rule) for each 

AE P(X). Basically, lpd4 is the case for which the assumption is made that mass 

assigned to a set A is equally likely to belong to any element in A. As a result mass 

assigned to A is distributed equally across all elements in A. More formally, given a 

mass m(A); 

MA W) = isAA) 
b'x EA (8.5) 

where 1 /IAA is the lpd of A. IAA denotes the magnitude (modulus) of A, which refers to 
its size. 

Masses assigned to singletons {x) are now summed and assigned as probabilities for X. 

A probability P5(x) is therefore defined as, 

Ps(z) = 1: m, (A)_ j: lpd A (z)m, (A) 
ACS, xc. A 

JAI 
Aq. S, xc. A 

(8.6) 

The main role of the selection rules is in maintaining consistency between a fuzzy set 

and different probability distributions that satisfy Equation 8.6. 
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8.5.2.3 Mapping Between Fuzzy Set and Probability 

Using the relation of fuzzy set-MA and MA-probability, one can now obtain the 

mapping between a fuzzy set and a probability distribution as shown in Figure 8.4. Let 

PS(xk) be a probability of a sample space S, and 1pdA; (xk) be a selection rule for xk from 

the focal element A; = x1, ..., x;, i=1,..., k of a MA. Then: 

n 

Ps(xk) = 2: lPd ei 
(xk )"(Pr - /dill ) 

i=k 

(8.7) 

It is noted that all focal elements are nested as they correspond to the level sets (a-cuts) 

for pi Vi =1,..., n. 

Selection 
rules 

x* 

rII 

MAT 

Nested 
focal 

elements 

4- - -º r\ Probability Feature 
distribution fuzzy set 

Figure 8.4: Mapping consistency between a fuzzy set and a probability distribution 

The selection rules 1pd4, can be tuned if the fuzzy set (i. e., the membership values pi's) 

is always manually changed in order for PS to remain the same. This feature is 

important to determine the valid range of data for a given fuzzy set. Inconsistency in 

the data set is detected by obtaining some invalid probability in Equation 8.7. Such 

results are obtained when the order of membership values is not maintained. From a 
different angle, this can be used to determine what is lacking in order to keep the 

consistency. 
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The selection rules can also be used to establish a many-to-many relationship between 

probability distributions of data and its fuzzy set definition. Selection rules can also be 

one way of implementing experts' perception. In this case, selection rules are given 

arbitrarily. Then either a fuzzy set for a given data set or an ideal data set biased by 

experts' perception (i. e., a selection rules) for a fuzzy set representing a concept can be 

obtained by Equation 8.7. 

8.6 Proposed Fuzzy-Bayesian Network Methodology 

A FBN reasoning process has been developed to provide a natural framework for 

maritime risk assessment and decision support. A flow chart of the approach is shown 
in Figure 8.5, and this format ensures that the FBN analysis are conducted in a 
disciplined, well managed, and consistent manner that promotes the delivery of quality 

maritime decision-making results. The depth or extent of application of the 

methodology should be commensurate with the nature and significance of the problem. 
Nonetheless, the entire methodology is made up of three key modules: 

" Module 1: Normalized fuzzy set from output values of FL module. 

" Module 2: MA module. 

" Module 3: Input values as prior probabilities of BN module. 

In building a FBN model, one can first focus on specifying the qualitative structure of 
the domain and then focus on quantifying the influences. When finished, one is 

guaranteed to have a complete specification of the possibility and probability 
distributions. Then following evidence propagation, an intuitive evaluation for 

decision-making can be enabled through added nodes of decisions and utilities as in a 
BN. Hugin (Jensen, 1993) can thus be is used as the robust BN programming 

environment for the risk modelling and its probability calculations. Explanations for 

each of the underlying modules are given as follows: 
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fl2 ... A 

Normalized fuzzy set 
from output values of 
fuzzy logic module 

0 

Pýl .. 

Input values as prior 
probabilities of Bayesian 

network module 

Figure 8.5: Flow chart of a proposed FBN framework of analysis 

Module I- Normalized fuzzy set from output values of FL module: The 

aggregation procedure acting on fuzzy sets means that fuzzy sets are generated from 

data sets, and aggregated by fuzzy set operations. Therefore, the aggregated fuzzy 

conclusion for a risk modelling output may be processed via the assignment of weights 
from a panel of experts. 

Module 2- MA module: The aggregation procedure acting on MAs means applying 
MA theory operations such as meet and join on MA's generated least prejudiced 
distributions. Only then can the aggregated MA (as in Equation 8.5) be suited for its 

transformation into the probability distributions of its essential focal elements. 

Considering the original motivation of MA theory as a treatment of evidences, it is 

natural to treat each data set as evidence, and thus, to treat features extracted from a 

single text as a focal element and sizes of features are aggregated directly as selected 

rules of aggregated MAs using MA theory. 



Chapter 8- Fuzzy-Bayesian Network 

Module 3- Input values as prior probabilities of BN module: The aggregation 

procedure acting on least prejudiced distributions means that it can be generated from 

the MAs, and transformed into a probability distributions using Equation 8.6. 

8.7 Fuzzy-Bayesian Analysis Model in a Maritime Domain 

The fuzzy-Bayesian approach possesses great potential across many domains of marine 

and offshore applications. To provide a brief insight into some potential areas that 

could quite easily use fuzzy-Bayesian modelling, the following case is sited: 

" Incorporation of human element in a risk analysis. 

To illustrate the universal applicability of FBNs to a modelling domain, it is best to 

imagine a situation in which causality plays a role but where an understanding of what 
is actually going on exhibits both vague and random features. Thus, things need to be 

described possibilistically, probabilistically and by inference. 

