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A bifurcated circular waveguide problem
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A rigorous and exact solution is obtained for the problem of the radiation of
sound from a semi-infinite rigid duct inserted axially into a larger acoustically
lined tube of infinite length. The solution to this problem is obtained by the
Wiener-Hopf technique. The transmission and reflection coefficients, when the
fundamental mode propagates in the semi-infinite tube, are obtained. The present
results could be of use for exhaust design, and as a possible instrument for
impedance measurement.

1. Introduction
In our present industrial environment, situations often arise where noise
generated by a particular source propagates through ducts to produce unwanted
noise in locations removed from the source. It is necessary to try to eliminate this
unwanted noise in, for example, architectural acoustics (duct noise produced in
heating and ventilation systems), experimental aerodynamics (noise propagation
wind tunnels), aircraft transport (noise from aircraft jets and turbo fan engines),
and, of major importance in recent years, road transportation (exhaust noise from
internal combustion engines). One method of reducing noise is to introduce
expansion chambers to muffle the noise as it travels along the duct. The
introduction of acoustically absorbent lining into the duct is another method that
has proved useful in reducing unwanted noise (see Rawlins, 1978). The insertion
of expansion chambers with acoustically lined walls is yet another effective
method of reducing sound radiated from duct terminations of motor cars and
lorries. We are interested in the effect of lining an exhaust chamber to reduce
noise exiting from an exhaust. To try to solve this problem theoretically 'head-on'
would be extremely complicated. A typical exhaust chamber is depicted in Fig. 1.

The theoretical or numerical analysis of the system shown in Fig. 1 would be
extremely complicated because of the large number of design parameters. An
approach for analysing the system shown in Fig. 1 is the so called 'building block
method' (see Nilsson & Branders, 1980a,b). This assumes that the longitudinal
lengths between the various discontinuities is such that the canonical problem for
each discontinuity can be considered in isolation. When the various discon-
tinuities which make up the exhaust system have been separately analysed, these
separate field calculations can be combined by an effective matching procedure to
produce a composite result. Such an approach has been successfully applied by
Nilsson & Branders (1980a,b, 1981a,b) and Taylor et al. (1993).

In this work we shall obtain a solution to the discontinuity problem shown in
Fig. 2. An incident mode propagates in the smaller tube of radius a and this
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60 A. D. RAWLINS

J)

FIG. 1. An exhaust muffler.

enters an infinite duct of radius b which is lined with acoustically absorbent
material. This particular problem may also be of some interest as a mathematical
model of an instrument for the measurement of the acoustic lining properties
from observation of the acoustic field reflected into the semi-infinite tube.
Problems of a similar nature have been considered by Bailin (1951) and
Vainshtein (1948), who assume all the surfaces are either rigid or soft. The latter
boundary condition has applications in electromagnetism. The present work
would have applications in electromagnetism when dealing with waveguides with
lossy walls.

The present problem is solved by means of a relatively standard Wiener-Hopf
approach and an exact expression obtained for the reflection coefficient. In
Section 2 we shall formulate the mathematical boundary value problem. In
Section 3 the problem formulated in Section 2 will be solved by means of the
Wiener-Hopf technique. The solution will be in the form of complex contour
integrals. These integrals will be evaluated in Section 4 by an application of
Cauchy's residue theorem. This produces a representation for the acoustic field in
the various regions as an infinite series of modes. In Section 5 the fields in the
various regions are obtained when only the fundamental mode propagates in the
semi-infinite duct. This will result in expressions for the reflection and transmis-
sion coefficient of the dominant propagating mode. The effect of the absorbent
lining on the reflection coefficient is then analysed for the low-frequency situation.
Finally, various appendices are supplied. These contain analytical details required
in the main body of the paper.

I [

FIG. 2. Geometry of the diffraction problem.
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 61

2. Formulation of the boundary value problem

We shall consider the acoustic diffraction of a plane wave mode propagating out
of the open end of a semi-infinite rigid cylindrical tube. This semi-infinite tube is
surrounded by an infinite cylindrical casing which is lined with an acoustically
absorbing material. The cylinder casing and its lining are located at {r = b,
-oo< 2<oo} j and the semi-infinite rigid cylinder, assumed infinitely thin, is
located at {r = a<b, - ° ° < z < 0 } , in cylindrical polar coordinates (r, 6, z), as
shown in Fig. 2. The sound source field, which is located at z = z0 (zo < 0),
propagates cylindrically symmetric modes along the rigid tube. Therefore the
source field may be represented as plane wave modes independent of 0. Such a
situation arises, for example, when the source field is a point source located at
(0,0, Zo)- From the symmetry of the geometry of the problem and of the incident
field, the acoustic field everywhere will be independent of 0. We shall therefore
introduce a scalar complex potential of the form \p{r, z', t) which defines the
acoustic pressure and velocity by p = —podifi/dt and « = grad</» respectively,
where p0 is the density of the undisturbed medium. The acoustic impedance Z of
the lining is defined by the ratio Z =pl{u • n) (see Morse & Ingard, 1961), where
the normal n is directed into the lining. Thus, in terms of the velocity potential
function ip, the boundary condition on the absorbent surface is given by
(n • grad + 5c"1 d/d/)t// = 0, where S (=poc/Z) is the specific admittance and c is
the velocity of sound.

