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Abstract. A p-group G is p-central if Gp ≤ Z(G), and G is p2-abelian if (xy)p2
= xp2

yp2
for all

x, y ∈ G. We prove that for G a finite p2-abelian p-central p-group, excluding certain cases, the order

of G divides the order of Aut(G).

1. Introduction

The following conjecture has been the subject of much debate over the past forty years or so.

For G a group, we denote the group of automorphisms of G by Aut(G). Here |G| denotes the order

of the group G.

Well-known Conjecture. For G a non-cyclic p-group of order pn with n ≥ 3, |G| divides

|Aut(G)|.

Results in favour of the conjecture have been made by Buckley [1]; Davitt [2, 3, 4, 5]; Exarchakos

[6]; Faudree [7]; Fouladi, Jamali & Orfi [8]; Gaschütz [9]; Gavioli [10]; Hummel [12]; Otto [4, 5, 14];

and Yadav [18]. See Result A below for further details. I apologise if I have unknowingly omitted

other references.

Notice that each non-central element g of G induces a non-trivial automorphism of G via conjuga-

tion. This defines an inner automorphism of G. Inn(G) denotes the subgroup of inner automorphisms

of G, which is normal in Aut(G). The non-inner automorphisms are called outer automorphisms. They
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are elements in Aut(G)
Inn(G) and so are defined modulo Inn(G). We denote the group of outer automorphisms

of G by Out(G).

Certainly as Inn(G) ∼= G
Z(G) , we can rephrase the question to whether or not |Z(G)| divides |Out(G)|.

The conjecture has been established to be true for several classes of p-groups, as listed below in

Result A. We note that a group G is the central product of two subgroups H and K if (a) [H,K] = 1,

(b) G = HK, and (c) H ∩K = Z(G); and a group is modular if each subgroup commutes with every

other subgroup, i.e. for H,K ≤ G, we have HK = KH.

Result A. The conjecture holds for the following finite p-groups:

• p-abelian p-groups [2];

• p-groups of class 2 [7];

• p-groups of maximal class (or coclass 1) [14];

• p-groups of coclass 2 [8];

• p-groups with centre of order p [9];

• p-groups of order at most p7 [3, 6, 10];

• modular p-groups [4];

• p-groups with G
Z(G) metacyclic [5];

• p-groups with | G
Z(G) | ≤ p

4 [3];

• G = A×B where A is abelian and |B| divides |Aut(B)| [14];

• G a central product of non-trivial subgroups H and A, where A is abelian and |H| divides

|Aut(H)| [12];

• G with a non-trivial normal subgroup N such that N ∩ [G,G] = 1, and |GN | divides |Aut(GN )|
[1];

• G such that xZ(G) ⊆ xG for all x ∈ G\Z(G), where xG denotes the conjugacy class of x in G

[18].

For n ∈ N, we have G{n} = {xn|x ∈ G} and Gn = 〈G{n}〉.
We define the centre of G as Z(G) =

{
x ∈ G|x−1gx = g for all g ∈ G

}
.

We say that a p-group G is p-central if Gp ≤ Z(G). We define G to be p2-abelian if for all x, y ∈ G,

we have (xy)p
2

= xp
2
yp

2
.

In this paper, we prove the conjecture for p2-abelian p-central p-groups.

Theorem 1.1. For p an odd prime, let G be a non-abelian p2-abelian p-central p-group, with |G| ≥ p3.

Suppose that the centre Z(G) of G is of the form

Z(G) ∼=
Z
pe1Z

× . . .× Z
penZ

where 3 ≤ e1 ≤ . . . ≤ en and n ≥ 3. Then |G| divides |Aut(G)|.

