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Structural Brain Changes in Patients
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BACKGROUND: Patients with COPD suffer from chronic dyspnea, which is commonly
perceived as highly aversive and threatening. Moreover, COPD is often accompanied by
disease-specific fears and avoidance of physical activity. However, little is known about
structural brain changes in patients with COPD and respective relations with disease
duration and disease-specific fears.

METHODS: This study investigated structural brain changes in patients with COPD and their
relation with disease duration, fear of dyspnea, and fear of physical activity. We used voxel-
based morphometric analysis of MRI images to measure differences in generalized cortical
degeneration and regional gray matter between 30 patients with moderate to severe COPD
and 30 matched healthy control subjects. Disease-specific fears were assessed by the COPD
anxiety questionnaire.

RESULTS: Patients with COPD showed no generalized cortical degeneration, but decreased
gray matter in posterior cingulate cortex (whole-brain analysis) as well as in anterior and
midcingulate cortex, hippocampus, and amygdala (regions-of-interest analyses). Patients’
reductions in gray matter in anterior cingulate cortex were negatively correlated with disease
duration, fear of dyspnea, and fear of physical activity. Mediation analysis revealed that the
relation between disease duration and reduced gray matter of the anterior cingulate was
mediated by fear of physical activity.

CONCLUSIONS: Patients with COPD demonstrated gray matter decreases in brain areas
relevant for the processing of dyspnea, fear, and antinociception. These structural brain
changes were partly related to longer disease duration and greater disease-specific fears,
which might contribute to a less favorable course of the disease.
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COPD is a worldwide leading cause of morbidity and
mortality, characterized by progressive and persistent
airflow limitation caused by intrapulmonary
inflammatory processes.1 The cardinal symptom is
dyspnea (breathlessness), which usually presents during
low-intensity activities such as climbing stairs or
walking.1,2 With longer disease duration, dyspnea
intensifies and can be present even at rest. Patients with
COPD commonly experience dyspnea as highly aversive
and threatening.3 Not surprisingly, COPD is often
accompanied by high levels of comorbid anxiety and
depression.4 In particular, disease-specific fears, like fear
of dyspnea and fear of physical activity, contribute to
disability in COPD and have been suggested to fuel a
downward spiral of avoidance of physical activity,5

subsequent deconditioning, and greater dyspnea at even
lower activity levels resulting in significant reductions in
health-related quality of life.2,6-8

Unfortunately, little is known about underlying brain
processes in COPD. Initial studies suggested no
generalized cerebral atrophy,9 but regional structural
brain changes in patients with COPD, including
impaired white matter microstructural integrity.9,10

However, results concerning gray matter volume
(GMV) remain sparse and partly conflicting.11,12

Notably, GMV reductions previously observed in
journal.publications.chestnet.org
patients with COPD included limbic and paralimbic
brain areas such as cingulate cortex, insula,
hippocampus (HC), and amygdala (AMYG),10,12 which
are not only involved in the processing of dyspnea,13,14

but also in fear/anxiety and fear-avoidance
behavior,15-17 and in antinociception, that is, the
downregulation of aversive nociceptive stimuli.18

Comparable GMV reductions were demonstrated
in patients chronically experiencing other aversive
sensations, especially pain,19-23 and these were
associated with longer pain duration.19,21,22 In patients
with COPD, only one previous study suggested
comparable GMV changes in relation to disease
duration.10 Studies examining associations between
GMV, fear of dyspnea, and fear of physical activity in
COPD are missing, thus limiting our understanding
of the interrelationships between brain pathology and
COPD-specific fears that might contribute to the course
of disease by influencing patient behaviors.

