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ABSTRACT 

Application of Terrestrial Laser Scanning (TLS) technology in the Architectural 

Engineering and Construction (AEC) industry is gaining popularity because the 

technology uniquely offers the means to create as-built three-dimensional (3D) models 

of existing facilities, and conduct construction project progress and dimensional quality 

measurements. An open challenge with regard to the use TLS for such applications is to 

efficiently generate effective scanning plans that satisfy pre-defined point cloud quality 

specifications. Two such specifications are currently commonly used: Level of 

Accuracy (LOA) that focuses on individual point precision, and Level of Detail (LOD) 

that focuses on point density. Given such specifications, current practice sees 

professionals manually prepare scanning plans using existing 2D CAD drawings, some 

ad-hoc rules (of thumb), and their experience. Yet, it is difficult to manually generate 

and analyse laser scanning plans to ensure they satisfy scanning quality specifications 

such as those above. Manually-defined plans may easily lead to over-scanning, or worse 

under-scanning with incomplete data (which may require the team to go back on site to 

acquire complementary data).  

To minimize the risk of producing inadequate scanning plans, some semi-automated 

and automated methods have been proposed by researchers that use the 3D (BIM) 

model generated during the design stage. These methods take consideration for LOA 

and LOD. However, these are point-based specifications that do not guarantee that a 

sufficient amount of the surface of each object is covered by the acquired data, despite 

this aspect being important to many of the applications for which TLS is employed (e.g. 

modelling existing facilities).  

Therefore, this research uniquely proposes a novel planning for scanning quality 

specification, called Level of Surface Completeness (LOC) that assesses point cloud 

quality in terms of surface completeness. In addition, an approach is proposed for 

automatic planning for scanning in the AEC industry that takes both LOA and LOC 

specifications into account. The approach is ‘generic’ in the sense that it can be 

employed for any type of project. It is designed to generate automatic laser scanning 

plans using as input: (1) the facility’s 3D BIM model; (2) the scanner’s characteristics; 

and (3) the LOA and LOC specifications. The output is the smallest set of scanning 

locations necessary to achieve those requirements.  



The optimal solution is found by formulating the problem as a binary integer 

programming optimization problem, which is easily solved using a branch-and-cut 

algorithm. To assess the performance of the approach, experiments are conducted using 

a simple concrete structural model, a more complex structural model, and a section of 

the latter extended with Mechanical Electrical and Plumbing (MEP) components.  

The overall performance of the proposed approach for automatic planning for scanning 

is encouraging, showing that it is possible to take surface-based specifications into 

account in automated planning-for-scanning algorithms. However, the experimental 

results also highlight a significant weakness of the approach presented here which is 

that it does not take into account the overlapping of surfaces covered from different 

scanning locations and thus may inaccurately assess covered surfaces. 

Keywords: Planning for Scanning, Terrestrial Laser Scanning, Construction Industry, 

BIM, 3D Point Clouds  
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CHAPTER 1:  INTRODUCTION 

1.1 Research Background 

1.1.1 3D Surveying Technology in AEC Industry 

Novel technologies are transforming the way activities, such as surveying, progress 

measurement process and creating as-built three dimensional (3D) models, are 

conducted in the Architectural Engineering and Construction (AEC) industry. 

Among those is 3D Terrestrial Laser Scanning (TLS), a surveying technology that 

uses laser to measure the 3D surfaces of objects densely, automatically and 

efficiently.  TLS thus enables the rapid and accurate acquisition of the as-is (as-built) 

state of projects, and is particularly advantageous in the cases of inaccessible or 

hazardous environments [1]. For all these reasons, TLS has been rapidly gaining 

popularity [2-8].  

1.1.2 BIM and its Convergence with TLS  

Building information modelling (BIM) is a modern solution to support the 

collaborative design and management of building projects over their entire lifecycle. 

The uptake of BIM is growing rapidly internationally, sometimes with governments 

taking the lead by mandating its use, such as in the UK [9]. BIM is revolutionizing 

the way the AEC industry operates. At the heart of BIM is the Building Information 

Model (hereafter BIM model) that is a virtual representation of the physical and 

functional characteristics of the facility, creating a shared source of information for 

decision making by project delivery and operation teams. 

Numerous researchers have highlighted the convergence between TLS (and similarly 

other reality capture technologies) and BIM [10-13]. The integration of TLS and 

BIM could improve the delivery of as-built BIM models as well as the control of 

construction quality and progress. Scan-to-BIM (creating a 3D BIM model from a 

reality point cloud) and Scan-vs-BIM (comparing a reality point cloud with a 3D 

BIM model) are the two approaches that are increasingly referred to in relation to 

these applications [14-16]. 
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1.1.3 Planning for Scanning 

Although 3D measuring technologies are changing the AEC industry in terms of 

design, construction control and visualization, the applications they support, such as 

Scan-to-BIM or Scan-vs-BIM, require that the point cloud data be of sufficient 

quality, for example in terms of point precision, or point density. Notwithstanding, 

conducting scanning operations is time-consuming and expensive, so it is important 

that the point cloud data be acquired in an efficient manner, that is with the minimum 

number of scans possible. These requirements altogether demonstrate the need for 

planning for scanning.  

Planning for scanning can be formally defined as: the process of defining the optimal 

set of scanning locations to capture the desired objects while satisfying various 

scanning criteria and specifications. Planning for scanning in construction is 

commonly conducted by professional surveyors, in an ad-hoc manner, based on 

experience (tacit knowledge), and even sometimes simply upon arrival on site [17-

20]. Figure 1 shows two laser scanning plans as typically generated manually by a 

professional surveyor using a Computer Aided Design (CAD) drawing of the facility. 

The problem with such approach is that it may inadequately consider critical factors 

that can impact TLS data quality, such as incidence angle or surface materials. 

Furthermore, this process is typically conducted in 2D, which may lead to additional 

issues being overlooked, such as 3D occlusions of external objects on the ones of 

interest. Overall, current practice can lead to the following performance deficiencies: 

• Insufficiently precise scans: the acquired data has insufficient single point 

precision (i.e. uncertainty in each point’s 3D coordinates). Note that single 

point precision is the first metric currently widely used for specifying laser 

scanning jobs. Level of Accuracy (LOA) is the formal term used to refer to 

this specification.   

• Insufficiently dense scans: the acquired data has insufficient point density 

(i.e. space between points). Note that point density is the second metric 

currently widely used for specifying laser scanning jobs. Level of Density 

(LOD) is the formal term used to refer to this specification. 

• Under-scanning (incomplete data): the acquired data insufficiently covers 

the surface of some objects of interest. This can be important to confidently 

and accurately model that object. For example, to confidently and accurately 
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model a pipe, data must be acquired all along its length and for a large 

portion of its curvature [21]. An important observation is that current practice 

does not consider any sort of specification regarding surface completeness. 

The author suggests to refer to such (at this stage hypothetic) specification as 

Level of Surface Completeness (LOC). 

• Over-scanning (over-complete data): in contrast, the acquisition of an 

unnecessary number of scans can result in an unnecessarily large dataset that 

has to be processed, which can take time (and significant computing 

resources). Since laser scanning should be conducted in clean, non-intruded 

environments, over-scanning also means that other activities that need to 

occur in that environment must be delayed an unnecessarily long time. Over-

scanning is commonly due to the limitations of current practice for planning 

for scanning mentioned above. Indeed, to prevent the risk of having 

insufficiently precise data, insufficiently dense data and/or insufficiently 

covered surfaces, surveyors are likely to conduct many more scans than 

would actually be necessary if more accurate planning for scanning methods 

were available.  

The issues above indicate that there is a need for more scientific and robust 

approaches to planning for scanning in construction. 
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Figure 1. Low-level and high-level scanning plan 

A few authors have already attempted to develop more scientific methods to 

planning for scanning, some using existing (e.g. as-designed) facility 3D BIM 

models [4, 5, 19, 20].  But, a detailed review of these methods (see Chapter 2) shows 

that there is no fully automatic planning for scanning method that (1) achieves a 

global optimization, (2) is ‘generic’ in the sense that it is not developed to be used in 

only certain contexts, and (3) that takes LOC specifications into account. This study 

contributes a novel solution that aims to fill this gap. 

1.2 Research Aim and Objectives 

The aim of this research is to investigate, implement and validate an approach for 

automatic planning for scanning in the context of the AEC industry. This novel 

approach shall automatically generate an optimal laser scanning plan (i.e. the 

minimum necessary scanning locations) given scanning specifications and an (as-

designed) 3D BIM model of the facility to be scanned. The approach shall not be 

specific to a certain type of 3D structure so that it can be applied in a wide range of 

construction contexts. The approach shall also achieve a global optimisation, i.e. 

without starting with a manually pre-defined set of scanner locations. This is 

important because manually pre-defining a set of locations is a very hard problem 

requiring significant expertise. In fact, that process alone would suffer from the same 
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limitations that entirely manual approaches suffer from (insufficiently precise scans, 

under-scanning, over-scanning), and so it would not constitute a valuable solution to 

the identified problem. It is thus important that new approaches for planning for 

scanning seek to achieve global optimisation. In terms of scanning (quality) 

specifications, the approach shall uniquely take into account an LOC specification 

that defines scanning quality in terms of covered surface per object. As mentioned 

earlier, LOC is a new type of specification proposed by the author that is not 

considered in current practice (despite its clear value) and that has not been 

considered by any previous research. Ultimately, this approach shall improve the 

efficiency and quality of the acquisition of point clouds employed in Scan-to-BIM 

and Scan-vs-BIM processes.  

In order to achieve this aim, the following objectives are identified:  

I. Review the key subjects related to the identified planning-for-scanning 

problem in the construction industry in particular BIM and TLS technologies, 

and explore how similar problems may have been investigated in other 

industries.   

II. Design a mathematical model for optimizing the 3D scanning operations, i.e. 

establishing an optimal scanning plan given the design BIM model as well as 

LOA and LOC specifications for objects of interest.  

III. Implement the developed solution in a prototype system and validate the 

performance of the proposed model experimentally. 

1.3 Research Scope 

This research focuses on the problem of automatic planning for scanning in the 

context of the AEC industry (not in other domains such as in manufacturing). In 

addition this research aims to develop an approach that is generic to any construction 

context, not specific cases such as straight tunnels with circular cross-sections in [4].  

1.4 Methodology 

To gain a better understanding of the identified problem (Objective I), a thorough 

literature review is conducted to find and assess existing research that directly relates 

to the identified problem, and to explore existing research that partially relates but 
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may contribute to solving the problem. Various databases are explored, including 

journal articles, e-books, and other library and Internet resources. 

Objective II is achieved by designing a (theoretical) mathematical model for globally 

optimizing the positioning of the laser scanner given the input project’s as-planned 

3D BIM model, scanning goals, scanner characteristics and scanning LOA and LOC 

specifications. 

To achieve Objective III, a prototype software package is implemented to 

demonstrate, validate and assess the performance of the proposed approach. To 

design this prototype, open source libraries and software are considered. The 

performance of the proposed approach is assessed experimentally in terms of 

effectiveness, efficiency and robustness using realistic case studies. For this, 

quantitative metrics are used alongside with some more qualitative assessment. 

1.5 Thesis Structure 

The thesis consists of six chapters. The first chapter (the current one) provides a 

general background to the research leading to the identification of the research need. 

The research aim, objectives and scope are then defined, together with a brief 

discussion on the research methodology.  

Chapter 2 presents the detailed literature review on BIM, Terrestrial Laser Scanning 

(TLS) and planning for scanning. This literature review further clarifies the research 

gap, i.e. the need for improved methods for planning for scanning in the AEC 

industry.  

Chapter 3 presents and justifies the research methodology designed to achieve all 

objectives, in particular Objectives II and III. The proposed novel approach for 

planning for scanning is then presented in Chapter 4. 

A prototype software package implementing the proposed optimization approach is 

presented and detailed experimental results reported and analysed in Chapter 5.  

Finally, Chapter 6 summarises the research contributions and provides 

recommendations for future works. 
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CHAPTER 2:  LITERATURE REVIEW 

This Chapter presents a comprehensive review of literature. First, the chapter reviews 

technologies recently introduced to the AEC and Facilities Management (AEC&FM) 

industry to increase the efficiency and quality control of construction projects. 

Building Information Modelling (BIM) is reviewed in Section 2.1. Section 2.2 

initially discusses Terrestrial Laser Scanning (TLS) and its application, particularly 

in relation to BIM. It then reviews point cloud quality specifications typically 

considered in the AEC&FM sector, and conducts an analysis of the factors impacting 

TLS point cloud quality. Section 2.3 provides a detailed review of existing works in 

the field of planning for scanning, with specific focus on the AEC sector. Finally, 

Section 2.4 concludes this Chapter with an analysis of those prior works leading to 

the identification and articulation of the research need that this dissertation aims to 

address.         

2.1 Building Information Modelling (BIM) 

Building Information Modelling (BIM) is a rapidly growing procedural and 

technological change in the  AEC&FM industry [22]. It appeared in the 1970 with 

the development of information technologies for construction project management. 

BIM is an approach to digitally and collaboratively model and manage a construction 

project over its entire life cycle from briefing through to design, construction, 

operation and maintenance and finally repurposing or demolition [23, 24]. BIM aims 

to provide all stakeholders with a unique set of information that is interoperable 

among various technology platforms. There is no unilaterally agreed definition of 

BIM, but some organizations that have been playing crucial roles in its development 

do provide well-informed definitions. In particular, the British Standards Institution  

(BSI) defines BIM as “a suite of technologies and processes that integrate to form 

the system which is a component-based three dimensional (3D) representation of 

each building element” [25], while the international BuildingSMART organization 

defines it  as a “business process for exchanging building data and information to 

design, construct and operate the building during its lifecycle” [26]. BIM can assist 

in the development of a more integrated design and construction process that delivers 

better quality with predictable (even lower) cost and time.    
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The benefits of BIM are expected to be so significant that it has gained world-wide 

interest from both public and private organizations. In the UK, the government has 

mandated that all public projects be delivered with BIM Level 2 by 2016 [27]. The 

following sections detail what the BIM model is and review important applications 

of BIM in practice, particularly in conjunction with TLS.  

2.1.1 BIM Model 

The BIM model is a digital representation (a file, set of files or database) of a 

building that gathers all life-cycle information or data about it. The BIM model 

contains “all kinds of information, from spaces and geometry, to costs, 

programming, specifications and other information types” [28]. This includes 

geometry and other semantic information on performance, planning, construction and 

operation. Each building component is created from a product library and has 

embedded semantic information about it. BIM models significantly differ from CAD 

models as they are object-based with the particular implication that each of the 

objects has a type (e.g. wall, door, floor). In contrast, CAD models only contain 

geometric information, lacking any semantic information such as the type of each 3D 

object. 

Despite the great progresses made by present BIM technologies to enhance data 

management and communication in the AEC&FM sector, one important remaining 

challenge is the limited interoperability among data models produced by the 

numerous software packages that are used over the life cycle of projects and even 

within each one of its stages. To address this issue, the industry is looking to develop 

open data standards for data exchange and BIM modelling. The Industry Foundation 

Classes (IFC) is the most significant BIM open data standard (actually a set of 

standards) which is developed and promoted by BuildingSMART.   

2.1.2 Application of BIM 

BIM is aimed to support a wide range of tasks over a building’s life cycle. Some 

tasks commonly mentioned include quantity take-off, cost estimating and conducting 

energy consumption simulations. With BIM, these tasks can be efficiently 

(sometimes automatically) updated/repeated when changes are made to the BIM 

model. Such feature is not available to designers working with two-dimension (2D) 

or three-dimension (3D) CAD tools that produce drawings or other documents that 
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are merely disintegrated hand-offs lacking semantic information [29]. BIM also helps 

avoiding, or detecting and correcting, design conflicts, thereby helping project team 

members coordinate their discipline-specific models throughout the project [30-33].  