As p-abelian groups are p2-abelian, Theorem 1.1 partially generalizes the fact that p-abelian p-groups

satisfy the conjecture. An example of a p2-abelian p-central p-group, that is not itself p-abelian, is the
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wreath product W = Cp oCp, which is of exponent p2. From ([13], Examples 3.1.5(iii)), we know that

W is of order pp+1 with maximal class p and is not regular. A result from [17] says that p-groups of

maximal class with order pn, where 4 ≤ n ≤ p + 1, are p-central. Also, we have an equivalence from

[17] that a p-group is p-abelian if and only if it is p-central and regular. Using these two facts, we

confirm that W is p2-abelian p-central and not p-abelian.

In the following, we prove Theorem 1.1, using results on extending automorphisms of subgroups

(by Passi, Singh & Yadav [15]) and on counting automorphisms of abelian p-groups (by Hillar & Rhea

[11]).

This paper is an extract from my PhD thesis under the supervision of Rachel Camina.

2. Proof of Theorem 1.1

Let G be a p2-abelian p-central p-group and denote Z(G) by simply Z. Let |Out(G)|p denote the

largest power of p that divides |Out(G)|. This corresponds to the order of a Sylow p-subgroup of

Out(G).

To prove the theorem, as |Inn(G)| = |GZ |, it suffices to show that

|Out(G)|p ≥ |Z|.

Let

E : 1→ N → G → Q→ 1

be an extension of the group N by the group Q .

Note: if N ≤ Z, then E is termed a central extension.

Here Aut
G
Z (G) is the subgroup of automorphisms of G that induce the identity on G

Z . For N normal

in G, we define AutN (G) to be the subgroup of automorphisms of G that normalize N .

Our plan is to compute a lower bound for the size of a Sylow p-subgroup of Out(G). To do this,

we choose to consider elements of Aut(Z) that extend to elements of Aut
G
Z (G). Naturally any such

extension of a non-identity automorphism of Z is non-inner.

Such extendable elements of Aut(Z) are determined by the following result. In the following,

t : Q→ G is a left transversal, and µ : Q×Q→ N is defined by

t(xy)µ(x, y) = t(x)t(y).

Also, NQ denotes the group of all maps ψ from Q to N such that ψ(1) = 1.

Lemma 2.1. [15] Let 1 → N → G → Q → 1 be a central extension. Using the notation above, if

γ ∈ AutN (G), then there exists a triplet (θ, φ, χ) ∈ Aut(N)× Aut(Q)×NQ such that for all x, y ∈ Q
and n ∈ N the following conditions are satisfied:

(1) γ(t(x)n) = t(φ(x))χ(x)θ(n),
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(2) µ(φ(x), φ(y))θ(µ(x, y)−1) = χ(x)−1χ(y)−1χ(xy).

Conversely, if (θ, φ, χ) ∈ Aut(N)×Aut(Q)×NQ is a triplet satisfying equation (2), then γ defined

by (1) is an automorphism of G normalizing N .

We take N = Z, Q = G
Z in the lemma above. It is clear from equation (1) of Lemma 2.1 that when

φ = 1, the automorphism γ induces the identity on G
Z . So we set φ = 1. Given a suitable θ ∈ Aut(Z),

we construct the required χ to satisfy:

(2.1) µ(x, y)θ(µ(x, y)−1) = χ(x)−1χ(y)−1χ(xy).

In [11], Hillar and Rhea give a useful description of the automorphism group of an arbitrary abelian

p-group, and they compute the size of this automorphism group. We sketch their results here. The

first complete characterization of the automorphism group of an abelian group was, however, given by

Ranum [16].

We will use Hillar and Rhea’s account to characterize Aut(Z). First, we set up the relevant notation

and results leading to our desired description.

We begin with an arbitrary abelian p-group Hp, where

Hp
∼=

Z
pe1Z

× . . .× Z
penZ

and 1 ≤ e1 ≤ . . . ≤ en are positive integers.

Hillar and Rhea first describe End(Hp), the endomorphism ring of Hp, as a quotient of a matrix

subring of Zn×n. Then, as we will see below, the units Aut(Hp) ⊆ End(Hp) are characterized from

this description.

