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Abstract

Modelling movement is an important topic in fields ranging from ecology to medicine.
In particular, glioma, an often fatal brain tumour is characterised by its diffuse in-
vasion into the surrounding normal brain tissue, enabling the tumour to escape
therapy. In this thesis we focus on the mathematical modelling of glioma and move-
ment in general. We begin by exploring the basic structure of the brain, describing
glioma classification and the hallmarks of cancer as well as reviewing mathematical
models of glioma. In Chapter 2 an Ordinary Differential Equation model is pre-
sented to describe the interaction between healthy and mutated cells in vivo and
vitro scenarios. The model is extended to a Partial Differential Equation to cover
the spatial dynamics of interaction and the possibility of travelling wave solutions.
A leading hypothesis suggests that malignant glioma cells switch between proliferat-
ing and migrating phenotypes, a mechanism known as the “go or grow” hypothesis.
Although the molecular mechanisms that control this switch are uncertain, it is gen-
erally assumed to depend on micro-environmental factors. In Chapter 3 we propose
a simple mathematical model based on the go or grow hypothesis for brain tumours
(gliomas). The model describes the competition between healthy glial cells and
malignant cells, with the latter subdivided into invasive and proliferating subpop-
ulations. Simulation and stability analysis is performed for spatial and non-spatial
versions of the model. The model incorporates two types of switch between migra-
tion and proliferation glioma cells: a constant switch form and a density dependent
form. In Chapter 4 we present a framework for modelling a different characteristic
movement lengths based on a biased random walk in response to external control
species. We use the model to understand different strategies by which a population
may locate some resource in its environment. Further we consider a pilot applica-
tion to glioma, showing how it can be used to model movement along different brain
structures. Finally we conclude with a brief discussion that summarises the main
results and highlights directions for future work.
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Chapter 1

Introduction

According to the World Health Organisation [105], 8.2 million people die each year

from cancer, approximately the population of London, and an estimated 13% of

all deaths worldwide, but the key question is “What is Cancer?”. Cancer is the

name given to any disease caused by uncontrolled growth and spread of abnormal

cells and, while it is often difficult to determine the exact cause that resulted in a

particular cancer, numerous researches have provided a number of factors that lead

to a greater chance of a cancer developing, including chemical and toxic compounds,

radiation, smoking, diet and genetic predisposition [2].

There are well over a 100 types of cancer, and any part of the body can be

affected. At a general level, cancers are classified according to their embryonic

tissue of origin: for example, carcinomas are cancers derived from epithelial cells,

while sarcomas arise from mesenchymal cells. Subsequent naming of cancers can be

considered according to their organ and cell-type of origin: for example, while brain

tumours comprise of a large number of different tumours that can originate from the

many different cell types of the brain, gliomas represent those brain tumours that

arise from the brain’s glial cells, while astrocytomas correspond to those gliomas

that specifically arise from the astrocytes, a specialised type of glial cell. Within

specific names, tumours are often further subclassified according to their degree of

malignancy, a clinical classification made on the basis of tissue samples obtained via

biopsy. Further classifications of cancers include primary and secondary, with the

former referring to the cancer formed at the original site, and the latter the result
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Chapter 1: Introduction

of a metastasis from a cancer elsewhere in the body [102, 125].

1.1 Basic brain structure and cancers of the brain

The brain is amongst the most complex organs of the human body and, along with

the spinal cord, comprises the body’s central nervous system (CNS). A remarkable

feature of the brain lies in great heterogeneity, with distinct regions of the brain

classified according to their location and function (e.g. frontal, parietal, occipital

and temporal lobes, cerebellum, hippocampus etc.) or the tissue structure (e.g.

gray or white matter). In terms of the latter,gray matter is more dominated by

the unmyelinated neuron cell bodies, while white matter is mainly composed from

myelinated nerve fibers, or axons. In fact, it is this myelin that gives white matter

its lighter shade under histological sectioning, and hence motivates the naming of

these two principal tissue types. These axons transmit information between the

control region (grey matter) and other parts of the body.

Gliomas form the most dominant class of primary brain tumour, arising from

the supporting glial cells [98, 108] that provide the majority of cells of the central

nervous system: while figures vary, glial cells are thought to make up to around 85

percent of the brain’s cells and more than half its volume [32, 66]. Various types

of glial cells exist, including oligodendrocytes, astrocytes, ependymal cells, Schwann

cells, microglia, and satellite cells, which play various roles from supporting neurons

to tissue repair. Gliomas are classified by their originating cell type (for example,

astrocytoma, brainstem glioma, ependymoma, mixed glioma, oligodendroglioma and

optic nerve glioma), their grade (low-grade or high-grade) and by location [93, 97].

Gliomas may remain undetected for a considerable length of time before resulting

in symptoms leading to their diagnosis: classic symptoms include headaches, facial

paralysis, double vision, dizziness, memory loss and lack of recognition. Diagnosis

typically involves a scan, for example computed tomography (CT)-scans or magnetic

resonance imaging (MRI), followed by a biopsy that allows a formal classification

of tumour type and grade. Despite the improvements of diagnostic imaging and

treatment in recent years, treatment of malignant gliomas remains difficult, even
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Chapter 1: Introduction

following extensive surgery to remove the majority of the tumour. Treatment of

brain tumours typically involves resection of the tumour mass, followed by radio-

therapy and/or chemotherapy. Recurrence of the tumour around the edge of the

resection area results in regrowth [60, 64], and a low mean survival time (order of

a year) [107, 5] for high grade (i.e. malignant) gliomas. This poor prognosis has

been attributed to the highly invasive and diffuse nature of gliomas, in that a sig-

nificant fraction of tumour cells travel far from the main tumour mass and remain

undetected. Gliomas, and indeed tumours more generally, are typically believed to

arise through a multistep development process due to mutations in normal cells. For

example, the review of Hanahan and Weinberg [50], see Figure 1.1, detail a number

of cancer hallmarks, thereby potentially allowing their therapeutic targeting. Some

of these hallmarks of cancer include:

• Self-sufficiency in growth signal: normal cells require extracellular growth

signals (factors) to grow and divide, detected and internalised through trans-

membrane receptors, with cell growth ceasing when these signals are absent.

As such, growth of normal cells can be closely regulated via the surround-

ing molecular environment. Certain cancer cells, on the other hand, may not

require any external signals to grow or divide: they can produce their own

growth factor, leading to unregulated growth.

• Insensitivity to anti-growth signals: growth inhibitors in the surround-

ing environment also act to keep the growth of normal cells under control

through blocking cell division, with inhibitors transmitted through the PRB

(the retinoblastoma protein) pathway. Mutations/damage to PRB can lead

to insensitivity of the cell to these inhibitory signals, unlimited division and

formation of a cancerous colony.

• Evading apoptosis: Programmed cell death (apoptosis) is a key component

of a cell’s normal behaviour, and can be triggered by, for example, adverse

conditions (e.g. low oxygen) or imperfect cell division. Apoptosis therefore

helps to control the normal number of cells in the environment and prevents

the accumulation of damaged cells. Disruption in the signalling pathways

3



Chapter 1: Introduction

leading to apoptosis can lead to a greater population of cancer cells, as well

as increasing the risk of further mutation.

• Limitless reproductive potential: while many normal cells have a limited

proliferative potential before death, certain cancer cells may not be restricted

by a certain number of divisions, again allowing unrestricted growth of the

cancerous population and greater risk of further mutation.

• Sustained angiogenesis. The normal capillary network provides a natural

brake on the supportable population of cells in the environment: once the

oxygen/nutrient level is depleted, cell growth is inhibited. The capacity of

cancer cells to trigger new blood vessel growth, Angiogenesis, can act to

increase the oxygen supplied.

• Tissue invasion and metastasis. The capacity of certain cancer cells to

migrate, allows infiltration of the tumour into surrounding healthy tissue, and,

potentially, tumour metastases appearing distance from the primary tumour

mass.

1.2 Overview of mathematical models of gliomas

Mathematical modelling of cancer growth has grown into a large and diverse field,

with models aimed at tackling phenomena ranging from the mechanisms that control

basic tumour growth to the detailed modelling of specific therapeutical interventions.

It is not our aim to provide a comprehensive review on all these different aspects,

rather we aim to provide an overview of the field: for reviews, see [68, 126, 26, 15].

A realistic mathematical model can play an important role in simplifying and

understanding biological phenomena. A beneficial mathematical model is one that

matches the model to experimental data and leads to meaningful biological inter-

pretation and future resolution of the biological problem. Moreover, by proposing

a new hypothesis that can be proven by experiments, a model can become a core

component in advancing knowledge of a problem [116]. Mathematical models that
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Chapter 1: Introduction

The Hallmarks of Cancer

Figure 1.1: This figure, from [[50], Figure 6], illustrates cancer hallmarks with the
therapeutics targeted to the known and emerging hallmarks of cancer. EGFR indi-
cates epidermal growth factor receptor; CTLA4, cytotoxic T lymphocyte-associated
antigen 4; mAb, monoclonal antibody; HGF, hepatocyte growth factor; VEGF,
vascular endothelial growth factor; PARP, poly-(ADP ribose) polymerase.
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Chapter 1: Introduction

fail to reflect new biological data can be modified to incorporate additional features.

At the same time, any model should be considered with justifiable caution.

A number of mathematical models have attempted to characterise and predict

the complex behaviour of glioblastoma tumour cells in either in vitro or in vivo

settings: for good reviews, see [53, 76]. Gliomas are multiscale phenomena, with

processes ranging from molecular and cellular (i.e. microscopic scales) to cellular

interaction with the local tissue environment (mesoscopic scales) to whole-organ level

(macroscopic scales). Mathematical models have attempted to describe all of these

aspects, as well as the role of nutrients, brain geometry, treatment etc. A variety

of forms of mathematical model have been developed, from continuous systems of

ordinary differential equations to partial differential equations, along with discrete

(agent-based) models and statistical models.

As examples, Alarcon et al [3] have studied a multiple scale model for intracel-

lular scale problems, including at the molecular scale aspects such as gene mutation

and cell cycle, and at the cellular scale, cell-cell interaction and vascular tumour

growth. Modelling the early growth of tumour cells in vitro have been studied with

variety of different types of models, such as stochastic Gompertz-like mathematical

models [21]. Tracqui et al.[120] developed the earliest reaction-diffusion models of

glioblastoma growth and diffusion, a work expanded on by Swanson et al [115] to

take into account the spatial heterogeneity of the brain tissue. Reaction diffusion

models have also take into account the separation of a particular population into

subpopulations of proliferative and invasive cells, for example [110], due to their

highly different behaviours. These models have been highly beneficial in estimating

the size of model parameters related to basic tumour dynamics.

In the specific context of tumour dynamics, Gatenby [36, 34] used a competition

model to investigate tumor-host interaction and treatment strategies. The model

parameters identify the stage of tumour growth which can be translated into clinical

factors, that predict the successful of treatment strategy. The model has been ex-

tended to investigate many biological behaviors, for example acid-mediated tumour

invasion, where the acidic environment facilitates normal cell death and permits
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Chapter 1: Introduction

tumour invasion [37, 38, 74, 79] and wavefront propagation in a competing cancer

cells concept [41].

A number of models have modelled the different phases of tumour growth, such

as avascular against vascular growth. Greenspan [48, 49] formulated an avascular

tumour growth model as a moving boundary problem, while continuum models for

vascular growth have been developed by Chaplain and others [16, 84]. The problem

of invasion/infiltration of tumours into healthy tissue has been modelled by many,

with models incorporating the many factors believed to play a role in invasion,

including cell-cell adhesion, cell-matrix adhesion, chemotaxis, haptotaxis etc: for

examples, see [121, 62, 88]. In the context of brain tumour invasion, a number

of models have explored the differential invasion along different brain structures:

glioma cells have been found to move along white matter fiber tracts[42], which can

be imaged via Diffusion Tensor Imaging (DTI) [24]. Jbabdi [58] proposed to use

diffusion tensor imaging data to simulate anisotropic growth of glioma.

Modelling the various forms of therapy has formed a particularly active are of

research. In the context of gliomas, the impact of resection of the tumour has been

investigated by [127, 113, 28]. Radiotherapy effects have been included in the studies

by [92, 118, 114], while the impact of chemotherapy on spatio-temporal growth has

been investigated in [120, 109].

1.3 Thesis outline

In this introduction we highlighted medical background of gliomas and presented

an overview some of the mathematical models used to understand them. Chapter 2

presents a review of core mathematical techniques and their application to a simple

model of glioma growth. In Chapter 3, we develop a model for the go-or-grow hy-

pothesis of gliomas within a healthy tissue mathematical model. Chapter 4 presents

multi step jumps of movement mathematical models based on random walk move-

ment in response to multiple control species, a framework which is subsequently

applied to heterogeneous glioma invasion. In Chapter 5 we conclude the thesis with

a discussion and present ideas for future work.
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Chapter 2

Core mathematical techniques and a

simple model of glioma growth

In this chapter we review core mathematical tools and techniques and apply them to

a purposely simple model for glioma growth, subject to competition from a healthy

tissue. We start with a brief review of ordinary differential equation models and con-

sider their stability and phase plane analysis. Subsequently, we proceed to consider

the modelling of spatial movement processes, motivating them from either classical

continuum descriptions or as a limit arising from underlying random walk processes.

The goal of this chapter is to describe the modelling of gliomas and highlight how the

various mathematical tools reviewed can lead to some core insights of the model equa-

tions, and explore how changes to the key parameters can lead to different invasion

profiles. Having provided this review of core theory, we illustrate their application in

a simplistic model for glioma growth within a healthy tissue.

2.1 A simple ODE model for glioma growth and a

review of core analytical techniques

2.1.1 Introduction

Mathematical modelling of glioma growth dates back to the early 1990s [81, 119,

115, 14]. Time-only models attempt to capture the temporal growth of tumour cells,

8



Chapter 2: Core mathematical techniques and a simple model of glioma growth

which are typically assumed to follow exponential, Gompertzian, or logistic growth

[77]. In many time-dependent phenomena, a common modelling technique is to

propose a system of governing ordinary differential equations (ODEs). Significantly,

we can then utilise a wide variety of tools and techniques, such as linear stability

and phase plane analysis, to obtain a generic understanding into the behaviour

of such equations. In this section we formulate a simple model for glioma growth

within a healthy tissue environment and examine its properties via standard stability

analyses. At the same time, we review and summarise these core techniques that

will be subsequently exploited in the remaining thesis chapters.

2.1.2 Healthy tissue dynamics

The brain is probably the most complex and magnificent organ in the human body,

and is principally composed of two main cell types, nerve cells and glial cells, with

the latter generally considered to be more numerous [55]: a figure of 10 glial cells

to every neuron is widely quoted, although the exact ratio still remains unknown

and varies considerably between different brain regions [59]. It is widely believed

that tumours develop from mutations that arise in single or a few cells within a

normally functioning tissue. Here we shall focus on the brain tumours, and in

particular gliomas, which make up to 80% of all malignant brain tumours [47]. Yet

the “success” of a mutated cell (or cells) will be subject to its capacity to acquire

sufficient nutrient and oxygen from its tissue environment: since all cells have some

level of nutrient demand, there will inevitably be competition between the cells for

any available nutrient. We denote our normal glial cell population by n(t) and

assume its dynamics, in the absence of mutated cells, is modelled by a standard

logistic-type growth equation of the form

dn

dt
= r1n

(
1− n

k1

)
, (2.1)

with initial condition

n(0) = n0.

9



Chapter 2: Core mathematical techniques and a simple model of glioma growth

In the above, the first term describes a logistic growth term whereby cells divide

at a rate r1

(
1− n

k1

)
: here, r1 (1/time) defines the maximum growth rate of the

cells, while the parameter k1 (cells/volume) determines a population carrying ca-

pacity, the population density at which competition between the healthy cells for

any available nutrient reduces the growth rate of cells to zero. Note that in the

above we assume any death of cells is effectively absorbed into this competition, i.e.

for cell densities n > k1 competition between the cells becomes significantly strong

as to lead to a negative growth rate and cell death. For the purposes of this simpler

model we do not state explicit dimensional units for our variables, although to pro-

vide context we would note that if our cell density is measured in (cells/mm3) then

an approximate value for the carrying capacity, based on estimates of normal glial

cell densities, would be k1 = 8.5 × 105 cells/mm3 in the anterior cingulate cortex

(grey matter), where glial cells are more numerous than neurons [25]. We note that

an explicit extra term to describe background cell death could also be included in

the model, however we ignore this for simplicity.

The logistic equation was first used to describe human population in 1838 by

Verhulst [123] before being revived by Pearl and Reed in 1920 [90]; for more de-

tails see Britton [13]. Through separating variables, equation (2.1) can be solved

explicitly to yield:

n(t) =
k1n0e

r1t

k1 − n0 + n0er1t
.

A sketch of typical solutions is provided in Figure 2.1: it shows an increase with

n(t)→ k1, if the starting population is less than the carrying capacity k1, while if the

population exceeds the carrying capacity the population decay to k1, presumably

due to limited nutrient/oxygen.
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Figure 2.1: Illustration of the analytical solution of the logistic equation. The initial

population n0 increases or decreases to its carrying capacity k1 with time t.

Rather than deal with the dimensional model, we nondimensionalise to reduce

the number of parameters into convenient and dimensionless groupings. Specifically,

we rescale by introducing new dimensionless variables as follows:

n∗ =
n

k1

, t∗ = r1t.

The dimensionless form (after dropping the stars) is:

dn

dt
= n (1− n) . (2.2)

Stability analysis (see Appendix A.1) is performed about the steady states, i.e. the

solutions to
dn

dt
= n (1− n) = f(n) = 0

which gives “trivial”and “healthy”steady states n = 0 and n = 1. Linearization about

the steady states gives

f
′
(0) = 1 > 0 and f

′
(1) = −1 < 0,

where ′ denotes the derivative with respect to n, implying that the trivial steady

state n = 0 is unstable while the healthy tissue steady state is stable.
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2.2 Competition model for healthy-mutated inter-

actions

To explore the impact of a mutated population on the normal tissue, we adapt model

(2.1) by including an additional mutated population p(t). Fundamentally we assume

that the mutated population differs with respect to the underlying parameters that

characterise its dynamics, such as its growth rates and its capacity to “compete” for

nutrients (see Section “Hallmarks of cancer”, Chapter 1). However, since both the

healthy and mutant cell populations will be competing with each other for the same

resources, such as oxygen and nutrient, we extend to a standard competition-type

model as follows:
dn

dt
= r1n

(
1− n

k1

− a1
p

k2

)
;

dp

dt
= r2p

(
1− p

k2

− a2
n

k1

)
.

(2.3)

The theory of competition for the same limited food source has been widely used in

nature [4]. Lotka [71] and Volterra [124] first proposed a similar model subsequently

coined the Lotka-Volterra model which has subsequently been extensively applied to

ecological population dynamics [112]. In the specific context of tumour dynamics,

Gatenby [36, 34] used the model (2.3) to investigate tumour-host interactions and

treatment strategies. Gatenby analysed the model under conditions which simulate

tumour development. The model parameters identify the stage of tumour growth

which can be translated into clinical factors, that predict the success of treatment

strategy. The model showed that tumour survival solely depended on host-generated

effects. The model has been extended to investigate many further biological be-

haviors, for example: acid-mediated tumor invasion, where the acidic environment

increases normal cell death and facilitates tumour invasion [37, 38, 74, 79], and

wavefront propagation under a competing cancer cells concept [103, 41].

In the above model r1 and r2 are the proliferation rates of healthy and mutant cells

respectively. The parameter k1 describes the carrying capacity of normal cells in the

absence of mutant cells, while k2 describes the carrying capacity of mutant cells in

the absence of normal cells: effectively, these parameters describe “self-competition”:

12
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if n = k1 and in the absence of mutant cells, then competition between normal cells

reduces their net growth rate to zero; correspondingly, if p = k2 and in the absence

of normal cells, then competition between mutant cells reduces their net growth

rate to zero. In the above formulation the parameters a1 and a2 are nondimensional

parameters representing the negative impact on growth due to competition, respec-

tively, for the mutant cells on the growth of normal cells and the normal cells on

the growth of mutant cells.

2.2.1 Parameter discussion

We provide a brief discussion of potential parameter values, ranges and ratios. Due

to the variability in different regions of the brain, or the variability between different

mutant population types, parameters have the potential to vary enormously. For

example, supposing our timescale be in weeks, then doubling times for gliomas have

been found to vary between 1 week and 48 weeks [5] according to the grade and type

of gliomas: a value of r2 ∼ 0.087/week would correspond to a maximum doubling

time for the mutated population of 8 weeks, but clearly r2 could vary considerably.

Similarly, based on the earlier reported value for the normal glial cell density we

would take k1 = 8.5 × 105 cells/mm3 to generate (in the absence of the mutated

population) a typical healthy tissue, however k1 could vary significantly in different

tissues (e.g. gray or white matter) or different brain regions.

For the purposes of our study we are less interested in absolute values and more

interested in the differences between the healthy and mutated subpopulations: e.g.

the ratio between mutated and healthy cell growth rates (r2/r1), the ratio between

mutated and healthy cell carrying capacities (k2/k1). For these we take into account

the following considerations:

• Mutated tumorous populations are often characterised by their greater prolif-

erative capacity over the normal cells. Therefore, we generally expect r2 ≥ r1.

• Mutated tumorous populations typically grow to higher densities than normal

cells, for example due to the capacity to avoid apoptosis at low oxygen levels.
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Consequently, we would often expect k2 > k1. Note that this higher density

achievable by tumour cells is often a key factor in their detectability: for

a glioma to be detectable via medical imaging, a threshold of some 40, 000

cells/cm2 [115] is required.

• Competitive interactions will be a result of various factors: for example tu-

morous cells may have an upregulated molecular profile that allows them to

capture more of the nutrient at the expense of normal cells, or be more resis-

tant to the poisonous environment created via higher metabolism. Overall, we

would expect “successful” mutant populations to be better at competing, such

that a1 ≥ 1 and/or a2 ≤ 1.

2.2.2 Nondimensionalisation

Bearing in mind the above considerations regarding potential parameter values, in

order to reduce the total number of free parameters we rescale as follows:

n∗ =
n

k1

; p∗ =
p

k2

; t∗ = r1t; b =
r2

r1

.

The dimensionless form of model (2.3) (after dropping the stars) is then:

dn

dt
= n (1− n− a1p) ;

dp

dt
= bp (1− p− a2n) .

(2.4)

We note that each of the cross-competition parameters a1 and a2 are unchanged as a

result of the nondimensionalisation. For example, at a1 = 1 the presence of mutant

cells reduces growth of both the normal cells and mutant cells at the same rate; for

values a1 > 1 the mutant cells negatively impact normal cells more than themselves;

for values a1 < 1 the mutant cells negatively effect themselves more than the normal

cells.
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2.2.3 “In vivo” and “in vitro” simulations

From our above discussion, parameters clearly can vary hugely according to the

factors such as the nature of the mutated population and the location where the

mutation takes place. To understand the growth dynamics capable from model

(2.4) we start with a broad numerical study across a range of parameter values for

two scenarios:

• A simulated “in vivo” situation, in which we initiate the two populations with

the healthy population at its carrying capacity and introduce a small number

of mutated cells as follows:

n(0) = 1− ε and p(0) = ε. (2.5)

The above could either describe the dynamics beginning from an initially small

tumour, or the beginning condition in an experiment where a cluster of mu-

tated cells have been implanted into a normal brain environment.

• A hypothetical “in vitro” situation, simulating a situation in which two small

and equal populations of healthy and mutated cells are co-cultured in an in

vitro environment replicating a tissue environment.

n(0) = ε and p(0) = ε. (2.6)

For each case we consider nondimensional parameters over the following ranges:

• For b we consider values b ∈ [0.5, 2]: i.e. the mutated population divides at a

rate of half to 2 times that of the normal population:

• For a1 and a2 we consider values a1,2 ∈ [0.25, 2]: i.e. the cross-competition

parameters allow the impact of the mutant (healthy) population on the healthy

(mutant) to range from less to more competitive.

Note that in the above we have allowed parameters outside the ranges suggested by

our intuition above: this is to allow us to also evaluate the impact of cases where the
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mutant cells may have dual parameter changes: for example, a mutant population

could be more resistant (and hence more competitive), but at the expense of a

slightly reduced growth rate.

2.2.3.1 Simulation study 1: “In vivo” case

For the “in vivo” scenario our investigation will focus on addressing the following

question:

• Does the mutant population come to dominate and, if so, how quickly?

To investigate this, we numerically solve equations (2.4) across the parameter ranges

specified in the above section and for the “in vivo” initial conditions (2.5): note that

here we set ε = 0.0001. We stop all of our simulations at t = 100, regardless of

whether the system has reached a steady state: while somewhat arbitrary, we note

that based on our earlier time rescaling and assuming normal glial cell turnover

is somewhat slow (e.g. the order of months), then t = 100 would represent years

to decades of potential growth. As a suitable measure for the above question for

each simulation we plot Tp: defined as the time taken for the mutant population to

overcome the normal population, i.e the first time t∗ such that p(t∗) ≥ n(t∗). If this

does not happen by t = 100, we set Tp =∞.

