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Abstract

The primary objectives of this research were to investigate the potential

of precipitable water vapor (PWV) estimates derived from Global Naviga-

tion Satellite Systems (GNSS) measurements, firstly, for short-term weather

forecasting based on numerical weather prediction (NWP) in Luxembourg

and its surroundings and, secondly, for monitoring climate on regional and

global scales.

The suitability of real-time (RT) zenith total delay (ZTD) estimates ob-

tained from three different precise point positioning (PPP) software pack-

ages was assessed by comparing them with the state-of-the-art product from

the International GNSS Service (namely the IGS final troposphere product)

as well as collocated radiosonde (RS) observations. It was found that the

RT-PPP ZTD estimates from two of the three software packages meet the

threshold requirements for NWP nowcasting. The biases between the RT-

PPP ZTD and the reference ZTD were found to be stable over time for all

the RT-PPP ZTD solutions. A millimetre-level impact on the RT-PPP ZTD

estimates was also observed when integer ambiguities were resolved.

The impact of assimilating GNSS-derived near real-time (NRT) ZTD in

the Applications of Research to Operations at Mesoscale (AROME) NWP

model using a three-dimensional, variational (3D-VAR) assimilation scheme

on the quality of weather forecasts for Luxembourg was studied. It was

found that the assimilation of GNSS-derived ZTD systematically improves

the atmospheric humidity short-range forecasts in comparison to other wa-

ter vapor observing systems (radio soundings, satellite radiances, surface

networks). Examination of several case studies revealed the ability of the

ZTD observations to modify the intensity and location of predicted precip-

itation in accordance with previous studies. The addition of ZTD from the

dense GNSS network in Wallonie (Belgium) was also found to be beneficial

by improving the prediction of rainfall patterns in Luxembourg.
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The 2D maps of IWV obtained from the hourly NRT system were com-

pared with cloud distribution and precipitation maps from satellite and

weather radar data, respectively, and a good agreement in the location of

the front system was been found. A rise in IWV was recorded during a

precipitation event in Luxembourg and it was shown that by observing the

IWV change over the ground-based GNSS stations in Luxembourg in NRT,

it is possible to determine the speed and direction of the passing fronts and

hence storms can also be tracked.

A 5-year long global reprocessed GNSS data set containing over 400

ground-based GNSS stations and based on the double differencing strat-

egy has been used to validate the ZTD estimates obtained from the climate

reanalysis model of the European Centre for Medium-range Weather Fore-

casts (ECMWF) namely the ECMWF ReAnalysis-Interim (ERA-Interim) in

different climate zones. It was found that the correlation coefficient between

the GNSS-derived ZTD observations and the ZTD modeled by ERA-Interim

ranges from 0.87 to 1.00. Higher correlation coefficients were found for the

stations belonging to the climate zones with lower amount of water vapour.

Furthermore, it was found that the mean, SDev and RMS of the differ-

ences depends on periodicity in the residuals, altitude of the stations in a

particular zone as well as the topographic variation in the zone.

Monthly and seasonal means of GNSS-derived ZTD (ZTDgnss) were com-

puted using a global ZTDgnss dataset consisting of 19-years of data and over

400 stations to study the climate variability in different climate zones. In

terms of seasonal means, it was found that the climate zones in the north-

ern hemisphere have ZTD maxima in Boreal Summer (June-July-August)

whereas those in the southern hemisphere have ZTD maxima in Austral

Summer (December-January-February). Monthly and seasonal variability

in ZTDgnss was also studied for the locations of 6 ground-based GNSS (SP-

SLux) stations in Luxembourg. It was found that all the 6 SPSLux sta-

tions experience the same monthly and seasonal variability of ZTDgnss. In

terms of monthly variation, it was found that the maxima in ZTDgnss occurs

around the month of July for all the 6 SPSLux stations whereas in terms

of seasonal variation, the location of maxima was found to be in Summer

(June-July-August).
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The suitability of the ZTD derived using precise point positioning (PPP)

strategy for climate monitoring applications was studied through its com-

parison with the ZTD estimates derived using double differenced positioning

(DDP) using a global network of 114 stations and duration of 1 year. The

mean differences between the two were found to be ranging from -3.35 to

2.37 mm over different climate zones. Furthermore, correlation coefficients

ranging from 0.90 and 1.00 were found between the ZTD obtained using the

two processing strategies. It was found that use of higher elevation cut-off

angles and tropospheric mapping functions based on NWP improves the

agreement between the PPP and DDP solutions.
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Chapter 1

Introduction

And We sent down water from the sky according to measure, and

We caused it to stay in the earth - and surely it is We Who

determine its taking away.

Qur’an, 23:19

This chapter provides an introduction to the research area by introducing

some concepts and the state-of-the-art in GNSS meteorology and climatol-

ogy. It then outlines the research objectives of this thesis and summarizes

the methodology used to address these objectives. Finally, it describes the

structure of this thesis by introducing the various chapters.

1.1 Overview

Water vapour, i.e. the gaseous state of water, is the most abundant and

highly variable greenhouse gas in the Earth’s atmosphere and is fundamen-

tal to the transfer of energy in the atmosphere and weather prediction.

Various studies have shown relations between different weather events and

the supply of water vapour in the atmosphere. For example, Kunkel et al.

(2013) observed significant increases in atmospheric water vapour coinciding

with extreme precipitation events, and suggested that this increase (in ad-

dition to other dynamic factors) could have been the cause of the intensified

precipitation. About 90% of the total atmospheric water vapour is found

in the lower-most layer of the atmosphere extending up to 17 km namely

the troposphere where most of the weather phenomena take place. Water

vapour has a high heat capacity and other than its significant role in weather

formation, it also contributes to the rise in temperature of the atmosphere

and the Earth’s surface on longer time scales by absorbing energy from solar

radiation and the radiation reflected by the surface of Earth (Taylor 2005).

It has been confirmed in the past that the characteristic of water vapour

to amplify the heat has the potential to increase climate warming twice in

magnitude than that caused by the increase in carbon dioxide (Dessler et

al. 2008).

1
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Atmospheric water vapour is measured in terms of a quantity known as

precipitable water vapour (PWV) which represents the height of a column

of water in the atmosphere above a certain location on the ground. PWV

is also called total precipitable water (TPW) and is measured in units of

length. Integrated water vapour (IWV) is an alternative representation of

the atmospheric water vapour and is defined as the total amount of wa-

ter vapour present in a vertical atmospheric column with units of kg/m2

(http://www.wmo-sat.info/oscar/variables/view/162). The terms IWV and

TPW will be interchangeably used in this thesis. Currently, there are a num-

ber of ground-based and space-based instruments and techniques which are

used to observe IWV and each of these has its own strengths and weaknesses.

These instruments will be discussed in detail in the next chapter.

The term Global Navigation Satellite System (GNSS) refers to a system

having a satellite constellation used to provide position, navigation and tim-

ing data (Hofmann-Wellenhof et al., 2007). The Global Positioning System

(GPS) of the United States, the GLObal’naya NAvigatsionnaya Sputniko-

vaya Sistema (GLONASS) of Russia, Galileo of Europe and the BeiDou

Navigation Satellite System (BDS) of China are examples of such GNSSs.

The user segment of a GNSS contains the GNSS receivers which can be

ground-based, airborne or space-borne depending on the desired end-user

application. The working principles of GNSS, associated processing strate-

gies and the various error sources that affect the GNSS observations will be

described in the next chapter.

As the GNSS signal travels from the transmitting satellite to the ground-

based receiver, it is refracted by the Earth’s atmosphere and this refraction

introduces a propagation delay in the signal. While the delay (ranging from

10 to 100 m) caused by the ionized portion of the atmosphere i.e. the

ionosphere can be effectively removed using a linear combination of two car-

rier frequencies, the delay in the neutral atmosphere (mainly caused by the

troposphere) cannot be removed and depends on the integral effect of the

densities of dry air and water vapour along the signal path. By process-

ing the GNSS observations, the average vertical component of the propa-

gation delays encountered by the signals from all the satellites in view of

a given ground-based station can be estimated and is called zenith total
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delay (ZTD). Various data processing strategies, e.g. precise point position-

ing (PPP) (Zumberge et al. 1997) and double differenced positioning (DDP)

(Hofmann-Wellenhof et al., 2007), allow the estimation of ZTD from ground-

based GNSS observations in real-time or RT (latencies of 1 to 10 min), near

real-time or NRT (latencies of up to 90 min) and post-processing or PP

(latencies up to years or decades) modes (Ahmed et al. 2014a). The ZTD

is divided into hydrostatic and wet parts, namely the zenith hydrostatic

delay (ZHD) and the zenith wet delay (ZWD), respectively, and can be

converted to IWV by using surface meteorological data (Bevis et al. 1992,

1994). Hence, over the last two decades, GNSS have emerged as a tool for

monitoring the atmospheric water vapour. Figure 1.1 depicts the process of

obtaining IWV from GNSS measurements. Surface pressure values at the

locations of the GNSS receivers can be obtained from either observations or

models. Using the pressure values, ZHD is computed and subtracted from

the ZTD estimates to obtain ZWD. Finally, ZWD is converted to IWV us-

ing the temperature values, again either from observations or from models.

Although IWV is of primary interest for weather forecasting and climate

research, for consistency, it is only ZTD which is usually assimilated into

NWP models before it is converted to IWV using homogeneous temperature

values within the model (Marel 2004).

Figure 1.1: Process of obtaining IWV from GNSS measurements
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Various error sources can affect the accuracy of the GNSS-derived ZTD

estimates. In PPP processing, the ZTD is more sensitive to the radial com-

ponent of the orbit error, whereas in DDP processing, it is more sensitive

to the tangential component of the orbit error (Douša 2012). Although the

first-order ionospheric delay is eliminated using the linear combination of

the measurements from two different carriers, there still remains a smaller

effect from the higher-order terms of the ionospheric delay especially during

the times of high solar activity. There is a linear dependency between the

daily mean of the Total Electron Content (TEC) unit and the estimated

vertical position (Fritsche et al. 2005). If the error in ZTD is approximated

as one third of the vertical position error (Hill et al. 2009), it would mean

that an increase of the TEC from 25 to 175 will result in a ZTD error

ranging from 0.6 to 4 mm if higher-order ionospheric corrections are not

applied, however, this is not further investigated here. Furthermore, it has

been shown that errors in the a-priori ZHD caused by the use of inaccurate

surface pressure values could result in an error of -0.1 to -0.2 mm/hPa in

vertical position estimates (Tregoning and Herring 2006) and this could also

lead to an error in the ZTD. Antenna related errors, e.g. phase center offsets

(PCO) and variations (PCV), and radome geometry, also lead to errors in

the vertical position and the ZTD estimates. Byun and Bar-Sever (2009)

and Thomas et al. (2011) have shown that differences in the estimated ZTD

with and without PCV corrections may vary from 2 to 10 mm. The effect

of inaccurate or unaccounted PCOs may be even larger (up to few centime-

ters). The tropospheric mapping functions (MF), which are used to map

the tropospheric delay from line-of-sight (slant) to the zenith, also have an

elevation-dependent effect on the corresponding ZTD, although the effect

of the MF reduces with an increase in the elevation cut-off angle used for

observations (Ning 2012).

The ZTD represents the total tropospheric delay at the zenith of a ground-

based station with an assumption of an azimuthally symmetric atmosphere.

Processing of GNSS observations also allows the estimation of the horizontal

tropospheric gradients i.e. the rate of change of the ZTD in east-west and

north-south directions and the slant total delay (STD), i.e. the line-of-sight

signal propagation delay between a satellite and the ground-based station.

The horizontal gradients and STD provide a higher spatial resolution and
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significantly increased number of observations and hence allow an enhanced

description of the state of the atmosphere. Furthermore, the STD can be

converted to slant water vapor (SWV). Various studies have demonstrated

the benefits of using horizontal gradients and STD for positioning (Bar-

Sever et al. 1998), GNSS tomography (Bender et al. 2011), and prediction

of severe weather (Ha et al. 2002). However, the use of STD is beyond the

scope of this thesis.

As an observing technique, GNSS enjoy various advantages over the other

observational systems in use today. In addition to being a low cost observa-

tion technique, GNSS have an all-weather operational capability and could

provide observations with a temporal resolution of as high as 1 Hz. The

establishment and continuous development of global and dense regional net-

works of ground-based GNSS stations result in a high spatial resolution of

GNSS observations as compared to other types of observations. Modern

telecommunication protocols also allow the rapid dissemination of GNSS

observations and hence these could be obtained with very low latencies.

The term ”GNSS meteorology” refers to the assimilation of GNSS-derived

atmospheric information (ZTD and/or IWV) into NWP models as well as

the combination of NWP model output and GNSS observations while is-

suing forecasts. GNSS meteorology also includes non-NWP products such

as severe weather monitoring. Over the last decade, a number of inter-

national research projects and programmes in Europe (e.g. Elgered, 2001,

Huang et al., 2003), North America (e.g. Smith et al., 2007) and Asia (e.g.

Iwabuchi et al., 2000) have investigated the use of GNSS-derived NRT ZTD

estimates in NWP models. Since 2005, the EUMETNET EIG GNSS water

vapour programme (E-GVAP) (http://www.egvap.dmi.dk/) enables various

analysis centres across Europe to submit their NRT ZTD estimates for as-

similation into the NWP models of the partner meteorological institutions

(Vedel et al., 2013). Since late 2012, another European project COST Ac-

tion ES1206: Advanced Global Navigation Satellite Systems tropospheric

products for monitoring severe weather events and climate (GNSS4SWEC)

(Jones et al., 2014) is in progress to investigate GNSS meteorology further

in the light of modern challenges and developments. As of today, NRT ZTD

estimates (with 1-hourly temporal resolution) are assimilated into local, re-
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gional and global scale NWP models that are run with 3-hourly to 6-hourly

update cycles and produce medium-range (up to a few days) weather fore-

casts. The assimilation of GNSS-derived ZTD into NWP models has been

found to have a positive impact on the quality of the analysis of the current

state of the atmosphere and the corresponding weather forecasts (Bennit et

al. 2011, De Haan 2011, Gutman et al. 2004, Mahfouf et al. 2015). With

the developments of high update-rate NWP models, for example, the Rapid

Update Cycle (RUC) (Benjamin et al., 2010) and the Real-Time Meso Anal-

ysis High Resolution Rapid Refresh (RTMA-HRRR) (Benjamin et al., 2013),

and in order to use the ZTD estimates for NWP nowcasting and monitoring

extreme short-term weather changes, it is a primary research interest nowa-

days, to obtain them with a minimal latency of 10 or even 5 minutes while

maintaining a certain level of accuracy (Offiler 2010). Recent studies have

shown that it is possible to obtain ZTD and IWV estimates with latencies

as low as 1 s by processing the GNSS observations as RT-PPP (Ahmed et

al. 2014b, Yuan et al. 2014). The fixing of integer phase ambiguities en-

hances the precision of the GNSS-derived position estimates. In the DDP

strategy, common errors are removed and it becomes easier to identify and

fix such integer ambiguities. However, for un-differenced observations, it

was not possible to fix the integer phase ambiguities until recently (Geng

et al. 2010). To date, only a few studies have been performed to study the

impact of ambiguity resolution on GNSS-based ZTD estimates in RT-PPP

with some of them benefitting from software and products not necessarily

available to the community (Shi and Gao 2012; Geng et al. 2009). In these

studies, the impact of ambiguity resolution on ZTD was observed to be

around 4 to 6 mm. The recent study by Li et al. (2014), which is based on

their in-house software and products, also reported on the insignificant dif-

ferences between the RT-PPP float and fixed solutions after sufficiently long

times of convergence. However, they demonstrated the usefulness of ambi-

guity fixing for the rapid re-initialization of an RT-PPP processing system

(e.g. after an interruption in the RT data).

It is a widely known fact that the Earth’s climate is continuously un-

dergoing changes (Hartmann et al. 2013, Karl et al. 2009) over different

time scales. These changes are clearly reflected by a rise in the frequency

and intensity of extreme climate events (Groisman et al. 2005, Katz 2010)



Chapter 1. Introduction 7

which have caused a significant damage to human life and property to date.

Therefore it is of utmost importance to investigate variations and trends in

the climate by optimally utilizing the available evidence. To help with this,

another atmospheric application of the GNSS observations emerges to be in

climate monitoring which will be referred to as ”GNSS climatology” in this

thesis. Although conventional climate studies are based on datasets covering

at least 30 years and GNSS observations are only available for two decades

as of now, the term GNSS climatology is used by the GNSS community

referring to the application of GNSS to climate monitoring. Various studies

have used the long-term estimates of IWV and/or ZTD derived from GNSS

to study the trends and variability in water vapour on global and regional

scales (e.g. Ahmed et al. 2014c, Vey et al. 2010, Wang and Zhang 2009,

Nilsson and Elgered 2008, Stende 2006, Hagemann et al. 2003). A review

of state-of-the-art of the meteorological and climatological applications of

GNSS can be found in [Guerova et al., 2016].

The Grand Duchy of Luxembourg (or simply Luxembourg) belongs to the

West European Continental climatic region. It has a temperate climate with

mild winters, cool summers and high rainfall. Because of the high rainfall,

flooding is the main natural hazard and one of the major concerns in Luxem-

bourg. The studies presented by, for example, Pfister et al., [2005], Pfister

et al., [2004] and Pfister et al., [2000] discuss the trends, variability and

driving factors of the hydrological extremes in Luxembourg region related

to rainfall. Furthermore, climate change and a change in air temperature

is also a concern for Luxembourg as evident from, for example, Junk et al.,

[2014], Goergen et al., [2013], and Drogue et al., [2005].

GNSS meteorology is currently not operationally in practice in Luxem-

bourg. However, there is adequate infrastructure present in Luxembourg

to locally obtain GNSS observations as well as meteorological data in this

country. For example, there is a network of permanent ground-based GNSS

stations inside and around the borders of Luxembourg. Furthermore, there

are various meteorological sensors installed all over Luxembourg (the details

about these networks will be presented in the following chapters). There-

fore, it is of interest to investigate if it is possible to use the locally available

meteorological data and GNSS observations for the computation of IWV
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and to study the potential of GNSS meteorology in Luxembourg.

As of now, only GPS and GLONASS are fully operational GNSSs. How-

ever, as this thesis covers all the aspects of GNSS meteorology, the research

presented in this thesis is based on the observations from GPS only and

the analysis was not expanded to GPS+GLONASS or multi-GNSS obser-

vations. Therefore, the term GNSS implies GPS in this thesis unless stated

otherwise.

1.2 Processing Terminologies Used in the Thesis

During this research, ZTD and IWV have been estimated by processing

GNSS observations in several different modes and using different processing

strategies. For the ease of reading, the ZTD and IWV solutions have been

referred to using various abbreviations throughout the thesis that specify

the exact mode and processing strategy used to obtain that solution. Table

1.1 describes these abbreviations.

Table 1.1: Abbreviations used to specify different solutions

Abbreviation Quantity Processing Mode Processing Strat-
egy

RT-PPP ZTD ZTD Real-time PPP
NRT-DDP ZTD ZTD Near Real-time DDP
NRT-DDP IWV IWV Near Real-time DDP
PP-DDP ZTD ZTD Post-processing DDP
PP-DDP IWV IWV Post-processing DDP
PP-PPP ZTD ZTD Post-processing PPP
PP-PPP IWV IWV Post-processing PPP

1.3 Research Objectives

The primary objective of this thesis is to study the potential of GNSS

meteorology and climatology for Luxembourg. It has been investigated

how ground-based GNSS observations from the networks in Luxembourg

and its surrounding areas in Germany, Belgium and France (collectively
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known as the Greater Region) can benefit the short-term weather forecast-

ing and climate monitoring for Luxembourg. Additionally, some research

areas of a global scope, such as the validation of the European Centre for

Medium-range Weather Forecasts (ECMWF)’s climate reanalysis dataset

ERA-Interim, have also been addressed. Specifically, the following ques-

tions have been answered:

• Which are the best suitable software packages, tools and products to

obtain GNSS-derived RT-PPP ZTD in Luxembourg?

• What is the suitability of RT-PPP ZTD estimates for use in NWP

applications?

• What is the impact of using GNSS-derived NRT-DDP ZTD from Lux-

embourg and the surrounding areas on quality of short-term weather

forecasts issued by the respective NWP model?

• What is the usefulness of GNSS-derived NRT-DDP IWV for tracking

weather fronts and storms in Luxembourg?

• What is the agreement between the ZTD derived from the ERA-

Interim climate reanalysis dataset with GNSS-derived PP-DDP ZTD

in different climate zones?

• What is the agreement between the ZTD from climate reanalysis data

and GNSS-derived ZTD in Luxembourg?

• What is the suitability of PP-PPP ZTD estimates for climate moni-

toring applications in Luxembourg?

• Which are the optimal sources of meteorological data for Luxembourg?

In order to address the research objectives, a number of GNSS data pro-

cessing systems (RT, NRT and PP) and tools were developed. Figure 1.2

describes the scope of the research objectives addressed by the RT, NRT

and PP systems.

The results from the RT, NRT and PP systems were used for the desired

applications after being validated using state-of-the-art reference datasets

and this was followed by the assessment of the potential of these results in
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the respective applications. The following text summarizes the methodology

used to answer the above mentioned research questions.

• The weather forecasts produced by the national meteorological ser-

vice of Luxembourg (MétéoLux) are based on the output of the NWP

model AROME, which is run operationally at MeteoFrance. In order

to improve the knowledge of the current state of atmosphere and the

corresponding forecasts, the AROME model makes use of the GNSS-

derived ZTD estimates from European GNSS networks but as of now,

the ZTD estimates obtained from the GNSS networks in Luxembourg

and the Greater Region are not operationally used for this purpose. In

order to investigate the potential benefit of using the GNSS-derived

ZTD observations from Luxembourg and the Greater Region in the

AROME NWP model, a set of experiments was conducted in collabo-

ration with MeteoFrance. The operational 1-hourly NRT GNSS data

processing system was used to obtain ZTD estimates for a ground-

based European network with a densification over Luxembourg and

Wallonie (Belgium) for a period in past. With the support from Mete-

oFrance, this NRT-DDP ZTD data was assimilated into the AROME

NWP model and various forecasts were generated. The quality of the

generated forecasts of various parameters was assessed by comparing

them to the observed values of the parameters.

• In order to assess the suitability of RT-PPP ZTD estimates for use in

NWP applications and to identify the best suitable RT processing soft-

ware and products for Luxembourg, two RT data processing systems

were implemented at the University of Luxembourg (UL) to conduct

a study on RT-PPP ZTD estimation. In addition, a collaboration was

established with the Geodetic Observatory Pecny (GOP) and one of

their RT processing systems was included in the study. The three

processing systems were based on different processing engines. The

precision and stability of the RT-PPP ZTD estimates obtained from

each of the systems were assessed through comparisons with state-of-

the-art GNSS based ZTD products and ZTD derived from a non-GNSS

technique (i.e. radiosonde). Moreover, the various estimates obtained

were checked for compliance with the established user requirements

for NWP applications.
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• Luxembourg has a ground-based GNSS network operational since late

2006 which consists of 6 stations distributed over Luxembourg. There-

fore, the length of GNSS-derived ZTD records for Luxembourg is

slightly over 8 years which is currently insufficient for long-term cli-

mate monitoring. However, it is still possible to use it to investigate

its suitability for the climate variability on shorter time scales. A PP

system was developed in order to serve this purpose. The available his-

toric data from the stations in Luxembourg was processed along with

others using state-of-the-art products and software, and time series for

ZTD and IWV were obtained. The quality of GNSS-derived PP-PPP

ZTD from the ground-based stations in Luxembourg was assessed by

comparing it to its equivalent from the ERA-Interim dataset. Further-

more, using the GNSS-derived PP-DDP ZTD from a global network of

over 400 stations, the ZTD from the ERA-Interim model was validated

in different climate zones around the globe.

• The two GNSS data processing strategies, i.e. DDP and PPP, each of

which has its own strengths and weaknesses, were investigated. While

troposphere delay estimates from the DDP strategy are higher in ac-

curacy than from the PPP strategy, the latter is more efficient in the

computational burden and allows larger networks to be analyzed in

shorter time spans. In order to assess the usefulness of the PP-PPP

strategy for climate monitoring applications, a comparison of the ZTD

estimates obtained using the PP-DDP and PP-PPP strategies has been

performed and the variation of the differences in different climate zones

has been studied.

• Pressure and temperature values from various sources of meteorolog-

ical data available in Luxembourg were obtained and were used to

convert the ZTD to IWV. The obtained IWV estimates were then

compared to that derived from ERA-Interim model and based on the

comparison results, the most accurate source of pressure and temper-

ature data was identified.
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1.4 Thesis Structure

This thesis consists of 7 chapters. Starting from an introduction to the

research area and a review of the state-of-the-art, it states the objectives

of the research, background and the corresponding methodology used to

address these objectives. After the methodology, it introduces the data used

throughout the research and the results. In the end, the interpretation of

the results has been presented in form of conclusions and recommendations.

A brief introduction to each of the succeeding chapters has been presented

below.

Chapter 2 (Background) This chapter provides the background

knowledge that is essential to understand the content of this thesis. It

reviews the structure of the Earth’s atmosphere, the role and impor-

tance of atmospheric water vapour in weather and climate dynamics,

water vapour measurement techniques and some atmospheric physics.

Furthermore, it describes the working principles of GNSS and various

error sources that affect the GNSS observations. It also provides a

brief introduction to NWP.

Chapter 3 (Methodology) This chapter describes the methodol-

ogy that has been used to achieve the research objectives of this the-

sis. Firstly, it describes the RT, NRT and PP GNSS data processing

systems. Secondly, it describes the experiments that have been per-

formed using the RT, NRT and PP systems to answer the various re-

search questions along with the configurations and experimental setup

of these systems.

Chapter 4 (Data and Products) This chapter provides the details

about the sources and providers of various types of data and products

used for this research. Specifically, it describes the global and regional

ground-based GNSS networks from which the observation data has

been obtained and describes the networks of stations processed by the

RT, NRT and PP processing systems. It introduces the sources of the

GNSS products such as orbits and clocks that are used for processing

the observations. Furthermore, it introduces the sensor networks (in

Luxembourg) and models of meteorological data which have been used

to obtain various meteorological parameters.



Chapter 1. Introduction 14

Chapter 5 (Results) This chapter presents the results of various

experiments performed during this research. Along with the results, an

interpretation of these results in relevance with the respective research

objectives has been presented.

Chapter 6 (Potential for Luxembourg) Based on a detailed com-

parison the meteorological data sources in Luxembourg and the results

presented in Chapter 5, this chapter discusses the current potential of

GNSS meteorology and GNSS climatology for Luxembourg.

Chapter 7 (Conclusions and Suggestions for Future Work)

This chapter will summarize all the results and findings of the thesis

in the form of conclusions. Based on the findings of this thesis, it also

makes recommendations for future work.



Chapter 2

Background

And We have created above you seven heavens (skies) lying one

above the other.

Qur’an, 23:18

This chapter provides the background knowledge that is essential to un-

derstand the content of this thesis. It reviews the structure of the Earth’s

atmosphere, the role and importance of atmospheric water vapour in weather

and climate dynamics and water vapour measurement techniques. Further-

more, it introduces the GNSS data processing techniques and some error

sources that affect the GNSS observations. It also provides a brief introduc-

tion to NWP and climate reanalysis.

2.1 Earth’s Atmosphere

The Earth’s atmosphere is divided into various regions. The vertical struc-

ture of the atmosphere can be described in terms of the electromagnetic

properties as well as the variation in temperature with altitude in a certain

region. In terms of the temperature variation with altitude, the atmosphere

is divided into regions or layers namely troposphere, stratosphere, meso-

sphere, thermosphere and exosphere. If described in terms of the electro-

magnetic properties, the atmosphere can be divided into neutral and ionized

(or charged) parts. The term ”ionosphere” refers to the ionized part of the

atmosphere which consists of the thermosphere and a part of the exosphere.

The ionosphere is further divided into the E and F layers. Figure 2.1 shows

the vertical profile of the temperature as well as the electron density in

these layers of the Earth’s atmosphere (Taylor, 2005). The first-order effect

(≈ 99.9%) of the ionosphere can result in a propagation delay ranging up

to a few tens of meters and can be eliminated using the linear combination

of the measurements from two different carrier signals. This combination is

known as the ionosphere-free linear combination. However, even after us-

ing the ionosphere-free combination, there remains a smaller effect from the

15
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Figure 2.1: Vertical profile of temperature and electron density in various
layers of the Earth’s atmosphere (image source: Wikipedia)

higher-order terms (≈ 0.1%) of the ionospheric delay, especially during the

times of high solar activity (Hernandez-Pajares et al., 2007).

Although both the ionosphere and the troposphere have an influence on

the propagation of electromagnetic signals travelling through them, for the

subject of this thesis, the troposphere is of most relevance and importance.

Figure 2.1 shows the troposphere as the lowest layer of the Earth’s neu-

tral atmosphere which contains approximately 80% of the total mass of the

atmosphere and most of the weather phenomena take place in this layer.

Furthermore, most of the atmospheric water vapour is concentrated in the

troposphere. The temperature decrease rate with altitude is almost constant
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(≈ 6.5 oC/km) in the troposphere. The thickness of the troposphere varies

from 17 km at mid-latitudes to 9 km in the polar regions.

2.2 Weather and Climate

Weather is defined as the state of the atmosphere at a particular location and

instant of time. It is characterized as a combination of weather elements (e.g.

temperature, pressure, humidity, wind speed, wind direction) and weather

phenomena (e.g. fog, thunderstorms, tornadoes and hail) over short time

spans ranging from hours to days (Taylor 2005). Climate, on the other

hand, is defined as the average of weather conditions for a particular location

computed over long time spans ranging from months to centuries. Climate is

characterized using the various atmospheric variables (Taylor 2005). Some

important definitions related to climate are given in the following text.

A climate normal is a reference point which is used to compare the cur-

rent climatological conditions with those from the past as well as to predict

the future climate. According to the standards of the World Meteorologi-

cal Organization (WMO), a climate normal is computed by averaging the

atmospheric variables (e.g. temperature, precipitation, etc.) over a 30-year

period. WMO requires its member countries to compute the climate nor-

mals for their geographical regions every 30 years with decadal updates. As

of today, the most recent global WMO climate normal has been computed

for the period of 1961-1990.

The choice of 30-year long time interval for the computation of climate

normals is based on the fact that this interval is sufficiently long to filter

out various short-term interannual fluctuations and anomalies in the climate

(such as those caused by the El-Nino Southern Oscillation (Taylor 2005)),

but on the other hand, it is also sufficiently short so that it could be used

to reflect longer term (e.g. centuries) changes and trends in the climate

(Arguez and Vose 2011).

