
To Cheat or Not to Cheat - A Game-Theoretic Analysis of
Outsourced Computation Verification

Balázs Pejó
University of Luxembourg
2, avenue de l’Université

Esch/Alzette, Luxembourg
balazs.pejo@uni.lu

Qiang Tang
Luxembourg Institute of Science and Technology

5, Avenue des Hauts-Fourneaux
Esch/Alzette, Luxembourg
tonyrhul@gmail.com

ABSTRACT
In the cloud computing era, in order to avoid computational
burdens, many organizations tend to outsource their com-
putations to third-party cloud servers. In order to protect
service quality, the integrity of computation results need to
be guaranteed. In this paper, we develop a game theoretic
framework which helps the outsourcer to maximize its pay-
off while ensuring the desired level of integrity for the out-
sourced computation. We define two Stackelberg games and
analyze the optimal setting’s sensitivity for the parameters
of the model.

Keywords
Cloud Computing, Computation Verification, Game Theory,
Result Integrity

1. INTRODUCTION
In today’s data-centric world, all the companies collect as

much data as possible from their customers in order to pro-
vide better services, e.g. in a form of personalization. How-
ever, processing the collected data is often very computation-
intensive, making it infeasible for companies without the
necessary resources. In the cloud computing era, a natural
solution is to outsource these computations to a cloud ser-
vice provider. In such a case, two issues arise. One is about
the integrity of the computed results. The cloud server may
provide some fake results instead of spending its own re-
sources in computing the correct ones. Motivations behind
such misbehavior could differ, but saving its own cost and
deliberately disrupting the service are two obvious ones that
we foresee. The other issue is confidentiality, or more gen-
erally privacy: the cloud server learns the input as well as
the output of the algorithm it runs. As a standard practice,
we refer to the outsourcer as client and the outsourcee as
server.

In this paper we focus on the integrity of the results which
can be guaranteed using economic approaches to create in-
centives for the honest behavior. Specifically, the not-cheating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCC’17, April 02 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4970-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3055259.3055262

behavior can be enforced by setting appropriately the pay-
ment (for the computation), the fine (for dishonesty) and
the verification rate. For non-critical applications, such as
recommendation systems the client might even tolerate some
number of incorrect results.

1.1 Related Work
Data-mining-as-a-service (DMaaS) [Liu et al. 2013] has

been proposed to enable clients with insufficient computing
resources to mine large volumes of data through outsourcing
to cloud servers. Due to the recently gained popularity of
outsourcing, serious security challenges emerged such as con-
fidentiality and integrity [Wong et al. 2007]. Result integrity
is usually achieved by some kind of auditing/verification
mechanism. For integrity verification, [Wong et al. 2009]
proposed a solution leveraging on artificial items. In [Dong
et al. 2013], the outsourced results are verified by construct-
ing a set of items from real ones and using these as evidence
to check mining results.

Another approach was introduced by [Monrose et al. 1999],
where the verification scheme requires partial re-execution of
the task. In [Canetti et al. 2011], the authors utilized redun-
dancy over multiple agents where at least one is known to be
honest. In [Vaidya et al. 2014] a game theoretic framework
was developed to improve the existing verification mecha-
nisms. Since our work is inspired by that, we mention its
model in Section 2.4. Another related work is [Tang et al.
2016], where the authors compared the verification mech-
anisms from [Vaidya et al. 2014] by experimenting on real
world datasets, using one and more cloud servers.

In [Pham et al. 2014] the authors researched the out-
sourced verification computation from an economics aspect
and developed a model for determining the optimal price of
a contract for outsourcing. They analyzed the one and mul-
tiple server settings. In the follow up work [Khouzani et al.
2014], they went one step further and identified the optimal
settings for the multi-server case when collusion is allowed.
Note, that these works are the closest to our work. Still,
this paper is different in several aspects (e.g. in [Pham et al.
2014] the desired level of honesty is 100% while our work
tolerates cheating up to 0 ≤ θ ≤ 1 part of the results). A
more comprehensive comparison is provided in Section 2.3.

1.2 Our Contribution
Our contribution can be summarized as follows.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/80682496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• We formulate a new game theoretic model where the
client wants to outsource some computation to the
server and verify the results. We propose a new pay-
off matrix and define two Stackelberg games where the
role of the leader is interchanged amongst the players.

• We provide a strategy for the leader to maximize its
payoff while ensuring that the cheating level is below
the tolerated threshold.

• We perform a sensitivity analysis by comparing the
optimal settings for different parameters.

• We formulate another game where the client may not
verify and find its Nash Equilibriums.