Figure 2.2 shows the time evaluation of the model (2.4) with initial conditions

(2.5) for different values of proliferative ratio b = [0.5, 1.0, 2.0], and mutant compe-

tition value a1 = [0.25, 0.5, 0.75]. We fixed the healthy cells competitive value a2 at

0.5. Numerical findings suggest for a2 < 1: the tumour grows for all sets of values.

Even when b < 1, the tumour eventually overtakes the normal cells. The time rate

of tumour growth is associated with b, such that the minimum time required for

tumour cells to exceed normal cells decreases as the proliferative ratio b increases.

The final density of tumour cells correlates with the competitive rate of tumour cells

a1, such that the tumour density increases as the competitive rate of tumour cells

a1 increases. Moreover, the time for tumour cells to reach the coexistent steady

state depends on the proliferative ratio b and the tumour cells exceed the amount

of normal cells more quickly when b is higher.
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Figure 2.2: Numerical simulations of model (2.4) with initial conditions (2.5) for

different values of b, a1 and fixed a2 = 0.5. We plot normal cells (blue solid) and

mutant cells (red dashed) as functions of time 0 ≤ t ≤ 100. (a) b = 0.5, a1 = 0.25.

(b) b = 0.5, a1 = 0.5. (c) b = 0.5, a1 = 0.75. (d) b = 1.0, a1 = 0.25. (e) b =

1.0, a1 = 0.5. (f) b = 1.0, a1 = 0.75.(g) b = 2.0, a1 = 0.25. (h) b = 2.0, a1 = 0.5.

(i) b = 2.0, a1 = 0.75. The equations were solved numerically using the ODE solver

“ode15s” in Matlab, with relative tolerance 10−6 and absolute tolerance 10−9.
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Since the tumour parameters are important for the rate of taking over the normal

cells, we plot the minimum time that the tumour needs to exceed the normal cells

for a1 vs b in Figure 2.3. We find that a longer time is required when b is low, i.e

when the proliferative rate of tumour cells is half that of the normal cells. While b

significantly impacts on the time for takeover, there is relatively slight variation in

the time required of tumour cells to take over normal cells as we vary the competitive

rate a1.
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2

10
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20
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Figure 2.3: Plot of the minimum time Tp that the tumour needs to exceed the normal

cells for a1 vs b. Here, we set a2 = 0.25. Numerics performed as in Figure 2.2.

To investigate the impact of the competition rates a1 and a2 on the growth of tumour

cells, we calculate the final ratio of the two cell populations p(t)/n(t) and the time

taken for the mutant population to overcome the normal population, Tp, of the

model (2.4) with initial conditions (2.5) on time interval t ∈ [0, 100]. At different

values of the proliferative ratio b = [0.5, 1, 2], we plot Tp in the first row and in

the second row we plot log10(p(100)/n(100)) for a1 vs a2, see Figure 2.4. Moving

right through the columns in the first row ((a), (b), and (c)), we observe a decrease

in the time taken for mutant cells to exceed the normal cells Tp. We note that if

a2 > a1 the number of mutant cells remain below the number of normal cells, while

increasing b allows the mutant cells to exceed the normal cells in less time when

a1 > a2. Moving right through the columns in the second row ((d), (e), and (f)), we
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observe a slight increase in the number of mutant cells.

2.2.3.2 Simulation study 2: “In vitro” case

For the “in vitro” scenario our investigation will focus on the following question:

• What is the final ratio of the two cell populations?

To investigate this, we numerically solve equations (2.4) across the parameter ranges

specified in the above section and for the “in vitro” initial conditions (2.6): note

that here we set ε = 0.0001. We stop all of our simulations at t = 100, regardless of

whether the system has reached a steady state: while somewhat arbitrary, we note

that based on our earlier time rescaling and assuming normal glial cell turnover is

somewhat slow (e.g. the order of months), then t = 100 would represent years to

decades of potential growth. As a suitable measure for the above question, for each

simulation we calculate the ratio of mutant to healthy cells, p(t)/n(t) at two times

t = 10 and t = 100. Values of this → 0 would correspond to healthy population

winning, while values of this→∞ would correspond to mutant population winning.

In Figure 2.5 we present log10(p(10)/n(10)) in the first row, and log10(p(100)/n(100))

in the second row. Moving right through the columns in the first row ((a), (b), and

(c)), we observe an increase in the number of mutant cells as we increase the growth

ratio b. Moving right through the columns in the second row ((c), (d), and (e)), we

do not observe a notable difference in the number of mutant cells as we increase the

growth ratio b. Moving down through the rows, we observe a difference in mutant

cells number between early and later times. When the growth rate of mutant cells

is twice that as normal cells, the number of mutant cells exceeds the normal cells in

earlier time, and then drops with time, see Figure 2.5 (c) and (f).

Remark: we observe that in vivo case, the proliferative ratio b has a minimal

impact on increasing the number of tumour cells. However, for the in vitro case,

the tumour density is increased as the proliferative ratio b increases, especially at

earlier times. In Figure 2.6 we plot the tumour density number at times t = 10 and

t = 100 for different values of proliferative ratio b = [0.5, 2]. For the in vitro case we

observe greater variation in tumour density as b increases. Furthermore, the tumour
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cell density drops at later time when b ≤ 1 (i.e the proliferative rate of tumour cells

is higher than for normal cells).
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Figure 2.4: Simulations of model (2.4) with initial conditions (2.5). First row ((a), (b)

and (c)) is an illustration of the time taken for the mutant population to overcome

the normal population Tp for a1 vs a2 at different values of b (a) b = 0.5, (b) b = 1,

(c) b = 2. Second row ((d), (e) and (f)) is an illustration of the log10 ratio of mutant

to healthy cells, p(100)/n(100) for a1 vs a2 at different values of b (d) b = 0.5, (e)

b = 1, (f) b = 2. Numerics performed as in Figure 2.2.
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Figure 2.5: Simulations of model (2.4) with initial conditions (2.6). First row ((a), (b)

and (c)) is an illustration of the log10 ratio of mutant to healthy cells at time t = 10,

p(10)/n(10) for a1 vs a2 at different values of b = 0.5, 1, 2 respectively. Second row

((d), (e) and (f)) is an illustration of the log10 ratio of mutant to healthy cells at time

t = 100, p(100)/n(100) for a1 vs a2 at different values of b = 0.5, 1, 2 respectively.

Numerics performed as in Figure 2.2.
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Figure 2.6: Simulations of model (2.4) with initial conditions (2.5) and (2.6). Blue

line represents the tumour cell density at time t = 10, and red line represent the

tumour cell density at time t = 100. For fixed a1 = 0.75 and a2 = 0.5. Numerics

performed as in Figure 2.2.
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2.2.4 Stability analysis

While simulations yield some insight into the types of parameters where the mutant

population may infiltrate, a more formal approach is to use analysis such as linear

stability analysis. Details of linear stability analysis for two-species ODE systems

are provided in Appendix A.2. In the context of equations (2.4), we first set the left

hand side terms to zero and solve for n and m to yield four steady states:

(SS1) (0, 0). (trivial - no cells)

(SS2) (1, 0). (healthy tissue)

(SS3) (0, 1). (fully mutated tissue)

(SS4)
(

1−a1
1−a1a2 ,

1−a2
1−a1a2

)
. (partially-mutated coexistence)

The Jacobian matrix of equations (2.4) is given by

J =

 1− 2n∗ − a1p
∗ −a1n

∗

−ba2p
∗ b− 2bp∗ − ba2n

∗

 .
Substituting in the steady state values and evaluating the eigenvalues of J yields

the following observations:

• The trivial steady state (SS1) (0, 0) is unstable, with positive eigenvalues λ1 =

1 > 0 and λ2 = b > 0 .

• The healthy tissue steady state (SS2) (1, 0) has eigenvalues λ1 = −1 and

λ2 = b(1− a2). For the latter to be negative, and hence for the healthy steady

state to be stable, we require

a2 > 1.

• For the fully-mutated tissue steady state (SS3) (0, 1) the eigenvalues are: λ1 =

−b and λ2 = (1 − a1). Thus, the mutated tissue steady state is stable when

a1 > 1.

22



Chapter 2: Core mathematical techniques and a simple model of glioma growth

• For the partially-mutated tissue steady state (SS4)
(

1−a1
1−a1a2 ,

1−a2
1−a1a2

)
, eigenval-

ues are given by

λ1,2 = [2(1− a1a2)]−1[−[(1− a1) + b(1− a2)]±

{[(1− a1) + b(1− a2)]2 − 4b(1− a1)(1− a2)(1− a1a2)2}
1
2 ].

The stability requires λ1,2 < 0, and this depends on the size of b, a1 and

a2. Determining the stability of this last condition is clearly more intricate,

although we note two special cases that yield some insight:

– For a1 = 0, we have λ1 = −1 and λ2 = b(a2−1). For the healthy-mutated

tissue coexistance steady state to be stable we therefore need a2 < 1.

– For a2 = 0, λ1 = −b and λ2 = (a1 − 1). For the healthy-mutated tissue

coexistence steady state to be stable we therefore need a1 < 1.

The stability of (SS2) is of particular significance for the “in vivo” scenario: for

initial conditions consisting of a small mutation that perturbs the healthy tissue

steady state, only when a2 > 1 do we expect a return to a completely healthy

steady state tissue and for the mutated population to die out. On the other hand,

for a2 < 1 we have instability of the healthy tissue and can expect some form of

growth of the mutant population: somewhat counter intuitively, this is regardless of

parameters such as the mutant/healthy growth rate ratio b, i.e. a mutant population

can still invade and infiltrate a healthy tissue even with a lower growth rate, due to

its competitive advantage.

The progression of tumours proceeds through different phases, the first phase

arising promptly after initiation and the survival of the mutation population de-

pends just on the host (normal population) effect. In tumours generally the inter-

action between normal population and mutations is very complicated, because this

interaction can lead to two different mechanisms: growth inhibition and stimulation.

The inhibitors of growth include contact inhibition, programmed death (apoptosis)

and immunological responses (although that is not considered a major factor for

gliomas). Also, normal populations can stimulate the growth of mutated popula-

23



Chapter 2: Core mathematical techniques and a simple model of glioma growth

tions as a responce to signals from the mutated population [18]. We can express the

effect of the normal population on the mutated population a2 as:

a2 = a2i − a2s

where a2i represents the growth inhibitors and a2s represents the growth stimulators.

To examine a very early tumour, the normal population is placed at its carrying

capacity n
k1
≈ 1 with the tumour very small, p

k2
≈ 0. Then (2.3) becomes

dn

dt
= 0;

dp

dt
= r2p (1− a2) .

(2.7)

The small mutation will grow if

dp

dt
> 0 =⇒ 1− a2 > 0,

or

a2s > a2i − 1.

Effectively, the small population of mutated cells increases in size if these trans-

formed cells defeat the growth inhibitors produced from the healthy surrounding

cells, such as contact inhibitors and terminal differentiation. Even if the prolifer-

ating rate of the tumour is less than that of the normal cells, the mutant cells can

dominate if the competition rate is higher than 1 (see Figure 2.7).
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Figure 2.7: Simulations of model (2.4) with initial conditions (2.6), normal (blue

solid) and mutant (red dashed) as function of time for proliferative rate ratio b = 0.5.

(a) a1 = 1.5, a2 = 0.5. (b) a1 = 0.5, a2 = 0.5, (c) a1 = 0.5, a2 = 1.5. Numerics

performed as in Figure 2.2.

2.3 Spatial modelling

2.3.1 Introduction to spatial modelling

The impact of spatial movement is an important consideration for many biological

problems, from the movement of biological organisms to individual cells. In the

context of modelling glioma growth, spatial invasion is clearly a point of significant

concern: the rate and pattern of invasion is of key interest to clinicians wishing

to determine the future spatio-temporal growth of the tumour and an appropriate

treatment strategy.

Modelling spatial movement depends on the spatial and temporal scales of inter-

est and must be considered carefully. For a large scale problem such as a growing

brain tumour, where the tumour is of the order of centimetres and involves billions

of cells, a sensible approach is to use continuum level modelling, such as partial dif-

ferential equations, where the population is considered in terms of a continuous cell

density equation. Such approaches benefit from the wide range of analytical tools
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and methodologies, such as linear stability and travelling wave analysis, along with

efficient numerical methodologies. Yet their disadvantages lie in their disconnection

from the individual nature of cell movement: i.e. the manner in which an individual

cell moves through its environment,

An alternative approach, therefore, is to propose a discrete or individual-based

model, in which each cell is modelled as a separate entity. Such models are far more

amenable to the individual-level data we usually have available and are very suitable

for small scale problems, or those involving relatively few cells. Yet the fact that

they allow for relatively little analysis demands heavy computation, which becomes

increasingly problematic as the population size increases. Indeed, for the billions of

cells involved in a large tumour, they become almost intractable.

A final approach is to start with a discrete/individual level model and then

attempt to derive a continuous/macroscopic model via various scaling arguments.

In the following section we extend our basic glioma model to incorporate spatial

terms. We start with a brief review of spatial modelling techniques, first using

classic continuum modelling techniques and then building continuous models from

an underlying discrete random walk. We proceed to illustrate standard analyses: in

particular, the analysis of travelling wave solutions which will be used in our studies

here. Finally, we apply these methods to extend our basic model for glioma growth

to account for cell movement.

2.3.2 Macroscopic model from the principle of conservation

of matter

In the conservation approach, we define c(x, t) to be the cell/organism density or

chemical concentration at position x ∈ Rn and time t located within an arbitrary

volume V ⊂ Rn enclosed by a surface S ⊂ Rn−1, where n is the number of space

dimensions. Then, the rate of change of c within V will be determined by the rate

of creation/loss of c in V , along with the the flow of c across the surface S (see

Figure 2.8). Note that we define dS to be the outer unit normal to S. Expressed in
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 Creation/lose of c in V

s

ds

Flux = net movement of c across S

Figure 2.8: Illustration of conservation of matter. The change in the mass enclosed
by the volume V will result from creation or loss in V and the transport/movement
of matter across its surface S.

mathematical terms, this conservation law gives

∂

∂t

∫
V

c(x, t) dV = −
∫
S

J · dS +

∫
V

f(·) dV (2.8)

where J(x, t) ∈ Rn is called the flux: it defines the local net movement of c. The

function f(.) describe the creation/loss of c: this could depend on space, time and

the density of c itself, along with any other variables that are being modelled.

Applying the divergence theorem,

∫
S

J · dS =

∫
V

∇ · J dV

in the above equation (2.8), we condense the integral terms into the single volume

integral: ∫
V

(
∂c

∂t
+∇ · J− f(·)) dV = 0.

For an arbitrary V the integrand must be zero, and the conservation equation for c

is
∂c

∂t
+∇ · J = f(·). (2.9)

The above holds for general fluxes and its choice varies with respect to movement

processes. Diffusion is often considered in modelling: in the context of a cell popula-

tion it would represent a (more or less) random movement. Movement is effectively

assumed to be undirected and, at the population level, there is a net flux down
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population density gradients. The classical choice of Fickian diffusion assumes

J = −D∇c,

where D is the diffusion coefficient. As an example, adding the logistic population

growth form f(.) = rc(1−c/k) as earlier, and Fickian diffusion gives the well known

Fisher equation:
∂c

∂t
= D∇2c+ rc(1− c/k). (2.10)

2.3.3 Macroscopic model from a biased random walk

The above conservation of mass based approach gives an example of phenomeno-

logical continuum-level modelling: the fluxes are chosen phenomenologically, and

describe behaviour at a population-level. While such approaches have been widely

exploited, a difficulty lies in of how to relate the macroscopic level parameters (such

as the diffusion coefficients) in terms of behaviour and parameters at an individual

level (for example, cell speeds).

Consequently, a significant amount of attention has focused on motivating con-

tinuous models from the starting point of some discrete/individual based process

(see for examples [111, 85, 87, 7, 23]). Here we illustrate this by considering a dis-

crete random walk: we assume each individual in our population moves as a “random

walker” on a one-dimensional uniform lattice (a line split into discrete points, with

adjacent points equally-spaced by distance ∆x). We assume a walker jumps a dis-

tance ∆x left or right with equal probability in each time step ∆t, conditioned on

being at position x = 0 at t = 0:

1. After one time step, the walker is at either x = ±∆x with probabilities 1/2.

2. After two time steps, the walker is at either x = ±2∆x with probabilities 1/4,

or will have returned to the origin with probabilities 1/2.

3. After some even (odd) number of time steps, the walker will be an even (odd)

number of steps away from the origin. The maximum distance from the origin

after j steps will be j∆x.
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Overall, the probability pd(i, j) of a walker lies at distance i to the right or left of the

origin after j time steps for even i, j and i ≤ j is given by the binomial distribution:

pd(i, j) =
1

2j

(
j

(j − 1)/2

)
=

j!

2j((j + i)/2)!((j − i)/2)!
,

with zero mean and variance = j. Defining the time t = j∆t and position x = i∆x,

then it is well known that as j −→ ∞ the binomial distribution converges to a

normal distribution with zero mean and variance = t(∆x)2/∆t:

p(x, t) =
1√

4πDt
exp(− x2

4Dt
), (2.11)

where the diffusion coefficient D = (∆x)2/2∆t. We note that the above equation is

in fact the fundamental solution to the 1D diffusion equation. Notably, the diffusion

coefficientD now relates to the step size and frequency of turns for a discrete random

walk.

Macroscopic models from random walks

Next we explicitly derive the diffusion equation from an underlying discrete model.

We define p(x, t) as the time-dependent probability density function for the position

of a random walker on the one-dimensional lattice above. We assume a walker jumps

either one site to the left (−) or to the right (+) according to some probability in

each time step ∆t: we use the notation τ±x to define the probability that a walker

at position x moves to position x ±∆x, see Figure 2.9. Based on this description,

we can write down a discrete-time, discrete-space master equation for the evolution

of p(x, t) as follows:

p(x, t+ ∆t) = τ+
x−∆xp(x−∆x, t) + τ−x+∆xp(x+ ∆x, t) + (1− τ+

x − τ−x )p(x, t). (2.12)

Note that we must have 0 ≤ τ+
x , τ

−
x ≤ 1 and 0 ≤ τ+

x + τ−x ≤ 1.

29



Chapter 2: Core mathematical techniques and a simple model of glioma growth

Figure 2.9: Illustration of a random walk on a discrete lattice. In each time step a
walker at x can jump to the left or right according to transitional probabilities τ±x ,
or stay at its current position with probability 1 − τ+

x − τ−x . Similarly a walker at
x±∆x can jump to x according to transitional probabilities τ∓x±∆x

Unbiased random walk

In an unbiased random walk we assume the probabilities of moving left/right are

equal and set τ± = α (constant) throughout space x. Consequently, we obtain

p(x, t+ ∆t) = α(p(x−∆x, t) + p(x+ ∆x, t)− 2p(x, t)) + p(x, t).

Expanding via Taylor series, we generate:

p(x, t+ ∆t) = p(x, t) + ∆t
∂p

∂t
(x, t) +O((∆t)2);

and

p(x±∆x, t) = p(x, t)±∆x
∂p

∂t
(x, t) +

(∆x)2

2

∂2p

∂x2
(x, t) +O((∆x)3).

Substituting these expansions into equation (2.12) we have

p(x, t) + ∆t
∂p

∂t
(x, t) +O((∆t)2) = α(∆x)2 ∂

2p

∂x2
(x, t) + p(x, t) +O((∆t)3).

Noting that the p(x, t)’s cancel, we consider the diffusion limit. Specifically, we
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assume ∆t, ∆x→ 0 such that

lim
∆t,∆x→0

α(∆x)2

∆t
= D,

for some constant parameter D. Applied to the above, we derive the 1D diffusion

equation with constant diffusion coefficient D:

∂p(x, t)

∂t
= D

∂2p

∂x2
(x, t). (2.13)

Biased random walks

This approach can be adapted to include additional assumptions. For example, let

us assume there is a bias in the directional choice by setting τ+(x) = α + ε/2 and

τ−(x) = α− ε/2. Again we substitute into equation (2.12) to obtain:

p(x, t+ ∆t) = α(p(x−∆x, t) + p(x+ ∆x, t)− 2p(x, t)) + p(x, t))

+
ε

2
(p(x−∆x, t)− p(x+ ∆x, t))− p(x, t). (2.14)

After expanding as before via Taylor expansion and considering limits as ∆t, ∆x→ 0

such that:

lim
∆t,∆x→0

α(∆x)2

∆t
= D,

and

lim
∆t,∆x→0

ε
∆x

∆t
= a.

This yield the 1D diffusion-advection equation with diffusion coefficient D and drift

velocity a:
∂p(x, t)

∂t
= D

∂2p

∂x2
(x, t)− a∂p

∂x
(x, t). (2.15)
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2.4 Spatial extension of the basic model for glioma

growth

Gliomas have proven to be highly difficult to treat, with many experimental and

theoretical works attempting to understand the difficulty of their treatment. One

cause of their resistance to treatment stems from their highly invasive nature, with

significant infiltration into the surrounding tissue from the main tumour mass: ex-

perimental studies [106] have shown that within a week of tumour implantation into

a rat brain, not only a dense mass of glioma cells can be seen located to the initiated

area, but solitary glioma cells are observed deep across the central nervous system

(CNS). This implies a reason for treatment failure: glioma treatment focuses on

the dense mass of glioma, while invasion and glioma growth is more diffuse. Sub-

sequently, distant cells that have moved far away from the focus of treatment may

subsequently result in regrowth.

Mathematical modelling can play an important role in understanding and analysing

the growth dynamics of glioma. Amongst the first modelling attempts were by

Tracqui et al. [120], Woodward et al. [127] and Burgess et al. [14]. These models

captured two main feature of the tumour, proliferation and diffusion, and showed

that diffusion is more important than proliferation in determining the survival rate.

A further complicating aspect to this diffusive type spread of gliomas lies in the

heterogeneity of the brain tumour: in particular, invasion is believed to be higher in

the white matter than the grey matter. In vivo studies [106] suggest that malignant

glioma cells predominantly invade the brain tissue via the long, directional white

matter tracts leading to rapid invasion along specific pathways.

The basic spatio-temporal equation developed in Murray’s group simplified glioma

growth into an uncontrolled proliferation of tumour cells coupled to an ability to

invade the surrounding tissue. In word form:
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Rate of change

of glioma cells
=

Net diffusion

of glioma cells
+

Net proliferation

of glioma cells
.

Letting n(x, t) be the density of glioma cells at position x and time t, a partial differ-

ential equation based on a simple reaction-diffusion equation with Fickian diffusion

and exponential growth takes the form:

∂n

∂t
= ∇ · (D∇n) + ρn.

In the above, D (distance2/time) is the diffusion coefficient of cells in brain tissue

and ρ (time−1) represents the net rate of growth of cells. Subsequent modelling

has extended these basic models to investigate a wide range of aspects, such as the

heterogeneous structure of the brain [115, 128, 58, 86], different forms of treatment

[120, 28, 61, 96, 114] and the phenotypic switching of cells according to the go-

or-grow hypothesis. In this section we extended to consider a mathematical model

for the spatio temporal dynamics of tumour growth within the normal healthy tissue.

2.4.1 Spatial competition model

We let n(x, t) be the density of glial healthy cells at a position x and time t and

p(x, t) be the density of glioma cells at a position x and time t. For the current

purposes we restrict to a single space dimension, assuming x ∈ [0, L]. We consider

a reaction-diffusion equation with Fickian diffusion and logistic growth as follows

dn

dt
= D1

∂2n

∂x2
+ r1n

(
1− n

k1

− a1
p

k2

)
;

dp

dt
= D2

∂2p

∂x2
+ r2p

(
1− p

k2

− a2
n

k1

)
.

(2.16)

In the above model, D1 and D2 are the diffusion coefficients of healthy and mutant

cells respectively, while parameters for the competition-type kinetic terms are as

previously defined in Section (2.2.1). As previously, we will be mainly focussed on the

role of the ratios between critical parameters. In addition to our earlier discussions
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on growth rates, carrying capacities etc. we note that the above equations include

diffusion coefficientsD1 andD2 to describe random movement of normal and mutant

glial cells. The former is assumed to be relatively small (although not necessarily

zero): we do not expect healthy glial cells to undergo significant movement, with

their primary role being in support of the neural architecture and possibly only

stimulated to move following tissue disruption. Mutant cells, however, are expected

to have a greater invasive capacity: we note moreover that studies suggest that the

diffusion coefficient for glioma cells in the white matter is five times larger than that

in grey matter [19, 115]. We take the standard assumption of zero flux boundary

conditions, setting

nx(0, t) = nx(L, t) = px(0, t) = px(L, t) = 0 .

For initial conditions we assume n(x, 0) = n0(x) and p(x, 0) = p0(x), where n0(x)

and p0(x) are nonnegative functions: these are defined below for two investigated

scenarios.

2.4.2 Numerical simulations

As before, we first perform a non-dimensionalisation by setting

D =
D1

D2

, and rescale x∗ = x(
r1

D2

)
1
2

along with the previous scalings:

n∗ =
n

k1

; p∗ =
p

k2

; t∗ = r1t; b =
r2

r1

.

