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Abstract. The Naproche system is a system for linguistically analysing
and proof-checking mathematical texts written in a controlled natural
language, i.e. a subset of the usual natural language of mathematical
texts defined through a formal grammar. This paper gives an overview
over the linguistic and logical techniques developed for the Naproche
system. Special attention is given to the dynamic nature of quantification
in natural language, to the phenomenon of implicit function introduction
in mathematical texts, and to the usage of definitions for dynamically
extending the language of a mathematical text.
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1 Introduction

The language of mathematics, i.e. the special language that is used in mathemat-
ical journals and textbooks, has some unique linguistic features, on the syntactic,
on the semantic and on the pragmatic level: For example, on the syntactic level,
it can incorporate complex symbolic material into natural language sentences.
On the semantic level, it refers to rigorously defined abstract objects, and is in
general less open to ambiguity than most other text types. On the pragmatic
level, it reverses the expectation on assertions, which have to be implied by the
context rather than adding new information to it.

The work presented in this paper has been conducted in the context of the
Naproche project, an interdisciplinary project between mathematical logic and
computational and formal linguistics at the universities of Bonn and Duisburg-
Essen (see [6] and section 1.4 of [11]). The Naproche project is guided by the
vision of a computer program that could check the correctness of mathemati-
cal proofs written in the natural language of mathematics. Given that reliable
processing of unrestricted natural language input is out of the reach of current
technology, the project focuses on the attainable goal of using a controlled natu-
ral language (CNL), i.e. a subset of a natural language defined through a formal
grammar, as input language to such a program. We have developed a proto-
type of such a computer program, the Naproche system. This paper presents

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/80682648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Marcos Cramer

the linguistic and logical theoretical framework of the Naproche system and its
CNL.

The main application that we have in mind for the Naproche system is to
make formal mathematics more natural and hence more accessible to the aver-
age mathematician. Formal mathematics is a branch of mathematics that aims
at developing substantive parts of mathematics in a purely formal way. This is
usually done with the help of computer programs, and the usual input language
of formal mathematics systems have more resemblance with programming lan-
guages than with the natural language of mathematics. We think that this is
one of the reasons why formal mathematics is not widely used by mathemati-
cians outside the circles of the relatively small formal mathematics community.
We hope to close the gap between the formal mathematics community and the
rest of the mathematical community by developing a formal mathematics system
that allows for a much more natural input language.

Before running the proof-checking algorithm for checking the logical correct-
ness of a given input text, the Naproche system transforms the input text into
a logical representation of its content, called a Proof Representation Structure
(PRS ). PRSs are an extension of Discourse Representation Structures (DRSs),
enriched in such a way as to represent some special characteristics of the lan-
guage of mathematics [6]. In this paper, as in [11], we use Dynamic Predicate
Logic (DPL) and its extension Proof Text Logic (PTL) instead of DRSs and
PRSs as the basis for the theoretical exposition. Just like Discourse Representa-
tion Theory, Dynamic Predicate Logic is a formal system aimed at capturing the
dynamic nature of natural language quantification. But unlike Discourse Repre-
sentation Theory, it has a close syntactical resemblance to standard systems of
first-order predicate logic.

The logical and linguistic theory developed in the context of the Naproche
project has been presented in detail in the author’s thesis [11]. This paper gives
an overview over this theory, with a special focus on the phenomenon of implicit
function introduction in mathematical texts, exemplified by constructs of the
form “for every x there is an f(x) such that . . . ”, on the usage of definitions for
dynamically extending the language of a mathematical text, and on quantifiers
in bi-implications and reversed implications that have to be treated in a similar
way as in donkey sentences.

Section 2 gives an overview over the language of mathematics, with a special
focus on the features of it which will be relevant for the discussion in this paper.
Section 3 introduces and formally defines Dynamic Predicate Logic (DPL). In
section 4, we give an overview over the controlled natural language implemented
in the Naproche system. In section 5, we discuss some difficulties in parsing
the symbolic expressions found in mathematical texts and sketch the solution
to these problems that is implemented in the Naproche system. Section 6 dis-
cusses the phenomenon of implicit dynamic function introduction, and section
7 defines an extension of DPL called Typed Higher-Order Dynamic Predicate
Logic (THODPL) which formalizes this phenomenon. In section 8, we explain
the proof checking algorithm implemented in the Naproche system. In section
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9, we discuss how definitions are used to dynamically expand the language of
mathematics, and how this is implemented in Naproche using the methods pro-
vided by THODPL. Section 10 discusses the interpretation of quantifiers in bi-
implications and reversed implications that have to be treated in a similar way as
in donkey sentences. Section 11 presents related work and section 12 concludes
the paper.

Throughout the paper we discuss various extensions to DPL. All of these
extensions are included in Proof Text Logic (PTL), which is comprehensively
presented in chapter 5 of [11].

2 The language of mathematics

Just as other sciences, mathematics has developed its own specialized language.
This language has many registers, but in this paper we will focus on the written
registers of undergraduate and graduate textbooks.

As an example of the language of mathematics, we cite a text fragment from
[29].

Definition 5.8. A linearly independent set (resp. sequence) whose ele-
ments generate a given vector space is called a basis (resp. ordered basis)
of that space.

Examples

1. The empty set is a basis of the zero-space.
2. (E1, . . . , Em) is an ordered basis of Fm. We call it the canonical

basis.
3. The polynomials: 1, X, X2, . . . form a basis (or an ordered basis) of

the space of polynomials.

In our three-dimensional geometric representation, any three non-coplanar
vectors form a basis.
The following theorem gives a more useful characterization of bases.

Theorem 5.6. Let V be a nontrivial vector space, X a subset of V. Then
X is a basis if, and only if, each vector of V has a unique representation
as a linear combination of elements of X .

Proof. What we have to prove is that the linear independence of a set of
generators X is equivalent to the uniqueness of the representation. If X
is not linearly independent, the representation is, in general, surely not
unique, since we have a1x1 + · · ·+anxn = 0 = 0x1 + · · ·+0xn, where the
x’s are distinct elements of X and the a’s are not all zero. Conversely,
suppose that some vector v has two distinct representations as a linear
combination of elements of X . Then we have v = a1x1 + · · · + anxn =
b1x1 + · · ·+ bnxn, where the x’s are distinct elements of X and ai 6= bi
for at least one i. Consequently (a1− b1)x1 + · · ·+ (an− bn)xn = 0, and
the x’s are linearly dependent.
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As the example illustrates, the language of mathematics incorporates the
syntax and semantics of the general natural language. Hence it takes over its
complexity and some of its ambiguities. However, mathematical texts are distin-
guished from common language texts by several characteristics. Below we give a
list of some of the most perspicuous characteristics of mathematical texts. Some
of the features mentioned are also found in general language, but are much more
prevalent in the language of mathematics than in general language.

– Mathematical texts combine natural language expressions with mathemati-
cal symbols and formulae, which can syntactically function as noun phrases
or sub-propositions.