1.3 Organization
The paper is organized as follows. Section 2 introduces

the problem and the parameters of the model and compare
this work with two similar ones. Section 3 introduces a new
game theoretic framework while Section 4 defines the two
corresponding games. In Section 5 the sensitivity analysis
is performed on the parameters of the model. Section 6
contains another game and the corresponding equilibriums
when the verification rate may be zero. The conclusion and
future works are in Section 7.

2. PROBLEM STATEMENT
In this section we introduce the problem and the corre-

sponding general setup. The models from [Vaidya et al.
2014] and [Pham et al. 2014] are reviewed, and the corre-
sponding problems with them are highlighted.

The problem is the following: the client wants to obtain
the results of a computationally intense computation, so it
outsources that to a cloud service provider. The server com-
putes the results where some percent of the final results may
be wrong, e.g. it may cheat. The server receives its payment
in two chunks: it gets some before returning any results as
a prepayment1 and the rest only after the client do not find
any fake result during its computation verification process.
Furthermore, if the verification indicates high level of cheat-
ing, a punishment is enforced on the server.

2.1 Settings
Following [Pham et al. 2014], we assume the server is lazy

but not malicious, e.g. its only gain from dishonest com-
putation is its saved cost. This is indeed the case if the
server has no business conflict with the client. Both play-
ers are rational, expected payoff maximizers. The payoff
of the players are linear functions of their costs and pay-
ments/benefits. The client’s goal is to enforce the desired
level of honest computation, which corresponds to tolerated
cheating rate θ.

We also assume that an outsourced computation produces
1 < K ∈ Z outputs, which can be checked (verified) by the
client individually. For example, in the case of recommender
algorithms [Su and Khoshgoftaar 2009], the K outputs are
the prediction results for the end users. Based on the find-
ings in [Tang et al. 2016], without loss of generality, we con-
sider the following cheating and verification strategies.

1Called deposit ψ through the paper.

• Cheating strategy : The server sets ρ percent of the K
results to be random numbers. The parameter ρ is
referred to as the cheating rate.

• Verification strategy : The client chooses 0 ≤ σ percent
of the K outputs to verify, by recomputing them. The
parameter σ is referred to as the verification rate.

We further assume, that a result which is not computed
(e.g. guessed) is correct with arbitrarily small probability.
Indeed, for any ε > 0 this can be achieved by enlarging the
output range2. As such, we define two detection rates in
Equation (1): P0 for no detection (all the verified results
are correct) and P1 for full detection (there is no correct
result in the verified results). Note that

(
N
M

)
= 0 if M > N .

Referring to Equation (1), the cheating rate ρ is unknown
to the client, while the verification rate σ is unknown to the
server.

P0(K,σ, ρ) =

(
(1−ρ)K
σK

)(
K
σK

) P1(K,σ, ρ) =

(
ρK
σK

)(
K
σK

) (1)

2.2 Parameters
The parameters used in this paper are summarized in Ta-

ble 1.

Name Meaning Assumption
ρ Cheating rate 0 ≤ ρ ≤ 1
σ verification rate 0 < σ < 1
K Number of outputs 0 < K

P0(K,σ, ρ) Probability of no detection 0 ≤ P0 ≤ 1
P1(K,σ, ρ) Probability of full detection 0 ≤ P1 ≤ 1

C Cost of computation C = 1
ψ Deposit 0 ≤ ψ ≤ 1
W Full Payment 1 < W = 1 + w
F Fine F > 0
B Benefit of the correct results W < B = 1 + b

V (σ) Verification cost 0 ≤ V (σ) ≤ 1
κb(ρ) Known benefit reducer 0 ≤ κb(ρ)
λb(ρ) Unknown benefit reducer κb(ρ) ≤ λb(ρ)
θ Tolerated cheating rate 0 ≤ θ ≤ 1

Table 1: The parameters used in this paper

To simplify our discussion, we make some assumptions.
First of all the cost for the server to carry out the compu-
tations (C) is known to both parties. In practice, this cost
can represent the number of operations, the required time
for the computation, etc. It is determined by the outsourced
algorithm and by the used dataset. We use it as normalizer
hence we set C = 1.

2.2.1 Transaction variables
The deposit ψ is the amount what the server gets in ad-

vance of any calculation. If the cheating is not detected, the
client pays the remaining W −ψ amount, so the server’s full
payment is W . We define ν = W − ψ and w = W − C,
so w is the pure gain of the server in case of honest behav-
ior. We call w as fee in the rest of the paper. In case of
detection (e.g. some of the verified results are incorrect) no

2In [Pham et al. 2014] the authors showed such a mechanism.

further payment is done, so as W represents the payment
in case of undetected cheating, the deposit ψ can represent
the payment in case of detected cheating. In case of full de-
tection so if the client do not find any correct result during
its verification3, the fine F is enforced on the server. If the
contract itself is not binding, such a fine can be enforced by
introducing a third party as a judge.