Substituting these into equations (2.16), we obtain the dimensionless model as fol-

lows:
∂n

∂t
= D

∂2n

∂x2
+ n (1− n− a1p) ;

∂p

∂t
=
∂2p

∂x2
+ bp (1− p− a2n) .

(2.17)
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Note that following the considerations above, healthy cells are expected to diffuse

less freely than mutant cells and hence 0 ≤ D ≤ 1. The above system has the

same four uniform steady state solutions described in Section (2.2.4). Our earlier

analysis focused on two scenarios: a simulated “in vivo” case, where we considered

the growth (or otherwise) of a small population of mutated cells within a healthy

tissue environment, and an “in vitro” case, where the growth (or otherwise) of co-

cultured mutant and healthy cells was considered within some in vitro set-up. To

model these we consider the following initial conditions:

(In vivo) n0(x) =

 1− ε if x ≤ δ

1 otherwise
; p0(x) =

 ε if x ≤ δ

0 otherwise
. (2.18)

(In vitro) n0(x) =

 ε if x ≤ δ

0 otherwise
; p0(x) =

 ε if x ≤ δ

0 otherwise
. (2.19)

2.4.2.1 In vivo scenario

In Figure 2.10 we plot the dynamics of mutant and normal cells on a domain of

length 200 at successive times. We fix D = a2 = 0.5 and vary a1 = 0.25, 0.5 & 0.75,

and b = 0.5, 1.0 & 2.0. Moving down through the rows we observe a faster rate of

invasion/infiltration as the growth rate ratio increases. Although we note that the

mutant population will still infiltrate and take over even when b < 1 (i.e tumour

cells are less proliferative than normal cells). Moving right through the columns

we observe an increase in the amount of mutant cells as the competition rate a1

increases. A faster rate of invasion of mutant cells occurs when their proliferative

rate is much greater than the proliferative rate of normal cells. On the other hand

we do not notice any difference as we vary D (see Figure 2.11). In Figure 2.12 we

investigate whether the competition rates a1 and a2 have any impact on the invasion

of mutant cells. We fix the diffusion parameter D = 1 and vary the proliferative rate

b = 0.5, 1.0 & 2. To measure the invasion of mutant population we keep track of the

invasive front of mutant cells over time. For example, based on the initial density

of mutant cells, we measure the depth reached at specific times: mathematically,
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we define the invasive depth x∗ at time t∗ as the largest x∗ for which p(x∗, t∗) ≤ ε,

where t∗ ∈ (0, T ), and ε is the initial amount of mutant cells, equal to 0.0001. We

plot the invasion depth at the final time of simulation T = 100. We find that the

competition rate of mutant cells on normal cells a1 has no impact on the invasion of

the mutant population. Increasing the competition rate of normal cells on mutant

cells a2 can decrease the invasion of mutant population. Moving right through the

columns we observe an increase in the invasion of mutant population as the growth

rate difference b increase while, on the other hand, no change in the invasion depth

occurs when D is altered (see Figure 2.13).
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Figure 2.10: Simulations of model (2.17) with initial conditions (2.18) for different

values of b, a1 and fixed D = a2 = 0.5. We plot normal (blue) and mutant (red)

populations as functions of time and space. (a) b = 0.5, a1 = 0.25. (b) b = 0.5, a1 =

0.5. (c) b = 0.5, a1 = 0.75. (d) b = 1.0, a1 = 0.25. (e) b = 1.0, a1 = 0.5. (f)

b = 1.0, a1 = 0.75.(g) b = 2.0, a1 = 0.25. (h) b = 2.0, a1 = 0.5. (i) b = 2.0, a1 = 0.75.

The equations were solved numerically in time interval 0 ≤ t ≤ 100, using “pdepe”

solver in Matlab, with a relative tolerance = 10−9, absolute tolerance = 10−12 and

grid spacing of 0.5. We solved on the spatial domain 0 ≤ x ≤ 200, with zero flux

conditions (nx = mx = 0) at both boundaries.
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Figure 2.11: Simulations of model (2.17) with initial conditions (2.18) for different

values of D, a1 and fixed a2 = 0.5 and b = 1.0. We plot normal (blue) and mutant

(red) populations as functions of time and space. (a) D = 0.0, a1 = 0.25. (b)

D = 0.0, a1 = 0.5. (c) D = 0.0, a1 = 0.75. (d) D = 0.5, a1 = 0.25. (e) D = 0.5, a1 =

0.5. (f) D = 0.5, a1 = 0.75.(g) D = 1.0, a1 = 0.25. (h) D = 1.0, a1 = 0.5. (i)

D = 1.0, a1 = 0.75. The numerical method was as in Figure 2.10.
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Figure 2.12: Plot of invasion depth at time t = 100 for a1 vs a2. With fixed D = 1

and: (a) b = 0.5; (b) b = 1; (c) b = 2. The numerical method was as in Figure 2.10.
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Figure 2.13: Plot of invasion depth at time t = 100 for a1 vs a2. With fixed b = 1

and (a) D = 0.0, (b) D = 0.5, (c) D = 1. The numerical method was as in Figure

2.10.

2.4.3 Travelling wave analysis of extended model

The numerical simulations above indicate travelling-wave type solutions to our

model, and we perform a travelling wave analysis to obtain insight into invasion

speeds. We note that in Appendix A.3 we provide a brief review of travelling wave

analysis for the simple Fisher equation (2.10): the analysis here follows the same

principles. To start with, we make the standard travelling wave ansatz and look for

solutions of the form:

n (x, t) = N (z) , p (x, t) = P (z) , z = x− ct,

where z define the travelling wave coordinate. If solutions of above form exist, they

represent travelling waves that move to the right in the z−plane with wavespeed c.

Substitution into equations (2.17) gives a system of second order ordinary differential

equations as follows:

DN ′′ + cN ′ +N (1−N − a1P ) = 0;

P ′′ + cP ′ + bP (1− P − a2N) = 0.

(2.20)

Where the “prime” denotes differentiation with respect to z. An analysis of the

above equation would require the study of a four-dimensional phase space, however
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we shall consider a simpler case where the diffusion coefficient, D1, of the normal

cell population is considerably smaller than that of cancer cells, D2. Consequently,

we assume D(= D1

D2
) ≈ 0 in our nondimensional equations, introduce W = P ′ and

obtain a three variable system of first order ordinary equations as follows:

N ′ = −1

c
[N(1−N − a1P )];

P ′ = W ;

W ′ = −cW − bP (1− P − a2N).

(2.21)

This system possesses four steady states:

• (0, 0, 0) (trivial - no cells);

• (1, 0, 0) (healthy tissue);

• (0, 1, 0) (fully mutated tissue);

• ( 1−a1
1−a1a2 ,

1−a2
1−a1a2 , 0) (partially-mutated coexistence).

2.4.3.1 In vivo scenario

For the in vivo scenario we can identify two relevant forms for travelling wave so-

lution: from the Figures 2.14, there are various possibilities of travelling wave front

solution:

1. a wave connecting the healthy steady state (1, 0, 0) and the fully-mutated

steady state (0, 1, 0);

2. a wave connecting the healthy steady state (1, 0, 0) to the partially-mutated

steady state ( 1−a1
1−a1a2 ,

1−a2
1−a1a2 , 0).

40



Chapter 2: Core mathematical techniques and a simple model of glioma growth

(a)

0 100 200
0

0.2

0.4

0.6

0.8

1

(b)

0 100 200
0

0.2

0.4

0.6

0.8

1

Figure 2.14: Simulations of model (2.17) with initial conditions (2.18). We plot

normal (blue) and mutant (red) as functions of time and space with fixed D = 0.0

and b = 1. (a) connecting the healthy steady state (1, 0, 0) and the fully-mutated

steady state (0, 1, 0), where a1 = 1.5 and a2 = 0.5. (b) connecting the healthy

steady state (1, 0, 0) to the partially-mutated steady state ( 1−a1
1−a1a2 ,

1−a2
1−a1a2 , 0), where

a1 = 0.5 and a2 = 0.5. The numerical method was as in Figure 2.10.

We start by considering travelling wave solutions connecting (1, 0, 0) and (0, 1, 0),

assuming the infinite line with boundary conditions:

N(−∞) = 0, P (−∞) = 1, W (−∞) = 0 N(∞) = 1, P (∞) = 0, W (∞) = 0.

By analogy with the analysis of travelling wave equations for Fisher’s equation,

we linearise system (2.21) ahead of the wavefront (i.e. about the steady state of

healthy cells (1, 0, 0)) and determine the nature of the eigenvalues λ of the subsequent

stability matrix, i.e. the solutions of

∣∣∣∣∣∣∣∣∣∣
1
c
− λ a1

c
0

0 −λ 1

0 −b(1− a2) −c− λ

∣∣∣∣∣∣∣∣∣∣
= 0 .
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Hence,

λ1 =
1

c
;

λ2 =
1

2
{−c+ 2

√
c2 − 4b(1− a2)};

λ3 =
1

2
{−c− 2

√
c2 − 4b(1− a2)}.

For the travelling wave solutions to remain non-negative, we require the eigenvalues

to be real and hence

c ≥ 2
√
b(1− a2) .

Note that in the case D 6= 0, similar analysis generates four eigenvalues

λ1,2 =
1

2
{−c± 2

√
c2 − 4b(1− a2)}, λ3,4 =

1

2D
{−c± 2

√
c2 + 4D)}

Again, for the above eigenvalues to remain real, we also require

c ≥ 2
√
b(1− a2) .

Under compact initial conditions we assume travelling waves move at this minimum

speed, in line with the simpler Fisher equation. This confirms our earlier finding that

there is no dependence on D or a1. We have plotted in Figure 2.15 the analytical

and numerical minimum wave speed of the tumour for different values of parameters

a1, a2, D and b. Note that the minimum speed accurately tracks the numerically

calculated value. When the competition of normal healthy cells increase the speed

of the wavefront of tumor decreases to zero. Whereas the wave speed of tumour

increases with increasing growth rate of tumour.
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Figure 2.15: The analytical (red) and simulated (blue) wave speed for different

values of model parameters. The numerical method was as in Figure 2.10.

However, it is remarked that these analyses were for a nondimensional form of the

model, and it is perhaps more illustrative to consider the original dimensional form,

i.e Equations 2.16a - 2.16b. In this case we find that

c ≥ 2
√
r2(1− a2)D2. (2.22)

Therefore, the wave speed depends on the diffusion of mutant cells, but not healthy

cells.

Overall, this suggests that invasion is facilitated by

1. fast growing mutant cells;

2. low competition a2;
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3. fast random movement of mutant cells.

2.4.3.2 In vitro scenario

For the in vitro scenario we can identify two relevant forms for travelling wave solu-

tion: As demonstrated in Figure 2.16, there are different possibilities to demonstrate

travelling wave front solution:

1. a wave connecting the fully-mutated steady state (0, 1, 0) and the trivial steady

state (0, 0, 0);

2. a wave connecting the partially-mutated steady state ( 1−a1
1−a1a2 ,

1−a2
1−a1a2 , 0) and

the trivial steady state (0, 0, 0).
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Figure 2.16: Simulations of model (2.17) with initial conditions (2.19). We plot

normal (blue) and mutant (red) populations as functions of time and space with

fixed D = 0.0 and b = 1. (a) connecting the healthy steady state (0, 1, 0) and

the trivial steady state (0, 0, 0), where a1 = 1.5 and a2 = 0.5. (b) connecting the

partially-mutated steady state ( 1−a1
1−a1a2 ,

1−a2
1−a1a2 , 0), to the trivial steady state (0, 0, 0)

where a1 = 0.5 and a2 = 0.5. The numerical method was as in Figure 2.10.

We start by considering travelling wave solutions connecting (0, 1, 0) and (0, 0, 0),

assuming the infinite line with boundary conditions:

N(−∞) = 0, P (−∞) = 1, W (−∞) = 0 N(∞) = 0, P (∞) = 0, W (∞) = 0.

By analogy with the analysis of travelling wave equations for Fisher’s equation, we

linearise the system (2.21) ahead of the wavefront (i.e. about the steady state of
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healthy cells (0, 0, 0)) and determine the nature of the eigenvalues λ of the subsequent

stability matrix, i.e. the solutions of

∣∣∣∣∣∣∣∣∣∣
−1
c
− λ 0 0

0 −λ 1

0 −b −c− λ

∣∣∣∣∣∣∣∣∣∣
= 0 .

Hence,

λ1 =
−1

c
;

λ2 =
1

2
{−c+

2
√
c2 − 4b};

λ3 =
1

2
{−c− 2

√
c2 − 4b}.

For the solutions to remain non-negative, we require the above eigenvalues to be

real and hence

c ≥ 2
√
b .

In terms of the original dimensional equation (2.16), the range of wave speeds sat-

isfies

c ≥ 2
√
r2D2. (2.23)

We note that in the in vitro case the wave-speed does not depend on the competition

parameters. In other words, certain in vitro settings will not give the full picture or

the speed at which invasion takes place.

2.5 Summary

We have reviewed some basic mathematical analysis and applied it to a simple

competition model of healthy tumour cells. We have studied the competition of

healthy-mutant cells under ODE and PDE forms, for in vivo and in vitro scenarios.

For the in vivo case increasing the competitive parameter of glioma cells on normal

cells leads to an increase in the number of glioma cells compared to normal cells.

Increasing the growth ratio leads to a decrease in the time required for glioma to
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dominate. For the in vitro case, when the growth rate of glioma cells is low, the

number of glioma cells compared to normal cells is low in early stages of glioma

development. While at later times of glioma progression, the number of glioma cells

is reduced compared to the normal cells.

The stability analysis showed that the normal cells can recover if the competition

rate of normal cells on glioma cells satisfies a2 > 1. For the in vivo case of the spatial

competition model, invasion of glioma increases as the growth ratio b increases.

However, the competitive rate of glioma cells has no impact on the invasion, yet

it does increase the number of glioma cells. Travelling wave analysis of the in

vivo scenario showed that the minimum wave speed of glioma cells depends on the

competitive parameter of normal cells and the diffusion parameter and the growth

rate of glioma cells. On the other hand, a similar analysis for the in vitro case

showed that the minimum wave speed of glioma cells depends on the growth rate

and the diffusion parameter of glioma cells.

In this Chapter we have reviewed the study of Gatenby [36, 34]. The study has

been extended to investigate many further biological behaviors, for instance [37, 38,

39]. We here only studied the dynamic of healthy-mutated competition in spatial-

temporal form. Nevertheless, the mutant cells of glial cells are more sophisticated

cells. Research by Giese et al. [44, 42] suggests that gliomas can be subdivided

into proliferating cells and migrating cells. Proliferating cells rarely migrate, while

migrating cells rarely proliferate. The switch between these two phases, i.e a moving

phase and growing phase, is known as the “go or grow” hypothesis. In the next

Chapter we will discuss the mechanism of go or grow gliomas under competition

from healthy cells.
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Chapter 3

Go-or-Grow glioma mathematical

model

In this chapter we propose a simple mathematical model based on the go or grow hy-

pothesis for brain tumours (gliomas). The model describes the competition between

healthy glial cells and malignant cells, with the latter subdivided into invasive and

proliferating subpopulations. We begin with a brief review of the go-or-grow hypothe-

sis, and summarise the various modelling efforts that have attempted to understand

this phenomenon. We subsequently build on a model developed by Pham and others

[91] to incorporate an additional “healthy” population, which is assumed to compete

with the mutant subpopulations. Our investigations suggest that increasing the prob-

ability of entering a migratory state may delay the rate at which a tumour overcomes

the normal cells. In addition, the wave speed of the tumour increases as the proba-

bility of migratory cells increase until the probabilities of migratory state is equal to

stationary state, then the wave speed starts to decrease.
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3.1 Introduction and previous modelling

As we have previously described, gliomas form an invasive and heterogeneous class

of primary brain tumour. Malignant gliomas are often lethal, evading therapeutic

strategies such as excision, chemotherapy and radiation therapy in part due to their

capacity to invade the surrounding brain. A leading hypothesis by Giese et al.

[44, 42] suggests that malignant cells switch between proliferating and migrating

phenotypes, a mechanism known as the “go or grow” hypothesis (see Figure 3.1).

Although the molecular mechanisms that control this switching are uncertain, it

is generally assumed to depend on microenvironmental factors: e.g. hypoxia, low

glucose, extracellular matrix components, cellular densities etc can potentially lead

to this dichotomy [44]

Treatment of malignant brain tumours is therefore complicated not only due to

their critical location, but also by the difficulty of eliminating the malignant cells

that enter a migratory phenotype. These cells have the capacity to infiltrate and

invade the brain along myelinated fiber tracts in the white matter [43], allowing them

to move far beyond the tumour core. Simple excision of the tumour will generally

fail to eliminate all of these invading cells and, while subsequent chemotherapy

and/or radiotherapy can be applied to reduce their number, it is believed that

migratory cells are less sensitive to therapy than those in the proliferative phase

[72]. Consequently, malignant tumours are generally found to recur following the

original treatment phase.

Figure 3.1: Illustration of go-or-grow hypothesis.

A number of mathematical models have been developed to study this dichotomy

between proliferation and migration, both at cellular and molecular levels, e.g. see
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[63]. For example, [31] used stochastic/probabilistic models to investigate the mi-

gration/proliferation switching phenotype. Gliomas cells are believed to switch be-

tween proliferative and invasive phenotypes according to the oxygen concentrations

in their local environment: in vitro motility assays indicate accelerated invasion in

low ambient oxygen. Hatzikirou et al explored such properties, focussing their work

on a particularly aggressive and invasive tumour, glioblastoma multiforme (GBM),

and developed a lattice-gas cellular automaton. A lattice-gas cellular automaton

model was developed to investigate how different cell migration strategies depend

on cell density, considering whether cell motility increases with local cell density or

decreases with local cell density [52, 117].

Investigation of the go-or-grow mechanism on avascular glioma invasion shows

that knowledge of the individual cell phenotype is not enough to extrapolate the

macroscopic tumour colony [12]. Saut et al. also proposed a mathematical model

that takes into account the ability of proliferative cells to become invasive under

hypoxic conditions. The effects of the go-or-grow mechanism on glioma invasion

and anti-angiogenesis growth showed that accelerated growth can lead to a lack of

long-term efficacy of anti-angiogenesis drugs in the treatment.

Mathematically, Zhigun et al. proved the global existence of weak solutions

of cancer model under the go-or-grow hypothesis [130]. Gerlee et al. proposed

a stochastic reaction-diffusion equation for the go-or-grow phenotype, which was

shown to exhibit travelling wave type solutions.

In the context of the present chapter, Pham et al. [91] presented a mathematical

model (see (3.1)) of the go-or-grow hypothesis, based on a coupled system of ordinary

and partial differential equations for migratory and proliferative phenotypes. In this

model, phenotypic switching was assumed to be dependent on the cell density, and

the model was shown to generate complex dynamics similar to that associated with

tumour heterogeneity and invasion. The model considered a migrating population

ρ1(x, t) that does not proliferate and a proliferating population ρ2(x, t) that does

not move, and hence total population density ρ(x, t) = ρ1 + ρ2. Under simple

assumptions of linear diffusion for movement and logistic growth for proliferation,
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the main focus of the model was the exchange between the two sub-populations:

∂ρ1

∂t
= D4m+ µ[Γ(ρ)ρ2 − (1− Γ(ρ))ρ1];

∂ρ2

∂t
= −µ[Γ(ρ)ρ2 − (1− Γ(ρ))ρ1] + rρ2(1− ρ/ρm)).

(3.1)

In the above, D is the diffusion coefficient of migrating cells, µ is the rate at which

cells change their phenotype, Γ(ρ) is the probability that a proliferating cell becomes

migrating, r is the proliferating rate and ρm is the carrying capacity of the cells.

Pham et al.[91] consider two complementary mechanisms for the phenotypic switch,

modelled by the sigmoidal functions:

(M1) Γ(ρ) =
1

2
(1 + tanh(α[ρ∗ − ρ]));

and

(M2) Γ(ρ) =
1

2
(1− tanh(α[ρ∗ − ρ])).

Under mechanismM1 the cells become more migratory at low local cell densities, and

less migratory when the density is high, and conversely under M2. The parameter

α describes the sharpness in the switch phenotype, and ρ∗ is the density threshold

at which the probabilities of being proliferating or migrating are equal. The model

dynamics were shown to have the potential to generate spatial patterns under mech-

anism M1, leading to irregular oscillatory dynamics. The model also indicated that

glioma tumours can grow fast, but homogeneously, or slow and heterogeneously.

While the above model provides a useful basis for incorporating the go-or-grow

hypothesis into simple continuous-level models for glioma growth, inevitably a num-

ber of potentially important factors are omitted. For example, the model ignores the

growth of the tumour within the normal brain environment, and the potential im-

pact from competition between the healthy cells and the malignant sub-populations.

Second, augmenting the model with treatment may provide insights into how cer-

tain tumours may prove more or less amenable to treatment. Third, the model does

not explicitly incorporate hypotheses for the molecular basis for switching or the

potential complexity due to the heterogeneous structure of the brain.
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3.2 Extension to include healthy-mutated competi-

tion

We build on the above model of Pham et al. [91] by including a normal/healthy

population that competes with the mutant subpopulations. Specifically, we let

n(x, t) define the normal/healthy population and define two mutant subtypes: p(x, t)

the proliferating sub-population and m(x, t) the migrating sub-population; we let

s(x, t) = n(x, t) + p(x, t) +m(x, t) represent the sum of all populations. Here, x ∈ Ω

defines the position and t is time. Generally, Ω would define the spatial extent of the

central nervous system, although for this more theoretical treatment we will sim-

ply consider the evolution a one-dimensional line [0, L] (for example, representing a

transect through the tumour front), where L is measured in millimetres. Note that

the diffusion rate of glioblastoma cells is significantly higher than in normal cells (for

example see [20]): our basic model therefore assumes that the migratory capacities

of normal cells and the proliferative subpopulation is negligible, while the migratory

subtype migrates but in an essentially random (i.e. diffusive) manner. Currently we

assume that the region of the brain in which invasion is taking place is (effectively)

homogeneous, and we take a spatially constant diffusion coefficient Dm (mm2/day)

to measure the degree of migration. The model is given by:

∂n

∂t
= hn(n, p,m);

∂p

∂t
= hv(n, p,m)− f(n, p,m)p+ g(n, p,m)m;

∂m

∂t
= Dm4m+ f(n, p,m)p− g(n, p,m)m.

(3.2)

In the above, hn and hv are functions that describe the growth of normal and

malignant cells: growth is assumed to be limited by competition between the various

populations (e.g. for space, for nutrient etc.). The function f is the “switching

function” from proliferating mutant cells to migrating mutant cells, and vice versa

for g.
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Functions for hn, hv, f and g are chosen as follows:

∂n

∂t
= r1n(1− n

k1

− a1
p+m

k2

);

∂p

∂t
= r2p(1−

p+m

k2

− a2
n

k1

)− φ[α(s)p− (1− α(s))m];

∂m

∂t
= Dm

∂2m

∂x2
+ φ[α(s)p− (1− α(s))m].

(3.3)

In the above r1,2, k1,2, a1,2, Dm and φ are positive constants. Parameters r1 and

r2 (typical units of day−1) define the growth rates: we would often expect this to

be higher for the mutant population. Population growth is assumed to be limited

due to competition between the various populations, with k1 and k2 (cells/mm3)

defining the carrying capacities induced from self-competition (normal on normal

or mutant on mutant) parameters, and a1 and a2 (dimensionless) measuring the

cross-competition effects (mutant on normal and normal on mutant). We note that

the population growth terms are a straightforward extension of the forms chosen

in Chapter 2, with the competitive impact of malignant cells represented by the

sum of the migratory and proliferative subtypes. As described in the previous chap-

ter, “competition” could arise from many factors, such as an increased absorption

of nutrients by mutant cells to a greater resilience against adverse environmental

conditions. We note that we have assumed the mutant subpopulations exert identi-

cal competitive effects: distinct effects could be introduced, yet this would further

increase the dimensionality of an already large parameter space.

To model the switching between migratory and proliferative phenotypes we in-

troduce two concepts: a rate function φ (typical units days−1) that measures the

(maximum) rate at which switches can occur, and a probability function α ∈ [0, 1]

that denotes the probability of a switch into a migratory phenotype; conversely

1 − α ∈ [0, 1] denotes the probability of a switch into a proliferative phenotype.

Both φ and α can depend on local properties of their environment: obviously, there

is a large range of potential dependencies, and here we will restrict to the case where

φ is a constant, while α depends on the total density of cells, i.e. α(s).

For initial conditions, we consider a small and spatially-confined population of

the proliferative mutated cells immersed in a generally healthy tissue: this could
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correspond either to the early stages of a developing tumour, or mimicking an ar-

tificial experiment in which tumorous cells have been implanted within a healthy

tissue environment. Specifically, we consider

n(x, 0) = k1 − p(x, 0);

p(x, 0) =

 p0 when 0 ≤ x ≤ x∗,

0 otherwise.

m(x, 0) = 0.

