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THE AUTOMORPHISM GROUP FOR p-CENTRAL p-GROUPS
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Communicated by Alireza Abdollahi

ABSTRACT. A p-group G is p-central if GP < Z(G), and G is p*-abelian if (wy)pZ = xp2yp2 for all
z,y € G. We prove that for G a finite p*-abelian p-central p-group, excluding certain cases, the order

of G divides the order of Aut(G).

1. Introduction

The following conjecture has been the subject of much debate over the past forty years or so.
For G a group, we denote the group of automorphisms of G by Aut(G). Here |G| denotes the order
of the group G.

Well-known Conjecture. For G a non-cyclic p-group of order p™ with n > 3, |G| divides
|Aut(G)].

Results in favour of the conjecture have been made by Buckley [1]; Davitt [2] B [4) 5]; Exarchakos
[6]; Faudree [7]; Fouladi, Jamali & Orfi [8]; Gaschiitz [9]; Gavioli [10]; Hummel [12]; Otto [4] [, 14];
and Yadav [I8]. See Result A below for further details. I apologise if I have unknowingly omitted

other references.

Notice that each non-central element g of G induces a non-trivial automorphism of G via conjuga-
tion. This defines an inner automorphism of G. Inn(G) denotes the subgroup of inner automorphisms

of G, which is normal in Aut(G). The non-inner automorphisms are called outer automorphisms. They

MSC(2010): Primary: 20D15; Secondary: 20D45.
Keywords: automorphism group, p-central, p2-abelian.

Received: 09 December 2011, Accepted: 15 March 2012.
59


https://core.ac.uk/display/80683888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 A Thillaisundaram

are elements in ﬁ?rf((g)) and so are defined modulo Inn(G). We denote the group of outer automorphisms

of G by Out(G).
Certainly as Inn(G) = %, we can rephrase the question to whether or not |Z(G)| divides |Out(G)].

The conjecture has been established to be true for several classes of p-groups, as listed below in
Result A. We note that a group G is the central product of two subgroups H and K if (a) [H, K] =1,
(b) G=HK, and (¢) HN K = Z(G); and a group is modular if each subgroup commutes with every
other subgroup, i.e. for H, K < G, we have HK = KH.

Result A. The conjecture holds for the following finite p-groups:
e p-abelian p-groups [2];
e p-groups of class 2 [7];
e p-groups of maximal class (or coclass 1) [14];
e p-groups of coclass 2 [§];
e p-groups with centre of order p [9];
e p-groups of order at most p” [3, 6, [10];
e modular p-groups [4];
e p-groups with % metacyclic [5];
o p-groups with | ;5| < p* B;
e G = A x B where A is abelian and |B| divides |Aut(B)| [14];

e G a central product of non-trivial subgroups H and A, where A is abelian and |H| divides
[Aut(H)| [12];

e G with a non-trivial normal subgroup N such that N N [G,G] = 1, and |$| divides |Aut($)]
[1;

e G such that 2Z(G) C 2% for all x € G\ Z(G), where & denotes the conjugacy class of = in G
[18].

For n € N, we have G1"} = {2"|z € G} and G" = (G1"}).

We define the centre of G as Z(G) = {z € G|z 'gz = g for all g € G}.

We say that a p-group G is p-central if GP < Z(G). We define G to be p?-abelian if for all z,y € G,
we have (zy)P” = P y?’.

In this paper, we prove the conjecture for p?-abelian p-central p-groups.

Theorem 1.1. For p an odd prime, let G be a non-abelian p*-abelian p-central p-group, with |G| > p3.
Suppose that the centre Z(G) of G is of the form

Z Z
61Z><...>< o7
p p

where 3 <e; <...<e, andn > 3. Then |G| divides |Aut(G)]|.