The incident sound field which can propagate down the tube is taken to be

Mr, z;t) = e-"*'Mr, z) = iVofoOe*"*-'"1 (r < a, - « < z ^0), (2.1)

where Ao = e~'XnX°, and an are the real roots of the equation

Ji(aan) = 0, (2.2)

with Xn - (k2 - a^)', k = <u/c, ao = 0<a1<a2<- • • • Having specified the
incident field, we now set up the boundary value problem for the potential field
everywhere: ip(r,z\t) = e~"""<j>(r, z). The time factor e"'°" will be dropped in
future calculations.

Thus, for such a primary field, if 4>{r, z) = <f>o(r, z) + $(r, z) is the total field in
r<a and <f>(r, z) the total field in a<r<b, then <t>(r, z) must satisfy the
following:

(ii)
or

(iii)

' " - - - ' , _ - . , ; = 0 (Re£>0)or

(~
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6 2 A. D. RAWLINS

(iv) <f>(a~, z) = 4>{a+, z) (z > 0 ) .

To the above conditions we add those radiation conditions at infinity which are
relevant to the nature of the propagating modes that the various duct regions can
sustain. In Appendix A it is shown that:
(v) For z -» -°°, 0 =£ r =s a,

<j>(r, z) - <f>o(r, z) = Rii^e""" + O(e~'XlZ),

where X,[k2 - (3.832/a)2]*, Xn = (k2 - aty, with /,(«„«) = 0 (n = 0, 1, 2 , . . .)•
For z —* —°°, a^r^b,

<f>(r, z) = R2(r)e~i7»z + O(e~iV2Z).

For z -»• <», 0 =£ r < b,

<f>(r, z) = T(r)ei(lZ + O(ei(lZ),

where precise details about Xn, Vn, a nd £n (n = 1,2,...) are given in the
appendix.

Finally, we require the edge field behaviour at r = a, x —» 0. Namely

d
Br

The satisfaction of the conditions (i)-(vi) will result in a unique solution to the
boundary value problem formulated.

3. Solution of the boundary value problem

For analytic convenience we shall assume that k = kT + ikj (kr > kt s= 0). A suitable
representation for the total field <f>(r, z) in all space {-°°<z < °°, r^b} which
satisfies (i) is given by

/•»+ir

<j>(r, z) = <f>o(r, z)+ \ e'vzA(v)J0(Kr)dv (r<a), (3.1)

<f>(r,z) = j ' ein[B(v)J^Kr) + C(v)H\}\Kr)]dv (a<r<b), (3.2)

where K = (k2 — v2)' and the branch cuts are from k to i°° and from —k to -i°°.
The cut sheet on which we shall work is defined by 0 =£ arg K =£ n. The quantities
A(v), B(v), and C(v) are as yet unknown; however, the edge condition (vi)
requires that, as |v|-* oo;

e<"|v|

A(v) = Odvr'e""111), - / - B(v) + Vjt e-°|v|C(v) = O(| vf1)- (3-3)

We shall see later that the integrands of (3.1) and (3.2) have poles that produce
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 63

exponential wave modes propagating down the ducts. These wave modes, in the
various duct regions, must be of the form given in the radiation condition (v).
This requires that the integrands of (3.1) and (3.2) have pole singularities at
v = —k and v = —17,, v = £, respectively. Thus the real parameter r in (3.1) and
(3.2) is restricted by requiring that the asymptotic behaviour (v) is achieved. This
necessitates that the contour of integration lies in a strip such that

max{-Im/c, -Im 77,} <: T<Im £,.

It is shown in Appendix B that -Imk <0, -Im TJ, <0, and Im £, >0, so such a
strip does exist. Thus we have from Appendix B that the above field representa-
tions are such that the integrands have no singularities in the strip — e < Im v <
£ (£>0), so that the field representations (3.1) and (3.2) will exist for
- £ < T< £ (f >0).