Many of these tasks are commonly referred to by the terms 4D, 5D and 6D BIM. By 

linking scheduling information (i.e. the dimension of time) to the 3D BIM model, a 

4D model is created that enables the simulation of the construction process and the 

identification of dynamic conflicts that would not be identifiable with the 3D model 

alone. The 5th dimension of BIM is commonly considered to be ‘cost’. The 

information required for facilities management, although wide in scope, is often 

collectively called the 6th dimension of BIM [34]. But, numerous additional 

‘dimensions’ may also be considered, leading to the BIM model effectively 

becoming an ‘nD model’. According to Eastman [29], BIM models could support the 

following applications:  

• Developing project specification information associated with each building 

components;  

• Data analysis related to performance levels and project requirements for 

procurement, fabrication and Mechanical, Electrical and Plumbing (MEP) 

services;  

• Progress tracking within the supply chain (procurement, installation and 

testing) by maintaining the design and construction status of every element 

digitally within the BIM model. 

Many of the applications of BIM, require the BIM model to be used in combination 

with various other technologies. For example, the following technologies have 

demonstrated huge improvements in material and resource management, cost 

monitoring, quality control, progress tracking and equipment operator training: 

• Radio Frequency Identification (RFID): This technology is used to receive 

and transmit data from tags fixed to components. RFID is useful for material 

identification and tracking.     

• Global Navigation Satellite System (GNSS): GNSSs provide global 

geographical positions with no infrastructure required beyond a receiver. Like 

RFID systems, GNSSs are used for tracking construction components, but 

also equipment, as well as for land surveying.  
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• Terrestrial Laser Scanning (TLS): TLS is also gaining popularity. It is a 3D 

imaging system to capture large scenes in the form of dense 3D point clouds. 

It is used on construction sites for example for as-is modelling of existing 

structures.  

Automatic progress tracking systems have been investigated by numerous 

researchers [10, 16, 35]. It is noted in [35] that, for effective project performance 

tracking, dynamic and reliable survey information is needed to enable effective 

comparison of the as-built state of projects against their as-planned (or as-designed) 

state [10, 36] (see Scan-vs-BIM in section 2.2.2.2). The 3D BIM model is 

increasingly used as representing the as-design state. Accurate TLS data is also 

required in the case a 3D (BIM) model has to be generated from scratch from a TLS 

point cloud of a given site (see Scan-to-BIM in section 2.2.2.1). These two 

applications (Scan-to-BIM and Scan-vs-BIM) highlight the convergence between 

TLS and BIM [14] and are discussed in more detail in Section 2.2.2.  

Section 2.2 below first describes the TLS technology and its application in the 

AEC&FM, and then more specifically analyses the potential value that can be 

derived from its integration with Building Information Modelling (BIM). This is 

followed by a discussion of the TLS data quality specifications currently used in the 

AEC&FM sector and the various factors that impact TLS data quality. 

2.2 Terrestrial Laser Scanning (TLS) 

TLS is a recent 3D surveying technology that is based on the latest laser technologies 

for distance measurement, and is increasingly used in the AEC industry since the 

beginning of the 21st century. TLS is valuable for its rapid acquisition of dense and 

accurate 3D point cloud data that can be used for measurement as well as accurate 

object modelling [37, 38]. 

2.2.1 TLS Principle 

There are different types of terrestrial laser scanners that differ by their distance 

measurement principles. Currently, three popular technologies are used:  time-of-

flight measurement, phase-based measurement (strictly speaking a form of time-of-

flight technology), and optical triangulation. Laser scanners used on construction 

sites employ either time-of-flight or phase-based principles (Figure 2). Phased-based 
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technology measures the phase shift between the emitted and return signal to 

establish the time of flight and therefore the distance travelled. In contrast, time-of-

flight technology measures the time taken for an emitted pulse to return to the 

scanner, and infers the distance travelled from that time. The different measurement 

principles used means that phase-based technology enables faster scanning but at 

limited range (under 100m). In contrast, time-of-flight technology allows scanning at 

distances of a kilometre and more, but has typically shown to be slower [37].   

 

Figure 2. TLS phase-based and time-of-flight principles [39] 

A terrestrial laser scanner is made up of two significant components, a laser probe 

and a two-axis pan-and-tilt mechanism device. As a result, a laser scanner natively 

acquires the position of each 3D point in spherical coordinates, i.e. with an azimuthal 

(horizontal) angle φ, a polar (vertical) angle θ and a range distance ρ (see Figure 3).  

Trigonometric functions are then used to transform the point’s spherical coordinates 

��, �, �� into Cartesian coordinates	�	, 
, ��. All those coordinates are provided in 

the inner coordinate system of the laser scanner. 
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Figure 3. Spherical coordinate system of a 3D point [40] 

2.2.2 Application and Uptake of TLS 

The use of TLS is growing fast in various industries as an alternative to traditional 

survey methods [2, 7, 8, 41].  For example, it is applied in the mining sector for 

volume calculations and in forensics investigations to record and analyse traffic 

accident scenes. In the construction industry, it is mainly used to create as-built or as-

is documentation (e.g. industry facility, housing, cultural heritage) [42]. But, its use 

is still growing with increasing interest for monitoring construction activities.  

Figure 4 illustrates the development of TLS technology in terms of scanning time, 

cost, quality and client value [43].  It shows that TLS was not much used before the 

1990’s (low client value), and this seems (in fact it was) correlated to its high cost, 

long scanning time and low data quality. The 1990s have however seen disruptive 

changes in the underpinning technologies which have led to simultaneous and 

dramatic improvements in data quality, acquisition time and cost, altogether resulting 

in the rapid uptake of TLS across industries [7, 8]. 



CHAPTER 2 :  LITERATURE REVIEW 

13 

 

Figure 4. Development and value of TLS technology over time [43]  

TLS is now increasingly used in the AEC sector for various applications. In 

particular, the integration of TLS and BIM could significantly improve design and 

construction performance. TLS technology is able to capture the as-is (including as-

built) 3D status of a construction project. TLS can thus be used to support the 

generation of 3D BIM models of existing facilities, a process commonly called Scan-

to-BIM. Furthermore, when an existing (e.g. as-designed) 3D BIM model of a facility 

is already available, then the TLS data can be compared to it to identify 

discrepancies, a process that can be called Scan-vs-BIM [16]. The following sections 

detail these two main types of processes that integrate TLS and BIM. 

2.2.2.1 Scan-to-BIM 

The process of creating a 3D BIM model from point cloud data is often called Scan-

to-BIM (Figure 5). In this process, recognizing and reconstructing objects from point 

clouds are very complex tasks due to the sizes of the points clouds and the vast 

quantities of information needed to describe the environment [44]. For this reason 
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current Scan-to-BIM techniques require significant manual operation [45]. However, 

significant research efforts are currently put in developing new algorithms and 

processes for at least semi-automating this process [10-12, 14, 15, 46].  

 

Figure 5. Illustration of the Scan-to-BIM process [47] 

2.2.2.2 Scan-vs-BIM 

The process consisting in comparing as-built TLS data with existing (e.g. as-

designed) BIM models can be called Scan-vs-BIM. According to Bosché [10], 

integrating TLS and  BIM in Scan-vs-BIM processes can be beneficial for progress 

and quality control, and even 3D as-build BIM model delivery. At the core of the 

Scan-vs-BIM process is the registration of TLS data in the coordinate system of the 

3D BIM model.  

The potential of Scan-vs-BIM approaches has been investigated in the case of 

structural work progress control, Mechanical Electrical and Plumbing (MEP) work 

progress control, tracking of temporary (e.g. scaffolds) or secondary (e.g. rebar in the 

case of concrete structures) objects, dimensional quality control both on-site and 

during pre-fabrication [10, 16, 48-52]. While encouraging results have been 

obtained, further developments remain under way to make those promising 

approaches more robust and efficient.  

One of the main constraints to the good performance of Scan-vs-BIM approaches for 

supporting the applications above (as-built/as-is BIM modelling, dimensional quality 
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control, etc.) is the quality and completeness of the input TLS data. The following 

sections detail the TLS data acquisition process, and the factors that can impact TLS 

data quality and completeness. 

2.2.3 TLS Point Cloud 

A laser scanner generates a collection of 3D points collectively called a point cloud 

[38]. A point cloud may be in the form of unorganized (or unstructured) 3D points, it 

may also be in the form of organized 3D points (within a 2D matrix), in which case it 

is often called a range image; in a 2D range image, each ‘pixel’ corresponds to one 

3D points, with the pixel location in the image corresponding to a unique scanning 

direction defined by a pair of azimuthal and polar angles, and the pixel value is the 

range. Laser scanned 3D points are described at least by three coordinates (x, y, z) 

defining their location in space, but may also contain other parameters such as colour 

(R, G, B) and intensity (I). As discussed earlier, point clouds may be used as-is or as 

an intermediary representation for object recognition and reconstruction [53]. 

2.2.4 Point Cloud Quality Specifications 

The quality of point cloud data can be assessed using various criteria [19]. However, 

two main criteria are commonly used in practice in the AEC sector: 

• LOA (Level of Accuracy): point cloud specification that specifies the 

tolerance of positioning accuracy of each individual point, this ultimately 

specifies the positioning accuracy of the scanned objects. LOA is typically 

defined as the maximum allowable distance (in millimetres) between the 

measured and true location of each point. 

• LOD (Level of Density): point cloud specification that defines the minimum 

object size that can be extracted from the point clouds. It relates to how dense 

the points are scanned on object surfaces. LOD is thus typically defined as a 

distance in millimetre specifying the maximum allowable distance between 

neighbouring scanned points.  

The General Services Administration (GSA) in the United States has for example 

developed a set of levels of scanning quality that refers to different levels of LOA 

and LOD requirements. Table 1 summarises those Levels. 
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Table 1. LOD requirements standardized by GSA [5] 

GSA Level LOA (Tolerance) 

mm (inch) 

LOD (Data Density)  

mm ×	mm (inch × inch) 

1 ±51(±2) 152 ×	152 (6 × 6) 

2 ±13(±1/2) 25 ×	25 (1 × 1) 

3 ±6(±1/4) 13 ×	13 (1/2 × 1/2) 

4 ±3(±1/8) 13 ×	13 (1/2 × 1/2) 

While the two criteria above are widely used (e.g. LOD and LOA data quality 

metrics are employed by the US General Services Administration (GSA) when they 

procure laser scanning works), the author notes that the following criterion could also 

be additionally considered: 

• LOC (Level of Surface Completeness): point cloud specification that 

requires that a minimum amount of the surface of an object of interest has 

been scanned. LOC should specify the minimum amount of the object 

surface, and possibly even which parts of that surface, that need to be 

acquired. This criterion is important as it is often difficult to acquire the entire 

surface of an object; but a sufficient amount of this surface could suffice for 

the intended purpose. For example, Kim et al. [54] proposed a method to 

automatically model pipes from 3D as-built point. The local surface curvature 

information is used to identify each pipeline’s location and size. In their 

research, they show that it is necessary that data be acquired from one third of 

the pipe curvature to be able to confidently automatically compute the 

pipeline.  

It is noted that LOC is introduced in this dissertation as a completely new 

scanning specification that has never been taken into an account, not even 

discussed, by previous research. Yet, as discussed above, the LOC 

specification does appear important. It is supposed that LOC was not taken 

into an account by previous research, because this specification is 

complicated in comparison to LOA and LOD specifications. Indeed, LOA 

and LOD specifications are focused on points and so can be assessed 

individually for each point; in contrast LOC is focused on surfaces that 

require considering large numbers of points at once, which makes the tack 
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more complex. This complexity is particularly high when considered in the 

context of current manual planning-for-scanning processes.  

2.2.5 Factors Impacting TLS Measurement Quality 

The LOA, LOD and LOC criteria are defined because TLS does not return points 

from everywhere and with perfect accuracy. It is thus important to review what the 

different factors are that impact TLS measurement quality in relation to the LOA, 

LOD, and LOC criteria.  

A first set of factors simply impact whether a point can be physically acquired or not. 

They include: 

• Line of sight: An important limitation of laser scanners is that they can only 

measure points with line of sight. This line of sight limitation means that, for 

example, only a portion of a pipe can be scanned from a given location due to 

occlusions by other objects (e.g. other pipes or columns) as well as self-

occlusions (the other side of the pipe cannot be scanned from that location 

alone). 

• Depth of Field (DOF): This is defined by the minimum and maximum 

scanning ranges. These are the shortest and largest distances from the laser 

source within which the scanner is able to acquire a point on a surface. DOF 

varies from scanner to scanner. 

• Field of View (FOV): For mechanical reasons, the scanner has limited vertical 

and sometimes horizontal fields of value. Like DOF, FOV varies from 

scanner to scanner. But, typical modern laser scanners offer significant fields 

of view with 3600 horizontally and up to 3050 vertically (Figure 6).  

When the above factors do not impact acquisition, the accuracy and precision of each 

measurement may then be impacted by many other internal and external factors. The 

most important ones include (some are illustrated in Figure 6). 

• View/Incidence Angle (α): This is the angle between the vector normal to the 

scanned surface (at the location of the scanned point) and the scanning 

direction (i.e. from the scanner to that point) (Figure 6). Single point 

measurement precision typically reduces as the incidence angle increases 

[55].  
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• Range (ρ): Single point measurement precision reduces as the scanning range 

increases. 

• Surface Roughness: Surface texture roughness results in some form of noise 

in the measurement. This reduces the single point measurement precision 

[56].    

• Reflectiveness: Surface reflectiveness creates measurement uncertainty, and 

reduces single point precision in a similar way as surface roughness [17].  

• Edge effect: Due to spatial discontinuities of a scanned object, sometimes 

data acquired at the edge of a surface is not robustly measured (the range is 

miscalculated) [57]. This can result in spurious points. Modern laser scanners 

nonetheless now implement robust filters to remove such points from 

outputted point clouds.      

 

Figure 6. Some of the scanning factors impacting the quantity and quality of TLS 

data being acquired 

Other secondary factors that impact scanning accuracy include environmental 

conditions (instrument variations, surface reflectivity), as well as surface colour and 

other surface properties.  



CHAPTER 2 :  LITERATURE REVIEW 

19 

As seen above, there are thus many factors that can impact the quantity and quality 

of TLS data. This shows that the positioning of the terrestrial laser scanner is an 

important consideration for scanning building sites and facilities [58]. Clearly, this 

requires that, for each scanning task, a scanning plan be devised that carefully 

defines the number and locations of scans necessary to achieve the desired data 

quality and completeness. 

Table 2 maps the main scanning impact factors identified above to the point cloud 

specifications (LOA, LOD, and LOC) that they can directly impact. For instance, 

surface reflectiveness influences single point precision that is specified through the 

LOA criterion, but not LOD and LOC. The table suggests a clear distinction between 

the factors impacting LOC and those impacting LOA and LOD. The factors directly 

impacting LOC are those specifically related to the capability to physically acquire a 

point (line of sight, DOF and FOV) and therefore cover object surface. Naturally, if a 

point can be physically acquired but does not fulfil the LOA or LOD criteria, then it 

should be discarded and the covered surface will be reduced; this would suggest that 

all the factors impacting LOA and LOD actually also impact LOC. However, it is 

argued here that such impact is only indirect, and only the first three factors (line of 

sight, DOF and FOV) directly impact LOC. In fact, as the approach proposed in this 

dissertation shows, it is natural to check surface completeness (LOC) only after 

having rejected points that do not fulfil LOA and LOD criteria. This means that, by 

the time that LOC is checked, only the first three factors in Table 2 (line of sight, 

DOF and FOV) can still effectively impact the results.   