8.7.1 Incorporation of Human Element into Risk Analysis 

Human reliability analysis (HRA) endeavours to predict the probability of human error 
(typically uncorrected error) against a specified base rate. Whilst it is concerned with 

causal analysis, it relies heavily on factors (in the operator, the environment, the 

equipment or the task) that affect the likelihood of error. These factors which are 

termed `performance-shaping factors' are not models in their own right, but rather, they 

are input attributes that have an effect on the output of human performance. In the 

maritime industry, the quantification of such attributes exhibits a vast amount of 

vagueness for which their direct input into a probabilistic model needs to allow for this 

uncertainty. Hence, FBN is offered as the assessment platform. 
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8.7.1.1 Human Errors in Maritime Operations 

Human errors include (HSE, 2002): 

" Slips - making an unintended action through lack of attention or skill. 

" Lapses - unintended action through memory failures. 

" Mistakes - an intended but incorrect action. 

" Violations -a deliberate deviation from standard practice. 

Human errors in marine operations, such as towing or ballast system operation, tend to 

have immediate effects. They may be recovered with no harm done, or they may have 

some direct harmful impact. This may then require some form of emergency response 

to mitigate the impacts. Similarly, errors may occur during evacuation, with a direct 

effect, e. g. incorrect release of a lifeboat. 

Sam: UKP&ipct 

Figure 8.6: A typical UK P&l Club analysis of major claims 

Errors can also occur during maintenance, and may then remain undiscovered (latent) 

until the equipment is required. These errors in effect cause equipment unavailability, 

and the significance of this depends on the system design. For example, this type of 

error may result in a ballast pump being unavailable when required. In fact, human 

error is human misery; of careers blighted, lives lost, seafarers injured and the 
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environment despoiled. As continually stressed by the UK P&I Club, equipment, 

mechanical and structural failure together is far outstripped by human error as the sole 

or major cause of incidents giving rise to claims. In looking at major claims, a current 

report (The Nautical Institute, 2003) finds that more than 62% (See Figure 8.6) are 
directly attributable to error by one or more individuals. 

8.7.1.2 Human Factors in Maritime Risk Assessments 

Wherever there is a human interacting with a system there is a human element issue. 

Modern technology has revolutionised the way in which a ship is operated, but lack of 

attention to the human-system interface, in terms of the design, layout, and integration 

of systems, and training in their use, is a major root cause of many accidents today. The 

maritime industry recognises that such accidents are the direct consequence of human 

failings and that in reality many of the disregarded incidents and errors have a strong 

element of human involvement. 

Since it is rightly the crew and the shipboard management that will always be working 
in an increasingly demanding, technically complex system, the maritime industry needs 

to grasp human element issues at a higher, more integrated level to make a real 
difference to safety. A FBN may well prove to be adequate in an integrated task of 

reducing the risk due to human factor. Obviously, the key to improvement is in the 

close involvement of all stakeholders to ensure that a ship is `fit for purpose', and that 

the master and his crew are provided with the proper tools and adequately training to be 

able to conduct their business in a safe and efficient manner. 

8 7.1.3 Performance-shaping Factors as Model Variables 

Performance-shaping factors (PSFs) are those factors that can have positive or negative 
influence/effect on the effectiveness of human performance and the likelihood of errors 
(HSE, 1999). It is essential that the proper PSFs be identified to determine the effect 

external influences have on the basic human error probabilities (HEPs). Examples of 
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PSFs in the marine and offshore industry, as well as with most other industries, include 

(Boring & Gertman, 2004; Brown & Amrozowicz, 1996): 

" Available time. 

" Stress and stressors. 

" Experience and training. 

" Complexity and workload. 

" Ergonomics (including human-machine interaction). 

" Environmental effects. 

" The quality of operating procedures. 

" Language and culture. 

" Morale and motivation. 

" Operator fitness for duty. 

" Work processes. 

anmew Mman. rtor 
ti In 1.0 

Lcý Irn+an. rtor 
w-babdRr 

1E-8 

Figure 8.7: Mean human error probability as a function of PSF influence 

These factors, which are "human process variables" in the operator, the environment, 

the equipment or the task, may be linked directly to human error through quantification. 
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Despite their clear importance in human error likely situations, they have been hard to 

implement in quantitative risk assessment. The reason for this is more or less obvious; 
how is it possible to estimate for example culture or self-confidence that actually does 

influence the safety of a system? PSFs are therefore important to take into account, but 

the integrating strategy is more indistinct (Kjestveit, et al., 2003). Seaver & Stillwell 

(1983) addressed the need for approaches that explicates paired comparisons, ranking 

and rating, direct numerical estimation, and indirect numerical estimation techniques 

applied to error estimation, with a particular emphasis on aggregating the estimates 
from multiple experts to arrive at error probabilities. Thus, due to the qualitative 

characteristics of PSFs, FL approach can be utilised to allow for their input via expert 
judgement process. 

PSFs work to increase or decrease the error rate due to situational characteristics. If, for 

example, the person is experiencing considerable stress, his or her task performance will 

decrease proportionate to the level of stress. Conversely, if a person has extensive 

training and practice doing a task, that person's proficiency may mitigate the chance of 

human error. Figure 8.7 shows the influence of the PSF (x- axis) on mean HEP values 

(y- axis) (Boring & Gertman, 20(4). 

8.7.1.4 Developing Degree of Relationship Rule-Base 

Individual performance is degraded when the body's circadian rhythms are disrupted. 

For example, when loading and unloading cargo is coupled with scheduling pressures, 

time stress can occur. In addition to the stress that can be induced from long work 

hours, fatigue/non-fitness for duty becomes a critical factor. Studies have shown that as 

fatigue increases, the detection of visual signals deteriorates and individuals exhibit 

more errors (Swain & Guttmann, 1983). Table 8.1 (Boring & Gertman, 2004) gives the 

relationship on how available time as a PSF (PSFI) is influenced by the other PSFs 

(PSF! ) and as well, how it affects them. 