To determine v4(v), B(v), and C(v), we substitute (3.1) and (3.2) into the
remaining boundary conditions (ii)-(iv), giving:

f eivzA(v)Kj'0(Ka) dv = f eivzK[B(v)J'0(Ka) + C(v)//&lv(Ka)] dv = 0

(z<0), (3.4)

J)ldvr:
-r

J — a

eivzA(v)KJ'0(Ka) dv

eivz[B(v)J(b, v) + C(v)H(b, v)] dv = 0

. (-oo<z<oo),

(3-5)

A(v)J0(Ka) -

where

J(b, V) = Kj^Kb) - ikZJ0(Kb),

H(b, v) = KHtiy(Kb) - ikSHtfX

A solution to the above system of equations can be written as

i4(v)#c/J(Ka) = K[B(v)J'0(Ka) + C

V

dv = 0

(z>0), (3.6)

(3.7)

(3.8)

(3.9)

(3.10)

where ^ ( v ) are regular and analytic in Im v > —e and Im v < e respectively. By
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6 4 A. D. RAWLINS

eliminating A(y), B(v), and C(v) from the equations (3.8)-(3.10) we get the
standard Wiener-Hopf functional equation:

m(v - xn) TtK2aD(a, b, v)J'0(Ka)

where

D(a, b, v)=Ji(Ka)H(b, v) - H^\Ka)J{b, v). (3.12)

Before we can go any further with the analysis of equation (3.11), we shall require
the following asymptotic growth estimates as v—* ±<x>:

JO(KO) -const. /o(Ka) = O(|v|-2efl|v|),

HtfXica) — const. H(QY(K.a) = O(|vrJe~a |v |),

J(b, v) = 0(|v|Je6|v|), H(b, v) = O(|v|Je-6|v|),

D(a, b, v) = O(e(*-fl)|v|) (b > a).

These asymptotic estimates, together with (3.3) and (3.8)-(3.10), give, as j-v| —» oo,

~j) for Im v < e,
(3.13)

By letting

J / / ^ •* A \

v / —•'"-^' nK2aD(a,b,v)J'0(Ka)'

we can rewrite equation (3.11) in the form

/C_(v)$"(v)
2ni(v-Xn)K+(xn)

0 » ApJoj^a) / 1 1 \

The detailed factorization of ^(v) defined by (3.14) is carried out in detail in
Appendix C. In particular it is shown there that

K±(v) = O(\v\-i) as|v|-Kx. (3.16)

in their respective domain of analyticity.
By using the asymptotic estimates (3.13) and (3.16) it can be shown that the

left-hand side of the equation (3.15) is regular, analytic, and asymptotic to
O(|v|"') as |v|—»<» in Im v<£. Similarly, the right-hand side is regular, analytic,
and asymptotic to O( |V|~J) as |v|—»oo in I m v > - £ . Hence, by Liouville's
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 65

theorem, the function which is the analytic continuation of both sides of (15) in
the entire complex v-plane is the constant zero. Hence from (15) we have

V(V) 2ni(v-Xn)K+(xn)K_(v)'

which on substituting into (3.8) and (3.9) gives

B(v)= " ( 6 ' v ) g-(v) = *°"(»' V^ a" f l) (319)
K} KD[a,b,v) K) 2ri(vX)KD(abv)K0c)K{v)' y' }

C(v) = J{P'V)
 <P-(V)= W' v V o ( a " f l ) (3.20)

Thus, the acoustic field everywhere is now known and given by substituting
(3.18)-(3.20) into (3.1) and (3.2), giving

(3.21)

^a) r + i r
 iv7 [H{b, vV0{Kr) -J(b, v)/ff W ) ] dv

(3.22)

4. Model field representation

To get a physical realization of the acoustic field in the various regions of the
ducts, we can convert the expressions (3.21) and (3.22) into series of propagating
wave modes. This is achieved by closing the path of integration by a suitable
contour and applying Cauchy's residue theorem. In order to close the path of
integration in (3.21) and (3.22) by an infinite semicircle in either Im v ̂  x > -e or
Im v =£ T < e, we take cognizance of the fact that if

F(v) = Kj'0(Ka)K-(v)(v-Xn)

and

r( . H(b,v)J0(Kr)-J(b,v)Htt\Kr)
G(V)~ KDia,b,v)K-(v)(v-zH) '

then

J a) (4.3)
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66 A. D. RAWLINS

and

G(v) = O(\v\-i) (a =£/•=£ 6) (4.4)

as |v|-»». We also note (see Appendix C) that F(v) and G(v) have no branch
point singularities in the entire v-plane. Thus an application of Jordan's lemma
enables us to close the contour of integration in (3.21) and (3.22) by an infinite
semicircle in either I m v ^ r > - £ o r Im vss r < e (depending on the sign of z)
without affecting the value of the integral. The value of the appropriate integral
can then be determined by summing the residue contributions from the poles
enclosed by the contour.

Field in r<a, z < 0

Thus, by enclosing the contour of integration in (3.21) by an infinite semicircle in
Imvs£T<e and by summing residues from the only simple poles of F(v)
enclosed, i.e. v = —%„ (n = 0,1,. . .) (see Appendix B), we obtain

-oo<z<0). (4.5)

Field in r <a, z > 0

If we close the contour of integration in (3.21) by an infinite semicircle in
I m v & T ^ - £ , with z >0, by using Jordan's lemma, and rewrite the integrand by
means of (3.14), we have the equivalent representation for equation (3.21):

(v -XnV(b, v)