– Constructions which are hard to disambiguate are generally avoided.
– Mathematical symbols can be used for disambiguation, e.g. by use of vari-

ables instead of anaphoric pronouns.
– Assumptions can be introduced and retracted. In the proof to theorem 5.6 in

the above text fragment, the sentence beginning with “Conversely, suppose”
introduces the assumption that some vector v has two distinct representa-
tions as a linear combination of elements of X . The claims that follow are
understood to be relativized to this assumption. When the assumption gets
retracted at the end of the proof, it allows one to conclude one of the two
implications needed for the bi-implicational claim of the theorem.

– Mathematical texts are highly structured, and their structure is often made
explicit. At a global level, they are commonly divided into building blocks
like definitions, lemmas, theorems and proofs. Inside a proof, assumptions
can be nested into other assumptions, so that the scopes of assumptions
define a hierarchical proof structure.

– The language is adaptive: Definitions add new symbols and expressions to
the vocabulary and fix their meaning.

– On the pragmatic level, the expectation on assertions is reversed: Assertions
have to be implied by the context rather than adding new information to it.

– Proof steps are commonly justified by referring to results in other texts, or
previous passages in the same text. So there is a large amount of intertextual
and intratextual references (often in a standardized form).

– Furthermore, mathematical texts often contain commentaries and hints which
guide the reader through the process of the proof, e.g. by indicating the
method of proof (“by contradiction”, “by induction”) or giving analogies.

A thorough linguistic analysis of the language of mathematics was provided
by Mohan Ganesalingam in his Ph.D. thesis [15, pp. 17-38].

3 Dynamic Predicate Logic

Our formal treatment of mathematical reasoning and our controlled natural
language for mathematical texts is based on an extension of Dynamic Predicate
Logic (see [17]). DPL is a logical system for formalizing some of the dynamic
features of natural language. Its syntax is identical to that of standard first-order
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predicate logic (PL), but its semantics is defined in such a way that the dynamic
nature of natural language quantification is captured in the formalism. Consider
the following example sentence and formulae:

(1) If a farmer owns a donkey, he beats it.1

(2) PL: ∀x∀y (farmer(x) ∧ donkey(y) ∧ owns(x, y)→ beats(x, y))

(3) DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x, y)))→ beats(x, y)

The standard way of translating (1) into PL is (2). In DPL, (1) can also be
translated by the formula (3), which is more faithful to the structure of (1).
Note that in PL, (3) is not a sentence, since the final occurrences of x and y are
free. In DPL on the other hand, a variable may be bound by a quantifier even if
it is outside its scope. The semantics of DPL is defined in such a way that (3) is
equivalent to (2) in DPL. Hence we can conclude that in DPL, (3) captures the
meaning of (1) while being more faithful to its syntax than (2).

The natural language quantification used in mathematical texts also exhibits
these dynamic features, as can be seen in the following quotation from [19, p. 36]:

If a space X retracts onto a subspace A, then the homomorphism i∗ :
π1(A, x0)→ π1(X,x0) induced by the inclusion i : A ↪→ X is injective.

3.1 DPL semantics

We present DPL semantics in a way slightly different but logically equivalent
to its definition in [17]. Structures and assignments are defined as for PL: A
structure S specifies a domain |S| and an interpretation aS for every constant,
function or relation symbol a in the language. An S-assignment is a function
from variables to |S|. GS is the set of S-assignments. Given two assignments g,
h, we define g[x]h to mean that g differs from h at most in what it assigns to
the variable x. Given a DPL term t, we recursively define

[t]gS =


g(t) if t is a variable,

tS if t is a constant symbol,

fS([t1]gS , . . . , [tn]gS) if t is of the form f(t1, . . . , tn).

In [17], DPL semantics is defined via an interpretation function J•KS from DPL
formulae to subsets of GS ×GS . We instead recursively define for every g ∈ GS
an interpretation function J•KgS from DPL formulae to subsets of GS :2

1. J>KgS := {g}
1 This example sentence is one of a number of standard examples from the linguistic

literature about dynamic quantification, which are usually called donkey sentences.
Donkey sentences were originally introduced by Peter Geach [16].

2 This can be viewed as a different currying of the uncurried version of the interpre-
tation function in [17].
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2. Jt1 = t2K
g
S := {h|h = g and [t1]gS = [t2]gS}3

3. JR(t1, . . . , t2)KgS := {h|h = g and ([t1]gS , . . . , [t2]gS) ∈ RS}
4. J¬ϕKgS := {h|h = g and there is no k ∈ JϕKhS}
5. Jϕ ∧ ψKgS := {h|there is a k s.t. k ∈ JϕKgS and h ∈ JψKkS}
6. Jϕ→ ψKgS := {h|h = g and for all k s.t. k ∈ JϕKhS , there is a j s.t. j ∈ JψKkS}
7. J∃xϕKgS := {h|there is a k s.t. k[x]g and h ∈ JϕKkS}

ϕ ∨ ψ and ∀xϕ are defined to be a shorthand for ¬(¬ϕ ∧ ¬ψ) and ∃x> → ϕ
respectively.

4 The Naproche CNL

The Naproche CNL is a controlled natural language for mathematical texts.
Texts written in the Naproche CNL can be interpreted unambiguously by the
Naproche system, which can check their logical correctness using the proof check-
ing algorithm described in section 8 below.

For those parts of the language of mathematics that are part of the common
language, like the basic functioning of nouns, verbs, adjectives, prepositions and
their syntactic combinations into noun phrases, verb phrases etc., the Naproche
CNL is based on Attempto Controlled English [13]. The details of this basic
layer of the Naproche CNL are not the focus of this paper; for details about it,
see chapter 7 of [11].

This basic layer of the Naproche CNL has been enriched by a number fea-
tures and constructs that are characteristic of the language of mathematics.
Some of these – namely symbolic mathematics, implicit dynamic function intro-
duction, mathematical definitions and the dynamic interpretation of quantifiers
in bi-implications and reverse implications – will be discussed in more detail in
subsequent sections (sections 5-10). For the rest of this section, we will briefly
discuss some further such features and constructs of the Naproche CNL.

The Naproche system first translates an input text into a Proof Represen-
tation Structure (PRS), and the proof-checking algorithm is defined on PRSs.
In this paper, just as in [11], we use the DPL extension PTL instead of PRSs.
The details of the translation of Naproche CNL texts into PTL can be found in
chapter 7 of [11].

4.1 Macro-grammar

There are syntactical rules that govern the overall structure of a text. For ex-
ample, there is a syntactic construct called theorem-proof block that consists of
the following five parts in this order:

– A sentence of the form “Theorem.”, which marks the beginning of the
theorem-proof block

3 The condition h = g in cases 2, 3, 4 and 6 implies that the defined set is either ∅ or
{g}.
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– A sequence of sentences of a certain form that express the content of the
theorem

– A sentence of the form “Proof:”, which marks the beginning of the proof
– A sequence of sentences of a certain form that express the proof of the

theorem
– A sentence of the form “Qed.”, which marks the end of the proof

Syntactical rules of this kind make up the macro-grammar of the Naproche CNL.
Another example of a macro-grammatical block are case distinction blocks.