Table 2. Summary of point cloud quality specifications 

Scanning Impact Factors LOA LOD LOC 

Line of sight   X 
DOF   X 
FOV   X 
Incidence angle X X  
Range X X  
Surface roughness X   
Reflectiveness X   
Edge effect X X  

Beyond identifying those factors that influence the three data quality criteria (i.e. the 

mapping in Table 2), quantitative relations between them must be established.    
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The data quality criteria LOD defines the minimum distance between neighbouring 

scanned points on the object surfaces (i.e. point density). The equation below is 

proposed by Song et al [5] to measure this surface sampling density: 

� = �∆
����	 �i�	

where S represents the surface sampling distance; ρ is the travelling range; ∆ 

illustrates the angular resolution (horizontal or vertical) of the scanner and α 

represents the incidence angle.  

For LOA and its single point precision criterion, establishing a formal or quantitative 

relationship is a challenging task and remains an area where information remains 

limited. However, some results have already been reported. For example, Figure 7 

shows an example of diagram developed by researchers who aimed to establish a 

relationship between single point precision with incidence angle at a distance of 20m 

for a specific scanner. With this figure, it can be concluded that to ensure a precision 

of ±5mm at a maximum range of 20m, then the incidence angle should not exceed 

70°, or in other words, points with incidence angle exceeding 70° should be 

discarded.    

Note that incidence angle and range are two of the most important factors impacting 

single point accuracy. Therefore, a diagram like the one produced in Figure 7 can be 

used to estimate point precision.  

For LOC, no data quality criterion has yet been suggested, and therefore its relation 

to the impacting factors has not been considered either. A first approach is proposed 

later in Chapter 4.   
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Figure 7. Single point precision (standard error) for various incidence angles for a 

surface located at 20m from the scanner [55] 

2.3 Planning for Scanning 

Effective Scan-to-BIM and Scan-vs-BIM applications, in particular dimensional 

quality control, require that the point clouds associated to the different objects under 

analysis be acquired with sufficient precision and cover the surface of those objects 

as completely as possible. As discussed in Section 2.2, there are numerous internal 

and external parameters that can impact the precision of scanning (e.g. like 

reflectance of the surface, and incidence angle). Without adequate planning for 

scanning, scanned point clouds can have insufficient precision and contain 

incomplete 3D geometric information. This can lead to discarding the acquired data 

and re-scanning, which is time consuming and constitutes a clear financial loss [59].  

While such a need is only recently identified in the context of the construction 

industry, planning for scanning has already been investigated in the manufacturing 

sector [17, 60-62] although often for different types of 3D laser scanners. In [17, 60-

62] methods are proposed for automatic process planning of laser scanning 

operations with the aim of reducing the cost and time for inspection. These methods 

employ the 3D CAD model of the object to be inspected to plan the scanning 

operations. By analogy, 3D BIM models could be used for the planning of 3D laser 
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scanning operations in the construction industry. However, there is one significant 

difference between laser scanning in the manufacturing and AEC contexts: in 

manufacturing, scanners are of different kinds and are typically mounted on arms. 

The arm-mounting enables the scanner to be positioned in almost any necessary 

position (location and orientation) and, most importantly, makes the cost (in terms of 

time) of positioning the scanner in various positions very small. In addition, the 

scanners used in manufacturing are typically line profiling scanners that conduct 

scans rapidly. As a result, the problem of planning for scanning in manufacturing is 

about finding the set of optimal scanning locations for each point of interest on the 

surface of the part, and combines those in an effective path to be followed by the 

arm. 

In contrast in the AEC sector, laser scanners cannot be mounted on precise 

automated robotic arms that can move all around the scene to be scanned. In 

addition, terrestrial laser scanners are much slower than the profile scanners used in 

manufacturing. Altogether this makes the cost (in terms of time) of moving the 

scanner to each new location and conduct any new scan very high, which deters from 

planning large numbers of scans to inspect a scene. As a result, the problem of 

planning for scanning in the AEC sector is much more focused on minimising the 

number of necessary scans than about finding the optimal scanning location for 

scanning each part of the scene. This means that the methods developed for 

manufacturing do not readily apply in the construction context. Nonetheless, they 

have likely inspired some previous work reviewed later in this section. 

In the AEC sector, the traditional approach to planning for scanning is manually 

using a compass and draw circles in a regular grid on a 2D plan drawing so that the 

circles cover the entire ground surface with (minimum) overlap, as illustrated in 

Figure 1. The radius of the circle is set based on the scanner’s characteristics (DOF) 

and the defined LOA and LOD specifications. These manual methods are very 

approximate and, as discussed earlier in Section 1.1.3, may lead to the acquisition of 

data that does not fulfil the LOA and LOD specifications, or they may lead to under-

scanning (data missing for objects of interest) or over-scanning (wasted time and too 

much data to manage). As a result, authors like Akinci et al. [63] argue for the 

development of approaches for automatic and robust planning for scanning.  
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In the context of the construction industry, a few works have already been published 

on automated planning for scanning with TLS that use ideas suggested by works in 

the manufacturing context, adapting them to the specificities of the construction 

context. These prior works are reviewed in detail in the following sub-sections that 

group them according to their main specificity. This review particular considers the 

very recent works by Dr. Pingbo Tang and his colleagues [5, 19, 20] that can be 

considered as the current state of the art in the domain (Sections 2.3.2 and 2.3.3). 

2.3.1 Planning for Scanning for Specific Case 

Argüelles-Fraga et al. [4] investigated planning for scanning for the specific case of 

straight tunnels with cylindrical shapes with the aim of acquiring data enabling 

robust comparison of the as-built and as-designed conditions (Scan-vs-BIM). They 

propose an algorithm generating scanning locations by taking several factors into 

account, such as tunnel dimensions and incidence angle. The laser scanner’s height 

and incremental distance between scanning stations are found to be the two most 

important parameters influencing scanning results. Point density and footprint are 

considered as LOD metrics, and incidence angle is considered as LOA metric. Using 

the naming in Figure 8, the coordinates �	�, 
� , ��� of each scanned point i are defined 

as: 

�	�, 
�, ��� = �� + �� sin �� sin�� , �� sin �� cos�� , ℎ + �� cos ��� (ii) 
where, h is the height of laser scanner, t is the orthogonal distance to the tunnel’s 

centreline (i.e. cylinder’s main axis), and (��, ��, ��) are the spherical coordinates of 

the point as measured by the scanner.  

This leads to the formulation of the vector from the scanner to the scanned point as: 

�� = (	� − �, 
� , �� − ℎ) (iii) 
Therefore, given that the vector normal to the surface at the scanned point’s location 

is �� = (−	�, 0, −��), the incidence angle α (LOA) can be easily calculated from the 

formula: 
cos $� = %&'∙)'‖&'‖‖)'‖ (iv) 
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The size of the laser footprint at each point (LOD) has a roughly elliptical shape, and 

its major and minor axes have lengths that can be calculated using the formulas: 

,� = )' -./01��� �'  (v) 
2� = �� tan 56  (vi) 

where φ is the scanner’s laser beam divergence angle (provided by the scanner’s 

manufacturer). 

 

Figure 8: Diagram depicting measurement of a circular tunnel using TLS 

(reproduced from [4]). 

Argüelles-Fraga et al. then define the planning for scanning problem as the problem 

of minimizing scanning time with three variables (the incremental distance DR 

between consecutive scanning locations along the tunnel, and the two spherical 

angular resolution to be set for the scanning) and point density (LOD), footprint 

(LOD), and incidence angle (LOA) specifications. The total time required to perform 

a full scan of the tunnel is calculated as: 

7898:; = <=7= + �<= − 1�∆7 (vii) 
where, ∆7 represents the time required to change position, 7= is the time needed for 

each scan and <= is the number of scans calculated as: 
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<= = ?@AB C D%EFG(6%E)FGH (viii) 
where, ?@AB(	) returns the integer larger than x, L is the length of the tunnel, DR is the 

incremental distance, and p is the user-defined overlap between scans.  

Note that increasing the spherical angular resolution of scans (i.e. acquiring denser 

measurements) improves the distance from the scanner at which the point density 

LOD specification will be met, but increases the time required to conduct each scan. 

This shows that the optimal solution cannot be easily found manually. Unfortunately, 

Argüelles-Fraga et al. do not detail the method employed to solve the optimisation 

problem they define.  

More generally, it is clear that their approach makes great use of the geometric 

specificity of the ‘straight tunnel with cylindrical shape’, which strictly limits the 

usability of their approach to such ‘simple’ cases. Their approach cannot be used in 

more general cases.  

2.3.2 Planning for Scanning as Local Optimization of Preselected Locations 

A significant scientific work on planning for scanning in construction is that of Tang 

and Alaswad [19] who proposed a general sensor-based model to generate scanning 

plans using 3D (BIM) models of scenes of interest. The approach is the first designed 

to work in somewhat more general contexts, but it assumes an initial set of scanning 

locations provided by the surveyor and focuses on optimizing those scanning 

locations in terms of the angular resolution (for each scan) Δ = ΔJ = Δ5 and 

distance, d, to key vertical surfaces to minimize data capture time while providing 

optimal data quality in terms of scan point density (LOD) and individual point 

precision (LOA).  

The positioning error, e, of scanned points is considered for measuring LOA. e 

represents the difference of the coordinates of a scanned 3D point from its actual 

physical position. Using the definitions in Figure 9, the value of e is argued to mainly 

depend on the point range and incidence angle: 

@ = 2K(L, $) (ix) 
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where, cos $ = NF. Note that this formulation only works for vertical or horizontal 

surfaces. Furthermore, the authors point that the function 2K( ) varies for each 

scanner, but do not provide even an example of such function; they simply assume it. 

 

Figure 9. Geometric factors of horizontal and vertical planes (partially reproduced 

from [19]) 

Tang and Alaswad then consider two LOD metrics:  

1. Surface sampling S (i.e. point density), that is the distance of a given point 

from its nearest neighbour (see Equation (x) below); and  

2. Laser beam width on surface OPQ  (i.e. footprint). The laser beam width depends 

on the point range and incidence angle, as well as the beam divergence angle 

(φ) and laser beam width calibration distance, D0 (see Equation (xi) below).  

Features smaller than S and OPQ  may not be captured in the point cloud. 

� = F∆��� � = F∆RS = F1∆N  (x) 
OPQ = TUV W(F%FX)5��� �  (xi) 
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Finally, the authors employ what can be seen as a LOC metric (although they 

themselves seem to mainly recognise it as an LOA metric) that is the vertical surface 

scanned, captured by the parameter r (see Figure 9) that relates to D and d with the 

formula: 

�6 = L6 − Y6 (xii) 
Clearly, the larger r, the larger the scanned surface.  

Equations (ix) to (xii) are set for each vertical planar surface of interest. Using those 

equations, the optimisation model is then formulated as a time minimisation model, 

where the overall scanning time is the time to acquire each of the surfaces of interest, 

and each of those times is calculated as: 

� = C1Z∆ H1
[ = \�1

[∆1 = \×C���]^ RSH1
[∆1  (xiii) 

where, C6�∆ H6 is the number of points within the surface of interest and C is the 

scanner’s data collection rate.  

The LOA, LOD and time constraints to this optimisation model are then: 

_@ ≤ @;�a�8� ≤ �;�a�8� ≤ �;�a�8
  

Integrating equations (ix) to (xiii) in the optimisation model above, leads to the 

reformulation of the objective function for each of the surfaces of interest as the 

maximisation of:  

b = c)1
8 = dR∆ N1

e×Cfgh]^RSH1
i∆1

= j=N∆%N1k[∆
\×C���]^RSH1 (xiv) 

It is noted that Tang and Alaswad do not explain how r is integrated in this model. It 

is assumed that r is likely considered as a fourth constraint of the form: 

� = ℎ 
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where, h is the height (above the scanner) up to which scanned points are expected to 

be acquired. Assuming the vertical surface is a wall, h could thus be defined as the 

height of the wall (minus the height of the scanner). 

This approach of Tang and Alaswad uses the same LOA and two LOD metrics as 

Argüelles-Fraga et al. [4] (point precision, point density, and point footprint). It 

however aims to work in somewhat more general contexts, as the built environment 

indeed presents numerous vertical (and horizontal) surfaces. Furthermore, the 

approach appears to consider some LOC specification, although the authors 

themselves do not seem to recognize this. Nonetheless, despite these interesting 

advancements, the approach of Tang and Alaswad still presents two main limitations:  

(1) It requires an initial set of scanning locations; it is thus a solution to a local 

optimisation problem, as opposed to the more general global optimization 

problem that would consider no initial scanning locations.  

(2) The approach actually makes an important simplification (not stated by the 

authors) that all points at the same height on a vertical surface have the 

same incidence angle. In reality, the incidence angle increases with the 

horizontal distance between the scanned point and the orthogonal projection 

of the scanner on the vertical wall surface (the same logic applies to 

horizontal surfaces). 

2.3.3 Planning for Scanning as Global Optimization 

Recently, Song et al. [5] introduced an algorithm that utilizes the concept of sensor 

configuration spaces to automatically generate scanning plans using 3D (BIM) 

models. The scanning locations are selected from a dense and regularly defined set of 

scanning locations on the ground (i.e. horizontal space discretisation), and a “heat 

map” technique is used where the temperature of each candidate scanning location 

increases with the number of geometric features it can acquire for the given LOD 

specification(s). The authors do not consider any LOA specification. 

In contrast with the earlier work in [19], this approach aims to optimize the scanning 

of ‘point’ features (e.g. window corners) as opposed to planar surfaces. For each 

point feature on the given object surface, a feasible space, from within which that 

point can be scanned, is defined for the given LOD specifications. The approach 
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considers the surface sampling S as LOD metric, calculated the same way as in their 

previous work in [19] (see Equation  (ix)) and the authors find that the resulting LOD 

feasible space is a sphere that is tangent to the surface at the point location and has a 

radius of 
=V
6l, where �Q is the LOD specification and Δ is the scan resolution (Δ =

ΔJ = Δ5).   

The heat map is then generated by projecting all those spheres on the floor (on which 

the scanner is to be located), and calculating the cumulative number of feasible 

spaces covered by each discrete scanning location. Note that the method described in 

[64] is employed to take into account occlusions of the point features by components 

in the 3D model. 

The minimum set of scanning locations required to acquire all the point features with 

the required LOD specification, i.e. the optimal plan, is then searched using a 

progressive algorithm similar to Next Best View (NBV) approaches. In this 

approach, scanning location are incrementally added by selecting in the heat map the 

location with the highest temperature. The heat map is then updated by removing the 

feasible spaces of the features captured by that location, and the process repeated 

until all point features are captured by the selected set of scanning locations. 

To reduce computational complexity (the survey job may have thousands of 

features), the authors introduce two principles to cluster features so that only one 

spherical feasible space needs to be generated for each cluster. These principles 

essentially aim to cluster point features that are close to each other and select the 

feasible space for the point feature with the most stringent LOD specification (its 

feasible space will be the smallest and will likely be contained within those of the 

other point features). 

This method represents a significant improvement over prior works. Indeed, it 

simultaneously aims to achieve a global optimization and does it for any kind of 

feature points (only the local surface normal is required), which makes it usable in 

any construction context. The approach however still has two limitations: 

• It does not consider LOA specifications. While the authors do not discuss 

this, it can nonetheless be assumed that their approach could be extended by 
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calculating LOA feasible spaces and infer LOA+LOD feasible spaces for all 

point features by intersecting the LOA and LOD feasible spaces. 