The term climate change refers to the long-term (many decades) contin-

uous change (increase or decrease) in the average of the weather conditions

(i.e. climate normals) globally or for a particular location. Climate change
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is a slow and gradual process and could occur as a change in magnitude of

an atmospheric variable (e.g. temperature) and/or a change in the intensity

and frequency of weather events like heavy precipitation, etc.

The term climate variability refers to the fluctuation of the climate around

the average of the weather conditions (i.e. climate normals) globally or for

a particular location. Climate variability is measured on various temporal

scales including annual, seasonal, monthly and daily scales.

The Intergovernmental Panel on Climate Change (IPCC) reports on the

statistical significance of the evidence of various changes in the climate avail-

able from the observations of the Earths atmosphere and surface. According

to the Fifth Assessment Report (AR5) of IPCC, there is a 66-100% proba-

bility that the number of heavy precipitation events (e.g. the events above

the 95th percentile of intensity) over land has increased in more regions

worldwide than it has decreased since 1950. The significance of the trends

in the number of extreme weather events has regional, sub-regional and/or

seasonal variations. However, the level of confidence for the obtained trends

for North America and Europe is the highest which reports a 66-100% prob-

ability of an increase in either the frequency or the intensity of extreme

weather events in these regions (Hartmann et al. 2013).

2.3 Atmospheric Water Vapour

The gaseous form of water present in the Earth’s atmosphere is known as

water vapour and plays a major role in short-term weather phenomena as

well as long-term climate change. For example, the intensity of the precipi-

tation is associated with the water vapour supply and hence it is important

to document and understand the distribution and dynamics of atmospheric

water vapour and their relationship with precipitation extremes. Kunkel

et al. (2013) observed significant increases in extreme precipitation event-

related atmospheric water vapour, and suggested that this increase could

have been the cause of intensified precipitation events. However, they note

that dynamical factors also have a strong influence on the intensity of pre-

cipitation events, but to be more certain of the magnitude of the influences

of both of these factors, the role of water vapour should be more thoroughly
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explored.

As compared to the other constituents of the lower atmosphere (dry air

gases), water vapour has a very high heat capacity which makes it a strong

absorber of infrared radiation (directly from Sun as well as reflected from the

Earth’s surface) and therefore it holds a significant impact on the Earth’s

heat budget. In the Earth’s hydrological cycle, evaporation from the land

and oceans continuously forms water vapour in the atmosphere whereas

precipitation continuously removes the condensed water vapor in order to

maintain a global balance. Almost 90% of the total atmospheric water

vapour is found in the troposphere and it has a very high temporal and

spatial variability when compared to the other constituents which are almost

chemically inactive.

2.3.1 Integrated Water Vapour

Atmospheric water vapour can be measured in terms of integrated water

vapour (IWV) which is the total quantity of atmospheric water vapour (in

units of kg/m2) present in a vertical column of the atmosphere. Alterna-

tively, it can also be meausered in terms of total precipitable water (TPW)

which is the height (in mm) of an atmospheric column of precipitable water.

Considering the density of liquid water, the IWV is equivalent to TPW i.e.

1 kg/m2 IWV = 1 mm TPW (2.1)

2.3.2 Distribution and Variability of Atmospheric Water Vapour

Water vapour contributes up to 4% of the total volume of the atmosphere

(depending on the geographical region) and its concentration varies globally

with space and time. Figures 2.2 and 2.3 depict, as an example, the global

distribution of the atmospheric water vapour concentration for the months

of January and July, respectively, in 2003 in terms of the monthly mean

of the TPW obtained from NASA’s Atmospheric Infrared Sounder (AIRS)

(Pidwirny 2013).

It can be seen from Figures 2.2 and 2.3 that for both months, water vapour

has the highest concentrations, i.e. 50-60 mm, near the equator. The lowest
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concentration of water vapour, i.e. 0-10 mm, on the other hand, can be seen

in the polar regions.

2.3.3 Measurement Techniques and Instruments

As of today, there exist many techniques and instruments which are used to

measure atmospheric water vapour. These include in situ (e.g. radiosonde),

ground-based (e.g. ground-based GNSS) and satellite-based (e.g. GNSS

radio occultation) techniques and instruments. Some of the measurement

techniques make use of the observed absorption and re-emission of energy

from water vapour in order to infer the quantity of IWV whereas some

estimate the IWV using the observed propagation delay in radio signals

caused by the refractivity of the atmosphere (Ning 2012). However, in this

section, only those techniques and instruments have been introduced which

have been used to measure the ZTD and/or IWV during this research.

Ground-based GNSS

Ground-based GNSS observations provide an opportunity to infer the amount

of IWV over the location of ground-based GNSS receiver by estimating the

propagation delay (ZTD) in the received signal on the way from a satellite to

the ground-based receiver. The carrier signals are the primary observables

for high-precision GNSS positioning and the ZTD can be estimated from

the carrier phase observable (Φ). This observable can be written as

Φ = ρ+ c(τsat − τrcv)−∆Liono + ∆Ltropo + λN + εΦ (2.2)

where ρ is the geometric distance between the satellite and the receiver

antenna in meters, c is the speed of light in vacuum in m/s, τsat,rcv are

the clock biases between satellite and receiver in seconds, ∆Liono is the

ionospheric delay in meters, ∆Ltropo is the tropospheric delay or the ZTD

in meters, λ is the wavelength in meters, N is the integer phase ambiguity

term (not to be confused with the refractivity N in Equation 2.3) and εΦ

are the unmodeled phase measurement errors in meters. The carrier phase

observable is the phase of the received carrier at the time of transmission

with respect to the phase generated by the local oscillator in the GNSS

receiver at the time of reception. The difference between the received carrier

and the receiver generated carrier is called the carrier beat phase. The



Chapter 2. Background 23

problem is that the GNSS receiver cannot distinguish one cycle of a carrier

from another. In practice, the receiver measures the fractional phase, and

keeps track of changes to the phase. Therefore, the initial phase remains

ambiguous by an integer number of cycles N.

GNSS observations from a collection of ground-based receivers, in com-

bination with auxiliary information (satellite and receiver positions, correc-

tions computed from models of geophysical processes) are processed using

various GNSS data processing software packages to obtain the ZTD esti-

mates. Once the ZTD is obtained, it can be converted into IWV using the

relations described in Section 2.3.4. One of the salient features of ground-

based GNSS as a measurement technique is its all-weather operational ca-

pability.

Radiosonde

A radiosonde is a collection of several meteorological sensors (e.g. temper-

ature, humidity, wind sensors, etc.) attached to a weather balloon which

can transmit the observed meteorological data to a ground station using a

radio link. To observe the vertical profile of the atmosphere, radiosondes

are launched two to four times a day. In order to estimate the IWV from

radiosonde observations, the vertical profile of the absolute humidity can be

integrated from the top most observation point to the ground. Radiosondes

are one of the most widely used meteorological instruments and radiosonde

observations are available globally for more than five decades. However, the

evolution of sensor technology has lead to sensor changes in the radiosondes

over the passage of time and this has compromised the long term stabil-

ity of radiosonde measurements for use in climate research (Titchner et al.

2009). Furthermore, radiosonde measurements have been found to have dif-

ferent bias characteristics during different points in time e.g. day and night

(Wang and Zhang 2009). The radiosonde data used for this research has

been described in Chapter 4.

Climate Reanalysis Datasets

Climate reanalysis datasets provide a description of climate on various spa-

tial scales in the form of long-term records of various atmospheric param-
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eters. These datasets are computed using numerical forecast models while

providing historical atmospheric observations as an input to the model in or-

der to improve the model’s knowledge of the initial state of the atmosphere.

The word ’reanalysis’ refers to the fact that these datasets are generated to

describe the state of the climate for time periods in the past. The parame-

ters provided by the climate reanalysis datasets include (but are not limited

to) precipitation, temperature, soil moisture, and pressure. Examples of

climate reanalysis datasets include the ECMWF ERA-Interim (Dee et al.

2011) and NCEP/NCAR Reanalysis 1 (Kalnay et al. 1996). The reanalysis

dataset used for this research has been described in Chapter 4.

2.3.4 Propagation Delay in the Troposphere

As it has been mentioned in the previous section that various measure-

ment instruments and techniques utilize the propagation delay experienced

by radio signals to estimate the atmospheric water vapour, this subsection

explains the relation between the propagation of the radio signal and the

composition of the troposphere.

The tropospheric propagation delay in the signal is dependent on the

refractivity N of the troposphere which can be expressed as (Thayer, 1974):

N = k1
Pd

T
Z−1
d + k2

Pv

T
Z−1
v + k3

Pv

T 2
Z−1
v (2.3)

where Pd,v are the partial pressures of dry and wet air constituents in hPa, T

is the temperature in K, Z−1
d,v are the inverse compressibility factors for dry

air and water vapour and k1,2,3 are experimentally determined coefficients

in K/hPa. The path followed by the signal in the troposphere is assumed

to be zenithal and therefore, the delay ∆L between a point at height h and

infinity is

∆L = 10−6

∫ ∞
h

N(h)dh (2.4)

where ∆L is known as zenith total delay (ZTD) in mm and can be expressed

as the sum of zenith hydrostatic delay (∆Lh or ZHD) and zenith wet delay

(∆Lw or ZWD) i.e.

ZTD = ∆L = ∆Lh + ∆Lw (2.5)
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∆Lh can be approximated by using surface pressure and location values in

the widely used Saastamoinen hydrostatic model (Saastamoinen, 1972) i.e.

ZHD = ∆Lh =
(2.2779± 0.0024)PS

1− 0.00266 cos(2ϕ)− 0.00028h
(2.6)

where PS is the surface pressure in hPa, ϕ is the latitude of the observing

point in degrees and h is the height of the observing point in km above the

ellipsoid.

Once the ZTD has been estimated by processing the observations, ZHD

is computed using Equation 2.6, and the ZWD can be obtained from

ZWD = ZTD − ZHD (2.7)

ZWD can then be combined with meteorological data i.e. pressure and

temperature to convert it to IWV (Bevis et al., 1992, Bevis et al., 1994).

To convert the ZWD into IWV , the following relation can be used i.e.

IWV ≈ κ∆Lw (2.8)

where
1

κ
= 10−6(

k3

Tm
+ k

′
2)Rv (2.9)

In Equation 2.9, Rv is the specific gas constant for water vapour and Tm

is the mean temperature of the vertical column of air above the point of

observation.

2.4 Tropospheric Mapping Functions

A ground-based GNSS receiver antenna can receive a signal from any ele-

vation above the horizon and therefore, the tropospheric delay information

needs to be mapped from a specific elevation into the zenith direction. For

this purpose, ”mapping functions” are used. A Mapping function defines

the ratio of the tropospheric delay experienced at a certain elevation angle

when compared to the one that would be experienced in the zenith direc-

tion. In order to take observations from satellites which are not in the zenith

direction but are at a certain elevation with respect to the surface of Earth,
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mapping functions are used to account for the variation in the delay in dif-

ferent directions. There are different mapping functions for the wet and

hydrostatic parts of the atmosphere but for low elevation angles, the same

mapping function can be used for both the wet and hydrostatic parts. A

simple example of a mapping function is

m(ε) =
1

sin ε
(2.10)

where ε is the elevation angle. Herring (1992) proposed a continued fraction

representation for mapping functions i.e.

m(ε) =
1 + a

1+ b
1+c

sin ε+ a
sin ε+ b

sin ε+c

(2.11)

In the above form of a mapping function, the coefficients a, b and c depend

on parameters like location of the station and the day of the year so that

the seasonal variation within the troposphere is accounted for. The value

of these coefficients can be derived from theoretical atmospheric models,

climate reanalysis datasets or local measurements of pressure and tempera-

ture.

Niell Mapping Function

The Niell Mapping Function (NMF) (Niell 1996) was developed in 1996 with

a purpose to calculate the ratios between the line of sight hydrostatic and

wet atmospheric path delays to their corresponding delays in the zenith di-

rection. This mapping function was developed to work for radio frequencies

and for calculations down to an angle of 3 degrees in elevation. The hydro-

static part of NMF is represented in the continued fraction form (Equation

2.11) and the value of the coefficients is dependent on the day of year, lati-

tude of the station and height of the station above mean sea level. The wet

part of NMF depends only on the station latitude. NMF was the standard

mapping function for space-geodetic techniques such as GNSS and VLBI

until the advent of more advanced mapping functions such as GMF and

VMF (discussed ahead).
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Isobaric Mapping Function

The Isobaric Mapping Function (IMF) (Niell, 2001) is an improvement to

the NMF and was proposed in 2001. This mapping function is based on

numerical weather models and its data is provided on a grid. Comparisons

have shown that the hydrostatic part of the IMF is an improvement on the

NMF but the wet part does not have any significant improvement.

Vienna Mapping Function

The Vienna Mapping Function (VMF) (Boehm and Schuh, 2004) was devel-

oped in 2004. The VMF has the underlying principle of raytracing through

the climate reanalysis dataset from the European Centre for Medium-Range

Weather Forecasts (ERA-40) and is a further development of IMF. The VMF

has been proved to be better than the Niell Mapping Function (NMF) e.g.

its hydrostatic part is sensitive to short fluctuations unlike the NMF.

The Vienna Mapping Function 1 (VMF1) (Boehm et al., 2008) is an

upgrade (in 2006) to the VMF in which, the b and c coefficients of the

continued fraction hydrostatic part are recalculated using the data from the

40 years reanalysis data of the European Centre for Medium-Range Weather

Forecasts (ECMWF ERA-40). Unlike the previous mapping functions, the

coefficient c is dependent on the day of year in VMF1 and is not symmetric

with respect to the equator. VMF and VMF1 are dependent on elevation

angles but not the azimuth. An azimuth-dependent version of VMF which is

called VMF-2 was determined by Boehm and Schuh (2004), however, VMF1

is the most accurate mapping function whose data is available for the whole

history of GPS observations (Boehm et al 2006). The VMF forms part of the

conventions of International Earth Rotation and Reference Systems Service

(IERS) known as IERS 2010.

Traditionally, mapping functions are divided into a hydrostatic and a

wet part. An alternate approach is the introduction of the ”total Vienna

mapping function” (VMF1-T) which uses the total refractivity instead of

hydrostatic and wet components to map the total delays. In the total map-

ping function approach, the ZTD is divided into an a priori value of ZTD

and a residual or correction of ZTD. In the classical approach of separat-
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ing the mapping functions into hydrostatic and wet parts, the errors in the

hydrostatic part cannot be compensated for completely by estimating the

remaining wet part due to the significant difference between the hydrostatic

and wet mapping functions. The advantage of the total mapping function

approach is that the ZTD cannot be affected by a poor a priori ZHD. How-

ever, in the total mapping function approach, the ZTD is affected by bad a

priori information about the wet part in the atmosphere from the numerical

weather models. More details about the benefits and limitations of VMF1-T

can be found in Boehm et al., (2006).

For use in real-time applications, a version of VMF1 called Forecast VMF1

(VMF1-FC) (Boehm et al., 2008) has also been developed by determining

the coefficients from the forecast data from ECMWF so that data can be

provided with a very short latency for use in real-time applications without

significant loss of accuracy. However, the real-time software packages used in

this study currently do not feature the VMF1 implementation and therefore

VMF1 has not been used for the real-time processing during this study.

An alternate implementation of the VMF1 has been produced at the Uni-

versity of New Brunswick, Canada (UNB) and is known as UNB-VMF1

(Urquhart et al., 2014). There are only two differences between the standard

VMF1 and the UNB-VMF1. The first difference is the use of a difference

raytracing algorithm to compute the mapping function coefficients and the

second difference is the use of a different NWP model as the source of atmo-

spheric data. The raytracing algorithm used for UNB-VMF1 is described

in Nievinski and Santos (2010) whereas the NWP model used as the data

source is the Re-Analysis I dataset produced by the National Centers for

Environmental Prediction (NCEP).

Global Mapping Function

The Global Mapping Function (GMF) (Boehm et al., 2006) was developed

in 2006. The GMF is based on the global numerical weather model from

ECMWF and its coefficients are calculated by expanding the VMF1 param-

eters into spherical harmonics on a global grid. The inputs to the GMF

are the station coordinates and the day of year. Experiments have shown

that GMF lacks short-term precision when compared to VMF1 but it sig-
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nificantly reduces the height biases and annual errors of NMF. Table 2.1

summarizes the above discussion by listing the main characters of the above

mentioned mapping functions.

As of today, GMF and VMF1 are widely employed. GMF follows the prin-

ciples of NMF and is therefore simpler in the implementation and requires

less computational time. The simplicity of implementation and requirement

of less computing time make NMF and GMF very highly suitable for RT

and NRT applications. VMF1, on the other hand, has a higher precision

and demands high computational time and resources. Therefore, VMF1 is

more suitable for post-processing applications.
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2.5 GNSS Data Processing

This section describes the GNSS data processing strategies used in this

research.

2.5.1 Precise Point Positioning

Precise Point Positioning (PPP) is a strategy to obtain highly accurate (cm

to mm level) position solutions using the observations from a single receiver

(Zumberge et al., 1997). In this strategy, high precision satellite orbits and

satellite clocks which are computed using a global network of ground-based

GNSS stations, are used to apply the error correction to the observations

in order to obtain precise coordinates and atmospheric parameters. Figure

2.4 shows the observation setup for PPP. It can be seen from Figure 2.4

that one single GNSS station is observing multiple satellites. PPP allows

the sensing of the atmosphere in an ’absolute’ sense as the PPP solutions

refer to one single station in a global reference frame.

Figure 2.4: Observational setup for the PPP processing strategy
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2.5.2 Double Differenced Positioning

Double Differenced Positioning (DDP) (Hofmann-Wellenhof et al., 2007)

is a strategy of determination of positions by processing the differenced

observations from a network of receivers. Specifically, the DDP observables

are formed by differencing the observations from two GNSS receivers that

are observing a similar pair of satellites. The DDP observation setup is

shown in Figure 2.5. The atmospheric solutions obtained using DDP are

’relative’ because of the differential observations between two stations and

therefore long baselines between the stations are needed in order to sense

the atmosphere in the absolute sense.

Figure 2.5: Observational setup for the DDP processing strategy

2.6 Numerical Weather Prediction

Numerical Weather Prediction (NWP) is a technique in which, a numerical

model representing the physics and dynamics of the atmosphere is used to

predict a latter state of the atmosphere using the initial state of the at-

mosphere. The initial state of the atmosphere is obtained by combining a
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previous forecast (”First Guess” or ”background”) with the more recent at-

mospheric observations (e.g. GNSS-derived ZTD) obtained through various

types of sensors. The process of combining the background with new obser-

vations is known as data assimilation and aims at improving the model state

and bringing it closer to the observations (assuming that the observations

reflect the reality). The step in which data assimilation is used to update

the background is referred to as ”analysis”. Figure 2.6 shows a high-level

flowchart of the NWP process.

The AROME 3D-VAR NWP model (Seity et al., 2011) is a limited area

model derived from the global NWP model ARPEGE (Courtier et al., 1991)

and is operational at Météo-France since December 2008.

The 3D-VAR data assimilation system used for AROME was developed

by adapting the 6-hourly 3D-VAR data assimilation system developed for

the limited area NWP model ALADIN (Bubnova et al. 1995), to the smaller

scales of AROME with a 3-hourly Rapid Update Cycle (RUC)(Brousseau

et al., 2011).

The AROME domain (shown in Figure 2.7) covers a significant part of

Western Europe. The horizontal resolution of the model is 2.5 km on a

Lambert projection with its centre at (46.4oN, 2.2oE) with 750 and 720

physical grid points in the eastwest and northsouth directions, respectively.

The domain is vertically divided into 60 layers. The centre of the uppermost

layer is located at the 1 hPa pressure level. The height of the lowest layer

centre is about 10 m above the ground.

The configuration of the AROME 3D-VAR NWP model used in this re-

search was adopted for operational applications in April 2010. More details

about AROME can be found in Chapter 3.
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Figure 2.6: Flowchart of the NWP process
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Figure 2.7: Map of the domain of the AROME model with the GPS stations
selected for this study



Chapter 3

Methodology

Measure what is measurable, and make measurable what is not so.

Galileo Galilei

This chapter describes the methodology that has been used to achieve

the research objectives of this thesis. Firstly, it describes the RT, NRT and

PP GNSS data processing systems. Secondly, it describes the experiments

that have been performed using these systems to answer the various research

questions along with the configurations and experimental setup of these

systems.

3.1 The GNSS Data Processing Systems

This section describes the operational structure of the various GNSS data

processing systems used for this research.

3.1.1 The RT GNSS Data Processing Systems

The real-time processing for a selection of GNSS stations and time peri-

ods was simultaneously performed using the BKG Ntrip Client (BNC), the

Precise Point Positioning with Integer and Zero-difference Ambiguity Res-

olution Demonstrator (PPP-Wizard), and the Tefnut application from the

G-Nut software library.

The BNC software, developed by the Bundesamt für Kartographie und

Geodäsie (BKG) (Weber and Mervart 2012), is capable of performing PPP

in RT (RT-PPP). For this study, version 2.7 of the BNC software has been

used to perform RT-PPP using RT streams of code plus phase observations,

the broadcast ephemeris and RT correction streams for satellite orbits and

clocks applied during the processing in BNC. Along with the precise position

estimates, the ZTD estimates can also be obtained as one of the outputs.

The component of BNC which performs PPP is called PPP Client and its

operational setup (inputs and outputs) is shown in Figure 3.1. For this study,

a sigma value, selected by experimenting, of 1x10−5 m/s was used to describe

36
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the expected variation of the ZTD as estimated by BNC2.7. The recent

study by Yuan et al. (2014) is also based on this software package, however,

they have modified it to implement some precise bias models such as ocean

tide loading, receiver antenna PCV and the computation of hydrostatic and

wet mapping functions from the Global Pressure and Temperature 2 (GPT2)

model (Lagler et al. 2013). The implementation of these models was beyond

the scope of this thesis.

Figure 3.1: Flowchart showing ZTD estimation based on BNC 2.7 PPP
Client

To promote their ambiguity fixing strategy, CNES developed the PPP-

Wizard and started to produce a RT product containing further correc-

tions for integer ambiguity resolution which can be used to fix ambigui-

ties in RT-PPP mode (Laurichesse 2011). However, similar to BNC2.7, the

PPP-Wizard was not developed with the particular application of RT GNSS

meteorology in mind. Figure 3.2 shows the operational setup (inputs and

outputs) of the PPP-Wizard for ZTD estimation.

Figure 3.3 shows the experimental setup of the RT processing at UL. The

BKG Professional Ntrip Caster software (http://www.alberding.eu/en/

monitoringBKG.html) was used to relay the RT data and product streams

to the three processing engines i.e. BNC2.7 and the two versions of the

PPP-Wizard in parallel.

The G-Nut software library (Václavovic et al. 2013) has been developed

at the Geodetic Observatory Pecny (GOP) since 2011 in order to support the

development of high-accuracy GNSS analysis. Several end-user applications
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Figure 3.2: Flowchart showing ZTD estimation based on PPP-Wizard

have been derived for meteorology and climatology (Tefnut), geodesy and

seismology (Geb) and GNSS quality checking (Anubis). In this study, the

G-Nut/Tefnut software has been used which is capable of estimating GNSS

tropospheric parameters in RT, NRT and post-processing modes (Douša and

Václavovic 2014).

All the above mentioned software packages use a Kalman filter (Kalman

1960). The configuration and characteristics of the software packages used

in this study are shown in Table 3.1. For the BNC2.7 and PPP-Wizard so-

lutions, the a-priori coordinates of the stations were computed by a 20-day

average of coordinates obtained using PPP with the Bernese GPS Software

5.0 (BSW50) (Dach et al. 2007). G-Nut/Tefnut does not need a-priori co-

ordinates; however, if precise station coordinates are available, they can

be introduced into the processing as a-priori values. In this campaign,

G-Nut/Tefnut was used without introducing a-priori coordinates. During

the RT data processing, BNC2.7 computed the receiver coordinates (un-

constrained) in every epoch whereas the version of PPP-Wizard used for

this study did not estimate the receiver coordinates, in order to reduce the

number of unknown parameters. Hence in the PPP-Wizard solution, the

coordinates were fixed to the values provided a-priori and the ZTD was es-

timated every 5 seconds. The G-Nut/Tefnut software applied simultaneous

coordinate and ZTD estimations. The former were tightly constrained to re-

main stable over time while the latter were constrained loosely to optimally

balance between stable and reliable tropospheric parameter estimates.
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The convergence time of the RT-PPP solutions (coordinates and ZTD) is

generally between 20 to 60 minutes depending among others on the quality of

the station data and satellite constellation if no precise a-priori coordinates

are provided. However, as mentioned above, for PPP-Wizard and BNC2.7,

the a-priori coordinates were provided and hence the convergence time was

not significant. For G-Nut/Tefnut, the results were filtered to include only

the epochs after the solutions have converged.

The software packages BNC2.7 and PPP-Wizard are meant for RT and

kinematic applications and therefore do not employ the most precise bias

models, e.g. receiver antenna PCV corrections, ocean tide loading and

higher-order ionospheric corrections. However, the G-Nut/Tefnut is meant

for tropospheric applications but it is still undergoing some developments

and lacks some precise bias models such as ocean tide loading.

3.1.2 The NRT GNSS Data Processing Systems

The hourly NRT GNSS data processing system has been obtained from the

University of Nottingham (Orliac et al. 2005, Orliac 2009) and adapted for

use in Luxembourg and the Greater Region. It is implemented as a sys-

tematic combination of various scripts and modules written using the Perl

(http://www.perl.org/) and Python (http://www.python.org/) program-

ming languages which are executed with hourly and daily intervals. Further-

more, Extensible Markup Language (XML) (http://www.w3.org/TR/REC-

xml/) has been used to define the data structures to store the required infor-

mation (station metadata and configuration parameters) for the data pro-

cessing, and various databases related to the processing system are updated

using MySQL (http://www.mysql.com/). The processing engine used in

the system is the Bernese GPS Software version 5.0 (BSW5.0) (Dach et al,

2007, 2009). Using the complete setup, the hourly NRT processing system

processes a network of ground-based GNSS stations every hour using the

DDP processing strategy. The processed NRT network is a Europe-wide

network with densification over Luxembourg and the Greater Region. The

network used by the hourly NRT processing system is described in the next

chapter (Section 4.2.1). In addition to the hourly NRT processing system,

a sub-hourly NRT processing system with a similar operational structure

and an update cycle of 15 minutes was also implemented using BSW5.0 and
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was used to process 15-minute RINEX files created from RT streams. How-

ever, due to the fact that the hourly NRT results are currently sufficient for

NWP applications, the sub-hourly system currently does not contribute to

any meteorological activities and therefore it has not been considered for

assessment in this research.

A high level flow chart depicting the operational structure of the hourly

and sub-hourly NRT processing systems is shown in Figure 3.4. The overall

operation of these systems is divided into four parts i.e. database man-

agement, data and products handling, processing and archiving. At the

beginning of each session, the database management part is executed in

which the databases containing information about available and required

hourly (HD in Figure 3.4) and sub-hourly (SD in Figure 3.4) data, available

and required products (OEDC, OEDCSH in Figure 3.4), and available and

required meteorological data (MET in Figure 3.4) are maintained. The data

and products handling part then downloads the required data and products

onto the local server. After the data and products handling, the processing

part is commenced which processes the downloaded raw data with BSW5.0

and converts the obtained ZTD to IWV. Finally, the archive part stores the

raw data, products and processing results on the local server in addition to

copying the final results to the server of E-GVAP.

The hourly NRT processing system is named as iGNSS (Orliac et al. 2005,

Orliac 2009). Figure 3.5 shows the flowchart of the hourly processing cycle

of iGNSS, providing the names of scripts (in the shaded region) that are

executed for various tasks, whereas Table 3.2 lists the scripts and modules

that are executed on a daily basis or at other time intervals. The Perl scripts

in the iGNSS make use of functions defined in the various Perl modules

written for iGNSS. Appendix C provides a brief description of the iGNSS

scripts and modules.

As mentioned earlier, iGNSS uses the DDP processing strategy to pro-

duce hourly solutions using BSW5.0. However, to compute the a-priori

coordinates of the stations in the network, PPP processing is conducted

for all the stations in the network once a day and a-priori coordinates are

computed as a running average of the station coordinates of the last 20
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Figure 3.4: Operational structure of the NRT processing systems at UL

days. Figure 3.6 shows the flow chart of the BSW5.0 based PPP process-

ing in iGNSS and shows the order in which the various sub-programs in

BSW5.0 are executed during this processing. Similarly, Figure 3.7 shows

the flow chart and BSW5.0 sub-programs execution sequence for the DDP

processing which takes place in iGNSS. For the description of the BSW5.0

sub-programs mentioned in Figures 3.6 and 3.7, the reader is referred to the

Bernese GPS Software 5.0 user manual (Dach et al., 2007).

The results from iGNSS are routinely provided to E-GVAP as test solution

UL01. Based on the E-GVAP solution name, iGNSS will be referred to as

UL01 in the following text. The processing characteristics of UL01 are shown
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Table 3.2: iGNSS Daily Scripts

Script / Module Name Time(s) of Execution (HH:MM)

genFilesDownloader.pm 05:00
11:00
17:00
23:00

iGNSS NRT COORD IGS08.pl 23:01
iGNSS ANT I08.pl 05:03

11:03
17:03
23:03

get newnrt.sta 23:20
iGNSS PPP EUREF IGS08ALI.pl 20:45
iGNSS PPP IGS08.pl 16:45
iGNSS PPP IRELAND IGS08ALI.pl 19:45
iGNSS PPP RGP IGS08ALI.pl 19:45
iGNSS PPP SPS IGS08ALI.pl 17:45
iGNSS PPP UK IGS08ALI.pl 18:45
iGNSS PPP WALCORS IGS08ALI.pl 21:45

in Table 3.3.

3.1.3 The PP GNSS Data Processing System

The PP GNSS data processing system used in this research is based on

the Bernese GNSS Software v 5.2 (BSW5.2) and is capable of processing

GNSS observations using both the PPP and DDP processing strategies.

Furthermore, it can be adapted to use various specific processing parameters

such as the orbit and clock products, and tropospheric mapping functions.

Figures 3.8 and 3.9 show the BSW5.2 sub-programs execution sequence for

the PPP and DDP processing, respectively, which takes place in the PP

GNSS data processing system. For the description of the BSW5.2 sub-

programs mentioned in Figures 3.8 and 3.9, the reader is referred to the

Bernese GNSS Software 5.2 user manual (Dach et al., 2015).

During this research, the PP system was used to obtain the following ZTD

datasets for the use in climate monitoring applications:

i. DDPULVMF: A 19-years long global dataset of GNSS-derived ZTD
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obtained using the DDP processing strategy and the VMF1 tropospheric

mapping function

ii. PPPULVMF: A 1-year long global dataset of GNSS-derived ZTD ob-

tained using the PPP processing strategy and the VMF1 tropospheric

mapping function

Table 3.4 shows the various processing characteristics used to obtain the

PP datasets.
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3.2 Experiments

This section describes the various experiments conducted in order to ad-

dress the research questions of this thesis. Figure 3.10 graphically lists the

experiments performed using each of the RT, NRT and PP systems.