2.2.2 Client specific variables
The benefit B for the client is the gain from the correctly

computed results. B > W , otherwise the client would not
outsource at all. We define b = B −C and call it as income
in the rest of the paper. The verification cost function V (σ)
determines the cost corresponding of the amount of verifi-
cation. It grows monotone in σ. We have V : [0, 1]→ [0, C].
By definition V (0) = 0 and V (1) = C. Both the benefit
B and the verification cost function V (σ) are determined
by the outsourced algorithm and the dataset, so it is com-
mon knowledge. If the sum of the verification cost V (σ)
and the payment W is higher than the client’s benefit B, it
will not outsource at all because its payoff would be nega-
tive. Due to this, B represent a limit (budget) in the total
cost (W + V) of the client. The tolerated cheating rate θ
is a threshold for cheating: the client wants to obtain the
computed results with less than this level of cheating. This
is also predetermined by the outsourced algorithm’s and/or
the data’s sensitivity: for example a recommendation sys-
tem tolerates more cheating than calculating the courses of
asteroids traveling towards Earth.

The benefit reducers (i.e. λb(ρ) and κb(ρ)) are the loss fac-
tors for the client if the server cheats. In other words, if the
cheating is caught, the benefit4 for the client is B − κb(ρ),
while if the cheating is undetected it is B − λb(ρ). They
are growing monotonously in the cheating rate ρ. λb(0) =
κb(0) = 0 and λb(1) ≥ κb(0) ≥ b, so there is no loss if
there is no cheating and the loss in case of 100% cheating
is at least the income b. If the unknown loss λb(ρ) would
be smaller than the known loss κb(ρ) for any cheating rate,
the client would prefer not to detect the cheating over de-
tecting it. This is clearly an unrealistic scenario, so to avoid
this “ignorance is bliss” situation, we assume the undetected
cheating reduce the client’s benefit at least as much as the
detected one (κb(ρ) ≤ λb(ρ) for ∀ρ ∈ [0, 1]). Indeed, in case
of detection the benefit loss migh be reducible with some
form of mitigation (e.g. only use the results in a non-critical
environment). These functions are predetermined by the
outsourced data/algorithm just like B and V , so the server
also knows them.

For simplicity, we discretize the variables using K, so
(ρ, σ, θ, w, ψ) ∈ { i

K
}Ki=0.

2.3 Comparison to Khouzani, Cid and Pham
The main topic and the approach to the problem in our

paper is similar to [Pham et al. 2014], however, it is funda-
mentally different in several aspects: in their paper the client
wants total honesty, while our approach allows some level

3This kind of fine enforcement does not make sense if the
client verify significant amount of results, however, our anal-
ysis shows this is not the case so such a punishment enforce-
ment is feasible.
4We do not consider the positive effect of the recalculated
results, since the client only verify a very small fraction of
the whole as we show in Section 4.

of dishonesty defined by tolerated cheating rate θ. Indeed,
only mission-critical applications require 100% honesty, and
in less critical applications such as recommendation systems
this requirement can be relaxed.

Furthermore the authors in [Pham et al. 2014] only consid-
ered the cost as a payoff for the client, however, the client’s
payoff depends on other factors as well such as the benefit
B of obtaining the correct result or the losses λ, κ due to the
result manipulation.

Another difference is in the number of servers: they mainly
focus on the two server - one client case [Khouzani et al.
2014] while we focus on the one server case. Due to this,
their client’s budget is at least twice the cost of the cal-
culation. In [Pham et al. 2014], there is a result for the
one server - one client case, however, their scenario is differ-
ent from ours: for them punishment was always applicable
when cheating was detected, while we only enforce that that
in case of Full Detection (see Equation (1)). This means, if
the verification find correct and incorrect results as well (e.g.
1−P0−P1), the fine is not applicable, rather a deposit ψ is
payed5. Furthermore, in [Pham et al. 2014] the fine F is a
variable which can be maximized to discourage the cheating
while we assume it is a a predetermined constant.

Last, there is a difference in limiting some parameters. In
[Pham et al. 2014], the probability of auditing (corresponds
to our verification rate σ) is limited via the auditing capacity
while the reward (corresponds to our payment W) has its
own limit (called budget). However, we limit them together
using the verification cost function and the benefit: W +
V (σ) ≤ B.

2.4 Decision model by Vaidya, Yakut and Basu
In [Vaidya et al. 2014], the authors introduced a game-

theoretic approach which can be used on top of a verifi-
cation mechanism for the outsourcing scenario. The pro-
posed payoff matrix for the server is shown in Table 2 where
X ≤ W − C is the payoff for the server when cheating is
detected.

cheat not-cheat
Detected X W − C

Not-detected W − (1− ρ)C W − C

Table 2: Payoff Matrix in [Vaidya et al. 2014]

The payoff is basically the payment minus the cost of ex-
ecuted calculation. The goal is to prevent the server from
cheating by setting the parameters in a way that not-cheat
is a dominant strategy. Given a detection rate PD = 1−P0,
they showed that it can be established when Inequality (2)
is true.