• It does not consider LOC specifications. In fact, because this approach 

focuses on point features as opposed to surfaces, this approach simply cannot 

accommodate any LOC-type specification. 

Very recently, another planning for scanning method has been proposed by Zhang 

and Tang [20]. This approach is similar to that of Song et al. [5] in that it focuses on 

‘point’ features, and employs the same feasible space approach with consideration 

for LOD specifications only (not LOA). It differs from that prior work in that it does 

not consider fixed values of the scanning resolutions for all scans, leaving those 

instead as variables in the optimisation model. This however significantly increases 

the size of the planning for scanning problem – that is already very large when fixed 

resolutions are considered. To address this challenge, they propose to employ a 

divide-and-conquer approach that clusters features into sub-areas and then finds an 

optimal set of locations for these sub-areas individually. The overall set of scanning 

locations is then simply the sum of all the sub-sets generated for all sub-areas. For 

clustering (divide) the feature points, a series of visibility confliction rules (i.e. 

whether points can be acquired in the same scan) are defined that consider the 

distance between the features and the difference between the orientations of the 

surface normals associated to those features. A graph is then built where each node is 

a feature point and edges are created between nodes if they cannot be scanned at the 

same time according to the rules above. The minimum set of clusters containing 

features without any visibility conflict can then be solved using Chromatic Number 

algorithms [65], a well-developed branch of Graph Theory. Figure 10 illustrates the 

clustering result for a chromatic number problem. 
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Figure 10. Clustering feature points using a Chromatic Number algorithm; each edge 

represent feature points with visibility conflict, and different colours show the 

clustering results [20] 

The conquer stage processes each cluster separately. First, the lowest possible 

horizontal and vertical scanning resolutions are estimated that enable the acquisition 

of all the features with the required LOD. Given those resolutions, a similar ‘heat 

map with progressive NBV’ approach as in Song et al. [5] is used that produces a 

number of scans and consequently an overall estimated scanning time. Since the 

scanning depends on both the number of scans and the scan resolution, this step is 

then repeated for incrementally increased scan resolutions.  

Another evolution from the ‘heat map with progressive NBV’ approach initially 

suggested in Song et al. [5] is also proposed, where the NBV algorithm is not run 

until all features are captured by the set of selected locations, but until all but 7% are 

captured. The 7% “garbage” point features from all clusters are then finally 

combined in one cluster and the same method is applied again. This approach can 

help prevent the selection of scanning locations for very small numbers of features, 

and can find better locations that capture more of these remaining features at once. 

Overall, this approach of Zhang and Tang [20] is really just an extension of that of 

Song et al. [5], with more focus on improving the scalability of their planning for 

scanning approach to large problems. Otherwise, it suffers from the same limitations: 

its lack of consideration for both LOA and LOC specifications. Regarding LOC 

specifications, it is important to re-emphasize that those approaches focus on ‘point’ 

features, which means that they simply cannot accommodate any LOC-type 

specification. 
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2.4 Conclusions and Research Need Identification 

Significant works, essentially all by Dr. Tang et al., have been published on the 

problem of planning for scanning in construction. Table 3 summarizes the strengths 

and limitations of the various works of Tang et al. reviewed above with respect to six 

performance criteria. The first three are the consideration for LOA, LOD and LOC 

specifications identified earlier. The other three are: 

• Occlusions: whether the approach is able to take into account the occlusions 

of building components on others ones (for the given scanning locations) as 

well as self-occlusions.  

• Optimization: whether the approach uses a local optimisation (of a manually 

pre-defined set of scanner locations) or a global optimisation (without any 

prior information). 

• Generalization: whether the approach can be applied to any context (i.e. any 

3D model) rather to specific ones. 

Table 3. Comparison of existing planning for scanning methods  

Criteria 

Tang and 

Alaswad (2012) 

[19] 

Song et al. 

(2014) [5] 

Zhang and 

Tang (2015) 

[20] 

LOA Yes No No 

LOD Yes Yes Yes 

LOC Partially No No 

Occlusions Yes Yes Yes 

Optimization Local Global Global 

Generalization Yes Yes Yes 

The analysis of Table 3 leads to the identification of a clear knowledge gap that there 

is currently no automated method for planning for scanning in construction (using 

3D BIM models) that is ‘general’ for any context, that achieves a global 

optimisation, and that takes into account not just LOD but also LOA and LOC 

specifications. The lack of support for LOC specifications is particularly noted 

because the only two global approaches that have been published focus on ‘point’ 

features and so cannot accommodate at all LOC-type specifications.
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CHAPTER 3:  RESEARCH METHODOLOGY 

3.1 Aim and Objectives 

The literature review of Chapter 2 leads to the conclusion that there is a need for an 

effective, generalised method for planning for scanning in construction that 

automatically generates optimal laser scanning plans that satisfy not just point-based 

LOD and LOA specifications, but also surface-based specifications, like the 

proposed LOC.  

This research aims to provide a solution that contributes to address this need.  

To achieve this aim, three objectives are identified: 

I. Review the key subjects related to the identified planning-for-scanning 

problem in the construction industry in particular BIM and TLS technologies, 

and explore how similar problems may have been investigated in other 

industries. 

II. Design a mathematical model for optimizing the 3D scanning operations, i.e. 

establishing an optimal scanning plan given the design BIM model as well as 

LOA and LOC specifications for objects of interest. 

III. Implement the developed solution in a prototype system and validate the 

performance of the proposed model experimentally. 

3.2 Research Process 

Figure 11 represents a typical research cyclical process, with different academic 

domains possibly designing different paths to reach the same destination. The 

methodology followed by any research has to be defined in light of the aim and 

objectives of the research. 
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Figure 11. Research cyclical process [66] 

The Steps 1 to 3 in Figure 11 have been covered in the literature review and 

identification of the aim and objectives above. In general terms, the literature review 

in this research has identified a mathematical problem, for which a model 

(hypothesis) must be developed to solve based on existing theory and new ideas. The 

model must finally be validated experimentally. This clearly classifies the proposed 

research as being deductive [67, 68]. 

The mathematical nature of the present research problem and the availability of data 

(3D BIM models) for its testing, suggest that quantitative research methods can be 

considered for the validation stage. In that regard, it has been shown that most 

quantitative research methods (for instance descriptive research, experimental design 

and statistical methods for analysing quantitative data) are appropriate for deductive 

research [69, 70].  
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The rest of this chapter develops the methodology designed to achieve the research 

objectives and aim above. Figure 12 summarizes these. 

 

Figure 12. Summary of research methodology 

3.3 Objective I – Identifying Research Needs  

Objective I is to review TLS and BIM technologies and identify the research gap and 

need in terms of automatic planning for scanning in the context of the AEC industry. 

This objective is also about investigating other industries to identify ideas that could 

be leveraged. Such objective is typically achieved by conducting a thorough review 

of literature from various databases of journal articles, e-books, and other library and 

Internet resources. The literature review is done to (1) assess existing research that 

directly relates to the identified problem; and (2) explore existing research that 

partially relates to the problem, e.g. from another industry, but remains of interest to 

the problem at hand.  

This literature review has been reported in Chapter 2, and enabled a refinement of the 

research need. It was found that the idea of developing a scanning plan given an 

expected model of a scene or object has previously been considered for planning 

laser scanning operations in the AEC sector. But, limitations were identified, 

specifically the inexistence of methods that consider scanning quality requirements 

addressing surface completeness specifications, referred to as LOC specifications. 

3.4 Objective II – Designing Mathematical Model  

Objective II is to formulate the planning for scanning optimisation problem in a way 

that particularly enables to take into account scanning specifications relating to LOC. 

The mathematical formulation of the problem shall optimise the number and 
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locations of laser scans given the input project’s 3D BIM model, scanner 

characteristics, and scanning specifications.  

This objective is achieved by analysing both the problem at hand and prior work in 

the field (discovered and analysed as part of Objective I) and derive from those a 

mathematical formulation that solves the optimisation problem.   

3.5 Objective III – Performance Evaluation  

To validate and assess the performance of the proposed optimisation model, 

experiments must be conducted. For this, it is proposed to implement a software 

prototype, and assess its performance through experiments conducted using both 

simulated and real case studies [11, 71]. The analysis of these experimental results 

can then be conducted using quantitative and/or qualitative methods [72]. Although 

quantitative methods are preferred to assess the performance of mathematical 

models, qualitative methods can also be considered. It is worth noting that one but 

one of the state-of-the-art works on automatic planning for scanning have assessed 

performance of their approach beyond a basic qualitative assessment of their 

effectiveness to find a solution. Criteria commonly considered to assess the 

performance of algorithms typically cover [50, 73]: 

• Effectiveness: the model’s capability to produce a good solution to the 

problem;  

• Efficiency: the model’s capability to use as little resources as possible. In the 

case of computer algorithms, memory footprint and processing speed are 

commonly considered; and 

• Sensitivity: the model’s stability to changes to its internal parameters. A 

model that produces very different solutions when its manually-defined 

internal parameters change even a little can be considered unstable, and 

difficult to use in practice. More stable models are preferable. 

It is proposed to validate the model proposed in this research for automated planning 

for scanning by considering performance metrics covering all three areas above: 

• Effectiveness: The approach is compared qualitatively against the previously 

published ones (in particular those of Tang et al.), but is assessed 

qualitatively and quantitatively against current practice. For this, an expert 
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surveyor is invited to propose their own scanning plan given a BIM model 

and set of scanning requirements. A qualitative analysis is done to give an 

overall observation of the similarity of the two solutions (including whether 

the one provided by the proposed approach makes sense). But, a more 

accurate, quantitative assessment of performance is also conducted. In this 

research, this is done by comparing the system-generated and professional-

generated plans in terms of the number of scanning locations required in the 

plans and the covered surface areas achieved through those locations.    

• Efficiency: A quantitative analysis of the efficiency of the proposed system 

(i.e. how fast the plan is generated) is conducted by analysing its 

computational time for 3D BIM models with varying levels of complexity. 

This enables an assessment of the scalability of the proposed method. It is 

also proposed to use the experiment above with the professional to compare 

the efficiency of the proposed approach against that of current practice. 

• Sensitivity: Finally, it is proposed to assess the sensitivity of the model to 

small variations in its manually-defined key input parameters.  

3.6 Conclusion 

This chapter detailed the research methodology set to achieve the three objectives, 

and ultimately the aim of the proposed research.  To achieve Objective I, a thorough 

literature review was conducted in Chapter 2 focusing on TLS, BIM and identifying 

the research gap within the most recent works conducted in the field of planning for 

scanning in construction. Objective II is to be achieved by designing a new 

optimisation method, or mathematical model, that minimises the scanning locations 

to achieve the scanning specifications. This new method shall take into account the 

newly identified LOC specification. Objective III is to evaluate the performance of 

the proposed approach through adequately designed experiments. Chapter 4 next 

presents the proposed new mathematical optimisation model (Objective II).  
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CHAPTER 4:  PLANNING FOR SCANNING APPROACH   

In this chapter the proposed approach for planning for scanning in construction 

(hereafter also referred to as P4S) is presented. The approach aims to generate a 

scanning plan given an as-planned 3D BIM model, the scanner characteristics and 

the scanning specifications. The approach uniquely considers the Level of Surface 

Completeness (LOC) as a new, yet relevant scanning specification.   

4.1 Overview of Proposed Approach 

An overview of the proposed P4S approach is presented in Figure 13. The inputs are 

the as-planned 3D BIM model, the scanner characteristics (i.e. field of view, and 

scanning resolution) and the scanning specifications (i.e. LOA and LOC), the latter 

two really acting as constraints to the problem. The output of the approach is an 

optimal set of scanning locations, i.e. the minimal set of locations that fulfil the 

scanning requirements. Single point precision is used as the LOA specification. The 

object surface covered by the scans to be conducted from the selected locations is 

used as LOC metric. Note that this study does not consider LOD specification, but 

the proposed model does not prevent its use and it could be integrated in future 

research (see discussion in Chapter 6). 

 

Figure 13. Overview of the proposed Planning for scanning (P4S) approach  

The proposed P4S algorithm can be decomposed into five main steps, summarised in 

Figure 14:  
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1. Generate Potential Scanning Locations: The input as-planned 3D BIM 

model is composed of numerous objects that should include floors. The user is 

thus first asked to select from the list of all floors automatically extracted from 

the BIM model the floor on which the scanner is expected to be positioned. 

Then, a square grid is automatically generated on the selected floor, where each 

grid intersection is considered as a potential scanning location. 

2. Calculate Virtual Scans: Virtual scans are calculated from each potential 

scanning location using the 3D BIM model as the virtually scanned world, and 

the scanner characteristics (specifically it’s FOV, DOF and angular 

resolutions).  

3. Filter Point According to LOA Specifications: Each virtually scanned point 

is tested against the defined LOA specification (single point precision). The 

points that fail this test are discarded.   

4. Calculate Covered Surface Areas: The covered/scanned surface areas for the 

BIM objects of interest are calculated from the set of remaining points for all 

potential scanning locations. 

5. Finding Optimal Scanning Plan: The optimal scanning plan is calculated 

automatically as the minimum set of scanning locations needed to satisfy the 

LOC specification (i.e. minimum scanned surface areas) for the objects of 

interest. This is achieved by formulating the problem as a binary integer 

programming problem.   

All five steps of the P4S algorithm are detailed in the following corresponding 

sections. To visually support the explanations, the example of a simple concrete 

structure is considered. Figure 15 shows the 3D BIM model of the structure that 

includes one floor and twelve columns. 
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Figure 14. Flowchart of the proposed planning for scanning (P4S) algorithm 

 

Figure 15. 3D BIM model of a simple concrete structure 
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4.2 Generating Potential Locations  

Given the input 3D BIM model of the facility (Figure 15) in IFC format, the system 

automatically parses the file and retrieves the list of objects of standard type IfcSlab. 

The system presents that list to the user who is asked to select the floor on which the 

potential scanner locations are to be considered. A square-grid is then defined on the 

top face of the selected floor object and each grid intersection is considered as a 

potential scanning location. The grid orientation is defined along the global X and Y 

axes, and the extents of the grid sides are set by the dimensions of the floor’s axis-

aligned bounding box. The grid density is defined with a parameter β (metres) that 

can be selected by the user. Figure 16 shows the set of potential scanning locations 

defined with this approach for the example project, and with β=2m. Note that, a 

second parameter h also defines the height at which the scanner’s measurement unit 

is located (typically mounted on a tripod). While different values of h could be 

considered, in this study h is set to 2m, a value representative of typical practice. 

 

Figure 16. 24 potential scanning locations are generated for the example of the 

simple structure of Figure 15, using β=2m 
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The smaller β is, the more scanning locations are generated. This increases the 

chances of finding not only a solution, but the best solution to the P4S problem. 

However, this also proportionally increases computational demand. 

4.3 Calculating Virtual Scans  

For each potential scanning location, a virtual scan is conducted given the facility’s 

3D BIM model, taking into account the scanner’s characteristics (sensor model), 

more specifically its FOV and angular resolution.  

The method in [74] is used here that performs virtual scans by faithfully replicating 

the process of a real laser scanner. It is just summarised here. The virtually-scanned 

points are calculated by virtually casting rays from the scanner in all incremental 

directions defined by the scanner’s angular resolution and within the scanner’s FOV. 