(4.6)

where C+ is the infinite semicircle {z = x + if, - °° < x < °°} U {z = x + \y, \z \ = R,
y 5= r, R -»oo}. The only poles enclosed by C+ are v = %n and the roots of
J(b, v) = 0, i.e. v = £m (m = 1, 2, . . .) (see Appendix B). The residue contribution
from the pole v = %n exactly cancels the incident wave mode, and the contribution
from the remaining poles gives the field

if_7 pJMPmryj^m
t

( 0 « r « a , Q<z<oo), (4.7)

where v = fm are the roots of J{b, v) = KJo(i<b) - ikZJ0(i<b) = 0, and /3m = (k2 -
£m)̂  {rn = 1, 2,...). The location of these roots is analysed in Appendix B.
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 67

Field in a<r<b, z < 0

In the expression (3.22) in the region I m v « r < f , ^-(v) and v — Xn do not
vanish, and so the only singularities in this region are the poles corresponding to
the zeros of KD{U, b, v) = 0. If we close the contour of integration in (3.22) by an
infinite semicircle in Im v « T < e, with z < 0, we get, on summing the residue
contributions,

4>(r, z) =

_ , . ApJo^na) f e-"-'8m[Htiy(8ma)J0(8mr) - Htt\8mr)J'0(8ma)]
2711 K+{Xn) £iK+(v«)VmiXn + ^ ) t t + (k2S2 - 82

m)[J'0(8ma)/J(b, -r,m)]2}

(a<r<b, z<0), (4.8)

where v = - r j m (m = 1, 2,...) are the zeros of D(a, b, v) = J'0(i<a)H(b, v) -
H$Y(ica)J(b,v) = 0 that lie in I m v « - e , 8m = {k2 - 17 )̂5, and J(b,—qm) =
8mJ'0(8mb) — ikZJ0(8mb). The disposition and nature of the poles rjm and 8m are
analysed in Appendix B.

Field ina<r<b, z>0

If we close the contour of integration in (3.22) by an infinite semicircle in
Im v 5* T > - e, with z > 0, by applying Jordan's lemma, and rewrite the integrand
by means of (3.14), we have the equivalent representation for cj>{r, z), (a<r<
b,z>0):

AoJ^a) /ing\ f eWzK+(v)[H(b, v)J0(Kr)-J(b, v)H\!\Kr)]KJ&Ka) dv
2K(Xn) V 2 / Jc+ /(/3, v)(v - Xn)

where C+ is the closed semicircular contour {z = x + \r, T> —e, -OO<JC<<»}U

{z = x + \y, \z\ = R, v ^ T > -e, R -* °o}. There is no residue contribution from the
apparent pole v = %n because this pole is cancelled by the zero v = %n of
JO(KO) = 0. Thus the only residue contributions arise from the zeros of
J(b, v) = 0, i.e. v = £m (see Appendix B.) Thus

= AoJo(ana) /ina
r> Z) 2niK{x) \ 2b

\
\ 2b ) t , Utm ~ Xn)(P2

m ~ k2Z2)Jo(l3mb)

, 0<z<°°). (4.9)

It is refreshing to notice that this last expression (4.9) is identical in form to that
of (4.7), as we should expect it to be.

The physical interpretation of (4.5), (4.7), (4.8), and (4.9) can now be made.
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6 8 A. D. RAWLINS

5. Propagation of only the fundamental mode

If we restrict the dimensions of the semi-infinite tube such that 0 < ka <
3-832..., then only the fundamental mode propagates along the semi-infinite
cylinder. In this case, with an = 0, Xn~ K and Ao = 1, the incident wave is given
by <f>0(r, z) = e'kz; then the total field <f>(r, z) in the various regions is given from
(4.5), (4.7), (4.8), and (4.9) by

1 <* J (a f\e-'XmZ

(O^r^b, 0<z<°°),

, )=_ (id\ 1 y 8m[H^'(Sma)J0(Smr) - H^jS^MS^)]^^
nr' Z) \ 2 ) K+(k) ^K+(-nm)-nm{k + T,J{1 + (k2-2 - 82

m)[J'0(8ma)IJ{b, -Vm)]2}

(a<r<b, -°°<z<0).

The dominant behaviour of the field in the various regions is given by

, z) = e fc + (2f l [ // ( fe ) ]2 fc2)e- fe + O(e-'*«) (0 < r ^ a, -°° < z < 0),

Ab) fiP& + O ( e )

(0

r> Z) \ 2

From these last results it is easy to obtain the reflection and transmission
coefficients for the dominant mode propagation in the various regions. In
particular the reflection coefficient 7?, back into the duct {0 «£ r =s a, -°° < z < 0} is
given by the coefficient of e~lkx, i.e.