The parametric relationship between one PSF and another for a marine vessel or an 

offshore installation is determined by simulation and expert opinion. Figure 8.8 depicts 
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the interrelationship between the PSFs as well as their direct or indirect contribution to 

human performance. 

Table 8.1: Influence of and effects on other PSFs on time availability 

Available time, PSF1 
PSF (PSF, ) 

Influence Effect 

Amount of stress does not Less time may increase stress. 
Stress and stressors, PSF2 

change the available time. 

Greater experience means that Available time has little or no 
Experience and training, PSF3 less time is required for actions effect on experience and 

and decisions. training. 

Too much complexity and Little time makes the task more 

Task complexity, PSF4 workload can make the time complex for which the workload 

available insufficient. may require more hands on. 

Poor layout can result in Available time has little or no 
Ergonomics (including human- increased reaction time, effect on ergonomics and 

machine interaction), PSF5 lessening the available time to human-machine interaction. 

respond. 

The likes of room temperature, Available time has no effect on 

vibration and sea motion can environmental state/condition. 
Environmental effects, PSF6 

make the time available 
insufficient. 

Complex or poorly conceived Available time has little or no 
The quality of operating 

procedures increase how much effect on the quality of 
procedures, PSF7 

time one needs to act. operating procedures. 

Misunderstanding can result in In some cases, time may lead to 
increased reaction time, misunderstanding in language 

Language and culture, PSFS 
lessening the available time to and culture. 

respond. 
Greater motivation means that In some cases, time may have a 

Moral and Motivation, PSF9 less time is required for actions significant effect on moral and 

and decisions. motivation. 

Illness or drug abuse may Available time has little or no 
Operator faness for duty, PSF10 require increased time to decide effect on the operator's fitness 

or act. for duty. 

Poor shift turnover of In some cases, time may 

Work processes, PSF� information can reduce time enhance or compromise work 

available. processes. 
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Note that PSFs can be combined for specific rules in a FL rule-base. In the case where 

more than one PSF is being considered, absolute HEP values can be computed by 

adding individual PSF multipliers. This would be the case, for example, if available 

time and stress contributed to a human error (Boring & Gertman, 2004). 

Relationships status: solid lines denote high degree of relationship; 
dashed lines denote medium degree of relationship 

Figure 8.8: Path diagram of relationship amongst generic PSFs 

In the event of multiple concurrent tasks, as is common in most real-world scenarios, 

Boring & German (2004) state that the HEP values may also be combined. If two 

events must occur together for an error to occur, the HEP values are multiplied together 

to create a logical `AND' relationship. For example, loosing a fresh program file that is 

important to the shipboard system requires the user both to fail to save the program file 

and to quit the program. If, however, errors are not in any way related to one another, 

the two task HEP values are added together to create a logical `OR' relationship. For 
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example, a person may not be able to log in to an authorising computer either by 

forgetting his or her computer password or by failing to type the password in the correct 
CapsLock case. Thus, using the generic PSFs as fuzzy linguistic variables, specific IF- 

THEN rules can be created via such logical `OR' and `AND' operators for a FL rule- 
base. 

8.7.1.5 Categorisation of Performance-shaping Factors 

PSFs are characterised according to whether the task is cognitively engaging (i. e., a 
diagnosis task) or routinised (i. e., an action task). Operational research suggests that for 

cognitively engaging tasks such as diagnosis, people tend to exhibit a base human error 

rate equal to 1.0 x 10-2 (Boring & Gertman, 2004). This means that people have about 

1 in 100 chance of making a diagnosis error. For tasks that are more action oriented, the 

base human error rate is equal to about 1.0 x 10-3, suggesting about 1 in 1000 chance of 

making an error (Boring & Gertman, 2004). Base error rates for the two task types 

associated with the Standardized Plant Analysis Risk Human Reliability Analysis 

(SPAR-H) method were calibrated against other HRA methods. The calibration 

revealed that the SPAR-H human error rates fall within the range of rates predicted by 

other methods (Gertman, et al., 2004). 

The PSFs are further classified according to whether they occur in a fault tolerant 

situation or a fault intolerant condition (Boring & Gertman, 2004). Table 8.2 (Boring & 

Gertman, 2004) exhibits how PSFs shape human error by using available time in a fault 

intolerant condition, which is the condition of occurrence during critical operation. 

Now, given PSF; as a fuzzy input of an it' PSF having subset PSF;,; as its /h category, 

the rule-base for a fuzzy output of human performance, Hp, with subset Hp, k for its k`h 

category, can be represented for the 1`h rule as: 

R, rule = IF PSF1 is PSF1,! AND/OR PSF2 is PSF2, j AND/OR, ..., AND/OR 

PSF11 is PSFI 1, j, THEN Hp is Hpk 



Chapter 8- Fuzzy-Bayesian Network 

Owing to the number of input PSFs in rule, RI, a software program, such as Fuzzy Logic 

Toolbox 2.2.1 of Matlab 6.5 (The MathWorks, 2005), may be most essential to 

minimise complexity of the fuzzy mathematics. 

Table 8.2: Available time in a fault intolerant condition 

Available time 
Diagnosis HEP Action HEP 

variable, PSF11 

If the operator cannot If the operator cannot 

perform the task in the execute the appropriate 

Inadequate time, amount of time available, action in the amount of 
1.0 1.0 

PSF1 
.1 no matter what s/he does, time available, no 

then failure is certain. matter what s/he does, 

then failure is certain. 

Two-thirds of the average There is just enough 
Barely adequate 

time required to complete 0.1 time to execute the 0.01 
time, PSFia 

the task is available. appropriate action. 