One issue that needed to be solved when defining the macro-grammar of
the Naproche CNL is the retraction of local assumptions. As in the natural
language of mathematics, in the Naproche CNL a local assumption is marked by
a keyword like “assume”, “suppose” or “let”. Local assumptions are assumed to
hold only for a limited fragment of the text. We say that at the place, where they
stop to be assumed, they get retracted. In the natural language of mathematics,
the retraction of an assumption is usually not marked explicitly and can only
be inferred from an understanding of the proof. In a CNL, however, we need
a reliable method for retracting assumptions. We have therefore introduced the
rule that the keyword “thus”, which can be used at the beginning of a sentence,
retracts the most recently introduced not yet retracted assumption. Furthermore,
an assumption gets retracted when the macro-grammatical block inside of which
it was introduced ends. For example, an assumption introduced inside a proof
gets retracted when the proof is ended with “Qed.”. We call the text fragment
from the assumption up to the place where it gets retracted the scope of the
assumption.

The macro-grammar of the Naproche CNL is described in detail in section
7.2 of [11].

4.2 Representing complete texts in PTL

Since DPL formulae are usually used to represent single statements and not
complete texts, we need to explain how PTL as an extension of DPL can be
used to represent complete texts.

For this, we include in PTL a construct for representing theorem-proof blocks.
It has the form thm(•, •): Its first argument contains the theorem assertion, and
its second argument contains the proof of the theorem.

We will discuss in section 9 how definitions can be represented in PTL. So we
now only need to explain how texts and text fragments without definitions and
theorem-proof blocks can be represented in PTL: The concatenation of sentences
is usually rendered by conjoining their respective translations with ∧. A special
case are axioms and local assumptions: When an axiom appears in a text, the
part of the text starting at the axiom is translated by a formula of the form
ϕ → ϑ, where ϕ is the translation of the axiom and ϑ is the translation of the
text following the axiom. The translation of local assumptions is similar, only
that one has to take into account the scope of the assumption: The scope of an
assumption is translated as ϕ→ ϑ, where ϕ is the translation of the assumption
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and ϑ is the translation of the rest of the scope of the assumption. The translation
of the scope of an assumption is embedded into the translation of a complete
text as if the whole scope of the assumption were a single sentence.

4.3 Metalinguistic expressions

The Naproche CNL allows for expressions of the form “If case 2 holds, then . . . ”.
Here “case 2” is a metalinguistic noun phrase that anaphorically refers back to
a previously introduced case.

Furthermore, the Naproche CNL allows for a sentence of the form “At most
one of the following statements holds:” followed by a list of sentences. Here “the
following statements” is a metalinguistic noun phrase that cataphorically refers
to the statements that follow it. Different kinds of logical relations between
statements can be expressed in this way, using terms like “at most one”, “at
least one”, “holds”, “does not hold” and “are inconsistent”.

4.4 Such-that clauses

One conspicuous feature of mathematical texts is the abundance of such-that
clauses. These are subclauses that similarly to normal relative clauses specify a
noun phrase further. Normally the noun phrase is a variable or an apposition of
a contentful noun phrase and a variable, and the variable is used in the such-that
clause in order to refer back to the specified noun phrase:

(4) A contains some integer k such that k2 > 4.

In this example, the such-that clause “such that k2 > 4” specifies further the
noun phrase “some integer k”, which is an apposition of the noun phrase “some
integer” and the variable k.

One problem that arises when introducing such-that clauses into a controlled
natural language is that the end of such-that clauses is not explicitly marked,
which can be a cause of ambiguity:

(5) A does not contain an integer k such that k2 > 4 and A is finite.

This sentence can be read as the conjunction of “A does not contain an integer
k such that k2 > 4” and “A is finite”, or as a sentence containing the such that
clause “such that k2 > 4 and A is finite”. In the Naproche CNL we use the
principle that the reading given to such a sentence is the one where the such-
that clause goes on as long as possible, i.e. the second of the two readings just
mentioned. Similar disambiguation principles are also applied to other possible
sources of ambiguity of the Naproche CNL.

4.5 Complex and plural noun phrases

Complex and plural noun phrases can be interpreted either collectively and dis-
tributively :
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(6) 12 and 25 are coprime.

(7) 2 and 3 are prime numbers.

(7) is interpreted as “2 is prime and 3 is prime”: This is called a distributive
reading of the complex noun phrase “2 and 3”, because the predicate “prime”
distributes over the two conjuncts of the complex noun phrase. (6) is interpreted
as “12 is coprime to 25”, with a collective reading of “12 and 25”.

The same noun phrase may have to be interpreted collectively with respect
to one predicate and distributively with respect to another:

(8) p1 and p2 are distinct primes.

Here “p1 and p2” has to be interpreted collectively with respect to the predicate
“distinct” and distributively with respect to the predicate “prime”.

A similar ambiguity arises with respect to the scope of quantifiers in sentences
with complex or plural noun phrases:

(9) A and B contain some prime number.

(9) can mean either that A contains a prime number and B contains a (possibly
different) prime number, or that there is a prime number that is contained
in both A and B. In the first case we say that the scope of the noun phrase
conjunction “A and B” contains the quantifier “some”, whereas in the second
case we say that the scope of “some” contains the noun phrase conjunction.
We call the first reading the wide-conjunction-scope reading and the second the
narrow-conjunction-scope reading.

Sometimes certain considerations of reference or variable range force one of
the two readings, as in (10) and (11).

(10) x and y are integers such that some odd prime number divides x+ y.

(11) x and y are prime numbers p such that some odd prime number q divides
p+ 1.

(10) only has a narrow-conjunction-scope reading, because the existentially in-
troduced entity is linked via a predicate (“divides”) to a term (“x + y”) that
refers to the coordinated noun phrases individually. (11) on the other hand only
has a wide-conjunction-scope reading, because the variable p must range over
the values of both x and y, and q depends on p.

In mathematical texts, a wide-conjunction-scope reading is usually preferred
over a narrow-conjunction-scope reading unless the narrow-conjunction-scope
reading is forced as in the case of (10).

We have implemented a plural interpretation algorithm which disambiguates
between collective and distributive readings and between wide-conjunction-scope
and narrow-conjunction-scope readings in a way that generally agrees with the
natural reading in mathematical texts. The details of this algorithm are described
in [10] and in section 7.6 of [11].
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5 Symbolic mathematics in the Naproche CNL

One of the conspicuous features of the language of mathematics is the way it in-
tegrates mathematical symbols into natural language material. We use the term
symbolic mathematics for all the expressions found in mathematical texts formed
from mathematical symbols. One could be tempted to think that symbolic math-
ematics would be easy to describe formally and hence easy to incorporate in a
controlled natural language. However, it turns out that the language of symbolic
mathematics is extremely rich and flexible, and that its syntax gives rise to po-
tential ambiguities that can only be disambiguated using contextual knowledge.

Already at first sight, a whole variety of syntactic rules are encountered for
forming complex terms and formulae out of simpler ones; a basic classification
of these was provided by [27]:

– There are infix operators that are used to combine two terms to one complex
term, e.g. the + symbol in m+ n or 1

x + x
1+x .

– There are suffix operators that are added after a term to form another term,
e.g. the ! symbol in n!.

– There are prefix operators that are added in front of a term to form another
term, e.g. sin in sinx.

– There are infix relation symbols used to construct a formula out of two terms,
e.g. the < symbol in x < 2.