Z(G) =

As p-abelian groups are p*>-abelian, Theorempartially generalizes the fact that p-abelian p-groups

satisfy the conjecture. An example of a p?-abelian p-central p-group, that is not itself p-abelian, is the
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wreath product W = C), 1 C}, which is of exponent p?. From ([13], Examples 3.1.5(iii)), we know that
W is of order pP™! with maximal class p and is not regular. A result from [I7] says that p-groups of
maximal class with order p™, where 4 < n < p + 1, are p-central. Also, we have an equivalence from
[17] that a p-group is p-abelian if and only if it is p-central and regular. Using these two facts, we
confirm that W is p?-abelian p-central and not p-abelian.

In the following, we prove Theorem [I.I} using results on extending automorphisms of subgroups

(by Passi, Singh & Yadav [15]) and on counting automorphisms of abelian p-groups (by Hillar & Rhea
[11]).

This paper is an extract from my PhD thesis under the supervision of Rachel Camina.

2. Proof of Theorem [1.1]

Let G be a p*abelian p-central p-group and denote Z(G) by simply Z. Let |Out(G)|, denote the
largest power of p that divides |Out(G)|. This corresponds to the order of a Sylow p-subgroup of
Out(G).

To prove the theorem, as [Inn(G)| = ||, it suffices to show that

Ou(@), > |2].

Let
F:1-N -G —-Q—1

be an extension of the group N by the group @ .

Note: if N < Z, then FE is termed a central extension.

Here Aut? (G) is the subgroup of automorphisms of G that induce the identity on % For N normal
in G, we define Auty(G) to be the subgroup of automorphisms of G that normalize N.

Our plan is to compute a lower bound for the size of a Sylow p-subgroup of Out(G). To do this,
we choose to consider elements of Aut(Z) that extend to elements of Aut%(G). Naturally any such
extension of a non-identity automorphism of Z is non-inner.

Such extendable elements of Aut(Z) are determined by the following result. In the following,
t:Q — G is a left transversal, and p: QQ X Q — N is defined by

t(zy)pu(z, y) = t(z)t(y).

Also, N© denotes the group of all maps ¢ from @ to N such that (1) = 1.

Lemma 2.1. [I5] Let 1 = N — G — Q — 1 be a central extension. Using the notation above, if
v € Auty(G), then there exists a triplet (0, ¢,x) € Aut(N) x Aut(Q) x N? such that for all z,y € Q

and n € N the following conditions are satisfied:

(1) 7(t(z)n) = t(¢(x))x()0(n),
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(2) p(e(), 6(y))0(pu(z,y) ™) = x(2) " x(y) " x(2y).
Conversely, if (6, ¢,x) € Aut(N) x Aut(Q) x N is a triplet satisfying equation (2), then v defined

by (1) is an automorphism of G normalizing N.

We take N = Z, @ = % in the lemma above. It is clear from equation (1) of Lemma [2.1| that when
¢ = 1, the automorphism ~ induces the identity on % So we set ¢ = 1. Given a suitable § € Aut(Z),

we construct the required y to satisfy:

(2.1) pu(z, y) 0z, y) ™) = x(2) " x (@) x(zy).

In [11], Hillar and Rhea give a useful description of the automorphism group of an arbitrary abelian
p-group, and they compute the size of this automorphism group. We sketch their results here. The
first complete characterization of the automorphism group of an abelian group was, however, given by
Ranum [16].

We will use Hillar and Rhea’s account to characterize Aut(Z). First, we set up the relevant notation
and results leading to our desired description.

We begin with an arbitrary abelian p-group H,,, where

Z Z
X ... X

p61Z penZ

H, =

and 1 <e; <...<e, are positive integers.

Hillar and Rhea first describe End(H,), the endomorphism ring of Hj, as a quotient of a matrix
subring of Z™*". Then, as we will see below, the units Aut(H,) C End(H,) are characterized from
this description.

An element of H), is represented by a column vector (o, ... ,an)t where a; € 1%'

Definition 2.2. ([L1], Definition 3.1)
R, = {(aij) € Z™" : p®~%ai; for all i and j satisfying 1 < j <1i < n}.

From [I1], we have that R, forms a ring.
Let m; : Z — EL.Z be defined by z — z mod p“. Let m : Z" — H, be the homomorphism given
p k2

by

m(z1,. . xn)] = (m(x1), ... mp(zn)T.

