METODOLOGIE SPERIMENTALI IN FISICA E ASTROFISICA DELLE PARTICELLE

F.-L. NavarriaMarzo 20171a parte A

Programma

- 1a parte
 - Alcune proprietà fondamentali dei muoni (e dei neutrini) rilevanti (o meno) per un uso applicato.
 - Utilizzo di muoni cosmici per radiografie e tomografia nel campo della sicurezza, dell'archeologia, della geofisica e del controllo ambientale.

2a parte

 Reattori pilotati da acceleratori, un nuovo approccio alla produzione di energia col nucleare e alla soluzione del problema delle scorie.

Questo modulo vs Lab. Fis. Nucl. Sub. e Fis. delle Particelle

- Vita media del μ: si discutono alcuni esperimenti che hanno realizzato misure di precisione di τ_μ
- Perdita di energia e m.s. di µ nella materia: si utilizzano gli andamenti e tipici valori numerici necessari a capire la radiografia con i µ
- Strumentazione usata negli esperimenti e nelle applicazioni (camere a fili, scintillatori, SiPM etc.)
- G_F, conservazione del numero leptonico, decadimenti rari

High Energy Physics è nota per il bosone di Higgs: 2012-... un successo del LHC

- 2012 discovery of a Brout-Englert-Higgs-like boson by ATLAS and CMS using 7 and 8 TeV pp data (announced on 4 July 2012)
- 8 October 2013 NP awarded to Francois Englert and Peter Higgs for their 1964 papers on the BEH mechanism
- Late spring 2017, LHC will resume at 13 TeV and ... you may follow it any time on Twitter, now Extended Year End Technical Shut- down

now CERN DG

fln mar 2017

Senza i µ la scoperta del bosone di Higgs sarebbe stata impossibile

muons are everywhere, including the «golden» Higgs' decays, $H \rightarrow ZZ^*$

Higgs candidate: $H \rightarrow ZZ^* \rightarrow \mu + \mu - \mu + \mu$

Higgs candidate: $H \rightarrow ZZ^* \rightarrow e+e-\mu+\mu-$

(yet muons are just the heavy brothers of electrons)

un'accumulazione di µ ed e dopo anni e anni di caccia

Ma HEP non è solo Higgs: alcuni spin-off

- Hadron therapy for otherwise untreatable tumors
- Positron-Emission-Tomography (PET)
- Medical Imaging
- Free Electron Laser
- \rightarrow The World Wide Web (released royalty free by CERN)
- Grid-Computing
- NeuroBayes Neuronal Bayesian statistics for economy
- → µ radiography/tomography
- Superconducting magnets, high vacuum, low temperatures (on a large scale)
- Training, international collaboration (science brings nations together, CERN, SESAME ...)
- Accelerator Driven Systems

Applications: e.g. the World Wide Web!

Tim: a physicist from Oxford, working at CERN on accelerator (PS, LEP) controls in the 1980s; early applications of WWW to LEP experiments beginning of the 90's

The WWW proposal (1989): Network + Hypertext:, developed with the Large Hadron Collider (LHC) project in mind

Software released freely by CERN in April 1993

Free for everybody ever since, exponential growth

Next (designed by S. Jobs)

Fisica fondamentale ed applicata con i µ

- dal 1937-38 (Anderson&Neddermeyer, scoperta del µ) in poi, progressi in quattro direzioni:
 - fisica fondamentale e nuova tecnologia
 - fusione catalizzata da muoni
 - muonSpinRotation e fisica dello stato solido
 - analisi non distruttiva (muografia)
- S.H. Neddermeyer and C.D. Anderson, Note on the Nature of Cosmic-Ray Particles, Phys. Rev. 51 (1937) 884; Nature of Cosmic-Ray Particles, Rev. Mod. Phys. 11 (1939) 191.

Che cosa si può fare con i muoni

E, range e intensità delle sorgenti di µ

Muoni (e neutrini) in una frase

- I muoni sono particelle instabili con due tipi di cariche elettriche (μ⁺, μ⁻) che hanno spin ½, una massa intermedia fra quella del p e quella dell'e (1/9 m_p, 207 m_e), una vita media di ~2.2 μs e non hanno interazioni forti.
- I neutrini appaiono in tre sapori (ν_e, ν_µ, ν_τ), non hanno carica elettrica, hanno spin ½, massa molto piccola (<< m_e), ma non nulla (oscillano fra un sapore e l'altro, Lepton Flavour Violation (LFV)), interagiscono molto poco con la materia e negli esperimenti sia a bass che ad alta energia, esclusi quelli dedicati alla loro rivelazione, appaiono come energia mancante.

Vite medie e masse di varie particelle elementari

Il muone ha la seconda più lunga vita media, dopo il n, fra le particelle instabili (i neutrini sono stabili) ed ha la seconda più piccola massa fra tutte le particelle elementari dopo l'e (escludendo i neutrini)

Qualche proprietà dei μ (e ν)

ι μ[±]

- □ *m* = (105.6583715 ± 0.0000035) MeV
- $\tau = (2.1969811 \pm 0.0000022) \ 10^{-6} \ s$
- interazioni: e.m. e debole
 - un e[±] pesante ("E questo chi lo ha ordinato?", I.I. Rabi), diverso da e[±] rispetto alla perdita di energia
 - energia critica (Radiaz. = Ioniz.) $ε_µ$ diverse centinaia di GeV, dipende da Z → particella penetrante
- v_{e,μ,τ} (anche anti)
 - □ m << 1-2 eV, interazione debole → molto penetrante □ $\sigma_v \sim 0.68 \ 10^{-38} \text{ E}_v(\text{GeV}) \text{ cm}^2 [\text{CC}, v_\mu; 0.33 \text{ antiv}_\mu]$

