

GREENHOUSE GAS EMISSIONS AND AGRONOMIC FEASIBILITY FOR FORAGE PRODUCTION ON INVERTED PEAT SOIL

Hansen S., Rivedal S., Øpstad S., Heggset S., Deelstra J. and Dörsch P.

We thank the Norwegian Research Council, the counties, the regional agricultural authorities and the farming communities in western Norway for financial support

Background

Grasslands on former bogs, are posing agronomic and environmental challenges

In some regions, peat soils are situated on top of a self-draining mineral soil covered by a thin layer of impermeable mineral soil

PRINCIPLE FOR PEAT INVERSION

Location Fræna Norwegian West Coast

Uncultivated peat Inverted peat soil Tiled drained peat

EXPECTED GHG EMISSIONS FROM UNCULTIVATED PEAT

 $N_2 O = 0$

CH₄

 CO_2 ?

EXPECTED GHG EMISSIONS FROM TILE DRAINED PEAT

EXPECTED GHG EMISSIONS FROM INVERTED PEAT

N₂O CH₄ $CO_2 = 0$

PLACEMENT OF CHAMBERS INVERTED PEAT

EMISSION OF GHG FROM PEAT SOIL FRÆNA 27/4 – 14/10 2015

Thank you for attention

Questions?