Here is the description of End(H,) as a quotient of the matrix ring R,,.
Theorem 2.3. [II] The map ¢ : R, — End(H)) given by

V(A (a,. .., o0 =7(Alo, ..., an)T)
18 a surjective ring homomorphism.

Let K be the set of matrices A = (a;;) € Ry, such that p®|a;; for all ¢, j. This forms an ideal.
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Lemma 2.4. [I1] The ideal K, as defined above, is the kernel of 1.

Theorem and Lemma give that End(H,) is isomorphic to %. For more details, the reader
is referred to [11].
The following is a complete description of Aut(Hp).

Theorem 2.5. ([I1], Theorem 3.6) An endomorphism M = 1(A) is an automorphism if and only if
A(mod p) € GL,(F,).

Hillar and Rhea illustrate how to calculate |Aut(H,)|, which is presented in the theorem below.

First, the following numbers are defined:

dr, = max{m : e;, = er}, cxp = min{m : e,, = ex}.

Since e,, = e for m = k, we have the two inequalities d; > k and c¢; < k.

Note that
Cl =C = ...=Cqy,
and
Cdi+1 — - - :Cdd1+1’
etc. So we have
Cl=...=¢Cd <Cj+1 = =Cdy 4y < Cdy 41 = -

We introduce the numbers e}, C;, D; as follows. Define the set of distinct numbers {e}} such that
{ey={ej} and &} < ey < ....

Let I € N be the size of {€}}. So €] =e1, €4 =eq 41, ... , €] = €n.
Now define

D; =max{m : e, =¢,} for 1 <i <l
and
Ci=min{m: e, =¢,} for 1 <i <1,
Note that C7 =1 and D; = n. For convenience, we also define Cj11 =n + 1.

Theorem 2.6. ([11], Theorem 4.1) The abelian group Hy, = Z/p“'Z % ... X Z/p°"Z has

n

n n
H(pdk _ pk—l) H(pej)n—dj H(pei—l)n—ci—i-l‘
k=1 j=1

1=1

| Aut(Hp)|

Proof. Their calculation involves finding all elements of I, that are invertible modulo p, and computing

the distinct ways of extending such elements to automorphisms of the group.
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So, we need to count all matrices M € R, that are invertible modulo p. These M are “upper block

triangular” matrices which may be expressed in the following three forms.

mi1 *
mp;1 mp,D;
megy,cy
M =
MpyCy ** MDyDy
mo,¢
. 0 mp,c, - MDD |
or
mii mi2 o mMin
m1cl *
M, 1 M2e;
M = ! =
md,2
0 Mpe, *°° Mnn
0 Mg, n

The number of such M is

k=1
since we require linearly independent columns.

So the first step to calculating |Aut(H))| is done. The second half of the computation is to count

the number of extensions of M to Aut(H,). To extend each entry m;; from m;; € p% to a;; € 1’%

(if e; > ), or a;;j € peLiZ (if e; < e;), such that
a;j = mj; (mod p),
peifejZ
Pl
ways for the not necessarily zero entries (that is, when e; < e;), as

we have p% ways to do so for the necessary zeros (that is, when e; > e;), as any element of

works. Similarly, there are p® !

any element of pEiZZ will do. O

We apply Hillar and Rhea’s method to M = I, x,. We consider all extensions of I),x, to Aut(Z).
Using Lemma we identify which of these elements of Aut(Z) can be extended to Aut? (G).

To this end, we prove the following.

>~

Proposition 2.7. Let G be a finite non-abelian p?-abelian p-central p-group. Suppose Z = Z(Q)

peille%x...x% where 2 < ey <ex <...<e, andn € N. Let 0 € Aut(Z) be such that:
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(a) 0 is represented as a matriv A € Ry;

(b) A(mod p) = Inxn;

(¢) aij =0 mod p%i=4+2 fori £ § with e; > ej, and a; =1 mod 2.
Then 0 can be extended to 6 € Aut? (G).