As noted by [15], “this simple classification is adequate for the fragment Ranta
is considering, but does not come close to capturing the breadth of symbolic
material in mathematics as a whole.” It does not include notations like [K : k]
for the degree of a field extension, it does not allow infix operators to have an
internal structure, like the ∗G in a ∗G b for denoting multiplication in a group
G, nor does it account for the common way of expressing multiplication by
concatenation, as in a(b+ c).

Another kind of prefix operator not mentioned by Ranta is the one that
requires its argument(s) to be bracketed, e.g. f in f(x). (Of course, the argument
of a prefix operator like sin might also be bracketed, but generally this is done
only if the argument is complex and the brackets are needed for making sure the
term is disambiguated correctly.) This is even the standard syntax for applying
functions to their arguments, in the sense that a newly defined function would
be used in this way unless its definition already specifies that it should be used
in another way.

The expression a(x+ y) can be understood in two completely different ways,
depending on what kind of meaning is given to a: If a is a function symbol and
x+y denotes a legitimate argument for it, then a(x+y) would be understood to
be the result of applying the function a to x+ y. If on the other hand a, x and y
are – for example – all real numbers, then a(x+ y) would be understood as the
product of a and x + y. Now whether a is a function or a real number should
have been specified (whether explicitly or implicitly) in the preceding text. So
we can conclude that the disambiguation of symbolic expressions requires infor-
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mation from the preceding text, and this information might have been provided
in natural language rather than in a symbolic way.

In the Naproche CNL, we have incorporated a large part of the rich flexibility
of symbolic mathematics. The potential ambiguities arising from this flexible
syntax are resolved using a combination of three criteria:

1. A type system for symbolic mathematics: Every subterm and subformula of
a mathematical expression is assigned a type, and when combining function
symbols with argument terms to form more complex terms, the system checks
that the argument terms have the type that is expected for the function
symbol in question.

2. Presupposition checking: Some functions may only take arguments satisfying
certain presuppositions as arguments. For example, the second argument of
the division function must be non-zero. For a mathematical expression with
multiple potential readings, readings whose presuppositions are fulfilled are
always preferred over readings whose presuppositions are not fulfilled, so
that presupposition checking contributes to the disambiguation process.

3. In the rare case that the two previously mentioned methods do not fully
disambiguate a term, preference is given to a reading that involves more
recently introduced notation.

The details of the type system and the overall disambiguation process are de-
scribed in [8] and in section 7.4 of [11].

6 Implicit dynamic introduction of function symbols

Functions are often dynamically introduced in an implicit way in mathematical
texts. For example, [28] introduces the additive inverse function on the reals as
follows:

(12) For each a there is a real number −a such that a+ (−a) = 0.

Here the natural language quantification “there is a real number −a” locally (i.e.
inside the scope of “For each a”) introduces a new real number to the discourse.
But since the choice of this real number depends on a and we are universally
quantifying over a, it globally (i.e. outside the scope of “For each a”) introduces
a function “−” to the discourse.

The most common form of implicitly introduced functions are functions
whose argument is written as a subscript, as in the following example:

(13) Since f is continuous at t, there is an open interval It containing t such
that |f(x)− f(t)| < 1 if x ∈ It ∩ [a, b]. [28]

If one wants to later explicitly call the implicitly introduced function a function,
the standard notation with a bracketed argument is preferred:

(14) Suppose that, for each vertex v of K, there is a vertex g(v) of L such
that f(stK(v)) ⊂ stL(g(v)). Then g is a simplicial map V (K)→ V (L), and
|g| w f . [20]
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Implicitly introduced functions generally have a restricted domain and are
not defined on the whole universe of the discourse. For example in (14), g is only
defined on vertices of K and not on vertices of L. Implicit function introduction
can also be used to introduce multi-argument functions. For example, subtraction
on the reals could be introduced by a sentence of the following form:

(15) For all reals a, b, there is a real a− b such that (a− b) + b = a.

For the sake of simplicity and brevity, we restrict ourselves to unary functions
for the rest of this paper.

If the implicit introduction of functions is allowed without limitations, one
can derive a contradiction:

(16) For every function f , there is a natural number g(f) such that

g(f) =

{
0 if f ∈ dom(f) and f(f) 6= 0,

1 if f 6∈ dom(f) or f(f) = 0.

Then g is defined on every function, i.e. g(g) is defined. But from the defi-
nition of g, g(g) = 0 iff g(g) 6= 0.

This contradiction is due to the unrestricted function comprehension that is im-
plicitly assumed when allowing implicit introductions of functions without lim-
itations. Unrestricted function comprehension could be formalized as an axiom
schema as follows:

Unrestricted function comprehension
For every formula ϕ(x, y), the following is an axiom:

∀x ∃y ϕ(x, y)→ ∃f ∀x ϕ(x, f(x))

The inconsistency of unrestricted function comprehension is analogous to the
inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

This paradox can be avoided by using a type theory. In the next section we
will sketch a system that formalizes implicit dynamic function introduction by
extending DPL to Typed Higher-Order Dynamic Predicate Logic. It is also pos-
sible to formalize implicit dynamic function introduction in an untyped Higher-
Order Dynamic Predicate Logic, which has the consistency strength of ZFC (see
[11]).

7 Typed Higher-Order Dynamic Predicate Logic

In this section, we extend DPL to a system called Typed Higher-Order Dynamic
Predicate Logic (THODPL), which formalizes implicit dynamic function intro-
duction, and also allows for explicit quantification over functions. Note that the
extensions to DPL introduced in this section are also included in PTL.

THODPL has variables typed by the types of Simple Type Theory [3]. In
the examples below we use x and y as variables of the basic type i, and f as
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a variable of the function type i → i. A complex term is built by well-typed
application of a function-type variable to an already built term, e.g. f(x) or
f(f(x)).

The distinctive feature of THODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So (17) is a well-formed
formula:

(17) ∀x ∃f(x) R(x, f(x))

(18) ∀x ∃y R(x, y)

(19) ∃f (∀x R(x, f(x)))

The semantics of THODPL is to be defined in such a way that (17) has the
same truth conditions as (18). But unlike (18), (17) dynamically introduces the
function symbol f to the context, and should hence be equivalent to (19).

Before we describe how these desired properties are achieved in THODPL
semantics, let us first give a formal definition of THODPL syntax:

Definition 1. Given a type τ of Simple Type Theory, a THODPL term of type
τ is either a variable of type τ or a complex term of the form t1(t2), where t2 is
a THODPL term of some type τ ′ and t1 is a THODPL term of type τ ′ → τ .

Definition 2. We define THODPL formulae inductively as follows: A THODPL
formula is of the form >, t = t′, R(t1, . . . , tn), ϕ ∧ ψ, ϕ → ψ or ∃t ϕ, where
t, t′, t1, . . . , tn are THODPL terms (t and t′ of the same type), and ϕ and ψ are
THODPL formulae.