Misure di precisione con acceleratori

- fasci di µ⁺ sono disponibili a PSI (590 MeV cyclotron, 1.3 MW p beam), TRIUMPH (520 MeV cycl.), J-PARC (3 GeV Rapid Cycling Synchrotron 1 MW), ISIS^(*) (800 MeV p sync.), RIKEN-RAL (µ facility, uses ISIS beam), [FNAL (8 GeV p sync.) for the expt. Mu2e, 2019]
- vita media del µ⁺
- ricerca dei decadimenti rari del μ e di
 ChargedLFV, e.g. μ⁺ → e⁺ γ, M(μ⁺e⁻) → M

(*) Isis è il nome di una dea egiziana ed il nome locale del Tamigi (non è un acronimo)

e.g. RIKEN-RAL facility at ISIS

(nelle box stato al 2007; oggi 2016-17: α 0.23 ppb; G_F 0.5 ppm; M_Z invariato)

Dalla vita media del muone a G_F

T. van Ritbergen and R.G. Stuart, Phys. Rev. Lett. 82, 488 (1999) A.Pak and A. Czarnecki, Phys. Rev. Lett. 100, 241807 (2008)

Incertezza teorica (G_F) 0.3 ppm 0.14 ppm

Stato sperimentale dell'errore sulla vita media del μ^+									
2011	Webber et al.	± 2.2 ps	10 ¹²	Ν _μ					
2008	Barczyk <i>et al.</i>	± 35 ps	10 ¹⁰ <	4 10 ¹¹ still to be published					
2007	Chitwood et al.	± 24 ps	:	•					
1984	Bardin <i>et al.</i>	\pm 66 ps	÷						
1984	Giovanetti <i>et al.</i>	\pm 60 ps	10^{9}						
1974	Balandin <i>et al.</i>	\pm 80 ps	÷						
1973	Duclos <i>et al.</i>	\pm 300 ps	10^{8}						
1972	Williams & Williams <i>et al.</i>	\pm 800 ps	÷	(µ⁻)					
1963	Meyer <i>et al.</i>	\pm 2000 ps	10^{6}						
1962	Lundy	\pm 4000 ps	÷						
1936	Anderson and Neddermeyer	discovery	1						

I due esperimenti recenti per la misura di τ_{μ} (μ +) – sistematiche diverse

- FAST (obiettivo: 2 ppm; realizzato finora: 16 ppm) fascio DC, catena π→µ→e identificata evita di selezionare µ del fascio (polarizzati), π(spin 0) decade a riposo producendo µ con direzioni di polarizzazione isotrope; (gran parte dei) dati ancora da finire di analizzare
- MuLan (obiettivo: 1 ppm; realizzato: 1 ppm) fascio pulsato, per 5 µs si «carica» la sorgente, poi si lascia decadere → necessario il controllo degli effetti della polarizzazione dei µ e del pile-up degli eventi

Misure recenti della vita media del μ +

- Esperimento FAST (Fibre Active Scintillator Target) al PSI di Villigen/Zurigo
- obiettivo una misura di τ_{µ+} con 2 ppm di incertezza (G_F con 1 ppm) raggiungibili 5 ppm pubblicati 16 ppm
- $\pi^+ \rightarrow \mu^+ + v_\mu$ (DC, p = 165 MeV/c, 80% π+, 14.% e+, 5.5% µ+) seguito da µ⁺ → e⁺ + $\overline{v_\mu}$ + v_e a riposo
- i π si fermano nel bersaglio (attivo, 32x48 pixel, barrette scintillatore plastico 4x4x200 mm³) dopo aver perso tutta l'energia – il bersaglio circonda a 4π il μ che decade (per essere indipendenti dalla polarizzazione del μ) – c'è comunque un campo magnetico dipolare per misurare P_μ
- Iettura delle barrette con fibre WLS e Hamamatsu H6568-10 PositionSensitivePMT

FAST

- l'assorbitore a cuneo distribuisce i punti di arresto dei π⁺ uniformemente
- si registrano i tempi di decadimento della catena $\pi \rightarrow \mu \rightarrow e$ usando CAEN V767 multihit TDC (da -8 μ s a +22 μ s rispetto al π -stop)
- trigger LV2 (π→μ decay), 30 kHz, in totale ~4 10¹¹ eventi (~10¹⁰ pubblicati)

Il rivelatore

 bersaglio: 32x48 = 1536 pixel, ciascuno letto con 2 fibre WLS

FAST/2

- Per la misura finale LV2 deve operare ad 1 MHz, ~7 TB/g di dati → l'analisi è fatta online accumulando 1200 istogrammi separati di vita media (informazioni per la misura e lo studio dei sistematici)
- trasferimento dati dai 4 crates
 VME a 20 MB/s a 4 PCs per il
 DAQ, poi ad una farm di PCs
 per l'analisi attraverso un
 Gigabit ethernet switch
- scala dei tempi: Rb atomic clock 30 MHz (~ 0.5 ppm)
- il fondo a tempi -vi è dovuto a perdita di un e+ e coincidenza con un falso e+ (struttura del fascio visibile nell'inserto)

a) bin ~1.04 ns; b) bin integrato su 19 ns (periodo acceleratore)