Proof. By Lemma we know that § € Aut(Z) can be extended to Aut(G) if there exist ¢ and x
such that condition (2) of the lemma holds. Our strategy is to take ¢ = 1 and to construct a suitable
X-
Recall equation :
pla,y)0(p(z,y)~h) = x(@) " x(y) " x(zy).
We aim to construct y such that equation is satisfied.

We express Z as

(z1) X (z9) X ... X (2p) ¥ —= X

where {z1,...,2,} generates Z.
Before we prove that a general § € Aut(Z) which satisfies (a) to (c) can be extended to 0 in Aut(G),

we illustrate our method by considering the following automorphism 6y (in its matrix representation):

1+p? 0
1+p?
p(00) = Ao =
0 1+p?
The automorphism 6y clearly satisfies our conditions (a) to (c).

al oo

Writing p(x,y) € Z as 27257 ... 25" for oy € ﬁ, we have that 6y(u(x,y)) is given by

o 14 p? 0 a1
o 1+ p? o
AO . . = : .
oy, 0 1+ p? o,
+p?)ay
(14 pHas
1+ p?ay
which translates to
Z§1+p2)al .27(11+p2)an_

The left-hand side of (2.1f) is then

_ — _ 2 —
(2 2™z ) = () TP
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As p(x,y) = t(zy)~'t(z)t(y), we see that by the p?>-abelian and the p-central properties,
2 2 2 )
(2.2) plz, y)? = t(x)” t(y)" t(zy) "

So setting xo(z) = t(z)?” (and 6g(z) = 2'TP°) works as (2.1) is fulfilled. Note that yo is defined on Q
as required. Thus ) can be extended to 0y € Aut%(G).
We now consider a general element 6 satisfying conditions (a) to (c). We may express 6 as the

matrix A below:

1+ s1p™ a2 e ain
as1 1+ s9p™
A= ,
Gn—1,n
anl e apn—1 1+ spp™

where 7; > 2 and s; € zﬁ’ and for ¢ # j,

0 mod p if e; <ej
ai; = .
Y 0 mod p%~%t2  ife; > e

Recall that p(z,y) = 201252 ... 2% and the left-hand side of (2.1)) is u(x,y)0(u(z,y)~h).
The left-hand side of (2.1)) is now

(2:1—04181;DT1 L Z;anSnPT") % |:Z;(a12a2+~--+a1nan):| L [Z;(an1a1+~~~+an,n—1an—1)

Now we set up the preliminaries for constructing x. We note that ¢(z)? € Z, as G is p-central. So
we may write
t(x)P = 2. 2P

n

for some (3; € peiiz- Similarly we have

ty)P =z{* ...z

n
for some ; € -Z, and
4 "2YA
tay) P =200, 20
for some 0; € -2~
) Pz

Again we consider equation . In terms of z1,...,z,, we have
z‘f‘lp2 .. .zgﬂ’z = (zlﬂlp e IC zg”p)(zflp ... 20nP)
_ Z§Bl+%+51)p o Z%Bn-&-%-i-én)p‘
We note that for each i = 1,...,n,
(2:3) aip® = (Bi + i + 6)p + kip®

for some k; € Z.

We construct x, which is dependent on j3;,v;, d;, as the composition of the two maps below:
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x— t(x)P = 21’81 2P

and

B1 B,
AR

ann—1
r1—1 rn—1 (M2 8y+.. 4+, (fnlgy 4. 4-0=g, q)
(zlﬁlslp ...zg"S"p )X |z ? P oz ? P

Note again that x is defined on Q.

side.
The right-hand side of ([2.1)) is

-1

x(@) " x () x(zy)

a2 ay anl An,n—1
_ (21_131511;’"1*1 z_ﬁnsnprnfl) % [Z;(T/B2++Tnﬁn)] [ *(%51+--~+Tﬁn—l)
cee 2y e