^ | / ? | l 2 W

Low-frequency results for the reflection coefficient, E—»0, ka « 1, kb « 1

The value of this reflection coefficient will depend on E and its evaluation could
offer a means of the measurement of E. Also the value of Rx will decide the
amount of sound that is reflected back into the duct of radius a. We shall now
carry out some low-frequency asymptotics to give an expression for the ratio of
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 6 9

the reflection coefficient with and without an impedance lining on the duct wall at
r = b. Thus, from the last expression for Ru we have

RI\E=O [X

since, from Appendix C, K2+(k) is independent of E. We now use the asymptotic
approximation of Appendix D which gives

where E = nab is the area of an ellipse of minor axis a and major axis b, and
R = n(b2 - a2) is the area of annulus of inner radius a and outer radius b. It is
interesting to note that if the geometry of the ducts is chosen so that E = A then
the effect of the lining, to first order, vanishes. This corresponds to the situation
where the ratio b/a = ^(1 + ^5) = 16180. . . , the golden ratio] This would seem
to show that, by choosing the duct dimensions, the effect of the lining can be
reduced, at least at low frequency. It would be of some moment if this
phenomenon was replicated for higher frequency ranges.

6. Conclusions

We have obtained an exact solution to a cylindrical bifurcation problem. This
solution will contribute to the analysis of exhaust systems. It can be considered as
a first approximation to a finite absorbent cowel at the exit of a duct (see Fig. 3).

In carrying out some low-frequency asymptotic approximations, it was revealed
that the effect of the acoustic lining can be reduced by choosing suitable
dimensions for the cylindrical ducts. It would be of some significance if this
phenomenon was still valid for a greater frequency range.

We note that by letting a->6we also obtain the solution to another problem of
an infinite cylindrical waveguide of radius a with an impedance mismatch at z = 0.
We could include the effect of exhaust gas flows without substantially changing

I
Absorbent cowel

FIG. 3. A shielded jet exhaust.
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7 0 A. D. RAWLINS

the mathematical method to obtain an exact solution. This would mean the
medium 0 ^ r « a moves with a velocity greater than that in a « r =£ b. One would
need to incorporate a wake along {r = a, x> 0}. We hope to consider this
problem in the future.

Appendix A

In this appendix we shall derive the permissible normal wave modes that can
propagate in the various duct regions. For this purpose we need only consider the
infinite region — <» < z < °°. We shall also assume here that k is real and positive.

Normal modes in 0 *£ r ̂  a

Here we have to solve the boundary value problem

(V2 + k2)if) = 0 (O^r^a, - ° °<z<°° ) ,

dd/
— = 0 (r = a, -oo< z<oo).
dr

By separation of variables, it is not difficult to show the only permissible modes
are given by

(/>(r, z ) = e±IXnZJ0{(k2 — X2n)lr) ( i = 0 , 1 , . . . ) , (A.I)

where Jx{ana) = 0 (n = 0,1,. . .) , a0 = 0, ar = 3-832/a, a2 = 7-016/a, etc., ^0 = k,
Xi = [k2-(3-832/a)2]K ^2 = [^2-(7016/a)2]5 etc. In expression (A.I), when Xn
is real and positive, the upper sign represents an outgoing wave at z = °°, whereas
the lower sign represents an outgoing wave at z = — °°. From the way the square
root has been defined, Xn can only be real positive or purely imaginary positive.
In the situation where Xn is purely imaginary and positive, the upper (lower) sign
in (A.I) represents bounded evanescent waves at z = °°(—°°).

Normal modes in 0 *s r ̂  b

Here we have to solve the boundary value problem

(V2 + k2)\p = 0 (0=£r<6, -oo< 2<oo),

ddi
— -ikEdi = 0 (r = b, -oo<z<oo, ReS>0).
dr

By applying the usual method of the separation of variables, we obtain

iji(j, z) = e±if"V0(/3nr) (n = 1, 2 , . . . ) , (A.2)

where /3n = (k2 — £2)3 and fin are the roots of the equation

8nb) = 0 (n = 1, 2,.. .)• (A.3)
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 71

If /3n is a solution of (A.3), then /?„ is a solution of

MnJi(finb)-ikEJ(j(pnb) = O (n = l , 2 , . . . ) . (A.4)

If we now substitute (A.3) and (A.4) into the right-hand side of the well-known
expression (Watson, 1944: p. 134(8) or p. 482)

We get

dt = 2 2

z ~ z

Now, for consistency, the roots of (A.3) must satisfy

Re/3nIm/3,,<0. (A.5)

From the way the square root has been defined, i.e. arg £„ e [0, K],

L = (k2 ~ Pl)i = [k2 - (Re pn)
2 + (Im /3m)2 - 2i Re j3B Im pn]K

and hence from (A.5)

R e £ , > 0 and Im^ n>0. (A.6)

Thus the upper (lower) sign of (A.2) corresponds to outgoing bounded waves at
z = oo (-co).

Normal modes in a^r^b

Here we have to solve the boundary value problem

(V2 + A:2).//= 0 (a^r^

— -ik~ip = O (r = b)
dr

(-00 <z < oo).