FAST/3

fit N(t_e) = f_{TDC}(t_e) (Ae^{-te/тµ} + Be^{te/тµ} +C) per tempi +vi
f_{TDC} - non linearità del TDC
A segnale di decadimento del µ (96.82%)
B fondo correlato crescente (π del fascio) (0.002%)
C fondo scorrelato
T_{u+} = [2.197083 (32) (15)] µs
(stat) (sist)

(a) residui del fit vs τ_{μ} in σ (b) istogramma del numero di residui vs il loro valore, che mostra un perfetto andamento gaussiano $\mu = -0.001 \pm 0.031$, $\sigma = 1.003 \pm 0.022$, $\chi^2/n_{dof} = 68.3$ /77, p = 75%

FAST/4 – alcuni sistematici

 τ_u in funzione di vari parametri: (a) bin size (il punto a 19 tick del TDC è quello usato per il fit nominale di T_u , l'errore statistico è mostrato solo per il caso non-ribinnato e per quello ribinnato con la RF), (b) PSPM che contiene il π -stop, (c) posizione del µ nel PSPM, (d) posizione del μ relativa ad un πstop in un particolare pixel (pixel 5)

9

beam

MuLan

- si fermano i µ in un fascio pulsato al PSI e si misura il t di decadimento (bersagli di AK-3 ferromagnetico, 0.4 T, run06, e SiO₂ con B=0.013 T, Halbach magnet, run07)
- 170 tile scintillatori triangolari (x2)
- 1.6 10¹² μ a 10⁷ μ/s

- set-up il più possibile simmetrico (per evitare effetti dovuti alla polarizzazione)
- sfasamento dell'insieme di μ nei bersagli (precessione, v_{μ} = 0.135 GHz/T (R06), v_{M} = 13.9 GHz/T (SiO₂, R07, param. μ^+e^-)

MuLan/2 – principio della misura

tecnica del fascio pulsato

T_A accumulazione dei μ (con fascio): 5 μs – si crea la «sorgente»

T_M misura del decadimento del μ (senza fascio): 22 μs – la si lascia decadere

in alto: tempi di arrivo dei µ+

in basso: tempi di arrivo degli e+

MuLan correzioni per il PileUp

ad es. leading_order_PU = $e^{-t/T} * f^* e^{-t/T} \sim e^{-2t/T} \text{ con } f = f(ADT)$ A(rtif)D(

A(rtif)D(ead)T(ime) = 6 ct

MuLan consistenza delle misure

The distribution of the normalized deviations of the fitted lifetimes from the individual runs from the final result. The data points are the run-by-run results and the solid curve is a least squares fit to a Gaussian distribution. The left panel is the AK-3 data set (2006) and the right panel is the quartz data set (2007).

Bibliografia – misure recenti di τ_{μ^+}

- MuLan Collaboration: D.M. Webber et al. Phys. Rev. Lett. **106** (2011) 041803; V. Tishchenko et al., Phys. Rev. **D87** (2013) 052003. The mean life of μ+ was measured to a precision of 1 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target (and, as a cross-check, in a quartz target), which was surrounded by a scintillator detector array. The result, T_{μ+} = 2.1969803(22) μs, is **much more precise** (1 ppm) **than the previous world average**. The new value determines the Fermi constant G_F = 1.1663787(6) x 10⁻⁵ GeV⁻² (0.5 ppm).
- FAST Collaboration: A. Barczyk et al., Phys. Lett. **B663** (2008) 172-180 An initial measurement of the μ + lifetime to a precision of 16 parts per million (ppm) was performed with the FAST detector at the Paul Scherrer Institute. The result is 2.197083(32)(15) μ s, where the first error is statistical and the second is systematic. The muon lifetime determines the Fermi constant, $G_F = 1.166352(9) \times 10^{-5} \text{ GeV}^{-2}$ (8 ppm).

Decadimenti rari del µ e CLFV

- Il µ potrebbe essere la chiave del mistero del flavour, osservando la ChargedLFV in alcuni decadimenti rari del µ in e senza neutrini, oppure nella conversione di µ in altri leptoni carichi, visto che LFV è già osservata con i v che oscillano fra i vari sapori
- CLFV può essere osservata anche con τ (i limiti sono peggiori che non con i µ, perché l'intensità delle sorgenti di τ è inferiore, però gli effetti potrebbero essere maggiori)

Decadimenti rari del µ (CLFV): limiti sperimentali

Canale	UL(90%CL)	Anno	Esp./Lab.
µ+→e+γ	1.2 10-11	2002	MEGA/LAMPF
	4.2 10-13	2016	MEG/PSI
µ+→e+e+e-	1.0 10-12	1988	SINDRUM I/PSI
µ+e-→µ-e+	8.3 10-11	1999	MACS/PSI
µ-Ti→e-Ti	4.3 10-12	1993	SINDRUM II/PSI
µ-Ti→e+Ca*	3.6 10-11	1998	"
µ-Pb→e-Pb	4.6 10-11	1998	"
µ-Au→e-Au	7 10-13	2006	"

CLFV limiti sperimentali (W. Marciano et al. 2008)