W − C ≥(1− PD)(W − (1− ρ)C) + PDX ⇒

PD ≥
ρC

W −X − (1− ρ)C

(2)

5Relaxing the conditions of the fine enforcement only gives
more incentives for the server to cheat, however, even with
this ”help” the server will prefer not to cheat as we will show
later.

This is a decision model for the server, since detect/not-
detect is not a choice for the client. To make it a game
theoretic model, the client has to have choices as well, such
as setting the verification rate σ (or set the deposit ψ and
the fee w). Furthermore, the client’s payoff needs to be
defined. Also it would be more appropriate if the payment
X in case of detected cheating would be represented by a
cost and a payment just like in the rest of the cases in the
payoff matrix.

3. THE NEW GAME THEORETIC MODEL
We define a new payoff matrix and set two conditions

which guarantee that the client prefers the honest result
while the server will not cheat more than the tolerated cheat-
ing rate.

The normal form representation of the game is a tuple
{N,Σ, u}, where the players are N={client, server}, the
actions are Σc = { 1

K
, . . . , K−1

K
} and Σs = {0, 1

K
, . . . , 1}

which representing the fraction of the K results being ver-
ified/cheated and the payoff functions shown in Equation
(3).

3.1 Utilities
The payoff matrix is shown in Table 3. Note, that we treat

b, θ, F, λb, κb and V as predetermined constants/functions,
and only σ and ρ as variables. For each possible cheat-
ing/verification rate there is a corresponding fee/deposit
pair (w, ψ) which gives the server/client the highest pay-
off6.

earnings losses
Full Detect Server ψ −(1− ρ)C − F

P1 Client B + F −κb(ρ)− ψ − V (σ)
Detect Server ψ −(1− ρ)C

1− P0 − P1 Client B −κb(ρ)− ψ − V (σ)
Not-Detect Server W −(1− ρ)C

P0 Client B −λb(ρ)−W − V (σ)

Table 3: Our Payoff Matrix

If there is no cheating, the payoff for the client is its own
cost (fee w for the server and verification cost V (σ)) de-
ducted from its income b, while the server’s payoff is exactly
the fee w. Recall that due to normalization the cost of the
computation is C = 1. If there is cheating with no detection,
the server’s payoff grows with the cheating rate ρ, while the
client’s payoff decreases with the unknown benefit reducer
λ. On the other hand, if it is detected, κ is used instead of
λ and the remaining payment W −ψ is not payed. Further-
more, in case of Full Detection, a fine F is enforced.

UC(σ, ρ) =P0(b− λb(ρ)− w − V (σ))+

P1(1 + b+ F − κb(ρ)− ψ − V (σ))+

(1− P0 − P1)((1 + b− κb(ρ)− ψ − V (σ))

US(σ, ρ) =P0(w + ρ)+

P1(ψ − F − (1− ρ))+

(1− P0 − P1)(ψ − (1− ρ))

(3)

6More details about the optimal (w,ψ) selection is in the
following section.

3.2 Conditions

3.2.1 Client’s condition
We want to avoid the case when cheat results in more

gain for the client than not-cheat. To ensure that the honest
result provides the highest payoff for the client, we require
Inequality (4) to hold where ν is the remaining payment
after the deposit, e.g. ν = W − ψ. Note, that 0 ≤ ν ≤ B.

UC(σ, 0) ≥UC(σ, ρ) ∀ρ > 0 ⇒
b− w − V (σ) ≥P0(K,σ, ρ)[b− λb(ρ)− w − V (σ)]+

P1[1 + b+ F − κb(ρ)− ψ − V (σ)]+

(1− P0 − P1)[1 + b− κb(ρ)− ψ − V (σ)] ⇒

ν = 1 + w − ψ ≤κb(ρ) +
P0λb(ρ)− P1F

1− P0

(4)

3.2.2 Server’s condition
We want to force the server not to cheat above the client’s

tolerated cheating rate θ. This can be guaranteed if the
payoff in case of cheating with θ is not less that the payoff
for any cheating rate above it. This means, Inequality (5)
must be satisfied for all ρ ≥ θ where P ji = Pi(K,σ, j) where
i ∈ {0, 1} and j ∈ {ρ, θ}.