In THODPL semantics, an assignment assigns elements of |S| to variables
of type i, functions from |S| to |S| to variables of type i → i etc. Additionally,
an assignment can also assign an object (or function) to a complex term. For
example, any assignment in the interpretation of ∃f(x) R(x, f(x)) has to assign
some object to f(x). The definition of g[x]h can now naturally be extended to
a definition of g[t]h for terms t. The definition of [t]gS has to be adapted in the
natural way to account for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation
J•KgS from THODPL formulae to subsets of GS (the cases 1-5 of the recursive
definition are as before):

6. Jϕ→ ψKgS := {h|h differs from g in at most some function variables f1, . . . , fn
(where this choice of function variables is maximal), and there is a variable
x such that for all k ∈ JϕKgS , there is an assignment j ∈ JψKkS such that
j(fi(x)) = h(fi)(k(x)) for 1 ≤ i ≤ n, and if n > 0 then k[x]g }

7. J∃tϕKgS := {h|there is a k s.t. k[t]g and h ∈ JϕKkS}
In order to make case 6 of the definition more comprehensible, let us consider

its role in determining the semantics of (17), i.e. of ∃x> → ∃f(x) R(x, f(x)):
J∃f(x) R(x, f(x))KkS is the set of assignments j satisfying R(x, f(x)) (i.e. for

which JR(x, f(x))KjS is non-empty) such that j[f(x)]k . J∃x>KgS is the set of
assignments k such that k[x]g. So by case 6 with n = 1,
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J∃x> → ∃f(x) R(x, f(x))KgS = {h|h[f ]g and there is a variable x such that for
all k such that k[x]g, there is an assignment
j satisfying R(x, f(x)) such that j[f(x)]k and
j(f(x)) = h(f)(k(x)), and k[x]g}

= {h|h[f ]g and for all k such that k[x]g, there is
an assignment j satisfying R(x, f(x)) such that
j[f(x)]k and j(f(x)) = h(f)(k(x))}

= {h|h[f ]g and for all k such that k[x]h, k satisfies
R(x, f(x))}

= J∃f (∀x R(x, f(x)))KgS

Note that a complex term after an existential quantifier is semantically only
treated differently from a variable after the quantifier if the existentially quan-
tified formula is the antecedent of an implication. Nevertheless, we decided to
define THODPL syntax in such a way that it allows a complex term after an
existential quantifier in all contexts.

8 Proof-checking mathematical texts in the Naproche
system

The Naproche system checks the logical correctness of mathematical texts writ-
ten in the Naproche CNL. By “checking the logical correctness” we mean that it
tries to establish all proof steps found in the text based on the information gath-
ered from previous parts of the text, in a similar way as a mathematician reads a
(logically self-contained) mathematical text if asked not to use his mathematical
knowledge originating from other sources.

The Naproche system contains two main modules, the linguistic module
which translates an input Naproche CNL text into a PRS, and the proof check-
ing algorithm, which checks whether the PRS represents a logically correct text.
Since we are working with the DPL extension PTL instead of PRSs in this paper,
we will describe how the proof checking algorithm checks PTL formulae.

In the explanations in this section we are assuming that the input text does
not refer to any partial functions and does not contain definite descriptions (i.e.
does not contain the word “the”). Partial functions and definite descriptions trig-
ger presuppositions. The way these are handled in the proof-checking algorithm
is described in [9] and [12].

For checking single proof steps, the Naproche system makes use of state-of-
the-art automated theorem provers (ATPs) for standard first-order logic. Given
a set of premises4 Γ and a conjecture ϕ, an ATP tries to find either a proof that
the Γ logically implies ϕ, or build a model for Γ ∪ {¬ϕ}, which shows that they

4 In the ATP community, the term “axiom” is usually used for what we call “premise”
here; the reason for our deviation from the standard terminology is that in the
context of our work the word “axiom” means a completely different thing, namely
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do not imply it. A conjecture together with a set of premises handed to an ATP
is called a proof obligation. We denote the proof obligation consisting of premises
Γ and conjecture ϕ by Γ `? ϕ.

The proof checking algorithm keeps track of a list of first-order premises
considered to be true. This list gets updated continuously during the checking
process. Each assertion is checked by an ATP based on the currently active
premises.

Before we explain the details of the proof checking algorithm, we illustrate
its functioning on an example. Suppose that the Naproche system has to check
the text in (20). (21) is the PTL translation of (20), i.e. the input to the proof
checking algorithm.

(20) Assume n is a square number. So there is a k such that n = k2. If n is even,
then k is even, i.e. 4 divides n.

(21) (square(n)→ ∃k n = k2 ∧ (even(n)→ (even(k) ∧ divides(4, n))))

Suppose further that Γ is the set of premises that is active on encountering this
text fragment (i.e. Γ is the set of premises that the proof-checking algorithm has
learned from previous text parts). Then the proof checking algorithm will check
(21) by sending the three proof obligations (22), (23) and (24) to an ATP:

(22) Γ, square(n) `? ∃k n = k2

(23) Γ, square(n), n = k2, even(n) `? even(k)

(24) Γ, square(n), n = k2, even(n), even(k) `? divides(4, n)

Let us first explain the functioning of the algorithm in terms of how it works
on a Naproche CNL text like (20): Reading in the assumption “Assume n is a
square number”, the proof checking algorithm adds “square(n)” to the premise
list. It then checks the rest of the text, which is completely inside the scope of
this assumption, using this extended premise list. (22) is the proof obligation
that checks the sentence “So there is a k such that n = k2”. Having checked
the existence of a k with n = k2, n = k2 is then added to the premise list for
checking the final sentence. Note that we do not add the checked existentially
quantified formula ∃k n = k2 to the premise list, but its Skolemized form n = k2.
This ensures that the k in this new premise corefers with the variable k in the
final sentence. (Adding ∃k n = k2 to the premise list would be like adding
∃m n = m2 for some unused variable m.) When checking the final sentence, the
translation “even(n)” of the antecedent “n is even” of the implication is added
to the premise list, and the two parts of the consequence are checked one after
the other.

However, as explained before, the proof checking algorithm does not directly
work on the Naproche CNL input, but on its PTL translation. For understanding

an axiom stated inside a mathematical text that is to be checked by the Naproche
system. The premises that we are considering here can originate either from axioms,
from definitions, from assumptions or from previously proved results.
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how the proof checking algorithm produces the proof obligations (22), (23) and
(24) out of the input (21), one needs to know the rules for checking atomic formu-
lae, implications, conjunctions and existentially quantified sentences explained
formally below.

We use Γ to denote the list of premises considered true before encountering
the formula in question, and Γ ′ to denote the list of premises considered true after
encountering the formula in question. For any given PTL formula ϕ, we denote by
FI(ϕ) the formula image of ϕ, which is a list of first-order formulae representing
the content of ϕ; the definitions of FI(ϕ) and of the checking algorithm are
mutually recursive, as specified below.

– If ϕ is atomic, check Γ `? ϕ and set Γ ′ to be Γ, ϕ.
– If ϕ is of the form ϕ1 ∧ ϕ2, check ϕ1 with premise list Γ and ϕ2 with the

premise list that is active after checking ϕ1; set Γ ′ to be the premise list
that is active after checking ϕ2.

– If ϕ is of the form ϕ1 → ϕ2, check ϕ2 with premise list Γ ∪ FI(ϕ1) and set
Γ ′ to be Γ ∪ {∀x1, . . . , xn

∧
FI(ϕ1) → ψ | ψ ∈ FI(ϕ2)}, where x1, . . . , xn

are the variables which are introduced by an existential quantifier in ϕ1 and
whose occurrences in ϕ2 can be bound by this quantifier.