Reaction	Current bound	Reference	Expected	Possible	PDG2016
$\mathcal{B}(\mu^+ \to e^+ \gamma)$	$<1.2 \times 10^{-11}$	28	2×10^{-13}	2×10^{-14}	<5.7 10 ¹³
$\mathcal{B}(\mu^{\pm} \rightarrow e^{\pm}e^{+}e^{-})$	$< 1.0 \times 10^{-12}$	37	1. 1	10-14	
$\mathcal{B}(\mu^{\pm} \rightarrow e^{\pm}\gamma\gamma)$	$<7.2 \times 10^{-11}$	92		-	
$R(\mu^{-}\mathrm{Au} \rightarrow \mathrm{e}^{-}\mathrm{Au})$	$< 7 \times 10^{-13}$	15	-	-	
$R(\mu^{-}Al \rightarrow e^{-}Al)$	84		10^{-16}	10^{-18}	
$\mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma)$	$< 5.9 \times 10^{-8}$	Table 2		$O(10^{-9})$	<4.4 10-8
$\mathcal{B}(\tau^{\pm} \rightarrow e^{\pm}\gamma)$	$< 8.5 \times 10^{-8}$	Table 2		$O(10^{-9})$	<3.3 10-8
$\mathcal{B}(\tau^{\pm} \rightarrow \mu^{\pm} \mu^{+} \mu^{-})$	$<2.0 \times 10^{-8}$	Table 2		$O(10^{-10})$	<2.1 10 ⁻⁸
$\mathcal{B}(\tau^{\pm} \rightarrow e^{\pm}e^{+}e^{-})$	$<2.6 \times 10^{-8}$	Table 2		$O(10^{-10})$	<2.7 10-0
$Z^0 \rightarrow e^{\pm} \mu^{\mp}$	$< 1.7 \times 10^{-6}$	90			
$Z^0 ightarrow e^{\pm} \tau^{\mp}$	$< 9.8 \times 10^{-6}$	90		2 E	
$Z^0 \rightarrow \mu^{\pm} \tau^{\mp}$	$<1.2 \times 10^{-5}$	91			
$K_{\rm L}^0 ightarrow { m e}^{\pm} \mu^{\mp}$	$<4.7 \times 10^{-12}$	74		10-13	
$D^0 \rightarrow e^{\pm} \mu^{\mp}$	$< 8.1 \times 10^{-7}$	78		10 ⁻⁸	
$B^0 \rightarrow e^{\pm} \mu^{\mp}$	$< 9.2 \times 10^{-8}$	79		10 ⁻⁹	

Data from current experimental bounds, expected improvements from existing or funded experiments, and possible long-term advances.

CLFV limiti sperimentali [W. Marciano et al., Ann. Rev. Nucl. Part. Sci 58 (2008) 315]

 $M \rightarrow antiM$ (th)

MuoniumAntimConversionSpectr. experiment: L. Willmann et al., Phys. Rev. Lett. **82** (1999) 49-52

FIG. 1. Muonium-antimuonium conversion in theories beyond the standard model. The interaction could be mediated, e.g., by (a) doubly charged Higgs boson Δ^{++} [3,4], (b) heavy Majorana neutrinos [3], (c) a neutral scalar Φ_N [5], e.g., a supersymmetric τ -sneutrino $\tilde{\nu}_{\tau}$ [6,7], or (d) a bileptonic flavor diagonal gauge boson X^{++} [8,9].
Conversione muonio-antimuonio (1999)

- The MACS apparatus at PSI searching for $M(\mu^+e^-)$ -antiM conversion. The signature requests the energetic e from the μ^{-} decay of antiM in a magnetic spectrometer in coincidence with the atomic shell e⁺, which is accelerated and magnetically guided onto a microchannel plate (MCP), and at least one annihilation photon in a CsI calorimeter.
- 26 MeV/c μ; 8 10^6 μ/s
- 1730 h run; 5.6 10^10 M
- beam scintillator 280 µm
- expect. bckgd ~2 evts
- limit <8.3 10⁻¹¹ (90% CL)

Decadimenti rari del μ ($\mu^+ \rightarrow e^+\gamma$, CLFV)

- SM: introducendo masse e mixing dei neutrini il processo è permesso, ma BR ~ (Δm_{ij}²/M_W²)² ≤ 10⁻⁵¹ troppo piccolo per una misura (cfr con b→sγ, BR ~ 10⁻⁴, grazie alla grande massa del top) discorso simile per μ⁻N → e⁻N
- BSM: SUSY, GUT & teorie con extra dimensioni predicono BR nell'intervallo 10⁻¹²-10⁻¹⁴, misurabile
 - Barbieri, Hall, Strumia NPB 445 (1995) 219
 - Hisano, Noumura, Yanagida PLB 437 (1998) 351
 - Raidal et al. Eur.Phys.J. C57 (2008) 13

Michel decay vs $\mu^+ \rightarrow e^+\gamma$ in SM

$\mu^+ \rightarrow e^+\gamma$, considerazioni sperimentali

- µ+ a riposo, decadimento a due corpi, segnature
 - γ ed e+ collineari

•
$$E_{\gamma} = E_{e+} = m_{\mu}/2 = 52.8 \text{ MeV}$$

- $\Box t_{\gamma} = t_{e+}$
 - tracciamento preciso
 - calorimetria superba (ΔE=1.2%, Δt=65ps, Δx≈4mm; protot.)
 - ottimo timing
- fondi
 - □ Radiative Michel Decay $\mu + \rightarrow e + v_e v_\mu \gamma \text{ con } v_e v_\mu$ poco energetici (irriducibile)
 - accidentali fra un MD normale e un RMD (limite sperimentale attuale)

Ricerca di decadimenti rari del muone: $\mu^+ \rightarrow e^+ \gamma$ (esperimento MEG)

