
The Multi-Generation Repackaging Hypothesis
Li Li, Tegawendé F. Bissyandé, Alexandre Bartel, Jacques Klein, Yves Le Traon

Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
{li.li, tegawende.bissyande, alexandre.bartel, jacques.klein, yves.letraon}@uni.lu

Abstract—App repackaging is a common threat in the Android
ecosystem. To face this threat, the literature now includes a large
body of work proposing approaches for identifying repackaged
apps. Unfortunately, although most research involves pairwise
similarity comparison to distinguish repackaged apps from their
“original” counterparts, no work has considered the threat to
validity of not being able to discover the true original apps. We
provide in this paper preliminary insights of an investigation into
the Multi-Generation Repackaging Hypothesis: is the original in
a repackaging process the outcome of a previous repackaging
process? Leveraging the Androzoo dataset of over 5 million
Android apps, we validate this hypothesis in the wild, calling
upon the community to take this threat into account in new
solutions for repackaged app detection.

I. INTRODUCTION

The process of assembling/disassembling Android app code
and resource files into/from an installable package is accessible
to all users and developers via public tools. This situation
has made Android app packages vulnerable to repackaging
attacks where malware writers and software pirates build
on existing apps. Indeed, a simple way of constructing a
malicious app consists in obtaining the code of an existing
(preferably popular) app, injecting in it a malicious payload,
and repackaging the whole into a new app that would be
advertised as being equivalent to the original one [1]. Early
studies on Android malware have thus shown that repackaging
is common, with over 80% of some malware datasets being
built through repackaging [2].

The repackaging threat is exacerbated by the emergence of
alternative markets performing limited sanity checks on the
uploaded apps. Fortunately, state-of-the-art works have put a
lot of effort in proposing new approaches for detecting repack-
aged apps. Existing techniques perform pairwise similarity
comparisons [3], [4], build on unsupervised learning [5] and
supervised learning [6], leverage runtime monitoring [7], or
focus on symptoms identification [8], [9], [?] to detect repack-
aged apps. Recently, some researchers [10] have acknowledged
the difficulty of identifying the original app from a given
repackaging pair. Nevertheless, to the best of our knowledge,
no research work has considered the hypothesis that the true
original app may not even be the one identified by pairwise
similarity comparison.

The multi-generation repackaging (MGRep) hypothesis con-
siders the possibility that an original app identified in a
repackaging pair is actually a repackaged app from a prior
repackaging generation. Fig. 1 illustrates a theoretical example
of a multi-generation repackaging process involving three app
cases. As time goes, apps get updated (e.g., v1 is updated from

v0) with some versions being repackaged into new apps (e.g.,
from v1 to v2 and from v2 to v3 ). In this work, we define
a MGRep as a continuous repackaging process where at least
two generations (from v1 to v2 and then v3) are involved. Our
goal in this work is to check whether the MGRep hypothesis
is validated or not.

Time Line App Repackaging

benign, cert1

benign, cert2

malicious, cert3

v1

v2

v3

v0

Fig. 1. Example of Multi-Generation Repackaging.

If the hypothesis of MGrep is validated, the state-of-the-
art on repackaged app detection should be re-evaluated. For
instance, let us consider a supervised learning-based approach
for differentiating repackaged apps from non-repackaged ones
as an example. Given that app v2 is simultaneously a repack-
aged app and an original app in a repackaging pair, its features
constitute noise in training a classifier, as illustrated in Fig. 2.
The same confusion may also arise when considering ap-
proaches based on other techniques such as pairwise similarity
computation.

v1 v2

v2 v3

feature(v1), FALSE

feature(v2), TRUE

feature(v3), TRUE
feature(v2), FALSE

Feature
Extraction

Machine
Learning

Fig. 2. The Hidden Problem Induced by Multi-Generation Repackaging for
Machine Learning based Analysis.

II. EXPERIMENTAL DESIGN

Fig. 3 illustrates the working process of our experiment,
which is completed in four steps.

1) Clustering. The objective of the first step is to reduce
the search space (i.e., the number of apps that must be
considered for further analysis) in a simple and efficient
manner. Thus, we regroup apps into families by consid-
ering app package names as features for clustering. The
insight behinds this step is that apps in a same family
are more probable to be repackaging each another.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/80682462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cluster Filter Compare

Diff Report

Validate

Validation Result

Fig. 3. The working process of our experiment.

2) Filtering. In the second step, we further reduce the
number of apps to be analyzed by filtering out families
which are least appealing for verifying the MGRep
hypothesis. To that end, we consider the number of
certificates used to signed apps in a family cluster. We
do not consider a family if all of its apps signed by less
than three certificates1. We consider the changes of apps
sharing a same certificate as a self-updating process, and
thus not relevant to repackaging.

3) Comparison. In this step, for each selected family, we
perform pairwise similarity analysis for all its apps,
attempting to compute the diff code between every
possible pair of apps. The diff code will then be used in
the next step for verifying our Multi-Generation Repack-
aging Hypothesis. Theoretically, given a selected family
with n apps inside, we need to perform

(
n
2

)
pairwise

comparisons. Considering that the pairwise comparison
is relatively expensive, we need to further filter out
some pairs that are obviously irrelevant in the context
of our experiments. Towards addressing this need, we
drop such candidate pairs (let us denote a pair of apps
as (v1 → v2)) when 1) v1 is created after v2. Indeed, it is
impossible to repackage an app which does not yet exist.
2) v1 is apparently more recognized as malicious than
v2, i.e., more anti-virus products flag v1 as malicious
compared to v2. Indeed, we consider repackaging as a
process of injecting extra (probably malicious) payload
to further narrow down the number of candidate pairs.