Zn ] x

a12 a1n nl Inn—1
—y1s1p"1 1 B (=272t t—Tn) —(yitet Yn—1)
(21" coozpy P Y gy P L I v | x
_ _ (M2 %ng, ) —(%nlgy 4 pimn=ls oy
—d181p"1 1 8,5, p'n—1 ( 2+...+ n 1+... n—1
(2 A S I L P P ]

—(Bi+y1+61)s1p"1 —(Brn+Yn+0n)snp™ 1
= (z ..z (Bt m+on) )X

—(H2 (Ba+72+02) 4.+ L2 (B +yn+0n)

[ ] [ _(a%l(61+'Y1+61)+---+an’+_1(ﬁn—1+7n—1+6n—1)
z e
1

Substituting (2.3) B; + i + d; = q;p — k;p®~! into the above gives the following.

_ —fype1—1 r1—1 _ _ en—1 Tn—1
(21 (cip—kip )s1p ...z (anp—knpn—1)spp™ )X

[ 7a%(Ol2p*kzp‘32_1)+-..+alT"(Oénpfknpen_l)] [ *a%l(alp*klpﬁl_1)+--.+7a"’2_1 (an—1p—kn_1p*n—171)
1 n

We simplify the above using the following facts:
(i) o(z;) = p® and r; > 2;

(ii) a;jp%~2 = 0 mod p® for i # j.

So the right-hand side of is now

—ays1p’t
(21 .

”Z”;Ocnsnprn) % [zl—(amaz#—...—i-alnan)} |:Z1;(an1a1+~-~+an,n71an71):|

and this matches the left-hand side of (2.1]), as required.

.

67

Using (2.3)), we check that the right-hand side of (2.1)) matches the previously computed left-hand
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Now, we calculate all such matrices in R, satisfying conditions (a) to (c) in Proposition as these
extend to distinct elements in Aut%(G).
We recall the general form of a matrix in R,. Note the [ vertical and [ horizontal blocks in the

matrix, corresponding to the set {e} : 1 <i <I}.

C .
mpy1 o ™Mmp,D,
ZerYe
mDQC2 e mD2D2
ma, ¢
L 0 leCl T leDl i
For the diagonal entries we have | Z[ X ..o | enZ| = |2n choices.
When e; < e;, we have p® ch01ces as any element of -2 e Z works. When e; = e; and i # j, we have

p®~2 choices as any element of = Z works. For each row i, we have n — C; off-diagonal entries which
correspond to e; < e;j. Of these Cz+1 C; — 1 correspond to e; = e; and n — Cj;q + 1 correspond to

e; < ej. So the number of choices (grouped according to the I blocks) for these entries is

l l
H(pe;—l)(n—CiH—i—l z+l C H (Cerl C—l)(cz+1 C)
=1

i=1
o . ei—ejt2 .
When e; > e;, there are p% 2 choices as any element of ppeiiZZ works. For each column j, there
are n — D; entries corresponding to e; > e;. So the number of choices for these entries is

l l
H e —2 (n— Dj)(CjJA*C H 6 —2 (n— Cj+1+1)(Cj+1ij)'

: ,]:1

This enables us to prove the following lemma.

Lemma 2.8. Using the notation from before, for e; > 2,

Aut (G ’Z’ H €i=1)(n=Cia+1)(Cupr - C)H C)(Cis1—Ci)

Furthermore, the non-trivial automorphisms calculated above are all non-inner automorphisms.
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Proof. The number of extensions § € Aut%(G) from Proposition is

l l l
éH 6—1 (n—Ci+14+1)(Ci+1—C%) H (Ciy1—-Ci—1)(Ciy1—Cy) H (TL Oz+1+1)(ci+1_ci),
i=1 =1 =1
which simplifies to
Z l l
TH (Tb Cit1+1)(Cig1—Cy) H (n Ci)(Cip1—Ci)
=1 =1
Therefore
l
A
|AutZ( )| = ]|92r|L H(p 1 (n=Cip1+1)(Ciga = C)H 2)(n=Ci)(Ci1=Ca)
=1 =1

It is clear that all the automorphisms g as in Proposition are non-inner, since 0 acts non-trivially
on Z.
It remains to show that these non-inner automorphisms have order a power of p. Denote by P this

finite set of non-inner automorphisms; more precisely,
P = {56 Aut%(G) | 0 := 0|, satisfies (a) to (c) of Proposition [2.7]}.