– If ϕ is of the form ¬ψ, check Γ `? ¬
∧
FI(ψ) and set Γ ′ to be Γ,¬

∧
FI(ψ).

– If ϕ is of the form ϕ1 ∨ ϕ2, check Γ `?
∧
FI(ϕ1) ∨

∧
FI(ϕ2) and set Γ ′ to

be Γ,
∧
FI(ϕ1) ∨

∧
FI(ϕ2).

– If ϕ is of the form ∃t ψ, check Γ `? ∃x
∧
FI(ψ xt )5 for some fresh variable x

and set Γ ′ to be Γ ∪ FI(ψ).
– If ϕ is of the form thm(ϕ,ψ), first check ψ with premise list Γ and then check
ϕ with premise list Γ ∪ FI(ψ); set Γ ′ to be Γ ∪ FI(ϕ).

For computing FI(ϕ), the algorithm proceeds analogously to the checking
of ϕ, only that no proof obligations are sent to the ATP: The updated premise
lists are still computed, and FI(ϕ) is defined to be Γ ′−Γ , where Γ is the active
premise list before processing ϕ and Γ ′ is the active premise list after processing
ϕ.

We should briefly discuss how the definitions of the ϕ1 → ϕ2 and ∃t ψ cases
of the proof checking algorithm are used in checking implicit dynamic function
introductions. Remember the three example formulae whose relationship we de-
scribed in section 7:

(17) ∀x ∃f(x) R(x, f(x))

(18) ∀x ∃y R(x, y)

(19) ∃f (∀x R(x, f(x)))

For checking ∀x ∃f(x) R(x, f(x))6, the conjecture ∃y R(x, y) will be checked
under the active premise list (where y is some fresh variable). The premise

5 ψ x
t

is the formula obtained from ψ by replacing all occurrences of t by x.
6 In PTL just as in DPL, ∀x ϕ is an abbreviation for ∃x > → ϕ.
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list is then extended by ∀x (> → R(x, f(x))), which is trivially equivalent to
∀x R(x, f(x)). So when checking (17), it behaves like (18), whereas the premise
that is added after having checked it is equivalent to the premise added after
having checked (19). This corresponds to the semantic relationship between these
formulae discussed in section 7. Note that in this way, functions can be intro-
duced without having to check a proof obligation whose conjecture explicitly
asserts the existence of a function.

We have proven two soundness and two completeness theorems for the proof
checking algorithm: In each case one theorem compares the algorithm to the
semantics of PTL and one theorem compares it to the semantics of standard
first-order predicate logic. See chapter 6 of [11] for details.

9 Definitions in mathematical texts

A further very conspicuous feature of the language of mathematics is its adaptiv-
ity7 through definitions: The language is constantly expanded through the use of
definitions, which introduce new natural-language or symbolic expressions and
fully specify their meaning. This expansion of the language should not be con-
fused with the change of language over time: What we mean is an expansion of
the language used for one particular text and – related to this – an expansion of
the language in the mind of a mathematician reading such a text.

The introduction of new technical terms through definitions does, of course,
also exist in other specialized languages. But, as Ganesalingam [15] has pointed
out, there are two important differences between definitions in mathematics and
in other fields: Firstly, mathematical definitions contain no vagueness and hence
perfectly specify the semantics of the defined expression. Secondly, in advanced
mathematics all newly introduced terms are introduced through definitions, and
mathematicians even go back to less advanced mathematics and rigorously define
all terms used there.

We can distinguish expansions of the natural-language lexicon of the the
language of mathematics and extensions of the symbolic part of the language.
(25) is an example of a definition expanding only the natural-language lexicon:

(25) Definition 1.1.5 A set D is dense in the reals if every open interval (a, b)
contains a member of D. [28, p. 6]

(26) expands both the natural-language lexicon (by the word “sum”) and the
symbolic part of the language (by a construct of the form “•+ •+ · · ·+ •”):

(26) Definition Suppose R is a ring and A1, A2, . . . , Am are ideals of R.
Then the sum A1 + A2 + · · ·+ Am is the set of all a1 + a2 + · · ·+ am with
ai ∈ Ai. [5, p. 108]

7 The use of the term adaptivity for this feature of the language of mathematics is due
to Ganesalingam [15].
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Ganesalingam [15] considers the expansion of the symbolic part of the lan-
guage as an expansion of the syntax of this symbolic part. This is certainly a
very sensible interpretation at a certain level of abstraction in the understand-
ing of the term “syntax”. We, however, prefer to take a more abstract view of
syntax, under which this expansion of the symbolic part of the language can be
viewed as an expansion of the lexicon, just as in the case of the expansion of
the lexicon of the textual part of the language. For example, under this inter-
pretation, the definition in (26) adds a lexical item of the form “•+ •+ · · ·+ •”
to the lexicon of the symbolic part of the language. The syntax of the language
under this interpretation must contain rules that specify what form definitions
can take, what properties the symbolic lexical items have depending on the form
of the definition, and in what way these properties influence how different items
of the symbolic lexicon can be combined to symbolic expressions. In this way this
abstract syntax indirectly specifies how definitions change what form symbolic
expressions following the definition can take. Thus this abstract syntax specifies
a more concrete syntax (i.e. a syntax in the way Ganesalingam used the term)
for every position in a mathematical text, depending on which previously stated
definitions are accessible, i.e. may be made use of.

In the Naproche CNL, definitions are formed according to special rules. For
fixing the meaning of the defined word or symbolic expression, we equate a
definiendum, whose meaning is to be specified, to a definiens, which specifies
the meaning of the definiendum. The definiendum is either the symbol that is
being introduced, or the word or symbol that is being introduced applied to some
dummy variables, which may also appear in the definiens. If the definiendum and
definiens represent propositions, they are equated by a bi-implication (“iff” or
“if and only if”); else they are equated by an inflected form of the verb “to be”.
So we distinguish between bi-implicational definitions and copula definitions.

Here are some examples of bi-implicational definitions in the Naproche CNL:

1. Define n to be even if and only if there is some k such that n = 2k.
2. Define a real r to be an integer iff there is a natural number n such that
r = n or r = n · (−1).

3. Define a line L to be parallel to a line M iff there is no point on L and M .
4. Define m and n to be coprime iff (m,n) = 1.
5. Define an integer m to divide an integer n iff there is an integer k such that
km = n.

6. Define R(x, y, z) iff x = y = z or 4x < 2y < z.
7. Define m|kn iff there is an l < k such that m · l = n.

Here are some example of copula definitions:

1. Define c to be
√

π
6 .

2. Define f(x) to be x2.
3. Define fx(y, z) to be x(2y − 5z).
4. For defining ! at x′, define x′! to be x′ · x!.

For details about the rules for forming definitions in the Naproche CNL, see
section 7.3.7 of [11].
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PTL does not have any explicit notation for definitions. Definitions can be
considered to extend the language by the symbolic construct or word that they
are defining. But in a similar way, existentially quantified statements could be
considered to extend the language due to the dynamic nature of the existential
quantifier: The variable we quantify over becomes a possible antecedent for later
uses of the same variable; so in a sense we have extended the language by that
variable.