By using voxel-based morphometric (VBM) analysis
of MRI images, this study examined whether patients
with COPD exhibit generalized cortical degeneration as
well as reduced regional GMV compared with matched
healthy control subjects. Moreover, we investigated the
relationships between GMV and disease duration, fear of
dyspnea, and fear of physical activity.
Materials and Methods
Participants

Thirty stable outpatients with moderate to severe COPD (GOLD
[Global Initiative for Chronic Obstructive Lung Disease] stage II and
III)1 were recruited at the Pulmonary Research Institute (LungClinic
Grosshansdorf; n ¼ 20) and at an outpatient pulmonary
rehabilitation center (Atem-Reha Hamburg; n ¼ 10). Patients’
demographics and medical histories, including disease duration, were
obtained from their medical records. Thirty control subjects without
history of respiratory disease (FEV1 in % predicted, > 80%), and
matched for age, sex, and BMI, were recruited from local databases
of the Pulmonary Research Institute (LungClinic Grosshansdorf) and
the Department of Systems Neuroscience (University Medical Center
Hamburg-Eppendorf). Lung function was measured using standard
spirometry.24 All participants were screened using a standardized
diagnostic interview (Structured Clinical Interview for DSM-IV Axis
I Disorders, Clinician Version [SCID-CV])25 and the Hospital
Anxiety and Depression Scale (HADS)26 to exclude subjects with
psychiatric or neurologic symptoms. The study was approved by the
local medical ethics committees Hamburg (PV3007) and Schleswig-
Holstein (IV/EK/122/08), and conducted according to the principles
expressed in the Declaration of Helsinki. All subjects gave written
informed consent before participating.

Disease-Specific Fears

Fear of dyspnea and fear of physical activity were assessed with the
validated COPD Anxiety Questionnaire (CAF).27 The scales consist
of five and six items, respectively, which are rated on a Likert scale
from 0 to 4. Higher summary scores for each scale represent higher
levels of fear.

VBM Image Acquisition

High-resolution T1-weighted structural brain images were acquired with
a 32-channel head coil with a three-dimensional-MPRAGE sequence
(repetition time 2300 milliseconds, echo time 2.98 milliseconds, flip
angle 9�, voxel size 1 mm, field of view 256 � 256, 240 slices) on a
3T Magnetom-TRIO MRI system (Siemens Medical Solutions).

Procedure

After MRI compatibility check, standardized instructions, and
spirometry, participants filled in questionnaires. Thereafter,
participants entered the MRI scanner and underwent the structural
image acquisition.

Data Analysis

Group comparisons regarding baseline characteristics, fear ratings, and
MRI-based brain volumetrics (ie, total intracranial volume, gray
matter, white matter) were performed with two-sample t, Mann-
Whitney U (in case of nonnormal distributions) or c2 (data in
frequency form) tests. Respective MRI-based brain volumes of gray
matter, white matter, and cerebrospinal fluid were calculated during
the preprocessing for each subject in native space, meaning that
tissue volumes are in spatial correspondence to the original data.
Then, total intracranial volume was estimated by summing the
volumes of gray matter, white matter, and cerebrospinal fluid. Partial
correlation analyses and moderated mediation analyses were used to
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TABLE 1 ] Baseline Characteristics

Characteristics
Patients With

COPD Control Group

Subjects, No. 30 30

Women (men), No. 14 (16) 14 (16)

Age, y 66.3 (8.8) 64.6 (7.8)

Height, cm 170.5 (9.2) 172.4 (9.2)

Weight, kg 76.1 (12.4) 76.7 (15.8)

BMI, kg/m2 26.2 (4.1) 25.6 (3.8)

FEV1, % predicted 49.7 (12.3) 121.5 (13.1)a

FVC, % predicted 95.7 (17.9) 125.8 (14.9)a

FEV1/FVC,
% predicted

42.0 (9.0) 78.4 (5.0)a

Medication use for
COPD, No. (%)

30 (100) .

Long-acting
b-agonist

16 (53) .

Long-acting
muscarinic
antagonist

28 (93) .

Smoking status,
No. (%)

Current smokers 15 (50) 2 (7)b

Former smokers 15 (50) 8 (27)c

Never smokers 0 (0) 20 (66)a

Disease severity,
moderate
(severe)

11 (19) .

Disease duration, y 9.9 (5.5) .