By an application of separation of variables, the possible modes are given by

Hr, z) = e ^ / o C V W ( « » « ) - HV\8nr)J'0(8na)] (n = 1, 2,. ..), (A.7)

where 8n = (A:2 - 17̂ )2 and 7jn are the roots of the equation

D(a, b, Vn) = J'0(8na)H(b, r,n) - H^\8na)J{b, Vn) = 0, (A.8)

where H(b, -qn) and J[b, rjn) are defined by (3.7). Thus we can write (A.8) out
fully as

+ ikZ[U8nb)HP\8na) - J&8na)Hti\8nb)] = 0. (A.9)
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7 2 A. D. RAWLINS

In order to locate the disposition of the roots of (A.9), we make the more
convenient change of variables 8na = zn and b/a = t > 0, giving

+ \kaS\UzntW\zn) - J'0{zn)m\Znt)\ = 0. (A.10)

Now let Co(znt)=Uznt)H%y{zn)-J'o(zn)H%\znt). Then Co(«) is a cylinder
function of u. Hence, from Watson (1944: p. 134(8)),

f r , \ri- Ĥ znC0{znt)Cx(znt) -znC0(znt)C,(znt)I TCo(ZnT)Co(ZnT) dT= -5 5 , (A. l l )
Ji Z — Z

where

at

Thus we can write (A.10) as

znCx{znt) + ika~C0(znt) = 0. (A.12)

If zn is a root of (A.12), then zn is a root of

If we now eliminate C^zj) and C^z,,?) from the right-hand side of (A.ll) by
using (A.12) and (A.13), we get

f'r |Cofc,)P d, - - ^ i £ J | f = * Re ,„
•'1 K n ~ Z m |

For consistency the roots of the equation (A.10) must satisfy Re zn Im zn < 0, and
hence the roots of equation (A.9) must satisfy

Re8_ImSn<0 (n = 1, 2 , . . .)• (A.14)

From the way the square root has been defined, i.e. arg t\n e [0, n],

Vn = (k2 - 82
n)'i = [k2 - (Re 8nf + (Im 8nf - 2i Re 8n Im 8n]K

and hence from (A.14)

Rei)n>0 and Im7jn>0. (A.15)

Thus the upper (lower) sign of (A.7) corresponds to outgoing bounded waves at
z = oo(-oo).
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Appendix B

Here we shall determine the strip of regularity. In Appendix A we have shown,
for Im k = 0, that Re Xn Im Xn > 0, Re £„ Im £„ > 0, and Re 17,, Im r\n > 0. If we
introduce a small imaginary part to k, so that Re k > Im k s* 0, then we shall show
that the disposition of Xn, £«> and Vn does not substantially change.

Since Xn = (k2 - a2,)*, where an are the real roots of Ji(aan) = 0, we can write

Xn = [(Re kf - (Im A:)2 - a2 + 2i Re A: Im k]i

From the way we have defined the cut sheet, we have

> 0 and Im *„>(),

since in the cut sheet Re (•)* > 0 and sgn Im (•)* = sgn (Re klmk)> 0.
We now make use of the following result.

If (k2 - o-2)5 = p + \q, then |<7|s*Im& and \p\<Rek, where k = Rek + ilmk,
with Re k > 0, Im k > 0, and a real. Also, for Re k > 0 and Im k > 0, we have
pq>0.

The proof is as follows.

(k2-a2)=p2 + 2ipq-q
2

(Re k)2 -a2- (Im A:)2 + 2iRe klmk= p2 + 2\pq - q2,

so that

(ReA:)2-(ImJt)2-o-2 = /72-<72, (B.I)

Rek\mk=pq. (B.2)

If |g| < Im k, then, from (B.2), Re k Im k = |p^| =s |p| Im )t => Re ^ ^ |p| or p2 3=
(Re it)2, and hence, from (B.I), [(Re k)2 - p2] - (Im k)2 - a2 + q2 = 0, or <72 -
(Im fc)2 ~ o2 ^ 92 - (Im k)2 3= 0, or q2^(lmk)2, or |<7|>Im/fc, contrary to our
assumption. Thus \q\^lmk. Since |<7|^Im/c, equation (B.2) gives Reklmk^
Im/c|p|, or Refcss|p|.

The result p > 0 follows directly from (B.2). This means that (k2 - o2)* can
only lie in the first and third quadrants.

Thus we have the result for all n = 0 , 1 , . . . , Im Xn ** Im k, and

R e ^ n > 0 and Im *„>(). (B.3)
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7 4 A. D. RAWLINS

£, for Im k s* 0

The roots of the equation

satisfy Re fin Im /?„ < 0 for Im A: = 0 and Re £ > 0. If we introduce a small
imaginary part to k such that Re &.E > 0, then the proof of Appendix A follows
through to give again

Re/3nIm &,<().

Now the corresponding value of the propagation constant

= [(Re k)2 - (Im A:)2 + (Im pnf - (Re /3n)
2 + 2i(Re k Im k - Re pH Im £„)]',

and since Re k Im k - Re /?„ Im /?„ > 0 we have

Re£ ,>0 and Im £„ >0. (B.4)

r\n for Im k s* 0

The roots of the equation

8l,b)] = 0

satisfy ReS n Im5 n <0 for Imfc = 0 and R e £ > 0 . If we introduce a small
imaginary part to k such that Re kE > 0, then the proof of Appendix A follows
through to give

Re 8n Im 8n < 0.