For each ray, the point is defined as the first intersection of the ray with a face of the 

3D model objects’ meshes. This process enables the calculation of the point’s 

Euclidean coordinates and therefore its range. Furthermore, knowing which mesh 

face is intersected enables the calculation of the point’s incidence angle. Naturally, it 

is also known from which object each virtually scanned point is obtained. Figure 17 

shows the virtual scans obtained for the scanning locations 1 and 24 for the example 

project. For these scans, the scanner’s horizontal and vertical resolutions are both set 

to 0.003rad (= 0.17º = 300mm @ 100m), and the horizontal and vertical FOV are set 

to 360° and 152° respectively.  
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(a) Virtual scan for scanning location 1 

 

(b) Virtual scan for scanning location 24 

Figure 17. As planned scans from scanning locations 1(a) and 24(b) for the example 

of the simple structure 

4.4 Filtering Points According to LOA Specification  

As discussed in [5, 19, 20, 55, 57] individual point precision is a function of many 

factors, but in particular range and incidence angle. This means that for a given 

specified LOA precision level, corresponding maximum range (ρmax) and maximum 

incidence angle (σmax) can be identified that points should not exceed. In [55], 
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Soudarissanane et al. provide a graph, reproduced earlier in Figure 7, establishing the 

relations between precision, range and incidence angle for a given scanner. In that 

figure, it is shown that to obtain with the given scanner a precision of ±5mm at a 

maximum range of ρmax=20m, then the incidence angle should not exceed σmax=70°. 

Similarly, to obtain a single point precision of ±2mm at a maximum range of 20m, 

the incidence angle should not exceed 60°. In other words, range and incidence angle 

can be used (to a certain extent) as proxy metrics for assessing point precision.  

As explained in Section 4.3, the range and incidence angle of each virtually scanned 

point are readily available (see Figure 18). So, using relationships such as the one 

established in Figure 7 as generic rules for estimating the expected precision, it can 

be reasonably assumed that, for example, all points with range not exceeding 20m 

and incidence angle not exceeding 60° should have a precision of ±2mm. In other 

words, all points whose range exceeds 20m or incidence angle exceeds 60° must be 

filtered out and discarded from further processing to fulfil a LOA precision level of 

±2mm. 

It should be reminded that tables like the one in Figure 7 are difficult to produce and 

are normally valid only for the scanner considered and for one type of surface 

material. Having access to such table remains the main hurdle to the practical 

application of the proposed P4S method, but this is also the case for all previously 

proposed methods that considered LOA. Nonetheless, only the maximum range and 

maximum incidence angle need to be defined here, and these could possibly still be 

set in an ad-hoc manner by experienced practitioners. In this research, the 

relationships established in the graph of Figure 7 are assumed adequate and 

representative, and are thus used in the rest of this dissertation, in particular in the 

experimental studies (Chapter 5). 

4.5 Calculating Covered Surface Areas  

At this stage, all remaining virtually scanned points are those that fulfil the LOA 

specification. Then, for each object of interest, the surface covered by those points 

that were scanned on it is calculated. This can be achieved using the approach 

described in [10, 75] and summarised below.  
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The surface area, m̅o,p,� of each mesh’s triangular face, i, of each object, j, covered by 

each virtual scan, k, is calculated as the sum of the surfaces covered by the n points 

virtually scanned on that face that passed the LOA filtering stage:    

m̅o,p,� = qmE
&

Ers
 

where, the surface covered by the p
th scanned point, sp , is calculated using the 

formula [41]: 

mE = tan(�)Kt) tan(�)Kt)cosj��Ek cosj��Ek �E6 
where,  ρp is the scanning range of point p, (φαp; θαp) are the spherical components 

(i.e. horizontal and vertical) of the point’s incidence angle (see Figure 18), and (φres; 

θres) are the spherical angular resolutions of the scan.  

 

Figure 18. Spherical decomposition (φαp; θαp) of the incidence angle αp of a scanning 

point p. ABC is the object’s mesh face on which the point is scanned, and �uv is the 

normal vector of that face 
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The scanning covered surface for each triangle m̅o,p,� can then be compared with the 

actual surface of the mesh triangular face mp,� that is simply calculated as: 

mp,� = 12 xyOuuuuuv×yzuuuuuvx 
where, ACandAB  are the vectors of two sides of the triangular face (see Figure 

18). 

After calculating the covered surface for all the triangular faces of a mesh, these can 

be added up to obtain the covered surface for that BIM model object, j, for each 

scanning location, k, as follows:  

m̅o,p = q m̅o,p,�
{|

�rs  
where, fj is the number of faces in the mesh of object j. 

The actual surface of the object (i.e. surface of the mesh) sj can be similarly 

calculated by summing up the actual surfaces of all its triangular faces: 

mp = q mp,�
{|

�rs  
All necessary information is now available to conduct the final step of the process 

that is finding the optimal scanning plan.   

4.6 Finding Optimal Scanning Plan  

The P4S optimisation can now be formulated as a Binary Integer Programming (BIP) 

problem, also called Binary Integer Linear Programming (BILP) problem. For this, 	 = }~s ~6 … ~;�� is defined as the vector of l binary decision variables 

corresponding to the l potential scanning locations. In 	, ~o = 1 if the scanning 

location k is selected in the final plan; ~o = 0 otherwise. The matrix A is also defined 

that gathers the covered surfaces calculated in the previous step for all scanning 

objects from all potential scanning locations. 
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y = �m̅ss ⋯ m̅s;⋮ ⋱ ⋮m̅;s ⋯ m̅;9� 
where, o is the number of objects of interest, i.e. the objects that the surveyors wishes 

to scan. 

The P4S optimization model is then formulated as follows: 

Minimize: ?�	 
Subject to: 	�y ≥ � 

 
where, c is the coefficient vector of the objective function and contains only 1’s; as a 

result ?�	 = ∑ ~oorsors  is the sum of selected scanning locations, i.e. the objective 

function to be minimized. 	�y calculates the vector of covered surface areas for all 

objects of interest given the selected scanning locations, and b is the vector of 

specified minimum covered surfaces, i.e. the LOC specification for each object. Exploding the optimisation constraint gives: 

��
��
��
�q ~om̅os

;
ors ⋮
q ~om̅o9

;
ors ��

��
��
�

≥ �msa�&⋮m9a�&� 

Note that, in practice, the minimum covered surfaces defined for the LOC 

specification would likely be set according to each object’s overall surface. For 

example, for object j one may define the minimum covered surface mpa�& as a 

percentage �pa�& of its overall surface mp. Using this approach, the optimisation 

constraint becomes: 

��
��
��
�q ~om̅os

;
ors ⋮
q ~om̅o9

;
ors ��

��
��
�

≥ ��sa�&ms⋮�9a�&m9
� 
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4.6.1 Solving the BIP Methods: 

The proposed approach for automatic planning for scanning is formulated as a BIP 

problem, which is a special case of Mixed Integer Programming (MIP) problem. This 

section reviews various techniques that can be used to solve BIP problems [76].  

Branch-and-Bound algorithms are typically used for solving MIP problems [77]. In 

these algorithms, an optimal solution is initially found to a linear relaxation of the 

given MIP problem (i.e. without taking into account the integer constraints). If the 

decision variables in the solution have integer values, then no further work is needed. 

But if any variable does not have integer value, then the Branch and Bound algorithm 

selects it and creates two branches for generating two new sub-problems where the 

value of that variable is tightly constrained to the surrounding integer values (in the 

case of BIP, 0 or 1). These sub-problems are solved similarly and the process iterated 

if necessary until an optimal solution is found for which all integer variables have 

integer (binary) values.  

For BIP problems, a specialized Branch-and-Bound algorithm can be used that is 

known as Balas Additive Algorithm [78].  This method is only usable if the objective 

function is set for minimization and its coefficients are all nonnegative. The 

algorithm starts with the solution containing only zeros (since it would minimise the 

objective function) and tests it. If it does not solve the problem, it tests changing the 

0 to 1 for the term with the smallest coefficient (since this would lead to the smallest 

minimisation possible of the objective function). This process is iterated with a 

depth-first node selection strategy until a solution is found (or no solution exists).   

Beside Branch-and-Bound algorithms, another type of methods that can be used to 

solve MIP problems are Cutting Plane methods. These algorithms aim to iteratively 

refine the region of feasible solutions for the linear relaxation of the given MIP 

problem. These methods can be very fast, but they are also known to be unreliable. 

There is a group of methods for solving MIP problems that integrate Branch-and-

Bound and Cutting Planes methods, called Branch-and-Cut [77]. Like Branch-and-

Bound algorithms, these algorithms solve a series of relaxations of the initial MIP 

problem following a divide-and-conquer approach. But they additionally integrate 

Cutting Planes methods to improve the relaxation to more closely approximate the 

initial MIP problem.           
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In addition, since MIP problems are a sub-set of non-linear programming problems, 

all methods available for solving the latter can be used to solve the former. A set of 

methods commonly employed for solving non-linear programming problems are 

evolutionary algorithms that aim to mimic processes observed in nature. The most 

well-known one is genetic algorithm that uses input variables expressed as a single 

vector/string of binary variables (‘chromosome’). This iterative method identifies at 

each iteration which individuals is the most promising to solve the problem and 

should thus survive and reproduce, and discards the other ones. Various genetic 

operations can occur during the reproduction stage that mimics evolution processes 

observed in nature, such as inheritance, mutation, selection and crossover. The 

algorithm typically stops after a pre-defined number of iterations or when no further 

improvement is observed in a number of iterations [79, 80]. 

The above mentioned BIP solving techniques are commonly implemented in various 

commercial and non-commercial solvers. As noted above, the Branch-and-Bound 

method and its variants are the most commonly used and recognized methods for 

solving MIP algorithms [81]. The methods are commonly implemented in 

software/libraries used in research, such as:     

• CPLEX: The IBM ILOG CPLEX Optimizer can efficiently solve mixed 

integer programming, linear programming, and quadratic programming 

problems. For MIP problems, a distributed parallel algorithm is available that 

can leverage multiple computer threads, or even multiple computers, to solve 

difficult problems.  

• GUROBI: This is a modern commercial solver for mixed integer linear and 

other non-linear optimization problems. This optimizer is developed using the 

C programming language and is available on all computing platforms [82]. 

• Coin-OR Branch-and-Cut (CBC): This is an open-source mixed integer 

programming (including BIP) solver created within the Coin-OR project, 

written in C++. The main goal of the Coin-OR project is to create open 

source software for the community conducting operations research. CBC is a 

widely recognised library within the research community and this library is 

built on top of the COIN-OR CLP library [82-84].  

In this research, the COIN-OR Branch-and-Cut (CBC) algorithm is selected because 

it has been shown to be good and efficient but also for practical reasons. In 
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particular, CBC provides a plug-in for Excel in which the covered surface tables 

could be easily copied from the software prototype. Using the plug-in enabled testing 

the proposed approach without having to spend a lot of time trying to integrate the 

CBC library with the current P4S software prototype. Nonetheless, it must be noted 

that the P4S software prototype implemented for this research is written in C++, so 

such integration is definitely possible to deliver a full-featured solution. 

4.7 Conclusion  

In this chapter, the planning for scanning approach proposed to achieve Objective II 

has been presented. The approach finds the minimum set of scanning locations that 

enable the acquisition of data from a pre-defined set of objects and pre-defined LOA 

and LOC scanning specifications. Using the facility’s 3D BIM model, the approach 

first generates a set of potential scanning locations on the (selected) floor of the 

facility and conducts virtual scans for each of them using the characteristics of the 

selected scanner. All scanned points are then checked against the expected precision 

(LOA specification). Precision is assessed using the scanning range and incidence 

angle as proxy metrics. The surface areas of the objects covered from all potential 

scanning locations are then calculated and employed in a BIP optimisation model 

that is used to identify a solution to the planning for scanning problem. Objective III 

is addressed through a set of experiments that reported the next chapter. 

Table 4 replicates Table 3 with an additional column for the newly proposed 

approach, thereby highlighting the key differences between it and the previous state-

of-the-art methods. Like the two most recent publications identified in the literature 

review as the state-of-the-art [5, 20], the proposed approach aims to be general (i.e. it 

does not make any assumption regarding the context in which it is to be applied) and 

achieve a global optimisation (i.e. it does not assume any manually pre-defined set of 

scanning locations). But, the proposed approach differs from any prior work by its 

unique consideration for LOC specifications. Furthermore, it is worth noting that it is 

the first global approach that considers not just one but two of the LOA, LOC and 

LOD specifications. In fact, it is explained in the conclusion of this thesis how it 

could easily also integrate the third specification LOD.        
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Table 4. Comparing proposed approach with existing methods 

Criteria 

Tang and 

Alaswad (2012) 

[19] 

Song et al. 

(2014) [5] 

Zhang and 

Tang (2015) 

[20] 

Proposed 

Approach 

LOA Yes No No Yes 

LOD Yes Yes Yes No 

LOC Partially No No Yes 

Occlusions Yes Yes Yes Yes 

Optimization Local Global Global Global 

Generalization Yes Yes Yes Yes 

The proposed approach assumes as input a 3D BIM model of the facility to be 

scanned. In contrast with a 3D CAD model, the 3D BIM model provides knowledge 

of the type of objects contained in the scene. In the proposed approach, this 

information enables the automated retrieval of the floors (in Step 1). It also enables 

the automated retrieval of the objects of interest; for example, if the user aims to plan 

to scan all structural components, s/he would only need to tell the system to focus on 

“structural components” and the system could automatically identify them in the 

BIM model and focus the analysis on them when finding the optimal set of scans 

(Steps 3 to 5). Furthermore, the type of material of each object, which can be 

automatically obtained from the BIM model, could be used to get a more robust 

estimation of the precision expected for each scan point (LOA) – assuming that 

graphs like the one shown in Figure 7 are available for various materials.  

Nonetheless, the core of the P4S algorithm proposed here only requires the 

knowledge of the 3D geometry of each object. This means that the proposed 

approach could be employed with 3D CAD models as opposed to 3D BIM models. 

The only different would be that the user would have to manually select (e.g. through 

a 3D interface): which objects are ‘floor’ objects upon which the scanner would be 

positioned; which objects are planned to be scanned; and possibly what their material 

is. 

As presented in Section 2.1, the AEC sector is rapidly embracing BIM processes and 

the use of BIM models, so that BIM models are rapidly replacing 2D/3D CAD 

models. For this reason, this research focuses on the case where the input model is a 

3D BIM model. 
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CHAPTER 5:  EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter presents the prototype implemented to validate the proposed approach, 

and then reports the experimental results and their analysis. Experiments are 

conducted to assess the performance of the proposed system in terms of 

effectiveness, efficiency and sensitivity (to internal parameter selection). Altogether, 

this chapter focuses on the work conducted towards Objective III.   

5.1 Software Prototype 

This section presents the P4S software prototype designed to conduct the 

experiments aimed at validating the research Objective III. To design this prototype, 

open source C++ libraries and software are used. More specifically, the prototype is 

built using an existing Point Cloud and BIM software platform [41] employing: the 

IfcOpenShell library to manage BIM model data in IFC format [85]; the libe57 

library to manage point cloud data in e57 format [86]; and the Qt library to develop 

the software in particular its Graphical User Interface (GUI) [87]. 

The software prototype has a user-friendly GUI. Using this GUI, the user is able to 

import 3D BIM models, specify the LOA and LOC requirements, and enter the 

scanner characteristics. Figure 19 illustrates the P4S software GUI that is composed 

of four parts: 

 

Figure 19. Planning for Scanning GUI 
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• Menu Bar: The menu bar has five menus: File, Model, Planning, View and 

Help. The most important ones are the menu ‘Model’ to import the 3D BIM 

model and the menu ‘Planning’ to launch the P4S process. When starting the 

P4S process, the system extracts all the floors from the BIM model and asks 

the user to select the one to use for the current process. Figure 20 shows the 

window that pops to ask the user for the floor object to be used. 