US(σ, θ) ≥US(σ, ρ) ∀ρ ≥ θ ⇒

ν = 1 + w − ψ ≥F (P ρ1 − P θ1) + θ − ρ
P ρ0 − P θ0

(5)

4. THE STACKELBERG GAMES
This section defines the two Stackelberg game and the

optimal offer what the leader should decline. An example is
provided for both games.

Based on the payoff matrix in Table 3, we defined two
Stackelberg games. First the client is the leader and the
server is the follower, while in the second the roles are switched:
the server is the leader and the client is the follower. Note,
that the leader’s move is represented via the payment/deposit
pair, however, these are actually determined by the verifi-
cation/cheating rates: for each rate there is a (w,ψ) pair
which maximizes the leader’s payoff. In other words, the
leader chooses its verification/cheating rates, and declares
the follower the corresponding payment-deposit pair as its
move/play.

In this game, the leader can make an offer (w,ψ)7 to the
follower. If the follower rejects this, the game terminates
just as in case when no offer is made, and the payoffs are
zero for both players. If the offer is accepted, then the server
carries out the computation with some level of cheating. Af-
ter receiving the results from the server, the client verifies
some percentage of it and acts accordingly: (1) either pays
the remaining amount in case the verified results are all cor-
rect or (2) refuse to pay in case there are some incorrect
results or (3) even enforce a fine in case no correct result
found. The extensive form of this game is shown in Figure
1.

7Technically, the offer is (ν, ψ), so the payment after and
before the computation, but this corresponds to the pair
(ν − 1 + ψ,ψ) = (w,ψ).

Figure 1: The game’s extensive form

4.1 Client is leading
We assume, the client choose σ first. In more detail, for

a particular σ, Inequality (4) defines an upper limit y for ν
while Inequality (5) defines a lower limit x, i.e. they define
an interval [x, y] for the payment after verification ν where
both the client’s and the server’s conditions hold. The client
wants to set w and ψ in a way that it maximize its payoff.
Since both w and ψ are spending for the client, it would like
to minimize them. To determine (w,ψ), the client proceeds
as follows where 1̂ = 1 + 1

K
.

1. If the interval is empty (i.e. x > y), there is no value
ν which satisfies both Inequality (4) and (5), so no so-
lution exists for the σ chosen in advance by the client.

2. If [x, y] ∩ [0, B] = ∅: ν is by definition ν ∈ [0, B], so
no solution exists for the chosen σ.

3. If 1̂ ∈ [x, y]: both variable can be fully minimized, e.g.
(w,ψ) = (1

K
, 0).

4. If 0 < y < 1̂: This means, the possible values of w−ψ
are negative. This case only w can be fully minimized,
e.g. w = 1

K
. ψ is minimal if ν = y, which case ψ =

1̂− y.

5. If 1̂ < x < B: This means, the possible values of w−ψ
are positive. This case only ψ can be fully minimized,
e.g. ψ = 0. w is minimal if ν = x, which case w = x−1.

4.1.1 Example
We set K = 1 000 000, b = 3

4
, F = 1, κb(ρ) = (1 + b)2ρ =

3.5ρ, λb(ρ) = (1 + b)4ρ = 7ρ, V (σ) = σ and θ = 0.1, the
two limits from Inequality (4) and (5) are shown in Figure
2 for σ = 10

K
. With this settings, checking 10 values (out of

1 million) results in no possible solution (Case (1): x > y).
One can check that the only σ’s where the corresponding
limits are feasible (e.g. x < y) shown in Table 4 with the
optimal payment/deposit choices.

We require σ to be higher than 1
K

, otherwise the detection
and full detection case would be indifferent which means
the punishment is always enforced, simplifying our game to
the one in [Pham et al. 2014]. Figure 3 shows the server’s
payoff for the viable verification rates. It is visible, that
independently from σ, the server is better of by not cheating
(independently from the tolerated cheating rate θ). Due to
this, the client will only verify 2 results to maximize its

Figure 2: The interval defined by Inequality (4) and (5) for
σ = 10

K
.

σ [x, y] for ν (w,ψ)
2/K [0.473 684, 2.366 600] (1

K
, 0)

3/K [0.462 496, 2.089 780] (1
K
, 0)

4/K [0.587 682, 1.667 837] (1
K
, 0)

5/K [0.742 010, 1.358 537] (1
K
, 0)

6/K [0.908 944, 1.142 593] (1
K
, 0)

Table 4: Feasible solutions for the example

payoff for the case ρ = 0. This means (σ, ρ) = (2
K
, 0) is the

Nash Equilibrium where (w,ψ) = (1
K
, 0).