Now the corresponding value of the propagation constant

= [(Re kf - (Im kf + (Im Sn)
2 - (Re 8nf + 2i(Re k Im k - Re 8n Im SB)]1,

and since Re k Im k - Re 5n Im 8n > 0 we have

Rer; n>0 and Imrjn>0. (B.5)

From (B.3), (B.4), and (B.5), it can be seen that a real positive quantity e can be
found such that min {Im %0, Im g0, Im T/0} = e > 0.
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Appendix C

In this appendix we shall carry out the factorization K(v) = K+(v)K-(v) =
K_(v)K+(v), where, from (3.14), (3.12), and (3.7),

K(v) = ,*ffM' (C1)
where

/ik^)JT7~, (C.2)

K2(v) = [^)-?^[Jl(Ka)H\lKKb) - H\l\KaMKb)l (C.3)

,// lWM'V)-MVW4 (C4)

It is not difficult to see that K\(v), K2(v), and K3(v) are even functions of v. Thus
we have K(v) = K(-v). It can also be shown that K\(v), K2{y), and K3(v) are
even functions of K. Thus we have the result that Kx(v), K2(y), and K3(v) are
free of branch points. Consequently K(v) is also free of branch point singularities.
The only singularities of K,(v), K2(v), and K3(v), and consequently of K(v), are
zeros and poles. The function K2(v) has only simple zeros and poles, whereas
/C,(v) and K3(v) could have multiple zeros and simple poles depending upon the
parameter E. For analytic convenience we shall assume E is such that only simple
zeros occur for Kx(y) and #3(v). We could, with an increase in complexity of
formula, deal with the multiple zero situation without difficulty by the present
method. The functions K\(v) and K3(v) are analytic functions of E, so that the
zeros will also be analytic functions of E and vary continuously with E. The way
(C.I) has been written is particularly useful for the situation where kE^O, i.e. a
nearly rigid duct wall, for then k(v) reduces to [/^(v)]"'!! + O(kE)], where
K2(y) has been explicitly factorized for the rigid duct situation (Bailin, 1951).

We could write (C.I) in a form suitable for when kE-> °o; i.e. a nearly soft duct
wall, as

K(v)=
 L ^ (C5)

where

" " " T T , (C6)

L2(v) = ( Y ) * 2 ^ J [U**)HV\Kb) - UKbWXKa)], (C.7)
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76 A. D. RAWLINS

Again it is not difficult to show that Li(v), L2(v), and L3(v) are even functions of
K and a, so that they only have poles and zeros.

The factorization of K(v) thus depends on the factorization of K^v), Kz{y),
and K3(v) for fc£ — 0, and Li(v), L2(v), and L3(v) for /:£ — oo. This procedure is
now fairly standard (see Noble, 1958; Morse & Feshbach, 1953), so we quote the
results for the situation kE — 0. For expression (C.I), we have

K+(v) = *_ ( -v ) = KI+(v)/[K2+(v)K3+(v)], (C.9)

with

K,(v) = Kl+(v)Kl_(v), Kl+(v) = KJ-(-v), (CIO)

Ukb)

where £, are the roots of (k2 - £)i/,((A:2 - ^)'fe) + ik~J0((k
2 - g$b) = 0 (n =

1, 2, . . . ) and ^ are the roots of the same equation with E = 0. The exponential
factors e~v/*n and e~v/^ are inserted to ensure the absolute convergence of the
product, and evT is included to ensure the factor has algebraic growth at infinity.
The parameter T is determined explicitly by using the following result.

Given

)
with zn — na + b + c/n + O(n~x), where a, b, and c are complex constants, we
have

-\-(z+b)la-\J-J [1 + 0{~)\
where y = 0-577215... and A is a constant (see Nilsson and Brander, 1981a).
Thus application of (C.12) and (C.13) to (C.ll), together with the asymptotic
estimates

as n -> oo, (C.14)

+

gives T — 0. Thus

^ I + ( V ) -1 /,(«,) i i i l + v/^' (C15)

and also
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 77

Similarly, it is not difficult to show that

K2(v) = K2+(v)K2_(v), K2+(v) = K2_(~v)

K2+(v) = (* + ^ ( y )

v vT- TT (1 v / f i ) e ( l + v/yw)e

i-1, (l + v /**)e -*
where

(*2 - XnMa(k2 ~ xfifo = 0, (*2 - X»Mb(k2 - X^) = 0 („ = 1, 2,...