On average, there is There is some extra 

sufficient time to diagnose time above what is 
Nominal time, 

the problem. 0.01 minimally required to 0.001 
PSF1 3 , execute the appropriate 

action. 

The time available is There is an extra 

between one to two times amount of time to 

greater than the nominal execute the appropriate 
Extra time, PSF1 4 0.001 0.0001 

time required. action (i. e., the 

approximate ratio of 

5: 1). 

The time available is There is an expansive 

greater than two times the amount of time to 

Expansive time, nominal time required. execute the appropriate 
0.0001 0.00001 

PSF1,5 action (i. e., the 

approximate ratio of 
50: 1). 

If you do not have If you do not have 

sufficient information to sufficient information 
Insufficient 

choose among the other 0.01 to choose among the 0.001 
information, PSF1,6 

alternatives, assign this other alternatives, 

PSF level. assign this PSF level. 
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8.7.1.6 Determination of Human Performance Output 

PSFs determine whether individual performance will be very poor, excellent, or at some 
level in between. For this performance output, the assessment team assigns numeric 

values based on a 0% - 100%-fuzzy scale (Figure 8.9) as anchored by linguistic 

variables and descriptors provided in the evaluation layer of instrument. 

Hoy Very Poor, does not m 
standards or requiren 

Hp2 Poor 

HF, 3 Below Average 

Hoj 

Hp2 Poor 

yp4 Average, meets the minimum 
standards or requirements 

HP5 Good 

\° e 8 

H,, O Very Good 

Excellent, exceeds all Hný 
standards or requirements 

Figure 8.9: Human performance grading scale for fuzzy set definition 

This process of measuring the output attribute is in a similar fashion as those undertaken 
for all 11 PSFs in the antecedent of the FL rule-base. The fuzzy set definition for the 

output attribute (i. e., human performance, Hp) is given in Figure 8.10. 

15 25 

Human performance score, Hp 

Figure 8.10: Fuzzy set definition for human performance output 

Very Poor, does not meet any 
standards or requirements 

ý 
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In utilising expert judgment whilst executing the rule-base of the generic PSF via the FL 

module of the FBN methodology that has been presented in Section 8.6, the fuzzy Hp 

set is obtained as the fuzzy output result of the study. A hypothetical example of a 

normalised fuzzy set, as shown in Figure 8.11, is employed herein as the yielded 

discrete result for Hp to demonstrate the applicability of the FBN framework. 

µHp 

I 

o. s-ý 

0.6 --ý 

0.4 -ý 

0.2-ý 

0 

I 

HoI Ho2 Ho3 Hn4 Ho5 Ho6 Hn7 

Figure 8.11: An example of a normalised fuzzy set utilised as human performance output, Ho 

Membership values for each element in the Hp fuzzy set are PHpý = 0, PHp2 = 0, NH 
p3 

= 

0, NHp4 = 1, JUHps = 0.7, NH, = 0.5 and JUHp7 = 0.1. Since focal elements of Hp have to 

be only those elements of P(Hp) that have non-zero probability assignment, then clearly 

PHpi PHp2 and are are not required for further analysis into their probability 

conversion. Therefore, the normalised fuzzy set of Hp may be represented as: 

Hp = {Hp5/1 + Hp5/0.7 + Hp5/0.5 + Hp5/0.1 } 

The mass assignment, m(Hp), is derived from Hp by weighting the combined mass of 

each element in Hp. As assigned in Figure 8.12, the weighting of 10,9 and 8 is 

attributable to only Hp4i the weighting of 7 and 6 is attributable to only Hp4 or Hps, the 
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weighting of 5,4,3 and 2 is attributable to only Hp4 or Hp5 or Hp6 and the weighting of I 

is attributable to any of Hp4, Hp5, Hp6 or Hp7. Normalising the number of weighting 

attributable to any one proposition then generates the mass assignment m(Hp) for fuzzy 

set Hp for fuzzy set Hp as based on the use of Equation 8.4, which is given as: 

m(Hp) = {Hp4} : NHp4 - ftHps, {Hp4, Hps} : ýHpS - fUHp6, {Hp4i Hp5, Hp6} : uHp6 

- PHp7 , 
{Hp4, Hp5, Hp69 Hp7} : ju Hp7 

= {Hp4} : 0.3, {Hp4, Hp5} : 0.2, {Hp4, Hp5, Hp6} : 0.4, {Hp4, Hp5, Hp6, Hp7} : 0.1 

Weightings 

m {H, 4} =0.3 

m {HDa, H, 51 =0.2 

m {H, 4, Hp5, H,, 6} =0.4 

m {Hpa, Hp5, Hj>6, Hp7 1 =0.1 
H,, 4 Hos Hnb Ho7 

Figure 8.12: A weighting interpretation of mass assignment of human performance output, H. 

This obtained MA can be restricted using the least prejudiced distribution to give a 

single probability distribution. This probability distribution is defined across the human 

performance set Hp as is the corresponding fuzzy set. Firstly, the magnitude of masses 

in Hp is: 

I {Hp} I=I {Hpg } 1: 1,1 {Hp4, Hps }I: 2,1 {Hp4, Hp5, Hp(, } j: 3,1 {Hp4, Hp5i Hp6, Hp7} 1: 4 

Having converted a fuzzy set into a MA, the calculus of MA can now be used to reason 

with fuzzy sets at the mass level. The advantage of this representation is the close 
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relationship between MAs and their corresponding families of probability distributions. 

MA therefore provides a crucial link between probability and fuzzy sets. This is a great 

enabler in developing maritime human element solutions based on a more unified 

theory than those that may be enacted by just a fully BN or FL approach. 