(3.4)

where we note that k1 marks the healthy tissue steady state. Boundary conditions

only need to be specified for the migratory population, where we assume no-loss

(zero-flux) conditions:

mx(0, t) = mx(L, t) = 0. (3.5)

3.2.1 Parameters

The kinetic terms that describe competition-impacted growth are essentially the

same as those in Chapter 2, and we refer there for a discussion into the relation

between expected normal and malignant growth. The new terms introduced stem

from α and φ. α is a probability function α ∈ [0, 1], while a study results of

transplanted glioma cells into neonatal rat forebrain suggest that the time scale of

cell division r2 is typically lower than the phenotypic switch rate φ [30]. Thus, we

vary φ to be φ > or < r2 say φ ∈ [0, 10].

3.2.2 Non-dimensionalisation

The precise details of the non-dimensionalisation will vary according to the precise

form of the function α(s). Here we illustrate via the non-dimensionalisation for

α(s) = α, constant, where α ∈ [0, 1]. Specifically, we choose the scalings

n∗ =
n

k1

, m∗ =
m

k2

, p∗ =
p

k2

, t∗ = r1t, x∗ =
√
r1/Dmx,
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and set

b =
r2

r1

, φ∗ =
φ

r1

.

Substituting the above into equations (3.3) and dropping the *’s (for notational

simplicity) we obtain:

∂n

∂t
= n(1− n− a1(p+m));

∂p

∂t
= bp(1− (p+m)− a2n)− φ[αp− (1− α)m];

∂m

∂t
=
∂2m

∂x2
+ φ[αp− (1− α)m].

(3.6)

We note that the dimensionless parameters a1, a2 and α are unchanged as a result

of the non-dimensionalisation.

3.3 Analysis of the non-spatially uniform case

3.3.1 Constant switching forms

To obtain some initial insight we begin with an analysis of the simplest scenario:

the non-spatial problem setting (∂2m
∂x2

= 0) and assume a constant α. Specifically,

we explore the steady states and determine the stability of the non-dimensionalised

equations
dn

dt
= n(1− n− a1(p+m));

dp

dt
= bp(1− (p+m)− a2n)− φ[αp− (1− α)m];

dm

dt
= φ[αp− (1− α)m].

(3.7)

It is logical to start our analysis by finding the steady states of the model.

3.3.2 Steady States

Setting the RHS terms in equations (3.7) to zero and solving for n, p andm gives the

following steady states. The steady states of the model are determined as follows:

1. (0, 0, 0). (trivial)

2. (1, 0, 0). (healthy tissue)
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3. (0, 1− α, α). (fully-mutated tissue)

4.
(

1−a1
1−a1a2 , (1− α) 1−a2

1−a1a2 , α
1−a2

1−a1a2

)
. (partially-mutated tissue)

In comparison to the simpler model of the previous chapter, we note that the above

generates the same basic four steady state types, only the mutated component is

divided into proliferative and migratory sub-types according to the parameter α.

3.3.3 Linear stability analysis

Stability of the steady state is determined by the community matrix of the system

(3.7), which is given by

J =


1− 2n∗ − a1(p∗ +m∗) −a1n

∗ −a1n
∗

−ba2p
∗ b− b(2p∗ +m∗)− ba2n

∗ − φα −bp∗ + φ(1− α)

0 φα −φ(1− α)

 .

Given the initial conditions, the relevant case of interest is a generally healthy tis-

sue perturbed through the introduction of a small mutated population: hence we

are interested in the stability of the healthy tissue. We therefore determine the

eigenvalues λ of the community matrix at the steady state (1, 0, 0), i.e.:

|J − λI| =

∣∣∣∣∣∣∣∣∣∣
−1− λ −a1 −a1

0 (b− ba2 − φα)− λ φ(1− α)

0 φα −[φ(1− α)]− λ

∣∣∣∣∣∣∣∣∣∣
= 0.

This gives characteristic equation

(−1− λ)

∣∣∣∣∣∣∣
(b− ba2 − φα)− λ φ(1− α)

φα −[φ(1− α)]− λ

∣∣∣∣∣∣∣ = 0.

Clearly, from the above we have at least one negative eigenvalue given by λ1 = −1.

For the other eigenvalues we consider separately the cases α = 0, 0 < α < 1 and

α = 1:
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Case 1: α = 0

Here we obtain λ2 = b(1− a2) and λ3 = −φ. Consequently we will have instability

of the healthy tissue steady state for

a2 < 1 . (3.8)

In other words, we expect the healthy tissue to be destabilised (potentially implying

growth in the mutated population) when the competition of normal cells on mutant

cells is weak. This is exactly the condition in the simpler two-species model of

Chapter 2: intuitively, for this situation the cells remain trapped in the proliferative

phenotype and the model is effectively reduced to the simpler classical competition

model of Chapter 2.

Case 2: 0 < α < 1

Here, λ2,3 are determined from the roots of the quadratic equation:

λ2 − (b(1− a2)− φ)λ− φ(1− α)b(1− a2) = 0 , (3.9)

i.e.

λ2,3 = 1/2{(b(1− a2)− φ)±
√

(b(1− a2)− φ)2 + 4φ(1− α)b(1− a2)}.

Here, instability of the healthy tissue steady state again occurs for

a2 < 1 . (3.10)

Case 3: α = 1

Here, λ2,3 are determined by λ2 = b(1−a2)−φ and λ3 = 0. One eigenvalue is always

zero and the steady state is unstable for

b(1− a2)− φ > 0. (3.11)
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The size of the largest positive value of λ of equation (3.9) indicates the rate at

which solutions diverge from the steady state and, to some degree, can be used as

a predictor of the “aggressiveness” of the tumour, i.e. the rate at which the tumour

will grow and begin to replace the normal population.

In Figure 3.2 we plot the size of the largest positive eigenvalue in the parameter

space φ−α. For φ we choose a range between 0 and 10, while α between 0 and 1. We

consider two fixed combinations for (a1, a2, b): (a) (1, 0.5, 2), representing a “slowly

growing tumour”, defined as one in which the proliferation rate of tumour cells is

only twice that of the normal population; (b) (1, 0.5, 5), representing a “rapidly

growing tumour”, where the tumour cells divide an order of magnitude faster than

the normal population. For both cases, the most aggressive tumours occurs when

φ and α are small. Intuitively, this is due to much less frequent switching from

proliferating to migrating cells, hence allowing the tumour population to proliferate

quickly and rapidly replace the normal population.

Figure 3.2: Plot of the size of the largest positive eigenvalue of equation (3.9) for φ
vs α and fixed (a1, a2, b). (a) (1, 0.5, 2), (b) (1, 0.5, 5).

3.3.4 Numerical simulations

The linear stability analysis indicates behaviour near the steady state, but for an

understanding of the nonlinear dynamics we perform a numerical simulation study.

We consider the same two fixed combinations for (a1, a2, b) and measure the first

time at which the sum of mutant cells (m + p) exceeds the normal population (n)

of model (3.7) i.e the first time t∗ ≥ 0 for which p(t∗) + m(t∗) ≥ n(t∗). Figure
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3.3 shows simulation time courses at different (α, φ) combinations for the “slowly

growing tumour” (a1 = 1, a2 = 0.5, b = 2) case defined above. When α = 0 no

migrating cells are noted, and the model reduces to the competition model (2.4).

When α = 0.5, cells spend a greater proportion of time migrating over proliferating,

with this transition becoming much more rapid at large values of φ. As a result, the

time when the total tumour cell population exceeds the normal cells is increasing

with φ. For the largest α, α = 1, proliferating tumor cells switch and become

blocked in the migratory phase. Whether the tumour population overcomes the

normal tissue now critically depends on the size of φ. If φ is small, the tumour

cells make this switch relatively slowly: there is sufficient time for the proliferating

cell population to outcompete the normal cell population before becoming trapped

as migrating cells. For larger φ, however, proliferating cells rapidly switch into

the migratory phenotype and we do not observe any tumour takeover inside the

timeframe of the simulation.

Figure 3.4 shows a similar set of results for our “fast growing tumour” scenario

(a1 = 1, a2 = 0.5, b = 10). We observe similar behavior to Figure 3.3, yet the

overall growth rate is much higher for all φ and α cases considered: this leads to

the fastest growing tumours. For the special case α = 1, the stability of the normal

cells depends on condition (3.11).

In Figure 3.5 we measure the tumour aggressiveness in terms of the numeri-

cally calculated time at which the sum of mutant cells (m + p) exceeds the nor-

mal population (n) for the same two scenarios, (a) a1 = 1, a2 = 0.5, b = 2, (b)

a1 = 1, a2 = 0.5, b = 10. The relationship between (α, φ) and aggressiveness cor-

relates with our earlier predictions based on the magnitude of the largest positive

eigenvalue: for small α and small φ we have the most aggressive scenario, with

the tumour rapidly overcoming the normal population. Conversely, for large α and

large φ, the rapid switch and “blocking” into a migratory phenotype reduces the size

of the proliferating population and the tumour needs relatively long to overcome

the normal population. Of course, this “benefit” naturally comes at an increased

population of circulating migratory cells, and we will therefore later to expand to a
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partial-differential equation model to explore the impact on invasiveness/spread.

For the “slowly growing tumour” (a1 = 1, a2 = 0.5, b = 2) case we plot the

percentage difference in the amount of time that the glioma needs to exceed the

normal cells, based on α = 0.5 as the reference case (see Figure 3.6), we observe

that for a fixed φ = 0.5, increasing the probability of switching to migratory type

increases the time taken for tumour cells to surpass the normal cell density increases

as the number of proliferating cells decreases. A lower value of φ has the same effect,

yet the percentage differences are relatively small, see Figure 3.7.
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Figure 3.3: Simulations of model (3.7) with initial conditions (3.4) for different

values of α and φ and fixed b = 2, a1 = 1.0 and a2 = 0.5. We plot normal (blue),

proliferative mutant (red) and migrating mutant (green) population densities as

functions of time. (a) α = 0.0 φ = 0.01, (b) α = 0.5 φ = 0.01, (c) α = 1.0 φ = 0.01,

(d) α = 0.0 φ = 0.1, (e) α = 0.5 φ = 0.1, (f) α = 1.0 φ = 0.1, (g) α = 0.0 φ = 1.0,

(h) α = 0.5 φ = 1.0, (i) α = 1.0 φ = 1.0, (j) α = 0.0 φ = 10.0, (k) α = 0.5 φ = 10.0,

(l) α = 1.0 φ = 10.0. These simulation were solved in Matlab using the ODE solver

“ode15s”, with a relative tolerance = 10−9 and absolute tolerance = 10−12.
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Figure 3.4: Simulations of model (3.7) with initial conditions (3.4) for different

values of α and φ and fixed b = 10, a1 = 1.0 and a2 = 0.5. We plot normal (blue),

proliferative mutant (red) and migrating mutant (green) population densities as

functions of time. (a) α = 0.0 φ = 0.01, (b) α = 0.5 φ = 0.01, (c) α = 1.0 φ = 0.01,

(d) α = 0.0 φ = 0.1, (e) α = 0.5 φ = 0.1, (f) α = 1.0 φ = 0.1, (g) α = 0.0 φ = 1.0,

(h) α = 0.5 φ = 1.0, (i) α = 1.0 φ = 1.0, (j) α = 0.0 φ = 10.0, (k) α = 0.5 φ = 10.0,

(l) α = 1.0 φ = 10.0. Numerics performed as in Figure 3.3.
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Figure 3.5: Simulations of model (3.7) with initial conditions (3.4) for different

values of α and φ and fixed b, a1 and a2. We plot the time at which the sum of

mutant cells (m+ p) exceeds the normal population (n). (a) a1 = 1, a2 = 0.5, b = 2,

(b) a1 = 1, a2 = 0.5, b = 10. Numerics performed as in Figure 3.3.
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Figure 3.6: Simulations of model (3.7) with initial conditions (3.4). (a) We plot the

minimum time for exceeding the normal cells by the tumour cells for different values

of α. (b) We plot the number of proliferating (red)/migrating (green) tumour cells

at that time. φ = 0.5, b = 2, a1 = 1 and a2 = 0.5. Numerics performed as in Figure

3.3.
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Figure 3.7: Simulations of model (3.7) with initial conditions (3.4). (a) We plot the

minimum time for exceeding the normal cells by the tumour cells for different values

of α. (b) We plot the number of proliferating (red)/migrating (green) tumour cells

at that time. φ = 0.01, b = 2, a1 = 1 and a2 = 0.5. Numerics performed as in Figure

3.3.

3.3.5 Density-dependent switching forms

Having analysed the constant α case, we next consider the impact of the local

environment on switching in the form of density-dependent switching functions.

Specifically, we consider α to be a function of the total cell density S = n + p + m

via two scenarios:

1. Decreasing α as the density S increases.

2. Increasing α as the density S increases.

In order to properly frame our functional forms for α we consider the expected

range of variation in density as a normal tissue gradually becomes mutated. Re-

turning to the nondimensional form of the equations (3.6), in a healthy tissue we

have S = k1 while for a fully-mutated tissue we have S = k2, where we (typically)

expect k2 > k1. The function α defines the probability of switching, and hence

α(S) ∈ [0, 1]. For ease of analysis, we assume a piecewise linear functional form that

is constant for S < k1 or S > k2 and increasing/decreasing linearly for k1 ≤ S ≤ k2.
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Specifically, we choose:

α(S) =


1−γ

2
if S < k1

1
k2−k1

(
γS + k2−k1−γ(k1+k2)

2

)
if k1 ≤ S ≤ k2

1+γ
2

if S > k2

, (3.12)

where the parameter γ ∈ [−1, 1] controls the gradient of α as S increases between

k1 and k2 while ensuring that α remains properly bounded within [0, 1], see Figure

3.8.

Figure 3.8: Sketch of the probability of switching α for different values of γ.

3.3.5.1 Nondimensionalisation, steady states and linear stability analy-

sis

We apply the same scalings as for the constant α case (see Section 3.2.2) to obtain

(after dropping the stars):

dn

dt
= n(1− n− a1(p+m));

dp

dt
= bp(1− (p+m)− a2n)− φ[α(S∗)p− (1− α(S∗))m];

dm

dt
= φ[α(S∗)p− (1− α(S∗))m].

(3.13)

In the above, S∗ = k1n+k2(m+p) with α as above. We remark that the nondimen-

sionalisation is not quite so “useful” in this case, since we are unable to eliminate the
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k′s from the function α. Nevertheless, performing the same nondimensionalisation

aids the comparison between this and the simpler form. Steady states take the same

basic forms:

• (n, p,m) = (0, 0, 0) (trivial);

• (n, p,m) = (1, 0, 0) (healthy);

• (n, p,m) = (0, ps,ms), where ps +ms = 1 (fully-mutated);

• (n, p,m) = (ns, ps,ms) (partially-mutated).

As previously, our primary focus of interest is on the stability of the healthy tissue

steady state. In particular, we explore the impact of α on the stability of the healthy

tissue steady state. Stability of the steady state is determined by the community

matrix of the system (3.13). We therefore determine the eigenvalues λ of the com-

munity matrix at the steady state (1, 0, 0), which turns out to be the same as when

α is constant, i.e.:

|J − λI| =

∣∣∣∣∣∣∣∣∣∣
−1− λ −a1 −a1

0 (b− ba2 − φα(S∗))− λ φ(1− α(S∗))

0 φα(S∗) −[φ(1− α(S∗))]− λ

∣∣∣∣∣∣∣∣∣∣
= 0.

This gives characteristic equation

(−1− λ)

∣∣∣∣∣∣∣
(b− ba2 − φα(S∗))− λ φ(1− α(S∗))

φα(S∗) −[φ(1− α(S∗))]− λ

∣∣∣∣∣∣∣ = 0 ,

where λ1 = −1 and

λ2,3 = 1/2{(b(1− a2)− φ)±
√

(b(1− a2)− φ)2 + 4φ(1− α(S∗)b(1− a2)}.

These have the same stability conditions as when α is constant, since α(S∗) ∈ [0, 1].

Thus:

• The normal cells remain stable when a2 > 1 for α(S∗) < 1.
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• The condition for normal cells to be stable is (b(1−a2)−φ) < 0 for α(S∗) = 1

.

3.3.5.2 Numerical simulations

We turn to a numerical simulation study, exploring how the system dynamics change

as we systematically change the function α. Specifically, we will change γ between

-1 and 1:

• When γ = −1.0 the slope of α(S∗) is negative and at its steepest. Therefore,

α(S∗) is a decreasing function of S∗ and if the total number of cells increases

then the probability of proliferating tumour cells switching to a migratory type

decreases.

• When γ = 0.0 the slope of α(S∗) is zero. Thus α(S∗) = 0.5 for all time.

• When γ = 1.0 the slope of α is positive. Thus the function α(S∗) increases as

the total number of cells increases: i.e. if the total number of cells increases

then the probability of a proliferating tumour cell switching to a migratory

type increases.

For the above three values of γ we consider the same two fixed combinations for

(a1, a2, b) considered previously and again measure the time at which the total

mutant population (m + p) exceeds the normal population (n) of model (3.13).

Figure 3.9 shows simulations of the ODE model for our slowly-growing tumour

(a1 = 1, a2 = 0.5, b = 2), while Figure 3.10 shows the result for our quickly-growing

tumour (a1 = 1, a2 = 0.5, b = 10). From Figure 3.9 we see that as fewer proliferating

tumour cells switch to a migrating type, the time needed to exceed the normal cell

population is increased: these results echo our observations under constant switch-

ing rates, α. Increasing φ acts to extend the time before takeover, as cells switch

more quickly into the migratory phenotype. The results are similar for the fast-

growing tumour scenario, although the time before takeover is greatly shortened (as

expected).
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Much more subtle is the dependence on γ, which alters the density-dependent

effect on switching. Here the time to takeover increases as the rate of switching (φ)

increases. If the probability of switching between the two tumour subpopulations is

constant with density (i.e γ = 0) the number of proliferating tumour cells declines

towards the level of migratory cells with increased φ. For an increasing α with S∗,

we observe more migrating cells as we increase φ, and the time to exceed the normal

cell population drops.

Increasing the rate of tumour cell proliferation accelerates these results: we ob-

serve the takeover in faster times if we have fast growing tumours. Regardless of

the balance between proliferating or migrating cells, the tumour dominates quickly

if b is increased, so that we observe negligible impact with φ (see Figure 3.10).

We examine how the minimum time for exceeding the normal cells by glioma cells

alters with regard to γ and the competition parameters. We choose three different

values of the competitive parameter of glioma cells on normal cells a1, (0.6, 1.0 &

2.0) and plot the minimum time and the number of proliferating and migrating

glioma cells for these three different values with fixed φ = 0.5, b = 2, a2 = 0.5, for

each a1, we vary γ between -1 and 1 and plot how the minimum time for the tumour

population to exceed the normal population changes, expressing the results as the

% change from the γ = 0 case (Figure 3.11). Moving through rows in the first

column, we observe an increase in the percentage of time required as a1 increases

with γ = −1, and a decrease with γ = 1. Moving through rows in the second

column, reflect the number of proliferating cells, showing a decrease when γ = −1

and as we increase a1 and an increase when γ = 1.

We next perform the same study but with three different values of the competitive

parameter of normal cells on glioma cells a2, (0.1, 0.4 & 0.7). We plot the minimum

time and the number of proliferating and migrating glioma cells for these three

different values of a2 with fixed φ = 0.5, b = 2, a1 = 1.0 see Figure 3.12. Moving

through rows in the first column, we observe a huge increase in the percentage in

the time as a2 increase with γ = −1 and decrease with γ = 1. Moving through rows

in the second column, the number of proliferating cells decrease almost for all values
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of γ.

For the three different values of φ, (0.01, 0.1 & 1.0) with fixed a2 = 0.5, b =

2, a1 = 1.0 see Figure 3.13. Moving through rows in the first column, we observe a

huge increase in the percentage in the time as φ increases with γ = −1 and decreases

with γ = 1. Moving through rows in the second column, the number of proliferating

cells decrease for almost all values of γ.

To summarise, for all sets of parameters a large impact on the time required

to exceed the normal cells occurs when α is an increasing function with S∗ (i.e

γ > 0). In other words, less time is required for tumour to dominate if the switch

to migratory state is increasing with the total density.

3.3.6 Summary

Summarising, under a constant switch form we find that increasing α increases the

proportion of migrating tumor cells in the system, hence reduces the number of pro-

liferating cells and lowers the time for the cancerous tissue to dominate. Decreasing

φ decreases the migrating tumour cells in the system and decreases the time for can-

cerous tissue to form. The value of φ is crucial in the special case α = 1, since the

instability of normal cells depends on the condition b(1−a2)−φ > 0. Increasing the

proliferating ratio b decreases the time taken for cancerous tissue to dominate. Un-

der the density-dependent switching forms we find that a negative slope (γ = −1),

i.e a decreasing switch function with S∗, results in more proliferating cells than mi-

grating cells in the system, while positive slope results in more migrating cells. For

a constant slope γ = 0, the number of proliferating cells decreases as φ increases.

Summarising, the form and rate of switching will have an impact on how quickly a

tumour can form.
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Figure 3.9: Simulations of model (3.13) with initial conditions (3.4) for different

values of γ and φ and fixed b = 2, a1 = 1.0 and a2 = 0.5. We plot normal (blue),

proliferative mutant (red) and migrating mutant (green) population densities as

functions of time. (a) γ = −1.0 φ = 0.01, (b) γ = 0.0 φ = 0.01, (c) γ = 1.0

φ = 0.01, (d) γ = −1.0 φ = 0.1, (e) γ = 0.0 φ = 0.1, (f) γ = 1.0 φ = 0.1, (g)

γ = −1.0 φ = 1.0, (h) γ = 0.0 φ = 1.0, (i) γ = 1.0 φ = 1.0, (j) γ = −1.0 φ = 10.0,

(k) γ = 0.0 φ = 10.0, (l) γ = 1.0 φ = 10.0. Numerics performed as in Figure 3.3.
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Figure 3.10: Simulations of model (3.13) with initial conditions (3.4) for different

values of γ and φ and fixed b = 10, a1 = 1.0 and a2 = 0.5. We plot normal (blue),

proliverative mutant (red) and migrating mutant (green) population densities as

functions of time. (a) γ = −1.0 φ = 0.01, (b) γ = 0.0 φ = 0.01, (c) γ = 1.0

φ = 0.01, (d) γ = −1.0 φ = 0.1, (e) γ = 0.0 φ = 0.1, (f) γ = 1.0 φ = 0.1, (g)

γ = −1.0 φ = 1.0, (h) γ = 0.0 φ = 1.0, (i) γ = 1.0 φ = 1.0, (j) γ = −1.0 φ = 10.0,

(k) γ = 0.0 φ = 10.0, (l) γ = 1.0 φ = 10.0. Numerics performed as in Figure 3.3.
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Figure 3.11: Simulations of model (3.13) with initial conditions (3.4). (a) Plot of

the minimum time for exceeding the normal cells by the tumour cells for different

values of γ. (b) Plot of the amount of proliferating (red)/migrating (green) tumour

cells at that time. Other parameters fixed at φ = 0.5, b = 2 and a2 = 0.5. Numerics

performed as in Figure 3.3.
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Figure 3.12: Simulations of model (3.13). (a) Plot of the minimum time for exceeding

the normal cells by the tumour cells for different values of γ. (b) Plot of the amount

of proliferating (red)/migrating (green) tumour cells at that time. Other parameters

fixed at φ = 0.5, b = 2, a1 = 1. Numerics performed as in Figure 3.3.
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Figure 3.13: Simulations of model (3.13). (a) Plot of the minimum time for exceeding

the normal cells by the tumour cells for different values of γ. (b) Plot of the amount

of proliferating (red)/migrating (green) tumour cells at that time. Other parameters

fixed at b = 2, a1 = 1 and a2 = 0.5. Numerics performed as in Figure 3.3.

3.4 Analysis of the spatial case

The results above suggest that switching between migratory and proliferative phe-

notype can act to accelerate/slow the rate at which a mutant population replaces a

healthy population: lowering the pool of proliferative cells will slow down the rate

of takeover. Of course, the natural downside of this is a larger population of migrat-

ing cells. We therefore extend our study to investigate the consequence on tumour

invasion through extension to a partial-differential equation model. Specifically, we

now study the full go-or-grow competition model (3.6) with initial condition (3.4)

and boundary condition (3.5).
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3.4.1 Numerical analysis under constant switching forms

To investigate how the dynamics of the tumour change over space and time, we

begin our exploration for a constant switching form for α. We run simulations

on the domain x = [0, 300] and t = [0, 200] and, in Figure 3.14, plot the two

subpopulations of tumour cells under different values of α and φ while fixing the rest

of the parameters. Specifically, we consider α = 0.25, 0.5, 0.75, φ = 0.01, 0.1, 1.0, 10.0

and our slowly-growing tumour case, a1 = 1.0, a2 = 0.5, b = 2.