 

Figure 20. Automatically system identified objects (Floor) 

• Main Widget: The main widget is a 3D (OpenGL) widget that is used to 

display the 3D BIM model and the P4S results. The user can orbit and 

translate the 3D data, select individual objects, etc. The potential scanning 

locations generated by the system as well as the virtual scans generated for all 

those locations can also be visualized in the 3D environment.   

Once the covered surface areas have been calculated for all objects and all 

potential scanning locations, a Binary Integer Programming (BIP) algorithm 

is employed to solve the optimization problem for finding the minimum set of 

scanning locations delivering the specified minimum covered surface for each 

of the given objects. This is currently achieved by exporting the system-

generated covered surface areas for all potentials scanning locations in CSV 

format (spreadsheet). The OpenSolver plug-in to Excel is then employed to 

apply the open-source branch-and-cut (CBC) BIP solver [88]; this plug-in 

employs the CBC implementation from the widely-used and robust 

Computational Infrastructure for Operations Research (COIN-OR) library 

[89].  

Note that the COIN-OR library is also available as a C++ library, and so this 

step could be embedded within the P4S software package to achieve a 

completely automated process. However, during this research, maintaining 
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this stage of the process separate from the main software package did actually 

provide some valuable flexibility. 

• Project Information Panel: The project information panel lists all the 

objects contained in the scene: the 3D BIM model objects and later on all the 

virtual scans. Selecting an object in this list highlights it in the 3D 

environment, which eases visualisation and data navigation. 

• Session Log Panel: The session log panel presents logging information while 

the system is in execution. This provides detailed information about progress 

but also at which stage potential errors/bugs have occurred. 

5.2 Experimental Data  

In addition to the Simple Structural Model already used as example in Chapter 4, two 

other models are considered for the experimental work: 

• Structural Model: A typical structural 3D BIM model of a building storey 

that is made up of columns and a floor.  

• Structural+MEP Model: A section of the structural model above extended 

with Mechanical, Electrical and Plumbing (MEP) components.  

While the first model is considered for the planning of the scanning of structural 

works, the second model is used to more specifically consider the planning for 

scanning of MEP components. Table 5 summarises the number of objects in each 

model.  

Table 5. List of experimental as-planned 3D BIM models 

As-planned 3D BIM Models Plan size Number of Objects 

Simple Structural Model 12m x 8m 25 

Structural Model 66m x 54m 64 

Structural+MEP Model 33m x 6m 118 
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5.2.1 Simple Structural Model 

The Simple Structural Model can be considered as simulated data because it was 

designed by the author. This model was mainly used to check that the proposed P4S 

method is working as expected and identify any necessary correction prior to testing 

at larger scales. As shown in Figure 21, this model is made up of one floor, twelve 

columns and footings. However, footing foundations are not considered within the 

optimisation as they would be backfilled at the time one would need to scan the floor 

and columns. Experimental results obtained with this model are provided in Section 

5.3 to further illustrate the working of the proposed system.  

 

Figure 21. 3D view of the Simple Structural Model 

5.2.2 Structural Model 

The Structural Model, shown in Figure 22, is the ground storey of a sample 

Structural 3D BIM model provided by Autodesk. The Structural Model (of the 

ground storey) is composed of 63 cylindrical concrete columns and one large floor 

slab.  
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Figure 22. 3D view of the Structural Model 

5.2.3 Structural + MEP Model 

A section of the Structural Model above is also considered extended with 

Mechanical, Electrical and plumbing (MEP) components (also provided by 

Autodesk). This model, shown in Figure 23, is composed of 118 objects: 10 

structural columns, one floor and 107 MEP objects (including rectangular duct, duct 

elbow, pipes, etc.). This model is used to assess the value of the proposed P4S 

method for planning the scanning of MEP systems, as opposed to structural ones. 

The structural components in it are there because the occlusions they would create in 

practice need to be also considered during planning.  
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Figure 23. Top view and 3D view of the Structural+MEP Model 

5.3 Experiments and Evaluation of System Performance  

This section presents the experiments that have been conducted using the models 

above to validate the proposed P4S system. The performance of the system is 

evaluated in terms of effectiveness, efficiency and sensitivity (to internal parameter 

value selection). Note that in this research effectiveness refers to “doing the right 

thing” whereas efficiency refers to “doing it with few resources, particularly time”.  

But first, illustrative results obtained with the proposed system are presented in the 

next section using the Simple Structural Model. 

5.3.1 Illustrative Experiment  

The working of the proposed P4S system is illustrated using the Simple Structural 

Model. For the experiment, the necessary input parameters are set as summarised in 

Table 6. 
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Table 6. Scanner characteristics, scanning specifications and other parameters set for 

the illustrative experiment 

Parameter Value 

Scanner Characteristics  
Angular Resolution 0.17° x 0.17° 
Scanner Height (h) 2m 
Field of View 360° x 152° 

Scanning Specifications  
LOA ±2mm 
LOC 50% of the object’s overall surface  

(same for all objects) 
Other Parameters  

Grid density (β) 4m 

The defined grid density leads to the generation of 24 potential scanning locations as 

shown earlier in Figure 16. Table 7 then summarizes the covered surface areas 

calculated by the system for all 13 objects and for all of the 24 potential scanning 

locations – i.e. the matrix A.  The optimisation stage is successful and finds a 

solution summarised in Table 8. The results indicate that the minimum set of 

scanning locations necessary to fulfil the LOC (and LOA) specifications for all 13 

objects contains four locations. The set reported by the system includes the scanning 

locations SL6, SL8, SL13 and SL14 (see Figure 24), but other sets of 4 scanning 

locations may solve the problem. However, there is no solution that contains 3 or 

fewer locations. 
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Table 7. Covered surface areas (in m2) calculated for all objects in the illustrative 

example. “Col.0” to “Col. 11” refers to the 12 columns in the model, and “SL1” to 

“SL24” refer to the 24 potential scanning locations. 

SLs Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 
Col.  

10 

Col.  

11 
Floor 

SL1 1.51 1.58 0.03 1.61 1.59 1.58 0.00 1.60 0.00 1.55 1.25 0.00 8.62 

SL2 1.60 1.34 1.51 1.53 1.60 1.56 1.41 1.58 1.48 0.00 1.50 1.52 14.39 

SL3 1.52 0.03 0.00 1.60 1.68 1.55 1.39 0.00 1.62 1.25 0.00 1.62 14.07 

SL4 1.68 1.51 0.00 1.60 1.61 1.60 1.47 1.58 1.62 1.50 1.52 0.74 14.08 

SL5 1.51 1.56 1.52 1.72 1.59 1.34 1.61 1.53 0.00 1.26 1.48 0.00 14.39 

SL6 1.60 1.66 1.63 1.58 1.59 1.66 0.00 1.60 1.64 1.72 1.65 1.48 25.40 

SL7 1.24 1.52 1.64 1.58 1.34 1.59 1.59 0.00 1.56 1.48 0.00 1.59 25.22 

SL8 0.99 1.63 1.57 1.56 1.66 1.72 1.64 1.47 0.65 1.65 1.48 1.73 24.50 

SL9 1.60 1.55 0.00 0.00 1.58 0.03 1.61 1.59 1.58 0.00 1.60 0.00 14.07 

SL10 1.64 1.59 1.57 0.00 1.34 1.52 1.53 1.60 1.56 1.33 1.58 1.58 25.22 

SL11 1.65 0.00 0.00 1.68 0.03 0.00 1.60 1.68 1.55 1.60 0.00 1.59 19.52 

SL12 0.60 1.57 1.48 1.34 1.51 0.00 1.60 1.61 1.60 1.58 1.58 1.65 24.46 

SL13 1.59 1.60 0.00 1.58 1.56 1.51 1.72 1.59 1.34 1.62 1.53 0.00 14.54 

SL14 1.63 1.72 1.55 1.47 1.66 1.63 1.58 1.59 1.66 0.00 1.60 1.47 25.69 

SL15 1.66 0.00 1.64 1.61 1.52 1.57 1.58 1.34 1.59 1.53 0.00 1.57 25.44 

SL16 1.66 1.55 0.00 1.66 1.63 1.55 1.56 1.66 1.72 1.60 1.47 0.67 24.79 

SL17 1.64 1.41 0.00 1.59 1.55 0.00 0.00 1.58 0.03 1.60 0.71 1.68 14.07 

SL18 1.60 1.49 1.53 1.57 1.59 1.64 0.00 1.34 1.52 1.67 1.60 1.61 25.23 

SL19 1.55 0.00 0.00 1.59 0.00 0.00 1.68 0.03 0.00 1.59 1.68 1.59 19.52 

SL20 1.56 1.53 1.61 1.50 1.57 1.64 1.34 1.51 0.00 1.60 1.61 1.71 24.46 

SL21 1.60 1.52 0.00 1.65 1.60 0.00 1.58 1.56 1.51 0.19 1.59 1.34 13.89 

SL22 0.68 1.54 1.55 0.67 1.72 1.57 1.47 1.66 1.63 1.50 0.71 1.66 23.16 

SL23 1.25 0.00 1.60 1.71 0.00 1.48 1.61 1.52 1.57 1.59 1.34 0.00 23.97 

SL24 1.67 1.55 1.53 1.55 1.55 0.00 1.66 1.63 1.55 1.59 1.66 1.55 23.58 

 

Table 8. Covered surface areas for the optimal solution of four scanning locations 

found by the system 

SLs Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 
Col.  

10 

Col.  

11 
Floor 

SL6 1.60 1.66 1.63 1.58 1.59 1.66 0.00 1.60 1.64 1.72 1.65 1.48 25.40 

SL8 0.99 1.63 1.57 1.56 1.66 1.72 1.64 1.47 0.65 1.65 1.48 1.73 24.50 

SL13 1.59 1.60 0.00 1.58 1.56 1.51 1.72 1.59 1.34 1.62 1.53 0.00 14.54 

SL14 1.63 1.72 1.55 1.47 1.66 1.63 1.58 1.59 1.66 0.00 1.60 1.47 25.69 

Covered 

Surface 
5.81 6.60 4.75 6.19 6.48 6.51 4.94 6.25 5.29 4.98 6.26 4.68 90.14 

Total 

Surface 
9 9 9 9 9 9 9 9 9 9 9 9 106 

LOC 

specification 
4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 53 
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Figure 24. Top view of the Simple Structural Model showing the optimal set of 

scanning locations (four locations) obtained for the illustrative example 

5.3.2 Evaluating Effectiveness 

In order to assess the effectiveness of the proposed approach, a professional surveyor 

with experience conducting TLS surveys was invited to propose her own scanning 

plan for the Structural Model (Figure 22) given pre-defined scanning requirements 

and specifications. A top view of a 2D drawing of the model was provided to the 

professional as standard practice is to use such drawing for generating scanning plans 

manually with a pen and a compass.    

The professional was provided with instructions that included the same information 

as that used by the system including: scanner characteristics, and LOA and LOC 

scanning specifications. These are summarised in Table 9. Figure 25 shows the 

professional’s solution with triangle icons showing the 8 scanning locations she 

defined.  

In contrast, the solution obtained automatically by the P4S software prototype, 

shown in Figure 26, contains 7 scanning locations selected from 154 potential 

scanning locations.  
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Both solutions are not perfectly equivalent, but do resemble each other. Most 

interestingly is the fact that they suggest a very similar number of scanning locations 

to solve the problem. However, it can be noted that, while the scanning locations 

automatically generated by the proposed system are somewhat spread around the 

floor, some locations appear very close to one another (a similar observation could 

be made for the Illustrative Experiment earlier). This is actually due to a weakness of 

the proposed P4S approach that will be discussed in more detail later in this chapter. 

Table 9. Scanner characteristics, scanning specifications and other parameters set for 

the effectiveness experiment with the Structural Model 

Parameter Value 

Scanner Characteristics  
Angular Resolution 0.17° x 0.17° 
Scanner Height (h) 2m 
Field of View 360° x 152° 

Scanning Specifications  
LOA ±2mm 

LOC 
50% of the object’s overall surface  
(same for all objects) 

Other Parameters  
Grid density (β) 5m 

 

 

Figure 25. Scanning plan generated by the professional for the Structural Model 
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Figure 26. Scanning plan generated by the proposed system for the Structural Model 

To conduct a more quantitative comparison of the solutions obtained automatically 

by the proposed system and manually by the professional, the scanning locations 

defined by the professional were ‘inputted’ inside the developed software prototype 

to assess whether that solution indeed fulfils the specifications or not. The virtual 

scans were calculated for those eight locations (see Figure 27), the points not 

fulfilling the LOA specification discarded, and finally the covered surfaces for all 

objects calculated. As summarised in Table 10, the LOC specification is met for all 

but seven objects (C0, C5, C9, C11, C14, C16 and C59), although for most of those 

the covered surfaces are not significantly off the LOC specification. In contrast, the 

automatically generated solution fulfils the LOC specifications for all objects.  

The conclusion from this result is first that professional surveyors have significant 

expertise to generate scanning plans. Indeed, although the LOC specification is not 

completely fulfilled for all objects, the solution provided by the professional appears 

very good, demonstrating great skills. Nonetheless, it must be noted that the case 

study considered here was rather simple, with columns homogenously spread over a 
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floor. Many other scanning scenarios can however be significantly more complex, in 

which case ad-hoc knowledge and rules may not suffice to generate effective plan.  
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Table 10. Covered surface areas for 8 optimal locations suggested by the professional 

S. Locations C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62

SL13 0 0 0 0 0 1.9 1.6 1.6 1.7 1.9 2 0 0 0 0 0 0 1.9 0 0 1.7 1.6 0 0 0 0 0 0 0 0 0 1.8 2.1 0 0 0 1.6 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.6 1.7 1.7 1.8 1.5 0 1.7

SL30 0 1.8 1.6 1.7 1.6 0.4 0 0 0 0 0 1.7 0 0 0 1.4 0 0 0 0 0 0 1.7 1.8 1.8 1.9 1.7 1.7 1.7 1.7 0 0 0 1.9 0 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 1.8 1.8 1.8 1.8 1.7 1.7 0 0 0 1.6 1.7 0

SL33 1.7 1.7 1.7 1.9 0 0 0 0 0 0 0 0 1.8 1.7 0 0 0 0 0 0 0 0 0 1.7 1.9 1.8 1.7 0 0 0 0 0 0 1.9 1.7 1.8 0 0 1.9 1.4 0 0 0 0 0 0 0 0 0 0 1.8 1.7 1.8 1.9 0 0 0 0 0 0 0 1.8 0

SL38 0 0 0 0 1.7 0.2 1.6 1.1 1.4 0 1.6 0.5 0 0 0 1.9 1.6 1.7 1.7 1.7 1.8 1.8 1.7 0 0 0 1.1 1.7 1.8 1.8 1.7 1 1.5 0.5 0 0 1.7 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 1.2 1.7 1.7 1.7 1.7 1.8 0 1.8 1.7 1

SL45 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 1.9 1.8 1.7 0 0 0 0 0 0 0 0 1.7 1.7 1.8 1.8 0 0 0 1.8 1.8 0 0 1.7 1.6 1.6 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 0.3 0 0 1.4

SL65 0 0 0 0 0 0 0 0 0 0 0 0 1.9 1.6 1.9 1.9 0 0 0 0 0 0 1.6 1.7 1.7 1.8 2 1.6 0 0 0 0 0 1.8 1.9 1.7 0 0 1.9 1.7 0 0 0 0 0 0 0 0 0 0 1.9 0.6 1.7 2 0 0 0 0 0 0 0 0 0