- Fascio di μ al PSI, πE5, surface μ, 26 MeV/c, alta intensità
- Calorimetro a LXe per il fotone (900 lt, λ=178 nm)
- Camera a drift per l'e+ (1%)
- Magnete superconduttore, cavo di NbTi/Cu
- stop rate 3x10⁷ Hz, totale 3.6
 [3.9] 10¹⁴ µ 2009-11 [2012-13]
- obiettivo BR < 2x10⁻¹³

per ora: <4.2x10-13 (90% CL), Eur. Phys. J. C76 (2016) 434

MEG set-up

The magnetic field (COBRA, COnstant Bending RAdius) is shaped such that positrons are quickly swept out of the tracking region thus minimizing the load on the detectors. The cylindrical 0.9 m³ single-cell LXe detector is viewed from all sides by 846 UV-sensitive PMTs immersed in the LXe allowing the reconstruction of photon energy, time, conversion point and direction and the efficient rejection of pile-up signals

Liquid Xe calorimeter

costo: LXe 800 \$/kg = 2400 \$/l \rightarrow 2.1 M\$ (prezzo del 2007, grandi quantità), 900 l \rightarrow 2.66 t

very good scintillator: 46 ph/keV λ = 175 nm

Liquid Xe calorimeter

Figure 5. ²⁴¹Am alpha source deposited on 100- μ m gold-plated tungsten wire (left) and source wire fixed on photomultiplier holder in second prototype (right).

Larger LXe detectors (for Dark Matter search, underground labs): XENON1T (LNGS 2200 kg), LUX350 (Sanford 370 kg), both dual phase, I and g, measure also ionization charge, XMASS (Kamioka 835 kg) only scintillation light

MEG upgrade

- con i dati 2012-13 il fondo diviene dominante
- nuovo obiettivo (2019) BR ~ 5
 10⁻¹⁴
- più alta intensità del fascio (1)
- bersaglio attivo, sottili fibre scintillanti, 250 µm, lette da SiPM (2)
- DC con configurazione a fili con angolo stereo (3,4)
- nuovi contatori di timing pixellati, ad alta risoluzione, letti da SiPM (5)
- LXe letto con UV-SiPM (6,7)

SiliconPM

diodi a valanga (APD) in modalità Geiger, sviluppati in Russia fine anni 90 – in Italia, FBK-INFN, AdvanSiD e STMicroelectronics - Giappone, Hamamatsu (MPCC) – SensL (USA)

- A ~ 1x1, 2x2, 3x3 mm2
 pixel min 20x20 max 100x100 µm2
- Elevata PDE (>PMT), limitata dalla geom. pixel (spazi morti)
- Elevato guadagno 10^5-10^6
- Risoluzione singolo ph.el.
- Buona risoluzione temporale
- Bassa HT ~ 30-80 V
- Insensibili a B fino a 4 T
- Spesso usati per leggere fibre WLS (1 mm diam.)
- Rumore termico statistico (dark current) prop. A → raffreddare, ma compare afterpulsing
- Danno da radiazioni: sensibili ai p, meno sensibili ai γ

J-Series eStore Highlights

non proprio cheap!

ArrayJ-60035-4P-BGA \$198.00

UV-enhanced MPPC

- UV-enhanced MPPC is under development in collaboration with Hamamatsu Photonics.
- Requirements
 - Photon detection efficiency (PDE) (>10%)
 - Large sensitive area (~12×12mm²)
 - Single photon counting capability
 - Fast signal (fall time < 50ns)</p>
- Improving sensitivity to VUV light Protection coating
 - Remove protection coating
 - Thinner contact layer
 - Optimize optical matching bw/ LXe and Si (refractive index, AR coating)
- from W. Ootani talk on MEG upgrade at IPRD13, Siena, Oct. 2013

E field

Deep UV photon

Contact layer-

p-

n++

UV-MPPC Performance

- Development of UV-MPPC is in good shape.
- LXe scintillation light is successfully detected by prototypes of UV-enhanced MPPC.
- Best prototypes already show PDE~15% and gain>5×10⁵, which more or less fulfill our requirement.

from W. Ootani talk on MEG upgrade fln mar 2017

UV-MPPC Performance

- Full size prototype successfully tested in LXe.
 - Active area: $12 \times 12 \text{ mm}^2$ ($\leftrightarrow \leq 3 \times 3 \text{ mm}^2$ for commercial MPPC)
 - 50µm pixel pitch, 57600 pixels.
- Single photoelectron peak is clearly resolved.
- Dark count rate is quite low (~750Hz) at LXe temp.
- World's largest VUV-sensitive SiPM with single photon counting capability!
- Long signal tail (~200ns) due to large sensor capacitance would be an issue (→pileup in high rate environment).

Sensor Capacitance Issue

- Tested the scheme using 4×MPPCs (6×6mm² each)
 - X4 segmented: all 4 MPPCs connected in series
 - X2 segmented: Two sets of two MPPCs connected in parallel are connected in series.
- Signal fall time reduced down to 30-50ns!
- **Still reasonably high gain (>5×10⁵)**

from W. Ootani talk on MEG upgrade fln mar 2017

Mu2e (FNAL, 2019-...) μ -Al \rightarrow e-Al

8 GeV p su un bersaglio di W, π e K prodotti sono guidati verso un Transport Solenoid (-vi, 50 MeV/c), anti-p assorbiti, poi μ^2 stop target (AI) in un Detector Solenoid con tracker e calorimetro a CsI puro (λ = 310 nm, UV- extended SiPM) per l'e⁻ (105 MeV)