An element of Hp is represented by a column vector (α1, . . . , αn)T where αi ∈ Z
peiZ .

Definition 2.2. ([11], Definition 3.1)

Rp = {(aij) ∈ Zn×n : pei−ej |aij for all i and j satisfying 1 ≤ j ≤ i ≤ n}.

From [11], we have that Rp forms a ring.

Let πi : Z −→ Z
peiZ be defined by x 7→ x mod pei . Let π : Zn −→ Hp be the homomorphism given

by

π(x1, . . . , xn)T = (π1(x1), . . . , πn(xn))T .

Here is the description of End(Hp) as a quotient of the matrix ring Rp.

Theorem 2.3. [11] The map ψ : Rp −→ End(Hp) given by

ψ(A)(α1, . . . , αn)T = π(A(α1, . . . , αn)T )

is a surjective ring homomorphism.

Let K be the set of matrices A = (aij) ∈ Rp such that pei |aij for all i, j. This forms an ideal.
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Lemma 2.4. [11] The ideal K, as defined above, is the kernel of ψ.

Theorem 2.3 and Lemma 2.4 give that End(Hp) is isomorphic to Rp

K . For more details, the reader

is referred to [11].

The following is a complete description of Aut(Hp).

Theorem 2.5. ([11], Theorem 3.6) An endomorphism M = ψ(A) is an automorphism if and only if

A(mod p) ∈ GLn(Fp).

Hillar and Rhea illustrate how to calculate |Aut(Hp)|, which is presented in the theorem below.

First, the following numbers are defined:

dk = max{m : em = ek}, ck = min{m : em = ek}.

Since em = ek for m = k, we have the two inequalities dk ≥ k and ck ≤ k.

Note that

c1 = c2 = . . . = cd1 ,

and

cd1+1 = . . . = cdd1+1
,

etc. So we have

c1 = . . . = cd1 < cd1+1 = . . . = cdd1+1
< cdd1+1+1 = . . . .

We introduce the numbers e′i, Ci, Di as follows. Define the set of distinct numbers {e′i} such that

{e′i} = {ej} and e′1 < e′2 < . . . .

Let l ∈ N be the size of {e′i}. So e′1 = e1, e′2 = ed1+1, . . . , e′l = en.

Now define

Di = max{m : em = e′i} for 1 ≤ i ≤ l

and

Ci = min{m : em = e′i} for 1 ≤ i ≤ l.

Note that C1 = 1 and Dl = n. For convenience, we also define Cl+1 = n+ 1.

Theorem 2.6. ([11], Theorem 4.1) The abelian group Hp = Z/pe1Z× . . .× Z/penZ has

|Aut(Hp)| =
n∏
k=1

(pdk − pk−1)
n∏
j=1

(pej )n−dj

n∏
i=1

(pei−1)n−ci+1.

Proof. Their calculation involves finding all elements of Rp that are invertible modulo p, and computing

the distinct ways of extending such elements to automorphisms of the group.
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So, we need to count all matrices M ∈ Rp that are invertible modulo p. These M are “upper block

triangular” matrices which may be expressed in the following three forms.

M =



m11 ∗
...

mD11 · · · mD1D1

mC2C2

...

mD2C2 · · · mD2D2

. . .

mClCl

...

0 mDlCl
· · · mDlDl


or

M =



m11 m12 · · · m1n

...

md11

md22

. . .

0 mdnn


=


m1c1 ∗

m2c2

. . .

0 mncn · · · mnn

 .

The number of such M is
n∏
k=1

(pdk − pk−1),

since we require linearly independent columns.