3.2.1 RT-PPP ZTD for NWP Applications

An assessment of RT-PPP ZTD estimates obtained using the three RT-PPP

software packages described in Section 3.1.1 for the use in NWP applications

was conducted by comparing them to two different reference datasets. Based

on the results of this assessment, the best suitable RT GNSS data processing

software and products for Luxembourg were identified.

The network of GNSS stations selected for this experiment comprises 22

globally distributed IGS stations, which provide RT observation data. Fur-

ther details about the IGS network are provided in the next chapter (Section

4.1.1) and the relevant station information is also provided in the next chap-

ter. A dataset containing RT-PPP ZTD estimates for these stations and a

time-period of 31 days (2013-04-18 to 2013-05-18) was obtained using the

software packages listed in Section 3.1.1. Only GPS observations have been

used in this study. The characteristics of the RT product streams used for

this study are given in the next chapter in Section 4.4.1.

The first reference dataset used to compare the RT-PPP ZTD estimates

is the IGS final troposphere product (hereafter termed IGFT) generated

by the U.S. Naval Observatory (USNO) (Byram et al. 2011). The IGFT

is based on the final IGS orbit and clock products and contains the ZTD

estimates computed by processing 27-h observation window (sum of the 24-

h observations with 1.5-h observations from previous and next days) using

PPP with BSW5.0 at an output sampling interval of 5 min (Section 4.1.1).

The second reference dataset consists of the ZTD estimates derived from

the observations of radiosondes (RS) collocated with five selected GNSS

stations. The ZHD and the zenith wet delay (ZWD) at the RS locations have

been corrected for height differences (to the GNSS station height) with the

height correction on ZHD applied using the method described in Teke et al.
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(2011), and on ZWD using the method described in Gyori and Douša (2013)

(Appendix B). However, no correction has been applied for the horizontal

separation between the GNSS station and the collocated RS. Details about

the selection of radiosondes used for this study have been presented in the

next chapter. The ZTD from GNSS observations (for five selected stations)

has then been compared with the ZTD from the co-located RS.

The statistics for the comparisons have been computed using only the

common epochs in the respective datasets. Considering the noise level in

the RT-PPP ZTD estimates, it is argued that the statistics computed over

the one month should give a good indication of the quality (precision and

the stability of biases) of the estimates. However, it is also acknowledged

here that the seasonality of the IWV may have a small influence on the com-

parison between the GNSS-derived and RS-based ZTD (Park et al. 2012),

which cannot be seen using the one month period.

The results of this experiment are presented in Section 5.1 of this thesis

and are also published in Ahmed et al. 2014b.

3.2.2 NRT-DDP ZTD for NWP Applications

The NRT-DDP ZTD solution from the hourly NRT processing system, i.e.

the UL01 solution, is routinely submitted to E-GVAP as a test solution.

However, being a test solution, it is not used for operational NWP purposes

by the partner meteorological institutions of E-GVAP. Therefore, there was a

need to experimentally assimilate the UL01 ZTD estimates into the AROME

3D-VAR NWP model which is used as this research’s region of interest. This

section describes the methodology used to assess the impact of using GNSS-

derived NRT-DDP ZTD from ground-based stations in Luxembourg and

the surrounding areas on the quality of short-term weather forecasts issued

by the AROME 3D-VAR NWP model. It describes the AROME 3D-VAR

model and the experimental setup used to conduct the assessment. The

results of this experiment have been published in Mahfouf et al. 2015.

AROME 3D-VAR Data Assimilation Experiments

In order to assess the impact of assimilating the UL01 ZTD estimates in

the AROME 3D-VAR NWP model, a NRT ZTD dataset was provided to
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Météo-France to carry the assimilation experiments. During these experi-

ments, the UL01 ZTD solution was assimilated in AROME in addition to

the ZTD solutions from other analysis centers that are operationally assim-

ilated through E-GVAP. Before carrying out the assimilation experiments,

the ZTD datasets were quality checked. After the quality control, the as-

similation was performed and a number of forecasts for past time periods

were regenerated. The quality of these forecasts was then studied through

comparisons with the observations. The following text describes the ZTD

datasets and the approach used while carrying the experiments.

NRT-DDP ZTD Dataset

Two NRT-DDP ZTD datasets, containing the ZTD estimates for a period

of approximately one month (July 17-August 20, 2013), have been used for

the assimilation experiments.

The first one is the operational dataset which is routinely provided to the

meteorological institutions by E-GVAP and contains the ZTD estimated by

16 different analysis centers across Europe. The ZTD sampling interval in

the E-GVAP solutions varies from 5 to 60 minutes but most of the analysis

centers provide the ZTD with the sampling interval of 15 minutes. Collec-

tively, the dataset from E-GVAP provides the ZTD data from about 700

ground-based GNSS stations which are distributed all over the AROME do-

main. This NRT ZTD dataset will be referred to as ”E-GVAP dataset” in

the following text.

The second dataset used for assimilation is the UL01 ZTD dataset (de-

scribed in Sections 3.1.2 and 4.2.1) which is currently being monitored by

E-GVAP but not being distributed for operational purposes yet. UL01 pro-

vides ZTD estimates from about 200 stations in its hourly solutions with

a ZTD sampling interval of 15 minutes. The UL01 solution contains ZTD

from 29 new stations located in Belgium (WALCORS) and Luxembourg

(SPSLux), and about 191 existing stations which are already processed by

other analysis centers. The a priori coordinates used during the ZTD estima-

tion in UL01 are computed by averaging the past 20-days PPP coordinates

for each station. The station and antenna related information is updated on
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a daily basis. This NRT ZTD dataset will be referred to as ”UL01 dataset”

in the following text.

It is important to note that in many cases, one GNSS station is processed

by several analysis centers. Therefore, the term ”station-center pair” will be

used at some places in the following text which means the ZTD observations

from a GNSS station provided by a certain analysis center. For example, if

the GNSS station named ”LIL2” is processed by the analysis centers UL01

and SGN1, then ”LIL2-UL01” and ”LIL2-SGN1” will be called as station-

center pairs. During the pre-processing phase (which is described next), the

ZTD estimates from the best station-center pair are selected for assimila-

tion for a particular assimilation cycle i.e. the observations from the best

available solution for a particular station are selected.

Pre-Processing and the White List

During the pre-processing stage, the available datasets of ZTD are checked

for quality by examining the statistical behaviour of the differences between

the GNSS-derived ZTD estimates and the model equivalent ZTD, namely

the ”background departures” or ”Observed minus Background (O−B)”. In

AROME, the model equivalent ZTD is computed from the 3-hour AROME

forecast fields of surface pressure, temperature and specific humidity using

the following observation operator:

ZTD = 10−6

∫ ztop

0

(
k1
p

T
+ k3

e

T 2

)
dz (3.1)

where p is the pressure, T the temperature, e the water vapour pressure,

k1 = 0.776 Pa−1K, k3 = 3730 Pa−1K2, and ztop represents the highest

vertical level of the model’s domain. If the contribution of the ZTD above

the model top ztop is not accounted for in the ZTD observation operator, it

could lead to a systematic underestimation of ZTD of about 2.3 mm. In this

study, the contribution of the ZTD above ztop has been accounted for in the

bias correction stage using the strategy described in Mahfouf et al (2015).

After pre-processing, the station-center pairs which have a good quality

are entered into a ”white list” of the station-center pairs that can potentially

be assimilated. Station-center pairs with biases that are too large (larger
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than 30 mm) are not selected to enter the ”white list”. Any station-center

pair that is not present in the ”white list” cannot be assimilated. However,

before any station-center pair present in the ”white list” can be assimilated,

it has to undergo several further quality controls. Further information about

the AROME ”white lists” can be found in Poli et al. (2007) and Yan et al.

(2009a, 2009b).

The ZTD estimates from both the datasets were monitored for quality by

the pre-processing stage described above and a ”white list” was created.

Bias Correction and Final Selection

After the creation of the ”white list”, a spatial thinning is done to ensure

that the distance between two stations is no less than 10 km. The obser-

vation error is set to 12 mm for all E-GVAP stations. For UL01, this error

has been assigned for each station based on the standard deviation of back-

ground departures and assuming a model background error of 6 mm, leading

to actual values for individual stations ranging between 10 and 15 mm. The

mean value of background departure statistics is used to provide a constant

bias correction (accounting mostly for the difference in altitude between the

model and the station and for the atmospheric contribution to ZTD above

ztop) that is applied to each station-center pair before assimilation. The

time series of background departures have been computed over the 1-month

assimilation period performed in this study for the UL01 ZTD observations

whereas the statistics for E-GVAP ZTD observations correspond to the pe-

riod of April 2013. It has been checked that the biases computed over the

two different periods are very similar (not shown). During the assimila-

tion, for a given station, the processing centre is chosen on the basis of its

availability and by comparing the background departure statistics, instead

of being selected a-priori in the white list. For each 3-hourly analysis, when

several observations are available for a given station-centre pair, the GPS

observation closest to the analysis time and within ± 1.5 hours around the

analysis time is selected. Like other observations assimilated in the AROME

3D-VAR, ZTD data are subject to a First-Guess Quality Control check that

rejects data too far from the model background. This check is based on

background and observation errors with a threshold value of 3.5. In prac-

tice, it means that ZTD values leading to background departures (O−B)
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larger than 40 mm are systematically rejected, accounting for too-large mis-

matches between model and station altitudes.

Data Assimilation

Three AROME assimilation experiments have been conducted in order to

investigate the impact of the assimilation of GPS ZTD observations with the

most recent version of the 3D-VAR system and also to evaluate the impact

of additional ZTD data provided by the UL01 dataset. Each of the three

experiments are described below:

i. NOGPS: In this experiment, all the observations from the operational

AROME 3D-VAR since July 2, 2013 were assimilated but all the GNSS-

derived ZTD observations were excluded from assimilation.

ii. EGVAP: In this experiment, the GNSS-derived ZTD observations from

the EGVAP dataset were assimilated in addition to those assimilated

in the NOGPS experiment.

iii. UL01: In this experiment, the GNSS-derived ZTD observations from

both the EGVAP and UL01 datasets were assimilated in addition to

those assimilated in the NOGPS experiment.

The three assimilation experiments started at 0300 UTC on July 18,

2013 from the AROME operational analysis and ended at 2100 UTC on

August 20, 2013. Short-range forecasts were run every 3 hours to provide

the background of the next analysis and once a day at 0300 UTC a 30 hours

forecast run was launched. The experimental setup is summarized in Table

3.5.

Table 3.5: AROME 3D-VAR data assimilation experiments

Experiment Name: NOGPS EGVAP UL01

GNSS ZTD Assimilated No Yes Yes
GNSS Networks Used
for ZTD Assimilation

- E-GVAP Opera-
tional Solutions
only

E-GVAP Opera-
tional Solutions

UL01 Test Solu-
tion



Chapter 3. Methodology 60

The experiment without the assimilation of GNSS-derived ZTD observa-

tions was performed with the intention that its output can be compared

to the experiments in which GNSS-derived ZTD assimilation was used and

an impact assessment of this assimilation on the AROME model can be

performed. The two experiments with the GNSS-derived ZTD assimilation

were performed for studying the impact of assimilating the ZTD estimates

from the UL01 solution in addition to the operational EGVAP ZTD solu-

tions. From the output of these three experiments, various parameters were

extracted and statistics for the comparisons between those were calculated.

The impact assessment was carried out in two parts, i.e. studying the impact

on the model analysis and studying the impact on model forecasts.

The results of this experiment are presented in Section 5.2 of this thesis

and are also published in Mahfouf et al. (2015).

3.2.3 NRT-DDP IWV for Storm Tracking

This section describes a comparison of the two-dimensional (2D) NRT-DDP

IWV fields obtained from the UL01 system with the images of clouds and

precipitation obtained from satellite and weather radar respectively for a

precipitation event that occurred in Luxembourg.

To generate these 2D NRT-DDP IWV maps in the UL01 system, IWV is

first estimated over all the individual stations and then using Generic Map-

ping Tools (GMT) (Wessel et al. 1998), a grid with a resolution of 15 minutes

is computed by block averaging followed by an adjustable tension continu-

ous curvature surface gridding algorithm (Smith et al., 1990). Therefore the

density of the network of GNSS stations has an influence on the quality of

these maps. It must be noted that the systems do not automatically detect

and remove outlying IWV estimates.

During 22-23 February 2012, a warm front (i.e. a warm air-mass moving

towards a cold air-mass) moved over northern France, Belgium and Ger-

many. This front was associated with a low-pressure system situated over

southern Scandinavia. Cloud formation and stratiform precipitation was

caused by riding of warm air-mass over the cold air-mass and a light rainfall

at 0400UTC was observed in Luxembourg. For this event, the 2D NRT-DDP
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IWV fields obtained by the UL01 system were compared to the precipita-

tion and cloud images obtained from the weather radar (www.meteox.de)

and satellite.

The output of the UL01 system has a sampling interval of 15 minutes and

hence the 2D NRT-DDP IWV maps are generated for every 15th minute.

This makes it possible to graphically observe the changes in the amount

of IWV and compare these changes with the weather processes. Such an

example has been presented by showing the 2D NRT-DDP IWV maps ob-

tained by UL01 for a time period of 15 hours with intervals of 3 hours during

the passage of the above mentioned warm front over Luxembourg and the

Greater Region. Furthermore, the time series of IWV over the six GNSS sta-

tions in Luxembourg for the same event has been presented and the changes

in the IWV associated with the passage of the front has been studied.

The results of this experiment are presented in Section 5.3 of this thesis

and are also published in Ahmed et al. 2012.

3.2.4 Validation of ERA-Interim Climate Reanalysis Dataset

This section describes the experiment performed to conduct a validation of

the ZTD estimates derived from the ERA-Interim climate reanalysis model

(Dee et al. 2011) using GNSS-derived ZTD estimates from the DDPULVMF

PP-DDP solution.

ERA-Interim reanalysis does not make use of ground-based GNSS-derived

ZTD observations for data assimilation. The objective of this experiment

is to investigate the agreement between the ZTD estimates derived using

ground-based GNSS and ERA-Interim in different geographical areas clas-

sified by their climate types. The classification of climate types used here

is the one given by Peel et al. (2007) as an updated version of the Köppen-

Geiger climate classification that consists of 30 climate types. The 30 climate

types are further grouped into 5 groups i.e. tropical, arid, temperate, cold,

and polar. The symbols denoting these climate types, their description and

their association to the climate group are shown in Table 3.6. In the follow-

ing text, the term ”climate zone” will refer to a geographical area associated

with a certain climate type.
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Table 3.6: Climate Type Classification

Climate Type Symbol Description Group

Af Tropical - Rainforest

Tropical
Am Tropical - Monsoon
As Tropical - Dry Summer
Aw Tropical - Savannah

BSh Arid - Steppe - Hot

Arid
BSk Arid - Steppe - Cold
BWh Arid - Desert - Hot
BWk Arid - Desert - Cold

Cfa Temperate - Without dry season - Hot
Summer

Temperate

Cfb Temperate - Without dry season -
Warm Summer

Cfc Temperate - Without dry season - Cold
Summer

Csa Temperate - Dry Summer - Hot Sum-
mer

Csb Temperate - Dry Summer - Warm
Summer

Csc Temperate - Dry Summer - Cold Sum-
mer

Cwa Temperate - Dry Winter - Hot Summer
Cwb Temperate - Dry Winter - Warm Sum-

mer
Cwc Temperate - Dry Winter - Cold Sum-

mer

Dfa Cold - Without dry season - Hot Sum-
mer

Cold

Dfb Cold - Without dry season - Warm
Summer

Dfc Cold - Without dry season - Cold Sum-
mer

Dfd Cold - Without dry season - Very Cold
Winter

Dsa Cold - Dry Summer - Hot Summer
Dsb Cold - Dry Summer - Warm Summer
Dsc Cold - Dry Summer - Cold Summer
Dwa Cold - Dry Winter - Hot Summer
Dwb Cold - Dry Winter - Warm Summer
Dwc Cold - Dry Winter - Cold Summer
Dwd Cold - Dry Winter - Very Cold Winter

EF Polar - Frost
Polar

ET Polar - Tundra
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The global ground-based GNSS network processed to obtain the DDPUL-

VMF solution contains over 400 stations and these stations are situated in

25 of the 30 climate zones listed in Table 3.6. The distribution of GNSS sta-

tions included in this experiment is shown in the next chapter (Section 4.2.2).

along with the classification of GNSS stations with respect to the various

climate zones. The ERA-Interim ZTD at the locations of the ground-based

GNSS stations for a 5-year period (2010 to 2014 inclusive) has been obtained

using the online service of the Geodetic Observatory Pecny (GOP), called

”GOP - TropDB - TropModel” (http://www.pecny.cz/gop/index.php/

gop-tropdb/tropo-model-service). The GNSS-derived ZTD has been

used as reference and the difference between the GNSS and ERA-Interim

ZTD has been computed with the resolution of 6-hours for the 5-year period

mentioned above.

The results of this experiment are presented in Section 5.4 in form of

statistics and plots.

3.2.5 PP-DDP ZTD for Climate Monitoring

This section describes the methodology used to study the variability in

the climate for the various climate zones showed in Table 3.6 for different

timescales using the PP-DDP GNSS-derived ZTD dataset (DDPULVMF).

The network of ground-based GNSS stations processed to obtain the PP

datasets has been described in the next chapter in Section 4.2.2. From

the global network, stations have been divided into the geographical areas

associated with various climate types listed in Table 3.6 in order to conduct

the studies for each type of climate.

Variability in the ZTD

In order to study the annual and seasonal variability in ZTD in different cli-

mate zones, the fully available ZTD estimates from the DDULVMF dataset

for the GNSS stations in every climate zone have been used. Station-wise

monthly and seasonal means were computed for all the available GNSS sta-

tions and then the means for the stations in each climate zone were averaged.
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Luxembourg has a network of 6 ground-based GNSS stations namely the

SPSLux network (described in next chapter in Section 4.1.5) which is in

operation since late 2006. Therefore, at the time of this research, observation

data from SPSLux was available for a timespan slightly above 8 years. Even

though the timespan of 8 years is not yet sufficient for climate monitoring

applications, climate variability analysis has been performed for SPSLux

also in order to assess its potential for regional climate studies in the future.

The results of this experiment are presented in Section 5.5 of this thesis.

3.2.6 Comparison of PP-PPP and PP-DDP ZTD Estimates

The DDP processing strategy is generally considered more accurate than

the PPP strategy. However, PPP is computationally more efficient than

DDP network solutions and requires less resources for processing large amounts

of data and it is of interest to study the suitability of the PPP strategy for

climate monitoring applications.

To study the suitability of the PP-PPP strategy for climate monitoring

applications, a comparison of the ZTD estimates derived using the PP-

DDP and PP-PPP strategies has been conducted for 114 globally distributed

stations and the year 2001. It has been studied that how the difference

between DDP and PPP ZTD estimates vary in different climate zones listed

in Table 3.6. Correlation and other statistics have been computed for these

differences.

The results of this experiment are presented in Section 5.6 of this thesis.

3.2.7 Assessment of Meteorological Data

As discussed in the previous chapter, surface pressure and temperature are

needed in order to obtain IWV or TPW from GNSS-derived ZTD. Therefore,

it is of interest to assess the quality of the available sources of temperature

and pressure values.

For the location of the ground-based GNSS stations in Luxembourg, there

are various sources for obtaining the pressure and temperature values which
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are described in the next chapter in Section 4.5. The quality of each of these

sources have been assessed by:

i. Comparing the pressure and temperature values from each of the sources

to those obtained from the ERA-Interim climate reanalysis dataset

ii. Converting the GNSS-derived ZTD to IWV using the pressure and tem-

perature values from each of the sources and then comparing this IWV

to that obtained from the ERA-Interim climate reanalysis dataset

The results of this experiment are not combined with Chapter 5 but are

presented separately in Chapter 6 while discussing the potential of GNSS

meteorology for Luxembourg.



Chapter 4

Data and Products

Data is a precious thing and will last longer than the systems

themselves.

Tim Berners-Lee

This chapter provides details about the sources and providers of various

types of data and products used for this research. Specifically, it describes

the global and regional ground-based GNSS networks from which the ob-

servation data have been obtained and processed by the RT, NRT and PP

processing systems. It introduces the sources of the GNSS products such

as orbits and clocks that are used for processing the observations. Further-

more, it introduces the sensor networks and models of meteorological data

which have been used to obtain various meteorological parameters.

4.1 Sources of Ground-based GNSS Observations

In order to obtain the ground-based GNSS observations, stations from var-

ious networks (global, regional and national) have been used. Each of these

networks are introduced below.

4.1.1 International GNSS Service

The International GNSS Service (IGS) (Dow et al., 2009) is a non-profit

consortium that has established, through the collaboration of its members,

a global network of over 400 permanent and continuously operating groun-

based GNSS stations with the goal of freely providing high quality GNSS

data and products for various research areas. Figure 4.1 shows the complete

IGS network of ground-based GNSS stations at the time of writing this

thesis. The IGS network contains stations that provide data on RT, hourly

as well as daily time scales. With the first available observations from 1994,

the IGS network continues to expand and densify to date.

A subset of the complete IGS network is used for defining a reference

frame to be used as a basis for the products computed by the IGS. To define

66
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Figure 4.1: The IGS ground-based GNSS network [image source:
http://www.igs.org, accessed February 1, 2015]

such a reference frame, the IGS uses its realization of the latest version of the

International Terrestrial Reference Frame (ITRF) (Altamimi et al., 2012).

IGb08 (Rebischung et al., 2012) is the current reference frame used by the

IGS to compute its products and is derived from the ITRF2008 reference

frame. The network used to define the IGb08 reference frame consists of over

230 IGS stations. Considering the heterogeneous distribution of stations in

the IGb08 network, a subset of the IGb08 network namely the IGb08 core

network with a uniform global distribution of IGS stations is selected for

use in aligning global reference frames. More information about the IGS

network can be obtained at http://www.igs.org/.

The RT transfer of GNSS data is carried out in the formats specified

by the Special Committee 104 (SC104) of the Radio Technical Commission

for Maritime Services (RTCM) (http://www.rtcm.org/) using the Network

Transport of RTCM via Internet Protocol (NTRIP) (Weber et al. 2006).

Since December 2012, the Real-Time Service (RTS) of the IGS (Dow et

al. 2009; Caissy et al. 2012) is making ground-based GNSS observations

from the RT stations in its network officially available to the GNSS com-

munity. The IGS together with RTCM-SC104 have defined a format for the

dissemination of observation data in RT which is called RTCM-3.
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Figure 4.2: The EPN ground-based GNSS network [image source:
http://www.epncb.oma.be]

4.1.2 EUREF Permanent Network

The Reference Frame Sub Commission for Europe (EUREF) (Bruyninx et

al., 2008) has established a permanent network of ground-based GNSS sta-

tions in Europe which is known as EUREF Permanent Network (EPN). Fig-

ure 4.2 shows the station distribution of the ground-based GNSS stations

in the EPN. The EPN contains stations that provide data on RT, hourly as

well as daily time scales. Some of the stations in EPN also belong to the

IGS network. More information about the EPN network can be obtained at

http://www.epncb.oma.be/.

4.1.3 Réseau GNSS Permanent

The Institut National de L’information Géographique et Forestire (IGN)

[English: National Institute of Geographic and Forestry Information] of

France has established a permanent network of ground-based GNSS stations
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Figure 4.3: The RGP ground-based GNSS network [image source:
http://rgp.ign.fr/]

in France which is known as Réseau GNSS Permanent (RGP) [English: Per-

manent GNSS Network]. The RGP network contains stations that provide

data on RT, hourly as well as daily time scales. Some of the stations in

RGP also belong to the IGS and EPN networks. A map of RGP stations

is shown in Figure 4.3. More information about the RGP network can be

obtained at http://rgp.ign.fr/.

4.1.4 British Isles continuous GNSS Facility

The British Isles continuous GNSS Facility (BIGF) (http://www.bigf.

ac.uk) is a facility funded by the Natural Environment Research Council

(NERC), United Kingdom to support the research community by provid-

ing quality controlled archived observation data from various ground-based

GNSS networks in the United Kingdom and Ireland. In this research, the
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Figure 4.4: The BIGF ground-based GNSS network [image source:
http://bigf.ac.uk/]

BIGF data archive has been used to obtain the observation data from the

GNSS networks of Ordnance Survey of the Great Britain (OSGB), Ord-

nance Survey of Ireland (OSi) and the NERC Space Geodesy Facility (NERC

SGF). In total, the BIGF archive holds data for about 160 stations and few

of these are also a part of the EUREF and IGS networks. A map of RGP

stations is shown in Figure 4.4. More information about the BIGF network

can be obtained at http://www.bigf.ac.uk/.

4.1.5 Satellite Positioning Service Luxembourg

The Administration du Cadastre et de la Topographie (ACT) [English:

The Administration of Cadastre and Topography] of Luxembourg has es-

tablished a network of six ground-based GNSS stations in Luxembourg in

order to commercially provide Network Real-Time Kinematic (NRTK) po-
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sitioning services. This NRTK service is known as Satellite Positioning

Service Luxembourg (SPSLux) and the GNSS network is referred to as the

SPSLux network (http://www.act.public.lu/fr/gps-reseaux/spslux/

index.html). All the SPSLux stations are capable to provide observation

data on RT, hourly and daily time scales. Figure 4.5 shows the SPSLux net-

work of ground-based GNSS stations and Table 4.1 provides the locations

and heights of these stations. Unlike some EPN and RGP stations, none of

the SPSLux stations belongs to any other network. The observation data

from SPSLux is available since late 2006.

In addition to pointing the locations of the six GNSS stations (shown as

gray pillars with red hats), Figure 4.5 also describes the infrastructure of

the SPSLux network. It can be seen that five of the six stations are main-

tained by CREOS Luxembourg S.A. (http://www.creos-net.lu/) which is

a company that owns and operates electricity and natural gas networks. One

of the six stations (Walferdange) is maintained by European Center for Geo-

dynamics and Seismology (ECGS), Luxembourg (http://www.ecgs.lu/).

The data from these six stations is transmitted to the Centre des technologies

de l’information de l’Etat (CTIE) [English: Centre for Information Technol-

ogy of the State], Luxembourg (http://www.ctie.public.lu) which fur-

ther transfers it to ACT. ACT disseminates the observation and correction

data to the NRTK users through a General Packet Radio Service (GPRS)

link and to other types of users through the File Transfer Protocol (FTP)

and NTRIP. More information about the SPSLux network can be obtained

at http://www.act.public.lu/fr/gps-reseaux/spslux/index.html.

4.1.6 Wallonian network of Continuously Operating Refer-

ence Stations

The Service Public de Wallonie (SPW) [English: Public Service of Wallonie]

of Belgium has established a network of 23 ground-based GNSS continu-

ously operating reference stations (CORS) in the Wallonian region of Bel-

gium. This network is called WALCORS (http://gnss.wallonie.be) and

is used to commercially provide NRTK positioning services. All the WAL-

CORS stations are capable to provide observation data on RT, hourly and

daily time scales. Figure 4.6 shows the station distribution of the WAL-

CORS network and Table 4.2 provides the locations and heights of the
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Figure 4.5: The SPSLux ground-based GNSS network [image source:
http://www.act.public.lu/fr/gps-reseaux/spslux/index.html]
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Figure 4.6: The WALCORS ground-based GNSS network [image source:
http://gnss.wallonie.be]

WALCORS stations. Unlike some EPN and RGP stations, none of the

WALCORS stations belongs to any other network. More information about

the WALCORS network can be obtained at http://gnss.wallonie.be/.
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4.2 Selected GNSS Networks

This section describes the selection of ground-based GNSS stations on vari-

ous spatial scales that was used by the different processing systems in this

research.

4.2.1 RT and NRT Networks

The operational RT and NRT processing systems process the observations

from ground-based GNSS stations inside Europe. The network of GNSS

stations (Figure 4.7) used for these systems has been selected with the aim

of achieving good spatial coverage of Europe with a focus on Luxembourg

and the Greater Region. Out of the networks introduced in the previous sec-

tion, the complete networks of SPSLux and WALCORS were used whereas

selected stations were used from the remaining networks. In Figure 4.7, the

triangles represent the GNSS stations providing hourly data and circles rep-

resent those providing the data as RT streams. The hourly NRT processing

system processes data from the stations that either provide RT streams or

hourly data. On the other hand, the sub-hourly NRT and the RT process-

ing systems only process data from RT stations. Table 4.3 shows the list of

the GNSS networks used for various regions (Figure 4.7). A list of all the

stations in the RT and NRT networks has been provided in Appendix A.

Table 4.3: GNSS data providers

Network Region

SPSLux (red) Luxembourg
WALCORS (orange) Wallonie (Belgium)
RGP (gray) France
OSGB+OSi+NERC-SGF (yellow) UK
EPN (blue) Europe
IGS (black) Global

Although the operational RT processing system process data from a Eu-

ropean network, a global network of 22 RT stations from the IGS RTS was

used in order to assess the suitability of RT-PPP ZTD estimates for NWP

applications. Figure 4.8 shows this network and Table 4.4 provides antenna

related characteristics of the stations in this network.
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Figure 4.8: The global ground-based GNSS networks used for the assessment
of RT-PPP ZTD estimates for NWP applications

4.2.2 PP Network

The ground-based GNSS network used for the PP processing system com-

prises of over 400 globally distributed stations (Figure 4.9) from all the above

mentioned providers except WALCORS. The WALCORS network was not

included in the PP network due to the very short availability of its observa-

tion data i.e. starting from 2012. Figure 4.9 also shows the divisions of the

stations (in different colours) according to the climate types described in the

previous chapter (Table 3.6) used to study the regional climate variability

in the regions of different climate types. Furthermore, symbols in Figure

4.9 represent groups of climate zones i.e. tropical (triangles), arid (circles),

temperate (squares), cold (stars) and polar (diamonds). The evolution of

the number of stations processed by the PP processing system with time is

shown in Figure 4.10 whereas Figure 4.11 shows a histogram of the lengths

of available ZTD time series.A list of all the stations in the PP network has

been provided in Appendix A.
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Figure 4.10: The number of processed stations by the PP processing system

Figure 4.11: Histogram of the length of available ZTD time series
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4.3 Sources of GNSS Products

In order to process the ground-based GNSS observations for different ap-

plications in this research, the required GNSS products such as orbits and

clocks have been obtained from various providers. The following subsections

will introduce these providers.

4.3.1 International GNSS Service

Other than providing the observation data, the IGS uses its network to

compute various products that are required for processing the GNSS ob-

servations. These products include orbits, clocks and atmospheric products

and are computed with various accuracy levels and latencies. After their

computation, these products are disseminated to the research community.

Table 4.5 lists some of the available GNSS products from the IGS along with

their latencies and accuracies.