The size of α determines the proportion of migrating to proliferating cells: there-

fore, for small α we expect to see lower numbers of migrating cells and for large α

we expect a higher proportion. However, the size of φ also determines the rate at

which the transition takes place, so that when φ is small (e.g. φ = 0.01) migrating

tumour cells will only form a small fraction near the wavefront, where proliferation

dominates the replacement of healthy tissue with tumour cells, but will gradually

increase towards the back of the wave. When α = 0.5 the wave fronts of the two

subpopulations are almost identical when φ ≥ 1 (see Figure 3.14 (h) and (k)). The

wavefront of migrating tumour cells is higher than of that the proliferating tumour

cells when α > 0.5, and lower when α < 0.5. This does not appear the case when

φ is small i.e < 0.1. However, the total tumour cell population behaves almost the

same for all φ and α, see Figure 3.15, except at the critical values of α = φ = 0.0

and α = 1.0. Figure 3.16 shows the two subpopulations along with the normal of

the system. These simulations strongly suggest the formation of travelling waves,

and we therefore begin a travelling wave analysis.
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Figure 3.14: Simulations of model (3.6) with initial condition (3.4) and boundary

condition (3.5) for different values of α, φ and fixed a1 = 1.0, a2 = 0.5 and b = 2.

We plot mutant proliferating (red) and mutant migrating (green) populations as

functions of time and space. (a) φ = 0.01, α = 0.25. (b) φ = 0.01, α = 0.5. (c) φ =

0.01, α = 0.75. (d) φ = 0.1, α = 0.25. (e) φ = 0.1, α = 0.5. (f) φ = 0.1, α = 0.75.(g)

φ = 1.0, α = 0.25. (h) φ = 1.0, α = 0.5.(i) φ = 1.0, α = 0.75.(j) φ = 1.0, α = 0.25.

(k) φ = 1.0, α = 0.5.(l) φ = 1.0, α = 0.75. The equations were solved numerically

for time interval 0 ≤ t ≤ 200, and on a length interval 0 ≤ x ≤ 300, using Pdepe

solver in Matlab, with a relative tolerance = 10−9, absolute tolerance = 10−12 and

grid spacing of 0.25.
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Figure 3.15: Simulations of model (3.6) with initial condition (3.4) and boundary

condition (3.5) for different values of α, φ and fixed a1 = 1.0, a2 = 0.5 and b = 2.

We plot normal (blue) and total mutant (magenta) populations as functions of time

and space. (a) φ = 0.01, α = 0.25. (b) φ = 0.01, α = 0.5. (c) φ = 0.01, α = 0.75. (d)

φ = 0.1, α = 0.25. (e) φ = 0.1, α = 0.5. (f) φ = 0.1, α = 0.75.(g) φ = 1.0, α = 0.25.

(h) φ = 1.0, α = 0.5.(i) φ = 1.0, α = 0.75.(j) φ = 1.0, α = 0.25. (k) φ = 1.0, α =

0.5.(l) φ = 1.0, α = 0.75. The numerical method was as in Figure 3.14.
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Figure 3.16: Simulations of model (3.6) with initial condition (3.4) and boundary

condition (3.5) for different values of α, φ and fixed a1 = 1.0, a2 = 0.5 and b = 2.

We plot normal (blue), mutant proliferating (red) and mutant migrating (green)

populations as functions of time and space. (a) φ = 0.01, α = 0.25. (b) φ =

0.01, α = 0.5. (c) φ = 0.01, α = 0.75. (d) φ = 0.1, α = 0.25. (e) φ = 0.1, α = 0.5. (f)

φ = 0.1, α = 0.75.(g) φ = 1.0, α = 0.25. (h) φ = 1.0, α = 0.5.(i) φ = 1.0, α = 0.75.(j)

φ = 1.0, α = 0.25. (k) φ = 1.0, α = 0.5.(l) φ = 1.0, α = 0.75. The numerical method

was as in Figure 3.14.
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3.4.2 Travelling wave analysis

To perform a travelling wave analysis on equations (3.6) we make the standard

travelling wave ansatz and look for solutions of the form:

N(z) = n(x, t), P (z) = p(x, t), M(z) = m(x, t), z = x− ct.

If solutions of above form exist, they represent travelling waves that move to the

right with wavespeed c. Substituting the above into equations (3.6) and introducing

the new variableW = M ′ gives a system of first order ordinary differential equations

as follows:

N ′ =
−1

c
[N(1−N − a1(P +M));

P ′ =
−1

c
[bP (1− (P +M)− a2N)− φαP + φ(1− α)M ];

M ′ = W ;

W ′ = −cW − φαP + φ(1− α)M.

(3.14)

In the above the “prime” denotes differentiation with respect to z. An analysis of the

above equations requires the study of a four-dimensional phase space. The steady

states (N∗, P ∗,M∗,W ∗) are:

1. (0, 0, 0, 0). (trivial)

2. (1, 0, 0, 0). (healthy tissue)

3. (0, 1− α, α, 0). (fully-mutated tissue)

4.
(

1−a1
1−a1a2 , (1− α) 1−a2

1−a1a2 , α
1−a2

1−a1a2 , 0
)
. (partially-mutated tissue)

In the context of the relevant initial conditions, where we consider a perturbation of

the healthy tissue via the introduction of a small and spatially restricted population

of mutant cells, we can identify two relevant forms for travelling wave solution (see

Figure 3.17):

1. a wave connecting the healthy steady state (1, 0, 0, 0) and the fully-mutated

steady state (0, 1− α, α, 0);
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2. a wave connecting the healthy steady state (1, 0, 0, 0) to the partially-mutated

steady state
(

1−a1
1−a1a2 , (1− α) 1−a2

1−a1a2 , α
1−a2

1−a1a2 , 0
)
.
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Figure 3.17: Simulations of model (3.6) with initial conditions (3.4). We plot normal

(blue) and tumour cells (red) as functions of time and space with fixed α = 0.5, φ =

0.1, a2 = 0.5 and b = 2. (a) a1 = 1.5. (b) a1 = 0.75. (c) a1 = 0.25. The numerical

method was as in Figure 3.14.

3.4.2.1 Waves connecting healthy tissue to fully mutated tissue

We start by considering travelling wave solutions that connect (1, 0, 0, 0) and (0, 1−

α, α, 0), taking z to be the infinite line and applying boundary conditions:

N(−∞) = 0, P (−∞) +M(−∞) = 1, W (−∞) = 0

N(∞) = 1, P (∞) = 0, M(∞) = 0, W (∞) = 0.

By analogy with the analysis of travelling wave equations for Fisher’s equation,

we linearise the system (3.14) ahead of the wavefront (i.e. about the steady state

of healthy cells (1, 0, 0, 0)) and determine the nature of the eigenvalues λ of the
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subsequent stability matrix, i.e. the solutions of

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
c
− λ a1

c
a1
c

0

0 −1
c

(b(1− a2)− φα)− λ −φ(1−α)
c

0

0 0 −λ 1

0 −φα φ(1− α) −c− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Hence,

λ1 =
1

c
,

and

λ3 + (
1

c
(b(1− a2)− φα) + c)λ2 + (b(1− a2)− φ)λ− 1

c
b(1− a2)φ(1−α) = 0. (3.15)

To guarantee the wavefront solutions approach the steady state in non-oscillatory

manner (and hence allow for positivity of the variables), the roots of the characteris-

tic polynomial must be real. While λ1 is clearly real, determining the nature of λ2,3,4

requires the roots of a cubic polynomial to be determined: analytical expressions do

exist, yet they are typically algebraically too complex to be of much help.

We shall therefore resort to a numerical approach in order to gauge the mini-

mum wave speed, and evaluate how it depends on the various model parameters.

Specifically, we fix all model parameters except one and, as we discretely step across

a range for the free parameter, we numerically determine the value of c above which

equation (3.15) has only real eigenvalues. Figure 3.18 shows the result of this process

as we vary the competition rate of normal cells a2: for each a2, we step through c

and define Imλ = 1 if equation (3.15) has imaginary eigenvalues and zero otherwise.

The critical value of c above which there are solely real eigenvalues is subsequently

proposed as our minimum wavespeed. A subsequent plot of this value compared

against numerically calculated wavespeeds suggests that this method does indeed

provide a good prediction of the wavespeed, see Figure 3.23 (a). Our studies for the

other parameters yield a similar match, and are shown for a1 in Figure 3.19, b in

Figure 3.20, for φ in Figure 3.21, and for α in Figure 3.22.
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Figures 3.23 and 3.24 summarise the full results from the above analysis, showing

the relationship between the predicted wavespeed and each parameter, while others

remain fixed. Figure 3.23 (a) shows the wave speed variation with a2: we observe

a steadily decreasing wave speed as a2 increases, such that it decreases to zero if

a2 ≤ 1: here the system moves into the stability region for the healthy tissue steady

state and waves of tumour invasion are not expected. In stark contrast, altering the

competition parameter for tumour cells on normal cells a1 has no effect on the speed

of tumour: no matter how strong the tumour competition is on normal cells, the

tumour will stay at the same level of speed invasion as long as the competition rate

of normal cells is less than 1, see Figure 3.23(b). Increasing the rate of proliferation

of tumour cells, however, increases the tumour wave speed, Figure 3.23(c). Clearly,

higher proliferation leads to higher numbers of tumour cells, both proliferating and

migrating, and hence higher rates of invasion.

In Figure 3.24 we turn our attention to the rate and probability of switching

between proliferative and migratory phenotypes. The probability of switching to

the migratory tumour cell type (α) also has an impact on the speed of tumour.

For α 6= 0, 1 tumour wave speeds slightly increase as α increases towards an equal

probability of switching into one of the two phenotypes, and thereafter the wave

speed starts decreasing. In other words, the maximum speed of the tumour occurs

when α ≈ 0.5. Figure 3.24 shows that, unsurprisingly, the lowest speed of the tumour

occurs when no cells switch into migratory type (α = 0.0) or when proliferating cells

become fixed into migrating type (α = 1.0). In these cases, respectively either no

migration types place or proliferation becomes negligible and hence waves do not

form.

We increase the proliferating rate of the tumour with respect to normal cells,

parameter b, in Figure 3.25(a) as well as the switching rate φ in Figure 3.25(b). In

both cases the highest wave speeds occur when α = 0.5. However, when b is small

we observe a drop in the speed, with the most aggressive behaviour of the tumour

occurring when the switching rate φ is small.

One of the most important parameters in the model is the competitive rate of
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normal cells on tumour cells, parameter a2. In Figure 3.26 we plot the wave speed of

tumour for α vs a2, where a1 = 1.0, b = 2 and φ = 0.1. We observe a decrease of the

wave speed as the competition rate from normal cells increases. This means that if

the normal cells can produce a strong inhibition of growth, tumour aggressiveness

can be significantly reduced.

Figure 3.18: Plot showing the hybrid analytical-simulation method to determine

the wave speed of tumour invasion. Each column shows the changing nature of

eigenvalues as the speed c is shifted for a2 and other parameters fixed. We take the

minimum wave speed as the smallest c above which no further complex eigenvalues

are found that highlighted in yellow. a1 = 1.0, b = 2.0, φ = 0.1, α = 0.5.
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Figure 3.19: Plot showing the hybrid analytical-simulation method to determine

the wave speed of tumour invasion. Each column shows the changing nature of

eigenvalues as the speed c is shifted for a1 and other parameters fixed as a2 =

0.5, b = 2.0, φ = 0.1, α = 0.5. The numerical method was as in Figure 3.18.
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Figure 3.20: Plot showing the hybrid analytical-simulation method to determine

the wave speed of tumour invasion. Each column shows the changing nature of

eigenvalues as the speed c is shifted for b and other parameters fixed as a1 = 1.0, a2 =

0.5, φ = 0.1, α = 0.5.The numerical method was as in Figure 3.18.
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Figure 3.21: Plot showing the hybrid analytical-simulation method to determine

the wave speed of tumour invasion. Each column shows the changing nature of

eigenvalues as the speed c is shifted for φ and other parameters fixed as a1 = 1.0, b =

2.0, a2 = 0.5, α = 0.5. The numerical method was as in Figure 3.18.

0 1 2

c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(λ

)

α = 0

0 1 2

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
(λ

)

α = 0.2

0 1 2

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
(λ

)

α = 0.4

0 1 2

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
(λ

)

α = 0.6

0 1 2

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
(λ

)

α = 0.8

0 1 2

c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(λ

)

α = 1

X: 0.9907

Y: 0

X: 0.9991

Y: 0

X: 0.9991

Y: 0

X: 0.9902

Y: 0

Figure 3.22: Plot showing the hybrid analytical-simulation method to determine

the wave speed of tumour invasion. Each column shows the changing nature of

eigenvalues as the speed c is shifted for α and other parameters fixed as a1 =

1.0, b = 2.0, φ = 0.1, a2 = 0.5. The numerical method was as in Figure 3.18.
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Figure 3.23: Plot of the analytical (red) and simulated (blue) average wave speed for

three different values of model parameters; a1, a2 and b and other parameters fixed

as (a) a1 = 1.0, b = 2.0, φ = 0.1, α = 0.5. (b) a2 = 0.5, b = 2.0, φ = 0.1, α = 0.5. (c)

a1 = 1.0, a2 = 0.5, φ = 0.1, α = 0.5. The numerical method was as in Figure 3.14.
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Figure 3.24: Plot of the analytical (red) and simulated (blue) average wave speed

for three different values of model parameters; φ and α and other parameters fixed

as (a) a1 = 1.0, a2 = 0.5, b = 2.0, α = 0.5.(b) a1 = 1.0, a2 = 0.5, b = 2.0, φ = 0.1.

The numerical method was as in Figure 3.14.
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Figure 3.25: Plot of the simulated tumour wave speed; (a) α vs b and other param-

eters fixed as a1 = 1.0, a2 = 0.5, φ = 0.1. (b) α vs φ and other parameters fixed as

a1 = 1.0, a2 = 0.5, b = 2. The numerical method was as in Figure 3.14.
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Figure 3.26: Plot of the simulating tumour wave speed for α vs a2 and other param-
eters fixed as a1 = 1.0, b = 2 and φ = 0.1. The numerical method was as in Figure
3.14.
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3.4.3 Travelling waves under density-dependent switching

We next investigate travelling wave-type invasion under the density-dependent switch-

ing function form studied earlier, i.e.

α(S) =


1−γ

2
if S < k1

1
k2−k1

(
γS + k2−k1−γ(k1+k2)

2

)
if k1 ≤ S ≤ k2

1+γ
2

if S > k2

. (3.16)

We plot the normal (blue) proliferating tumour (red) and migrating (green) (Figures

3.27, 3.28, 3.29) populations as functions of space and time. We choose different

values of γ to describe decreasing (γ = −1.0,γ = −0.5), increasing (γ = 0.5, γ = 1.0)

and constant (γ = 0.0) density dependent switching functions. When φ is small the

waves of proliferating cells dominate over the migrating cells regardless of the form

of gradient switch into migratory phenotype. For larger values of φ, however, the

proliferating tumour waves are smaller than the migrating tumour waves for negative

gradients, and higher when the gradient is positive. This suggests that the precise

form of dependence of density-dependent switching can impact on the composition

of the various phenotypic populations.

In Figure 3.30 we plot the wave speed under different gradients of the switching

function and at different values of φ. We see the maximum of the wave speed occurs

when the gradient is zero, i.e. when the switch to migratory phenotype is constant

with density (and hence α = 0.5). Increasing φ results in a more notable difference

in the wave speed for different gradients. For greater detail we plot the gradient

of the switch function γ against φ and b in Figure 3.31. We observe that the wave

speed increases when b is increased, but there is a bimodal distribution with γ, with

the highest wave speeds located at γ = 0.0. Therefore, density dependent switching

forms act to lower the wave speed of invasion. Also increasing the competitive rate

of normal cells on tumour cells can decrease the invasion of tumour (see Figure 3.32).
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Figure 3.27: Plot of proliferating tumour (red) and migrating tumour (green) pop-

ulations for different sets of parameters φ and γ. First row φ = 0.01, second row

φ = 1.0. (a) and (f) γ = −1.0; (b) and (g) γ = −0.5; (c) and (h) γ = 0.0; (d) and

(i) γ = 0.5; (e) and (j) γ = 1.0. Other parameters fixed as a1 = 1.0, a2 = 0.5, b = 2.

The numerical method was as in Figure 3.14.

Figure 3.28: Plot of the normal (blue), proliferating tumour (red) and migrating

tumour (green) populations for different sets of parameters φ and γ. First row

φ = 0.01, second row φ = 1.0 (a) and (f) γ = −1.0; (b) and (g) γ = −0.5; (c) and

(h) γ = 0.0; (d) and (i) γ = 0.5; (e) and (j) γ = 1.0. Other parameters fixed as

a1 = 1.0, a2 = 0.5, b = 2. The numerical method was as in Figure 3.14.
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Figure 3.29: Plot of the normal (blue) and total tumour cell (magenta) population

for different sets of parameters φ and γ. First row φ = 0.01, second row φ = 1.0.(a)

and (f) γ = −1.0; (b) and (g) γ = −0.5; (c) and (h) γ = 0.0; (d) and (i) γ = 0.5; (e)

and (j) γ = 1.0. Other parameters fixed as a1 = 1.0, a2 = 0.5, b = 2. The numerical

method was as in Figure 3.14.
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Figure 3.30: Plot of the tumour wave speed for different values of γ and φ and other

parameters fixed as a1 = 1.0, a2 = 0.5, b = 2. The numerical method was as in

Figure 3.14.
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Figure 3.31: Plot of the tumour wave speed (a) γ vs b and other parameters fixed

as a1 = 1.0, φ = 0.1. (b) γ vs φ and other parameters fixed as a1 = 1.0 and b = 2.

The numerical method was as in Figure 3.14.
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Figure 3.32: Plot of the tumour wave speed for γ vs a2 and other parameters fixed

as a1 = 1.0, b = 2.0, φ = 0.1. The numerical method was as in Figure 3.14.

3.5 Summary

We have expanded a simple go-or-grow model to include competitive interactions

with normal cells. Our primary analysis showed that the stability of normal cells

is guaranteed when the competition rate on tumour cells satisfies a2 > 1. Under
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constant α the minimum time for tumour cells to exceed the normal cells increases

with the size of α. For density dependent switch forms, α(S∗), the lowest time for the

tumour to exceed the normal cells occurs when α increases with the total number of

cells S∗. On the other hand, a longer time is required when α decreases with the total

number of cells S∗. The wave speed of invasion is maximised when the number of

proliferating and migrating cells type is approximately equal, i.e when α ≈ 0.5. The

competitive rate of normal cells on tumour cells a2 has a significant role in reducing

the aggressiveness of tumour. Similar to the previous chapter, we find that in the

extended model the competition parameter of normal cells a2 is the critical factor

in reducing the number of tumour cells, while the competition parameter of tumour

cells on normal cell a1 has no effect on the speed of travelling waves of tumour cells.

Furthermore, increasing the competition parameter of tumour cells on normal cell a1

increases the number of proliferating tumour cells when γ is positive and decreases

the number of proliferating cells when γ is negative. Increasing the proliferating

ratio b results in a reduced time for cancerous tissue to emerge and an increase

in the speed of tumour invasion. Our model emphasises the importance of normal

cell parameters on tumour invasion. Nevertheless, the model has not considered

the heterogeneity of brain tissue: since it is believed that the diffusion coefficient

for glioma cells in the white matter is five times larger than that in grey matter

[19, 115]. Moreover, observations suggest a tendency of glioma cells to infiltrate

through both extracellular matrix as well as along oriented/linear structures of the

brain, including the white matter tracts comprised of bundles of neuronal axons and

blood vessel capillaries [42, 122, 11]. Therefore, in the next chapter we will propose

a simple model methodology that allows us to explore the impact of different tissue

environments.
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Multi-step jump models for

movement

In this chapter we derive multi-jump-length random walk models for movement in

response to multiple control species. Instead of allowing fixed jump lengths, we allow

particles to perform distinct lengths of jump according to the environment infor-

mation. We use scaling to obtain the corresponding PDE according to different

hypotheses for movement based on local and nonlocal sensing strategies. Numer-

ical simulations show the convergence between the stochastic and PDE forms for

the strictly local model, albeit under certain caveats. We then investigate different

strategies of movement with respect to some resource, and investigate which strat-

egy would allow a population to most efficiently search out the best resources in the

enviroment. Finally, we use the strictly local model to describe the movement of

gliomas in heterogeneous brain tissue. The simulation outcomes suggest that brain

tissue with a high density of axons can accelerate invasion, in correlation with other

modelling studies.

4.1 Introduction

Many living objects have an ability to move through their environment in response

to external stimuli. The environment itself will play a significant role in determining

exactly what type of movement occurs. Motile cells in the skin, such as fibroblasts,
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typically extend cellular protrusions that interact and pull on the surrounding extra-

cellular environment, allowing the cell to propel itself forward [95, 69, 56, 78]. Under

the presence of a strong directional signal, such as an extracellular gradient of some

chemoattractant, the cell becomes polarised with a clear front and back, and move-

ment can subsequently occur in a particular direction with a strong persistence: such

long range directed movements allow cells to be summoned from distant regions, for

example in the response during wound healing [75, 22]. As we will describe later,

invasive glioma cells are capable of infiltrating along different substrates, ranging

from extracellular matrix fibres [11, 56] to oriented structures such as blood vessel

capillaries [27, 101, 80] and the long bundles of neuronal axons that characterise the

white matter [8, 45, 10]. Consequently, these different routes for invasion can lead

to a complex network of motorways, A-roads and B-roads which, when coupled to

the great heterogeneity occurring across the brain, can give rise to a highly complex

pattern of invasion.

At an organism level animals will also perform highly complex movements pat-

terns according to their environment. Movement is inevitably an energetically de-

manding operation, and the potential benefits of making a movement must clearly

be weighed against the effort expended. The characteristic searching patterns of

insects such as bees and butterflies provides a case in point: an individual will typ-

ically move from flower to flower in a local patch, searching for suitable nutrient

resources before flying away to a more distant patch and repeating the behaviour.

Similar behaviours are observed by larger animals at much larger scales, with ani-

mals potentially performing continent scale migrations in search of suitable feeding

grounds. Various recent datasets have shown that organism movements are often

combined into localised random movements within the surrounding neighbourhood

along with long-distance dispersal. This dispersal process is often referred to as

“stratified diffusion” [54, 6].

All of the above examples reveal distinct forms of movement, from relatively short

range movements to much longer leaps, where the form of movement taken is very

much dependent on the environment in which the individual is moving. The question
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we will address in this chapter will centre on how to derive appropriate continuous

descriptions to characterise these movements. The derivation of macroscopic models

to describe cellular or organism movement has typically followed two approaches. In

a macroscopic phenomenological approach, a model (typically a continuous PDE) is

proposed based on phenomenological reasoning. Based on principles of conservation

of mass, a conservation equation is described in which movement is described at

a continuous level via the population flux see Section 2.3.2 of Chapter 2 and the

modelling question is centred on how to choose the flux. The other approach is to

start with a random walk description for an individual’s movement, and subsequently

use scaling techniques to derive a continuous model under an appropriate limit, for

example see [23].

A common and relatively straightforward example of the random walk based

approach is to consider the continuous-time, discrete-space Master equation that

results from an underlying space-jump random walk process [85]: i.e. one in which

the individual makes instantaneous jumps in its position with some transition rate,

which could depend on the nature of the environment in which it lies. A simple

example of this process is shown in Section 2.3.3 of Chapter 2: in that example, it

was shown how scaling a random walk in which individuals make jumps on a 1D

lattice of a single fixed length in a manner that is constant in both space and time

leads to the straightforward diffusion equation with constant diffusion coefficient.

Generalisations of this approach include the seminal work of Othmer and Stevens

[111], who derived various classes of partial differential equations according to the

local movement response of a random walker on a discrete lattice to the concentration

of some modulating “control species” representing an environmental signal (e.g. a

chemical). Significantly, subtle differences in the local sampling of the control species

by the individual, for example whether the individual was only sampling at its

current site or performing a comparison between the amount of substance at its site

and some neighbouring site, could lead to significantly different equations in the

continuous limit. In other words, the precise form of the local sampling can result

in a significant impact on the macroscopic behaviour. Extensions of this work have
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been performed for various others, for example Painter and Othmer started from

the same master equation but under the assumption that the transition rate now

depends on multiple signals [87], while Painter and Sherratt used a similar approach

but in the context of multiple moving populations [89]. For a review of further

extensions along this line, we refer to [23].

A limitation of these and many other similar models is that the individual is

typically restricted to fixed length jumps: e.g. the individual remains on a fixed,

discrete lattice and makes fixed-length jumps between adjacent sites. As such, there

are clear limitations of this approach when it comes to describing the variable move-

ment length paths exhibited by many cells and organisms and described above. An

alternative formulation to the random walk description is the Levy walk, named

after the French mathematician Paul Levy. In the Levy walk, the random walk

combines frequent smaller steps, analogous to classical Brownian motion, with oc-

casional longer trajectories. The Levy walk hence has the ability to generate faster

diffusion than that dictated by Brownian diffusion [65, 129]. Levy walks have been

found to provide a good description to capture the foraging characteristics of many

animals: for example, studies of open-ocean predatory fish (sharks, tuna, billfish

and ocean sunfish) suggest that some individuals switch between Levy and Brown-

ian type motion to adapt their optimal movement to different environmental resource

distributions [57]. A study of nature of human mobility showed that human walks

have statistically similar features perceived in Levy walks [94]. For more details on

the modelling of combined short and long distance dispersals, see [104, 67, 83, 70].