So the first step to calculating |Aut(Hp)| is done. The second half of the computation is to count

the number of extensions of M to Aut(Hp). To extend each entry mij from mij ∈ Z
pZ to aij ∈ pei−ej Z

peiZ
(if ei > ej), or aij ∈ Z

peiZ (if ei ≤ ej), such that

aij ≡ mij (mod p),

we have pej ways to do so for the necessary zeros (that is, when ei > ej), as any element of pei−ej Z
peiZ

works. Similarly, there are pei−1 ways for the not necessarily zero entries (that is, when ei ≤ ej), as

any element of pZ
peiZ will do. �

We apply Hillar and Rhea’s method to M = In×n. We consider all extensions of In×n to Aut(Z).

Using Lemma 2.1, we identify which of these elements of Aut(Z) can be extended to Aut
G
Z (G).

To this end, we prove the following.

Proposition 2.7. Let G be a finite non-abelian p2-abelian p-central p-group. Suppose Z = Z(G) ∼=
Z

pe1Z ×
Z

pe2Z × . . .×
Z

penZ where 2 ≤ e1 ≤ e2 ≤ . . . ≤ en and n ∈ N. Let θ ∈ Aut(Z) be such that:
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(a) θ is represented as a matrix A ∈ Rp;
(b) A(mod p) ≡ In×n;

(c) aij ≡ 0 mod pei−ej+2 for i 6= j with ei ≥ ej, and aii ≡ 1 mod p2.

Then θ can be extended to θ̃ ∈ Aut
G
Z (G).

Proof. By Lemma 2.1, we know that θ ∈ Aut(Z) can be extended to Aut(G) if there exist φ and χ

such that condition (2) of the lemma holds. Our strategy is to take φ = 1 and to construct a suitable

χ.

Recall equation (2.1):

µ(x, y)θ(µ(x, y)−1) = χ(x)−1χ(y)−1χ(xy).

We aim to construct χ such that equation (2.1) is satisfied.

We express Z as

〈z1〉 × 〈z2〉 × . . .× 〈zn〉 ∼=
Z
pe1Z

× Z
pe2Z

× . . .× Z
penZ

where {z1, . . . , zn} generates Z.

Before we prove that a general θ ∈ Aut(Z) which satisfies (a) to (c) can be extended to θ̃ in Aut(G),

we illustrate our method by considering the following automorphism θ0 (in its matrix representation):

ϕ(θ0) = A0 =


1 + p2 0

1 + p2

. . .

0 1 + p2

 .

The automorphism θ0 clearly satisfies our conditions (a) to (c).

Writing µ(x, y) ∈ Z as zα1
1 zα2

2 . . . zαn
n for αi ∈ Z

peiZ , we have that θ0(µ(x, y)) is given by

A0 ·


α1

α2

...

αn

 =


1 + p2 0

1 + p2

. . .

0 1 + p2

 ·


α1

α2

...

αn



=


(1 + p2)α1

(1 + p2)α2

...

(1 + p2)αn

 ,

which translates to

z
(1+p2)α1

1 . . . z(1+p2)αn
n .

The left-hand side of (2.1) is then

(z−α1
1 z−α2

2 . . . z−αn
n )p

2
= (µ(x, y)−1)p

2
.
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As µ(x, y) = t(xy)−1t(x)t(y), we see that by the p2-abelian and the p-central properties,

(2.2) µ(x, y)p
2

= t(x)p
2
t(y)p

2
t(xy)−p

2
.

So setting χ0(x) = t(x)p
2

(and θ0(z) = z1+p2) works as (2.1) is fulfilled. Note that χ0 is defined on Q

as required. Thus θ0 can be extended to θ̃0 ∈ Aut
G
Z (G).

We now consider a general element θ satisfying conditions (a) to (c). We may express θ as the

matrix A below:

A =


1 + s1p

r1 a12 . . . a1n

a21 1 + s2p
r2

...
...

. . . an−1,n

an1 . . . an,n−1 1 + snp
rn

 ,

where ri ≥ 2 and si ∈ Z
pei−riZ , and for i 6= j,

aij ≡

{
0 mod p if ei < ej

0 mod pei−ej+2 if ei ≥ ej

}
.