By distributing mass across singleton subsets of the four focal elements, this now 

provides the probabilities from using Equation 8.6 as follows: 

P(Hpq) + 
{Hp4, Hp5} 

+ 
{Hp4, Hp59 Hp6} 

+ 
{Hp4, Hps, Hp6, Hp7} 

I {Hp4} I I{Hp4, Hp5} I I{Hp4, Hp5, Hp6} i I{Hp4, Hp5, Hp6, Hp7} I 

3l 
+0.1(4) ý0.55g3' =0.3+0.2CJ 21 

+0.4CJ 

{Hp4, Hp5} 
+ 

{Hp4, Hp5, Hp6} 

+ 
{Hp4, Hp5, Hp6, Hp7} 

P(Hps) I {Hp4, Hp5} I I{Hp4, Hp5, Hp6} I I{Hp4, Hp5, Hpb, H p7) 

=0.2ýýý +0.4ý3ý +0.1(4) ý0.25g3' 

{Hp4, HP5, Hp6} 
+ 

{Hp4, HP5 
, 

Hp6, Hp7} 

P(Hr6) _ I {Hp4, Hp5, Hp6} II {Hp4, Hp5, Hp6, Hp7} 

+ 0.1 
4 (1) 

)Z0.15g3, 
= 0.4 

3ý 

P(Hp7) _ 
{Hp4, Hp5, Hp6, Hp7} 

ý {Hp4jHp5ýHp6l Hp7} ý 

=0.1(4) =0.0250 

Thus, the probability distribution achieved from the fuzzy event of human performance, 

Hp, is given as: 

P(Hpa) = 0.5583', P(Hp5) = 0.2583', P(Hp6) = 0.1583', P(Hp7) = 0.0250 
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Note that ' is used after to show a recurring decimal digit, which in this case is the 

number 3. The reverse operation is also possible, that is, converting a probability 
distribution into a MA, and then into a fuzzy set. For this reverse operation some 

assumptions must be made to generate only one fuzzy set rather than a whole family of 
fuzzy sets. The problem arises since masses are assigned across members of the P(Hp) 

while the Hp fuzzy set is defined on the universe of Hp itself. 

Once again, the least prejudiced distribution approach of distributing mass across 

singleton subsets of the MA focal elements is favoured. This least prejudiced 

distribution notion relies on an assumption of an equal-likelihood prior to generate a 

single fuzzy set. 

For a normalised fuzzy set, the membership of an element with the largest frequency is 

always 1. This element is also that which gives the largest probability associated with 

the least prejudiced distribution assumption. Since the order of frequencies in Hp is 

given for the probabilities as: 

P(Hpa) > P(Hps) > P(Hr, b) > P(Hp7) 

Then, the order of frequencies in Hp is given for the elements in its fuzzy set can be 

given as: 

µHpa' µHp5' PHp6 > PHp7 

Therefore, the MA for Hp is well generated, by applying Equation 8.4, as: 

m(Hp) _ {Hp4} : fuHp4 - µHp5, {Hp4, Hp5} : , uHps - fuHp6, {Hpg, Hp5i Hpb} : ftHnG 

- PH 
p7, 

{Hpa, Hp5, Hp6, Hp7} : PHp7 

Now, using the least prejudiced distribution assumption, a corresponding fuzzy set can 
be generated by assigning each element within each focal element in the probability 
distribution the mass assigned to that focal element can be obtained via Equation 8.7 as 
follows: 
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P(Hna) _ JuHp4 - N1yp5 +(2) (ýHps - fuHp6) + 13 J (fýHý - fýlyp7) +4 %ýFIp7 'ýý o55$'1' 
\(J 

P(H C1ý C1 1 
vs) =2 

/I 
(µHPS - fUHp6) +3 (fuHp6 - f"Hp7) +4 

)'"Hp7 

P(Hp6) =I (fýHý fýHp7) + 14 
(13 JPH7O. 1583' 

P(Hp7) =14 
)PH, 

7= 
0.0250 

Thus, in working backwards, the focal element's membership values are obtained as: 

µHp7=O. 1, µHp6=0.5, µHp5=0.7andµHp4= 1 

Hence, this gives the discrete fuzzy set of Hp as: 

Hp ={1 /Hp4 +O. 7/H, 
s+0.5/Hý 

+ 0.1 /Hp7} 

The bi-directional processed values for the fuzzy, mass and probability level of the Hp 

output set focal elements is pictorially represented as shown in Figure 8.13. 

It has been well recognised that the element of human factor holds an all-essential input 

role into countless maritime risk investigation domains. For example, successful marine 

emergency escape, evacuation, and rescue (EER) are achieved through an effective and 

efficient interaction of the evacuees' human performance and the mechanical 

performance of the physical EER system (Bercha, et al., 2003). Nonetheless, without a 
fit for function physical EER system, human performance becomes an act of brute 

survival - running, jumping, swimming, and fighting hypothermia. 



Chapter 8- Fuzzy-Bayesian Network 

Fuzzy set level of HP: 

Mass assignment level of Hp: 

ýý 07 05 01 ýý 

ý 03 02 04 01 c_) ý QL. -) 

0ý 559 0ý 258 0ý 158 0ý 025 
Probability distribution level of HP: ýý ýý ýý 

Figure 8.13: Levels and values in the bi-directional processed human performance output, Ho 

Figure 8.14: A FBN of a marine evacuation analysis domain 

The subject here is not on human performance alone, but rather on the modelling of the 

interaction between humans and EER physical systems. As such, in following from the 

case study of the marine evacuation scenario as already analysed in Chapter 6, 

Section 6.7.1, the fuzzy event of human performance element (such as the Hp output 

example that has been analysed in this section) can be added and linked as a new node 

that has an effect on both free-fall lifeboat and rescue boat launch. In so doing, a FBN 
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as shown in Figure 8.14 is obtained. The probabilistic cause-effect analysis of this 

underlying network can thus be achieved via the BN module of the FBN methodology 

that has been presented in Section 8.6. 