and yn are the roots of

jMk2 ~ y iW(6(* 2 - y5)0 - H\l\a(k2 - yl^JMk2 - -fifr) = 0
(n = 1, 2 , . . .)•

It is not difficult to show that

inn in . , . IAIH in , ,^ inn , . ,

and consequently

T = - [b In b - a In a - {b - a) In (b - a)]. (C.18)
7t

Thus

K2+(v) = (Ac + ^ [ ( Y ) ^ ^ ^

and

K2+(v) = O(vJ) as|v|->oo. (C.20)

Finally
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7 8 A. D. RAWLINS

where r\n are the roots of Kn[Ji(Kna)H\i)(Knb)-Jl(i<nb)H\i)(Kna)] +
ik~[J0(Kna)HV\Knb) -UKna)H?\Kna)] = 0, with *„ = (k2 - vl)i (* =
1, 2,...), and rfn = yn are the roots of the same equation with E = 0. Using the
fact that

b - a

together with (C.12) and (C.13), gives 7 = 0. Thus

-Jx{kb)H«Xka)] + \E[Uka)H$\kb) -J0_ t[Jx{ka)H^
3+(V) \

and

AT3+(v) = O(l) as |v | -»«. (C.22)

Combining the results (C.15), (C.19), and (C.21) into (C.9) we have carried out
the explicit factorization of (C.I). We also have from (C.9), (C.16), (C.20), and
(C.22)

A:+(v) = A:_(-v) = O(v-J) as|v|->°o. (C.23)

Appendix D

In this appendix we shall obtain some approximations for the split function K+(v)
as kE—*0. In particular for the reflection coefficient of the low-frequency
fundamental mode reflected back into the duct {0 =£ r =£ a, - °° < z < 0}, we
require K+(k), and this quantity will be asymptotically approximated for kE—*0
and ka «1. The expression for K+(k), with kE unrestricted, is given in Appendix
C, but it is a complicated product expression. Rather than try to derive an
asymptotic expression from the infinite product representation for kE^O, we
shall use a simpler more direct method. The expression for K+(v) is given by
(C.1)-(C4) as

K+(v) = Kl+(v)/K2+(v)K3+(v).

The lining parameter Honly occurs in Ki+(v) and K3+(v). Thus we shall derive
approximate expressions for Kl+(k) and K3+(v).

Approximation for K1+(K), kE-*0, kb—*0
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 7 9

By taking logarithms, and provided that v is not near ±k, we can expand for
kbE->0, since WK6)/KW,(K&) | < °°. Thus

In K,(v) = ikbE ° \ ' + O(kbE)2) = In /C1+(v) + In K^(v). (D.I)

By considering the integral

1 I Uz)dz
2mJc(z-t)zJo(z)'

where C is a sufficiently large square contour, and applying Cauchy's residue
theorem, and then letting the contour expand to infinity, it is possible to express
Jo{z)lzJ\{z) in its partial fraction form. Thus one obtains

J0(Kb) _ 2 _ A 1
<b) b\k2 - v2)

where yn are the roots of J\(yn) = 0 (n = 1, 2, . . .) . We can now write the last
expression as

J0{Kb) 1 1 ^ , 1

1 1 ° ° 1
+ A:fe2(A: - v) " ~b2 „?, [A:2 - (yn/6)2]H[A:2 - (yn/ft)

2]^ - v}'

Comparing (D.I) and (D.2) we have

= exp [ ^ ( j ^ ^ ^ f

Although we have carried out the additive factorization, it is not unique. We
could add a polynomial to ln/C,+(v) and subtract the same polynomial from
ln/C,_(v). However, the above choice is the unique factorization that ensures
ln#1 +(v)-»0 as v->».

For v = k, kb—>0, S-»0, we have

K1+(*) = exp [*bs(qpf " ( ^ 2 [i _ (yJkbfMl - {yjkbn + W '2 [i _ (yJkbfMl -
(D.3)
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8 0 , A. D. RAWLINS

A more direct and even simpler method of obtaining the result (D.3) is as follows.
Since

with K = (k2 — v2)j, it follows that, for v—*k, we have K —»0 and

J0(Kb) = 1 - |(KZ>)2 ( )

Thus

Now, although kE—»0, 1/K2-»°O, SO we cannot ignore the second term in
comparison to 1. Thus

K2 + likElb - kikbEK2 v2 - k2 - 2ikE/b
l ( V ) K2 ~ v2-k2

where we have ignored the term K2(-ji/c6.E)—>0 as E—*0, v—*k,

The factorization is now obvious, giving

/ C 1 + ( v ) = ^ ^ ^ + O ( ^ ) = /C1_(-v), v̂ ik, S-0.
V "r rC

Now, for ^S-^O, we have

Thus

lim Kl+(v) = liml+() lim
* v - . * V + K

which agrees with (A.3).
We shall use this simplified approach to factorize K3(v).

Approximate factorization for K3+(k), E—»0, kb—»0, &a—»0

Here

' 3
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A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM 81

Now, as v—*k, we have K—*0 and

Thus we get

v - k[l + 2iZa/k(b2 - a2)]* v + it[l + 2iZa/k(b2 - a2)]±
( v) = —k ^ + o(S),

so that
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