The IGS RTS also disseminates GNSS products in RT using NTRIP.

These products include the broadcast ephemeris and the orbit and clock

corrections. The transmission of GNSS products is carried out in a format

specified by the SC104 of RTCM which is called the RTCM-SSR format

where SSR stands for State Space Representation (Wübbena 2005). The

RTCM-SSR RT streams are composed of various types of messages. Some

of the RTCM-SSR message types are listed in Table 4.6 along with their

description.

The IGS also provides tropospheric and ionospheric products with differ-

ent latencies and accuracy levels. The characteristics of the IGS troposphere

products are shown in Table 4.7.

4.3.2 Center for Orbit Determination in Europe

The Center for Orbit Determination in Europe (CODE) is a consortium

of various institutions in Switzerland and Germany, managed by the As-

tronomical Institute of the University of Bern (AIUB), Switzerland which

collectively acts as an analysis center for the IGS and along with other prod-

ucts, provides the orbit and clock products. More information about CODE

can be found at http://www.aiub.unibe.ch/.
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Table 4.6: Description of various RTCM v3 message types
(http://igs.bkg.bund.de/ntrip/orbits)

RTCM-SSR mes-
sage type

Content

1019 GPS Broadcast Ephemeris
1020 GLONASS Broadcast Ephemeris
1045 Galileo Broadcast Ephemeris
1057 GPS Orbit corrections to Broadcast Ephemeris
1058 GPS Clock corrections to Broadcast Ephemeris
1059 GPS Code biases
1060 Combined Orbit and Clock corrections to GPS

Broadcast Ephemeris
1061 GPS User Range Accuracy
1062 High-rate GPS clock corrections to Broadcast

Ephemeris
1063 GLONASS orbit corrections to Broadcast

Ephemeris
1064 GLONASS clock corrections to Broadcast

Ephemeris
1065 GLONASS code biases
1066 Combined orbit and clock corrections to

GLONASS Broadcast Ephemeris
1067 GLONASS User Range Accuracy
1068 High-rate GLONASS clock corrections to

Broadcast Ephemeris

Table 4.7: The IGS Final Troposphere Product

Type Accuracy Latency Updates Sample Interval

Final tropo-
spheric zenith
path delay

4 mm < 4 weeks weekly 2 hours
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4.3.3 Centre National d’Etudes Spatiales

The Centre National d’Etudes Spatiales (CNES) [English: National Centre

for Space Studies] is the national space research agency of France. CNES

produces a RT product containing further corrections for integer ambiguity

resolution which can be used to fix ambiguities in RT-PPP mode (Lau-

richesse 2011). This product is called CLK9B and is disseminated using

NTRIP. More information about CNES can be found at http://www.cnes.

fr/.

4.4 Selected GNSS Products

This section describes the selection of GNSS products used by the different

processing systems in this research.

4.4.1 RT Products

The RT processing conducted in this research has made use of the RT orbit

and clock product streams from the IGS RTS and CNES. Table 4.8 shows

the names and characteristics of these product streams.

Table 4.8: Description of RT product streams

Stream Content Message
Types

Provider

RTCM3EPH Broadcast Ephemeris 1019, 1020,
1045

BKG

IGS01 Orbit/Clock Correction (sin-
gle epoch solution)

1059, 1060 ESA

IGS02 Orbit/Clock Correction
(Kalman filter combination)

1057, 1058,
1059

BKG

IGS03 Orbit/Clock Correction
(Kalman filter combination)

1057, 1058,
1059, 1063,
1064, 1065

BKG

CLK9B Orbit/Clock Correction
+ Corrections for Integer
Ambiguity Resolution

1059, 1060,
1065, 1066

CNES
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4.4.2 NRT Products

Out of the products listed in Table 4.5, the NRT processing systems use the

IGS Ultra-Rapid (IGU) products for the hourly processing and IGS Final

products for the computation of a priori coordinates using PPP.

4.4.3 PP Products

The PP processing system used in this research makes use of the reprocessed

orbit and clock products generated by CODE (referred to as CODE Repro2

products). The reason for the selection of the CODE Repro2 products is

the consistency of these products during the whole processing period.

4.4.4 Atmospheric Products

The IGS Final zenith total delay product (Table 4.7) has been used in this

research as one of the reference products to conduct the assessment of RT-

PPP ZTD estimates. In the text of this thesis, this product is referred to as

the IGS Final Troposphere product (IGFT).

4.5 Sources of Meteorological Data

This section introduces the sources of meteorological data which have been

used in this research. The sources consist of meteorological sensors, re-

analysis datasets based on numerical weather models and gridded data files.

4.5.1 MeteoLux Weather Station

MeteoLux is the meteorological service unit of the Air Navigation Adminis-

tration (ANA) of Luxembourg and provides the aeronautical and general me-

teorological services for Luxembourg. MeteoLux (http://www.meteolux.

lu/) operates a weather station at Luxembourg Airport which has a World

Meteorological Organization (WMO) identifier 06590. As the airport is lo-

cated in the Findel area of Luxembourg, this weather station will be referred

to as Findel in this thesis. Findel provides meteorological data with a tem-

poral resolution of 1-minute which is updated at hourly intervals. It has

been used to obtain precipitation and temperature data for this research.

Table 4.9 shows the coordinates of the Findel sensor whereas Table 4.10
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shows the distances and height differences between the six SPSLux GNSS

stations and Findel. The height differences in Table 4.10 are computed by

subtracting the Findel sensor height from the SPSLux station heights.

Table 4.9: Coordinates of the MeteoLux Findel meteorological sensor

Latitude [o] Longitude [o] Height [m]

49.62 6.22 369

Table 4.10: Distance and height difference between various SPSLux stations
and the Findel sensor

SPSLux Station Findel

Distance [km] Height Difference [m]
BASC 21.05 6.76
ECHT 25.34 -64.47
ERPE 10.95 -151.61
ROUL 42.78 173.38
TROI 58.39 168.82

WALF 7.65 -76.60

4.5.2 The ASTA Network of Meteorological Sensors

The Administration des Services Techniques de l’Agriculture (ASTA) [En-

glish: Administration of Technical Services for Agriculture] of Luxembourg

has established a network of over 50 meteorological sensors in Luxembourg

(http://www.agrimeteo.lu/) to provide meteorological information to the

agricultural community of the country. All the sensors in this network mea-

sure temperature whereas only 3 of the sensors measure the surface pressure

in addition to temperature. The temporal resolution of the meteorological

data from the ASTA network is 1-hour and is available for download at

(http://www.agrimeteo.lu/). The pressure is reported at mean sea level

(MSL) and temperature is reported 2 m above surface. ASTA files are pro-

vided in comma separated values (CSV) format and the order of columns

in the station-specific files depend on the number of parameters available in

a particular station data. Due to the dense distribution of the sensors all

over the country, all of the 6 SPSLux GNSS stations have an ASTA mete-

orological sensor located nearby. Table 4.11 lists the nearby pressure and
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temperature sensors to each of the SPSLux station along with the distance

and height differences. The height differences in Table 4.11 are computed

by subtracting the ASTA sensor heights from the SPSLux station heights.

The ASTA data amongst others form the basis for the Atlas Hydro-

Climatique du Grand-Duch de Luxembourg (English: Hydroclimatic Atlas

of the Grand Duchy of Luxembourg) prepared by the Luxembourg Insti-

tute of Science and Technology (LIST) (https://www.list.lu/). LIST

therefore performs a quality control of the ASTA data. However, as LIST

currently does not provide these quality controlled data in a timely manner

required for NRT and RT applications, it is inevitable to use the raw ASTA

data (i.e. the data which is not quality controlled) for this thesis. Nev-

ertheless, ASTA data has been screened for outliers during this research.

4.5.3 UK Met Office

To support GNSS meteorology applications, the UK Met Office routinely

provides an hourly file of meteorological data from the network of globally

distributed WMO weather stations. The hourly NRT system used in this

research uses this file to convert the ZTD at the ground-based GNSS station

locations to IWV by choosing and correcting the pressure and temperature

values from the nearest available WMO station. This is important to men-

tion that data from the MeteoLux Weather Station (Findel) is also included

in this hourly file and is thus the first choice for the ZTD to IWV conversion

for the SPSLux GNSS stations. The format of the hourly file provided by

the UK Met Office is shown in Table 4.12. As an example, Table 4.13 shows

an extract from the hourly file provided by the UK Met Office at 2015-03-28

0000UTC. The data record from the Findel sensor has been emphasized in

Table 4.13 for visibility purposes.

4.5.4 Radiosonde Observations

For validation and evaluation of RT-PPP GNSS-derived ZTD, the ZTD

estimates derived from the observations of RS have been used as a non-

GNSS reference product. The observations from radiosondes collocated with

five selected GNSS stations have been obtained from British Atmospheric
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Table 4.12: Format of the hourly meteorological file provided by the UK
Met Office

Column Content

1 First two characters of station ID
2 3rd to 5th characters of station ID
3 Station latitude
4 Station longitude
5 Station height
6 Year of the observation
7 Month of the observation
8 Day of the observation
9 Hour of the observation

10 Minute of the observation
11 Dry temperature [K]
12 Wet temperature [K]
13 Pressure (Mean Sea Level) [Pa]

Data Centre (NCAS/BADC) (NCAS-BADC 2006). Table 4.14 shows the

selection of the RS sites along with their horizontal and vertical distances

to the respective GNSS stations.

4.5.5 ERA-Interim

The climate reanalysis dataset from the European Centre for Medium-range

Weather Forecasts (ECMWF) namely the ECMWF Reanalysis-Interim (ERA-

Interim) (Dee et al., 2011) is a global dataset with a grid resolution of 0.75o

x 0.75o, temporal resolution of 6 hours, and temporal coverage of 1976 to

present (with real-time updates). Figure 4.12 shows the grid points of ERA-

Interim model over Europe. In this research, the pressure and temperature

values from the ERA-Interim have been assessed for their use in ZTD to

IWV conversion for Luxembourg and the ZTD from the ERA-Interim has

been used to validate the GNSS-derived ZTD for climate monitoring ap-

plications. All the data from ERA-Interim (pressure, temperature, ZWD,

ZTD) used in this thesis have been obtained using the GOP - TropDB

- TropModel online service (http://www.pecny.cz/gop/index.php/gop-

tropdb/tropo-model-service) by specifying the coordinates of the desired

locations. This service performs a bilinear interpolation of the ERA-Interim

values to the requested coordinates.
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Table 4.14: The selected radiosondes used for comparison

GNSS Station ID RS ID
(WMO)

Vertical Separa-
tion (GNSS-RS)
[m]

Horizontal
Separation
[km]

BUCU (Bucuresti, Ro-
mania)

15420 53 4

COCO (Cocos, Aus-
tralia)

96996 -37 1.8

HERT (Hailsham,
United Kingdom)

3882 32 4

THTI (Papeete, French
Polynesia)

91938 97 3.4

VIS0 (Visby, Sweden) 2591 33 2

Figure 4.12: Grid of the ERA-Interim model over Europe
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4.6 Data Available in Luxembourg

Figure 4.13 shows all the different types of data along with the location

of the respective sensors inside the territory of Luxembourg. The red cir-

cles show the SPSLux ground-based GNSS stations, the triangles show the

ASTA meteorological stations with the classification of those which provide

both the temperature and pressure (purple) and those which provide only

temperature (orange), and the blue square shows the location of the Findel

sensor of MeteoLux. The green star shows the location of the ERA-Interim

gridpoint which lies inside Luxembourg.
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Figure 4.13: Ground-based GNSS and meteorological data sources available
inside Luxembourg



Chapter 5

Results

In the creation of the heavens and the earth and in the

alternation of the night and the day there are indeed Signs for

men of understanding.

Qur’an, 3:191

This chapter presents the results of the various experiments described in

Chapter 3. Along with the results, an interpretation of these results with

relevance to the respective research objectives has been presented.

5.1 RT-PPP ZTD for NWP Applications

This section provides the results of the comparisons of the RT-PPP ZTD

estimates obtained using various software packages as well as the results of

the assessment of the suitability of RT-PPP ZTD for NWP applications.

This experiment is described in Section 3.2.1.

For brevity, the BNC2.7 solutions using the IGS01 products will below

be referred to as BN01, the BNC2.7 solutions using the IGS02 products

as BN02, the PPP-Wizard (ambiguity float) solutions as PWFL, the G-

Nut/Tefnut solutions using IGS01 products as GN01, and the G-Nut/Tefnut

solutions using IGS02 products as GN02. Table 5.1 gives an overview of the

product streams and software used in each of the solutions. IGS01 and IGS02

(tested with BNC2.7 and G-Nut/Tefnut) streams contain single-epoch and

Kalman filter combined solutions, respectively and could help studying any

impact of the product combination approaches on the RT-PPP ZTD es-

timates. Although the PPP-Wizard is also able to ingest the IGS01 and

IGS02 product streams in non ambiguity-fixing mode, it was tested only

with the CLK9B stream in order to examine the impact of ambiguity fixing

by keeping all other parameters in the fixed and float solutions consistent.

Various technical problems, often related to data communication, compro-

mise the transfer of real-time data and lead to gaps in the observation data

and hence 100% of the data is not available in real-time, which results in

95
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Table 5.1: Combinations of software package and product streams used in
RT-PPP ZTD solutions

Solution Software Used Ephemeris Stream Used Orbit/Clock Product Used

BN01 BNC2.7 RTCM3EPH IGS01
BN02 BNC2.7 RTCM3EPH IGS02
PWFL PPP-Wizard RTCM3EPH CLK9B
GN01 G-Nut/Tefnut RTCM3EPH IGS01
GN02 G-Nut/Tefnut RTCM3EPH IGS02

gaps in the RT-PPP ZTD time series. In addition, some software packages

provide more ZTD estimates than others based on the same input data.

Table 5.2 shows the percentage of ZTD estimates obtained from each of the

RT solutions for each station.

On average, the RT-PPP ZTD estimates were available for 78% of the

selected time period from BNC27, 65% from PPP-Wizard, and 92% from

G-Nut/Tefnut. The lower amount of available RT-PPP ZTD estimates from

PPP-Wizard is due to missing data and product streams caused by a tem-

porary network related issue at UL from 2013-05-10 to 2013-05-18. Apart

from the missing data, another reason for missing estimates for some epochs

is that during the PPP convergence period after a data gap, ZTD estimates

with large formal sigma are rejected.

5.1.1 Internal Evaluation

For each station used in this study, the various RT-PPP ZTD time series

obtained from all the solutions follow the same pattern. As an example,

the RT-PPP ZTD time series from four stations is shown in Figure 5.1.

Figure 5.2 shows the time series of the difference between the RT-PPP ZTD

estimates and the IGFT for these stations. The difference time series of

PWFL solution in Figure 5.2 has been plotted after removing the mean

bias (considering the fact that the bias in the ZTD is removed before NWP

assimilation, however, it is important that the bias is stable over time). The

gap in the PWFL difference time series around day 11 for all 4 stations is

due to a temporary interruption in the CLK9B product stream. For the

station BOR1 (top right), the gap in the difference time series for all the

RT solutions around day 3 is due to an interruption in the data stream from
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Table 5.2: Percentage of available RT-PPP ZTD epochs in different solutions

Station BN01 BN02 PWFL GN01 GN02

ADIS 75 67 64 94 94
ALBH 97 95 55 95 95
AUCK 91 86 68 97 96
BOR1 87 87 63 92 91
BRST 88 86 68 98 98
BUCU 98 98 68 85 84
COCO 60 86 65 95 95
DAEJ 96 96 67 96 96
DUBO 98 97 64 98 98
GOPE 92 92 64 93 93
HERT 93 91 68 98 98
HOFN 93 90 67 97 97
KIR0 90 89 66 98 98
MATE 61 52 65 83 82
NKLG 52 53 69 99 99
NTUS 53 74 68 99 98
ONSA 88 86 66 99 98
POTS 56 52 68 98 98
REYK 73 77 61 91 91
THTI 61 47 68 99 99
VIS0 94 95 68 84 84
WTZR 81 81 61 89 89

that station for this period. The gap in the GN01 and GN02 solution for the

station BUCU (bottom left) around day 14 is also due to an interruption in

the data stream at that time at GOP.

The overall biases between the RT-PPP ZTD estimates from the indi-

vidual RT solutions and the IGFT are shown in Table 5.3. It can be seen

that the G-Nut/Tefnut solutions (GN01 and GN02) have a better stability

(i.e. lower standard deviation of the mean bias) as compared to the BNC2.7

solutions (BN01 and BN02). It should be noted that the two G-Nut/Tefnut

solutions used the same strategy, software and data access, so any difference

in results reflects stability and reliability issues related to the applied prod-

ucts. Similarly, for the two BNC2.7 solutions, the same processing strategy

was used and the only difference was in the applied products. However,

unlike the G-Nut/Tefnut solutions, the mutual difference (in terms of mean
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Figure 5.1: Time series of RT-PPP ZTD for the stations ALBH, BOR1,
BUCU and HERT in days since 2013-04-18 18:00:00 UTC
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Figure 5.2: Difference of RT-PPP ZTD estimates and IGFT for the stations
ALBH, BOR1, BUCU and HERT in days since 2013-04-18 18:00:00 UTC.
Panels from the top: BN01, BN02, PWFL, GN01, GN02
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Table 5.3: Biases in RT-PPP ZTD solutions to IGFT

Solution Mean [cm] SDev [cm] RMS [cm]

BN01 3.17 4.61 6.04
BN02 0.21 2.72 2.92
PWFL 6.81 2.42 14.96
GN01 1.16 0.82 1.43
GN02 1.09 0.80 1.38

bias and RMS bias) between the two BNC2.7 solutions is relatively larger.

One possible reason for the lower mean bias and RMS bias in BN02 as com-

pared to BN01 could be the use of a Kalman Filter combination orbit/clock

correction stream (IGS02) rather than a correction stream with single epoch

solution (IGS01) as in BN01. The RMS of the mean bias between the RT-

PPP ZTD from the BNC software and that from the IGFT as shown by

Yuan et al. (2014) is lower than that found in this study and this is because

of the fact that they have implemented ocean tide loading corrections, an

improved mapping function and receiver antenna PCV corrections in their

version of BNC. The PPP-Wizard’s ambiguity float solution (PWFL) has

the largest mean bias and RMS bias which is a consequence of the fact that

the PPP-Wizard currently does not allow the application of antenna ref-

erence point (ARP) up eccentricity (height from the survey marker to the

ARP) and receiver antenna phase center PCO and PCV corrections, hence

resulting in a mismatch between the constrained coordinates of the survey

marker and the ZTD estimation at the antenna phase center. Table 5.4

shows the station-wise biases in PWFL with respect to the ARP up eccen-

tricities. However, for the assimilation into NWP models, it can be argued

that the standard deviation of the mean bias is of more importance than

the mean bias, because any station-specific biases are corrected for during

the screening process before the assimilation. Also, aforementioned mean

biases of the RT-PPP ZTD solutions (calculated over all stations) have less

significance than that of the standard deviations because the biases vary

with location and characteristics of the station.

As mentioned earlier, the PPP-Wizard is capable of resolving integer am-

biguities in RT-PPP. In order to study the effect of integer ambiguity res-

olution on the RT-PPP ZTD estimates, another RT solution for the same
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Table 5.4: Station-wise mean bias in PWFL and the ARP UP eccentricity

Station ARP Up Eccentricity [cm] PWFL Bias [cm]

ADIS 0.10 3.14
ALBH 10.0 2.2
AUCK 5.50 -3.29
BOR1 6.24 4.66
BRST 204.31 54.58
BUCU 9.70 9.09
COCO 0.40 -4.78
DAEJ 0.00 -0.77
DUBO 10.00 2.15
GOPE 11.14 5.73
HERT 0.00 2.53
HOFN 3.19 4.92
KIR0 7.10 12.45
MATE 10.10 5.85
NKLG 304.30 64.74
NTUS 7.76 -75.81
ONSA 99.50 26.03
POTS 12.06 6.11
REYK 5.70 4.78
THTI 104.70 13.67
VIS0 7.10 5.05
WTZR 7.10 6.73

stations and time period as above was obtained using PPP-Wizard with

the integer ambiguity resolution feature. We term this solution as PWFX.

Keeping in view the time needed for ambiguity convergence, only those

epochs (≈ 40% of the total) from PWFX have been included in the evalu-

ation for which the number of fixed ambiguities is greater than or equal to

4. The mean bias between the RT-PPP ZTD of PWFL and PWFX solu-

tions was found to be 0.61 ± 4.66 cm with an RMS bias of 4.93 cm. The

observed impact of ambiguity resolution on ZTD is approximately 6 mm

which compares well to, e.g. the 20% (4 to 5 mm) impact observed by Geng

et al. (2009). The recent study by Li et al. (2014), which is based on their

in-house software and products, also reported on insignificant differences

between the RT-PPP float and fixed solutions after sufficiently long times

of convergence. However, they demonstrated the usefulness of ambiguity

fixing for the rapid re-initialization of an RT-PPP processing system (e.g.
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after an interruption in the data stream).

To verify the claimed reason for the large mean bias and RMS bias in

the PPP-Wizard solutions, i.e. the lack of ARP up eccentricity, PCO and

PCV corrections, another processing experiment for a different 1-week long

period using the PPP-Wizard was conducted in which the coordinates were

corrected for the ARP up eccentricities and the PCO prior to processing,

where the L1 and L2 PCOs have been combined by using the ionosphere-free

linear combination, i.e.

PCOL1+L2 =
f2

1PCOL1 − f2
2PCOL2

f2
1 − f2

2

(5.1)

where f1 = 1575.42MHz, f2 = 1227.60MHz and PCO values are in mil-

limeters.

Integer ambiguity resolution was also applied during this experiment. We

name the PPP-Wizard solution from this new experiment as PWFX2. The

RT-PPP ZTD estimates from PWFX2 were then compared to the corre-

sponding IGFT estimates. The mean bias between IGFT and PWFX2 was

found to be 2.33 ± 2.76 cm (in contrast to 6.81 ± 2.42 cm for IGFT-PWFL)

with an RMS bias of 4.60 cm (in contrast to 14.96 cm for IGFT-PWFL).

This implies that after applying the ARP up eccentricity and PCO correc-

tions to the a-priori coordinates, the mean bias between the ZTD estimates

from PPP-Wizard and IGFT was reduced by approximately 66% and the

RMS reduced by approximately 70%.

5.1.2 External Evaluation

The statistics from the comparison of GNSS-derived ZTD and RS-based

ZTD are summarized in Table 5.5. In terms of standard deviation, the G-

Nut/Tefnut solutions (GN01 and GN02) show the best agreement with the

RS-based ZTD whereas, in terms of the mean bias, BNC2.7 solutions (BN01

and BN02) show the best agreement with the RS-based ZTD. The BNC2.7

solutions show mean biases between 1 to 2 cm, whereas G-Nut/Tefnut and

PPP-Wizard solutions show mean biases between 2 to 3 cm with the RS-

based ZTD. In contrast to the comparison with IGFT (Table 5.3), the mean

bias of the BN01 solution is lower than that of the G-Nut/Tefnut solutions
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Table 5.5: Statistics of comparison between GNSS-derived and RS-based
ZTD

RT-PPP Solution Mean
(ZTDGNSS-
ZTDRS) [cm]

SDev (ZTDGNSS-
ZTDRS) [cm]

RMS (ZTDGNSS-
ZTDRS) [cm]

BN01 1.40 3.44 4.41
BN02 1.71 3.19 4.30
PWFX2* 2.76 3.12 5.23
GN01 2.17 1.32 3.04
GN02 2.12 1.29 3.01

Figure 5.3: RT-PPP ZTD estimates and RS-based ZTD for station HERT

which is because of the fact that the statistics of the radiosonde comparisons

are based on the 5 selected stations (unlike 22 stations in the case of IGFT

comparisons) and the biases are station specific. However, the RS-based

ZTD also has an uncertainty and it is possible that it has a bias due to

inaccurate height corrections. Figure 5.3 shows the time series of GNSS-

derived and RS-based ZTD estimates for the station HERT as an example.

It can be seen that all the time series follow the same pattern and both the

GNSS-derived and RS-based ZTD are sensitive to the variations in a similar

fashion. This is also the case for the other 4 stations not shown in Figure 3.

The time series of the difference between the RT-PPP ZTD solutions and

the RS-based ZTD for the station HERT are shown in Figure 5.4.

5.1.3 Comparison with User Requirements for NWP Now-

casting

The COST Action 716: Exploitation of Ground-Based GPS for Climate and

Numerical Weather Prediction Analysis, which was a demonstration project
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Figure 5.4: Difference of RT-PPP ZTD and RS-based ZTD estimates for
station HERT
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Table 5.6: User requirements for GNSS meteorology (NWP nowcasting)

Integrated Water Vapour (IWV)
Parameter Target Threshold
Horizontal Domain Europe to National
Repetition Cycle 5 min 1 hour
Integration Time MIN(5 min, rep cycle)
Relative Accuracy 1 kg/m2 (6 mm in ZTD) 5 kg/m2 (30 mm in ZTD)
Timeliness 5 min 30 min

to study the potential of ZTD products from ground-based GPS networks

for NWP and climate monitoring, specified various user requirements (Of-

filer, 2010) for GNSS meteorology which define threshold and target values

on resolution, accuracy and timeliness of ZTD and IWV estimates for use in

NWP nowcasting and climate monitoring. These requirements are widely

accepted for quality control during operational use. Table 5.6 summarizes

the current user requirements for NWP nowcasting however, during the

new COST Action ES1206 (GNSS4SWEC), these requirements will be re-

vised. The typical value of the dimensionless conversion factor Q (Askne

and Nordius, 1987) used for the conversion of ZWD to IWV is approxi-

mately 6 and therefore 1 kg/m2 of IWV is equivalent to about 6 mm of

ZTD (Glowacki et al. 2006). Using this equivalence, the accuracy require-

ments for IWV can be translated to their equivalent for ZTD which are 6

mm (0.6 cm) target and 30 mm (3 cm) threshold values. Considering the

IGFT as the truth and the RMS bias of each solution from IGFT as a mea-

sure of its relative accuracy, the obtained RT-PPP ZTD solutions can be

compared to these requirements. Table 5.7 shows this comparison for each

RT solution generated in this study.

It can be seen from Table 5.7 that BN02, GN01 and GN02 meet the thresh-

old requirement for relative accuracy whereas BN01, PWFL and PWFX2

exceed the threshold. Noting that although the application of the ARP up

eccentricity and PCO corrections on the coordinates prior to processing has

improved the relative accuracy of the PPP-Wizard solution (PWFX2), it

still currently exceeds the threshold requirements for NWP nowcasting.

A similar comparison to these user requirements conducted by considering

the RMS of the difference between GNSS-derived ZTD and RS-based ZTD
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as a measure of relative accuracy yields that only the two G-Nut/Tefnut solu-

tions (GN01 and GN02) meet the threshold requirements whereas the others

exceed the threshold. However, the RS-based ZTD also has an uncertainty

and it is possible that it has a bias due to inaccurate height corrections.

5.2 NRT-DDP ZTD for NWP Applications

This section provides the results of the various stages of the experiment

conducted to assess the impact of the assimilation of GNSS-derived NRT-

DDP ZTD into the AROME 3D-VAR NWP model. This experiment is

described in Section 3.2.2.

5.2.1 Pre-Processing and the White List

At the time of this research, the operational ”white list” for AROME con-

tained 806 station-center pairs from the E-GVAP dataset. This list was

extended by adding 155 stations from UL01 dataset.

The statistics from the comparison of the NRT-DDP ZTD estimates from

the UL01 solution to those obtained by the 3-hour short range forecast of

the AROME model are shown in Figures 5.5 and 5.6. Figure 5.5 shows the

station-wise mean of the bias in ZTD (UL01−AROME) computed over the

period of July 17−August 20, 2013 whereas Figure 5.6 shows the station-

wise standard deviation of this bias computed over the same period. This

monitoring was performed in order to select the stations that could enter a

white list prior to data assimilation. Even though stations present in the

white list could be rejected a-posteriori in the assimilation process through

various quality controls, the stations absent from the white list are rejected

a-priori.

Figure 5.7 displays the number of observations assimilated in the AROME

operational system, that went operational on the 2nd of July 2013, for a

particular day (26 January 2014) with significant rainfall events over the

domain. Four main observation types dominate: radiances from the two

IASI instruments (with more than 100 channels each) (27%), radial winds

and pseudo-humidity profiles from radars (22%), data from surface weather

stations (16%), and aircraft reports (15%). Then, satellite data (dominated
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Figure 5.5: Station-wise mean bias in NRT-DDP ZTD (UL01-AROME)
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Figure 5.6: Station-wise standard deviation of the mean bias in NRT-DDP
ZTD (UL01-AROME)
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Figure 5.7: Number of observation types (expressed in percentage) assimi-
lated in the operational 3D-Var AROME system on 26 January 2014. The
total number of observations is 309 393

by SEVIRI and ATOVS radiances) and radiosoundings represent about 17%

of the observations, whereas GPS ZTD are only 1.6% of the total data. This

percentage still only reaches 6% when considering only observations sensi-

tive to atmospheric moisture; however, this small amount is partly compen-

sated by the fact that these measurements are available every 3 hours in

the AROME 3D-Var RUC in all weather conditions with a relatively good

accuracy.

5.2.2 Bias Correction and Final Selection

From the initial list of GPS stations from UL01 (about 200), only 155 were

retained for assimilation based on the selection criteria. In particular the set

of six stations in Luxembourg were excluded since they presented too large

mean biases (around 30 mm). Here it is worth mentioning that this was the

first time that the 6 stations from SPSLux were compared to a non-GPS

technique for the estimation of ZTD and therefore the existence of this large

bias was one of the important findings of this study. Upon investigation, it

was found that the reason for this behaviour was the double application of
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Table 5.8: Statistics of bias with AROME equivalent ZTD for SPSLux and
WALCORS networks

Network No. of stations Bias [mm] SDev [mm]

SPSLux (Luxembourg) 6 -30.58 15.38
WALCORS (Wallonie) 22 0.63 12.87

PCO corrections on the SPSLux observation data i.e. once on RT streams

(and in the resulting RINEX files) and once during the processing. This

problem was fixed after the completion of this study and if such a study is

conducted in the future, it is assured that the 6 SPSLux stations will meet

the requirements to enter the ”white list”. On the other hand, a set of 22

stations in Belgium was retained since the mean bias was only 0.63 mm.

Figure 5.5 reveals this increased density of stations over the Eastern part of

Belgium (Wallonie).

The mean bias between the NRT-DDP ZTD estimates from UL01 and

those from AROME (for the complete UL01 network) was found to be 0.18

± 13.92 mm with an RMS of 15.29 mm. As mentioned earlier, the added

value of the UL01 stations as compared to the existing E-GVAP solutions

was the dense GNSS network over Luxembourg and Wallonie (Belgium)

regions and hence it was of great interest to look at the quality of NRT-

DDP ZTD estimates from the stations in that network. The statistics for

this network are explicitly shown in Table 5.8.