Figure 3: The Server’s Payoff when the client is the leader

4.2 Server leading
Recall that all variables are common knowledge, so the

server can calculate for any σ∗ the corresponding interval
derived from Inequality (4) and (5). The question is the
same again, but this time the server is asked: how to set
(w,ψ) in a way that its payoff function is maximized. Since
both the payment and the deposit are earnings for the server,
its goal is to maximize both. Note, that the client’s payoff
must be positive, otherwise it will not accept any offer. For a
particular σ the payment w could be at most b− 1

K
− V (σ)

otherwise the previous condition would not hold even for
ρ = 0. We define b̂ = b− 1

K
− V (σ).

1. If the interval is empty (i.e. x > y), no solution exists
for the corresponding σ.

2. If [0, B] ∩ [x, y] = ∅: ν is by definition ν ∈ [0, B], so
no solution exists for the corresponding σ.

3. If b̂ ∈ [x, y]: both variable can be fully maximized, e.g.

(w,ψ) = (b̂, 1).

4. If b̂ < x: This case only w can be maximized fully, e.g.
w = b̂. ψ is maximal if ν = x, which case ψ = 1+ b̂−x.

5. If y < b̂: This case only ψ can be maximized fully, e.g.
ψ = 1. w is maximal if ν = y, which case w = y.

The server compares the maximal payments and deposits
for the possible verification rates and chooses the maximum
which will be the offer for the client. Than the client checks,
which σ’s corresponding interval contains this particular of-
fer and choses the one which provides the highest payoff.

4.2.1 Example
Following our previous example where b = 0.75, using

the intervals shown in Table 4, the server’s offers with the
corresponding verification rates shown in Table 5, where the
maximum is (w,ψ) = (0.749 997, 1). After receiving the
offer, the client’s possibility in case of acceptance is only to
verify σ = 2

K
results, otherwise its payoff would be negative

even for ρ = 0. The client’s payoff is shown in Figure 4 for
the offers from Table 5 with the corresponding verification
rates.

σ w ψ
0.000 002 0.749 997 1
0.000 003 0.749 996 1
0.000 004 0.749 995 1
0.000 005 0.749 994 1
0.000 006 0.749 993 0.841 053

Table 5: Best offers for the server for different verification
rates

Figure 4: The Client’s payoff when the server leads

4.3 Remark
It seems from the two games that the leading player has

overwhelming advantage. In the majority of the cases it can
reach its maximal payoff (b− 2

K
for the client and b− 3

K
for

the server), while the follower gets only the smallest viable
payoff 1

K
. In practice, the server seems to be the leader by

setting the prices for different services. Still, these prices are
actually much lower because the cloud servers must compete
for the customers.

Note, that the server’s payoff can still be positive when
ρ > θ, however, a rational server will not-cheat due to its
incentives8: its payoff is maximal when ρ = 0. This means,
the optimal choice for the client would be to only verify the
minimum, e.g. the Nash Equilibrium of the game - if exists
- is (σ, ρ) = (2

K
, 0).

In both game, not-cheat is the dominant strategy for the
server despite that certain θ level of cheating is allowed. Ac-
tually, Inequality (5) ensures, that US(θ) > US(ρ) if ρ > θ.
The server’s payment decreases rapidly at 0 for σ > 2

K
, so by

having the tolerated cheating rate θ further from 0, the lower

8A lazy but honest server’s payoff is not affected by the other
player loss.

US(θ) gets, making the Inequality stronger. One would ex-
pect, the higher the toleration rate, the more relaxed the
condition. Despite, exact opposite happens.

So far we were only talking about intentional cheating,
however, non-intentional cheating (e.g. miscalculations, etc.)
may occur too. To give some additional level of protection
against such a thing, the client may verify slightly more. By
doing so, it decrease its payoff in case of ρ = 0 as it is shown
in Figure 5, but it also straightens the payoff curve around
ρ = 0. So for the client it maybe a good idea to verify as
much as possible based on Inequality (4) and (5).

Figure 5: The Client’s payoff when (s)he leads

5. SENSITIVITY ANALYSIS
In this section we compare the parameters pairwise to see

how much the possible maximum verification rate and the
corresponding (w,ψ) changes. We are interested in this -
despite that the pure Nash Equilibrium would be almost al-
ways to verify only 2 results - because even this maximal
verification is insignificant compared to the whole computa-
tion, e.g. < 1%. This means, its advantage of smoothening
the payoff curve - as it was seen in Figure 4 - overcomes
the decreased effect on the payoff when ρ = 0. We focus on
the first game, however, in the second game similar relations
can be found. Our default settings for the parameters are
θ = 0.1, b = F = C = 1, and λb(ρ) = κb(ρ) = (1 + b)2ρ.

With these settings, we found a connection between b and
σ: if the income is more, the client can check more (see Table
6, 7 and 8). In the following, we list some cross-comparison
results amongst the variables where change appears either in
the maximal verification rate allowed by Inequality (4) and
(5) or in the optimal value of the payment and/or deposit.
The table cells represent σ, w and ψ respectively.