Summarising, individuals ranging from single cells to animals and humans per-

form various movements, from short range to long range according to their needs

and the environment. Long-range movements will clearly be energetically demand-

ing, yet could be crucial as a means of locating some region with greater nutrient

resources. In the specific context of glioma growth, determining the extent to which

invading cells perform localised movements or longer range movements along ori-

ented structures (such as capillaries) or axons will clearly be important for assessing

the manner and rate at which a tumour invades.
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In this chapter we will develop a framework for incorporating movements of differ-

ent lengths into a random walk model, and subsequently investigate the macroscopic

model that is obtained in the continuous model. In particular, we will incorporate

a dependence of the type of jump made according to a local control species, rep-

resenting the local environment. We take the standard approach of postulating a

continuous time, discrete space random walk for movement on a fixed lattice, but

extend to allow for jumps of more than one grid step. An early example of such

an approach has been considered by Aronson [7], who examined the scaling from

discrete to continuous partial differential equations for individuals performing jumps

of different lengths on a one-dimensional lattice: we extend this to consider how the

resulting equation changes according to the way in which the individual samples the

local environment: for example, whether the individual can only sense its immediate

environment (i.e. the site on which it is sitting), or whether it can also somehow

sense the information at the potential site of relocation. Following this derivation,

we will subsequently show a theoretical application of the framework to understand

whether undertaking distinct jump responses according to the information provided

by the environment will allow a population to more efficiently locate and consume

the resources available in their environment. Finally, we will take the modelling back

to glioma invasion, by assessing the extent to which different tissue compositions will

impact on the rate of invasion of a glioma.

4.2 Modeling multi-step jump response to multiple

signals

We begin with a biased random walk to describe the movement of a “particle” (e.g. a

cell) in response to some external (environmental) cue, on a one-dimensional lattice

of spacing h. We define px(t) to be the probability of a particle to be at node

x ∈ Z at time t, conditioned on starting at node x = 0 at t = 0. We assume a

particle can perform multiple jumps of steps i = 1, .....,m, corresponding to lengths

h, 2h, ...,mh either to sites left (−) or right (+), according to some transitional
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probability per unit time: thus, τ±ix define the transitional probability rates that a

particle at node x moves to node x± i. To incorporate dependence of this movement

on environmental information, we assume these jump probability rates are dependent

on the concentration/density levels of potentially multiple “control species” (which

could be nutrients, chemical, ECM density, vasculature density etc.). Specifically we

define the control species on the same one-dimensional lattice, defining the infinite

matrix

u =


. . . u1

x−1 u1
x u1

x+1 . . .

...
...

...
...

...

. . . ukx−1 ukx ukx+1 . . .

 .

In the above, the matrix element ujx defines the density of the jth control species

at node x, and k defines the total number of control species (see [87]). To introduce

dependency of the jump on these control species, we take the transitional jump

probabilities to be functions of this matrix, i.e. τ±ix (u). From this underlying biased

random walk, we can postulate the corresponding discrete-space, continuous time

for the evolution of px as

∂px
∂t

=
m∑
i=1

[

(1)︷ ︸︸ ︷
τ−ix+i(u)px+i +

(2)︷ ︸︸ ︷
τ+i
x−i(u)px−i−

(3)︷ ︸︸ ︷
τ−ix (u)px − τ+i

x (u)px]. (4.1)

Where the first term represents jumping from x+ i to x, the second term represents

jumping from x− i to x and the third terms represent jumping from x to x± i. We

note that (
∑m

i=1 τ
∓i
x (u))−1 will measure the mean waiting time at the xth site. We

note that we could potentially make m = ∞ to describe jumps that occur to any

point in an infinite lattice.

4.2.1 Sensing strategies

There are a variety of potential ways in which an individual at node x could sense

the local control species. We specifically consider the following sensing strategies

(see Figure 4.1):
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1. Strictly local;

2. Local average & Nonlocal average;

3. Local neighbour & Nonlocal neighbour;

4. Local gradient & Nonlocal gradient.

Strictly local: This implies a “myopic”walker, i.e an individual that looks only at

its current site. In other words, it performs a “leap into the unknown”, moving

to a site of which it does not know anything.

Local average/neighbour/gradient: These imply that the individual does a

small amount of sampling both locally and close by, but then may still perform

a leap into the relatively unknown.

Nonlocal average/neighbour/gradient: These imply that the individual has

a capacity to detect the environment both at its current site and the location

where it plans on moving to. For a cell this could occur through the extension

of filopodia, while for animals it could represent good vision.

We will derive the PDE models from the underlying individual based models ac-

cording to the four sensing strategies above. We begin with strictly local model,

where particles jump left (−) or right (+) according to the control species at the

present site.
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Figure 4.1: Illustration of the various sensing strategies for the movement of parti-

cles.
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4.2.2 Strictly local model

In this model we assume that the probability of jumping to the x ± ith node de-

pends only on the densities ux of the control species u1, ...., uk at node x. Since the

transition probabilities are independent of the lattice node and depend only on local

densities ux, we thus have τ−ix = τ+i
x (≡ τ ix) and as a result equation (4.1) becomes

∂px
∂t

=
m∑
i=1

[τ ix+i(u)px+i + τ ix−i(u)px−i − 2τ ix(u)px]. (4.2)

We expand the right hand side as Taylor series. We reinterpret x as a continuous

variable and terms of the form

τ ix±i(u)px±i = τ i(u(x± ih, t))p(x± ih, t)

are expanded about x to second order in ih, where h is the lattice spacing, as follows:

τ i(u(x± ih, t)) = τ i(u(x, t))± ih∂τ
i(u(x, t))

∂x
+

(ih)2

2

∂2τ i(u(x, t))

∂x2
±O((ih)3);

p(x± ih, t) = p(x, t)± ih∂p(x, t)
∂x

+
(ih)2

2

∂2p(x, t)

∂x2
±O((ih)3).

Substituting the above into equation (4.2), and simplifying leads to:

∂p

∂t
=

m∑
i=1

[(ih)2∂
2τ i(u)p

∂x2
+O((ih)4)]. (4.3)

We assume a scaling of the transition rates τ i = λτ i and assume the following

parabolic limit exists:

limλ−→∞
h−→0

λh2 = d (constant). (5)

Consequently, we obtain the following equation for the continuous population distri-

bution of a random walker executing multiple jumps of differing lengths i = 1, .....,m:
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∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u)p)

∂x2
],

= d

m∑
i=1

[i2
∂

∂x
(τ i(u)

∂p

∂x
+ p

∂τ i

∂u
.
∂u
∂x

)].

(4.4)

We note that the second line shows the expansion into a diffusive and advective/

taxis type component: we discuss this in more detail later in this chapter.

4.2.3 Local average & Nonlocal average models

The local and nonlocal average models are based on the assumption that transition

rates depend on the average information between the current node and that in the

direction of the target site. As described earlier, for a cell this could occur through

the sampling of the environment in its surroundings via a filopodial extension.

4.2.3.1 Local average model

In this formulation the jump of a particle at node x to node x ± i depends on

the averaged information of the control species between the current and nearest

neighbour in the direction of the target node:

τ+i
x (u) = τi(

1

2
(ux + ux+1)); τ−ix (u) = τi(

1

2
(ux + ux−1)).

We apply the same process as previously (see Appendix B.1.1 for more details): we

substitute the above into equation (4.1), expand through a Taylor series, simplify

and assume the parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[(i2 − i)p∂
2τi(u)

∂x2
+ (2i2 − i)∂τ

i(u)

∂x

∂p

∂x
+ i2τi(u)

∂2p

∂x2
],

= d
m∑
i=1

[i2
∂2τi(u)p

∂x2
− i ∂

∂x
(p
∂τi(u)

∂x
)].

(4.5)
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4.2.3.2 Nonlocal average model

In this case the transitional probability for the jump of the particle at node x to

node x ± i is taken to depend on the average information of the control species

between the current and target node, as described below:

τ+i
x (u) = τi(

1

2
(ux + ux+i)); τ−ix (u) = τi(

1

2
(ux + ux−i)).

We apply the same process as previously (see Appendix B.1.2 for more details): we

substitute the above into equation (4.1), expand through a Taylor series, simplify

and assume the parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τi(u)

∂p

∂x
)]. (4.6)

4.2.4 Local neighbour & Nonlocal neighbour models

In the neighbourhood models it is assumed that the transition rates depend only on

information in the direction of the target jump site. Here we assume two different

types of neighbour based models:

4.2.4.1 Local neighbour model

The jump of a particle at node x to node x ± i is assumed to depend only on the

control species at the nearest neighbour in the direction of the arrival point, as

described below:

τ+i
x (u) = τi(ux+1); τ−ix (u) = τi(ux−1).

We apply the same process as previously (see Appendix B.2.1 for more details): we

substitute the above into equation (4.1), expand through a Taylor series, simplify
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and assume the parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[i2τi(u)
∂2p

∂x2
+ 2(i2 − i)∂τ

i

∂x

∂p

∂x
+ (i2 − 2i)p

∂2τi

∂x2
],

= d

m∑
i=1

[i2
∂2

∂x2
(τi(u)p)− 2i

∂

∂x
(p
∂τi

∂x
)].

(4.7)

4.2.4.2 Nonlocal neighbour model

For the non local neighbour model we assume the probability of a jump for a particle

at node x to node x± i depends on the control species at the arrival point x± i as

described below:

τ+i
x (u) = τi(ux+m); τ−ix = τi(ux−m).

We apply the same process as previously (see Appendix B.2.2 for more details): we

substitute the above into equation (4.1), expand through a Taylor series, simplify

and assume the parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τi(u)

∂p

∂x
− p∂τ

i(u)

∂x
)]. (4.8)

4.2.5 Local gradient & Nonlocal gradient models

In these models the transition rate probabilities are assumed to depend on the

difference between the density of control species at the current and a node in the

direction of the target. Again we split into a “local” and “nonlocal” formulation.

4.2.5.1 Local gradient model

In the local gradient model we assume the transition rates depend linearly on the

difference between the density of control species at the current node and the nearest

neighbor in the direction of the arrival node. For the one space dimension lattice,

the transition rates are written as :

τ+i
x = ai + bi(τ

i(ux+1)− τi(ux)); τ−ix = ai + bi(τ
i(ux−1)− τi(ux)).
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In the above, τ : Rk → R, and a1,...,m ≥ 0 and b1,...,m are constants. We apply the

same process as previously (see Appendix B.3.1 for more details): we substitute the

above into equation (4.1), expand through a Taylor series, simplify and assume the

parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[aii
2 ∂

2p

∂x2
− 2ibi

∂

∂x
(p
∂τ i

∂x
)]. (4.9)

4.2.5.2 Nonlocal gradient model

Finally, we assume the transition rate depends on the difference between the density

of the control species at the current node and the arrival node. Again taking a linear

dependence gradient, we let the transtion rates at node x be given as:

τ+i
x = ai + bi(τ

i(ux+m)− τi(ux)); τ−ix = ai + bi(τ
i(ux−m)− τi(ux)).

In the above, τ : Rk → R, and a1,...,m ≥ 0 and b1,...,m are constants. We apply the

same process as previously (see Appendix B.3.2 for more details): we substitute the

above into equation (4.1), expand through a Taylor series, simplify and assume the

parabolic scaling (5). This yields the PDE:

∂p

∂t
= d

m∑
i=1

[aii
2 ∂

2p

∂x2
− 2bii

2∂τ
i

∂x

∂p

∂x
− 2bii

2∂
2τi

∂x2
p],

= d
m∑
i=1

[aii
2 ∂

2p

∂x2
− 2bii

2 ∂

∂x
(p
∂τi

∂x
)].

(4.10)

4.2.6 Summary

To summarise the various models, we consider the case of a single control species i.e

u = u. Considering classical continuous modelling, we suppose the partial differen-

tial equation is written as
∂p

∂t
+∇.j = 0, (4.11)

103



Chapter 4: Multi-step jump models for movement

where j is the flux. In many models of biological movement, the flux is assumed to

have a diffusive and tactic component as follows

j = −
Diffusive︷ ︸︸ ︷
D(u)∇p+

Taxis︷ ︸︸ ︷
pχ(u)∇u . (4.12)

The diffusive flux represents diffusion of the population, potentially depending on

the control species u and D(u) defines the diffusion coefficient. The taxis flux

represents movement of the population in response to gradients of u, where χ(u)

defines chemotactic coefficient. Note that:

• χ(u) > 0⇒ movement up gradients of u and accumulation of the population

at concentration peaks (positive taxis);

• χ(u) < 0⇒movement down gradients of u and accumulation of the population

at troughs of u (negative taxis).

We will consider two forms for the transitional probabilities:

• T1 : Increasing form τ i(u) = αiu
ki+u

;

• T2: Decreasing form τ i(u) = αiki
ki+u

.

Where αi ∈ [0,∞) define the maximum transition probability rates corresponding

to the ith jump type, while ki are positive constants.

4.2.6.1 Strictly local model

In this case the particle flux is given by

j = −d
m∑
i=1

[i2(τ i(u)∇p+ pτ i
′
(u)∇u)], (4.13)

where τ i′(u) is the first derivative of τ i respect to u. This can be written as

j =
m∑
i=1

[−di2τ i(u)∇p+ pχ(u)∇u], (4.14)
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where χ(u) ≡
∑m

i=1[−di2τ i′(u)] describes the taxis sensitivity. If τ i′(u) < 0, the

taxis is positive and the flux is up the gradient of u. Whereas, the flux is down the

gradient if the taxis is negative (i.e. τ i′(u) > 0).

• Under T1: the diffusion coefficient is
∑m

i=1[di2 αiu
ki+u

] and the taxis sensitivity is

χ(u) =
∑m

i=1[−di2 αiki
(ki+u)2

]. The taxis is negative, and the particle flux is down

concentration gradients of u.

• Under T2: the diffusion coefficient is
∑m

i=1[di2 αiki
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[−di2 −αiki
(ki+u)2

]. The taxis is positive, and the particle flux is up

gradients of u, with accumulation at high concentrations of u.

4.2.6.2 Local average model

Recalling, we have

∂p

∂t
= d

m∑
i=1

[i2τi(u)
∂2p

∂x2
+ (2i2 − i)∂τ

i(u)

∂x

∂p

∂x
+ (i2 − i)p∂

2τi(u)

∂x2
], (4.15)

which can be written as

∂p

∂t
= d

m∑
i=1

[i2
∂2

∂x2
(τi(u)p)− i ∂

∂x
(p
∂τ i

∂x
)], (4.16)

or
∂p

∂t
= d

m∑
i=1

[
∂

∂x
(i2τ i(u)

∂p

∂x
+ (i2 − i)p∂τ

i

∂x
)]. (4.17)

Hence, the particle flux is

j = −d
m∑
i=1

[i2(τ i(u)∇p+ (i2 − i)pτ i′(u)∇u)], (4.18)

where τ i′(u) is the first derivative of τ i respect to u. This can be written as

j =
m∑
i=1

[−di2τ i(u)∇p+ pχ(u)∇u], (4.19)

where χ(u) ≡
∑m

i=1[−d(i2− i)τ i′(u)] is a taxis sensitivity. If i 6= 1 and/or τ i′(u) 6= 0,

the flux contains both a diffusive and tactic. In the special case where individuals
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can only jump a maximum of 1 lattice node, there is no taxis of the population.

• Under T1: the diffusion coefficient is
∑m

i=1[di2 αiu
ki+u

] and the taxis sensitivity is

χ(u) =
∑m

i=1[−d(i2 − i) αiki
(ki+u)2

]. The taxis is negative for i > 1 and particles

accumulate where u is small.

• Under T2: the diffusion coefficient is
∑m

i=1[di2 αiki
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[−d(i2 − i) −αiki
(ki+u)2

]. The taxis is positive for i > 1 and particles

tend to accumulate where u is high.

4.2.6.3 Nonlocal average model

Recalling, we have
∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τi(u)

∂p

∂x
], (4.20)

where the particle flux will be given by

j = −d
m∑
i=1

[i2(τ i(u)∇p)]. (4.21)

In this case the flux consists solely of a diffusive component with coefficient

d
m∑
i=1

[i2(τ i(u)].

Long term we therefore expect evolution to a uniform distribution of p, regardless

of the u distribution and regardless of the length of jumps made.

4.2.6.4 Local neighbour model

Recalling, we have

∂p

∂t
= d

m∑
i=1

[i2
∂2

∂x2
(τi(u)p)− 2i

∂

∂x
(p
∂τi

∂x
)]. (4.22)

The particle flux is

j = −d
m∑
i=1

[i2(τ i(u)∇p+ (i2 − 2i)pτ i
′
(u)∇u)]. (4.23)
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In this case χ(u) ≡
∑m

i=1[−d(i2 − 2i)τ i
′
(u)] is the taxis sensitivity. We note that in

this case the taxis type depends on both τ and the jump length.

• Under T1: the diffusion coefficient is
∑m

i=1[di2 αiu
ki+u

] and the taxis sensitivity is

χ(u) =
∑m

i=1[−d(i2− 2i) αiki
(ki+u)2

]. The taxis is negative for jump lengths i > 2,

and particles tend to move forward u is small. The taxis is positive if i < 2.

• Under T2: the diffusion coefficient is
∑m

i=1[di2 αiki
ki+u

] and the taxis sensitivity is

χ(u) =
∑m

i=1[−d(i2 − 2i) −αiki
(ki+u)2

]. The taxis is positive if i > 2, and particles

will move to regions where u is high.

4.2.6.5 Nonlocal neighbour model

Recalling, we have

∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τi(u)

∂p

∂x
− p∂τ

i(u)

∂x
)]. (4.24)

The particle flux is

j = −d
m∑
i=1

[i2(τ i(u)∇p− pτ i′(u)∇u)], (4.25)

where τ i′(u) is the first derivative of τ i respect to u. Hence χ(u) ≡
∑m

i=1[di2τ i
′
(u)]

is the taxis sensitivity.

• Under T1: the diffusion coefficient is
∑m

i=1[di2 αiu
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[di2 αiki
(ki+u)2

]. The taxis is positive, and particles accumulate at

high concentrations of u.

• Under T2: the diffusion coefficient is
∑m

i=1[di2 αiki
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[di2 −αiki
(ki+u)2

]. The taxis is negative, and particles accumulate at

low concentrations of u.
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4.2.6.6 Local gradient model

Recalling, we have

∂p

∂t
= d

m∑
i=1

[i2ai
∂2p

∂x2
− 2ibi

∂

∂x
(p
∂τ i

∂x
)]. (4.26)

The particle flux in this case is

j = −d
m∑
i=1

[i2ai∇p− 2ibipτ
i′(u)∇u)], (4.27)

where τ i′(u) is the first derivative of τ i respect to u and χ(u) ≡
∑m

i=1[2dibiτ
i′(u)] is

a taxis sensitivity.

• Under T1: the diffusion coefficient is
∑m

i=1[aidi
2 αiu
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[2dibi
αiki

(ki+u)2
]. The taxis is positive, and particles accumulate

at high concentrations of u.

• Under T2: the diffusion coefficient is
∑m

i=1[di2 αiki
ki+u

] and the taxis sensitivity is

χ(u) =
∑m

i=1[2dibi
−αiki

(ki+u)2
]. The taxis is negative, and particles accumulate at

low concentrations of u.

4.2.6.7 Nonlocal gradient model

Recalling, we have

∂p

∂t
= d

m∑
i=1

[aii
2 ∂

2p

∂x2
− 2bii

2 ∂

∂x
(p
∂τi

∂x
)]. (4.28)

The particle flux is

j = −d
m∑
i=1

[i2ai∇p− 2i2bipτ
i′(u)∇u)], (4.29)

where τ i′(u) is the first derivative of τ i respect to u and χ(u) ≡
∑m

i=1[2di2biτ
i′(u)]

is the taxis sensitivity.

• Under T1: the diffusion coefficient is
∑m

i=1[aidi
2 αiu
ki+u

] and the taxis sensitivity
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is χ(u) =
∑m

i=1[2di2bi
αiki

(ki+u)2
]. The taxis is positive, and particles accumulate

at high concentrations of u.

• Under T2: the diffusion coefficient is
∑m

i=1[aidi
2 αiki
ki+u

] and the taxis sensitivity

is χ(u) =
∑m

i=1[2di2bi
−αiki

(ki+u)2
]. The taxis is negative, and particles accumulate

where u is low.

We summarize the results of the above section in Table 4.1. Clearly, we see sensitive

dependence on the form of model: for the same form of τ , population fluxes can be

directed up or down gradients of u according to the form of sensing and the length

of the jump.

Table 4.1: Sensing strategies in diffusion/taxis forms

Model Diffusion coefficient Taxis coefficient Under T1 Under T2

Strictly local d
∑m

i=1[i2(τ i(u)]
∑m

i=1[−di2τ i′(u)] -ve taxis +ve taxis

Local average d
∑m

i=1[i2(τ i(u)]
∑m

i=1[−d(i2 − i)τ i′(u)] -ve taxis if i > 1 +ve taxis if i > 1

Non local average d
∑m

i=1[i2(τ i(u)] None - -

Local neighbour d
∑m

i=1[i2(τ i(u)]
∑m

i=1[−d(i2 − 2i)τ i
′
(u)] -ve taxis if i > 2 +ve taxis if i > 2

Non local neighbour d
∑m

i=1[i2(τ i(u)]
∑m

i=1[di2τ i
′
(u)] +ve taxis -ve taxis

Local gradient d
∑m

i=1[i2ai(τ
i(u)]

∑m
i=1[2dibiτ

i′(u)] +ve taxis -ve taxis

Non local gradient d
∑m

i=1[i2ai(τ
i(u)]

∑m
i=1[2di2biτ

i′(u)] +ve taxis -ve taxis

It is again clarified that we could potentially allow m → ∞ to describe jumps

that can occur to any other point in an infinitely long lattice: for example, the

probability of jumping to some other site could, theoretically, be described by some

jump probability distribution with positive probability rates for all jump lengths

i, such as an exponentially decreasing function of the jump length (τ i ≡ exp−αi

for some constant α). Of course, in such instances it is not immediately apparent

whether the chosen parabolic limit would be appropriate as h→ 0: we would have

to control carefully in each case whether it is appropriate or not.

In the context of animal or cell movement, however, it is perhaps unlikely to

allow potentially infinite length jumps: movement distances are likely to be capped

according to the natural limits of movement and hence we would expect the proba-
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bilities to be effectively zero above some jump length i: hence, m would be finite in

size and would be an indication of the maximum range of movement of an individ-

ual in a particular jump. In this case, the probabilities of performing a particular

movement will become zero above some fixed value of m.

4.3 Verification of the strictly local PDE

Before we move to a specific study, we first verify whether simulations of the stochas-

tic model quantitatively match with the derived PDE. The advantage of the latter

lies in that it allows us to more efficiently study higher densities of particles for

longer times, as well as providing a more analytically tractable form. Note that we

will restrict our analysis for the rest of this chapter to the case of random movement

based on strictly local information (i.e. equation (4.4)):

∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u)p)

∂x2
]. (4.30)

For simplicity, and to focus in this section on how the model works, we assume the

transition probabilities are independent of the control species:

τ i(u) = αi ∀i = 1, ....,m.

In the case of one step jumps of length h (i.e. m = 1) we simply have:

∂p

∂t
= dα1

∂2p

∂x2
. (4.31)

We furnish the above with zero flux boundary conditions, therefore assuming that

individuals do not jump outside the domain. Initially we consider a Dirac delta

type function initial condition, assuming the particles are initially distributed in

a concentrated mass and that the control species is uniformly distributed on the

domain. We take an arbitrary value of α1 = 1.0. To solve the stochastic random

walk model we use Gillespie’s algorithm [46]: for more details of simulating stochastic

diffusion processes using Gillespie’s algorithm see [29]. We plot and compare the
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stochastic random walk model and the derived PDE in Figure 4.3 at different times

t = [0, 10, 50, 80, 100], increasing the number of particles N = [10, 103, 105] in each

row. In the bottom row we plot the L1-norm of the distance error between the

stochastic simulations and the PDE at different times. When the number of particles

is small (N = 10) and t > 0, the PDE only provides a crude approximation of

the stochastic solution. However, for a large numbers of particles (N = 105), the

stochastic solution is almost identical to the PDE and the error tends to zero.

For single jumps but of length 3h, again solved subject to zero flux boundary

conditions and a spike initial condition for the particles, simulations in Figure 4.4

show the error between the stochastic and PDE model is higher than the case where

the particles perform just one jump per unit time, while increasing the numbers of

particles has limited impact on the convergence between the models. The reason for

this, however, does not lie in the failure of the PDE to approximate the stochastic

model, but the artificial case of a single spike and only allowing fixed length jumps:

particles are restricted to specific grid points and consequently the discrepancy is

high, see Figure 4.2. Choosing much smoother initial conditions reduces the artificial

nature of this scenario, and shows a much better match (Figure 4.5). Summarising,

the PDE provides a good match to stochastic model, assuming “reasonable” initial

conditions.