It can be seen from Table 5.8 that the NRT-DDP ZTD estimates from the

6 GNSS stations located in Luxembourg (SPSLux) have a large mean bias

of -30.58 mm and hence were rejected after the initial screening whereas the

stations belonging to the WALCORS network show a sub-millimeter bias

and passed the criteria of the initial screening. After the initial screening,

various processes are applied on the ZTD observations (e.g. spatial thin-

ning, bias removal) and a final list of stations to be used for assimilation is

prepared. Figure 5.8 shows the number of stations from the UL01 solution

finally selected for assimilation during the whole period of the experiment.

It can be seen from Figure 5.8 that the number of selected UL01 stations

has a diurnal cycle. Similar diurnal cycles (or those with a phase differ-

ence) were also found for various other analysis centers. The reason for
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Figure 5.8: Number of UL01 stations selected for assimilation

this diurnal cycle is the variation of the agreement between the GNSS ZTD

and the model equivalent ZTD at different times of the day which is caused

by, for example, the day-night bias in the radiosonde observations used in

the NWP model. The map of the domain of AROME model and the sta-

tions selected finally for assimilation are shown in Figure 5.9. In Figure

5.9, the black squares show the stations provided through the E-GVAP net-

work (EGVAP), while the grey circles show the new stations processed by

the UL01 solution. It should be noted that except for stations located in

Belgium, the UL01 stations are also processed by other E-GVAP analysis

centres.

Quality Assessment of ZTD Observations

This section summarizes the findings about the quality and suitability of the

UL01 ZTD observations for data assimilation. Figure 5.10 shows the dis-

tributions of the analysis departure (the difference between the NRT-DDP

ZTD observations from the equivalent from analysis) and the first-guess de-

parture (the difference between the observed NRT-DDP ZTD and the model

equivalent ZTD computed from the 3-hour AROME forecast) for the whole

period of the experiment. One of the criteria that the NRT-DDP ZTD ob-

servations from a given station need to pass in order to be assimilated is that

its first-guess departures should follow a Gaussian distribution. If there are

more than one analysis center processing a same station, the observations are

selected from the one which has the smallest standard deviation of the first-

guess departures and the closest distribution of the first-guess departures

to Gaussian distribution. Figures 5.10 (a) and 5.10 (b) show the distribu-



Chapter 5. Results 113

Figure 5.9: Map of the domain of the AROME model with the GPS stations
selected from assimilation on the 18 July 2013 at 03 UTC
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Figure 5.10: Histograms of first guess (left) departures and analysis (right)
departures for GNSS-derived ZTD from experiments EGVAP and UL01

tion of analysis departure and first-guess departure, respectively, of all the

ZTD observations from the operational EGVAP solutions whereas Figures

5.10 (c) and 5.10 (d) show the distribution of analysis departure and first-

guess departure, respectively, of NRT-DDP ZTD observations from only the

UL01 solution. First-guess and analysis departure statistics have been com-

puted between 18 July 2013 and 21 August 2013. The upper row in Figure

5.10 corresponds to EGVAP stations (sample size: 147591) and the lower

row corresponds to UL01 stations (sample size: 20572). It can be clearly

seen that the UL01 observations analysis and first-guess departures follow a

Gaussian distribution and hence are suitable for assimilation.
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Figure 5.11: Mean of analysis departures and first guess departures for
EGVAP and UL01 solutions

Figure 5.11 compares the time series of the mean of the analysis departures

and first guess departures for EGVAP and UL01 solutions. It can be seen

that the UL01 solution has analysis and first guess departures that are on

average higher than those of the EGVAP solution. Also, the high and low

values in time series of the mean analysis departure correspond to the time

series in Figure 5.8 (number of stations selected for assimilation) i.e. the

mean analysis departure has a higher value when the number of assimilated

stations is low and vice versa. It can also be seen that the UL01 solution has

a first-guess departure that is on average higher than that of the EGVAP

solution but a standard deviation (Figure 5.12) that is on average lower than

EGVAP.
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5.2.3 Impact on Analysis

As can be seen in Figure 5.10, the narrower distribution of analysis de-

partures, or ”Observed minus Analysis” (O−A) with respect to first guess

departures, or ”Observed minus Background” (O−B), and a reduction of the

standard deviation from 11.49 to 2.33 mm, indicates that the assimilation

has brought the model state, mostly in terms of humidity field, closer to

GNSS-derived ZTD observations. Considering only the GNSS-derived ZTD

values processed by the UL01, the histograms also have a Gaussian shape

for both (O−B) and (O−A), but they are less smooth than EGVAP due to

the smaller size of the data sample (20572 vs. 147591). The mean and stan-

dard deviation of the (O−B) and (O−A) distributions compare well to those

obtained with the whole set of selected EGVAP stations. This agreement

reveals that the selected stations processed by UL01 have the same quality

as the EGVAP stations and that the 3D-Var AROME system can assimilate

them efficiently. This is also a very good check that the bias correction and

the observation error specifications for UL01 are fully consistent with values

imposed for the EGVAP stations. Another useful aspect of the (O−B) and

(O−A) statistics to examine is their temporal evolution during the period

of interest. Time series of standard deviations for (O−B) and (O−A) are

compared for the two datasets EGVAP and UL01 in Figure 5.12. There

is a good level of agreement between these two datasets both in terms of

daily and synoptic variations. Despite a much smaller number of stations

coming from UL01, their geographical distribution covers a large part of the

AROME domain, allowing them to capture almost the same variability as

the full EGVAP network. A diurnal cycle of the departures is also present

on both time series. This is a feature present for all analysis centres: maxi-

mum values take place at 21 UTC whereas minimum values are noticed at

06 UTC, and is likely a signature of the diurnal cycle of water vapour in

the boundary layer. A dependency of the bias correction with the diurnal

cycle could be envisaged in future developments. Synoptic events show up

on time series: the anticyclonic situations are characterized by lower val-

ues of (O−B) and (O−A), around day 14 and day 24, whereas perturbed

situations exhibit higher values, around days 6, 10 and 16.

The previous analysis of (O−A) and (O−B) distributions and time series

allows to check that the 3D-VAR AROME behaves as expected regarding
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Figure 5.12: Standard deviation of analysis departures and first guess de-
partures for EGVAP and UL01 solutions
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the use of GNSS-derived ZTD observations. This is a necessary condition,

but not sufficient to demonstrate that the analysis is improved by the GNSS-

derived ZTD observations. Since they modify mostly the humidity field, by

examining the fit of the model short-range forecasts (3-hour) to independent

observations (i.e. that have not been assimilated yet), it is possible to check

if the analysis from the previous cycle has been able to bring the model

predicted state closer to the truth.

Figures 5.13, 5.14 and 5.15 show the fit of the AROME 3-hour forecasts

to other observations sensitive to humidity (radiosoundings and moisture

sensitive channels from satellite radiometers). The assimilation of GNSS-

derived ZTD reduces the standard deviation of (O−B) for specific humidity

from radiosoundings below 500 hPa (Figure 5.13). The UL01 observations

enhance this reduction at 1000 hPa but are slightly detrimental at 700 hPa

with respect to EGVAP. Regarding the window channels of the SSMI/S in-

strument (Figure 5.13), non-negligible improvements are noticed by the use

of EGVAP for the weak water vapour absorption band at 22 GHz and also

for the 85 GHz channel in vertical polarization (that has the largest errors).

The influence of UL01 is either neutral or slightly negative with respect

to EGVAP, but always positive with respect to NOGPS. Since SSMI/S is

only available over ocean surfaces, it indicates that the corrections brought

by the GNSS-derived ZTD data over land have propagated over the ocean

through error correlations and model dynamics (AROME has 40% of ocean

surfaces). The (O−B) of the sounding channels from the ATMS microwave

instrument in the water vapour absorption band at 183 GHz are displayed

in Figure 5.15. The largest impact shows up for the high peaking chan-

nels (that are closer to the centre of the absorption line at 183 GHz). It

means that ZTD observations have the potential to also modify the mid-

tropospheric humidity (between 500 and 300 hPa), probably through the

vertical correlations imposed in the background error covariance matrix of

the 3D-VAR system. This signal is more pronounced when the model state

is projected onto the brightness temperature space of ATMS than on ra-

diosonde data. The impact of UL01 is either neutral or slightly detrimental

with respect to EGVAP, but still positive when compared to NOGPS. How-

ever, the signal coming from radiosoundings is certainly more robust given

the fact that in the mid-troposphere the number of data from that observ-
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Figure 5.13: Statistics of first guess departures for specific humidity from
radiosoundings (SDev errors in g/kg) computed from 18 July to 20 August
2013

ing system is about three times larger than ATMS radiances. Regarding the

(O−B) biases for specific humidity from radiosoundings, negative values are

noticed in the boundary layer (i.e. the model is too moist) for the experi-

ment NOGPS (around 0.2 g/kg) are slightly reduced by about 10% through

the assimilation of GNSS-derived ZTD observations.

In order to examine the impact of the background error covariance matrix

on the assimilation of ZTD observations for a given analysis, the analyses

produced after the first cycle of the three 3D-Var experiments were com-

pared. Indeed, since each experiment starts from the same background field,

the differences in analysis indicate the contribution of the GNSS-derived

ZTD from EGVAP to modifications of the humidity field when compared

to the experiment NOGPS, and also the contribution of UL01 on top of

EGVAP (through differences between UL01 and EGVAP). The differences

in IWV between EGVAP and NOGPS and UL01 and EGVAP are shown

in Figure 5.16, and can be interpreted as analysis increments produced in

the 3D-VAR by the EGVAP and UL01 ZTD networks, respectively. The
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Figure 5.14: Statistics of first guess departures for the brightness tempera-
ture of the microwave radiometer SSMI/S on board DMSP F18 (SDev errors
in K) computed from 18 July to 20 August 2013

Figure 5.15: Statistics of first guess departures for the brightness tempera-
ture of the microwave sounder ATMS on board Suomi-NPP (SDev errors in
K) computed from 18 July to 20 August 2013
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geographical distribution of the increments follows the density of each net-

work. The standard deviation of IWV increments for EGVAP is 0.87 mm

that can be compared to the mean IWV value of 23 mm over the whole

domain. The corresponding value for UL01 is 0.38 mm. Therefore the mean

corrections are small. Even though mean corrections are very close to zero

for EGVAP and UL01, the distribution of increments for UL01 is skewed

towards positive corrections. This is specific to this date: through the whole

period there is no tendency for the UL01 dataset to systematically moisten

or dry the model. Maximum corrections are about 45 mm, whereas with

EGVAP over the western part of Switzerland there is a local drying of 7 mm.

With UL01, large corrections are taking place over the Wallonie region due

to the density of the network. In the northeastern part of France (Alsace

and Lorraine regions) UL01 brings corrections around 3 mm whereas almost

no corrections were provided by EGVAP. This stems from the fact that the

UL01 solutions have been chosen instead of the SGN (name of analysis cen-

tres from the French National Geographical Institute) ones, on the basis of

a better statistical behaviour.

5.2.4 Impact on Forecasts

The impact on screen-level relative humidity RH2m forecasts is presented

in Figure 5.17. The AROME forecasts are examined in terms of mean and

standard deviation errors with respect to a reference assumed to be close

to the truth. The reference is given by screen-level analyses based on the

optimum interpolation CANARI (Mahfouf et al 2015). Screen-level analyses

are done independently from the atmospheric 3D-VAR analyses and are

used for diagnostic purposes and to correct soil temperatures and moisture

contents. Around 1600 observations are used to perform the screen-level

analyses, with rather dense surface networks except over Italy and Spain.

The RH2m mean errors have a strong diurnal cycle with values close to zero

during daytime and negative ones during night-time. The nocturnal surface

boundary layer is too moist but it is also too warm as revealed by T2m

biases (not shown), contributing to reduce the RH2m bias. The standard

deviation increases with the forecast range up to 15 hours (18 UTC) and

then remains around 9% error until the end of the forecast (after 30 hours).

The assimilation of GNSS-derived ZTD has a small positive impact on the

bias by reducing it after 15 hours of forecasts. The impact on the standard
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Figure 5.16: Differences in IWV analyses between experiments EGVAP and
NOGPS (top panel) and UL01 and EGVAP (bottom panel) on the 18 July
2013 at 0300 UTC (unit is mm)



Chapter 5. Results 123

deviation error is also rather small, with non-negligible values only at 15

UTC (12-hour forecast).

The spatial distribution of these errors is examined more precisely at 15

UTC where the largest differences are noticed between the baseline NOGPS

and the experiments. This can be more easily performed on gridded anal-

yses than with actual observations at irregular locations. The mean and

standard deviation 12-hour forecast errors for RH2m at 15 UTC are shown

in Figure 5.18. Firstly, the reference simulation NOGPS is examined. The

most striking pattern of the mean errors is a positive bias (model too moist)

over areas with significant orography (mostly the Alps but also the Pyrenes

and the Massif Central). Values are above 10% over the western part of

Switzerland. The eastern part of France and Germany are characterized by

moist positive biases around 5%. On the other hand, Spain and Italy ex-

hibit a slight negative bias (model too dry) whereas over Sardinia values are

around -10%. Regarding the standard deviation errors, there are only few

areas with values below 5% (Southern Spain), most of the errors being be-

tween 10 and 15%. Regions with the largest errors around 20% appear over

Western Germany, eastern France and around the Pyrenes. Over oceans

the biases and the standard deviations are small since the surface bound-

ary layer is constrained by a saturated surface for which the temperature is

imposed from a dedicated surface analysis.

The assimilation of GNSS-derived ZTD data has a tendency to reduce

the positive biases noticed over Germany and eastern France (for this last

region it has been replaced by a small negative bias). The maxima over west-

ern Switzerland is also decreased. No noticeable differences exist between

EGVAP and UL01 experiments. The areas of lower biases are also regions

where the standard deviation errors are significantly decreased. The band

of large values (above 20%) oriented SouthWest/NorthEast from the Massif

Central to Western Germany in the NOGPS experiment is not present in

the experiments when ZTD data are assimilated (both EGVAP and UL01).

A number of rainfall events have passed through the domain during the

chosen period, most of them having an orientation SouthWest/NorthEast

(discussed later), that can explain why significant moisture errors can be

found in the boundary layer at these locations.



Chapter 5. Results 124

Figure 5.17: Mean (top panel) and standard deviation (bottom panel) fore-
cast errors of screen-level relative humidity (%) according to forecast range
(hours) for the three experiments NOGPS, EGVAP and UL01. The scores
are averaged from 20 July to 20 August 2013 and are computed against
screen-level relative humidity analyses
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Figure 5.18: Mean and standard deviation of screen-level relative humidity
12-hour forecast errors (15 UTC) in percentages for experiments NOGPS
(top panels), EGVAP (middle panels) and UL01 (lower panels) averaged
from 20 July to 20 August 2013
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The precipitation forecasts are compared over France against precipita-

tion analyses developed at Météo-France at 0.012o resolution at hourly time

scales from a blend between radar derived rain rates for small scale pre-

cipitation (convective events) and rain gauges that describe accurately the

large-scale precipitation events and that can be spatially interpolated us-

ing a classical Kriging technique. This analysis called ANTILOPE can be

considered as the closest representation of the truth over France. In the

following, only 24-hour accumulations from 06 UTC on day 1 to 06 UTC

on day 2 from AROME are evaluated against ANTILOPE. First an objec-

tive comparison with classical categorical scores derived from contingency

tables is performed and summarized in Figure 5.19 for the Frequency Bias

Index (FBI), the Probability of Detection (POD), the False Alarm Ratio

(FAR) and the Equitable Threat Score (ETS) for the following thresholds:

0.2, 1, 2, 5, 10 and 20 mm. The actual definition of these scores can

be found at: http://www.cawcr.gov.au/projects/verification. The

NOGPS experiment exhibits a slight positive bias up to 15% for large pre-

cipitation amounts (above 5 mm). Both ZTD assimilation experiments re-

duce this bias. The bias has the smallest value with UL01 for all rates.

When examining the POD, the three experiments produce very similar val-

ues; however, EGVAP appears to slightly degrade the POD above 5 mm,

whereas the quality of UL01 is always as good as or better than NOGPS.

The assimilation of ZTD reduces the FAR for all thresholds, but UL01 is

better above 1 mm. Finally the ETS, that accounts within a single measure

for the POD and FAR skills, reveals higher values with the assimilation of

ZTD, but the UL01 is clearly better since the improvement with EGVAP is

only noticeable below 5 mm. The small detrimental effect of ZTD assimi-

lation for the lowest threshold (0.2 mm) on the POD is also present on the

ETS. These results are consistent with previous feasibility studies and also

reveal that increasing the density of the GNSS network even by a small per-

centage can be beneficial to the quality of precipitation forecasts from NWP

models, despite an almost neutral impact on other predicted quantities.

A number of case studies were examined that took place during the period

of interest in order to highlight the sensitivity of the assimilation of GNSS-

derived ZTD data on the prediction of severe convective events.



Chapter 5. Results 127

Figure 5.19: Categorical scores (FBI: Frequency Bias Index; POD: Proba-
bility of Detection; FAR: False Alarm Ratio; ETS: Equitable Threat Score)
for daily accumulated precipitation AROME forecasts from the three exper-
iments: NOGPS, EGVAP, UL01 compared with ANTILOPE precipitation
analyses over France (period of interest: 18 July to 21 August 2013)
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On 25 July 2013, two intense rainy bands are present in the ANTILOPE

analysis that are embedded in a frontal system crossing France in a synoptic

southwesterly flow (Figure 5.20). A first rain band is located south of Paris

crossing the 48o latitude and located to the East of the Greenwich meridian,

and a second one is located in southwestern part of France (Bordeaux region)

with also a small band of precipitation above (Charentes region). Precip-

itation maxima are above 50 mm. In the NOGPS experiment, AROME

has the capacity to simulate these two rainy systems, but the northern one

is located too far west from its actual position with an excessive southerly

orientation, and the intensity of the system is underestimated. The system

over the Bordeaux region is better described, but in terms of orientation and

precipitation maxima, it extends too far east. The EGVAP experiment in-

tensifies the northern precipitation band but with the wrong orientation and

the extension too far west is amplified, while the intensity of the southern

precipitation band is globally reduced. This can be seen as an improvement

for the spurious cell located on the east, but as a degradation for the intense

cell located near the coast of the Atlantic Ocean. In the UL01 experiment,

the northern system is displaced northwards and eastwards, therefore im-

proving significantly its location with respect to the truth, while keeping the

larger amounts already produced by the EGVAP experiment. Similarly, the

southern system is closer to the observed location, being less elongated to

the east.

On 26 July 2013, the frontal system described above has only moved

slightly northwards (Figure 5.21). The northern precipitating area is lo-

cated above Paris (Picardie and Nord regions) with three narrow bands:

two with a WestEast orientation and another one above them with a South-

West/NorthEast orientation. The southern precipitating area has a North-

South orientation. In the NOGPS experiment, there is a hint of the three

bands observed in the northern part of France, but the third one to the East

is too wide and too intense particularly over Luxembourg, while the south-

ern precipitating system has a correct orientation but is situated too far west

over the Atlantic Ocean. The EGVAP experiment reduces the intensity of

the rainy cell over Luxembourg but is displaced to the South where it is not

observed, while for the southern precipitating system, there is a reduction

of the rainy band over the ocean and an intensification of the band over the
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Figure 5.20: Daily accumulated precipitation in mm as analyzed by ANTI-
LOPE and simulated by the AROME model starting from different atmo-
spheric analyses on 25 July 2013: analysis (upper left), experiment NOGPS
(upper right), experiment EGVAP (lower left), experiment UL01 (lower
right)

continent parallel to this one. When considering UL01, in the northern part

of the domain, the too-wide precipitating area southwest of Luxembourg is

not simulated anymore, and it has been replaced by narrower rainy bands

that, even though not exactly at the proper location, resemble the actual

precipitation patterns in this area, while in the southwestern part of France,

the northern branch of the precipitating system is improved but not the

southern one.

On 02 August 2013, a rainy system moved over France in a southwesterly

large-scale flow leading to precipitation around 15 mm over the Lorraine
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Figure 5.21: Daily accumulated precipitation in mm as analyzed by ANTI-
LOPE and simulated by the AROME model starting from different atmo-
spheric analyses on 26 July 2013: analysis (upper left), experiment NOGPS
(upper right), experiment EGVAP (lower left), experiment UL01 (lower
right)

region (northeastern part of France) and in the Centre region (Figure 5.22).

A band of more intense precipitation with values above 30 mm and a more

westerly orientation is noticed over the Aquitaine region. Several narrow

precipitation bands are captured by the ANTILOPE analysis. In experi-

ment NOGPS, even though the model simulates a rainy system with the

correct orientation and maxima located in the southwestern part of the do-

main, their intensity is underestimated by a factor of 2 (around 25 mm) and

the precipitation band does not extend enough westwards near the Atlantic

Ocean coast. In experiment EGVAP, the area of precipitation maxima lo-

cated over the Aquitaine region is strongly enhanced with maximum values
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close to the observed ones (40 mm), while the assimilation of ZTD data from

UL01 leads to an even wider precipitating area in the southwestern part of

France. However, none of the simulations can describe the small-scale pat-

terns of the precipitation displayed in the analysis, although in experiment

UL01, the underestimation of observed precipitation located east of Paris,

already present in experiment EGVAP, is somewhat amplified with respect

to experiment NOGPS.

Figure 5.22: Daily accumulated precipitation in mm as analyzed by AN-
TILOPE and simulated by the AROME model starting from different at-
mospheric analyses on 2 August 2013: analysis (upper left), experiment
NOGPS (upper right), experiment EGVAP (lower left), experiment UL01
(lower right)
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Figure 5.23: Satellite picture of cloud distribution at 23 February 2012 0000
UTC

5.3 NRT-DDP IWV for Storm Tracking

This section provides the results of the experiment described in Section

3.2.3. During 22-23 February 2012, a warm front (i.e. a warm air-mass

moving towards a cold air-mass) moved over northern France, Belgium and

Germany. This front was associated with a low-pressure system situated

over southern Scandinavia. Cloud formation and stratiform precipitation

was caused by riding of warm air-mass over the cold air-mass and a light

rainfall at 0400 UTC was observed in Luxembourg. A satellite picture of the

cloud distribution, as taken by Meteosat second generation (http://www.

esa.int/SPECIALS/MSG/), associated with this front at 23 February 0000

UTC is shown in Figure 5.23.

Figure 5.24 (a) shows the precipitation in millimetres at 23 February 0000

UTC over Europe as captured by weather radar (http://www.meteox.de)

whereas Figure 5.24 (b) is a 2D map of the NRT-DDP IWV distribution over

the same region at the same time. The black dots in Figure 5.24 (b) represent

the ground-based GNSS stations which are included for processing in UL01.
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To generate the IWV maps like that in Figure 5.24 (b) in the UL01 system,

IWV is first estimated over all the individual stations and then a grid with

a resolution of 15 minutes is computed by block averaging followed by an

adjustable tension continuous curvature surface gridding algorithm (Smith

et al., 1990). Therefore the density of the network of GNSS stations has an

influence on the quality of these maps. It must be noted that at this point

the systems do not automatically detect and remove outlying ZTD or IWV

estimates. It can be seen that the zones with the largest gradients in IWV

overlap with the fore-front of the precipitation events caused by the warm

front as identified by the weather radar.

The output of the NRT processing systems has a sampling interval of

15 minutes and hence the NRT-DDP IWV maps are generated for every

15th minute. This makes it possible to graphically observe the changes in

the amount of IWV and compare these changes with the weather processes.

Such an example is presented in Figure 5.25 which shows the IWV maps

obtained by UL01 for a) 20120222-1500 UTC, b) 20120222-1800 UTC, c)

20120222-2100 UTC, d) 20120223-0000 UTC, e) 20120223-0300 UTC and f)

20120223-0600 UTC. The sequence of NRT-DDP IWV maps in Figure 5.25

shows the evolution of the distribution of IWV corresponding to the passage

of the warm front shown in Figure 5.24 over Luxembourg and the Greater

Region.

Figure 5.26 presents the time series of NRT-DDP IWV over the six GNSS

stations in Luxembourg for the same time-period as that in Figure 5.25. It

can be seen that the amount of IWV increases by approximately 15 kg/m2 as

the warm front passes over Luxembourg. The station Troisvierges (TROI)

is the first to observe this change and as the front proceeds in a south-

easterly direction, the other stations observe this change too. Over TROI,

IWV reaches a value of 15.2 kg/m2 at 20120222-2245 UTC whereas over Er-

peldange (ERPE), the same value is reached at 20120223-0015 UTC which

indicates that the warm front has taken about 90 minutes to travel from

Troisvierges to Erpeldange (approximately 28 km/h). This demonstrates

the possibility of calculating the speed and direction (not explicitly shown)

of a moving weather front using GNSS and hence storms can be tracked.
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Figure 5.26: NRT-DDP IWV Time series for the 6 GNSS stations in Lux-
embourg for the period 20120222-1500 UTC to 20120223-0600 UTC
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5.4 Validation of ERA-Interim Climate Reanaly-

sis Dataset

This section provides the results of validation of the ZTD derived from

the ERA-Interim climate reanalysis dataset (referred to as ZTDerai in the

following text) using GNSS-derived ZTD (referred to as ZTDgnss in the fol-

lowing text) from a global network of stations. This experiment is described

in Section 3.2.4.

The total number of ground-based GNSS stations from the network of

DDULVMF solution included in the analysis for each climate zone (depend-

ing on the data availability for the comparison period) is shown in Figure

5.27. It could be seen that there is no data available for the Csc, Cwc, Dfd,

Dsa, and Dwd climate zones. Therefore, this analysis is based on 25 out of

the 30 climate zones.

Figure 5.27: Number of ground-based GNSS stations included in the analysis
for each climate zone

Studies in the past have shown that the climate reanalysis models are

not always able to accurately account for the topographic differences within

the model domain. It is due to the fact that these models are gridded and

assume the same value of pressure for a complete grid cell. However, in the

regions with high topographical variability, the actual pressure values can

vary rapidly and on spatial scales smaller as compared to the size of the
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Table 5.9: Ellipsoidal heights of GNSS stations in different climate zones

Zone Average [m] Minimum [m] Maximum [m] No. of Stations

Af 185.87 -64.93 3062.10 28
Am 156.98 -30.39 1167.35 10
As 298.79 -20.92 1558.38 7
Aw 314.37 -25.48 1337.54 27
BSh 260.53 190.00 331.05 2
BSk 831.10 -22.54 2347.73 13
BWh 678.93 -14.85 1734.64 4
BWk 1555.11 702.55 2488.91 5
Cfa 53.71 -27.96 397.35 72
Cfb 277.46 -3.88 3754.70 71
Cfc 146.76 22.30 476.17 5
Csa 289.27 -27.25 1842.57 34
Csb 159.70 -26.34 1319.32 36
Cwa 1394.26 1257.81 1558.08 5
Cwb 1986.20 1986.20 1986.20 1
Dfa 161.93 116.82 207.03 2
Dfb 244.94 -15.99 1714.20 32
Dfc 163.20 -19.45 541.86 22
Dsb 238.60 238.60 238.60 1
Dsc 722.24 17.13 1427.36 2
Dwa 72.83 48.81 87.43 3
Dwb 502.20 502.07 502.34 2
Dwc 2600.05 1575.51 3624.58 2
EF 354.74 20.99 1720.83 9
ET 315.55 0.42 2134.57 24

model grid cells. This fact can lead to the different behaviour of the models

in different geographical areas or in the areas of different altitudes. For

example, van Dam et el. (2010) have shown the existence of topographically

induced errors in climate reanalysis models. Therefore, for this analysis, it

is important to consider the topography and altitude of the stations located

in the different climate zones. Table 5.9 lists the minimum, maximum and

average ellipsoidal heights of the ground-based GNSS stations (included in

this analysis) located in the different climate zones.

The ZTD time series, difference time series, ZTD correlation plots and

ZTD difference histograms for the comparison between ZTDerai and ZTDgnss
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for all the stations included in this analysis are provided in Appendix D.

To show the example of these comparison plots, one of these (for station

WTZR) is shown in Figure 5.28. For each of the 25 analyzed climate zones,

the histograms of the difference between ZTDerai and ZTDgnss plotted by

combining the differences from all the stations in each zone, are shown in

Figure 5.29.

Figure 5.28: Comparison between ZTDerai and ZTDgnss for station WTZR
(Bad Koetzting, Germany)

Table 5.10 shows the statistics of the comparison between ZTDerai and

ZTDgnss for all the climate zones computed using all the available stations

in each zone. reg in Table 5.10 is the correlation coefficient between ZTDerai

and ZTDgnss averaged over all the stations in each zone. In order to study

the periodic behaviour of the ZTD difference in the various climate zones,

one station has been selected from each zone and the Lomb-Scargle peri-

odogram (not shown) has been computed for the ZTD difference time series

of each station. Table 5.11 shows the normalized power of annual (1 cpy),

semi-annual (2 cpy), seasonal (4 cpy), monthly (12 cpy) and diurnal (365

cpy, 366 cpy) frequencies in the ZTD difference time series for stations in all

the climate zones.
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(a) Af (b) Am

(c) As (d) Aw

(e) BSh (f) BSk

Figure 5.29: Histogram (green) with a normal distribution fit (black) of the
differences between ZTDerai and ZTDgnss for various climate zones
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(g) BWh (h) BWk

(i) Cfa (j) Cfb

(k) Cfc (l) Csa

Figure 5.29: (continued from previous page) Histogram (green) with a nor-
mal distribution fit (black) of the differences between ZTDerai and ZTDgnss

for various climate zones
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(m) Csb (n) Cwa

(o) Cwb (p) Dfa

(q) Dfb (r) Dfc

Figure 5.29: (continued from previous page) Histogram (green) with a nor-
mal distribution fit (black) of the differences between ZTDerai and ZTDgnss

for various climate zones



Chapter 5. Results 143

(s) Dsb (t) Dsc

(u) Dwa (v) Dwb

(w) Dwc (x) EF

Figure 5.29: (continued from previous page) Histogram (green) with a nor-
mal distribution fit (black) of the differences between ZTDerai and ZTDgnss

for various climate zones
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(y) ET

Figure 5.29: (continued from previous page) Histogram (green) with a nor-
mal distribution fit (black) of the differences between ZTDerai and ZTDgnss

for various climate zones

The correlation coefficient (reg) between ZTDerai and ZTDgnss, as can

be seen from Table 5.10, has been found to be between 0.87 and 1.00 for

the various climate zones. The highest value of reg (1.00) has been found

for the three climate zones of the climate group ”Cold (D)” i.e. Dsc (cold

- dry summer - cold summer), Dwa (cold - dry winter - hot summer) and

Dwc (cold- dry winter - cold summer), and the second-highest value (0.99)

of reg has also been found for a zone of Cold climate type (Dwc or cold-

dry winter - cold summer). The lowest value of reg (0.87) has been found

for the Tropical climate zone Af (tropical - rainforest) whereas the second-

lowest value (reg = 0.88) has been found for the Tropical climate zones

As (tropical - dry summer) and Aw (tropical - savannah). These statistics

suggest that the correlation between ZTDerai and ZTDgnss is high in the

regions with low amount of atmospheric water vapor and is low in the regions

with high amount of atmospheric water vapour. It can also be seen from

Table 5.10 that the mean of the ZTD differences varies from -4.49 mm to

15.31 mm over different climate zones whereas the standard deviation of

the ZTD differences varies from 0.08 mm to 21.06 mm and the RMS varies

from 1.64 mm to 22.72 mm. The highest RMS difference of 22.72 mm

has been found for the climate zone Cwa (Temperate - Dry Winter - Hot

Summer) which has data available from 5 GNSS stations with ellipsoidal

heights ranging from 1257.81 m to 1558.08 m, and mean ZTD difference of
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8.53±21.06 mm. The standard deviation for Cwa (21.06 mm) has also been

found to be the highest which indicates that the ZTD differences in this

zone have the highest variability among all the analyzed climate zones. By

examining Table 5.11, it can be seen that among all the analyzed zones, the

Cwa zone has the highest power of periodic signals with the power of semi-

annual (2 cpy) frequency being the highest and annual (1 cpy) being the

second-highest. The high standard deviation and RMS arise from the high

periodicity in the ZTD differences. Furthermore, the range of ellipsoidal

heights of GNSS stations in the Cwa zone indicate that this zone contains

high altitude regions and a high topographic variation may lead to large

differences between ZTDerai and ZTDgnss in this zone. The second-highest

RMS difference of 21.59 mm has been found for the climate zone Dsb (Cold

- Dry Summer - Warm Summer) which has data available from 1 GNSS

station with ellipsoidal height of 238.60 m, and mean ZTD difference of

15.31±15.23 mm. The standard deviation for this zone has been found to

be the second-highest among all the analyzed zones. Table 5.11 reveals that

the ZTD difference for the station in this zone has the second-highest powers

of annual (1 cpy), semi-annual (2 cpy) and monthly (12 cpy), and fifth-

highest power of seasonal (4 cpy) signals. The third-highest RMS difference

of 17.54 mm has been found for the climate zone Cwb (Temperate - Dry

Winter - Warm Summer) which has data available from 1 GNSS station with

ellipsoidal height of 1986.20 m, and mean ZTD difference of 1.79±17.44 mm.