Income - Fine
If we compare the income b with the fine F , we see in Table
6, that for small b and high F no solution exists: the client
prefers cheat more than not-cheat because P1F >> b.

F = 0.5 F = 1 F = 2 F = 4
b = 0.2 (4

K
, 1
K
, 0.4) (4

K
, 1
K
, 0.4) ⊥ ⊥

b = 0.4 (4
K
, 1
K
, 0.3) (4

K
, 1
K
, 0.3) (4

K
, 1
K
, 0.3) ⊥

b = 1.6 (5
K
, 1
K
, 0) (5

K
, 1
K
, 0) (5

K
, 1
K
, 0) (5

K
, 1
K
, 0)

Table 6: Varying b and F

Income - Tolerated Cheating Rate
If we compare σ, w and ψ when b and θ are varied, we
see in Table 7 two possible cases. If b is high, high θ is a
disadvantage for the client because w must be higher. On
the other hand if b is low, high θ is an advantage since ψ
decrease.

θ = 0.01 θ = 0.1
b = 0.1 (4

K
, 1
K
, 0.45) (3

K
, 1
K
, 0.266667)

b = 1 (6
K
, 1
K
, 0.333334) (5

K
, 1
K
, 0.200001)

b = 10 (19
K
, 1
K
, 0) (11

K
, 1.96065, 0)

Table 7: Varying b and F

Income - Number of Results
Now, lets take a closer look at the number of verifiable re-
sults. Surprisingly, more results do not lead to higher σ, only
lower w. Furthermore, for higher b higher w corresponds.

K = 103 K = 106 K = 109

b = 3 (7
K
, 1.09119, 0) (7

K
, 1.08692, 0) (7

K
, 1.08692, 0)

b = 5 (8
K
, 1.28412, 0) (8

K
, 1.27803, 0) (8

K
, 1.27802, 0)

b = 7 (9
K
, 1.49373, 0) (9

K
, 1.48525, 0) (9

K
, 1.48524, 0)

Table 8: Varying b and K

Verification cost
In our example through the paper we set the verification
cost function to be linear, however in practice this assump-
tion may not hold, e.g. V is steep closer to zero and moder-
ate around one. By setting V (σ) =

√
σ, which is a concave

function described earlier, one might expect to obtain dif-
ferent results. Therefore we compared V (σ) with all other
variables, however, the obtained results was the same when
V (σ) = σ. This is due to the limited amount of verification:
even if V (σ) grows rapidly around zero, σ itself is very close
to it.

6. EQUILIBRIUMS
This section we define a game where the players actions

are reduced, e.g. they only have two options. We analyze it
ant define its equilibriums.

We argued in Section 4 that if the client plays verify, it
should use the highest σ∗ amongst all the possible σ’s where
Inequality (4) and (5) defines a viable interval for ν. This
conclusion was only valid when V (σ) is linear, however, in
Section 5 we showed that this conclusion holds for steeper
functions as well. So verify reduces to verify max which
corresponds to σ∗. We also showed that not cheat is the
dominant strategy for the server for any positive σ. Now, if
we allow the client to play not verify, the game reduces to
2-2 actions of each player as shown in Table 9 where each
cell represents (UC , US).

HHH
HHσ
ρ

0 1

0 (b− w,w) (b−ψ−λb(1), 1 +w)

σ∗ (b− w − V (σ∗), w)
(b− ψ − κb(1)−
V (σ∗) + P1F,ψ −

P1F)

Table 9: Reduced Payoff Matrix

This game is cyclic, if the following conditions hold.

1. If the client plays not verify, the server rather plays
fully cheat. This is true by definition of the payoff
function.

2. If the server plays fully cheat, the client prefers to play
verify max. This holds only if V (σ∗) < λb(1)−κb(1)+
P1F .

3. If the clients plays verify max, the server is better of
playing no cheat. This is correct if w > ψ − P1F .

4. If the server plays no cheat, the client will gain more
by playing not verify. This is satisfied by definition of
the payoff function.

If (2) and (3) hold, the game has a unique Mixed Nash
Equilibrium [Aumann 1989], with the probabilities defined
in Equation (6).

Pr(fully cheat) =
1

1 + ψ − P1F

Pr(verify max) =
V (σ∗)

λb(1)− κb(1) + P1F

(6)

If (2) is not true (e.g. V (σ∗) ≥ λb(1)− κb(1) + P1F), the
game’s Pure Nash Equilibrium is (0, 1), so not verify - fully
cheat. In this case, the client should not outsource at all,
because it cannot verify any results due to the extremely
high verification cost. On the other hand, if (2) holds and
only (3) is violated (e.g. w ≤ ψ − P1F), the Pure Nash
Equilibrium is (σ∗, 1), which corresponds to verify max -
fully cheat. This situation is also unacceptable for the client
since its payoff would be negative. As a result, the client
only participates in the game if (2) and (3) holds along with
Inequality (4) and (5), so the only realizable Equilibrium is
the mixed one. In this case, the expected payoffs for the
players are shown in Equation (7) where l = λb(1)− κb(1).