It is sufficient to show that P is a subgroup, as then it follows that every element of P has p'" power
order since P is a p-group.

To prove that we have a subgroup, we need to show that P is multiplicatively closed. That is, for
51, 52 € P, the composite 671 . 52 e P.

It is enough to consider the restriction to Aut(Z) since P is characterized by conditions (a) to (c)
on Aut(Z). We have 6,60, € Aut(Z) such that 51|Z = 61 and §2|Z = #,. Working with the matrix
representations, we note that 6, 6y satisfy conditions (a) to (c) of Proposition Let ©(61) = (aij)
and p(f2) = (bi;j). Then ¢(61 - 62) = @(01)p(02) = (cij) where ¢;j = Y, airbyj. It is immediate that
(1) - p(02) € R, since R, is a ring. So (a) is satisfied for #; - #. Using the expression for ¢;j, it is
clear that (b) is satisfied for 0 - 6.

For (c), we consider ¢;; for three cases: (1) ¢ < j, (2) i =j and (3) i > j.

Case (1). We have i < j and so e; < e;. We write
Cij = Z a;kbrj + Z aikbrj + Z by -
k<i i<k<j k>j

If e; < ej, we need to show that ¢;; = 0 mod p. As pla;; and p|b;; for i # j, it is straightforward
that ¢;; = 0 mod p.

If e; = e;, we need to show that ¢;; = 0 mod p?. Again as p|a;; and p|b;; for i # j, we have that
Cij = aiibij + aijbjj mod p2.

We further have that pQ\aij and pQ\bij since e; = ej. So ¢;; = 0 mod p?, as required.
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Case (2). We have i = j, and so
Cii = Y Qikbgi + aibii + Y airbi.
k<i k>i
We need to show that ¢; = 1 mod p?. As before, ¢;; = a;;b;; mod p?. Since a;; = 1 mod p? and by; = 1
mod p?, we have that ¢;; = 1 mod p?, as required.
Case (3). Here i > j and hence e; > e;.We write
Cij = Z aikbkj + a,-jbjj + Z aikbkj + a”-bij + Z aikbkj.
k<j J<k<i k>1i

ei*€j+2 e;—er+2

, which in turn divides a;;. Similarly for & > i, we have
ei_€j+2

For k < j, we have p divides p

pei—ej +2

k = i, we have p%~%12 divides b;;. For j < k < i, we have p¥~ %2 divides a;; and p®* %72 divides

divides p® %2 which divides by;. For k = j, we have p divides a;j. Similarly for
br;. So p¥i~¢ 4 divides a;;by;. Therefore ¢;; = 0 mod p% %72 as required.
So (c) is satisfied for 6; - 65. Thus 60, - 02 € P.

Therefore, P is a subgroup as required. O

PROOF OF THEOREM [1.1l

We recall that we need |Out(G)|, > |Z| to prove the theorem, we now analyse our lower bound for

|Out(G)]p, as given in Lemma[2.8) As e; > 2, we have

!
|O t ’Z‘ H (n— CZ-+1+1)(CZ-+1—CZ-)Hp(n—Ci)(CiH—Ci)
i=1
! l
\Z\ H (n=Ci1+1)(Cusa=C0) T pn=Cont+1(Cuta =0 T pln=C(Cors=C)
i i p i+1 i+1—C; Hpn i)(Cit1—C;
p i=1 =1 =1
! l
VA . ) o —(C: ,
_ ]L%[Hpm Coia #1)(Cors=C) T plCora=Colont1-(Cor+Co)
i=1 i=1

|Z| H Ciy1—Cy)(2n+1)—(C? —C?)

|Z| (2n+1)(C141—C1)—( z+1702)

p2n
— ’Z‘anf?m
As n > 3, we have that |Out(G)|, > |Z| as required. O
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