Mu2e/2

 fascio di p 8 GeV pulsato, 250 ns ogni 1.7 μs, 3 10⁷ p – si sfrutta la differenza fra la vita media del μ-Al (muonic Al), 864 ns, e il fondo pronto di π- radiative decays, μ- decays in flight ed e- del fascio: la finestra per la ricerca è ritardata di 700 ns, fondo trascurabile – la frazione di p fuori dal bunch deve essere< 10⁻¹⁰

Perdita di energia e range dei µ in vari materiali, scattering multiplo

- Ref. (spesso) <u>http://pdg.lbl.gov/2016/reviews/rpp2016-rev-</u> <u>passage-particles-matter.pdf</u> <u>http://pdg.lbl.gov/2016/reviews/rpp2016-rev-cosmic-rays.pdf</u>
- energie interessanti per la radiografia con muoni cosmici
 - □ ~5 GeV (scattering multiplo, piccole strutture)
 - ~50 GeV (assorbimento, archeologia)
 - >500 GeV (assorbimento, geofisica)

Perdita di energia dE/dx vs impulso del μ

-dE/dx di particelle pesanti in vari materiali

 $-dE/dx = K z^2 Z/A 1/\beta^2 \bullet$

• $[\frac{1}{2}\ln(2m_ec^2\beta^2\gamma^2T_{max}/l^2)]$

- $\beta^2 - \delta(\beta\gamma)/2$] MeVg⁻¹cm² valida per 0.1 $\leq \beta\gamma \leq 1000$ e Z intermedio entro qualche %, K = 0.307 MeVmole⁻¹cm², A - massa atomica g/mole;

 $dE/dx_{min} \sim 2.35 - 0.28 ln(Z) [Z>6]$

Non sono inclusi effetti radiativi, rilevanti per μ in Fe per E \geq 100 GeV, in roccia standard per E \geq 600-700 GeV (A = 22 g/mole, Z = 11, ρ =2.65 g/cm³)

 $< E_{\mu} > \sim 3-4$ GeV, muoni cosmici sulla superficie della terra \rightarrow dE/dx > dE/dx_{min}

Perdita di energia/3

- parametrizzazione di Gaisser&Stanev per i µ (in roccia std) $<dE/dx> = a(E_{\mu}) + b(E_{\mu})E_{\mu}$ (1)
 - con a e b funzioni del materiale e (deboli, ~logaritmiche) di E_{μ} , rispettivamente ionizazione e radiazione \rightarrow energia critica $\epsilon_{\mu} = a(\epsilon_{\mu})/b(\epsilon_{\mu})$ eg circa 660 GeV nella roccia

E_{μ}	R	а	b	
(GeV)	(km.w.e)	$(\text{MeV g}^{-1} \text{ cm}^2)$	$(10^{-6} \text{ g}^{-1} \text{ cm}^2)$	s /Go\/
10	0.05	2.15	1.91	ε _μ /Οeν
100	0.41	2.40	3.12	769
1000	2.42	2.58	4.01	643
10,000	6.30	2.76	4.40	

Muon range R and energy loss parameters calculated for standard rock

Range is given in km-water-equivalent. = 10^6 kg m⁻² = 10^5 g cm⁻²

altra par.: $dE/dx = (1.888 + 0.077 \ln(E_{\mu}/m_{\mu}) + 3.9E_{\mu}) \ 10^{-6} \ TeV \ cm^{2}/g$ (2) ionizzazione bremms 56

a, b, $\varepsilon_{\mu} = a/b$

a(E) = 1.97 + 0.201*log(E)

657 GeV

 $b(E) = [0.245 + 1.861*log(E) - 0.0851*(log(E))^2]/1000$

$$\begin{split} \epsilon_{\mu} &= a(\epsilon_{\mu})/b(\epsilon_{\mu}) = 1000^{*}(a'+a''log(\epsilon_{\mu}))/(b'+b'''log(\epsilon_{\mu})+b'''(log(\epsilon_{\mu}))^{2}) \\ &= 657~GeV \end{split}$$

fln mar 2017

Perdita di energia/4

confronto fra le parametrizzazioni, µ in roccia, dE/dx in MeV cm²/g

dE/dx (MeV g⁻¹cm²)

integrando la formula (2) per la perdita di energia si ottiene il range $X = 2.5 \ 10^5 \ ln(1.56E_{\mu} + 1) \ g/cm2$ [E in TeV] ossia per 1 TeV, X = 2.35 \ 10^5 \ g/cm^2 = 0.9 \ km di roccia (\rho = 2.65 \ g/cm^3) - [con la (1) si ha 2.42, ~ lo stesso]_{ln mar 2017}

Range di particelle cariche pesanti

Grosso modo, assumendo il minimo:

Fe $\rho = 8 \text{ g/cm}^3$ $-dE/dx|_{min} = 1.45 \text{ MeV/(g cm}^{-2})$ 1 m Fe => 800 g/cm² ·1.45=1160 MeV roccia std $\rho = 2.65 \text{ g/cm}^3$ $-dE/dx|_{min} = 1.69 \text{ MeV/(g cm}^{-2})$ 1 m r => 265 g/cm² ·1.69 = 450 MeV

in realtà già a 1(4) GeV pde 7(20)% maggiore in r [9(24)% in Fe], bisogna integrare lo stopping power $R = \int_0^{E\mu} dE_{\mu}/< dE/dx>$

```
per \langle E_{\mu} \rangle \sim 4 GeV, i \mu penetrano
~ 2400 g cm<sup>-2</sup> di Fe = 3 m
~ 2100 g cm<sup>-2</sup> di r = 8 m
```


la pde nell'atm, 1 kg/cm², è ~2.5GeV per $_{10}$ µ di 6 GeV \rightarrow <E_µ> ~ 3-4 GeV $_{60}$