Figure 4.2: Sketch of Gillespie and PDE approximation of the numerical solution.
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Figure 4.3: Simulations of the stochastic random walk model (blue line) and the
derived PDE equation (4.31) (red line), with zero flux boundary conditions and a
Dirac delta type initial condition of the particles. (a) Number of particles = 10, (b)
Number of particles = 103, (c) Number of particles = 105, (d) The L1-norm distance
error between the stochastic simulations and the PDE at different times from left
t = [0, 10, 50, 80, 100]. In these simulations d = 0.0025. The stochastic simulations
are solved by Gillespie’s algorithm [46] while the PDE model is solved through a
method of lines approach in which the PDE is first discretised via a standard central
difference scheme, and the subsequent ODEs solved using the “ode15s” solver in
Matlab with a relative tolerance = 10−7, absolute tolerance = 10−7 and grid spacing
of h = 0.05.
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Figure 4.4: Simulations of the stochastic random walk model (blue line) and the
derived PDE equation (4.4) (red line) with a Dirac delta type initial condition and
step jumps of length 3h. Numerical method as in Figure 4.3.
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Figure 4.5: Simulations of the stochastic random walk model (blue line) and the
derived PDE equation (4.4) (red line) with step function initial condition and step
jumps of length 3h. Numerical method as in Figure 4.3.
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4.4 Efficient strategies for resource localisation

4.4.1 Motivation

In this section we will consider a theoretical application of our modelling to de-

termine how making different decisions according to the environment can allow a

population to optimally position itself within it. Our application could apply to a

population of cancer cells that aims to seek the most nutrient rich region for its

spatial growth, but is perhaps more intuitively described within the context of some

animal species. As our prototype example we will consider a population of insects

such as butterflies, bees or ladybirds distributed across some region of space, such as

a field. The insects can decide either to perform relatively short range movements,

e.g. flitting between flowers in a patch to find suitable nectar, or can undertake an

(energetically demanding) longer range movement to a more distant region, poten-

tially finding a better resource. We therefore consider as our principle variables (1)

our motile population (e.g. bees) and (2) our resource (e.g. nectar). Our population

will be allowed to perform two types of movement, short and long range, and will

base that decision on the local nectar available. For succinctness we will restrict

our focus to the strictly local model, effectively assuming our individuals are my-

opic and cannot see longer distances. In our first study we assume the resource is

not consumed (i.e. it is in abundance, and minimally reduced by the population)

while in the second study we allow for consumption of the nutrient resource. After

setting up the model and defining suitable measures, our principal question will be

as follows: what is the most efficient strategy of jumping to maximise the benefit

from the environment?

4.4.2 Model set up

We denote our population by p(x, t) and our resource by u(x, t). Assuming our

population makes multi-step jumps according to strictly local information, we have

∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u)p)

∂x2
]. (4.32)
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For our two variables we assume a variety of distributions, concentrated such that

they have the same average level, i.e
∫ L

0
p(x, 0) =

∫ L
0
u(x, 0) = L.

4.4.2.1 Initial distribution of particles

• Uniform: i.e we assume a homogeneous distribution p(x, 0) = 1.

• Aggregated: we consider the particles to be initially localised as a Gaussian

distribution, p(x, 0) = L
σp
√

2π
exp(− (x−µp)2

2σ2
p

) where σp is the standard deviation

and µp is the mean position of the aggregate.

4.4.2.2 Initial distribution of resource

• Uniform: we assume the resource to be initially homogeneously distributed

across space u(x, 0) = 1.

• Aggregated: we consider the resource to be initially localised as a Gaussian

distribution, u(x, 0) = L
σu
√

2π
exp(− (x−µu)2

2σ2
u

) where σu is the standard deviation

and µu is the mean position of the aggregate.

• Randomised heterogeneous: We also choose a special case (Case∗) of a random

non-homogeneous function to describe the initial condition of the resource as

example: we define our function by a sum of a random number of up to 20

Gaussian functions, each of which has a random mean position, height and

steepness as below:

u(x, 0) = NF

n∑
i=1

hi exp(−σi ∗ (x− µi)2), (4.33)

Where NF is a normalising factor, n is an integer random number uniformly

distributed between 1 & 20, hi, σi and µi are randomly chosen. We explain this

choice in more detail later. Note that all the initial conditions are normalised

to ensure the average initial density = 1.
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4.4.2.3 Jump responses with respect to the resource

Our investigation will focus on how making different movement types (e.g. short

or long) in response to the resource impacts on how efficiently our population ex-

plores its environment. To investigate this we assume the transition probability rate

function takes three different forms with respect to the resource: a constant, an

increasing or a decreasing function as shown in Figure 4.6.

1. Constant jump response. This response takes no account of the resource:

jumps take place at a constant rate regardless of the resource distribution, i.e

τ i(u) = αi. (*)

2. Decreasing jump response. In this case the population performs jumps of a

particular length at a faster rate when the amount of resource is low and at a

lower rate when the amount of resource is high. Specifically, we take:

τ i(u) =
2αiu

∗

u∗ + u
, (**)

where 2αi defines the maximum jump rate and u∗ is taken to be the average

density of resource, i.e u∗ = 1.

3. Increasing jump response. In this case the population performs jumps of a

particular length at a faster rate when the amount of resource is high and at

a lower rate when the amount of resource is low. Specifically, we take:

τ i(u) =
2αiu

u∗ + u
, (***)

where 2αi defines the maximum jump rate and u∗ is taken to be the average

density of resource, i.e u∗ = 1.

Note that for the above three forms (*), (**), (***), the value of τ i(u) is the same

when u = u∗ = 1.
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Figure 4.6: Sketch of the three forms of transition rate.

4.4.2.4 Benefit and cost measurements

In order to properly assess which searching strategy is best, we must consider appro-

priate measures for the benefits gained and costs accrued. For searching for food,

benefits would clearly correspond to the amount of food the population encounters,

while costs would relate to the effort expended looking for it. Thus, we define the

cost and benefit as follows.

• Benefit is an estimate of how much resource (food) the particles contact over

time. Specifically, we define the benefit as:

Benefit =

∫ T

0

∫ L

0

p(x, t)u(x, t) dx dt. (4.34)

• The cost relates to the effort expended over time. We assume this is subdivided

into a movement-based and residual component as follows:

Cost = Costj + Costr. (4.35)

The movement-based cost depends on both the rate of jumps and the length

of the jump taken: frequent long jumps would require much more energy than

infrequent short jumps. Thus, we define the jump cost as

Costj =

∫ T

0

∫ L

0

m∑
i=1

p(x, t)τ i(u)ih dx dt.

Where ih is the jump length. We also assume there is a residual cost associated
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with simply existing, which we take to be small compared to the above,

Costr =

∫ T

0

ε dt.

Note ε is taken to be 10% of the cost of a one-step jump.

• Benefit-Cost Ratio we take the ratio of the above benefits and costs to evaluate

the optimal jump strategy. The benefit-cost ratio is simply

BCR = Benefit/Cost.

4.4.3 Initial distribution arrangements

According to the earlier proposed initial distribution, we consider the following ar-

rangements for the initial distribution of the particles and the resource:

• Case 0 (Reference case): In this case the resource and particles are homoge-

neously distributed u(x, 0) = p(x, 0) = 1 (see Figure 4.7). We define this as

our reference case as it will generate the same BCR for all choices of jump

strategy, as we show in the next section.

• Case I: In this case, the resource is uniformly distributed across the field,

whereas the distribution of the particles is localised at the centre of the domain

(Figure 4.8 (a))).

• Case II: In this case the resource and particles are co-localised and centered

on the domain (Figure 4.8 (b)).

• Case III: In this case the population and resource are both localised, but with

distributions centered at different points (Figure 4.8 (c))).
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Figure 4.7: Illustration of initial distribution of resource (blue line), and particles

(red dashed) for Case 0.
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Figure 4.8: Illustration of initial distribution of resource (blue line), and particles

(red dashed) for the three cases I-III. (a) µp = 5 and σp = 1.0, (b) µp,u = 5 and

σp,u = 1.0, (c) µu = 3, µp = 6, σp,u = 1.0.

4.4.4 Results

In this section we analyse the effectiveness of different jump strategies. We allow

our population to either:

1. perform a single short jump of length h (i = 1);

2. perform a single long jump of length 10h (i = 10);

3. perform both a short (length h, i = 1) or long (length 10h, i = 10) jump.
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For each scenario above we examine the impact of each of the transition rate func-

tions (*),(**) or (***). Note that for the short jump case we set α1 = αs = 0.5,

while for the long jump we set α10 = αl = αs/10 = 0.05. When both jumps are

performed we set α1 = αs/2 and α10 = αl/2. We have αi = 0 for all i 6= 1 or 10.

We note that these values for the α′s are chosen to ensure that the cost of jumping

is the same for all jump strategies when the resource is set at its average level, i.e.

when u = 1. For all simulations we set h = 0.05

4.4.4.1 Constant transition rates

Reference case (Case 0): In this case both particles and resource remain uniformly

distributed and we can directly calculate the cost and benefit of the three jump

strategies (short, long, both). Using formulae (4.34) and (4.35) we find that for

short, long and both jumps we have

Benefit = LT

Cost = αiihLT + εT

and consequently

BCR =
L

αiihL+ ε

Under constant transition jump rates we plot the log-scale of the benefit-cost ratio in

Figure 4.9 for the three cases of initial distribution for the particles and the resource

above. Case I generates the same results as the reference case, since the resource is

homogeneously distributed on the domain and the BCR remains the same over time.

In Case II the particles are initially located at the control species: maximum benefit

occurs at the early times, but particles subsequently displace. Particles performing

short jumps have an advantage over these that only do long jumps or both, since

they remain closer to the resource for longer. On the other hand, particles who only

perform long jumps disperse from the resource faster than the rest. However, all

particles see reduced benefit over time due to dispersal away from the resource. Case

III generates the inverse results of Case II: early on, particles accrue little benefit due
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to being located away from the resource. Particles performing longer jumps have a

greater advantage as they reach the resource faster than the rest. Summarising, for

the case where transition rates are independent on the resource, the best strategy

is to perform short jumps when localised near the resource and long jumps when

localised further away.
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Figure 4.9: Log-scale plot of the benefit-cost ratio (BCR)for short (blue), both
(green), and long (yellow) jump types for the three initial distributions (I-III) at
different times. Here we have used constant transition rate functions, τ i(u) = αi,
with parameters as set in the lext.

4.4.4.2 Decreasing transition rates

We now assume particles perform more jumps when the level of resource is low,

and less jumps when the level of resource is high. We study the same cases above

for different jump types over different times, see Figure 4.10. Case I again has

identical results to the reference case: as the resource is homogeneously distributed,

the benefit-cost ratio remains the same with time. We find again that a short

jump strategy is the best strategy for case II, where the particles are located at the

resource. In Case III the long jump is advantageous, since they reach the resource

much faster. We note also that the decreasing transition rates give a better BCR

over the constant rate for Case III: particles move quickly from low resource to high

resource region.
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Figure 4.10: Log-scale plot of the benefit-cost ratio (BCR) for short (blue), both
(green), and long (yellow) jump types for the three initial distributions (I-III) at
different times. Here we have decreasing transition rate functions τ i(u) = 2αiu∗

u∗+u ,
with parameters as set in the lext.

4.4.4.3 Increasing transition rates

We now assume particles perform more jumps when the level of resource is high and

less jumps when the level of control resource is low. We study the same cases again,

see Figure 4.11. Case I again generates the same benefit-cost ratio as the reference

case. For Case II the best strategy is short jumps while long jumps are a better

strategy for Case III at lower times, but less so after longer times. Overall, increasing

transition rates appear to be less effective than either constant or decreasing forms.

4.4.4.4 Combined jump strategies

In the above sections we analysed different jump strategies individually. According

to the distribution of the population/resource, different strategies perform more or

less effectively. For example, if initially located far from the resource then the most

effective strategy is to perform frequent long jumps, as this will allow the resource

to be quickly located. If initially close to the resource, it is clearly better to stay as

close as possible by limiting to shorter jumps.

We now investigate different combinations of strategy when performing both

short and long jumps together. In particular, we will consider the impact of the

following 4 combinations under the various distributions for population and resource:

• short and long jumps both increasing with the resource (Ins + Inl);
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Figure 4.11: Log-scale plot of the benefit-cost ratio (BCR) for short (blue), both
(green), and long (yellow) jump types for the three initial distributions (I-III) at
different times. Here we have increasing transition rate functions τ i(u) = 2αiu

u∗+u , with
parameters as set in the lext.

• short jumps increasing with the resource and long jumps decreasing with the

resource (Ins +Del);

• short and long jumps both decreasing with the resource (Des +Del);

• short jumps decreasing with the resource and long jumps increasing with the

resource (Des + Inl).

In Figure 4.12 we plot the log-scale of the benefit-cost ratio for the four strategies

under the three arrangements of distributions (I-III). Case I shows (Ins +Del) and

(Des+Inl) to be the best strategies. In Case II (Des+Inl) generates the maximum

benefit, followed second by (Ins + Del). In Case III (Ins + Del) perform the best

over longer time periods.

4.4.4.5 Summary

Overall, when assessing the most effective strategy across the full range of initial

distribution arrrangements, the (Ins + Del) strategy appears to be the best com-

bination: this strategy typically appears among the top two for any given initial

arrangement of distribution. Intuitively, this makes logical sense. By performing

long jumps only when the resource is low, the individuals only seek out new re-

source environments when in a poor one themselves. By performing short jumps
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only when the food resource is high, the individuals tend to remain close to good

resource regions.
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Figure 4.12: Log-scale of the benefit-cost ratio for combined short and long jump

strategies at different times. See text for details.

4.5 Inclusion of resource consumption

We next extend our study to consider consumption of the resource: typically, a

nutrient will be consumed over time leading to its depletion. We will investigate

how quickly a population is able to find and reduce the resource. Specifically, we

chose a decay function for u(x, t) that describes consumption by the particles p(x, t)

over time, as follows:
∂u

∂t
= −γu(x, t)p(x, t);

∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u)p)

∂x2
].

(4.36)

In the above γ is the rate of consumption. We assume as before that particles can

perform both short and long jumps according to three different strategies: a constant

rate of jumps, a rate that increases with the resource, and a rate that decreases with

the resource, using the same functions (*),(**),(***) as before.
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4.5.1 Initial condition for control species and particles

We use the same initial conditions for the resource and particles as before, see section

4.4.3 and Figure 4.8. We also consider the special case (Case∗) of a randomised non-

homogeneous function to describe the initial condition of the resource, along with a

localised population as follows:

u(x, 0) = NF

n∑
i=1

hi exp(−σi ∗ (x− µi)2);

p(x, 0) =
L

σp
√

2π
exp(−(x− µp)2

2σ2
p

). (****)

Where NF is the normalising factor, n is an integer random number between 1

& 20, hi, σi and µi are selected as uniformly distributed random variables, and σp is

its standard deviation and µp is the mean of particles. We note that the above form

for the resource represents a more naturally occurring resource distribution, varying

across the environment: a representative example is shown in Figure 4.13.
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Figure 4.13: Illustration of initial distribution of resource (blue line), and particles

(red dashed) for Case∗. Fixing µp = 5 and σp = 1.0

4.5.2 Measurement

To gauge the efficiency with which the population locates and consumes the resource

we introduce as a measurement the time that the total resource is reduced to 10%

of its initial value. We define our consumption time as t∗, such that:

1

L

∫ L

0

u(x, t∗) dx =
0.1

L

∫ L

0

u(x, 0) dx.
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4.5.3 Results

We assume particles can perform either short or long jumps at rates that depend

on the resource according to functions (*),(**),(***). Short jumps can occur at a

constant rate Cs, a decreasing rate functionDes or increasing rate function Ins of the

resource. Similarly, long jumps can occur at a constant rate Cl, a decreasing rateDel

or an increasing rate Inl according to the resource. Unsurprisingly, the shortest time

it takes to reduce the resource by 90% occurs when the particles and the resource

are initially colocalised (i.e Case II). Among the jump strategies, particles consume

the resource at the fastest rate if both jump types occur at rates that decrease with

the resource (Des and Del). While the choice of short jump strategy is relatively

unimportant, the choice of long jump strategy is highly crucial: it is only effective to

perform long jumps when the resource is low. Intuitively, lowering movement when

the resource is high leads to its dissolution in a shorter time (see Figure 4.14 and

4.15).
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Figure 4.14: Plot of log10(consumption time/mean consumption time). Lighter

colours represent a slower time of consumption and darker colour represents a faster

time of consumption. Applying equations (4.36) with initial conditions in Section

4.4.3 and jump transition rates (*),(**),(***). Fixing αs = 0.5, αl = 0.05, ∆s = h,

∆l = 10h, where h = 0.05, γ = 0.01 and d = 0.0025. Numerics performed as in

Figure 4.3.

127



Chapter 4: Multi-step jump models for movement

Case *

In
l

C
l

De
l

In
s

C
s

De
s

-1

-0.5

0

0.5

1

Figure 4.15: Plot of log10(consumption time/mean consumption time). Lighter

colours represent slow times of consumption and darker colour represent faster times

of consumption. Applying equations (4.36) with initial conditions (4.5.1) and jump

transition rates (*),(**),(***). Fixing αs = 0.5, αl = 0.05, ∆s = h, ∆l = 10h, where

h = 0.05, γ = 0.01 and d = 0.0025. Numerics performed as in Figure 4.3.

4.6 Application to glioma diffusion modelling

The poor prognosis of gliomas has been attributed to the highly invasive and diffuse

nature of gliomas. In particular, an unknown fraction of tumour cells appear to travel

far from the main tumour mass, remain undetected and subsequently evade localised

therapies (e.g. surgery, radiotherapy). Consequently, cancer recurrence can occur

in the peripheral regions of the original tumour, eventually leading to the patient’s

death. The patterns of invasion suggest that glioma cells can migrate along various

structures that feature in the brain’s microenvironment. In particular, observations

suggest a tendency of glioma cells to infiltrate through both extracellular matrix as

well as along oriented/linear structures of the brain, such as the white matter tracts

comprised of bundles of neuronal axons or blood vessel capillaries [45, 42, 122, 11].

The vascular supply to different brain regions is far from homogeneous, with

large differences in the capillary density and arrangement existing between grey and
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white matter or among the various brain regions: the varying cellular and tissue

composition of different brain regions demand very different levels of nutrient and

oxygen supply from the blood vasculature. However, the interaction between the

brain vasculature and glioma invasion is poorly understood [17, 73]. Histological

examinations of both young and adult brain tissue indicates that gray matter has

a significantly higher vessel density with a greater percentage area of blood vessels

and lower mean area, breadth, length, perimeter and radius of blood vessels over

white matter [9]. Other studies, albeit in rat brains [99], showed that while the cap-

illary density is higher in gray matter (610±258 mm−2) over white matter (417±209

mm−2), edge-to-edge intermicrovessel distances are significantly less in gray matter

(19.5±4.0 µm) than white matter (29.8±13.0 µm). In other words, there are more

intrinsic capillaries with smaller intercapillary spaces in gray matter (where most

neurons reside) than in white matter.

Similarly, the highly oriented tracts that form from bundles of neuronal axons

are highly heterogeneous and anisotropic throughout the brain: while the neuronal

cell bodies largely reside in gray matter, the long bundles of axons form a principal

feature of the white matter, with the myelin-coated axons themselves giving the

characteristically lighter shade of this tissue. The ability of glioma cells to invade

along these axonal tracts [106] potentially allows the cells to move long distances

through the brain.

Consequently, we can envisage that invasion/movements of glioma cells can fol-

low various classes: from shortish range movements within the ECM, to medium

range along oriented capillaries (before arriving at some capillary junction) to poten-

tially very long range movements along white matter axonal tracts. In other words,

the brain tissue environment can provide a complex network of B-roads, A-roads

and motorways, allowing for distinct rates of invasion in different regions. In this

preliminary study, we will use our modelling framework to phenomenologically show

how the local tissue environment could potentially generate very different rates of

invasion.

We introduce three different tissue types, where the structure of the tissue is
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combined according to different percentages of axons, capillaries, and ECM. In Case

1, we consider

• Tissue 1: %50 capillaries, %25 axons, %25 ECM.

• Tissue 2: %50 axons, %25 capillaries , %25 ECM.

• Tissue 3: %50 ECM, %25 axons, %25 capillaries.

While in Case 2, we take more extreme variations:

• Tissue 1: %90 ECM, %5 axons, %5 capillaries.

• Tissue 2: %90 capillaries, %5 axons, %5 ECM.

• Tissue 3: %90 axons, %5 capillaries, %5 ECM.

We denote tissues containing more axons as (Axo), tissue with more capillaries

as (Cap), and tissue with more ECM as (Ecm). In Figure 4.16 we illustrate a

hypothetical example of tissue with %50 Axons, %25 ECM, and %25 Capillaries.

Figure 4.16: Sketch of tissue with %50 Axons, %25 ECM, and %25 Capillaries.

Furthermore, we assume glioma cells migrate along the different tissues as follows:

• (a) Short-range jumps (e.g. 1 step), for movements in ECM/high cellular

areas.

• (b) Medium-range jumps (e.g. 3 steps), for movement along capillaries.

• (c) Long-range jumps (e.g. 10 steps, movement along axons).
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4.6.1 Model set-up

We use a logistic form to represent the growth of glioma and assume the diffusion

is derived from our multi-length random walk model. We investigate the invasion

of glioma in the various tissue environments described above. We let p(x, t) be the

density of gliomas cells at a position x and time t, assuming x ∈ [0, L], we have

∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u)p)

∂x2
] + p(1− p), (4.37)

with zero flux boundary conditions and initial conditions:

p(x, 0) =

 p0(x) when 0 ≤ x ≤ x∗,

0 otherwise.
(4.38)

We note that the above includes nondimensionalisation of cell density and time scale.

The frequency of the different type of jumps is assumed to depend on how much of

each type of structure is available for glioma invasion while the time for performing

a jump will depend on the length of jump. Thus, we consider:

• τ 1(Ecm) ∝ %ECM in the tissue;

• τ 2(Cap) ∝ %Cap in the tissue;

• τ 3(Axo) ∝ %Axo in the tissue.

Our focus will be on the following question: which tissue gives a greater rate of

invasion?

4.6.2 Results

We solve equation (4.37) under initial condition (4.38) and zero flux bonundary con-

ditions on the domain x ∈ [0, 200]. We calculate the invasion of glioma for each type

of tissue in Case 1 by tracking the position of the invasion wavefront at the final time

of simulation t = 500, and compare it against a homogeneous tissue containing an

equal percentage of ECM, capillaries, and axons (i.e 1
3
capillaries, 1

3
axons, 1

3
ECM).
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Tissues with a high proportion of Axons show increased invasion depth, while those

with more ECM or capillaries show decreased invasion. This indicates the greater

invasion in white matter over grey matter, since long axons of white matter allow

glioma cells to move long distance. Figure 4.17 shows the change of invasion for the

three different heterogeneous tissues in relation to a homogeneous tissue. For the

Case 2 tissue types the invasion depths are greatly magnified (see Figure 4.18).

Ecm Cap Axo
-10%

-5%

0%

5%

10%

Figure 4.17: Degree of invasion for Case 1, in comparison to a homogeneous tissue.

Ecm Cap Axo
-40%

-20%

0%

20%

40%

Figure 4.18: Degree of invasion for Case 2, in comparison to a homogeneous tissue.

4.6.3 Estimating the invasion speed analytically

We can also estimate the wave speed analytically by recalling that we effectively

have Fisher’s equation, with corresponding wave speed

wave speed = 2
√
Df ′(0).
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We consider the minimum wave speed according to a diffusion coefficient varying

for the transition probabilities under multiple length jumps:

D = d
m∑
i=1

[i2τ i(u)]. (4.39)

Comparing to the study for Case 1, the analytical and simulated wave speed compare

well (Figure 4.19).

Ecm Cap Axo
0

0.1

0.2

0.3

0.4
Simulated speed

Analytical speed

Figure 4.19: The analytical and simulated wave speed of three different tissues,
Axons (Axo), ECM, and Capillaries (Cap).

4.6.4 Summary

Our multi jump length model can be applied to describe the dynamics of glioma

invasion to take into consideration the heterogeneity of brain tissue. The results

showed similar behaviour to in vivo glioma invasion [115, 51]: glioma cells have high

invasion rates in white matter where there is a large number of axons. Of course

this remains a preliminary and demonstrative pilot study and a future investigation

should look more carefully at the parametrisation of the models.