Recall that µ(x, y) = zα1
1 zα2

2 . . . zαn
n , and the left-hand side of (2.1) is µ(x, y)θ(µ(x, y)−1).

The left-hand side of (2.1) is now

(z−α1s1pr1

1 . . . z−αnsnprn

n )×
[
z
−(a12α2+...+a1nαn)
1

]
. . .
[
z
−(an1α1+...+an,n−1αn−1)
n

]
.

Now we set up the preliminaries for constructing χ. We note that t(x)p ∈ Z, as G is p-central. So

we may write

t(x)p = zβ1
1 . . . zβn

n

for some βi ∈ Z
peiZ . Similarly we have

t(y)p = zγ11 . . . zγn
n

for some γi ∈ Z
peiZ , and

t(xy)−p = zδ11 . . . zδnn

for some δi ∈ Z
peiZ .

Again we consider equation (2.2). In terms of z1, . . . , zn, we have

zα1p2

1 . . . zαnp2

n = (zβ1p
1 . . . zβnp

n )(zγ1p1 . . . zγnp
n )(zδ1p1 . . . zδnpn )

= z
(β1+γ1+δ1)p
1 . . . z(βn+γn+δn)p

n .

We note that for each i = 1, . . . , n,

(2.3) αip
2 = (βi + γi + δi)p+ kip

ei

for some ki ∈ Z.

We construct χ, which is dependent on βi, γi, δi, as the composition of the two maps below:
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x 7−→ t(x)p = zβ1
1 . . . zβn

n ,

and

zβ1
1 . . . zβn

n 7−→

(zβ1s1pr1−1

1 . . . zβnsnprn−1

n )×
[
z
(

a12
p
β2+...+

a1n
p
βn)

1

]
. . .

[
z
(

an1
p
β1+...+

an,n−1
p

βn−1)
n

]
.

Note again that χ is defined on Q.

Using (2.3), we check that the right-hand side of (2.1) matches the previously computed left-hand

side.

The right-hand side of (2.1) is

χ(x)−1χ(y)−1χ(xy)

= (z−β1s1pr1−1

1 . . . z−βnsnprn−1

n )× [z
−(

a12
p
β2+...+

a1n
p
βn)

1 ] . . . [z
−(

an1
p
β1+...+

an,n−1
p

βn−1)
n ]×

(z−γ1s1p
r1−1

1 . . . z−γnsnprn−1

n )× [z
−(

a12
p
γ2+...+

a1n
p
γn)

1 ] . . . [z
−(

an1
p
γ1+...+

an,n−1
p

γn−1)
n ]×

(z−δ1s1p
r1−1

1 . . . z−δnsnprn−1

n )× [z
−(

a12
p
δ2+...+

a1n
p
δn)

1 ] . . . [z
−(

an1
p
δ1+...+

an,n−1
p

δn−1)
n ]

= (z−(β1+γ1+δ1)s1pr1−1

1 . . . z−(βn+γn+δn)snprn−1

n )×

[z
−(

a12
p

(β2+γ2+δ2)+...+
a1n

p
(βn+γn+δn)

1 ] . . . [z
−(

an1
p

(β1+γ1+δ1)+...+
an,n−1

p
(βn−1+γn−1+δn−1)

n ].

Substituting (2.3) βi + γi + δi = αip− kipei−1 into the above gives the following.

(z−(α1p−k1pe1−1)s1pr1−1

1 . . . z−(αnp−knpen−1)snprn−1

n )×

[z
−a12

p
(α2p−k2pe2−1)+...+

a1n
p

(αnp−knpen−1)

1 ] . . . [z
−an1

p
(α1p−k1pe1−1)+...+

an,n−1
p

(αn−1p−kn−1p
en−1−1)

n ].

We simplify the above using the following facts:

(i) o(zi) = pei and ri ≥ 2;

(ii) aijpej−2 ≡ 0 mod pei for i 6= j.