For this zone, the powers of all the periodic signals lie within the five lowest

powers among all the analyzed zones. The lowest RMS difference of 1.64 mm

has been found for the climate zone Dsc (Cold - Dry Summer - Cold Summer)

which has data available from 2 GNSS stations with ellipsoidal heights of

17.13 m and 1427.36 m, and mean ZTD difference of -1.63±0.08 mm. The

standard deviation for this zone has been found to be the lowest among

all the analyzed zones. Table 5.11 reveals that for this zone, the powers

of all the periodic signals lie within the three lowest powers among all the

analyzed zones.

Figures 5.30, 5.31 and 5.32 show the global distribution of the mean, stan-

dard deviation and RMS, respectively, of the differences between ZTDerai

and ZTDgnss. Furthermore, the global distribution of reg is shown in Figure

5.33. In terms of latitude, these figures show relatively better agreement
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Figure 5.34: Variation of RMS, SDev. mean and correlation coefficient (reg)
of differences between ZTDerai and ZTDgnss with latitude

(a) RMS (b) SDev.

(c) Mean (d) reg

between ZTDerai and ZTDgnss towards the polar regions as compared to

the regions around the equator. The variation in the RMS, SDev., mean

and correlation coefficient (reg) with latitude can be seen in Figure 5.34.
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5.5 PP-DDP ZTD for Climate Variability Analy-

sis

This section provides the results of the studies used to apply the PP-DDP

ZTD for climate variability analysis. This experiment is described in Section

3.2.5.

5.5.1 Monthly Variability in the ZTD

In order to study the monthly variability in the ZTD for the 25 climate zones

analyzed in the previous section, monthly ZTD means for all the stations

in each zone were averaged. Figure 5.35 presents the zone-wise time series

of monthly ZTD means. The left panel in Figure 5.35 shows the monthly

mean time series with the actual magnitude of the ZTD (to differentiate

between ZTD magnitudes in different zones) whereas the right panel shows

the monthly mean time series after subtracting the mean of each time series

from it (to magnify the pattern of variability).

A close inspection of Figure 5.35 reveals the scatter of ZTD in different

types of climates as well as the months where the maxima and minima of the

ZTD occur. For tropical climate zones (climate group A), the scatter of ZTD

values lies within 40 mm. The ZTD in all the four zones of this type (Af, Am,

As and Aw) has one maximum around the month of May whereas that in

the zones Am and Aw has a second maximum around the month of October.

The ZTD in the arid climate zones (climate group B) has a scatter of 70 mm

with one maximum in July for the zones BSh and BSk, two maxima for the

zone BWh in January and September, and two maxima for the zone BWk in

January and December. The minima of ZTD in this climate group occur in

May for the zone BWh and in June for BWk. For the climate zones in the

temperate climate group, the scatter of the ZTD lies within 160 mm. The

climate zone Cwa has one ZTD minimum in July (during Austral Winter)

whereas all the other zones in climate group C have a maximum of ZTD

in the month of July (during Boreal Summer). The scatter of ZTD in the

cold climate zones (climate group D) lies within 200 mm and all the climate

zones in this group experience one ZTD maximum in the month of July. In

the polar climate zones (climate group E), the scatter of ZTD lies within

60 mm. In the climate zone ET (Polar - Tundra), one maximum of the
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ZTD has been found in July whereas for the zone EF (Polar - Frost), one

minimum in October and two maxima in January and December have been

found.

Furthermore, in order to study the inter-annual variability in the ZTD in

Luxembourg, monthly averages of ZTD were calculated for all the 6 SPSLux

stations for the period 2007-2014. Figure 5.36 shows, for each of the 6

SPSLux stations, the time series of monthly ZTD averages for the years 2007

to 2014 along with their mean. It can be seen that all the 6 SPSLux stations

experience the same monthly variation of the ZTD and the maximum occurs

around July. However, the magnitude of the ZTD averages for the stations

vary because the stations are located at different heights.

5.5.2 Seasonal Variability in the ZTD

In order to study the seasonal variability in the ZTD for the 25 climate zones

analyzed in the previous section, 3-monthly ZTD means for all the stations in

each zone were averaged. The months have been combined in the groups of

December-January-February (DJF), March-April-May (MAM), June-July-

August (JJA), and September-October-November (SON), to represent a to-

tal of four seasons in a year. Figure 5.37 presents the zone-wise time series

of seasonal ZTD means. The left panel in Figure 5.37 shows the seasonal

mean time series with the actual magnitude of the ZTD (to differentiate

between ZTD magnitudes in different zones) whereas the right panel shows

the seasonal mean time series after subtracting the mean of each time series

from it (to magnify the pattern of variability).

Similar to the case of monthly means, a close inspection of Figure 5.37

reveals the scatter of ZTD in different types of climates as well as the seasons

where the maxima and minima of ZTD occur. Figure 5.37 confirms the

values of the scatter of ZTD for all climate groups found in the analysis of

the monthly variability (Figure 5.35). In terms of seasonal averages, the

climate zones in the northern hemisphere have been found to have ZTD

maxima in Boreal Summer (JJA) whereas those in the southern hemisphere

have been found to have ZTD maxima in Austral Summer. In the polar

climate zones, the ET (Polar - Tundra) has been found to have maxima in

DJF and JJA seasons, and minima at MAM and SON seasons.
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Figure 5.38: Seasonal ZTD averages for the SPSLux stations

Furthermore, in order to study the seasonal variability in the ZTD in

Luxembourg, seasonal averages of ZTD were calculated for all the 6 SPSLux

stations for the period 2007-2014. Figure 5.38 shows, for each of the 6

SPSLux stations, the time series of seasonal ZTD averages for the years 2007

to 2014 along with their mean. It can be seen that all the 6 SPSLux stations

experience the same seasonal variation of the ZTD and the maximum occurs

in Summer. However, the magnitude of the ZTD averages for the stations

vary because the stations are located at different heights.
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5.6 Comparison of PP-PPP and PP-DDP ZTD

Estimates

The DDP processing strategy is generally considered more accurate than the

PPP strategy. However, PPP is computationally more efficient than DDP

network solutions and requires less resources for processing large amounts of

data. Therefore, it is of interest to study the suitability of the PPP strategy

for climate monitoring applications. To serve this purpose, a comparison of

the ZTD estimates from PP-DDP and PP-PPP solutions has been conducted

for 114 globally distributed stations and the year 2001. This experiment is

described in Section 3.2.6. The statistics of the differences between the

PP-PPP and PP-DDP ZTD solutions are summarized in Table 5.12. For

brevity, the PP-PPP ZTD is referred to as ZTDppp and the PP-DDP ZTD

is referred to as ZTDddp in the following text.

It can be seen from Table 5.12 that the mean difference between the

ZTDppp and ZTDddp ranges from -3.35 to 2.37 mm over all the 25 ana-

lyzed climate zones. Furthermore, a strong correlation (ranging from 0.90

to 1.00) has been found between ZTDppp and ZTDddp for all climate zones.

The highest RMS of the ZTD difference (5.55 mm) has been found for the

climate zone Cwb (Temperate - Dry Winter - Warm Summer) which has

data available from 1 GNSS station with ellipsoidal height of 1986.20 m.

This implies that for a station at very high altitude, the difference between

ZTDppp and ZTDddp has very high instability (leading to a large standard

deviation) whereas the lowest RMS of the difference (1.19 mm) has been

found for the climate zone Am (Tropical - Monsoon). In terms of IWV,

these RMS differences range from 0.19 to 0.93 kg m−2.

In addition to the results shown above, two additional experiments (not

shown in this thesis) have showed that 1) for the Antarctic region, the RMS

of the difference between ZTDppp and ZTDddp reduces and the correlation

coefficient increases when a higher cutoff angle of 7o is used, and 2) the

agreement between ZTDppp and ZTDddp is degraded when the Global Map-

ping Function (GMF) is used during the processing (due to the fact that

GMF is not based on NWP raytracing and does not properly account for

the changes in atmospheric water vapour).
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Chapter 6

Potential for Luxembourg

Ideas do not always come in a flash but by diligent trial-and-error

experiments that take time and thought.

Charles K. Kao

This chapter provides an assessment of GNSS and meteorological data

available in Luxembourg from various sources. It also presents the results

of a comparison of various IWV datasets derived using different sources

of meteorological data. Furthermore, based on the overall results of this

thesis, it presents the current potential of GNSS meteorology and GNSS

climatology for Luxembourg by discussing the applications of RT, NRT and

PP ZTD as well as the available meteorological data.

6.1 Assessment of GNSS-derived ZTD

The historical observation data from the six GNSS stations in Luxembourg

(SPSLux) is available since late 2006 and at the time of this thesis, the

SPSLux data availability is slightly over 8 years. Although for long term

climate research, this length of available data is not yet sufficient, how-

ever, the available historic data from SPSLux have been processed using

the PP processing system during this research in order to examine their

quality and suitability for climate monitoring applications. For validation

of the PP-PPP ZTD estimates from the SPSLux stations, these have been

compared to the ZTD obtained from the ERA-Interim dataset at the SP-

SLux station heights for a 3-year period (2011 - 2014). The ZTD values

from ERA-Interim, interpolated to the six SPSLux GNSS stations, were ob-

tained directly using the GOP - TropDB - TropModel service (http://www.

pecny.cz/gop/index.php/gop-tropdb/tropo-model-service) by speci-

fying the SPSLux station coordinates. Table 6.1 shows the statistics for this

comparison. Figure 6.1 shows the comparison of ZTD time series from the

six SPSLux GNSS stations and the corresponding ERA-Interim equivalent

ZTD using ZTD time series, ZTD difference time series, correlation plots

and histograms of the ZTD difference.

161
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(a) BASC

(b) ECHT

Figure 6.1: Comparison of GNSS and ERA-Interim ZTD for SPSLux (Sta-
tions: BASC, ECHT)
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(c) ERPE

(d) ROUL

Figure 6.1: Comparison of GNSS and ERA-Interim ZTD for SPSLux (Sta-
tions: ERPE, ROUL)
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(e) TROI

(f) WALF

Figure 6.1: Comparison of GNSS and ERA-Interim ZTD for SPSLux (Sta-
tions: TROI, WALF)
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Table 6.1: Comparison of GNSS and ERA-I ZTD for SPSLux stations

Station Mean [mm] SDev. [mm] RMS [mm]

BASC -1.07 10.66 10.71
ECHT 0.23 10.19 10.19
ERPE -2.30 10.76 11.00
ROUL -0.94 10.09 10.13
TROI 0.91 10.03 10.07
WALF -2.10 10.54 10.75

Average -0.88 10.38 10.48

Figure 6.2: Lomb-Scargle Periodogram of difference between ZTDgnss and
ZTDerai for SPSLux stations
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It can be seen from Table 6.1 and Figure 6.1 that the SPSLux and ERA-

Interim ZTD time series follow the same pattern, however, they have mean

biases ranging -2.30 to 0.91 millimeter (which, as per the results presented

in Chapter 5, is also the case for GNSS stations located in other parts of

the world). The standard deviation and RMS of the differences are consis-

tent around 10 mm. The correlation coefficient (r) between GNSS-derived

ZTD and ERA-Interim ZTD for all the six SPSLux stations has been found

to be 0.94 to 0.96. To investigate about the presence of any periodic be-

haviour in the differences between SPSLux (GNSS) and the equivalent ERA-

Interim ZTD, Figure 6.2 shows the Lomb-Scargle periodogram of the ZTD

differences for the six SPSLux stations for the frequencies ranging from 1

to 366 cycles per year (cpy). The spectral power (normalized using the

highest power i.e. annual for ERPE) of the annual, semi-annual, seasonal

(3-monthly), monthly and diurnal signal for each of the six stations are also

listed in Table 6.2. It could be seen from Table 6.2 that except for the

station ECHT, the annual signal (1 cpy) has the highest power.
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6.2 Assessment of Meteorological Data

Surface pressure (referred to as ”pressure” in the following text) and sur-

face temperature (referred to as ”temperature” in the following text) are

needed to convert the ZTD into IWV (Figure 1.1, Section 2.3.4). This

assessment has been carried out by comparing the pressure and tempera-

ture values obtained from various sources to their equivalent values derived

from the ERA-Interim dataset. The pressure and temperature values from

ERA-Interim, interpolated to the six SPSLux GNSS stations, were obtained

directly using the GOP - TropDB - TropModel service (http://www.pecny.

cz/gop/index.php/gop-tropdb/tropo-model-service) by specifying the

SPSLux station coordinates.

6.2.1 Assessment of Pressure Data

The surface pressure values at the SPSLux station locations were obtained

from the sources mentioned in Section 4.5 i.e. UKMO, ANAMET (MétéoLux),

ASTA and ERA-Interim datasets and using the ERA-Interim dataset as a

reference, a comparison of these values was performed using the common

epochs available in all datasets for a period of 2011-2014. The UKMO and

ASTA pressure values are only reported at the mean seal level (MSL) and

were therefore corrected (using the formulas given in Appendix B) to the

SPSLux station heights (Table 4.1). The ANAMET pressure values are

available at both the sensor height and MSL, but for consistency, the MSL

values have been used and are corrected for SPSLux station heights (us-

ing the formulas given in Appendix B). It is important to mention here

that the ASTA data obtained is not quality controlled and therefore con-

tains various outliers that have been removed (by rejecting the values with

a difference greater than 10 hPa with the reference) prior to computing the

statistics. The ASTA data amongst others form the basis for the Atlas

Hydro-Climatique du Grand-Duch de Luxembourg (English: Hydroclimatic

Atlas of the Grand Duchy of Luxembourg) prepared by the Luxembourg

Institute of Science and Technology (LIST) (https://www.list.lu/) and

therefore these are quality controlled by LIST. However, as LIST currently

does not provide these quality controlled data in a timely manner required

for NRT and RT applications, it is inevitable to use the raw ASTA data

(i.e. which is not quality controlled) for this thesis. The ERA-Interim pres-
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Figure 6.3: Pressure (top) and Temperature (bottom) time series from var-
ious sources for SPSLux station BASC

sure values correspond directly to the SPSLux station locations as these

were interpolated from the grid (linear spatial and temporal interpolations).

Furthermore, the temporal resolution of pressure values used for this com-

parison is 1 hour. The top panel in Figure 6.3 shows the time series (after

removal of outliers) of the available pressure values [hPa] in all datasets for

SPSLux station BASC and the period 2011-2014. For the other five SPSLux

stations, the pressure time series can be seen in Appendix E.

Table 6.3 provides the statistics of the comparison of the pressure values.

In terms of the average of mean differences for all the 6 SPSLux stations,

it can be seen that the ANAMET pressure values are in the best agree-
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ment with the ERA-Interim pressure values with the average difference of

-0.21 hPa whereas the highest average difference of 1.17 hPa has been found

in the pressure values from ASTA.

For some cases, Table 6.3 also shows a relation between the pressure differ-

ence and the distance between the GNSS station and the pressure observing

sensor (the reader is referred to Table 4.11 in Chapter 4 for the distances be-

tween GNSS stations and corresponding meteorological sensors). For exam-

ple, for (Pukmo−Perai), the highest mean and RMS difference (0.85 hPa and

1.22 hPa) are found for the most distant station TROI. The second highest

mean and RMS difference (0.65 hPa and 1.02 hPa) are found for the second-

most distant station ROUL. This is the case for four out of the six SPSLux

stations. The lowest mean and RMS difference (0.19 hPa and 0.63 hPa)

are found for the station ERPE which has the second-lowest distance to the

pressure sensor. In the cases of (Panamet − Perai) and (Pasta − Perai), how-

ever, a clear relation between station-sensor distance and the value of the

difference has not been found. The UKMO and ANAMET datasets repre-

sent the observations from the same (Findel) sensor but it was found that

the MSL pressure values in these two datasets have a mean difference of

−0.27 ± 1.01 hPa with minimum and maximum differences of −3.92 hPa

and 2.74 hPa, respectively. This difference is believed to be due to the qual-

ity control of the observations by the WMO. In the case of ASTA, it has

been found that the pressure difference is small (less than 0.5 hPa) when

the observations from the ASTA sensors Oberkorn and Roullingen are used.

6.2.2 Assessment of Temperature Data

The surface temperature values at the SPSLux station locations were ob-

tained from the UKMO, ANAMET (MétéoLux), ASTA and ERA-Interim

datasets and using the ERA-Interim dataset as a reference, a comparison of

these values was performed using the common epochs available in all datasets

for a period of 2011-2014. Considering the very small lapse rate of tempera-

ture (-0.0065 K/m), no height corrections have been applied to either of the

temperature values. Furthermore, the temporal resolution of temperature

values used for this comparison is 1 hour. Table 6.4 provides the statistics of

this comparison. It can be seen that temperature values from all the sources
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show a sub-Kelvin agreement to those from the ERA-Interim dataset. The

behaviour of the differences (Tanamet − Terai) and (Tukmo − Terai) is very

consistent except for the presence of a constant bias between the two. The

smallest mean bias has been found for (Tanamet − Terai). Furthermore, the

effect of station-sensor distances on temperature difference was found to be

marginal unlike some cases in the pressure comparison.
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6.3 Comparison of IWV Datasets

In order to investigate the suitability of meteorological data available in

Luxembourg for conversion of GNSS-derived ZTD into IWV, IWV has been

obtained using ZTD from SPSLux GNSS stations using various meteorolog-

ical data sources and compared to its equivalent from the climate reanalysis

model ERA-Interim. For this comparison, a total of four IWV datasets have

been computed for each of the six SPSLux GNSS stations. These datasets

are briefly described below whereas the formulas and procedures used to

obtain these datasets are presented in Appendix F.

ERA-Interim IWV (IWVerai) This IWV dataset, which is used as

a reference, has been derived using the ZWD and mean atmospheric

temperature (Tm) values extracted from the ERA-Interim dataset (in-

terpolated to the SPSLux station positions).

ASTA IWV (IWVasta) This IWV dataset has been derived by first

computing the ZHD using surface pressure from ASTA sensors and

then converting the resulting ZWD to IWV using the surface temper-

ature from ASTA sensors.

ANAMET IWV (IWVanamet) This IWV dataset has been derived

by first computing the ZHD using the surface pressure which is ob-

tained using the meteorological data directly provided by ANAMET

(the WMO Findel sensor).The resulting ZWD has been converted to

IWV using the surface temperature from the ANAMET meteorological

data.

UKMO IWV (IWVukmo) This IWV dataset has been derived us-

ing the meteorological data for the WMO Findel sensor provided in

the UKMO hourly meteorological data file. First, the ZHD has been

computed using the surface pressure and then the resulting ZWD has

been converted to IWV using the surface temperature.

Figures 6.4 and 6.5 show the comparison of the time series of ERA-Interim

and other three IWV datasets for the SPSLux GNSS stations. It could be

seen that all the IWV time series follow the same pattern. The statistics of

the comparison between ERA-Interim and the other IWV datasets are shown
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(a) BASC

(b) ECHT

(c) ERPE

Figure 6.4: Time series of IWV derived from ERA-Interim and SPSLux
GNSS (Stations: BASC, ECHT, ERPE)
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(a) ROUL

(b) TROI

(c) WALF

Figure 6.5: Time series of IWV derived from ERA-Interim and SPSLux
GNSS (Stations: ROUL, TROI, WALF)
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Table 6.6: RMS of differences in Pressure, Temperature and IWV for various
solutions

Solution RMS(∆P ) [hPa] RMS(∆T ) [oK] RMS(∆IWV ) [kg m−2]

UKMO 0.86 1.56 2.16
ANAMET 1.14 1.55 2.46
ASTA 2.53 1.87 2.53

in Table 6.5. It can be seen from Table 6.5 that the mean difference between

IWV of the three solutions and the reference ranges from −1.79 kg m−2 to

−1.44 kg m−2 with the lowest mean difference being for IWVasta. However,

the differences of IWVukmo and IWVanamet are more stable (lower standard

deviation than IWVasta).

In order to study the impact of using the pressure and temperature values

from different sources on the differences between the obtained and reference

IWV, the RMS differences of pressure, temperature and IWV from each

of the three datasets are shown in Table 6.6. It can be seen from Table

6.6 that using the pressure and temperature values from UKMO leads to

the lowest RMS difference (2.16 kg m−2) in the obtained IWV. Using the

pressure and temperature values from ANAMET leads to an IWV difference

of 2.46 kg m−2 whereas using those from ASTA leads to an IWV difference

of 2.53 kg m−2. However, the difference between the obtained and reference

IWV (for all three cases) agrees within 0.37 kg m−2.

6.4 Application of RT ZTD

As mentioned in Chapter 4, Luxembourg has a network of six GNSS stations

which all belong to the Administration du Cadastre et de la Topographie

(ACT) [English: The Administration of Cadastre and Topography] of Lux-

embourg. While the primary application of these stations is in the NRTK

Satellite Positioning Service (SPSLux) of ACT, the GNSS data can also be

obtained in RT. Using the SPSLux RT observation streams and an appro-

priate RT GNSS processing software, e.g. BNC or G-Nut/Tefnut (Section

3.1.1), RT-PPP ZTD estimates for these six stations can be obtained with

an update rate as high as 1 second. Furthermore, using the 1 second ZTD

estimates, moving averages (e.g. 5 minutes or 10 minutes) can be computed
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and hence the ZTD can be provided to the meteorological community with

a latency of as low as 5 minutes which is adequate for data assimilation into

NWP models.

Using the high-rate pressure and temperature data from the meteorolog-

ical sensors present in Luxembourg (Sections 4.5 and 6.2), it is possible to

convert the ZTD into IWV with latencies of as low as 5 minutes and this

low latency IWV can be used to monitor the movement of weather fronts or

storms as discussed in Section 5.3.

6.5 Application of NRT ZTD

The weather forecasts issued for Luxembourg are based on the output of the

AROME NWP model operational at MétéoFrance. It has been shown in

Section 5.2 that the NRT ZTD solution produced during this research has a

positive influence on the quality of weather forecasts (specially precipitation

forecasts) for Luxembourg. The NRT ZTD solution produced during this

research (UL01) is routinely submitted to EGVAP as a test solution for

monitoring purposes (which means that it is not currently assimilated in any

NWP model). The results presented in Section 5.2 show that if the UL01

solution is made an operational solution, i.e. it is operationally assimilated

in the AROME NWP model, it will improve the quality of forecasts of

precipitation and other parameters for Luxembourg and the Greater Region

(Mahfouf et al., 2015).

The results presented in Section 5.3 show that it is possible to use the

2D IWV fields obtained from the hourly NRT system developed during this

research can be used to monitor the rapid changes in IWV over Luxembourg

which can in turn lead to the monitoring of weather fronts and storms in

the region.

6.6 Application of PP ZTD

The results presented in Section 5.4 show that the SPSLux historic data

can be used to produce a good quality ZTD time series for the whole pe-

riod since the stations are in operation. During this research, the available
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ZTD time series from SPSLux has been used to study the variability and

trends in the climate over Luxembourg and provided that the SPSLux sta-

tions are kept operational and maintained properly over the years to come,

the SPSLux observations can provide good means of studying the climate

of the region. Furthermore, it is of utmost importance to document and re-

port any hardware changes occurring at the SPSLux GNSS stations so that

the effects of such changes can be accounted for during the data processing

and inconsistencies in the ZTD time series can be avoided. The findings in

Sections 6.2 and 6.3 also suggest that using the meteorological data avail-

able in Luxembourg, historical (and long-term when more data is available)

IWV time series for Luxembourg can be obtained for climate monitoring

applications.

6.7 Application of Meteorological Sensors

Luxembourg has a large amount of meteorological sensors (including 1 WMO

sensor (Findel) and 52 sensors from ASTA) located all around the country’s

territory (shown in Figure 6.6 and Section 4.6). The Luxembourg Insti-

tute of Science and Technology (LIST) (https://www.list.lu/) carries

out quality control of the data available from these sensors but these qual-

ity controlled data are not readily available for NRT and RT applications.

Some of these meteorological sensors are located nearby each of the six SP-

SLux ground-based GNSS stations. Therefore, the suitability of the pressure

and temperature values from these sensors for the conversion of the ZTD

obtained at the SPSLux station locations has been investigated in Section

6.2. Furthermore, these sensors have a fairly uniform distribution across the

country and this fact leads to the possibility of defining a high resolution

grid of meteorological data over Luxembourg which could be used for many

research, industrial and agricultural applications.
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Figure 6.6: Ground-based GNSS and meteorological data sources available
inside Luxembourg
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6.8 Comparison to WMO IWV Accuracy Require-

ments

The requirements on the accuracy of the IWV, set by WMO, for applications

in nowcasting, NWP and climate monitoring can be found at https://www.

wmo-sat.info/oscar/variables/view/162. A comparison was performed

between the achieved accuracy of IWV for Luxembourg using different pro-

cessing modes and the WMO accuracy requirements. The real-time and

near real-time retrieval of IWV is intended for nowcasting and NWP appli-

cations, whereas the IWV retrieval in post-processing mode is intended for

use in climate monitoring. Table 6.7 summarizes the results of this com-

parison by mentioning if the IWV for Luxembourg obtained using the three

processing modes meets the target and threshold requirements on accuracy

for the various applications.

It can be seen from Table 6.7 that the IWV obtained in all the three modes

(real-time, near real-time and post-processing) either meets the target or the

threshold requirement on the accuracy.
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Chapter 7

Conclusions and Suggestions

for Future Work

Thou seest not, in the creation of the All-merciful any

imperfection, Return thy gaze, seest thou any fissure. Then

Return thy gaze, again and again. Thy gaze, Comes back to thee

dazzled, aweary.

Qur’an, 67:4-5

This chapter summarizes all the results and findings of the thesis in

form of conclusions. After the conclusions, it provides the suggestions for

the future work.

7.1 Conclusions

This thesis presents the results of the doctoral research project titled ”The

Potential of Precipitable Water Vapour Measurements from Global Navi-

gation Satellite Systems in Luxembourg” (project acronym: PWVLUX).

PWVLUX, as a major outcome, has established the infrastructure for the

utilization of GNSS observations for meteorological and climatological appli-

cations in Luxembourg. Furthermore, it has put Luxembourg on a map with

18 other GNSS meteorology groups in Europe through establishing a par-

ticipation in the EUMETNET EIG Water Vapour Programme (EGVAP).

The scientific conclusions of this thesis have been divided into seven parts

in accordance to the order of the described experiments in Chapter 3.

RT ZTD for NWP Applications

The suitability of RT-PPP ZTD estimates from three different software

packages for operational meteorology was assessed through a comparative

analysis using the IGS final troposphere product and RS data as refer-

ences. In terms of standard deviation, it was seen that the solutions from

the G-Nut/Tefnut software library achieved the best agreement with these.

184
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The solutions from BNC2.7 are the next closest to the reference. Among

the BNC2.7 solutions, lower biases have been found for the solutions com-

puted using the correction stream containing a Kalman Filter combination

(IGS02) rather than the one computed using a single-epoch solution correc-

tion stream (IGS01). The ambiguity float solution from the PPP-Wizard has

the largest bias to IGFT because of the fact that it currently does not apply

receiver ARP eccentricity and PCO corrections during processing. However,

the application of ARP eccentricity and PCO corrections on the coordinates

prior to processing leads to a 66% reduction in this bias. Integer ambiguity

resolution using the PPP-Wizard seems to have a millimeter-level effect on

the RT-PPP ZTD estimates and is beneficial for the rapid re-convergence

of PPP solutions. The RT-PPP ZTD solutions were compared with the es-

tablished user requirements for NWP nowcasting by using the RMS bias to

IGFT as a measure of relative accuracy. It was found that GN01, GN02, and

BN02 fulfill the threshold requirements on ZTD accuracy, whereas BN01,

and PWFL, PWFX (and PWFX2) exceed this threshold. The RT-PPP

ZTD solutions were also compared with RS-based ZTD, and an agreement

of 1-3 cm in terms of bias and 1-4 cm in terms of standard deviation was

found between the two. Furthermore, the comparison with the user require-

ments was repeated by using the RMS bias between GNSS-derived ZTD

and RS-based ZTD as a measure of relative accuracy, and it showed that

only the two G-Nut/Tefnut solutions (GN01 and GN02) meet the threshold

requirements, whereas the BNC2.7 and PPP-Wizard solutions, without the

implementation of precise bias models in the software, exceed the thresh-

old. However, the implementation of precise bias models such as receiver

antenna PCV, ocean tide loading and higher-order ionospheric corrections

in these software packages can enhance their suitability for NWP nowcasting

(Ahmed et al., 2016).