Fear of physical
activity, CAF

5.8 (2.1) 2.2 (3.0)a

Fear of dyspnea, CAF 3.2 (2.5) 1.1 (1.9)a

Data are given as mean (SD) unless otherwise indicated. CAF ¼ COPD
Anxiety Questionnaire.
aP < .001 for the comparison between COPD and control group.
bP < .01 for the comparison between COPD and control group.
cP < .05 for the comparison between COPD and control group.
examine interrelationships between disease duration, fear of dyspnea/
physical activity, and GMV in brain areas where patients
demonstrated reduced GMV (using the gray scale intensity value as
an indicator of gray matter thickness from the local voxel showing
the largest group difference). Data were analyzed using SPSS 22
software (IBM Corporation) using the Process macro for conditional
process analyses for moderated mediation analysis. The threshold for
statistical significance was set to a < 0.05.

Image analysis was carried out using the VBM8 toolbox r435
(Voxel Based Morphometry, http://dbm.neuro.uni-jena.de/vbm.html)
implemented in SPM8 (Statistical Parametric Mapping, www.fil.ion.
ucl.ac.uk/spm) running under Matlab2013a (The MathWorks, Inc).
T1-weighted structural images were inspected by a neurologist
regarding atrophy that could not be explained by normal aging and
potentially indicates other degenerative processes like dementia. No
participant had to be excluded. Preprocessing was performed using
the diffeomorphic anatomical registration using exponentiated lie
algebra (DARTEL) approach. Preprocessing steps included:

1. Centering of the origin of T1 images to anterior commissure,
normalization into Montreal Neurologic Institute (MNI) space,
additional use of the “thorough cleanup” procedure to remove
remaining nonbrain tissue—which is particularly useful for older
and therefore more atrophic brains—and segmentation into vol-
umes of gray matter, white matter, and cerebrospinal fluid;

2. After initial affine registration, study-specific customized DARTEL
templates were created from the entire image dataset;

3. Then, original T1 images were normalized to created DARTEL
templates and modulated “nonlinearly only” to correct for nonlinear
warping during spatial normalization and for differences in indi-
vidual brain size to ensure that relative volumes were preserved,
meaning that volumes are corrected for different brain sizes;

4. Data quality check and check for sample homogeneity using
covariance was performed on gray matter images. None of the tests
revealed outliers;

5. Afterward, preprocessed gray matter images were smoothed with a
Gaussian kernel of full width at half maximum of 6 mm in all three
directions.

In a first step, a whole-brain analysis with family-wise error-corrected
(FWE-wbc) threshold of P < .05 was used to examine significant
clusters of GMV differences between groups. In a second step, a
small-volume analysis with a family-wise error correction (FWE-
svc, P < .05) was used within a priori-determined bilateral regions
of interest (ROI). ROIs were chosen according to (1) previous
knowledge on regional GMV reductions in patients with
COPD,10,12 (2) structural brain changes in chronic pain
syndromes,19-23 and (3) functional relevance of areas in the
processing of dyspnea,13,14 fear/anxiety, and fear-avoidance
behavior,15-17 and the transmission/regulation of nociceptive
input.18,28 Specifically, analyzed ROIs consisted of the anterior
cingulate cortex (ACC), midcingulate cortex (MCC), insula, HC,
thalamus, and AMYG. ROI masks were derived from the
automated anatomic labeling atlas.29 ROI analyses were performed
for bilateral brain structures and were limited to a restricted
428 Original Research
number of predefined ROIs, while not using further correction for
multiple comparisons. Differences in regional GMV between
patient and control group were analyzed via two-sample t tests. For
the combined visualization of significant findings across different
ROIs (necessitating different local thresholds based on the size of
the area to determine significance), all results of GMV changes are
displayed at a more liberal uncorrected P < .001.
Results

Participants

Means and SDs of baseline characteristics are reported
in Table 1. Patients with COPD and control subjects
did not differ significantly regarding age, sex, height,
weight, and BMI. As expected, the COPD group
showed lower lung function in FEV1 % predicted,
FVC % predicted, and FEV1/FVC (all P < .001), and
contained more smokers compared with the control
group (P < .001). All participants were within the
normal range of HADS anxiety and depression scores,
that is, below the clinically relevant cutoff. Patients
with COPD showed significantly higher ratings of
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TABLE 2 ] MRI-Based Brain Volumetrics