SL79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 1.9 1.9 0 0 0 1.8 1.9 0 0 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.7 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SL111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0.9 1.9 1.6 1.7 1.7 1.7 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0

Covered Surf. 1.7 3.5 3.3 3.6 3.3 2.5 3.2 2.8 3.2 2.4 3.5 2.2 3.8 3.3 1.9 5.2 1.6 3.6 3.7 3.5 5.2 3.4 5 5.3 5.4 5.5 6.5 5 3.5 5.2 5.4 6.4 7.3 6.1 3.6 5.1 6.8 5.3 3.8 3.2 4.9 3.4 5.2 3.4 3.7 3.4 3.5 3.5 3.3 1.7 5.4 4.1 5.2 6.8 3.5 4.4 5.1 5 5.1 2 4.8 5.2 4.2

LOC 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8  
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Figure 27. Professional suggested 8 scanning locations 

To further test the system’s effectiveness, an experiment is also conducted with the 

MEP+Structural Model, that is composed of concrete structural objects (floor and 

columns) and numerous MEP objects with various shapes and orientation. This 

experiment is conducted by assuming that the scanning plan needs only be provided for 

the MEP element; the structural elements are only considered as part of the scene (they 

can result in occlusions that should not be overlooked during planning). The values of 

all the parameters used for this experiment are summarized in Table 11. In particular, 

the selected grid density led to the generation of 231 potential scanning locations shown 

in Figure 28.  
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Table 11. Scanner characteristics, scanning specifications and other parameters set for 

the effectiveness experiment with the Structural+MEP Model 

Parameter Value 

Scanner Characteristics  
Angular Resolution 0.17° x 0.17° 
Scanner Height (h) 2m 
Field of View 360° x 152° 

Scanning Specifications  
LOA ±2mm 

LOC 
40% of the object’s overall surface  
(same for all objects) 

Other Parameters  
Grid density (β) 1.5m 

 

 

Figure 28. Potential scanning locations generated by the proposed approach for the 

Structural+MEP model for β=1.5m  

The proposed approach is unable to find any feasible solution (optimal scanning 

locations) when the LOC specification is set to 50% of the MEP objects’ total external 

surface areas, even when the relatively high grid density (β=1.5m) considered. A 

solution is only found for that grid density when reducing the level of surface 

completeness to 40% of the objects’ surface areas. Figure 29 shows the system-

generated solution that contains 59 scanning locations. The first reaction to this result is 

the large number of scans required to obtain the necessary data (i.e. fulfil the LOA and 

LOC specifications). For such a small scene, conducting such a number of scans seems 

unrealistic. There are several reasons for this arguably disappointing result: 

1. At least 25% of the surface of most MEP components faces the ceiling and so 

could not be scanned from any location. This made fulfilling the LOC 

specification much harder than with the concrete columns earlier.  

2. The incidence angle LOA constraint results in the rejection of many virtually 

scanned points. This interestingly suggests that scanning such objects without 
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large incidence angles is very difficult and so very high point precision levels 

cannot be easily achieved. However, it can also be argued that many of the 

scanning locations are actually fairly close to MEP objects (<5m) and at those 

distances the maximum allowable incidence angle to achieve a ±2mm precision 

would likely be larger than the 60º value required here. Unfortunately, the 

author could not get access to any table like Figure 7 for other distances than 

20m and so couldn’t exactly confirm this theory.  

3. The scanner’s height was set to 2m, which was about 1.5m below the height of 

the MEP equipment. This height may possibly be both too low to optimise the 

chances of acquiring points on the side faces of the MEP objects with sufficient 

precision, but also too high to optimise the chances of acquiring points on the 

bottom faces of the MEP objects with sufficient precision. For the case of 

planning for scanning MEP objects, it may thus be more appropriate to combine 

potential scanning locations at two different heights: one height similar to that 

of the objects (e.g. 3.5m here), and a second much closer to the floor; e.g. 1m 

here. Unfortunately, this experiment was not conducted due to the developed 

system crashing during compilation (unfortunately, the issue could not be 

solved during the time of the study). 

 

Figure 29. Optimal scanning locations (59) for the MEP+Structural model  

5.3.3 Evaluating Efficiency 

The efficiency of the proposed approach is measured using the time necessary to 

calculate all virtual scans and covered surfaces (Steps 1 to 4), i.e. the time required to 

generate the matrix A. The optimisation stage (the fifth stage) has been found to be 

comparatively very fast, so that the time taken by the first four steps (that all occur 

within the developed software system) is very much representative of the overall 

computational time. Experiments are conducted using the Structural Model and 

Structural+MEP Model to show the impact of varying numbers of objects, and grid 
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sizes. Finally, the efficiency of the automated system is compared with the time spent 

by the professional for the first experiment. The scanning parameters employed for all 

cases are summarized in Table 12.    

Table 12. Scanner characteristics, scanning specifications and other parameters set for 

the efficiency experiment with the Structural Model and Structural+MEP Model 

Parameter Value 

Scanner Characteristics  
Angular Resolution 0.17° x 0.17° 
Scanner Height(h) 2m 
Field of View 360° x 152° 

Scanning Specifications  
LOA ±2mm 

LOC 
50% of the object’s overall surface  
(same for all objects) 

Other Parameters  
Grid density (β) 1.5m and 5m 

Table 13 summaries the results. It shows that, as expected, the overall computational 

time increases linearly with the number of scans and the number of objects (more 

precisely, the number of mesh faces) in the 3D models.  Regarding the comparison with 

the professional for the first experiment, she was clearly significantly faster than the 

prototype of the proposed approach. Nonetheless, one must remember that that case 

study, although common, can be considered rather simple. Furthermore, the assessment 

of the solution provided by the professional showed that it did not quite meet the 

scanning specifications. 

Table 13. Computational times using the Structural and Structural+MEP models, for 

various grid sizes, and also time spent by the professional surveyor. Note that the 3rd 

column is the “number of potential locations” as opposed to the number of locations in 

the solution. Therefore, this column does not apply in the case of the solution devised 

by the professional. 

Overall Computational Time 

Model 
Grid Size 

(Meter) 

No. Potential 

Scans 
Total Time 

Structural Model 
1.5 1584 17:39:40 

5 154 1:30:31 

Structural + MEP Model 1.5 231 3:24:03 

Structural Model (Professional) 1.5 N/A 0:15:00 
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5.3.4 Evaluating Sensitivity 

The sensitivity of the proposed system should be assessed with regard to the values of 

internal parameters it uses. The proposed method employs a few such parameters that 

could be varied and therefore impact the results outputted by the system: 

• (φres, θres), the horizontal and vertical angular resolutions of the scanner; 

• h, the height of the scanner; and 

• β, the size (density) of the grid of potential scanning locations; 

The first parameters, (φres, θres), have actually hardly any impact on the plans delivered 

by the proposed approach. Indeed, the covered surface of each scanned point takes into 

account the scanning resolution, so that the covered surface of a point cloud acquired 

with a given resolution is essentially the same as the covered surface of a point cloud of 

the same scene acquired with any other resolution. Scanning resolution actually only 

impacts the specification LOD, which is not taken into account in the method presented 

here.  

The scanner’s height, h, could have an impact on the result, but that impact is 

considered comparatively small, particular in the case of the structural model. The 

default height h=2m is set as half the ceiling height and is very representative of typical 

scanner heights set in such environment. Conducting a sensitivity analysis on this 

parameter would thus unlikely yield any interesting information.  

In contrast, the last parameter, β, can significantly impact the result. If the grid is set too 

sparse, a solution may even not be found at all by the system. If it is set very dense, the 

optimal solution is increasingly likely to be found, but at the cost of significant 

computational time. Conducting a sensitivity analysis on that parameter would enable 

identify if its value could indeed significantly impact the quality of the results obtained 

or not. Experiments have thus been conducted with the Structural Model using grid 

sizes of 1.5m, 3m, 5m, 7m, and 10m. These and all other experimental parameters 

employed for this experiment are summarised in Table 14.  
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Table 14. Scanner characteristics, scanning specifications and other parameters set for 

the robustness experiment with the Structural Model 

Parameter Value 

Scanner Characteristics  
Angular Resolution 0.17° x 0.17° 
Scanner Height (h) 2m 
Field of View 360° x 152° 

Scanning Specifications  
LOA ±2mm 

LOC 
50% of the object’s overall surface  
(same for all objects) 

Other Parameters  
Grid density (β) 1.5m, 3m, 5m, 7m, and 10m 

The potential scanning locations generated for the different grid sizes are shown in 

Figure 30. Table 15 then summarises the results obtained, and Figure 31 shows the 

optimal sets of scanning locations for the different grid sizes. The smaller the grid size 

β, the more likely a solution can be found and the better this solution should be. The 

results obtained here show that for β=10m, the system is actually unable to find a 

solution. Then, for β=5m and below, the system finds a solution that systematically 

includes 19 scans, and for β=7m the solution only includes one additional scan. This 

first means that the solution is not very sensitive to the parameter β in this context of 

building structures. As shown earlier the process is 10 times faster for β=5m than for 

β=1.5m. Therefore, in such context, selecting β=5m may be sufficient to obtain good 

results (see appendix A) in reasonable computational times.  
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Table 15. System sensitivity and optimal scanning locations 

Grid Size (β) 
No. of Potential 

Scanning Locations 

Optimal Set of Scanning 

Locations  

1.5m 799 19 
3m 197 19 
5m 82 19 
7m 42 20 

10m 25 nil 
 

 

(a) (b)  (c) 

(d) (e) 

 

Figure 30. Potential scanning locations generated for different grid densities (β) with the 

Structural Model; (a) as plan scans for β=1.5m; (b) as plan scans for β=3m; (c) as plan 

scans for β=5m; (d) as plan scans for β=7m; (e) as plan scans for β=10m  
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(a) 19 optimal locations for β=1.5m (b) 19 optimal locations for β=3m 

(c) 19 optimal locations for β=5m (d) 20 optimal locations for β=7m 

Figure 31. System-generated optimal sets of scanning locations for different grid 

densities (β) for the Structural Model 

One can also note that the pattern of optimal scanning locations for β=1.5m and β=3m 

are quite different from those obtained for β=5m and β=7m; the latter looking more like 

what would be expected (evenly spread pattern similar to the one produced by the 

professional). The odd patterns obtained for β=1.5m and β=3m actually result from an 

important weakness of the proposed approach that has been already noticed earlier and 

is discussed in the following section. 

5.4 Discussion on the main limitation of the proposed method 

The evaluation of the proposed system has shown some level of effectiveness and 

efficiency. But, some of the generated scanning plans were surprising, with the selection 

of locations very close to one another. This actually brought to light a significant 

weakness of the currently proposed approach, which can impact its effectiveness. That 

weakness is that the current approach does not take into account the overlapping of 
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covered surface areas from different locations. And, as a result, the generated results 

may actually not comply with the LOC specification.   

Figure 32 illustrates the scenario of overlapping of covered surfaces from two different 

scanning locations. In that figure, A1 and A2 are the surface areas covered from two 

different scanning locations SL1 and SL2, and A12 represents the surface overlapping 

area from scanning locations SL1 and SL2. In the current approach A12 is actually 

counted twice. This is arguably an important issue that needs to be addressed through 

further research, so that the system actually generates effective planning for scanning 

solutions that completely and systematically satisfy LOC scanning specifications. 

Addressing this limitation is actually not straight forward because taking into account 

overlapping of covered surfaces within the optimisation model would require; (i) 

developing a method that is able to quantify these overlaps in m2 , and (ii) adding non-

linear constraints to the optimization model. The latter would lead to the need to employ 

different optimisation techniques, which could significantly increase computational 

times. 

 

Figure 32. Surface overlapping of scanning object from SL1 and SL2 
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CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS   

This conclusion chapter consists of two parts. The first part reviews the main research 

contributions. The second part highlights the limitations of the work conducted and 

provides recommendations for future research to further develop and enhance this 

research work.  

6.1 Research Contributions 

This research introduced a novel approach for automatic planning for scanning in the 

context of the AEC industry, aimed at optimizing 3D laser scanning operations. This 

approach automatically generates an optimal laser scanning plan (the minimum set of 

necessary scans) given LOA and LOC scanning specifications and a 3D BIM model of 

the facility where the scanning is to be conducted. The approach is not developed for 

use in a specific type of environment but is developed using a general framework 

enabling its application in various kinds of construction contexts. Furthermore, the 

approach provides a global optimisation, meaning that the approach does not need to be 

provided with a manually predefined set of initial scanning locations. 

With regard to scanning quality, the approach takes into account a new type of 

specification that the author identified was lacking from current practice. The author 

proposes to call it Level of Surface Completeness (LOC) specification. The LOC 

specification considers the object surface that can be expected to be scanned. It thus 

focuses on surface-related performance, thereby complementing existing LOA and LOD 

specifications that are focused solely on local point-related performance.  

In order to achieve the main aim of this research, the following objectives were defined: 

I. Review the key subjects related to the identified planning-for-scanning problem 

in the construction industry in particular BIM and TLS technologies, and 

explore how similar problems may have been investigated in other industries. 

II. Design a mathematical model for optimizing the 3D scanning operations, i.e. 

establishing an optimal scanning plan given the design BIM model as well as 

LOA and LOC specifications for objects of interest.  

III. Implement the developed solution in a prototype system and validate the 

performance of the proposed model experimentally. 
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Objective I is addressed through a comprehensive review of subjects related to the 

research topic (Chapter 2). The chapter first reviews TLS, showing that it has gained 

significant popularity as a 3D surveying technology. The main applications of TLS, its 

3D data capturing principles and the factors impacting its measurements are reviewed. 

The literature review also covers BIM that is similarly identified as a rapidly growing 

procedural and technological development in the AEC&FM industry. While BIM 

focuses on both process and data, this research particularly considers it from the point of 

view of data and presents the BIM model as a digital representation of a building that 

gathers all life-cycle data and information about it. The information contained in BIM 

models that is of particular interest to this research is the types of objects and their 3D 

geometry (and potentially their constitutive materials). Finally, the literature review 

makes the case for effective and efficient methods for planning for scanning and 

reviews current practice and recent research on the subject. The literature review 

concludes with the identification of a specific need for planning for scanning algorithms 

that take into account not only point-based quality criteria for assessing the performance 

of a scanning plan (i.e. LOA and LOD), but also surface-related ones, in particular the 

amount of surface scanned for each object of interest (the proposed LOC). 

For Objective II, an algorithm for Planning for Scanning (P4S) in the context of the 

construction industry is developed that takes as input a 3D BIM model of the facility to 

be scanned, and generates an optimal scanning plan that satisfies constraints related to 

the characteristics of the scanner, and LOA and LOC scanning specifications. The P4S 

algorithm follows five steps: 

Step1: Semi-automatically select the floor in the given input 3D BIM model on 

which the scanner shall be located, and then automatically generate a grid on the top 

face of the floor. Each grid intersection is then considered as a potential scanning 

location. 

Step2: Given the scanner characteristics, automatically calculate virtual laser scans 

from all potential scanning locations. 

Step3: Filter each virtually scanned 3D point according to the LOA specification. 

This is achieved indirectly by filtering points according to specified maximum range 

(ρmax) and maximum incidence angle (σmax) that should altogether ensure fulfilment 

of the LOA specification. 



CHAPTER 6 :  CONCLUSIONS AND RECOMMENDATIONS 

76 

Step4: Automatically calculate the covered surface areas for each object of interest 

for each potential scanning location. 

Step5: Automatically calculate the optimal set of scanning locations (i.e. minimum 

set of scanning locations) that satisfy the LOC specification expressed in terms of 

minimum covered surface for each object of interest. This is achieved by formulating 

the optimization problem as a BIP problem and solving it using a Branch-and-Cut 

algorithm. 