NRT ZTD for NWP Applications

An impact assessment of the assimilation of GNSS-derived ZTD observa-

tions into the 3D-VAR system of the convective scale NWP model AROME

developed at Météo-France for issuing operational mesoscale short-range

forecasts over Western Europe was performed. Assimilation experiments

were undertaken for a 1-month period in July-August 2013, corresponding

to an upgrade of the model’s operational forecasting suites with additional
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observing systems at Météo-France. Even though many impact studies have

been performed in the past to examine the interest of GNSS-derived ZTD

on the forecast skill of NWP models, an original aspect concerns the de-

sign of the observing system where GNSS-derived ZTD data represents less

than 2 percent of the total observations assimilated in AROME. This small

fraction is a consequence of the capacity of 3D-VAR to ingest many other

data types, in particular radar reflectivity and radial winds, that provide sig-

nificant information on moisture and dynamical fields at mesoscale levels.

However, contrary to other remote sensing observations that are only useful

when it rains (weather radars) or in clear-sky or above clouds (satellite radi-

ances), GNSS-derived ZTD data are available in all weather conditions with

high temporal resolution and lower cost. Three assimilation experiments

were conducted where in the first experiment (NOGPS), all other obser-

vations were assimilated except for the GNSS-derived ZTD. In the second

experiment (EGVAP), the GNSS-derived ZTD from the operational EGVAP

solutions were assimilated in addition to the observations assimilated in the

NOGPS experiment. In the third experiment, GNSS-derived ZTD observa-

tions from UL01 solution were assimilated in addition to those assimilated in

the NOGPS and EGVAP experiments. The NOGPS experiment served as a

baseline to verify that the GNSS-derived ZTD still contributes in a positive

manner to the model analyses and to the forecasts of AROME, in particular

since a recent revision of the model’s white list and data selection. The UL01

experiment in addition to the EGVAP experiment was conducted to examine

the sensitivity of the forecasting system to additional GNSS-derived ZTD

observations provided by the UL01 solution. It was found that for both the

EGVAP and UL01 ZTD datasets, the static bias correction scheme allowed

to remove most of the bias and that the data selection lead to unbiased and

Gaussian statistics that are necessary conditions for an optimal assimilation.

Among the stations present in the UL01 solution, the six stations in Luxem-

bourg were found to have very large biases (around 30 mm) with the model

equivalent ZTD and were therefore not selected to enter the ’white list’. The

reason for this has been identified by the supervisor since the completion of

the PhD research and is related to the handling of PCO corrections by the

data provider. The quality of the remaining stations in the UL01 solution

was found to be similar to that of the current operational stations provided

through EGVAP. Therefore, after excluding the six stations in Luxembourg,
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the UL01 solution was found to be fulfilling the criteria for the assimilation

and its assimilation was successful in AROME. As a result of the assimi-

lation of the GNSS-derived ZTD, the AROME short-range forecasts were

found to be closer to the observations that are sensitive to humidity which

implies that through the assimilation of GNSS-derived ZTD, the 3-hour pre-

diction of the humidity field by AROME becomes closer to the truth. The

investigation of the impact on objective forecast skill scores revealed a small

positive impact on screen-level relative humidity and the 24-hour precipita-

tion accumulations. The categorical scores were found to be systematically

improved when the UL01 data were assimilated in addition to the opera-

tional EGVAP ZTD observations. Examination of three precipitation case

studies confirmed that the GNSS-derived ZTD observations affect the pre-

dicted location and intensity of rain systems that generally improved the

quality of the numerical forecasts. It was found that the additional ZTD

data provided by UL01 significantly modified rainfall patterns with, most of

the time, a better location and intensity of precipitating cells.

NRT IWV for Storm Tracking

Results from the hourly NRT GNSS data processing system for a warm

front and its corresponding precipitation events crossing over Luxembourg

and the Greater Region on 22-23 February 2012 were presented. The 2D

maps of IWV obtained from the hourly NRT system are compared with

cloud distribution and precipitation maps from satellite and weather radar

data, respectively, and a good agreement in the location of the front system

has been found. The evolution of the GNSS-derived IWV was observed

during the passage of the front and it was found that the IWV increased by

approximately 15 kg/m2 as the front passed over Luxembourg. It was shown

that by observing the IWV change over the ground-based GNSS stations in

Luxembourg in NRT, it is possible to determine the speed and direction of

passing fronts and hence storms can also be tracked.

Validation of ERA-Interim Climate Reanalysis Dataset

ZTD derived from the ERA-Interim climate reanalysis model (ZTDerai)

were validated for 25 climate zones by a comparison with GNSS-derived

ZTD (ZTDgnss) at the locations of over 400 globally distributed (in different
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climate zones) ground-based GNSS stations. The correlation coefficient (reg)

between ZTDerai and ZTDgnss was found to be between 0.87 and 1.00 for

the various climate zones. The highest value of reg (1.00) was found for the

three ”Cold” climate zones namely Dsc (cold - dry summer - cold summer),

Dwa (cold - dry winter - hot summer) and Dwc (cold- dry winter - cold

summer), and the second-highest value (0.99) of reg was found for another

”Cold” climate zone (Dwc or cold- dry winter - cold summer). The lowest

value of reg (0.87) was found for the ”Tropical” climate zone Af (tropical -

rainforest) whereas the second-lowest value (reg = 0.88) has been found for

the ”Tropical” climate zones As (tropical - dry summer) and Aw (tropical

- savannah). These values of the correlation coefficient suggested that the

correlation between ZTDerai and ZTDgnss is high in the regions with low

amount of atmospheric water vapor and is low in the regions with high

amount of atmospheric water vapour.

It was also found that the highest mean, standard deviation and RMS of

the differences correspond to the climate zones with high altitude, high to-

pographic variation and high periodicity in the ZTD residuals. Furthermore,

a generalization of the global statistics in terms of latitude suggested that

the agreement between ZTDerai and ZTDgnss is relatively better towards

the polar regions as compared to that in the regions around the equator.

This fact reinforced the conclusion that ZTDerai has higher accuracy in the

regions with lower amount of atmospheric water vapour.

PP ZTD for Climate Variability Analysis

Monthly and seasonal means of GNSS-derived ZTD (ZTDgnss) were com-

puted using a global ZTDgnss dataset consisting of 19-years of data from

over 400 stations to study the climate variability in different climate zones.

It was found that for tropical climate zones (climate group A), the scatter

of ZTD values lies within 40 mm. The ZTD in all the four zones of this

type (Af, Am, As and Aw) was found to have one maximum around the

month of May whereas that in the zones Am and Aw was found to have

a second maximum around the month of October. The ZTD in the arid

climate zones (climate group B) was found to have a scatter of 70 mm with

one maximum in July for the zones BSh and BSk, two maxima for the zone
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BWh in January and September, and two maxima for the zone BWk in

January and December. The minima of ZTD in this climate group were

found to be occurring in May for the zone BWh and in June for BWk. For

the climate zones in the temperate climate group, it was found that the

scatter of the ZTD lies within 160 mm. The climate zone Cwa was found

to have one ZTD minimum in July (during Austral Winter) whereas all the

other zones in climate group C were found to have a maximum of ZTD in

the month of July (during Boreal Summer). It was found that the scatter of

ZTD in the cold climate zones (climate group D) lies within 200 mm and all

the climate zones in this group experience one ZTD maximum in the month

of July. Whereas, in the polar climate zones (climate group E), the scatter

of ZTD was found to be within 60 mm. In the climate zone ET (Polar -

Tundra), one maximum of the ZTD was found in July whereas for the zone

EF (Polar - Frost), one minimum in October and two maxima in January

and December were found.

The values of the scatter of ZTDgnss, as obtained using the monthly

means, were confirmed when computed using the seasonal means. In terms

of seasonal averages, it was found that the climate zones in the northern

hemisphere have ZTD maxima in the Boreal Summer (JJA) whereas those

in the southern hemisphere have ZTD maxima in the Austral Summer. In

the polar climate zones, the ET (Polar - Tundra) zone was found to have

maxima in the DJF and JJA seasons, and minima at the MAM and SON

seasons.

Monthly and seasonal variability in ZTDgnss were also studied for the

locations of 6 ground-based GNSS (SPSLux) stations in Luxembourg. It

was found that all the 6 SPSLux stations experience the same monthly and

seasonal variability of ZTDgnss. In terms of monthly variation, it was found

that the maxima in ZTDgnss occurs around the month of July for all the

6 SPSLux stations whereas in terms of seasonal variation, the location of

maxima was found to be in Summer (JJA).

Comparison of PP-PPP and PP-DDP ZTD Estimates

In order to study the suitability of the PPP strategy for climate mon-

itoring applications, a comparison of the ZTD estimates from PP-DDP
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(ZTDddp) and PP-PPP (ZTDppp) solutions was conducted for 114 globally

distributed stations and the year 2001. It was found that the mean differ-

ence between the ZTDppp and ZTDddp ranged from -3.35 to 2.37 mm over all

the 25 analyzed climate zones. Furthermore, correlation coefficients ranging

from 0.90 to 1.00, and RMS differences ranging from 1.19 to 5.55 mm were

found between ZTDppp and ZTDddp for these climate zones. It was seen

that for a station at very high altitude, the difference between ZTDppp and

ZTDddp has very high instability (leading to a large standard deviation). In

terms of IWV, the RMS differences were found to be ranging from 0.19 to

0.93 kg m−2. As per two additional experiments, not shown in this thesis, it

was found that for the Antarctic region, the RMS of the difference between

ZTDppp and ZTDddp reduces and the correlation coefficient increases when a

higher cutoff angle of 7o was used, and that the agreement between ZTDppp

and ZTDddp is degraded when the Global Mapping Function (GMF) is used

during the processing (due to the fact that GMF is not based on NWP ray-

tracing and does not properly account for the changes in atmospheric water

vapour).

Assessment of Meteorological Data for IWV Estimation

For the locations of all the six ground-based GNSS stations located in Lux-

embourg, the ZTD and IWV derived from GNSS observations, and surface

pressure and temperature values obtained from locally available data sources

were evaluated by comparing them to their equivalent values derived using

the ERA-Interim climate reanalysis dataset. It was found that the time

series of GNSS-derived ZTD (ZTDgnss) and ERA-Interim ZTD (ZTDerai)

follow the same pattern with mean biases ranging from -2.30 to 0.91 mm.

The annual signal was found to be the most dominant periodic signal in the

ZTD residuals. The correlation coefficients between ZTDgnss and ZTDerai

were found to be between 0.94 and 0.96.

The surface pressure obtained from local meteorological data sources agrees

to its ERA-Interim equivalent with mean differences between 0.49 and 1.17

hPa whereas a similar comparison for temperature values yields mean dif-

ferences ranging from -0.63 to 0.10 K.
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The mean difference between IWV of the three solutions (IWVasta, IWVukmo

and IWVanamet) and the reference (IWVerai) ranged from -1.79 to -1.44 kg

m−2 with the lowest mean difference being computed for IWVasta. However,

the differences of IWVukmo and IWVanamet are more stable (lower standard

deviation than IWVasta). It was also evident that all the IWV time series

follow the same pattern. The RMS of the residuals of IWVasta, IWVukmo

and IWVanamet were found to be agreeing to within 0.37 kg m−2.

The results suggest that among the locally available sources of meteoro-

logical data, the UKMO dataset is the most suitable and should be the first

preference for IWV estimation in Luxembourg. In case the UKMO data

is not available, the second and third preferences should be given to the

ANAMET and the ASTA datasets, respectively. This order of preference

is valid for all real-time, near real-time and post-processing IWV solutions.

Furthermore, it has been found that the IWV obtained in all the three modes

(real-time, near real-time and post-processing) either met the target or the

threshold accuracy requirements as set by WMO.

It is concluded that Luxembourg has the GNSS observations and meteo-

rological data of adequate quality locally available which makes it possible

to implement the application of GNSS meteorology and climatology opera-

tionally in the country. Furthermore, the spatial gap in the real-time, near

real-time and post-processed observations of atmospheric water vapor over

Luxembourg can be filled using the data presented and evaluated in this

study.

7.2 Suggestions for Future Work

Based on the findings of this thesis, this section provides the suggestions for

future work.

• The UL01 solution should be given the status of an ’operational’ so-

lution inside E-GVAP so that it could be operationally assimilated

in the AROME model, the NWP model used by MeteoLux for their

forecasts. This would enhance the quality of the weather forecasts for

Luxembourg and the Greater Region.
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• The processing engine of the UL01 system should be updated to BSW52

so that the more precise tropospheric mapping functions such as VMF1

could be implemented in the processing. This would also allow the ex-

pansion of the system to include GLONASS and other available GNSS

observations.

• The processing engine of the RT system should be changed from

BNC27 to the G-Nut/Tefnut as it produces more precise and stable

RT-PPP ZTD estimates. The use of the PPP-Wizard would require a

number of bias model updates before it could provide adequate results.

• The AROME assimilation experiments should be repeated by includ-

ing the SPSLux ZTD estimates computed using the corrected real-time

streams from the data provider.

• A grid of surface pressure and temperature values with a uniform spa-

tial and temporal resolution should be defined by using the standard-

ized meteorological data from all the available sources in Luxembourg.

This could then be expanded to cover the Greater Region which would

benefit the meteorological applications of GNSS discussed.

• This work highlights the scientific value of the archived GNSS data.

For long-term studies in the future, it is of importance to follow the

international recommendations for station operators and report any

changes to the stations.
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Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock,

O., Pacione, R., Elgered, G., Vedel, H., and Bender, M. (2016): Review of

the state of the art and future prospects of the ground-based GNSS mete-

orology in Europe, Atmos. Meas. Tech., 9, 5385-5406, doi:10.5194/amt-9-

5385-2016

Gutman S, Sahm S R, Benjamin S G, Schwartz B E, Holub K L, Stewart J

Q, Smith T L (2004) Rapid retrieval and assimilation of ground based GPS

precipitable water observations at the NOAA forecast systems laboratory:

Impact on weather forecasts. J Meteorol Soc Jpn Ser II 82(1B), 351–360

Ha SY, Kuo YH, Guo YR, Rocken C, and Van Hove T (2002): Com-

parison of GPS slant wet delay measurements with model simulations

during the passage of a squall line, Geophys. Res. Lett., 29(23), 2113,

doi:10.1029/2002GL015891

Hofmann-Wellenhof B, Lichtenegger H, Wasle E. (2007). GNSS-global nav-

igation satellite systems: GPS, GLONASS, Galileo, and more. Wien:

Springer



References 198

H van der Marel, COST-716 demonstration project for the near real-time

estimation of integrated water vapour from GPS, Physics and Chemistry

of the Earth, Parts A/B/C, Volume 29, Issues 23, 2004, Pages 187-199,

ISSN 1474-7065, http://dx.doi.org/10.1016/j.pce.2004.01.001
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Václavovic P, Douša J, Gyori G (2013) G-Nut software library - State of

development and first results. Acta Geodyn Geomat, 10(172) (in print)

van Dam T., Altamimi Z., Collilieux X. and Ray J., 2010. Topographically

induced height errors in predicted atmospheric loading effects. J. Geophys.

Res., 115, B07415, DOI: 10.1029/2009JB006810

Vedel H, de Haan S, Jones J, Bennitt G, Offiler D (2013) E-GVAP third

phase. Geophys Res Abstr Vol. 15, EGU2013-10919

Vey S, Dietrich R, Rülke A, Fritsche M, Steigenberger P, and Rothacher

M, (2010): Validation of Precipitable Water Vapor within the NCEP/DOE

Reanalysis Using Global GPS Observations from One Decade. J. Climate,

23, 16751695.doi: http://dx.doi.org/10.1175/2009JCLI2787.1

Wang J, and Zhang L (2009): Climate applications of a global, 2-hourly

atmospheric precipitable water dataset from IGS ground-based GPS mea-

surements. J. of Geodesy, 83, 209-217 (DOI: 10.1007/s00190-008-0238-5)

Weber G, Mervart L (2012) BKG Ntrip Client (BNC) Version 2.7 Manual.

Federal Agency for Cartography and Geodesy, Frankfurt, Germany

Weber G, Dettmering D, Gebhard H (2006) Networked Transport of RTCM

via Internet Protocol (NTRIP). IAG Symposia Series, vol. 128, 60-64

Wessel, P., and W. H. F. Smith, 1998, New, improved version of the Generic

Mapping Tools Released, EOS Trans. AGU, 79, 579
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Appendix A

Ground-based GNSS Stations

A.1 Stations Processed by RT System

ID Name Country Lat. Lon. Hgt.

[deg] [deg] [m]

-------------------------------------------------------------------------

AJAC Ajaccio France 41.55 8.45 99.00

ARLO Arlon Belgium 49.65 5.82 428.66

BASC Bascharage Luxembourg 49.57 5.94 375.76

BATT Battice Belgium 50.64 5.83 322.81

BERL Berloz Belgium 50.70 5.19 185.58

BOGI Borowa Gora Poland 52.28 21.02 139.90

BOR1 Borowiec Poland 52.28 17.07 124.36

BORJ Island of Borkum Germany 53.58 6.67 48.30

BRST Brest France 48.22 -4.29 65.80

BRUX Brussels Belgium 50.47 4.21 158.30

BZRG Bolzano - Bozen Italy 46.29 11.20 328.80

CAGZ Capoterra Italy 39.09 8.58 238.00

CHAR Charleroi Belgium 50.41 4.45 164.72

DARE Daresbury United Kingdom 53.34 -2.64 88.44

DENT Dentergem Belgium 50.93 3.40 63.88

DRES Dresden Germany 51.03 13.73 203.05

EBRE Roquetes Spain 40.82 0.49 107.79

ECHT Echternach Luxembourg 49.80 6.44 304.54

ENTZ Entzheim France 48.55 7.64 204.26

ERPE Erpeldange Luxembourg 49.55 6.32 217.38

FLOR Florenville Belgium 49.76 5.14 447.98

FOVA FOVA Belgium 50.32 4.22 172.16

GANP Ganovce Slovakia 49.02 20.19 745.20

GHIS St. Ghislain Belgium 50.45 3.88 79.78

GOPE Ondrejov Czech Republic 49.91 14.79 592.58

GRAS Caussols France 43.45 6.55 1319.30

GRAZ Graz Austria 47.07 15.49 538.28
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HERT Hailsham United Kingdom 50.87 0.33 83.33

HOE2 Hoernum / Island Sylt Germany 54.76 8.29 62.40

HOFN Hoefn Iceland 64.27 -15.20 82.64

HUEG Huegelheim Germany 47.50 7.35 278.40

INVR Inverness United Kingdom 57.49 -4.22 66.16

JOZ2 Jozefoslaw Poland 52.05 21.02 152.50

KAIN Kain Belgium 50.63 3.37 66.36

KARL Karlsruhe Germany 49.01 8.41 182.90

KURE Kuressaare Estonia 58.26 22.51 41.50

LAMA Olsztyn Poland 53.53 20.40 187.00

LEGL Leglise Belgium 49.86 5.51 544.51

LEIJ Leipzig Germany 51.33 12.37 178.40

LIL2 Lille-IUTA2 France 50.61 3.14 96.20

MABO MABO Belgium 50.07 5.74 493.85

MAFA Marche-en-Famenne Belgium 50.24 5.30 287.21

MAR6 Maartsbo Sweden 60.60 17.26 75.40

MARI Mariembourg Belgium 50.09 4.51 210.31

MARS Marseille France 43.27 5.35 61.80

MATE Matera Italy 40.65 16.70 535.64

MEIX Meix-devant-Virton Belgium 49.62 5.44 369.49

MOHA Moha Belgium 50.54 5.19 180.89

NAMR Namur Belgium 50.47 4.86 159.35

NIVL Nivelles Belgium 50.59 4.30 186.22

OLLN Ottignies-Louvain-la-Neuve Belgium 50.68 4.63 189.24

ONHA Onhaye Belgium 50.25 4.85 293.04

ONSA Onsala Sweden 57.40 11.93 45.59

ORID Ohrid Macedonia 41.13 20.79 773.00

OSLS Oslo Norway 59.74 10.37 221.55

OSTI Ostiches Belgium 50.68 3.80 90.29

PADO Padova Italy 45.41 11.90 64.70

PENC Penc Hungary 47.79 19.27 291.70

POTS Potsdam Germany 52.38 13.07 144.41

REYK Reykjavik Iceland 64.14 -21.96 93.02

ROUL Roullingen Luxembourg 49.95 5.92 542.38

SASS Sassnitz Island of Ruegen Germany 54.51 13.64 68.22

STAS Stavanger Norway 59.02 5.60 104.91



Appendix A. Ground-based GNSS Stations 207

TELL Tellin Belgium 50.05 5.21 451.66

TILM Tilff Belgium 50.58 5.57 302.41

TITZ Titz Germany 51.00 6.42 155.60

TLSE Toulouse France 43.56 1.48 207.20

TRDS Trondheim Norway 63.37 10.32 317.74

TROI Troisvierges Luxembourg 50.13 6.01 537.82

VFCH Villefranche-sur-Cher France 47.29 1.72 153.24

VIS0 Visby Sweden 57.39 18.22 79.80

VITH St. Vith Belgium 50.32 6.09 607.27

WALF Walferdange Luxembourg 49.66 6.13 292.40

WARE Waremme Belgium 50.69 5.25 187.86

WARN Rostock-Warnemuende Germany 54.17 12.10 50.74

WERB Werbomont Belgium 50.38 5.77 490.04

WROC Wroclaw Poland 51.11 17.06 180.80

WSRT Westerbork Netherlands 52.91 6.60 86.00

WTZR Bad Koetzting Germany 49.14 12.88 666.02

ZIM2 Zimmerwald Switzerland 46.90 7.50 956.40

A.2 Stations Processed by NRT System

ID Name Country Lat. Lon. Hgt.

[deg] [deg] [m]

-------------------------------------------------------------------------

ABER Aberdeen United Kingdom 57.14 -2.08 53.44

ABYW Aberystwyth United Kingdom 52.42 -4.00 98.99

ACOR A Coruna Spain 43.36 -8.40 66.89

ADAR Aberdaron United Kingdom 52.79 -4.74 148.39

ALAC Alicante Spain 38.34 -0.48 60.32

ALBA Albacete Spain 38.98 -1.86 751.77

ALME Almeria Spain 36.85 -2.46 127.48

ANKR Ankara Turkey 39.89 32.76 976.03

AQUI L’Aquila Italy 42.37 13.35 713.00

ARDL Ardleigh United Kingdom 51.92 0.96 91.47

ARIS Arisaig United Kingdom 56.91 -5.85 61.31

ARLO Arlon Belgium 49.65 5.82 428.66

ARTU Arti Russia 56.43 58.56 247.57
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AUCH Auch France 43.65 0.58 232.05

AUT1 Thessaloniki Greece 40.57 23.00 150.08

AXPV Aix En Provence France 43.49 5.33 229.31

BACA Bacau Romania 46.56 26.91 219.12

BADH Bad Homburg Germany 50.23 8.61 261.25

BAIA Baia Mare Romania 47.65 23.56 270.84

BARY Sauveterre de Comminges France 43.04 0.67 633.52

BASC Bascharage Luxembourg 49.57 5.94 375.76

BATT Battice Belgium 50.64 5.83 322.81

BELL Bellmunt de Segarra Spain 41.60 1.40 853.40

BERL Berloz Belgium 50.70 5.19 185.58

BLFT Belfort-Danjoutin France 47.63 6.86 416.49

BMHG Beaumont Hague France 49.66 -1.83 231.24

BOGO Borowa Gora Poland 52.48 21.04 149.60

BOR1 Borowiec Poland 52.28 17.07 124.36

BORR Borriana Spain 39.91 -0.08 72.90

BRAE Braemar United Kingdom 57.01 -3.40 400.85

BRET Brtigny-sur-Orge France 48.61 2.31 140.27

BUDP Kobenhavn Denmark 55.74 12.50 94.03

BUTE Budapest Hungary 47.48 19.06 180.77

CACE Caceres Spain 39.48 -6.34 436.49

CAEN Aroport de Caen-Carpiquet France 49.18 -0.46 113.55

CAMO Camborne United Kingdom 50.22 -5.33 140.98

CANT Santander Spain 43.47 -3.80 99.26

CASC Cascais Portugal 38.69 -9.42 76.02

CEU1 Ceuta Spain 35.89 -5.31 52.47

CHAR Charleroi Belgium 50.41 4.45 164.72

CHAS Chtillon-sur-Seine France 47.86 4.56 299.40

CHIO Chilbolton United Kingdom 51.15 -1.44 128.30

COBA Cordoba Spain 37.92 -4.72 202.05

COMO Como Italy 45.80 9.10 292.28

COST Constanta Romania 44.16 28.66 46.19

CRAO Simeiz Ukraine 44.41 33.99 365.80

CREU Cadaques Spain 42.32 3.32 133.36

CUBX Bordeaux France 44.87 -0.57 59.04

DARE Daresbury United Kingdom 53.34 -2.64 88.44
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DENT Dentergem Belgium 50.93 3.40 63.88

DGLG Dunkerque G. L. Gomatique France 50.99 2.34 56.76

DOUR Dourbes Belgium 50.09 4.59 282.69

DRES Dresden Germany 51.03 13.73 203.05

DRUS Drusenheim France 48.77 7.95 184.50

EBRE Roquetes Spain 40.82 0.49 107.79

ECHT Echternach Luxembourg 49.80 6.44 304.54

EDIN Edinburgh United Kingdom 55.92 -3.29 119.04

ENTZ Entzheim France 48.55 7.64 204.26

ERPE Erpeldange Luxembourg 49.55 6.32 217.38

ESKD Eskdalemuir United Kingdom 55.31 -3.21 297.43

EUSK Euskirchen Germany 50.67 6.76 245.31

FETA Fre-en-Tardenois France 49.20 3.51 168.39

FLOR Florenville Belgium 49.76 5.14 447.98

FOUC Foucarmont France 49.84 1.58 237.54

FOVA FOVA Belgium 50.32 4.22 172.16

GHIS St. Ghislain Belgium 50.45 3.88 79.78

GLAS Glasgow United Kingdom 55.85 -4.30 71.62

GLSV Kiev Ukraine 50.36 30.50 226.31

GOPE Ondrejov Czech Republic 49.91 14.79 592.58

GORN Gorron France 48.41 -0.81 225.18

GRAZ Graz Austria 47.07 15.49 538.28

GSR1 Ljubljana Slovenija 46.05 14.54 351.65

GUIP Guipavas France 48.44 -4.41 154.69

HELG Helgoland Island Germany 54.17 7.89 48.39

HERO Herstmonceux United Kingdom 50.87 0.34 71.62

HERT Hailsham United Kingdom 50.87 0.33 83.33

HOBU Hohenbuenstorf Eschenberg 53.05 10.48 152.23

HOFN Hoefn Iceland 64.27 -15.20 82.64

HUEL Huelva Spain 37.20 -6.92 81.81

HUNG Hungerford United Kingdom 51.40 -1.51 183.09

INVR Inverness United Kingdom 57.49 -4.22 66.16

IZAN Izana Spain 28.31 -16.50 2417.43

JOEN Joensuu Finland 62.39 30.10 113.73

JOZE Jozefoslaw Poland 52.10 21.03 141.44

KAIN Kain Belgium 50.63 3.37 66.36
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KARL Karlsruhe Germany 49.01 8.41 182.90

KING Kings Lynn United Kingdom 52.75 0.40 66.44

KINT Kintore United Kingdom 57.25 -2.33 141.20

KLOP Kloppenheim / Frankfurt Germany 50.22 8.73 222.45

KLRE Kilrea United Kingdom 54.96 -6.62 147.97

KRAW Krakow Poland 50.07 19.92 267.10

LCAU Lacanau France 44.98 -1.08 73.60

LEED Leeds United Kingdom 53.80 -1.66 215.62

LEEK Leek United Kingdom 53.13 -1.98 352.77

LEGL Leglise Belgium 49.86 5.51 544.51

LENE Le Neubourg France 49.15 0.91 188.84

LERI Lerwick United Kingdom 60.14 -1.18 132.01

LIL2 Lille-IUTA2 France 50.61 3.14 96.20

LINZ Linz Austria 48.31 14.28 335.03

LMCU Lille M. Communaut Urbaine France 50.64 3.08 111.09

LOCG Lochgilphead United Kingdom 56.01 -5.45 71.90

MABO MABO Belgium 50.07 5.74 493.85

MAFA Marche-en-Famenne Belgium 50.24 5.30 287.21

MALA Malaga Spain 36.73 -4.39 119.81

MALL Palma de Mallorca Spain 39.55 2.62 62.01

MARG Marignier France 46.08 6.51 524.19

MARI Mariembourg Belgium 50.09 4.51 210.31

MAT1 Matera Italy 40.65 16.70 534.52

MATE Matera Italy 40.65 16.70 535.64

MEIX Meix-devant-Virton Belgium 49.62 5.44 369.49

MERY Mery sur Seine France 48.51 3.89 139.84

MIMZ Mimizan France 44.20 -1.23 71.66

MODA Modane France 45.21 6.71 1182.26

MOHA Moha Belgium 50.54 5.19 180.89

MORO Morpeth United Kingdom 55.21 -1.69 145.13

MORP Morpeth England 55.21 -1.69 144.44

MTMN Montmorillon France 46.43 0.88 179.62

NAMR Namur Belgium 50.47 4.86 159.35

NEWL Newlyn TG United Kingdom 50.10 -5.54 64.49

NICA Nice France 43.70 7.23 256.49

NICO Nicosia Cyprus 35.14 33.40 190.02



Appendix A. Ground-based GNSS Stations 211

NIVL Nivelles Belgium 50.59 4.30 186.22

NOA1 Athens Greece 38.05 23.86 537.81

NOT1 Noto Italy 36.88 14.99 126.34

NRIL Norilsk Russia 69.36 88.36 47.89

NYA1 Ny-Alesund Norway 78.93 11.87 84.16

NYAL Ny-Alesund Norway 78.93 11.87 84.16

OLLN Ottignies-Louvain-la-Neuve Belgium 50.68 4.63 189.24

OMGH Omagh United Kingdom 54.62 -7.26 217.42

ONHA Onhaye Belgium 50.25 4.85 293.04

ONSA Onsala Sweden 57.40 11.93 45.59

ORID Ohrid Macedonia 41.13 20.79 773.00

OROS Oroshaza Hungary 46.56 20.67 145.99

OSLS Oslo Norway 59.74 10.37 221.55

OSTI Ostiches Belgium 50.68 3.80 90.29

OXFR Oxford United Kingdom 51.82 -1.29 119.76

PANA Paris France 48.85 2.39 120.66

PERP Perpignan France 42.69 2.88 95.38

PLEM Plemet France 48.17 -2.60 197.29

POL2 Bishkek Kyrgyzstan 42.68 74.69 1714.20

POTS Potsdam Germany 52.38 13.07 144.41

POUS Poustka Czech Republic 50.14 12.30 572.17

PRAT Prato Italy 43.89 11.10 119.96

PUYV Le Puy en Velay France 45.04 3.88 710.36

RENN Rennes France 48.11 -1.67 93.28

REYK Reykjavik Iceland 64.14 -21.96 93.02

ROUL Roullingen Luxembourg 49.95 5.92 542.38

ROVE Rovereto Italy 45.89 11.04 261.67

ROYA Royan France 45.64 -1.02 69.05

SALA Salamanca Spain 40.95 -5.50 855.39

SARZ Sarzeau France 47.52 -2.77 83.80

SASS Sassnitz Island of Ruegen Germany 54.51 13.64 68.22

SCDA Saint Chely d Apcher France 44.79 3.27 1115.29

SCIL Scilly Isles United Kingdom 49.91 -6.30 83.84

SEUR Seurre France 46.99 5.15 244.47

SGIL Saint-Gilles France 43.68 4.43 90.75

SMID Smidstrup Denmark 55.64 9.56 122.83
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SMLE St Martin de St Maixant France 46.41 -0.22 170.46

SMNE Saint-Mande France 48.84 2.43 126.24

SNEO St. Neots United Kingdom 52.19 -0.11 120.02

SODA Sodankyla Finland 67.42 26.39 299.83

SONS Sonseca Spain 39.68 -3.96 808.94

STAS Stavanger Norway 59.02 5.60 104.91

STOR Stornoway United Kingdom 58.20 -6.38 63.83

STPS Saint-Pourcain sur Sioule France 46.31 3.29 299.34

STRN Stranraer United Kingdom 54.87 -4.71 164.15

SULD Suldrup Denmark 56.84 9.74 120.72

SWAN Swanland United Kingdom 53.74 -0.51 148.99

SWAS Swansea United Kingdom 51.57 -3.98 89.96

SWTG Stornoway TG United Kingdom 58.21 -6.39 60.07

TELL Tellin Belgium 50.05 5.21 451.66

TERS West-Terschelling Netherlands 53.36 5.22 56.10

THUS Thurso2 United Kingdom 58.58 -3.73 94.25

TILM Tilff Belgium 50.58 5.57 302.41

TORI Torino Italy 45.06 7.66 310.73

TRDS Trondheim Norway 63.37 10.32 317.74

TREM Trementines - TERIA France 47.12 -0.79 166.43

TRO1 Tromsoe Norway 69.66 18.94 138.07

TROI Troisvierges Luxembourg 50.13 6.01 537.82

TRYS Troyes France 48.29 4.01 168.35

TUBO Brno Czech Republic 49.21 16.59 324.26

TUC2 Chania Greece 35.53 24.07 160.89

UNME Pau France 43.32 -0.33 278.73

UNPG Perugia Italy 43.12 12.36 351.06

VAAS Vaasa Finland 62.96 21.77 58.14

VARS Vardoe Norway 70.34 31.03 174.88

VFCH Villefranche-sur-Cher France 47.29 1.72 153.24

VIGO Vigo Spain 42.18 -8.81 87.76

VIL0 Vilhelmina Sweden 64.70 16.56 450.04

VILR Villars de Lans France 45.07 5.55 1076.70

VITH St. Vith Belgium 50.32 6.09 607.27

VNTE Venette France 49.43 2.78 137.44

WALF Walferdange Luxembourg 49.66 6.13 292.40
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WARE Waremme Belgium 50.69 5.25 187.86

WARN Rostock-Warnemuende Germany 54.17 12.10 50.74

WEAR Wear Head United Kingdom 54.75 -2.23 408.43

WERB Werbomont Belgium 50.38 5.77 490.04

WEYB Weybourne United Kingdom 52.94 1.13 74.13

WROC Wroclaw Poland 51.11 17.06 180.80

WTZR Bad Koetzting Germany 49.14 12.88 666.02

YEBE Yebes Spain 40.52 -3.09 972.76

ZARA Zaragoza Spain 41.63 -0.88 298.22

ZIMM Zimmerwald Switzerland 46.88 7.47 956.33

ZOUF Cercivento Italy 46.56 12.97 1946.49

A.3 Stations Processed by PP System

ID Lat. Lon. Hgt. ID Lat. Lon. Hgt.