Volume, cm3 Patients With COPD Control Group t Score P Value

Total intracranial 1,391.566 (124.5) 1,429.436 (133.4) �1.1 .260

Gray matter 567.778 (52.3) 582.737 (61.6) �1.0 .315

White matter 551.604 (58.8) 572.530 (71.2) �1.2 .220

Data are given as mean (SD).
fear of dyspnea (P < .001) and fear of physical activity
(P < .001).

MRI-Based Brain Volumetrics

Global volumetric analysis revealed that neither total
intracranial volume nor total volume of gray and white
matter was significantly different between the COPD
group and the control group (Table 2).

VBM-Based Regional Gray Matter Changes

For VBM, two-sample t tests between groups included
smoking status (current, former, and never smokers) as
covariate of no interest because of potential effects of
smoking on brain tissue volumes.30 Whole-brain
analysis revealed that compared with control subjects,
GMV in patients with COPD was reduced in posterior
Figure 1 – A-E, Reduced gray matter volume (GMV) in patients with COPD
(B) MCC (small-volume analysis), (C) ACC (small-volume analysis), (D) HC
are superimposed on the mean diffeomorphic anatomical registration using e
more liberal threshold (uncorrected P < .001) than statistical analyses to facili
HC ¼ hippocampus; MCC ¼ midcingulate cortex; PCC ¼ posterior cingula

journal.publications.chestnet.org
cingulate cortex (PCC; FWE-wbc, P ¼ .033, cluster
size, 639 voxels). Small-volume corrected analyses for
predefined ROIs revealed decreased GMV in patients
with COPD in MCC (FWE-svc, P ¼ .012), ACC
(FWE-svc, P ¼ .042), HC (FWE-svc, P ¼ .021), and
AMYG (FWE-svc, P ¼ .037) (Fig 1, Table 3). No
differences in GMV between the patient and the control
group were found within the insula and thalamus. No
brain areas were found in which patients with COPD
showed higher GMV compared with control subjects.
Correlation and Mediation Analyses

In patients with COPD, partial correlation (controlling
for smoking status) revealed a significant negative
correlation of disease duration (r¼�0.59, P¼ .002), fear
compared with control subjects in (A) PCC (whole-brain analysis),
(small-volume analysis), and (E) AMYG (small-volume analysis). Results
xponentiated lie algebra (DARTEL)-template image and displayed at a
tate visualization. ACC¼ anterior cingulate cortex; AMYG ¼ amygdala;
te cortex.
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TABLE 3 ] Regional Reductions in GMV in Patients With COPD Compared With Control Subjects

Anatomic Location R/L

MNI

z Score P Valuex y z

Posterior cingulate cortex R 9 �48 22 4.81 .033a

Midcingulate cortex L �8 �27 43 4.17 .012b

Anterior cingulate cortex R 15 42 3 3.70 .042b

Hippocampus R 21 �25 �12 3.84 .021b

Amygdala L �30 0 �29 3.28 .037b

z values and P values for significant gray matter volume decreases. GMV ¼ gray matter volume; L ¼ left hemisphere; MNI ¼ Montreal Neurological
Institute, peak coordinates; R ¼ right hemisphere.
aWhole-brain family-wise error corrected.
bSmall-volume family-wise error corrected for bilateral region of interest.
of dyspnea (r ¼ �0.53, P ¼ .005), and fear of physical
activity (r ¼ �0.46, P ¼ .019) with GMV in the ACC
(ACC-GMV), but not with GMV inMCC, PCC, HC, and
AMYG (Fig 2). Disease duration was further significantly
correlated with fear of physical activity (r ¼ 0.49,
P¼ .011), but not with fear of dyspnea (r¼ 0.26, P¼ .20).
The correlation between fear of physical activity and fear
of dyspnea was not significant (r ¼ 0.21, P ¼ .31).