In definitions without dummy variables, we make direct use of this analogy
by rendering the definition by an existentially quantified PTL formula:8

(27) Define c to be a+ g(a).

(28) ∃c c = +(a, g(a))

The translation (28) of (27) existentially introduces the PTL variable c that
corresponds to the defined symbol c. In the proof checking algorithm, this exis-
tential PTL formula makes the premise c = +(a, g(a)) available for proving later
assertions, just as would be expected for definition (27).

There is one point in the proof checking algorithm where one might think that
the analogy between definitions and existential PTL formulae breaks down: The
existential PTL formula triggers a proof obligation with an existential conjecture;
in our example, this means that ∃c c = +(a, g(a)) has to be proven to follow
from the active premise list. For a definition, on the other hand, one would not
expect any proof obligation, since it does not make an assertion but just expands
the language. But note that ∃c c = +(a, g(a)) is a very simple logical tautology
that can be immediately recognised as a logical tautology by any ATP. So this
difference between existential assertions and definitions is not a real issue. Hence
we can say that our choice to translate definitions with existential PTL formulae
is justified.

Now in the case that a definition contains dummy variables, its translation is
not an existential formula, but an implication whose antecedent introduces the
dummy variable and whose consequence contains an existential claim:

(29) Define f(x) to be x+ x.

(30) ∃x > → ∃f(x) f(x) = +(x, x)

The principle of implicit dynamic function introduction in PTL (see sections 6
and 7) now ensures that the translation (30) dynamically introduces the func-
tion symbol f as a possible antecedent for subsequent parts of a PTL formula
containing (30) as a subformula. The conjecture of the proof obligation which
(30) triggers is still an existential claim that trivially follows from the active
premise list, namely ∃y (y = +(x, x)).

For treating bi-implicational definitions analogously, we need to consider a
relation to be a function whose codomain is the set {>,⊥} of Booleans. Let us
see the analogy on a concrete example:

8 All examples in this section are considered to appear in a context in which a unary
classical function symbol g, a binary infix function symbol + and the variable a are
accessible, whereas x is not accessible.
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(31) Define an integer x to be even iff x = g(x).

(32) ∃x integer(x)→ ∃even(x) (even(x) = > ↔ x = g(x))

The PTL translation (32) of (31) now triggers a proof obligation with conjecture
∃y (y = > ↔ x = g(x)), which again is a trivial logical tautology. The premise
that is added to the premise list after checking this definition is even(x) = > ↔
x = g(x), as one would expect for a bi-implicational definition.

10 Bi-implications and reversed implications

In bi-implications and reversed implications, a phenomenon similar to that of
the donkey sentences discussed in section 3 can be observed:

(33) 2 divides an integer x iff x is even.

(34) ∀x (integer(x)→ (divide(2, x)↔ even(x)))

The natural interpretation of (33) in PL is (34), i.e. the variable x introduced in
an indefinite noun phrase in the left part (“antecedent”) of the bi-implication is
interpreted as globally universally quantified. This corresponds to the interpre-
tation of mathematical donkey sentences like (35), where a variable introduced
in an indefinite noun in the antecedent of a usual implication is interpreted as
globally universally quantified:

(35) If a space X retracts onto a subspace A, then the homomorphism
i∗ : π1(A, x0) → π1(X,x0) induced by the inclusion i : A ↪→ X is injec-
tive.

The phenomenon appears in the same way in reversed implications:

(36) 2 divides an integer x if x is even.

(37) ∀x (integer(x)→ (even(x)→ divide(2, x)))

Reversed implications – unlike bi-implications – are common not only in the
language of mathematics but also in general language use. Nevertheless, there
has to our knowledge not been any systematic study of this donkey-sentence-
like phenomenon for reversed implications. It might be the case that in common
language it can be reduced to the phenomenon of generic readings of indefinite
noun phrases (see [4] for an overview over generic interpretation of noun phrases).
A generic reading differs semantically from a universal reading in that it is
restricted to typical members of a category. But in the language of mathematics
this typicality restriction of generic readings is generally dropped and generic
noun phrases are interpreted in the same way as universal quantifiers. Hence,
for the purpose of our interpretation of reversed implications and bi-implications
in the Naproche CNL, we can ignore this possible linguistic difference between
usual donkey sentence and the phenomenon discussed here.
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In the discussion that follows we will, for simplifying the exposition, concen-
trate on bi-implications, with the understanding that everything we say could
just as well be said about reversed implications.

In the case of usual implications, the donkey-sentence phenomenon is treated
by the interpretation of ∃ and → in PTL and hence does not need to be
treated separately in the Naproche-CNL-to-PTL translation. The analogous phe-
nomenon for bi-implications, however, presents some problems which the usual
donkey sentences do not present, and which have been the motivation for treat-
ing this issue not within the semantics of the purely formal language PTL, but
within the Naproche-CNL-to-PTL translation.

The first problem is that the conjunct integer(x) ∧ divide(2, x) in the PTL
translation ∃x (integer(x)∧divide(2, x)) of “2 divides an integer x” has to be split
up in order to attain the intended interpretation (34): integer(x) has to restrict
the universal quantification, while divide(2, x) has to become one argument of the
logical bi-implication. So we cannot make use of the semantics ∃x (integer(x) ∧
divide(2, x)) in a compositional way.

Indefinite noun phrases always give rise to PTL formulae of the form
∃x (ϕ ∧ ψ), where ϕ results from the indefinite noun phrase itself and ψ re-
sults from other expressions in the semantic scope of the noun phrase (e.g. from
the verb phrase whose subject is the noun phrase in question). Of course each
of ϕ and ψ may again be a conjunction, but the bracketing of the complex con-
junction which ϕ∧ψ is in that case tells us which parts come from the indefinite
noun phrase itself and which one from other expressions. The solution to the
first problem is that the part ϕ which results from the indefinite noun phrase
itself is used to restrict the universal quantification over x, whereas the part ψ
which results from other expressions becomes part of the logical bi-implication.

The second problem is that not every existential quantification in the left
part of a bi-implication is to be interpreted as a universal quantifier outside the
scope of the bi-implication. Consider sentence (38), whose natural interpretation
in PL is (39) and not (40):

(38) For all n, n divides a prime number iff n = 1 or n is prime.

(39) ∀n (∃p (prime(p) ∧ divide(n, p))↔ n = 1 ∨ prime(n))

(40) ∀n ∀p (prime(p) ∧ divide(n, p)↔ n = 1 ∨ prime(n))

If we interpreted all existential quantifications in the left part of a bi-implication
in a universal way, we would get the interpretation (40), which however is not
equivalent to the natural interpretation (39).

In the case of usual implications, this problem does not arise, since
∃x P (x) → Q is equivalent to ∀x (P (x) → Q). Since the analogous formu-
lae involving bi-implications – ∃x P (x) ↔ Q and ∀x (P (x) ↔ Q) – are not
equivalent, the phenomenon now discussed for bi-implications inherently causes
problems that the donkey sentences cannot cause.