In this setting, the human performance node will always remain as a fuzzy 

event/variable node since its probability cannot be directly ascertained unless via PSF 

interactions. In cases where sufficient data becomes available for a fuzzy event, then 

the node for such an event becomes a complete Bayesian chance variable node. Thus, 

the nodes of fire collision, flooding, fire alarm, flooding alarm, evacuation, free-fall 

lifeboat and rescue boat in Figure 8.14 are all Bayesian chance variable node. The life- 

saving node and the optimal survival node represent the standard utility node and 

decision node respectively that aids in achieving the decision-making aspect of the 

model. 

8.8 Concluding Remarks 

In the risk analysis of a safety-critical maritime system, each hazard event within the 

domain may be subject to prior insufficient and vague knowledge or that of an 
inherently random nature. To permit a combination of both such uncertainty 

characteristics, the modelling of their cause-effect relationship will require some form 

of possibility-probability linked inference mechanism. As the theory of possibility and 

probability, which can be handled by FL and BN respectively, are completely distinct 

but parallel theory, a link is made possible by way of their compatibility with MA 

theory. A framework for a proposed FBN permits the application of the inference 

algorithm whilst, justifying for data problem cases and at the same time, aiding to 

provide a proficient graphical tool for risk-based decision-making of the model. 

Incorporation of the human element into maritime risk assessment is an area prone to 

benefit from the combined use of fuzzy and Bayesian principle as a causal network 

solution. Furthermore, the hypothetical human performance outcome case study has 

demonstrated how the fuzzy PSFs can be incorporated into any random processing risk- 

based model. Therefore, the usefulness of the FBN modelling should offer a sound 

means for improving safety knowledge/assessments/practices in the marine and offshore 
industry. 



Chapter 9- Conclusion 

Chapter 9: Conclusion 

Chapter Summary 

The research in this thesis was motivated by the requirement to tackle uncertainty and 

human element problem issues in the marine and offshore industry. As such, several 

powerful and efficient tools and techniques were employed in the development of 

integrative risk-based analytical models for maritime application domains. The 

development phases for the models had to be supplied with data and uncertainties were 
handled via inference processing that are based on sound theorems, rules or logic. The 

proposed methodologies were also enabled via resourceful maritime case studies in 

order to demonstrate their practicality. This falls into place with the overall aim of this 

thesis. Thus, this chapter revisits the goals achieved in this thesis and expresses its key 

findings. It also outlines those areas for further work as based on the major limitations 

to the research. 

9.1 Review 

Before the scene of this thesis was set, the background work had revealed safety in the 

marine and offshore industry as previously a case of being a reactive response to major 

accidents. A change in such culture provided for proactive approaches to be applied, 

and one that takes into consideration near misses and incident occurrences. These 

approaches, which are safety case (SC) for the offshore industry and formal safety 

assessment (FSA) for the marine industry, were thus reviewed. On the basis of the 

reviewed SC and FSA concepts, a proposed framework for the risk-based assessment 

settings of this research has been developed in a generic sense to be effectively 

applicable to all ship types, offshore installations, their systems/subsystems and the 

maritime environment (as reported in Chapter 1). The framework incorporates risk 

analysis for which data were obtained from industrial databases and/or by expert 
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judgement (as reported in Chapter 2), and for which safety and reliability analytical 

tools and techniques (as reported in Chapter 3) were applied to generate domain 

models. 

The concept of FSA was particularly examined as it provides an elegant route to the 

application of the well-established risk analysis methods that are already widely used in 

other industries within shipping activities. The developments in the risk analysis study 

of the FSA trial application to generic high speed passenger catamaran ferries (HSC) 

and bulk carrier (BC) ships were then briefly reviewed. This revealed that issues such 

as uncertainty treatment and the human element issue were still left unresolved in the 

advancement of the approach (as reported in Chapters 4 and 5). Thus, such unresolved 

issues were facilitated into maritime application domains of risk-based analytical 

reasoning. Bayesian network (BN) was adopted as the modelling that dealt with the 

random/inherent uncertainties and also enabled a powerful marine and offshore 

decision-support solution (as reported in Chapter 6). Fuzzy logic (FL) was utilised as 

the modelling tool that dealt with the vaguelsubjective uncertainties towards evidential 

reasoning synthesis in maritime engineering safety analysis (as reported in Chapter 7). 

As cases of both types of uncertainties are always recurrent in maritime human element 

issue, the excellent features of BN and FL modelling tools were therefore combined via 

the theory of mass assignment for the development of an advanced network-modelling 

tool. This network was given the name `fuzzy-Bayesian network' and furthermore, a 

case study was demonstrated for the incorporation of human error into safety 

assessments (as reported in Chapter 8). 

In following this review of the research conducted within this thesis, it can be confirmed 

that not only has the work followed a logical sequence, but that most importantly, the 

aim and objectives of this thesis have been successfully achieved. Collectively, each 

one of the developed tools for the risk-based analytical modelling can be integrated into 

the proposed framework given at the onset of the thesis and therefore, they may 

effectively be integrated into both the SC and the FSA approach. 
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9.2 Principal Findings 

The undertaken research in this thesis have resulted in the following key findings that 

may reflect salient issues: 

" The exponential distribution, which arises in the calculations of reliability, is 

particularly convenient for the risk-based mathematical modelling, because it 

implies a fixed rate of occurrence. This distribution is intimately linked with the 

discrete Poisson distribution. In fact, it is similar to Poisson distribution when 

the occurrence of the event is zero (clarify from Equations 2.3 and 2.5) and since 

the distribution of intervals between successive occurrences is exponential, the 

Poisson distribution is stationary. 