E(US) =w +
V (σ∗) + P1F−(2+w)V (σ∗)+l

1+ψ−P1F

P1F + l

E(UC) =b−W − V (σ∗)2

P1F + l
+
W + V (σ∗)− λb(1)− P1F

1 + ψ − P1F
(7)

7. CONCLUSION
Nowadays, outsourcing computation to cloud service providers

is very common. Guaranteeing the correctness of these cal-
culations is usually done by verification mechanisms. In this
paper, we proposed a game theoretic framework which can
be applied on a top of a verification mechanism to maximize
the client’s payoff while not just ensuring the desired level of
correctness but to provide full honesty in case of verification.
Furthermore, our results show that the minimal verification
is already enough to ensure this.

As a future work, there are numerous ways to extend this
model. Making the game sequential or introducing repu-
tation are reasonable future directions. Making the game
asymmetric by hiding some variables - for example b from
the server - to make the game incomplete information is also
interesting idea. Introducing new variables, such as a com-
putational cost difference between the client and the server
is a promising direction as well.

Acknowledgments
Qiang Tang is partially supported by a CORE (junior track)
grant from the National Research Fund, Luxembourg.

Disclaimer
A previous version of this work was presented as a poster
on Conference on Decision and Game Theory for Security
(GameSec) in 2016 November 2-4, New York.

8. REFERENCES
[Aumann 1989] Robert J Aumann. 1989. Game theory. In

Game Theory. Springer, 1–53.

[Canetti et al. 2011] Ran Canetti, Ben Riva, and Guy N
Rothblum. 2011. Practical delegation of computation
using multiple servers. In Proceedings of the 18th ACM
conference on Computer and communications security.
ACM, 445–454.

[Dong et al. 2013] Boxiang Dong, Ruilin Liu, and
Hui Wendy Wang. 2013. Result integrity verification
of outsourced frequent itemset mining. In Data and
Applications Security and Privacy XXVII. Springer,
258–265.

[Khouzani et al. 2014] MHR Khouzani, Viet Pham, and
Carlos Cid. 2014. Incentive engineering for outsourced
computation in the face of collusion. In Proceedings of
WEIS.

[Liu et al. 2013] Ruilin Liu, Philippos Mordohai,
Wendy Hui Wang, Hui Xiong, Ruilin Liu, Hui Wendy
Wang, Philippos Mordohai, and Hui Xiong. 2013.
Integrity Verification of K-means Clustering
Outsourced to Infrastructure as a Service (IaaS)
Providers.. In SDM. SIAM, 632–640.

[Monrose et al. 1999] Fabian Monrose, Peter Wyckoff, and
Aviel D Rubin. 1999. Distributed Execution with
Remote Audit.. In NDSS, Vol. 99. 3–5.

[Pham et al. 2014] Viet Pham, MHR Khouzani, and
Carlos Cid. 2014. Optimal contracts for outsourced
computation. In International Conference on Decision
and Game Theory for Security. Springer, 79–98.

[Su and Khoshgoftaar 2009] Xiaoyuan Su and Taghi M
Khoshgoftaar. 2009. A survey of collaborative filtering
techniques. Advances in artificial intelligence 2009
(2009), 4.

[Tang et al. 2016] Qiang Tang, Balázs Pejó, and Husen
Wang. 2016. Protect both Integrity and
Confidentiality in Outsourcing Collaborative Filtering
Computations. In Cloud Computing (CLOUD), 2016
IEEE 9th International Conference on. IEEE.

[Vaidya et al. 2014] Jaideep Vaidya, Ibrahim Yakut, and
Anirban Basu. 2014. Efficient Integrity Verification for
Outsourced Collaborative Filtering. In Data Mining
(ICDM), 2014 IEEE International Conference on.
IEEE, 560–569.

[Wong et al. 2007] Wai Kit Wong, David W Cheung,
Edward Hung, Ben Kao, and Nikos Mamoulis. 2007.
Security in outsourcing of association rule mining. In
Proceedings of the 33rd international conference on
Very large data bases. VLDB Endowment, 111–122.

[Wong et al. 2009] Wai Kit Wong, David W Cheung,
Edward Hung, Ben Kao, and Nikos Mamoulis. 2009.
An audit environment for outsourcing of frequent
itemset mining. Proceedings of the VLDB Endowment
2, 1 (2009), 1162–1173.