The basic idea for solving this second problem is simple: We give a universal
interpretation only to those existential quantifiers introduced in the left part of
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the bi-implication which serve as anaphoric antecedents for an expression in the
right part (“succedent”) of the bi-implication. However, there is a problem with
this basic solution. Consider for example sentence (41):

(41) An integer k such that k2−1 is prime divides an integer l iff l2−1 is prime.

(42) ∀l (integer(l)→ (∃k (integer(k)∧prime(k2−1)∧divide(k, l))↔ prime(l2−1)))

(43) ∀k ∀l (integer(k)∧prime(k2−1)∧integer(l)→ (divide(k, l)↔ prime(l2−1)))

According to the basic solution just proposed, only l would be interpreted in
a universal way, as in (42). But since l is introduced after k in the left part of
the bi-implication, it is felt to be somehow dependent on k, which makes it very
unnatural to give it wider scope than k. Hence the interpretation (43) which
gives wide scope and a universal interpretation to both k and l is naturally
preferred.

Hence we modify our solution to the second problem as follows: If at least
one of the existential quantifiers introduced in the left part of the bi-implication
serves as anaphoric antecedent for an expression in the right part, we give a
universal interpretation to all existential quantifiers introduced in the left part
of the bi-implication preceding or identical to an existential quantifier serving as
anaphoric antecedent for an expression in the right part.

The formal definition of this translation of Naproche CNL sentences involving
bi-implications to PTL formulae is defined in section 7.5.9 of [11].

11 Related Work

The first thorough analysis of the language of mathematics using techniques from
formal linguistics was provided by Aarne Ranta in a number of papers from the
mid-1990s [23–27]. Ranta analysed syntactic categories of both symbolic and
textual mathematics within the framework of Constructive Type Theory [22].
In the practical application of his analysis, he put a larger emphasis on the
conversion of logical representation into the natural language of mathematics
than on the conversion in the other direction that is needed in proof-checking
mathematical texts.

In 2009, Mohan Ganesalingam published a Ph.D. thesis on the language of
mathematics [14], republished as a book in 2013 [15]. His thesis contains a very
thorough and detailed analysis of this language, with an emphasis on its formal
semantics, but also with aspects of pragmatics and philosophy of mathematics.
In the introduction to his thesis, he stated that his thesis “is part of a long-term
project to build programs that do mathematics in the same way as humans do”
[14, p. 9]. The analysis in the thesis can be seen as providing the theoretical
bedrock for one part of this envisioned program, namely the part that translates
the natural language input into a formal semantic representation language.

One of the aspects of the language of mathematics that Ganesalingam has
studied in detail and has shed light on is the aspect of adaptivity through defi-
nitions discussed in section 9 above. The issue that Ganesalingam studies most
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thoroughly is that of disambiguating mathematical language, both its textual
and its symbolic parts. To handle potential ambiguities, he develops an inge-
nious novel type system for typing the objects that a given mathematical text
refers to. The potential types available at any point in a text are extracted from
preceding definitions.

Concerning systems that can check mathematical texts written in a natural
input language, there have – before Naproche – been two different and inde-
pendent approaches, one by Claus Zinn in his doctoral project, and one by the
Evidence Algorithm project in Kiev.

For his doctoral project, Claus Zinn developed the system Vip, a prototypical
proof-checker for natural language mathematics [30]. He did not define a CNL,
but attempted to parse any input written in the language of mathematics. As
a consequence, he had to gear his system towards a single text, for which he
chose An Introduction to the Theory of Numbers by Hardy and Wright [18]. The
approach did not scale well: Only two proofs from this book were both parsed
and checked successfully by Vip. Ganesalingam [15] argued that Zinn’s linguistic
analysis is “heavily tailored for his two proofs”, and that it is “of a comparably
shallow kind”.

Zinn’s thesis also provided a detailed analysis of reasoning patterns in math-
ematical proofs. In his system, the proof-checking was heavily reliant on Alan
Bundy’s concept of proof plans [2]. The idea is that one analyses families of re-
lated proofs in order to identify common reasoning patterns in them, which are
formally represented in proof plan schemata. These guide future proofs of the
same family, and enable an automated system to fill in the details that the proof
author has omitted. The heavy reliance on proof plans, however, has increased
the extent to which the system is tailored towards particular proofs.

The Evidence Algorithm project was initiated by Victor Glushkov in the
early 1960s in Kiev with the goal to develop a computer system that could check
mathematical proofs written in a powerful input language that is close to the
natural mathematical language. After developing a prototype called System for
Automated Deduction (SAD), the project came to a halt between the early 1980s
an 1998. From 1998 until 2008, Andrei Paskevich reimplemented and improved
SAD for his master and doctor projects.

The input language of SAD is less natural than our controlled natural lan-
guage, but still significantly more natural than the input languages of stan-
dard systems for formal mathematics like Mizar, HOL, Isabelle and Coq. The
SAD system is up to now the most successful system for producing automat-
ically checkable formal mathematics that can be read by humans almost like
natural mathematical texts. Examples of more advanced results formalised in
SAD include the Chinese Remainder Theorem, the result that square roots of
prime numbers are irrational, the Cauchy-Bunyakovsky-Schwartz inequality for
real vectors and Furstenberg’s topological proof of the infinitude of primes [21].
Just like Naproche, SAD makes use of an automated theorem prover (ATP) for
checking single proof steps. It implements a number of techniques for making
the proof obligations sent to the ATP more tractable. For example, definitions
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are normally not given to the ATP explicitly as premises, but are used for a
stepwise definition expansion.

12 Conclusion

For the development of the Naproche system, a number of novel linguistic and
logical techniques had to be developed and integrated. In this paper, we have
sketched some of these techniques, with special emphasis on the phenomenon of
implicit function introduction in mathematical texts, on the usage of definitions
for dynamically extending the language of a mathematical text, and on quan-
tifiers in bi-implications and reversed implications that have to be treated in a
similar way as in donkey sentences.

The Naproche system has been tested on a number of mathematical texts.
The most involved of these have been the first chapter of Landau’s Grundlagen
der Analysis (see chapter 8 of [11]) and the beginning of Euclid’s Elements with
an axiomatization of Euclidean geometry based on the system E by Avigad,
Dean and Mumma [1]. While the parsing and disambiguation of these texts
works well, there are still limitations to the proof checking: Some proof steps
can currently not be checked by the ATP to which we send the proof obligation.
These limitations could be reduced by implementing a premise selection – a
prototype of which was implemented in a previous version of Naproche [7] –
and by using similar techniques as SAD for making the proof obligations more
tractable for the ATP.
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22. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)
23. Ranta, A.: Type theory and the informal language of mathematics. In: Barendregt,

H., Nipkow, T. (eds.) Types for Proofs and Programs, LNCS 806. pp. 352–365.
Springer (1994)

24. Ranta, A.: Syntactic categories in the language of mathematics. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) Types for Proofs and Programs, LNCS 996. pp.
162–182. Springer (1995)

25. Ranta, A.: Context-relative syntactic categories and the formalization of mathe-
matical text. In: Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs,
LNCS 1158. pp. 231–248. Springer (1996)

26. Ranta, A.: Structure grammaticales dans le français mathématique I.
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