Scattering multiplo coulombiano

 per angoli piccoli si ha lo scattering à la Rutherford, ~ 1/θ⁴, e, tenuto conto dello screening degli e⁻ e dell'estensione finita del nucleo, si ottiene per l'angolo quadratico medio (nello spazio) per unità di spessore attraversato (a parte termini correttivi, ~log) – la distribuzione é gaussiana (solo in 1a approx) + code (Molière)

$$\frac{d\langle\vartheta^2\rangle_{av}}{dx} = \vartheta_s^2 = \left(\frac{E_s}{\beta cp}\right)^2 \frac{1}{X_0} \quad \text{con } \mathsf{E}_s = (4\pi/\alpha)^{1/2} \mathsf{m}_e \mathsf{c}^2 = 21.2 \text{ MeV}$$

$$\langle \theta^2 \rangle_{av} = x \theta_s^2 = (E_s / \beta c p)^2 x / X_0$$

x piccolo, niente perd. di ener.

$$<\theta^2>_{av} = (E_s/c)^2 1/X_0 \int_{p1}^{p2} 1/[\beta^2(-dp/dx)] dp/p^2$$

= $(E_s/c)^2 1/X_0 1/(p_1p_2) (p_2-p_1)/[\beta^2(-dp/dx)]$
= $E_s^2/(c^2p_1p_2) x/X_0$ includendo la perdita di energia

vedi ad es. B. Rossi, High energy particles

m.s. con perdita di energia

■ $β^2(-dE/dx) \approx cost.$

angoli tipici per 1 X₀: $\theta_s = (E_s/\beta cp) = 0.021/p(GeV)$

Scattering multiplo coulombiano/2

distrib. angol.: dN ~ $1/(2\pi x \theta_s^2) \exp(-\theta^2/(2x \theta_s^2)) d\Omega$

$$\begin{array}{l} <\theta^2>=<\!\theta_y^2>+<\!\theta_z^2>=2<\!\theta_y^2>\\ <\psi_{plane} \ ^{rms}>=1/\sqrt{3} \ <\!\theta_{plane} \ ^{rms}>\\ <\!y_{plane} \ ^{rms}>=1/\sqrt{3} \ x<\!\theta_{plane} \ ^{rms}>\\ <\!s_{plane} \ ^{rms}>=1/(4\sqrt{3}) \ x<\!\theta_{plane} \ ^{rms}> \end{array}$$

y, z: indipendenti, stesse distribuzioni

Scattering multiplo coulombiano/3

consideriamo l'angolo proiettato sui piani xy (e xz), si ha $\theta^2 = \theta_y^2 + \theta_z^2 = 2\theta_y^2; si può mostrare che la probabilità di avere un angolo fra \theta_y e \theta_y + d\theta_y ed uno spostamento fra y e y + dy è data da$

 $P(x,y,\theta_y) = 2\sqrt{3}/\pi \ 1/(\theta_s^2 x) \exp[-4/(\theta_s^2 x) \cdot (\theta_y^2 - 3y\theta_y/x + 3y^2/x^2)]$ e le distribuzioni integrate sono

$$\begin{split} & \mathsf{Q}(\mathbf{x}, \theta_{y}) = \int_{-\infty}^{+\infty} dy \; \mathsf{P}(\mathbf{x}, y, \theta_{y}) = 1/\sqrt{\pi} \; 1/(\theta_{s} \mathbf{x}^{1/2}) \exp(-\theta_{y}^{2}/(\theta_{s}^{2} \mathbf{x})) \\ & \mathsf{S}(\mathbf{x}, y) = \int_{-\infty}^{+\infty} d\theta_{y} \; \mathsf{P}(\mathbf{x}, y, \theta_{y}) = \sqrt{3}/\pi \; 1/(\theta_{s} \mathbf{x}^{3/2}) \exp(-3y^{2}/(\theta_{s}^{2} \mathbf{x}^{3})) \\ & <\theta_{y}^{2} >_{\mathrm{av}} = \frac{1}{2} \; \theta_{s}^{2} \; \mathbf{x} \\ & < y^{2} >_{\mathrm{av}} = \frac{1}{2} \; \theta_{s}^{2} \mathbf{x}^{3}/3 = <\theta_{y}^{2} >_{\mathrm{av}} \; \mathbf{x}^{2}/3 \\ & \text{(il termine in } \theta_{y} \text{ integrato dà 0 perché } <\theta_{y} > = 0) \end{split}$$

Un impiego particolare di particelle subnucleari: tomografia con μ (e ν) cosmici

Un fascio gratuito di particelle: i µ dei Raggi Cosmici

- disponibili ovunque sulla terra
- 🕑 🛯 disponibili sempre 24/7
 - non implicano una produzione addizionale di radiazioni

ma

 intensità, spettro di energia, distribuzione
 angolare non sono aggiustabili, dipendono da dove ci si trova Muons (and Neutrinos) are the Main Component of Cosmic Rays at the Earth's Surface and Below