To achieve Objective III, a prototype system has been developed that implements the 

above approach. The system also provides a user-friendly Graphical User interface 

(GUI) that enables easy data input and visualisation of the results. Then, three different 

3D BIM models have been used to conduct illustrative and performance assessment 

experiments. A simulated simple structural model was first used to demonstrate the 

working of the approach. Then, a real (medium-size) Structural Model and a portion of 

it augmented with MEP components were used to evaluate the performance of the 

proposed approach in terms of effectiveness, efficiency, and sensitivity to the selected 

grid size.  

To evaluate the effectiveness, a professional surveyor was invited to suggest a scanning 

plan for the Structural Model.  This led to two conclusions: first, professional surveyors 

do have valuable expertise and ad-hoc approaches enabling them to propose reasonably 

good scanning plans, at least for simple examples like simple building structures 

composed of evenly spread columns and slabs. Second, the proposed approach also 

works reasonably well in such context. The effectiveness of the proposed approach was 

then tested in the more challenging case of scanning MEP components with complex 

shapes and self-occlusions. The results particular suggested that to achieve high surface 

coverage with very high data precision in such context could actually require more 

scans than current practice currently suggests. So, it is likely that in practice LOA 

specifications (particularly in terms of incidence angle) have to be reduced for such 

scanning works. Nonetheless, the results also suggested that, in such context, it may be 

more critical to consider different scanner heights during the planning stage, as opposed 

to the ‘default’ height (2m) considered here.   

The current implementation of the proposed system is not very efficient. For the 

Structural Model, the professional was significantly faster – although her solution did 

not quite fulfil the LOC specification for all objects. Furthermore, the computational 
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time increases essentially linearly with the number of scanning locations (i.e. the square 

of the grid size), and linearly with the number of objects in the 3D model (to be more 

exact, the number of mesh faces). Considering various scanner heights (i.e. considering 

potential scanning locations in 3D as opposed to only 2D plan) would further impact 

computational times. While the process can easily benefit from parallel processing, 

experiments are also showing that selecting an overly small grid size (i.e. augmenting 

the number of potential scanning location) does not necessarily lead to better solutions. 

For structural works, for example, it would seem that a 5m grid size is likely to provide 

reasonable solutions for the sort of LOA and LOC specifications considered here. 

Overall, this study first uniquely identified the need for a new kind of scanning 

specification that considers the amount of surface scanned, as opposed to the current 

LOA and LOD specifications that focus on local point specifications. The proposed 

LOC specification is of particular value to support activities such Scan-to-BIM 

modelling. Then, the study proposed a first approach that aims to demonstrate that it is 

possible to develop automated systems for generating scanning plans using 3D BIM 

models (e.g. for application in construction quality control) that consider both point-

related scanning specifications such as LOA and surface-related specifications such as 

LOC. As a result, the overall aim of the research has been at least partially achieved. 

However, the approach developed in this research still presents an important weakness 

(the lack of consideration for scanning surface overlap), that leads the current approach 

does not fully achieves the initial research aim, and that further research remains 

necessary to completely achieve it. In contexts where the objects are similar and evenly 

spread around the scene (like in the Structural Model case presented in this 

dissertation), the lack of consideration for scanning surface overlap does not seem to 

affect the results significantly. However, it is clear that in more general cases, this 

limitation seriously impacts the results. This leads to the conclusion that, although the 

approach is fully designed to be usable in any context (generalizable), in practice it 

currently does not achieve that objective.  

The section below reviews all the limitations that can be identified in the work reported 

here, and suggests approaches to address them through further research.        
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6.2 Limitations and Future Research 

Though the proposed approach has demonstrated promising results, some limitations of 

the proposed method can be identified that require further research: 

• The implemented prototype does not currently take into account multiple floors 

at a time in order to generate the grid and potential laser scanning locations. It 

can only process one floor at a time. It should nonetheless be straightforward to 

enhance the system so that it can take into account multiple “floors” where the 

scanner can be located. Indeed, it was shown how floors can be automatically 

extracted from the BIM model (in IFC format). Therefore, instead of selecting 

one floor, the system could easily consider all of them, find those that are of 

potential value to the scanning of the objects of interest, and generate potential 

scanning locations on all those floors, using the exact same approach as 

presented in this dissertation.  

• The proposed system does not currently consider the level of detail (LOD) 

specification used in prior research and in practice. The author however does not 

foresee any problem in integrating LOD into the current framework. It is 

anticipated that points could be filtered out based on the LOD specification at 

the same stage of the process as when they are filtered out based on the LOA 

specification. But this remains to be developed and validated. 

• Like all previous works that have considered the LOA criterion, this method 

theoretically requires performance information (tables or graphs) that detail the 

expected point precision for different ranges and incidence angles (i.e. like 

Figure 7). In fact, such information should also be generated for various 

materials, since the type of material is another parameter that can notably impact 

point precision. Getting this information requires conducting laboratory 

experiments that would be best conducted by laser scanner manufacturers 

because they already own the necessary expensive testing rigs. 

• An important parameter of the proposed method is the density of scanning 

locations, β. In the work presented here the value of β is specified manually by 

the user. It may however be possible to define an automated approach to define 

an appropriate value of β. For example, β could possibly be defined according to 

the size of the objects to be scanned, or more generally their geometry.          
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• Due to time constraints, the comparison of the performance of the proposed 

approach against current practice has only been measured against the plan 

provided by one professional. Arguably, such comparison should be conducted 

with plans provided by more professionals. Nonetheless, the author’s opinion is 

that the result obtained by the one professional who took part in this study are as 

expected, and most likely representative of what other professionals would have 

produced (the compass-based approach to set the scanning plan and the pattern 

of selected locations in the plan are both typical). While some differences would 

naturally be observed with other professionals, those would be minor. For 

example, it is expected that other professionals would have provided plans with 

the same or almost the same number of scanning locations, even though the 

actual locations may be different.        

• Most importantly, the proposed P4S optimization model does not take into 

account the overlapping of the surfaces covered from different scanning 

locations. As a result, when the system currently reports that sufficient object 

surfaces are covered by the selected scanning locations, in reality the covered 

surfaces may significantly overlap and thus the true overall covered surface may 

remain insufficient. This limitation appeared clearly in some of the reported 

results when the system sometimes selected several neighbouring scanning 

locations within the optimal scanning plan instead of locations better spread 

around the scene.  

This limitation is certainly significant and requires further research. Although 

the first four steps of the process presented in this thesis could possibly remain 

unchanged, taking surface overlaps into account would essentially make the 

optimisation non-linear and thus an entirely different optimisation approach 

would have to be considered to solve this problem. Two approaches could be 

considered to address this issue: 

• The first approach would consist in comparing point clouds generated from 

each pair of potential scanning locations and identify whether each point in 

one point cloud is very close to a point in the other one. This method, that is 

commonly used to reduce the size of point clouds resulting from multiple 

scans (called point cloud dissemination; e.g. see [90-92]), would here be 

used to identify ‘overlapping points’ between each pair of selected scans. 

This information could then be used in the optimisation stage to discard 
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overlapping points if the two scanning locations they refer to are selected by 

the algorithm.  

• A second approach would consist in uniformly sampling the surface of each 

object, e.g. into points. The uniform sampling leads to a corresponding 

constant surface covered by each of those points. Then, for each potential 

scanning location, it only suffices to check whether each point is scannable 

with the necessary LOA (and LOD) specification. And, during the 

optimisation process, if one more scanning locations are selected that can all 

scan that surface sample point then that point (and its covered surface) is 

counted only once.  

As noted above, both these approaches introduce non-linear constraints in the 

optimisation model, which would require a different type of optimisation method, such 

as genetic algorithm.  

In addition to the areas of further development suggested above, further experiments 

should also be conducted using other types of contexts and even more complex 

scenarios. This could help better assess the value of any newly proposed planning for 

scanning method, particularly in comparison with current manual approaches. 
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Appendix 1: System Generated-Covered Surface Areas for the 19 scanning locations constituting the optimal solution for the Structural 3D Model with density β =5m and height of 

scanner h=2m. 

Appendix 1 represents the system-generated covered surface areas for all objects from the optimal solution of 19 scanning locations obtained for the Structural 3D Model with density β =5m and height of scanner h=2m. The 

19 scanning locations are shown in Figure 31. 

S.Locations C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 Floor C63

SL13 0 0 0 1.95 1.63 1.72 1.74 1.62 1.79 1.18 1.74 1.73 0 0 0 1.89 1.82 0 1.79 1.66 1.81 1.74 1.73 0 0 0 0 1.82 0 1.66 1.75 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.85 1.65 1.8 1.75 1.6 1.91 1.59 1.67 1.61 46.84 0

SL16 1.41 1.77 2.01 1.68 1.7 1.61 1.7 0 0 0 1.75 1.75 1.42 1.81 1.7 1.79 1.78 0.2 1.8 0 0 1.65 1.72 0 1.61 1.82 2.07 1.81 0 0 0 0 0 1.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.68 1.64 1.71 1.78 1.7 1.86 1.72 0 0 0 1.36 1.81 46.42 0

SL19 0 0 0 0 0 0 1.67 1.71 1.75 1.61 1.89 0 0 0 0 0 0 0 0 0 1.78 0 0 0 0 0 0 0 1.9 1.89 1.88 1.8 1.72 0 0 0 1.9 1.78 0 0 1.75 1.45 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 1.9 1.78 1.82 1.79 1.89 0 47.34 1.8

SL22 0 0 0 1.85 1.73 1.89 2.05 1.45 1.66 0 1.78 1.92 0 0 0 0 0 0 1.78 0 0 1.74 0 0 0 0 1.57 1.72 1.81 1.8 1.73 1.91 0 1.78 0 0 1.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.84 1.83 1.76 1.75 1.76 1.68 1.49 1.8 1.8 46.32 0

SL24 0 1.7 1.66 0 0 1.73 1.71 0 0 0 1.77 1.77 0 0 0 0 0 1.74 0 0 0 0 1.73 0 1.56 2.04 1.71 1.78 1.61 2.05 1.57 0 0 1.79 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.68 1.69 1.71 1.71 1.79 1.75 1.85 0 0 1.86 1.72 47.48 0

SL27 0 1.79 1.62 1.74 1.65 0.4 0 0 0 0 0 1.67 0 0 0 1.38 0 0 0 0 0 0 1.71 1.78 1.84 1.89 1.75 1.69 1.74 1.73 0 0 0 1.94 0 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.73 1.83 1.81 1.79 1.79 1.74 1.74 0 0 0 1.59 1.74 46.63 0

SL30 0 0 0 0 0 0 0.53 1.27 1.69 1.74 0 0 0 0 0 0 0 1.93 1.64 1.83 1.71 1.97 0 0 0 0 0 0 1.4 1.67 1.72 1.83 1.72 0 0 0 1.86 1.7 0 0 1.73 1.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.73 1.67 1.75 1.81 1.58 0 47.22 1.83

SL35 0 0 0 0 1.67 0.24 1.59 1.12 1.45 0 1.56 0.53 0 0 0 1.95 1.63 1.72 1.71 1.65 1.8 1.76 1.73 0 0 0 1.08 1.74 1.81 1.79 1.69 0.95 1.54 0.51 0 0 1.66 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 1.16 1.68 1.67 1.73 1.75 1.8 0 1.77 1.66 49.34 1.04

SL38 1.94 1.84 1.61 1.95 0 0 0 0 0 0 0 1.59 1.95 1.81 1.69 1.76 1.63 0 0 0 0 0 1.74 1.8 1.44 1.75 1.63 0.48 0 0 0 0 0 1.55 0 1.65 0 0 0 1.71 0 0 0 0 0 0 0 0 0 0 1.81 1.07 1.72 1.71 1.89 0 0 0 0 0 0 0 42.67 0

SL46 0 0 0 0 0 0 0 0 1.85 0 0 0 0 0 0 0 0 0 1.76 1.56 1.76 1.96 0 0 0 0 0 0 1.79 2.06 1.81 1.71 1.83 0 0 0 1.56 1.77 0 0 1.73 1.74 1.73 1.81 0 0 0 0 0 0 0 0 0 0 0 0 2.01 1.71 1.74 1.8 0 0 48.32 1.6

SL49 0 0 0 0 0 0 1.59 0 0 0 1.94 0 0 0 0 2.35 1.45 1.69 1.9 1.83 1.75 1.77 1.59 0 0 0 1.44 1.58 1.76 1.82 1.71 1.77 2 1.62 0 0 1.97 1.49 0 0 1.68 0 1.48 0 0 0 0 0 0 0 0 0 0 0 1.67 1.61 1.74 0.28 2 0 1.48 0 49.72 0

SL55 1.36 0 0 0 0 0 0 0 0 0 0 0 1.86 1.75 1.67 1.57 0 0 0 0 0 0 0 1.72 1.74 1.74 1.67 0 0 0 0 0 0 1.82 1.76 1.8 0 0 1.8 1.7 0 0 0 0 0 0 0 0 0 0 2.06 1.82 1.81 0 0 0 0 0 0 0 0 0 46.26 0

SL57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.88 1.76 1.62 0 0 0 0 0 0 0 0 1.58 1.75 1.63 1.78 0 0 0 1.78 1.7 0 0 1.67 1.75 1.95 1.67 1.91 1.64 0 0 0 0 0 0 0 0 0 0 0 1.43 1.65 2.18 0 0 49.3 1.62

SL66 0 0 0 0 0 0 0 0 0 0 0 0 1.88 1.93 1.38 0 0 0 0 0 0 0 0 1.82 1.76 1.73 0 0 0 0 0 0 0 0 1.83 1.69 0 0 1.84 1.79 0 0 0 0 0 0 0 0 0 0 1.7 1.65 1.44 0 0 0 0 0 0 0 0 0 47.39 0

SL68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.53 0 0 0 0 0 0 0 0 1.71 1.87 1.76 1.54 0 0 0 1.82 1.69 0 0 1.82 1.72 1.78 1.68 1.8 2 1.79 1.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.53 0

SL77 0 0 0 0 0 0 0 0 0 0 0 0 0.87 0 0 0 0 0 0 0 0 0 0 1.79 1.53 0 2.04 0 0 0 0 0 0 0 1.86 1.83 0 0 1.75 1.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48.14 0

SL79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.94 1.86 1.92 0 0 0 1.77 1.85 0 0 1.78 1.81 1.85 1.82 1.81 1.76 1.85 1.74 1.61 0 0 0 0 0 0 0 0 0 0 0 0 0 49.2 0

SL101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.84 1.93 1.78 1.58 1.72 1.85 1.79 1.76 1.81 1.77 0 0 0 0 0 0 0 0 0 0 0 0 46.25 0

SL134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.72 2.3 1.83 1.69 1.75 1.65 0 0 0 0 0 0 0 0 0 0 0 0 46.26 0

Covered Surf. 4.71 7.09 6.9 9.16 8.37 7.59 12.6 7.18 10.2 4.53 12.4 11 7.98 7.29 6.43 12.7 8.31 7.28 14.3 10.3 13.8 12.6 11.9 8.9 11.5 11 15 12.6 13.8 19.8 19.4 15.2 14 14.3 5.46 10.7 15.9 12 5.39 6.96 15.4 12.2 10.6 8.55 8.95 9.55 7.26 6.95 5.17 3.42 8.98 9.69 10.2 11.8 13.9 13.5 17.8 13.8 14.4 10.7 15 10.3 900.6 7.89

Total Surface 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 1785 5.67

LOC 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.84 892.4 2.84
 

 