---------------------------- ----------------------------

AB07 55.35 -160.48 89.58 NTUS 1.35 103.68 75.39

AB11 64.56 -165.37 349.45 NVSK 54.84 83.24 123.09

AB44 59.53 -135.23 304.12 NYA1 78.93 11.87 84.19

AB50 58.42 -134.55 51.50 NYAC 78.93 11.87 79.06

ABER 57.14 -2.08 53.45 NYBP 40.70 -74.01 -15.75

AC67 57.79 -152.43 347.21 OHI2 -63.32 -57.90 32.44

ACOR 43.36 -8.40 66.94 OHI3 -63.32 -57.90 32.56

ADE1 -34.73 138.65 38.04 ONSA 57.40 11.93 45.54

AIS5 55.07 -131.60 32.35 OOST 51.23 2.92 70.36

ALAC 38.34 -0.48 60.34 OSLS 59.74 10.37 221.52

ALBH 48.39 -123.49 31.76 OSN1 37.08 127.02 48.81

ALGO 45.96 -78.07 200.89 OUAG 12.36 -1.51 331.05

ALME 36.85 -2.46 127.49 OUS2 -45.87 170.51 26.09

ALRT 82.49 -62.34 78.12 OUSD -45.87 170.51 26.21

AMC2 38.80 -104.52 1911.39 P059 38.93 -123.73 -11.29

ANTC -37.34 -71.53 745.38 P101 43.21 140.86 38.34

AREQ -16.47 -71.49 2488.91 P102 42.08 139.49 42.27

ARGI 62.00 -6.78 110.24 P103 40.90 140.86 44.20

ARP7 27.84 -97.06 -16.42 P104 39.94 139.70 44.68
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ARTU 56.43 58.56 247.58 P105 38.56 139.55 45.52

AUCK -36.60 174.83 132.67 P107 35.13 140.25 39.44

AUKT -36.84 174.77 40.07 P108 35.16 139.62 42.92

AUT1 40.57 23.00 150.08 P109 37.81 138.28 44.76

AUTF -54.84 -68.30 71.87 P110 37.36 138.51 45.59

AV09 53.88 -166.54 105.68 P111 37.41 136.90 43.90

BAIE 49.19 -68.26 27.47 P112 36.25 136.15 42.05

BAKE 64.32 -96.00 4.41 P113 34.90 139.13 47.15

BAMF 48.84 -125.14 10.77 P114 34.81 138.76 47.45

BAN2 13.03 77.51 831.88 P115 34.87 138.33 46.53

BARH 44.40 -68.22 6.77 P116 34.90 136.82 47.00

BELE -1.41 -48.46 9.09 P117 34.14 135.19 45.73

BJFS 39.61 115.89 87.43 P118 35.59 134.32 42.55

BLUF -46.59 168.29 124.62 P119 34.63 131.60 39.36

BNDY -24.91 152.32 80.01 P120 33.33 133.24 43.17

BOAV 2.85 -60.70 69.51 P121 33.47 129.85 39.07

BOGT 4.64 -74.08 2577.04 P122 32.43 131.67 36.53

BOMJ -13.26 -43.42 419.38 P123 32.02 130.19 39.79

BOR1 52.28 17.07 124.37 P124 26.18 127.82 38.47

BORJ 53.58 6.67 53.04 P162 40.69 -124.24 -6.44

BRAZ -15.95 -47.88 1106.15 P202 44.02 144.29 36.48

BREW 48.13 -119.68 238.60 P203 42.98 144.37 35.35

BRST 48.38 -4.50 65.84 P204 41.78 140.72 39.51

BRUS 50.80 4.36 149.66 P205 39.02 141.75 47.04

BRUX 50.80 4.36 158.13 P206 34.92 139.82 45.60

BSHM 32.78 35.02 225.11 P207 36.76 137.22 44.21

BUDP 55.74 12.50 94.01 P208 33.48 135.77 46.44

BUE2 -34.57 -58.52 48.66 P209 34.90 132.07 39.58

BUR2 -41.05 145.91 3.82 P210 32.74 129.87 38.60

BYSP 18.41 -66.16 49.22 P211 31.58 131.41 36.91

CABL 42.84 -124.56 37.81 P212 26.21 127.67 38.66

CACC 41.75 -124.18 -21.96 P213 27.09 142.19 56.20

CAGL 39.14 8.97 238.36 P231 36.62 -121.91 -26.34

CAGZ 39.14 8.97 238.00 P365 43.40 -124.25 27.10

CANT 43.47 -3.80 99.28 P435 48.06 -123.50 287.32

CCJM 27.10 142.18 208.73 PALM -64.78 -64.05 31.02
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CEDU -31.87 133.81 144.74 PAPE -17.53 -149.57 11.94

CEFE -20.31 -40.32 14.28 PARC -53.14 -70.88 22.30

CEU1 35.89 -5.31 52.47 PARK -33.00 148.26 397.35

CFAG -31.60 -68.23 702.55 PAT0 38.28 21.79 121.04

CHAC -27.42 -58.96 77.95 PCLA 30.47 -87.19 1.94

CHAT -43.96 -176.57 57.96 PDEL 37.75 -25.66 110.61

CHET 18.50 -88.30 2.96 PERT -31.80 115.89 12.72

CHTI -43.74 -176.62 75.69 PETP 53.07 158.61 210.32

CHUM 43.00 74.75 716.34 PETS 53.02 158.65 102.10

CHUR 58.76 -94.09 -19.45 PGC5 48.65 -123.45 3.55

CKIS -21.20 -159.80 18.40 PIE1 34.30 -108.12 2347.73

CN12 18.00 -76.75 169.91 PIMO 14.64 121.08 95.52

CNMR 15.23 145.74 64.40 PLO5 32.67 -117.24 -22.54

CONZ -36.84 -73.03 180.70 PLPK 66.90 -34.03 122.25

COYQ -45.51 -71.89 476.17 PMTG 50.80 -1.11 56.55

CRAO 44.41 33.99 365.80 PNGM -2.04 147.37 116.31

CTGR 41.34 -72.05 -19.57 POAL -30.07 -51.12 76.74

CUCU 7.90 -72.49 311.17 POHN 6.96 158.21 90.68

CUIB -15.56 -56.07 237.43 POL2 42.68 74.69 1714.20

CUPR 18.31 -65.28 -30.39 POLV 49.60 34.54 178.37

CUSV 13.74 100.53 74.28 PORE 45.23 13.60 66.20

DAEJ 36.40 127.37 116.82 PPTE -22.12 -51.41 431.02

DARW -12.84 131.13 125.12 PRE1 -25.75 28.22 1416.33

DGAR -7.27 72.37 -64.93 PRMI 17.97 -67.05 -25.48

DGAV -7.27 72.37 -64.93 PTKL -34.48 150.91 34.44

DNRC 39.16 -75.52 -15.17 PTLD -38.34 141.61 0.85

DRAG 31.59 35.39 31.80 PTRB 38.00 -123.02 145.71

DRAO 49.32 -119.62 541.86 PTSG 41.78 -124.26 -10.22

DSL1 70.33 -148.47 17.13 PTSV -35.09 138.49 57.72

DUB2 42.65 18.11 457.92 QAQ1 60.72 -46.05 110.42

DUBO 50.26 -95.87 245.29 QUI2 -0.22 -78.49 2922.55

DUBR 42.65 18.11 454.29 QUIN 39.97 -120.94 1105.78

DUND -45.88 170.60 386.92 RABT 34.00 -6.85 90.10

DUNT -45.81 170.63 13.45 RAMO 30.60 34.76 886.82

EPRT 44.91 -66.99 30.38 RBAY -28.80 32.08 31.75

ESBC 55.49 8.46 59.48 RECF -8.05 -34.95 20.17
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ESBH 55.46 8.44 50.09 RED5 39.56 -75.57 -26.90

ESCU 47.07 -64.80 -15.99 REUN -21.21 55.57 1558.38

ESPA -33.87 121.89 32.43 REYK 64.14 -21.96 93.05

EYAC 60.55 -145.75 146.02 RIGA 56.95 24.06 34.71

FAA1 -17.56 -149.61 12.04 RINK 71.85 -50.99 1337.81

FAIR 64.98 -147.50 319.00 RIO2 -53.79 -67.75 32.03

FALK -51.69 -57.87 50.83 RIOB -9.97 -67.80 172.62

FLRS 39.45 -31.13 80.18 ROAP 36.46 -6.21 73.67

FTS5 46.20 -123.96 -13.77 ROTG 48.72 -3.97 56.12

FUNC 32.65 -16.91 78.43 ROTH -67.57 -68.13 39.69

GARI 44.68 12.25 47.74 RSBY -23.16 150.79 58.13

GENO 44.42 8.92 155.54 SABL 46.53 -1.81 56.74

GIBR 36.15 -5.36 45.64 SAGA -0.14 -67.06 94.89

GLSV 50.36 30.50 226.30 SAMA 11.23 -74.19 22.69

GMAS 27.76 -15.63 195.42 SANT -33.15 -70.67 723.02

GODE 39.02 -76.83 14.52 SC02 48.55 -123.01 -15.03

GOLD 35.43 -116.89 986.75 SCCC 32.78 -79.94 -11.39

GOUG -40.35 -9.88 81.25 SCH2 54.83 -66.83 498.17

GRAS 43.75 6.92 1319.32 SCOA 43.40 -1.68 59.47

GRIS 29.27 -89.96 -17.02 SCOR 70.49 -21.95 128.51

GUAM 13.59 144.87 201.90 SCRZ -17.80 -63.16 442.09

GUAO 43.47 87.18 2028.70 SCUB 20.01 -75.76 20.91

GUAT 14.59 -90.52 1519.87 SEAT 47.65 -122.31 44.20

GUUG 13.43 144.80 134.73 SELD 59.45 -151.71 20.31

HARB -25.89 27.71 1558.08 SELE 43.18 77.02 1342.00

HARV 34.47 -120.68 14.96 SETE 43.40 3.70 53.92

HEL2 66.40 -38.22 424.78 SEY1 -4.67 55.48 537.07

HIL1 -31.83 115.74 -27.25 SFER 36.46 -6.21 84.16

HIRS 57.59 9.97 50.14 SHAO 31.10 121.20 22.03

HJOR 63.42 -41.15 762.64 SHE2 46.22 -64.55 -15.30

HLFX 44.68 -63.61 3.10 SHK5 40.47 -74.01 -24.53

HNLC 21.30 -157.86 21.97 SIMO -34.19 18.44 39.48

HNPT 38.59 -76.13 -27.96 SMST 33.58 135.94 97.52

HNUS -34.42 19.22 63.03 SMTG 48.64 -2.03 57.74

HOB2 -42.80 147.44 41.06 SOLO -9.43 159.95 122.95

HOE2 54.76 8.29 62.73 SPBY -42.55 147.93 1.06
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HOFN 64.27 -15.20 82.60 SSA1 -12.98 -38.52 -2.10

HOLB 50.64 -128.13 559.60 SSIA 13.70 -89.12 626.60

HOLM 70.74 -117.76 0.42 STAS 59.02 5.60 104.92

HOLP 33.92 -118.17 -6.71 STJO 47.60 -52.68 152.83

HRAO -25.89 27.69 1414.16 STNY -38.38 145.21 29.20

HUEL 37.20 -6.92 81.85 SUR4 59.46 24.38 84.41

HYDE 17.42 78.55 441.69 SUTH -32.38 20.81 1799.74

ICAM 19.85 -90.53 2.58 SUTM -32.38 20.81 1797.60

IGM1 -34.57 -58.44 50.69 SUWN 37.28 127.05 82.26

IISC 13.02 77.57 843.68 SYDN -33.78 151.15 85.58

ILDX 46.01 -1.18 59.03 TAH1 -17.58 -149.61 97.72

IMBT -28.23 -48.66 31.37 TAH2 -17.58 -149.61 99.81

IMPZ -5.49 -47.50 104.99 TAMP 22.28 -97.86 21.04

INVK 68.31 -133.53 46.39 TCMS 24.80 120.99 77.24

IPAZ 24.15 -110.33 -14.85 TEHN 35.70 51.33 1194.57

IQUI -3.77 -73.27 122.11 TELA 32.07 34.78 58.34

IRKJ 52.22 104.32 502.07 TERS 53.36 5.22 56.10

IRKT 52.22 104.32 502.34 TFNO 49.15 -125.91 -3.88

ISPA -27.12 -109.34 112.50 THTI -17.58 -149.61 98.03

JOZE 52.10 21.03 141.35 THU2 76.54 -68.83 36.08

JPLM 34.20 -118.17 424.03 TIBB 37.89 -122.45 -21.23

KARR -20.98 117.10 109.12 TIDB -35.40 148.98 665.36

KBUG 65.14 -41.16 290.61 TIMM 62.54 -42.29 313.24

KERG -49.35 70.26 73.00 TNML 24.80 120.99 75.87

KGNI 35.71 139.49 123.52 TONG -21.14 -175.18 56.30

KHAJ 48.52 135.05 130.49 TOPL -10.17 -48.33 256.54

KIT3 39.13 66.89 622.51 TOW2 -19.27 147.06 88.18

KMOR 81.25 -63.53 203.25 TPW2 46.21 -123.77 -14.96

KOD5 57.62 -152.19 27.22 TRDS 63.37 10.32 317.73

KOKB 22.13 -159.66 1167.35 TREO 64.28 -41.38 121.89

KOSG 52.18 5.81 96.83 TRIE 45.71 13.76 323.41

KOUC -20.56 164.29 84.14 TSEA 61.19 -149.89 42.94

KOUR 5.25 -52.81 -25.78 TSKB 36.11 140.09 67.24

KSNB 66.86 -35.58 1720.83 TWTF 24.95 121.16 201.53

KUNM 25.03 102.80 1986.20 UBA1 -23.50 -45.12 6.17

LAE1 -6.67 146.99 140.32 UCLU 48.93 -125.54 10.05
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LAGO 37.10 -8.67 62.72 UFPR -25.45 -49.23 925.78

LAMA 53.89 20.67 187.03 ULAB 47.87 107.05 1575.51

LAUT -17.61 177.45 89.64 UNSA -24.73 -65.41 1257.81

LHAZ 29.66 91.10 3624.58 USN3 38.92 -77.07 57.41

LHCL -38.00 -65.60 404.52 USNO 38.92 -77.07 48.88

LMMF 14.59 -61.00 -27.10 VACS -20.30 57.50 421.15

LPGS -34.91 -57.93 29.82 VALE 39.48 -0.34 77.57

LROC 46.16 -1.22 57.86 VALP -33.03 -71.63 31.40

LWTG 60.15 -1.14 51.61 VBCA -38.70 -62.27 59.47

MAG0 59.58 150.77 361.82 VEN1 45.43 12.35 60.42

MAJU 7.12 171.36 33.70 VESL -71.67 -2.84 862.35

MAL2 -3.00 40.19 -20.92 VIGO 42.18 -8.81 87.77

MALA 36.73 -4.39 119.83 VIKH 17.72 -64.80 -6.39

MALL 39.55 2.62 62.03 VILL 40.44 -3.95 647.36

MANA 12.15 -86.25 71.04 VIS0 57.65 18.37 79.80

MAPA 0.05 -51.10 -4.23 VITH 18.34 -64.97 4.42

MAR6 60.60 17.26 75.40 VNAD -65.25 -64.25 20.99

MARG 77.19 -65.69 670.57 VNDP 34.56 -120.62 -11.47

MARN -46.88 37.86 61.94 VTIS 33.71 -118.29 59.48

MARS 43.28 5.35 61.81 WES2 42.61 -71.49 85.02

MAS1 27.76 -15.63 197.17 WGTN -41.32 174.81 26.06

MAT1 40.65 16.70 534.51 WHIT 60.75 -135.22 1427.36

MATE 40.65 16.70 535.63 WILL 52.24 -122.17 1095.67

MAUI 20.71 -156.26 3062.10 WIND -22.57 17.09 1734.64

MBAR -0.60 30.74 1337.54 WRHS 33.96 -118.43 7.86

MCM4 -77.84 166.67 97.99 WTZR 49.14 12.88 666.04

MDO1 30.68 -104.01 2004.50 WUHN 30.53 114.36 28.20

MDVJ 56.02 37.21 257.12 YAR2 -29.05 115.35 241.28

METS 60.22 24.40 94.56 YAR3 -29.05 115.35 242.44

MKEA 19.80 -155.46 3754.70 YARR -29.05 115.35 241.35

MOBS -37.83 144.98 40.59 YEBE 40.52 -3.09 972.76

MONP 32.89 -116.42 1842.57 YELL 62.48 -114.48 180.85

MORP 55.21 -1.69 144.51 YSSK 47.03 142.72 91.29

MPL2 -38.01 -57.57 53.57 ZADA 44.11 15.23 64.31

MQZG -43.70 172.65 154.65 ZAMB -15.43 28.31 1324.92

MTKA 35.68 139.56 108.93 ZEEB 51.34 3.21 60.26
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NAIN 56.54 -61.69 32.77 ZHN1 21.31 -157.92 24.21

NANO 49.29 -124.09 6.55 ZIMM 46.88 7.47 956.31

NAS0 25.05 -77.46 -21.24

NAUS -3.02 -60.06 93.89

NCDU 36.18 -75.75 -26.15

NEIA -25.02 -47.92 6.04

NICA 43.70 7.23 256.48

NICO 35.14 33.40 190.00

NIEB -39.87 -73.40 57.56

NKLG 0.35 9.67 31.51

NLIB 41.77 -91.57 207.03

NNOR -31.05 116.19 234.83

NNVN 61.63 -44.90 2134.57

NOT1 36.88 14.99 126.35

NOVM 55.03 82.91 149.95

NPLY -39.18 174.12 416.94

NRC1 45.45 -75.62 82.46

NRIL 69.36 88.36 47.92

NRMD -22.23 166.48 160.32
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Height Correction Formulas

B.1 Height Correction for Pressure

Let p0 [hPa] be the pressure value at height H0 [m]. In order to correct

p0 to the pressure value pH [hPa] at height H [m], the following formula is

used:

pH = p0

[
1− γ(H −H0)

T0

] g
γRd

(B.1)

where γ (= −0.0065 K m−1) is the vertical temperature lapse rate, Rd (=

287.058 m2 s−2 K−1) is the specific gas constant for dry air, T0 [K] is the

temperature at height H0 and g (= 9.80665 m s−1) is the acceleration due

to gravity.

B.2 Height Correction for Zenith Hydrostatic De-

lay (ZHD)

Let ZHD0 [m] be the ZHD value at height H0 [m]. In order to correct

ZHD0 to the value ZHDH [m] at height H [m], a correction term ∆ZHD

is first computed and then is added to ZHD0. The following formula is used

to compute ∆ZHD:

∆ZHD =
0.0022768(pH − p0)

1− 0.00266cos(2ϕ0)− 0.00028H0
(B.2)

where pH [hPa] is the pressure at height H [m], p0 [hPa] is the pressure

at height H0, and ϕ0 [rad] is the latitude of the site under consideration.

ZHDH is then computed as:

ZHDH = ZHD0 + ∆ZHD (B.3)

B.3 Height Correction for Zenith Wet Delay (ZWD)

Let ZWD0 [m] be the ZWD value at height H0 [m]. In order to correct

ZWD0 to the value ZWDH [m] at height H [m], the following relation is
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used:

ZWDH = ZWD0

[
1− γ(H −H0)

T0

] (β+1)g
Rdγ

(B.4)

where γ (= −0.0065 K m−1) is the temperature lapse rate, T0 [K] is the

temperature at height H0, β is the ZWD decay rate, g (= 9.80665 m s−1) is

acceleration due to gravity and Rd (= 287.058 m2 s−2 K−1) is the specific

gas constant for dry air.



Appendix C

i-GNSS Modules and Scripts

The i-GNSS software consists of various Perl modules and scripts, and

Python scripts which are contained in three directories namely i-GNSS, sps-

downloader and walcorsdownloader. Table C.1 shows the type of content of

each of these directories.

Table C.1: i-GNSS Directory Structure

Directory Sub-directory Content Type

i-GNSS/ callers/ Perl scripts to execute i-GNSS oper-
ations (data handling, product han-
dling, data processing, archiving)

mod/ Perl modules written for various
functionalities of i-GNSS

info/ XML files containing information
about all the GNSS stations in-
cluded in the processing

conf/ XML file containing FTP addresses
and credentials for data sources

spsdownloader/ Python script to fetch 15-minute
SPSLux RINEX files created from
RT streams and merge these into 1-
hour RINEX file

walcorsdownloader/ Python script to fetch 15-minute
WALCORS RINEX files created
from RT streams and merge these
into 1-hour RINEX file

tools/ Python scripts for making 2D ZTD
and IWV maps, and E-GVAP up-
load
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Table C.2: i-GNSS Hourly Scripts

Script Purpose

In i-GNSS/callers/
call HD maintain.pl Update station-wise tables in the HD

database to identify the RINEX files to
be downloaded

call MET maintain.pl Update the MET database and identify
the meteorological files to be downloaded

call download EUREF stations.pl Download the required RINEX files for
EUREF stations

call download IGS stations.pl Download the required RINEX files for
IGS stations

call download RGP stations.pl Download the required RINEX files for
RGP stations

call download OS active stations.pl Download the required RINEX files for
OSGB stations

call download Irish stations.pl Download the required RINEX files for
OSi stations

call download scientific stations.pl Download the required RINEX files for
scientific stations from BIGF

call download SPS stations.pl Copy the 1-hourly SPSLux RINEX files to
i-GNSS hourly data directory

call download WALCORS stations.pl Copy the 1-hourly WALCORS RINEX
files to i-GNSS hourly data directory

iGNSS NRT.pl Run the GNSS data processing using the
Bernese GNSS Software

In spsdownloader/
sps dl.py Create 1-hourly RINEX files from RT

streams for SPSLux network

In walcorsdownloader/
walcors dl.py Create 1-hourly RINEX files from RT

streams for WALCORS network

In tools/
nrt plotter.py Create 2D maps of IWV and ZTD
cost to egvap.py Upload the UL01 solution files to the E-

GVAP server
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Table C.3: i-GNSS Daily Scripts

Script Purpose

In i-GNSS/callers/
genFilesDownloader.pm Download latest general files (e.g. satellite

antenna information)

iGNSS NRT COORD IGS08.pl Update a-priori coordinates for hourly
NRT processing

iGNSS ANT I08.pl Download the latest antenna PCV infor-
mation

get newnrt.sta Download the latest station information
file

iGNSS PPP EUREF IGS08ALI.pl Run PPP processing for EUREF stations

iGNSS PPP IGS08.pl Run PPP processing for IGS stations

iGNSS PPP IRELAND IGS08ALI.pl Run PPP processing for OSi stations

iGNSS PPP RGP IGS08ALI.pl Run PPP processing for RGP stations

iGNSS PPP SPS IGS08ALI.pl Run PPP processing for SPSLux stations

iGNSS PPP UK IGS08ALI.pl Run PPP processing for OSGB and Sci-
entific stations

iGNSS PPP WALCORS IGS08ALI.pl Run PPP processing for WALCORS sta-
tions



Appendix D

Comparison of ZTDerai and ZTDgnss

- Full Results

The contents of this appendix can be found on the thesis DVD in the direc-

tory named ”Appendix D CH5 Results”. The results are stored as image

files that are saved with the name format ”[ZONE] [STA] ztd.png” where

[ZONE] is the climate zone identifier and [STA] is the GNSS station name.
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Appendix E

Pressure, Temperature, ZTD

and IWV Time Series for SP-

SLux Stations

The contents of this appendix can be found on the thesis DVD in the di-

rectory named ”Appendix E CH6 Results”. The station-wise images are

saved with the name format ”[STA] PT.png” for pressure and temperature

time series, ”[STA] ZTD.png” for ZTD time series and ”[STA] IWV.png”

for IWV time series where [STA] is the SPSLux GNSS station name.
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Appendix F

Formulas Used to Obtain IWV

F.1 To Obtain IWV from ERA-Interim

The integrated water vapour (IWV) values from the ERA-Interim model

have been obtained by the following procedure:

1. The zenith wet delay (ZWD [mm]) and mean atmospheric temper-

ature (Tm [oK]), interpolated to the six SPSLux GNSS station lo-

cations, were obtained directly using the GOP - TropDB - Trop-

Model service (http://www.pecny.cz/gop/index.php/gop-tropdb/

tropo-model-service) by specifying the SPSLux station coordinates.

2. The ZWD is converted to IWV [kg m−2] using the following equation:

IWV =
ZWD

Rw

(
k3
Tm

+ k2 − k1Rd
Rw

)105 (F.1)

where Rw(= 461.525 [J kg−1 K−1]) is the specific gas constant for

water vapour, Rd(= 287.0586 [J kg−1 K−1]) is the specific gas constant

for dry air and k1,2,3 are constants with values of 77.6 [K hPa−1],

70.4 [K hPa−1] and 373900 [K2 hPa−1], respectively (Bevis et al.,

1992, 1994).

F.2 To Convert GNSS-derived ZTD into IWV

The GNSS-derived ZTD has been converted to IWV using the following

procedure:

1. Surface pressure ”Ps”[hPa] values have been obtained using the me-

teorological sources ASTA, ANAMET (Findel) and UKMO (Details

given in Chapters 4 and 6).

2. Surface temperature ”T”[oK] values have been obtained using the me-

teorological sources ASTA, ANAMET (Findel) and UKMO (Details

given in Chapters 4 and 6).
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3. Zenith hydrostatic delay (ZHD [mm]) has been computed using Ps

and the following relation (Saastamoinen, 1972):

ZHD =
2.2779(Ps)

1− 0.00266cos(2ϕ0)− 0.00028H0
(F.2)

where H0 [km] is the GNSS station’s ellipsoidal height and ϕ0 [rad] is

the latitude of the GNSS station.

4. Zenith wet delay (ZWD) is computed by subtracting the ZHD ob-

tained in Step 3 from the GNSS-derived ZTD:

ZWD = ZTD − ZHD (F.3)

5. Mean atmospheric temperature ”Tm” [oK] has been obtained using T

and the following relation (Bevis et al., 1992, 1994):

Tm = 70.2 + 0.72T (F.4)

6. The ZWD is converted to IWV [kg m−2] using the following equation:

IWV =
ZWD

Rw

(
k3
Tm

+ k2 − k1Rd
Rw

)105 (F.5)

where Rw(= 461.525 [J kg−1 K−1]) is the specific gas constant for

water vapour, Rd(= 287.0586 [J kg−1 K−1]) is the specific gas constant

for dry air and k1,2,3 are constants with values of 77.6 [K hPa−1],

70.4 [K hPa−1] and 373900 [K2 hPa−1], respectively (Bevis et al.,

1994).

7. Three IWV datasets (IWVasta,IWVanamet and IWVukmo) have been

obtained by repeating the Steps 1 to 6 using the Ps and T values

obtained from ASTA, ANAMET (Findel) and UKMO.