So the right-hand side of (2.1) is now

(z−α1s1pr1

1 . . . z−αnsnprn

n )×
[
z
−(a12α2+...+a1nαn)
1

]
. . .
[
z
−(an1α1+...+an,n−1αn−1)
n

]
and this matches the left-hand side of (2.1), as required. �
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Now, we calculate all such matrices in Rp satisfying conditions (a) to (c) in Proposition 2.7, as these

extend to distinct elements in Aut
G
Z (G).

We recall the general form of a matrix in Rp. Note the l vertical and l horizontal blocks in the

matrix, corresponding to the set {e′i : 1 ≤ i ≤ l}.



m11 ∗
...

mD11 · · · mD1D1

mC2C2

...

mD2C2 · · · mD2D2

. . .

mClCl

...

0 mDlCl
· · · mDlDl


For the diagonal entries we have | p

2Z
pe1Z | × . . .× |

p2Z
penZ | =

|Z|
p2n choices.

When ei < ej , we have pei−1 choices as any element of pZ
peiZ works. When ei = ej and i 6= j, we have

pei−2 choices as any element of p2Z
peiZ works. For each row i, we have n− Ci off-diagonal entries which

correspond to ei ≤ ej . Of these Ci+1 − Ci − 1 correspond to ei = ej and n− Ci+1 + 1 correspond to

ei < ej . So the number of choices (grouped according to the l blocks) for these entries is

l∏
i=1

(pe
′
i−1)(n−Ci+1+1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(Ci+1−Ci−1)(Ci+1−Ci).

When ei > ej , there are pej−2 choices as any element of pei−ej+2Z
peiZ works. For each column j, there

are n−Dj entries corresponding to ei > ej . So the number of choices for these entries is

l∏
j=1

(pe
′
j−2)(n−Dj)(Cj+1−Cj) =

l∏
j=1

(pe
′
j−2)(n−Cj+1+1)(Cj+1−Cj).

This enables us to prove the following lemma.

Lemma 2.8. Using the notation from before, for e1 ≥ 2,

|Aut
G
Z (G)|p ≥

|Z|
p2n

l∏
i=1

(pe
′
i−1)(n−Ci+1+1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(n−Ci)(Ci+1−Ci).

Furthermore, the non-trivial automorphisms calculated above are all non-inner automorphisms.
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Proof. The number of extensions θ̃ ∈ Aut
G
Z (G) from Proposition 2.7 is

|Z|
p2n

l∏
i=1

(pe
′
i−1)(n−Ci+1+1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(Ci+1−Ci−1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(n−Ci+1+1)(Ci+1−Ci),

which simplifies to

|Z|
p2n

l∏
i=1

(pe
′
i−1)(n−Ci+1+1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(n−Ci)(Ci+1−Ci).

Therefore

|Aut
G
Z (G)| ≥ |Z|

p2n

l∏
i=1

(pe
′
i−1)(n−Ci+1+1)(Ci+1−Ci)

l∏
i=1

(pe
′
i−2)(n−Ci)(Ci+1−Ci).

It is clear that all the automorphisms θ̃ as in Proposition 2.7 are non-inner, since θ̃ acts non-trivially

on Z.

It remains to show that these non-inner automorphisms have order a power of p. Denote by P this

finite set of non-inner automorphisms; more precisely,

P = {θ̃ ∈ Aut
G
Z (G) | θ := θ̃|Z satisfies (a) to (c) of Proposition 2.7}.

It is sufficient to show that P is a subgroup, as then it follows that every element of P has pth power

order since P is a p-group.

To prove that we have a subgroup, we need to show that P is multiplicatively closed. That is, for

θ̃1, θ̃2 ∈ P , the composite θ̃1 · θ̃2 ∈ P .