" Where it is difficult to describe the basic failure events of a system using 

probabilistic risk analysis methods, subjective reasoning analysis has been more 

appropriate to assess the safety of the system. Also, the information from one 

technique/tool, such as a risk contribution tree (RCT), can be used to process the 

information produced using another technique/tool, such as a BN. Therefore, 

the use of well-established safety and reliability analytical techniques (e. g., 

event tree and fault tree) and/or the developed risk-based analytical tools (e. g., 
fuzzy logic and Bayesian network) in an integrated manner may make safety 

assessment comparatively efficient and convenient since safety information and 

the advantages of each method may be more efficiently explored. 

The current offshore SC and marine FSA are appropriate proactive approaches 

for ensuring improved maritime safety and environmental protection, though the 

overriding problem on the handling of uncertainty and the human element issue 

is still not well embraced in such risk-based practice. Despite the fact that they 

can integrate the application of both well-established and the developed (e. g., 

BN and FL) risk analysis methods in a transparent and justifiable manner, the 

trial application of FSA to HSC and BC ships have utilised just the most widely 

used well-established methods of mainly fault tree, event tree and RCT, and 

thus, have falling short of the unrivalled handling for the different types of 

uncertainties present in each study. 
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" In dealing with aleatory (i. e., random/inherent) uncertainties for safety-critical 

marine and offshore systems may be best handled by the probabilistic analysis of 

probability theory and Bayes' theory, whilst its epistemic (i. e., vague/subjective) 

uncertainties could best be handled by the possibilistic analysis of possibility 

theory and fuzzy set theory. Inference processes between both types of 

uncertainty in risk-based models can be enabled effectively via reasoning 

evidentially by way of the Dempster-Shafer theory and/or the theory of mass 

assignment. 

" In FL risk-based analytical modelling that has been applied to offshore collision 

risk scenario between a floating, production, storage and offloading (FPSO) 

installation and a shuttle tanker, fuzzy set theory has provided a convenient 
framework for representing uncertainty, both in data and knowledge, in a 

manner that can be appreciated by the non-mathematical domain expert. 

However, the approach requires sufficient expert knowledge for the formulation 

of the rule-base, the combination of sets and the evidential reasoning approach, 

which emerges as a better preference to defuzzification in the safety assessment 

study. The input-output mappings of the FL model provided an intuitive insight 

that may not have been relevant from a theoretical viewpoint, but in practice 
have been well worth using. 

" Results from the BN risk-based analytical modelling that were undertaken for 

both an offshore FPSO installation collision scenario and a typical ship 

evacuation scenario case studies do indicate that BNs are promising techniques 

for maritime risk analysis. These BNs can also be expanded to form influence 

diagrams, which permits rapid development of a practical decision model. Thus, 

BN is an integrative model that can be used effectively within the existing SC 

and FSA decision-making process. Via the theory of mass assignment, FBN (a 

developed combination model of BN and FL) has better still been found to 

intuitively and realistically integrate the human element into the decision- 

making process. 
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These findings of the research do suggest that multiple dimensions of risk-based 

analytical modelling can be incorporated into the safety assessment and also decision 

model framework for any marine and offshore safety-critical units/systems. 

9.3 Major Limitations 

The developed risk-based analytical models provide useful integrative tools for a 

proactive maritime world but have limitations owing to the complex nature of ships and 

offshore installations. These limitations include the following: 

" Eliciting conditional probabilities is more difficult, especially if the probability 
is conditioned on several states. Besides, many of such probabilities required to 

quantify a BN cannot be derived from databases and scientific literature, so they 

may need to be elicited from domain experts, based on their knowledge and 

experience. 

" No industrial data could be found for situations of maritime near misses and 

errors and neither has any such subjective judgement been made available by the 

maritime industry for qualitative or FL risk-based reasoning to be enabled. All 

case study data are those from accident database and/or the opinion of experts. 

" While the FSA is intended to address safety and environmental aspects, the 

scope of this study was confined only to the safety of people. 

" Sensitivity analysis is generally deterministic and limited to one- and two-way 

analyses. Thus, only a partial sensitivity analysis could be conducted for the 

ship evacuation scenario BN case study. The impact of uncertainty in the input 

parameters has somewhat been expressed in the context of variance, i. e., ±20% 

change. 

" Reliable data for incorporating the human element performance shaping factors 

(PSFs) into safety assessment is scarce. For this reason, full-scale FL modelling 
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of human performance PSF was not feasible and therefore, it was considered 

viable to utilise a hypothetical example in demonstrating the practical 

applicability of a FBN risk-based analytical model. 

These limitations did not mitigate the efficacy of the conclusions and generalisations of 

the conducted research. Nonetheless, tackling these limitations should enable the 

advancement of the integrative risk-based modelling to safety-critical maritime systems. 

Suggestions can be made for further research where appropriate, e. g. the incorporation 

of human element, but this is not often a major requirement for the other cases. 

9.4 Future Work 

As based on the key findings and major limitations of this research, further work 

required in the areas which are related to the integrative of risk-based analytical 

modelling developed in this thesis for application its to safety-critical marine and 

offshore systems is described the following subsection. 

9.4.1 Formal Process for Eliciting Expert Opinion 

Expert opinion/judgement has always played a large role in science and engineering. 

Increasingly, this opinion/judgement is recognised as just another type of analytical 
information, data or evidence, and expert elicitation methods are developed to treat 

these as such. The Delphi technique (Helmer, 1969) is one such method for combining 

expert opinion preferences (weights) that are obtained through anonymous 

questionnaires, controlled feedback, and statistical analysis. Another combination 

approach is to use analytic hierarchy process pairwise comparisons (Saaty, 1980) with 

regards to information about the experts' qualifications. Through this later technique, 

the relative importance, or weights, of different factors can be measured and also, 

tradeoffs between objectives are explicitly considered in these pairwise comparisons. 