4) Validation. Based on all the diff code we have obtained,
our validation works as follows: Given two overlapping
pairs of apps, say (v1,v2) and (v2, v3), if the Multi-
Generation Repackaging Hypothesis is valid for these
pairs, the diff code of (v1, v3) should constrain to
Formula 1, where the diff code of (v1, v3) should equal
to the union of the diff code of (v1, v2) and the diff
code of (v2, v3) (i.e., the so-called transitive law). More
specially, we compute the diff code in the method level
for changed, added and deleted methods. We consider
the MGRep hypothesis is validated as long as Formula 2
(i.e., a more concrete version of Formula 1) is satisfied.

diff(v1, v2) ∪ diff(v2, v3) = diff(v1, v3) (1)

changed(v1, v2) ∪ changed(v2, v3) = changed(v1, v3)

added(v1, v2) ∪ added(v2, v3) = added(v1, v3)

deleted(v1, v2) ∪ deleted(v2, v3) = deleted(v1, v3)

(2)

1Three (3) is the minimal number of apps from different developers that
can be involved in a Multi-Generation Repackaging process.

A. Prototype Implementation

Our experiments are carried out via a set of shell scripts
calling upon an in-house Java program built on top of the
Soot analysis framework [11] for implementing a reliable
pairwise similarity comparison between apps [4]. This pro-
gram performs at the level of the Jimple default intermediate
representation (IR) in Soot. Jimple is a popular IR that
has been recurrently adopted by many state-of-the-art static
analysis approaches [12], [13], [14].

III. RESULTS

Our clustering step has found in the Androzoo dataset of
over 5 million apps, 372,120 families that contain at least three
app versions (suggesting potential MGRep scenarios inside
each family). The largest family, com.slideme.sam.manager,
contains 20,712 apps. Due to time and resource constraints, it
is expensive (and likely unnecessary) to analyze all families
in our search for multi-generation repackaged apps, we select
31 families (from the top 500 families) that contain apps with
at least three different certificates for further validating.

Among those selected families, we were able to identify two
cases satisfying the constraint of Formula 2, demonstrating
the existence of MGRep and the validation of our MGRep
hypothesis. This validation will significantly impact on the
state-of-the-art on repackaged app detection and related re-
search directions. The community is thus called upon to react
on this reality for better evaluating future approaches and for
reflecting on the state-of-the-art.

Unfortunately, only 6.5% (two out of 31) selected families
have revealed symptoms of MGRep, showing that MGRep
is not a common phenomenon in Android apps. However,
since the objective of this work is not to precisely detect all
repackaged apps, but to focus on a sufficient number of reliable
repackaging pairs that are likely to lead to the validation of
the multi-generation repackaging hypothesis, we have applied
a number of restrictions in this work to reduce the search
space of our investigation. Such restrictions may have been
too restrictive, failing to hit all the possible MGRep instances.
Therefore, as our future work, we plan to revisit this hypothesis
with a more systematized approach and a bigger dataset to
pinpoint the severity of MGRep in the Android ecosystem.

IV. ACKNOWLEDGMENTS

This work was supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the project AndroMap
C13/IS/5921289 and Recommend C15/IS/10449467.



REFERENCES

[1] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE
Transactions on Information Forensics & Security, 2017.

[2] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95–109. IEEE, 2012.

[3] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An
investigation into the use of common libraries in android apps. In The
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016), 2016.

[4] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid: Identi-
fying and explaining similarities in android apps. In Technical Report,
2017.

[5] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang.
Towards a scalable resource-driven approach for detecting repackaged
android applications. In ACSAC, 2014.

[6] Ke Tian, Danfeng Daphne Yao, Barbara G Ryder, and Gang Tan. Analy-
sis of code heterogeneity for high-precision classification of repackaged
malware. In MoST.

[7] Alessandro Aldini, Fabio Martinelli, Andrea Saracino, and Daniele
Sgandurra. Detection of repackaged mobile applications through a
collaborative approach. CCPE, 2015.

[8] Hugo Gonzalez, Andi A Kadir, Natalia Stakhanova, Abdullah J
Alzahrani, and Ali A Ghorbani. Exploring reverse engineering symp-

toms in android apps. In Proceedings of the Eighth European Workshop
on System Security, page 7. ACM, 2015.

[9] Li Li, Daoyuan Li, Tegawendé F Bissyandé, David Lo, Jacques Klein,
and Yves Le Traon. Ungrafting malicious code from piggybacked
android apps. Technical Report, 2016.

[10] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng
Cai, David Lo, and Yves Le Traon. Automatically locating malicious
packages in piggybacked android apps. In Technical Report, 2017.

[11] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A
scalable and accurate two-phase approach to android app clone detection.
In ISSTA, 2015.

[12] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), 2011.

[13] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-Component
Privacy Leaks in Android Apps. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), 2015.

[14] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Droidra: Taming reflection to support whole-program analysis of android
apps. In The 2016 International Symposium on Software Testing and
Analysis (ISSTA 2016), 2016.

[15] Li Li, Tegawendé François D Assise Bissyande, Mike Papadakis,
Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein,
and Yves Le Traon. Static analysis of android apps: A systematic
literature review. Technical report, SnT, 2016.