It is enough to consider the restriction to Aut(Z) since P is characterized by conditions (a) to (c)

on Aut(Z). We have θ1, θ2 ∈ Aut(Z) such that θ̃1|Z = θ1 and θ̃2|Z = θ2. Working with the matrix

representations, we note that θ1, θ2 satisfy conditions (a) to (c) of Proposition 2.7. Let ϕ(θ1) = (aij)

and ϕ(θ2) = (bij). Then ϕ(θ1 · θ2) = ϕ(θ1)ϕ(θ2) = (cij) where cij =
∑

k aikbkj . It is immediate that

ϕ(θ1) · ϕ(θ2) ∈ Rp since Rp is a ring. So (a) is satisfied for θ1 · θ2. Using the expression for cij , it is

clear that (b) is satisfied for θ1 · θ2.

For (c), we consider cij for three cases: (1) i < j, (2) i = j and (3) i > j.

Case (1). We have i < j and so ei ≤ ej . We write

cij =
∑
k≤i

aikbkj +
∑
i<k<j

aikbkj +
∑
k≥j

aikbkj .

If ei < ej , we need to show that cij ≡ 0 mod p. As p|aij and p|bij for i 6= j, it is straightforward

that cij ≡ 0 mod p.

If ei = ej , we need to show that cij ≡ 0 mod p2. Again as p|aij and p|bij for i 6= j, we have that

cij ≡ aiibij + aijbjj mod p2.

We further have that p2|aij and p2|bij since ei = ej . So cij ≡ 0 mod p2, as required.
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Case (2). We have i = j, and so

cii =
∑
k<i

aikbki + aiibii +
∑
k>i

aikbki.

We need to show that cii ≡ 1 mod p2. As before, cii ≡ aiibii mod p2. Since aii ≡ 1 mod p2 and bii ≡ 1

mod p2, we have that cii ≡ 1 mod p2, as required.

Case (3). Here i > j and hence ei ≥ ej .We write

cij =
∑
k<j

aikbkj + aijbjj +
∑
j<k<i

aikbkj + aiibij +
∑
k>i

aikbkj .

For k < j, we have pei−ej+2 divides pei−ek+2, which in turn divides aik. Similarly for k > i, we have

pei−ej+2 divides pek−ej+2, which divides bkj . For k = j, we have pei−ej+2 divides aij . Similarly for

k = i, we have pei−ej+2 divides bij . For j < k < i, we have pei−ek+2 divides aik and pek−ej+2 divides

bkj . So pei−ej+4 divides aikbkj . Therefore cij ≡ 0 mod pei−ej+2 as required.

So (c) is satisfied for θ1 · θ2. Thus θ̃1 · θ̃2 ∈ P .

Therefore, P is a subgroup as required. �

PROOF OF THEOREM 1.1.

We recall that we need |Out(G)|p ≥ |Z| to prove the theorem, we now analyse our lower bound for

|Out(G)|p, as given in Lemma 2.8. As e1 > 2, we have

|Out(G)|p ≥
|Z|
p2n

l∏
i=1

(p2)(n−Ci+1+1)(Ci+1−Ci)
l∏

i=1

p(n−Ci)(Ci+1−Ci)

=
|Z|
p2n

l∏
i=1

p(n−Ci+1+1)(Ci+1−Ci)
l∏

i=1

p(n−Ci+1+1)(Ci+1−Ci)
l∏

i=1

p(n−Ci)(Ci+1−Ci)

=
|Z|
p2n

l∏
i=1

p(n−Ci+1+1)(Ci+1−Ci)
l∏

i=1

p(Ci+1−Ci)[2n+1−(Ci+1+Ci)]

≥ |Z|
p2n

l∏
i=1

p(Ci+1−Ci)(2n+1)−(C2
i+1−C2

i )

=
|Z|
p2n

p(2n+1)(Cl+1−C1)−(C2
l+1−C

2
1 )

= |Z|pn2−3n.

As n ≥ 3, we have that |Out(G)|p ≥ |Z| as required. �
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