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Abstract

Motivation: Flux balance analysis and its variants are widely used methods for predicting steady-

state reaction rates in biochemical reaction networks. The exploration of high dimensional net-

works with such methods is currently hampered by software performance limitations.

Results: DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux

balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the

reactions of large and huge-scale networks, on any number of threads or nodes.

Availability and Implementation: The code is freely available on github.com/opencobra/COBRA.jl.

The documentation can be found at opencobra.github.io/COBRA.jl.

Contact: ronan.mt.fleming@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constraint-based reconstruction and analysis (COBRA) (Palsson

et al., 2015) is a widely used approach for modeling genome-scale

biochemical networks and integrative analysis of omics data in a

network context. All COBRA predictions are derived from opti-

mization problems, typically formulated in the form

min
v2Rn

wðvÞ

s:t: Sv ¼ b

Cv � d

l � v � u;

(1)

where v 2 Rn represents the rate of each biochemical reaction, w : Rn

! R is a lower semi-continuous and convex function, S 2 Rm�n is a

stoichiometric matrix for m molecular species and n reactions, and b

is a vector of known metabolic exchanges. Additional linear inequal-

ities (expressed as a system of equations with matrix C and vector d)

may be used to constrain combinations of reaction rates and keep re-

actions between upper and lower bounds, u and l, respectively.

In flux balance analysis (FBA), one obtains a steady-state by choos-

ing a coefficient vector c 2 Rn and letting wðvÞ :¼ cTv and b :¼ 0.

However, the biologically correct coefficient vector is usually not known,

so exploration of the set of steady states relies on the embarrassingly par-

allel problem of solving (1) for many c. Moreover, while cTv� is unique

for an optimal flux vector v�, there may be alternate optimal solutions.

In flux variability analysis (FVA), one finds the extremes for each opti-

mal reaction rate by choosing a coefficient vector d 2 Rn with one non-

zero entry, then minimizing and maximizing wðvÞ :¼ dTv, subject to the

additional constraint dTv � c � cTv� for each reaction in turn (c 2�0; 1½).
For kilo-scale models (n ’ 1000), the 2n linear optimization prob-

lems required for FVA can currently be solved efficiently using existing

methods, e.g. FVA of the COBRA Toolbox, fastFVA, or the COBRApy

implementation (Schellenberger et al., 2011; Gudmundsson et al.,

2010; Ebrahim et al., 2013). However, these implementations perform

best when using only one computing node with a few cores, which be-

comes a temporal limiting factor when exploring the steady state solu-

tion space of larger models. Julia is a high-level, high-performance

dynamic programming language for technical computing (Bezanson

et al., 2014). Here, we exploit Julia to distribute sets of FBA problems

and compare its performance to existing implementations.

2 Overview and implementation

DistributedFBA.jl, part of a novel COBRA.jl package, is implemented

in Julia and makes use of the high-level interface MathProgBase.jl
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(Lubin et al., 2015; see Supplementary Material). A key feature is

the integrated capability of spawning synchronously any number of

processes to local and remote workers. Parallelization is primarily

achieved through distribution of FBA problems (outer layer), while

parallelization of the solution algorithm is solver based (inner layer).

COBRA.jl extends the COBRA Toolbox (Schellenberger et al., 2011)

while existing COBRA models (Orth et al., 2010) can be input.

3 Benchmark results

DistributedFBA.jl and fastFVA (Gudmundsson et al., 2010) were

benchmarked on a set of models of varying dimension (Table 1). All

experiments were run on several DELL R630 computing nodes with

2 � 36 threads and 768GB RAM running Linux. As Julia is a just-

in-time language, pre-compilation (warm-up) was done on a small-

scale model before benchmarking (Orth et al., 2010). The creation

of a parallel pool of workers and the time to spawn the processes are

not considered in the reported times.

The serial performance of both implementations is within 10%.

The uninodal performance of fastFVA is slightly higher on a few

threads, but the performance of distributedFBA.jl is superior for a

higher number of threads on a single node (Fig. 1A). The way the

FBA problems are distributed among workers (distribution strategy

s, see Supplementary Material) yields an additional speedup of 10–

20% on a larger number of threads.

According to Amdahl’s law, the theoretical speedup factor is

1� pþ p
N

� ��1
, where N is the number of threads and p is the fraction

of the code (including the model) that can be parallelized. The fraction

p increases with an increasing model size (Fig. 1B). The maximum

speedup factor for a very large number of threads N is ð1� pÞ�1. All

reactions of models 6–8 given in Table 1 have been optimized (with

full output, s¼0) on 4 nodes/256 threads in only 4094 s; 11 458 s, and

32 900 s, respectively. This demonstrates that for high-dimensional

models, it is critical to have a large number of threads on multiple

high-memory nodes to accrue a significant speedup.

4 Discussion

The multi-nodal performance of distributedFBA.jl is unparalleled:

the scalability of distributedFBA.jl matches theoretical predictions,

and resources are optimally used. Key advantages are that the pre-

sent implementation is open-source, platform independent, and that

no pool size limits, memory, or node/thread limitations exist. Its

uninodal performance is similar to the performance of fastFVA on a

few threads and about 2–3 times higher on a larger number of

threads. A key reason is the direct parallelization capabilities of Julia

and the wrapper-free interface to the solver. The unilingual and

easy-to-use implementation relies on solvers written in other lan-

guages, allows the analysis of large and huge-scale biochemical net-

works in a timely manner, and lifts the analysis possibilities in the

COBRA community to another level.
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Fig. 1. Performance of distributedFBA for selected benchmark models given

in Table 1. (A) Speedup factor relative to fastFVA as a function of threads and

distribution strategy s (1 node). (B) Multi-nodal speedup in latency and

Amdahl’s law (s¼0)
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