Overall, these elicitation techniques may provide the formal heuristic process that can 

be used in the safety assessment of a maritime application domain to gather information 

about model input parameters, model processes and on output change impacts. 
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9.4.2 Development of Linguistic Database 

As the application of database technology moves outside the realm of a crisp 

mathematical world to the realm of the real world, the need to handle imprecise 

information becomes important, because a database that can handle imprecise 

information shall store not only raw data but also related information that shall allow us 

to interpret the data in a much deeper context (Belli, et al., 2002), e. g. a Structured 

Query Language (SQL) query (Galindo, et al., 1998) "Which crew is young and has 

sufficiently good training grades? " captures the real intention of the user's query than a 

crisp query as: 

SELECT * FROM CREW 

WHERE AGE < 19 AND GPA > 3.5 

GPA is `grade point average'. 

Such a SQL technology can have wide applications in areas such as maritime human 

reliability, security, FSA of ballast water management and for near misses and errors 

event as the industry heads in the proactive risk-based direction because in such areas 

subjective and uncertain information is not only common but also extremely useful by 

the likes of experts, risk analysts and decision-makers. The developed database of this 

nature can enable a justified qualitative risk assessment. It can highly promote and, at 

the same time, ease the use possibility theory and fuzzy linguistic knowledge, and 

enable its transmission into that of a probability domain. 

9.4.3 Petri Net Dynamic Modelling 

Petri net is well known for its capability in modelling discrete event systems in terms of 

cause-consequence relationships possibly extended by timing information related to the 

underlying dynamic system variations. A Petri net is a directed graph with two kinds of 

nodes, places and transitions, and with arcs that run either from places to transitions or 

from transitions to places. The state of the Petri net is indicated by the presence of 
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tokens in one or more places, and a token moves from one place to another when a 

transition fires (Murata, 1989). The occurrence of an event is modelled by the firing of 

the corresponding transition. Petri nets are capable of describing the dynamic behaviour 

of process systems and handle the hierarchy. A RCT can form the basis for the 

hierarchy and therefore its analytical process may additional be useful for inspection 

and ultimately for reliability-centred maintenance. 

9.4.4 Environment Protection Case Study 

The developed risk-based methodologies can be expanded to tackle areas of 

environmental concerns such as those that lead to oil spillage, e. g., via FSA study of oil 

tankers and ballast water risk assessment, on a large scale. Evidence of oil tanker 

concern can be seen in Table 1.1 in which grounding, stranding and the loss of 

structural integrity has caused oil spillage to the sea. Other serious consequences for 

due consideration in oil tanker FSA can be that of dangerous gas release. Ballast water 

discharge may also expose the sea and its creatures to such dangerous release. 

To achieve better ship-handling characteristics, ballast is necessary for the safe 

operation of ships of all types. Prior to entering a port, the ballast of seawater will 

usually be discharged thus introducing the risk of harmful alien species invasion into 

that region of its discharge. With no historical database for detailing species 

assemblages under specific ballasting conditions, ballast water risk assessment can 

utilise FLs, BNs and FBNs in its application to the non-native introductions. The risk 

assessment should proceed in a species and site specific manner and seek to develop an 
in-depth understanding of the life-history of species a prior considered hazard, 

expressed through a series of bio-rules for these species (Hayes, 1998). 

9.4.5 Multiple Sensitivity Analysis 

Sensitivity analysis in BNs is broadly concerned with understanding the relationship 

between local network parameters and global conclusions drawn based on the network 

(Castillo, et al., 1997; Kaerulff & Van der Gaag, 2000; Laskey, 1995). A key aspect of 
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sensitivity analysis is the number of considered parameters (Chan, & Darwiche, 2004). 

The simplest case involves one parameter at a time, i. e., one can only be allowed to 

change a single parameter in the network to ensure a query constraint. Single parameter 

changes are easy to visualise and compute, but they are only a subset of possible 

parameter changes. Thus, a recommendation of great interest is that of changing 

multiple parameters in the network simultaneously to ensure the query constraint. This 

is significant since multiple parameter changes can be more meaningful, and may 

disturb the probability distribution less significantly than single parameter changes 

(Chan, & Darwiche, 2004). 

9.5 General Industrial Application of the Developed Methodologies 

When it comes to proactively ensuring maritime safety and environmental protection at 

the highest level, it is the practical industrial application of the developed 

methodologies in this thesis that matters. Any such practical application can thus be 

examined through the exploration of a specific case study of relevance to the safety- 

critical marine and offshore system/unit and via the use of the most reliable real-life 

data and competent expert judgment. 

9.6 Concluding Remarks 

Overall, the thesis have been successful in meeting its aim of generating proactive risk- 
based analytical models that implement novel techniques within a maritime safety 

framework via its set objectives. Whilst the FSA has provided an elegant route to the 

application of the well-established safety and reliability analytical techniques for 

conducting risk analysis, the risk-based analytical modelling of BN, FL and FBN were 

developed to provide powerful tools for uncertainty treatment. FBN was also utilised 

for demonstrating the incorporation of the human element into a safety assessment task. 

The thesis has revealed six principal findings and five main limitations of the research 

conducted. As such recommendations for further work were made in the areas of 

utilising a formal process for eliciting expert opinion, developing a linguistic database, 
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modelling with Petri nets, ensuring safety assessments of environmental nature and 

conducting multiple sensitivity analysis. The practicality of the developed 

methodologies can be justified for the safety assessment of real-life marine and offshore 

applications. 
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