Subsequently, a moderated mediation analysis tested
whether the relationship between disease duration
and ACC-GMV was mediated by disease-specific fears.
Again, smoking status was controlled for by including
it as moderator in the model (Fig 3). The moderated
mediation model (excluding the association of
ACC-GMV and fear of dyspnea) reached statistical
significance with an explained variance of R2 ¼ 0.46
(P ¼ .02). Specifically, fear of physical activity
determined a significant proportion of the relationship
between disease duration and ACC-GMV (DR2 ¼ 0.17).

Explorative post hoc analyses tested for potential
additional interactions with patient age. Partial
correlations (controlling for smoking status) between
patient age and disease duration (r ¼ 0.20, P ¼ .33) and
disease-specific fears (fear of physical activity: r ¼ 0.34,
P ¼ .09; fear of dyspnea: r ¼ 0.10, P ¼ .62) remained
nonsignificant. When calculating the moderated
mediation model by controlling for age in addition to
smoking status, the model again reached statistical
significance with an explained variance of R2 ¼ 0.62
(P¼ .011). This time, fear of physical activity determined
a significant proportion of the relationship between
disease duration and ACC-GMV of DR2 ¼ 0.26.
Discussion
This study is one of the first to investigate structural
brain changes in patients with COPD using VBM and
430 Original Research
several important findings were obtained. Patients with
COPD showed no general reductions in MRI brain
volume of gray matter, white matter, or total intracranial
volume compared with matched healthy control
subjects. In contrast, patients with COPD showed
regionally decreased GMV within the PCC (whole-brain
analysis) as well as in ACC, MCC, HC, and AMYG
(small-volume analysis) when compared with control
subjects. Most importantly, we observed that reductions
in GMV in the ACC were not only correlated with
longer disease duration, but also with higher levels of
fear of dyspnea and fear of physical activity. No such
relationships were observed in the healthy control
group. Together, the results firstly link structural brain
changes in COPD with increased disease-specific fears,
which might negatively impact the course of the disease
via behavioral mechanisms as will be discussed later.

The present findings contribute to the limited literature
on COPD brain pathology in several ways. First,
comparable overall MRI brain volumes of gray matter,
white matter, and total intracranial volume in patients
with COPD and healthy control subjects suggest an
absence of generalized cerebral degeneration in patients
with COPD. This supports findings by Dodd et al9 who
reported comparable volumes of gray and white matter
in patients with COPD and a healthy control group.
Second, our observation of regionally decreased GMV in
patients with COPD within the ACC, MCC, PCC, HC,
and AMYG substantiates the preliminary observations
of Zhang et al.10 Using VBM, these authors found
regionally decreased gray matter in comparable brain
regions which further included insula and thalamus. The
findings in the latter two areas could not be replicated in
the present study. Importantly, like Zhang et al,10 we
found a negative correlation between GMV reductions
in the ACC and disease duration, suggesting stronger
ACC degeneration with increasing chronicity of COPD.
[ 1 4 9 # 2 CHES T F E B R U A R Y 2 0 1 6 ]



Hippocampal volume reductions in patients with COPD
were also reported by Li and Fei12 using different
methodology, but not by Borson et al,11 based, however,
on a limited number of participants. Notably, ACC,
MCC, PCC, HC, and AMYG are not only involved in
the neural processing of dyspnea,13,14 but also highly
relevant for the processing of fear/anxiety and fear-
avoidance behavior.15-17,31 This already suggests a
potential link between GMV changes in COPD and
behavioral aspects such as fear.