Primary cosmic rays interact in upper	<h> ~ 16 km</h>				
 Atmosphere Mainly high energy protons 	λ _{int} ~ 90 g/cm²				
 Showers of π's/K's created Decay within 10's - 1000's meters or collide with nuclei in air 	$c\tau_{\pi} = 7.8 \text{ m}$ $c\tau_{\kappa} = 3.7 \text{ m}$				
Muons are produced in decays of π/K					
- Lifetime much longer than π/K and	$c\tau_{\mu} = 660 \text{ m}$				
dilated by relativity (E	$E_{\mu} = 4 \text{ GeV}$) γcτ _µ = 25 km				
Approximate muon rate at Earth's surface (berizontel)	~ 1 cm ⁻² min ⁻¹				
Suitace (norizontal)					
fln mar 2017					

Spettro dei mu cosmici in superficie

Intensità verticale della componente dura al liv. mare $I_v = 70 \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}$

Al liv.mare $\langle E_u \rangle \sim 4 \text{ GeV}$ Lo spettro è piatto sotto 1 GeV, diventa gradualmente più ripido a 10-100 GeV poiché lo spettro dei primari ~ E^{-2.7} e asimptoticamente diventa 1 potenza più ripido (molto oltre 1 TeV)

come $\cos^2\theta$ per E_u bassa e cambia in $1/(1+aE_u\cos\theta)$ per $E_u >> \varepsilon_{\pi} = 115$ GeV [param. di Gaisser] $\theta < 70^{\circ}$ con θ zenith (rispetto alla verticale) [a 115 GeV la probabilità di interagire dei π uguaglia quella di decadere] fln mar 2017

Spettro dei mu cosmici/2; angoli grandi

Semplice modello per i muoni cosmici

 $(R+h)^2 = R^2 + x^2 - 2Rx \cos(\pi-\theta); \quad x = -R\cos\theta + \sqrt{([R\cos\theta]^2 + [2Rh + h^2])}$

Intensità dei cosmici

$$I(E, \theta) = \frac{dN(E', \theta)}{dE'} = 1.2 \times 10^{-6} E'^{-2.7} (TeV) \times \left[\frac{0.9}{1 + \frac{E'\cos\theta}{E_{\pi}}} + \frac{0.1}{1 + \frac{E'\cos\theta}{E_{K}}}\right] \dots (s^{-1}/cm^{2}/sr/TeV)$$

E_π = 0.092 TeV, E_K = 0.54 TeV [param. Adair&Kasha]
E' = E +ΔE_{air}/cosθ (L₀=1.013 kg/cm², ΔE_{air} = 0.0026 TeV)
x/h = [(R²cos²θ + 2Rh + h²)^{1/2} -Rcosθ]/h (θ ~ 90°, x~29h) R - raggio terra, h - <altezza> produzione μ ≈ 16-17 km (i μ orizzontali hanno + tempo x decadere → spettro + duro)
L_d = 6200 E(TeV) km decadimento
N_u(E_c,θ) = ∫_{Ec}[∞] I(E,θ)dE N con E>E_c

Intensità dei raggi cosmici a grande angolo

 la parametrizzazione (Adair&Kasha, 1976) è indistinguibile da cos²θ a bassa E, va come cosθ a ~5 GeV ed è molto più piatta ad alta E (a sx, curve vs θ normalizzate a 1 a θ = 0°; a dx curve assolute vs E_μ a 0° e grande angolo)

Intensità verticale dei µ cosmici vs lo spessore di roccia

Muoni nelle caverne di LHC

- a ~100 m sotto la superficie del suolo (profondità delle caverne degli esperimenti ATLAS e CMS a LHC),
 l'intensità dei µ cosmici è ridotta di un fattore circa 100 rispetto alla superficie della terra
- i µ cosmici sono stati usati per la calibrazione dei rivelatori quando si stava aspettando l'acceleratore (e sono tuttora usati, per es. adesso durante il YETS)
- si possono ottenere radiografie dei volumi (dei vuoti) vicino alle caverne
- misure di cosmici a ~60-100-170 m di profondità sono state fatte precedentemente all'epoca di LEP da L3, DELPHI e ALEPH

Simulated cosmics flux in the ATLAS cavern

Cosmics data:

Muon impact points extrapolated to surface as measured by Muon Trigger chambers (RPC)

LHCC, 24-Sep-2008, PJ

Status of ATLAfin mar 2017-50000-40000-30000-20000

CompactMuonSolenoid a LHC

- una torre di Pisa orizzontale (stessa m, \neq I)
- d = 15 m, I = 22 m, 70 Mcanali di rivelazione
- Si pixels; Si tracker; ECAL (PbWO₄); HCAL (brass + scintillator);3.8 T magnet; µ gas detectors, barrel (DT, RPC), end caps (CSC, RPC, GEM)

CMS durante la prima installazione della parte centrale

La rivelazione di particelle in CMS

µ cosmici: CMS ott08 ... pre e/o senza-LHC

- a circa 100 m di profondità, ~100-200 Hz nel barrel di CMS
- CosmicRaysAtFourTesla (CRAFT)
- B = 3.8 T

CRAFT - GLBMuons1LegBarrelOnly

- dal centro
 - pixels
 - □ strips
 - ECAL
 - HCAL
 - criostato

DT/RPC

Cosmici (DT/barrel) estrapolati alla superficie

Si vede il pozzo principale e l'ombra di due pozzi più piccoli usati per l'accesso di personale/materiale

Misure con raggi cosmici a CMS

- Muon charge ratio vs p_µ: eccesso di π+ su π- e di K+ su K- (p > n); R /: K / ad alta E
- BESS Balloon
 Experiment with
 Superconducting
 Solenoid

Fine della 1a parte A