4.7 Discussion

We have developed multi-step models based on random walks on a lattice. The

models can be used to describe the movement of glioma cells as well as ecological

movement. The model particles perform multiple-length jumps either to sites left or
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right according to some transitional probability per unit time, which depends on the

environmental information. We have shown that the stochastic version of the strictly

local model corresponds well with its diffusion limit for high particle numbers. We

have studied the efficiency of jump strategies for a constant and consumed resource

environment. Under constant resource the long-jump strategy is the most effective

if particles are located far from the resource, whereas, a short-jump strategy is

better for the particles localised near the resource. For a consumed resource, if the

particles perform short and long jumps types at rate that decrease with respect to

the resource, they can consume it in a short amount of time. We have also applied

the multiple-jump strictly local model to glioma invasion. The model takes into

consideration the heterogeneity of brain tissue, with the probability of invasion per

unit time depending on the brain components. The model shows that brain tissue

with significant density of axons gives the highest glioma invasion.
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Conclusion and future work

The focus of this thesis has been divided into two components: modeling the go-

or-grow mechanism of glioma cells under competition from healthy brain cells and

modelling multi-jump-length random walks for movement under multiple resources.

5.1 Conclusion

• In Chapter 2 we reviewed some basic mathematical analysis and applied them

to an ODEmodel to describe healthy-mutated cells interaction. The model was

extended to cover the spatial dynamics of interaction and study how travelling

wave solutions depended on model parameters. Numerical and analytical ap-

proaches were used to investigate the models. Simulating in vivo and in vitro

scenarios, the results showed the importance of competition from healthy cells

on controlling the invasion of tumour.

• In Chapter 3 we proposed a simple mathematical model based on the go-or-

grow hypothesis for gliomas. The model built on an earlier model developed

by Pham and others [91]. We have studied the model under constant and

density dependent forms of probability for switching between proliferative and

migratory cells phase. Simulations and stability analysis were performed for

spatial and non-spatial versions of the model. The results suggest that in-

creasing the probability of entering a migratory state may delay the rate at

which a tumour overcomes the normal cells. Under density-dependent forms
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we found that a decreasing switch function with the total density results in

a greater proportion of proliferating cells in the system, and vice versa for

increasing switching functions. Analysis into wave speeds indicates invasion

of the tumour increases as the probability of switching to migratory cell in-

creases until the probability of being in migratory state is equal to stationary

state and then the wave speed starts to decrease. The results also showed the

competition parameter of normal cells is the critical factor for reducing the

invasion of tumour cells, as in simpler models.

• In Chapter 4 we presented a new framework for modelling movements of differ-

ent characteristic lengths through a biased random walk in response to multiple

resources. The model considered different hypotheses for movement based on a

variety of local and nonlocal sensing strategies. We have investigated different

strategies of movement with respect to some resource, and examined which

strategy would allow a population to most efficiently search out its environ-

ment. Our results indicated that for static resources, a long-jump strategy

is the most effective if particles are located far from the resource, whereas a

short-jump strategy is better for the particles localised near the resource. For

a consumed resource, if by performing movement at a rate that decreases with

respect to the resource, they can quickly locate and consume it. We have also

used a strictly local model to describe the invasion of glioma cells along dif-

ferent brain structures. The modelling suggests that brain tissue with a high

density of axon can accelerate invasion.

5.2 Future work

Here we briefly outline some areas for future work.

5.2.1 Go-or-grow model extensions

• In our investigation in Chapter 3 we considered increasing and decreasing

functions for a probability switch to migratory state. These switching forms
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represent the pressure of the population [82] and contact inhibition [1] on cell

motility respectively. Therefore, we could combine these hypotheses together:

i.e cells become more migratory in a sparse environment (low density) and in a

crowded environment (high density). Consequently, a bimodal function could

be another possibility to describe the switch to migratory state.

• The outcome of our study of go-or-grow model within competition with nor-

mal/healthy cells showed the importance of the competitive nature of normal

cells on the glioma cells in reducing the invasion of tumour, where the competi-

tion could arise from aspects such as limited nutrient supply or space. However,

competitive interactions were not directly included into the migrating glioma

cell population: we had an indirect competition, via the competition terms in

the proliferating glioma cells, which would in turn lead to a reduced pool from

which migrating cells could potentially arise. A more explicit representation

of competition here would be to include the impact on migrating glioma cells

of competition for, for example, space. One way to model this would be to

add an additional term to equation (3.3) such as

∂n

∂t
= r1n(1− n

k1

− a1
p+m

k2

);

∂p

∂t
= r2p(1−

p+m

k2

− a2
n

k1

)− φ[α(s)p− (1− α(s))m];

∂m

∂t
= Dm

∂2m

∂x2
+ φ[α(s)p− (1− α(s))m]− a3n

p+m

k2

.

(5.1)

where the above equations include new parameter a3 representing the compe-

tition of normal cells on migrating glioma cells.

• We remark that migrating cells may be less sensitive to therapy than prolifer-

ating cells [72] and have the capacity to infiltrate and invade the brain along

myelinated fiber tracts in the white matter [43]. Consequently, malignant

tumours are generally found to recur following the original treatment phase.

Therefore, an interesting development would be to investigate the go-or-grow

mechanism under the effectiveness of treatment. For example, do different

switching responses to cell densities create different responses to therapy? As
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an example, if cells are more likely to switch into migrating cells at low densi-

ties, then therapies that reduce the cell density could trigger a greater switch

into proliferating type and consequently accelerate invasion. Therefore, ex-

tending the model to include terms to describe treatment would be of interest.

For instance: we assume proliferative tumour cells die due to chemotherapy.

Therefore, we introduce a death term into equation (3.3) as follows

∂n

∂t
= r1n(1− n

k1

− a1
p+m

k2

);

∂p

∂t
= r2p(1−

p+m

k2

− a2
n

k1

)− φ[α(s)p− (1− α(s))m]−
death due chemotherapy︷ ︸︸ ︷

K(t)p ;

∂m

∂t
= Dm

∂2m

∂x2
+ φ[α(s)p− (1− α(s))m].

(5.2)

Where K(t) is the temporal profile of the treatment.

• So far the parametrisation has been very minimal, but obviously there could

be some modelling to investigate more realistic parameters. For example,

different grades of tumours (e.g. high grade or low grade) can be modelled

by different diffusion/proliferation rates [116, 14], and a more detailed study

could look at a far more careful parametrisation of the model.

• It is believed that tumour aggressiveness is correlated with increasing glucose

uptake [100]. However, upregulation of glycolysis leads to increasing the acid-

ity of the microenvironment, and tumour cells in acidic environments promote

unconstrained proliferation and invasion [40]. Furthermore, hypoxia and aci-

dosis occur frequently, resulting in subsequent spread into regions of normal

acidity [35]. Therefore, we could also link the competition in the model to the

acidity of the environment. Further, we could incorporate the level of oxygen

as a variable, along with how this will heterogeneously vary with the level of

blood vasculature: the vascular supply to different brain regions is heteroge-

neous, with large differences in the capillary density and arrangement existing

between grey and white matter or among the various brain region [9, 99].

• Analytically, we have performed a numerically based approach to studying
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travelling wave speeds. It could therefore be interesting to try more formal

mathematical analysis, perhaps by looking at simpler systems.

5.2.2 Multi-step jump models for movement extensions

• In our resource based study we have considered just one control species u.

However, we could consider multiple resources in the environment, which could

have different degrees of benefit (e.g high/low nutrient value). Therefore,

the transition rate of jumps will depend on more than one control species

τ i(u1, u2, ...).

• We could connect the model more formally to a specific ecological system,

for example insects, where we may be able to find data on the frequency and

length of different movements. Also, one could perhaps extend the model

to bring in population dynamics or the impact of population densities: for

example, if the population becomes one of the control species (i.e τ i(u, p)),

one could investigate when is it better to be a more adventurous individual

that moves away from a decent but crowded resource, i.e. where one has to

compete with others, to make a long distance move to somewhere that may

prove to be better (i.e. less crowded and decent resource) or worse (i.e. poor

resource).

• We have also only focused on the strictly local model in our analysis, but

clearly a more detailed approach would examine the impact of the different

methods for sensing the environment, and how this determines what type of

jumping strategy would be better.

• We also considered the control species as either a constant or decaying func-

tion. However, the resource can also grow and extension to consider its growth

dynamic could be of interest. Moreover, a competition of two or more pop-

ulation types that perform different jump strategies can be considered as a

future investigation. An example of this in nature would be the consumption

of small fishes by eagles or larger fishes. For instance: we propose a model of
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fish (F) as our control species, and two competing populations, eagles (E) and

larger fish (L) as following

∂F

∂t
= growth + movement− death by E− death by L;

∂E

∂t
= d

m∑
i=1

[i2
∂2(τ i(F )E)

∂x2
] + growth− competition with L;

∂L

∂t
= d

n∑
j=1

[j2∂
2(τ j(F )L)

∂x2
] + growth− competition with E.

(5.3)

Where i and j represent multi step jumps.

• Further investigation of the data of sharks movement could also be performed

to examine whether the multi-length jump model gives the same result for

Levy flight model [57], or more carefully compare how they differ.

• We have briefly studied glioma movement along different environmental struc-

tures. This would, of course, be hugely benefited by a much more careful

parametrisation. For example, from some of the experimental studies it may

be possible to evaluate how average movement steps vary according to whether

the individual cell is moving along capillaries, axons.

• Another interesting direction would be to combine the work on multi-step

jump processes with the competitive model for glioma invasion. For example,

we could model a population of normal cells which compete with a population

of glioma cells that switch between proliferating and migrating phenotypes

according to the go or grow hypothesis. In this case, the density of normal and

glioma cells in the environment (or the degree of competition between them)

could lead to both an increased probability of becoming a migratory cell and

an increased probability of subsequently performing a long range jump.

∂p

∂t
= d

m∑
i=1

[i2
∂2(τ i(u,n)p)

∂x2
] + r1p(1− p/k1),

∂n

∂t
= d

m∑
j=1

[j2∂
2(τ j(u)n)

∂x2
] + r2n(1− n/k2).

(5.4)

Here i and j represent multi step jumps.
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• Clearly, a more careful modelling of the heterogeneity of the brain would be of

interest: for example, DTI imaging can give information on the arrangement of

axons while other imaging techniques can give rise to a picture of the vascula-

ture levels as an example, microcomputed tomography (micro-CT). Therefore

movement to either a 2D or 3D model (along the lines of Swanson et al [115])

to investigate the heterogeneous spread of tumours and how it varied across

the different regions of the brain would be an exciting study: previous work

has tended to focus on just the grey/white matter distinction, but clearly

incorporating the variable vasculature arrangement could be crucial to the

overall spread. Also, given that the vasculature arrangement is changed by

the tumour (via angiogenesis), one could potentially make the capillary den-

sity a dynamic control species, boosted by the tumour and hence facilitating

the path of invasion.
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Steady States And Linear Stability

Analysis Of First and Second Order

ODEs

A.1 Steady states and linear stability analysis of

first order ODE

We review stability analysis for a general first order ordinary differential equation

(ODE), and then apply it to the equation (2.2). Consider the general form equation

for the first order ODE

ut = f(u), (A.1)

with initial condition

u(0) = u0,

we say u∗ is steady state if the condition f(u∗) = 0 is satisfied.

We linearize equation (A.1) around the steady state u∗ by u = u∗ + ε, where ε

is very small. Hence, using Taylor expansion

f(u) = f(u∗ + ε) = f(u∗) + εf
′
(u∗) + h.o.t
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where h.o.t is an abbreviation for higher order terms. Then

dε

dt
= εf

′
(u∗),

which has solution ε(t) = ε0e
f
′
(u∗). It is clear that the long term behaviour of the

solution is depend on the sign of f ′(u∗). If f ′(u∗) > 0 then, close to steady state, ε is

exponential increasing as t −→∞, and the steady state u∗ is unstable. Whereas, If

f
′
(u∗) < 0 the steady state is stable since ε is exponential decreasing to zero ε −→ 0

as t −→∞.

A.2 Steady states and linear stability analysis of

second order ODE

Linear stability analysis extends naturally to the case of two (or more) species.

Consider first the general system of two first-order ordinary differential equations:

dx

dt
= f(x, y),

dy

dt
= g(x, y),

(A.2)

to be solved with two initial conditions

x(0) = x0, y(0) = y0

Suppose x∗ and y∗ are steady states, i.e.

f(x∗, y∗) = 0,

g(x∗, y∗) = 0.

We consider perturbations x̃ = x − x∗ and ỹ = y − y∗, substitute into the above

equations (A.2) and expand the RHS terms as a Taylor’s expansion. Ignoring the
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non-linear terms, we obtain
dx

dt
= fxx̃+ fyỹ,

dy

dt
= gxx̃+ gyỹ,

where fx = ∂f
∂x
|x∗ ,y∗ , fy = ∂f

∂y
|x∗ ,y∗ ,gx = ∂g

∂x
|x∗ ,y∗ and gy = ∂g

∂y
|x∗ ,y∗ .

In Matrix form

d

dt

x̃
ỹ

 =

fx fy

gx gy


x̃
ỹ

 = J

x̃
ỹ

 ,

where J is the Jacobian matrix.

Solutions of the linearised equations have the form (x̃, ỹ) ∼ cstw1.e
λ1t+cst.w2e

λ2t

where λ1,2 are the eigenvalues and w1,2 are the eignvector of J . If the real part of (

λ1,2) < 0, our perturbations will decay to zero and the steady state is linearly stable.

We can determine the sign of the eigenvalues from the characteristic equation of

J

λ2 − βλ+ γ = 0⇒ λ = 1/2(β ±
√
β2 − 4γ).

Hence for Re(λ) < 0 we need β < 0 & γ > 0 where β = tr J , γ = det J .

A.3 Travelling waves in Fisher’s equation

Fisher’s equation (2.10) is considered as one of the simple examples of nonlinear

reaction diffusion equation. It was suggested by Fisher [33], and, while it has has no

analytical solution in general, it is easy to solve numerically and obtain analytical

solutions near the steady states. The advantage of using this equation lie in its abil-

ity to generate travelling wavefront solutions (constant shape and speed). Fisher’s

equation is given by
∂u

∂t
= D

∂2u

∂x2
+ ru(1− u), (A.3)
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where D is the diffusion coeffiant and rc(1− c) describes logistic growth. To analyse

travelling waves we rescale with

t∗ = rt, x∗ = x

√
r

D
,

to obtain the dimensionless form with carrying capacity k = 1,

∂u

∂t
=
∂2u

∂x2
+ u(1− u). (A.4)

The above equation has two uniform steady states: an unstable steady state u = 0

and a stable steady state u = 1. For travelling waves, the shape and speed c of the

solution u(x, t) is constant. We therefore introduce the wave variable z, and assume

travelling waves, i.e:

u(x, t) = U(x− at) = U(z), z = x− ct.

With this, the partial differential equations in x and t becomes a second order

ordinary differential equation in z:

U ′′ + cU ′ + U(1− U) = 0, (A.5)

where the primes denote differentiation with respect to z. For travelling waves

connecting (1, 0) and (0, 0), we set

lim
z→∞

U(z) = 0, lim
z→−∞

U(z) = 1.

To analyse this system we explore the (U, V ) phase plane, where

U ′ = V, V ′ = −cV − U(1− U).

This system of two ordinary differential equations has two steady states (0, 0) and

(1, 0). A linear stability shows that for the (0, 0) steady state the eigenvalues λ are
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given by

λ± =
1

2
[−c± (c2 − 4)1/2]⇒


stable node if c2 ≥ 4

stable spiral if c2 < 4

.

For the (1, 0) steady state, the eigenvalues λ are given by

λ± =
1

2
[−c± (c2 + 4)1/2]⇒ saddle point.

We see the origin (0, 0) is a stable node if c ≥ cmin = 2 and from the phase plane

sketch (see Figure A.1) a trajectory from (1, 0) to (0, 0) that lies entirely in the

quadrant U ≥ 0, U ′ ≤ 0 only occurs for wave speeds c ≥ cmin = 2. Hence, this gives

a minimum wave speed for biologically realistic solution.

Figure A.1: Phase plane trajectories.

In the original dimensional equation (2.10) the wave speed satisfy

c ≥ cmin = 2
√
rD. (A.6)

There are travelling wave solution for the origin (0, 0) if a < 2 but they are

(biologically) unrealistic since in this case we have spirals and hence negative solution

values. The dependence of the wave speed c on the initial conditions has been widely

studied. For example, Kolmogoroff et al. proven that if the initial condition u(x, t)

has compact support, then the solution u(x, t) of evolves to a travelling wavefront

solution U(z) at the minimum speed cmin = 2. For other initial conditions the

solution depends on the behaviour of u(x, 0) as x→ ±∞.
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Multi step jumps of movement

models

B.1 Local average & Nonlocal average

The local average models are based on the assumption that transition rates depend

on the average information between the current and target node.

B.1.1 Local average model

Local average implies that the individual does a small amount of sampling both

locally and nearby, but then still does a leap into the unknown. The jump of

particle at node x to node x± i depends on the average information of the control

species between the current and nearest neighbour, in the direction of the target

node as described below:

τ+1
x (u) = τ1(

1

2
(ux + ux+1)); τ−1

x (u) = τ1(
1

2
(ux + ux−1));

τ+2
x (u) = τ2(

1

2
(ux + ux+1)); τ−2

x (u) = τ2(
1

2
(ux + ux−1));

τ+i
x (u) = τi(

1

2
(ux + ux+1)); τ−ix (u) = τi(

1

2
(ux + ux−1)).
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Similarly, at site x± i:

τ+1
x−1(u) = τ1(

1

2
(ux−1 + ux)); τ−1

x+1(u) = τ1(
1

2
(ux+1 + ux));

τ+2
x−2(u) = τ2(

1

2
(ux−2 + ux−1)); τ−2

x+2(u) = τ2(
1

2
(ux+2 + ux+1));

τ+m
x−m(u) = τm(

1

2
(ux−m + ux−(m−1))); τ−mx+m(u) = τm(

1

2
(ux+m + ux+(m−1))).

We provide a scaling of the transition rates τ i = λτ i, and take the limit

limλ→∞,h→0λh
2 = d,

to obtain the diffusion equation:

∂p

∂t
= d

m∑
i=1

[(i2 − i)p∂
2τi(u)

∂x2
+ (2i2 − i)∂τ

i(u)

∂x

∂p

∂x
+ i2τi(u)

∂2p

∂x2
. (B.1)

B.1.2 Nonlocal average model

The nonlocal average model implies that individuals have a capacity to detect the

environment where it plans on moving to (e.g. a cell that extends filopodia or an

animal that visually spies the site). The jump of a particle at node x to node x± i

depends on the average information of the control species between the current and

target node as described below:

τ+1
x (u) = τ(

1

2
(ux + ux+1)); τ−1

x (u) = τ(
1

2
(ux + ux−1));

τ+2
x (u) = τ(

1

2
(ux + ux+2)); τ−2

x (u) = τ(
1

2
(ux + ux−2));

τ+m
x (u) = τ(

1

2
(ux + ux+m)); τ−mx (u) = τ(

1

2
(ux + ux−m));

Similarly at site x± i:

τ+1
x−1(u) = τ(

1

2
(ux−1 + ux)); τ−1

x+1(u) = τ(
1

2
(ux+1 + ux));
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τ+2
x−2(u) = τ(

1

2
(ux−2 + ux)); τ−2

x+2(u) = τ(
1

2
(ux+2 + ux));

τ+m
x−m(u) = τ(

1

2
(ux−m + ux)); τ−mx+m(u) = τ(

1

2
(ux+m + ux)).

We provide a scaling of the transition rates τ i = λτ i, and take the limit

limλ→∞,h→0λh
2 = d,

to obtain the diffusion equation

∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τi(u)

∂p

∂x
]. (B.2)

B.2 Local neighbour & Nonlocal neighbour models

The neighbour models are based on an assumption that the transition rates depend

only on the information at the target jump site. Here we assume two different

scenarios of neighbor based models as follows:

B.2.1 Local neighbour model

Here, the jump of a particle at node x to node x ± i is assumed to depend on

the control species at the nearest neighbour in the direction of the arrival point as

described below:

τ+1
x (u) = τ(ux+1); τ−1

x (u) = τ(ux−1);

τ+2
x (u) = τ(ux+1); τ−2

x (u) = τ(ux−1);

τ+m
x (u) = τ(ux+1); τ−mx (u) = τ(ux−1).

Similarly at site x± i:

τ+1
x−1(u) = τ(ux); τ−1

x+1(u) = τ(ux);

τ+2
x−2(u) = τ(ux−1); τ−2

x+2(u) = τ(ux+1);
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τ+m
x−m(u) = τ(ux−(m−1)); τ−mx+m(u) = τ(ux+(m−1)).

We substitute the new form of τ in the master equation (4.1) and expand the RHS

using Taylor series. Taking the same scaling as previously, we obtain the following

equation for multiple jumps of length i = 1, .....,m for the local neighbour model:

∂p

∂t
= d

m∑
i=1

[i2τ(u)
∂2p

∂x2
+ 2(i2 − i)∂τ

∂x

∂p

∂x
+ (i2 − 2i)p

∂2τ

∂x2
]. (B.3)

B.2.2 Nonlocal neighbour model

Here, the jump of a particle at node x to node x ± i is assumed to depend on the

control species at the arrival point x± i as described below:

τ+1
x (u) = τ(ux+1); τ−1

x = τ(ux−1);

τ+2
x (u) = τ(ux+2); τ−2

x = τ(ux−2);

τ+m
x (u) = τ(ux+m); τ−mx = τ(ux−m).

Similarly at site x± i:

τ+1
x−1(u) = τ(ux); τ−1

x+1 = τ(ux);

τ+2
x−2(u) = τ(ux); τ−2

x+2 = τ(ux);

τ+m
x−m(u) = τ(ux); τ−mx+m = τ(ux).

We substitute the new form of τ into the master equation (4.1) and expand the RHS

using Taylor series. We take the standard scaling of the transition rates as before:

τ i = λτ i and take the limit limλ→∞,h→0λh
2 = d. We obtain the following diffusion

equation for multiple jumps of length i = 1, .....,m for the nonlocal neighbour model:

∂p

∂t
= d

m∑
i=1

[i2
∂

∂x
(τ(u)

∂p

∂x
− p∂τ(u)

∂x
)]. (B.4)
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B.3 Local gradient & Nonlocal gradient models

In this models the transition rate depends on the difference between the density

of control species at the current and target node. Here we also have two different

scenarios:

B.3.1 Local gradient model

The local gradient model is based on the assumption that the transition rates de-

pends linearly on the difference between the density of control species at the current

node and the nearest neighbour in the direction of the arrival node . In one space

dimension the transition rate can be written as :

τ+1
x = a1 + b1(τ(ux+1)− τ(un)); τ−1

x = a1 + b1(τ(ux−1)− τ(ux));

τ+2
x = a2 + b2(τ(ux+1)− τ(un)); τ−2

x = a2 + b2(τ(ux−1)− τ(ux));

τ+m
x = am + bm(τ(ux+1)− τ(un)); τ−mx = am + bm(τ(ux−1)− τ(ux)).

Similarly at site x± i:

τ+1
x−1 = a1 + b1(τ(ux)− τ(ux−1)); τ−1

x+1 = a1 + b1(τ(ux)− τ(ux+1));

τ+2
x−2 = a2 + b2(τ(ux−1)− τ(ux−2)); τ−2

x+2 = a2 + b2(τ(ux+1)− τ(ux+2));

τ+m
x−m = am+bm(τ(ux−(m−1))−τ(ux−m)); τ−mx+m = am+bm(τ(ux+(m−1))−τ(ux+m)).

In the above, τ : Rk → R, and a1,...,m ≥ 0 and b1,...,m are constants. We assume a

scaling of the transition rates τ i = λτ i and take the limit

limλ→∞,h→0λh
2 = d,

to obtain the diffusion equation

∂p

∂t
= d

m∑
i=1

[aii
2 ∂

2p

∂x2
− 2ibi

∂

∂x
(
∂τ i

∂x
p)]. (B.5)
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B.3.2 Nonlocal gradient model

Here, the transition rates depend on the difference between the density of the control

species at the current node and the arrival node . For a linear dependence gradient

in one space dimension, we assume the transtion rate at site x are as follow:

τ+1
x = a1 + b1(τ(ux+1)− τ(ux)); τ−1

x = a1 + b1(τ(ux−1)− τ(ux));

τ+2
x = a2 + b2(τ(ux+2)− τ(ux)); τ−2

x = a2 + b2(τ(ux−2)− τ(ux));

τ+m
x = am + bm(τ(ux+m)− τ(ux)); τ−mx = am + bm(τ(ux−m)− τ(ux)).

Similarly at site x± i:

τ+1
x−1 = a1 + b1(τ(ux)− τ(ux−1)); τ−1

x+1 = a1 + b1(τ(ux)− τ(ux+1));

τ+2
x−2 = a2 + b2(τ(ux)− τ(ux−2)); τ−2

x+2 = a2 + b2(τ(ux)− τ(ux+2));

τ+m
x−m = am + bm(τ(ux)− τ(ux−m)); τ−mx+m = am + bm(τ(ux)− τ(ux+m)).

In the above, τ : Rk → R, and a1,...,m ≥ 0 and b1,...,m are constants. We scale of the

transition rate and introduce the limit limλ→∞,h→0λh
2 = d to obtain the diffusion

equation:
∂p

∂t
= d

m∑
i=1

[aii
2 ∂

2p

∂x2
− 2bii

2 ∂τ

∂x

∂p

∂x
− 2bii

2 ∂
2τ

∂x2
p]. (B.6)
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