Most importantly, we firstly demonstrated that
structural brain changes in patients with COPD were
related to disease-specific fears. Specifically, reduced
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Figure 2 – A-C, Negative correlations of ACC-GMV in patients with COPD
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other abbreviations.
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GMV in the ACC in patients with COPD was correlated
with greater fear of dyspnea and fear of physical activity.
This converges with the well-known role of the ACC for
the processing of aversive stimuli including dyspnea,13,14

pain,19,31,32 and fear.16 Moreover, the ACC is a central
component in emotion regulation such as fear-
avoidance behavior17,33 and appraisal of threat stimuli
including respiratory threats.13,31 Notably, the ACC
also plays an important role in the descending
antinociceptive network mediating the analgetic effects
of opiates and placebo interventions on perceived
pain.34,35 Gray matter decreases within the ACC were
reported for diverse chronic pain syndromes,23 and
shown to be related to the chronicity of disease and the
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re liberal threshold (uncorrected P < .001) than statistical analyses to
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Figure 3 – Moderated mediation model with
partial correlation coefficients (controlled for
smoking status) in patients with COPD. See
Figure 2 legend for expansion of abbreviations.

COPD Disease
Duration

Fear of Physical
Activityr = .49, P = .011

r = –.59, P = .002

r = –.53, P = .005

r = –.46, P = .019

ACC-GMV Fear of Dyspnea

Smoking Status
intensity of noxious stimulation.36-38 This converges
with the negative correlation of ACC-GMV and disease
duration observed in this study. Degeneration of the
ACC due to the chronic experience of dyspnea might,
in turn, result in reduced antinociceptive impact of the
ACC, thereby increasing the fear of dyspnea and fear of
physical activity.

Finally, mediation analyses demonstrated that the
relation of ACC-GMV decreases and disease duration
was mediated by higher fear of physical activity.
This suggests that longer disease duration, even after
controlling for the potentially confounding effects of
smoking and age, results in increased fear of physical
activity, which may subsequently lead to avoidance of
physical activity and contribute to subsequent GMV
loss in the ACC. Previous studies have convincingly
demonstrated that reduced physical activity is related to
GMV loss.39,40 Increased fear of dyspnea due to lower
ACC functionality might further fuel this vicious circle
and lead to even more fear and avoidance of physical
activity, subsequent deconditioning, increased dyspnea,
and greater reductions in health-related quality of life.5,6

Addressing these disease-specific fears seems, therefore,
highly important in the treatment of COPD.5,6 In this
regard, it would be interesting to examine whether the
treatment of dyspnea and disease-specific fears can stop
or even reverse GMV reductions in patients with COPD.
Previous findings in chronic pain patients demonstrated
that pain-related gray matter changes are not static and
at least partially reversible after successful treatment of
pain.41-43

Potential limitations of the present study include the
cross-sectional character and the use of questionnaire
data to assess fear and potential avoidance of physical
432 Original Research
activity. Therefore, future studies including longitudinal
designs and objective measures of physical activity such
as activity monitors are warranted to gain further
insights into the dynamics of GMV changes in relation
to activity avoidance in COPD. Moreover, the specific
physiologic mechanisms underlying the observed GMV
changes in patients with COPD remain unclear. Various
mechanisms including axonal remodeling, changes in
dendritic spines, dendritic atrophy, synaptic plasticity
(eg, synaptogenesis, synapse elimination, long-term
potentiation/depression, or synapse turnover), changes
in cell size, changes in oxygenation, and neural or
glial cell genesis have been suggested to contribute to
experience-dependent cortical plasticity.44-50 Therefore,
future studies with different methodology will be
necessary to examine which of these potential
mechanisms contribute to structural brain changes in
COPD.
Conclusions
Compared with healthy control subjects, patients with
COPD showed decreased GMV in ACC, MCC, and
PCC, HC, and AMYG in the absence of generalized
cortical degeneration. The affected brain areas are
involved in the processing of dyspnea, fear, and
antinociception. Moreover, decreased gray matter in
the ACC in patients with COPD was related to longer
disease duration, and greater fear of dyspnea and fear of
physical activity, which—via behavioral mechanisms—
might negatively influence the course of disease.
Targeting these disease-specific fears in patients with
COPD might not only improve outcomes of clinical
interventions such as pulmonary rehabilitation, but also
reverse structural brain changes in these patients.
[ 1 4 9 # 2 CHES T F E B R U A R Y 2 0 1 6 ]
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