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Abstract 

Extensive cohort studies show that physical inactivity is likely to have negative consequences for one’s 

health. The World Health Organization thus recommends a minimum of thirty minutes of medium-

intensity physical activity per day, an amount that can easily be reached by doing some brisk walking or 

leisure cycling. Recently, a Taiwanese-American team of scientists was able to prove that even less 

effort is required for positive health effects and that as little as fifteen minutes of physical activity per 

day will increase one’s life expectancy by up to three years on the average. However, simply spreading 

this knowledge is not sufficient. Roughly one in three Europeans and US-Americans does not even meet 

the minimum recommendations for physical activity, although the majority of these people is aware of 

the damage that their behavior may do to their health. And this ‘willful wrongdoing’ does not only 

concern individuals: Due to the large number of inactive people, the problem of sedentary behavior 

affects societies as a whole, not the least by increasing public health costs. 

But if it is not a lack of knowledge that causes this problem, what is? And what can be done to 

stimulate leisure-time physical activity? The Fogg Behavior Model (FBM), developed by psychologist 

and Stanford-lecturer B.J. Fogg, explains the factors that determine whether or not a given person will 

show a desired behavior. The core components of the FBM include a trigger that can be perceived by 

the target person and that she associates with the desired behavior, as well as her ability and 

motivation for this behavior at the time when the trigger reaches her. If the combined amount of ability 

and motivation exceeds a lower limit, the so-called activation threshold, then the triggered person will 

behave in the desired way; otherwise, she will not. Based on the understanding of human behavior that 

the FBM conveys, this thesis focuses on the question of how mobile devices can assist people in 

reaching the minimum amount of daily physical activity that is required for health benefits. 

 An in-depth analysis of the problem reveals that of the three possible strategies – trying to increase 

a user’s ability for leisure-time physical activity, trying to increase her motivation for the same, and 

trying to increase her short-term awareness for its necessity and feasibility through triggers – the 

creation of adaptive triggers is the most promising approach. This task in turn consists of several sub-

problems, such as the problem of how to recognize the user’s current contextual situation, the problem 

of how to decide, whether or not the recognized situation is suited for an activation attempt, and the 

problem of interacting with the user in those cases in which an activation attempt seems worthwhile. 

Learning from the user’s behavior and understanding her preferences and constraints is the key factor 

in the creation of accurate and reliable intervention mechanisms. To this end, smartphone sensors, 

wearables, and Web services are utilized for collecting information about the state of the user and her 

environment. This data is then analyzed by a supervised learning machine which, based on prior 

experience, estimates the probability for a successful activation attempt in the current situation. Ideally, 

the learner will identify a kairotic moment: A situation, in which a trigger is bound to initiate the 

desired behavior. If it does, it reaches out to the user. 

Multiple types of such triggering mechanisms were embedded into the mobile exergame ‘Twostone’, 

an application that requires brisk walking or easy running from its users. During a field study with 

thirty participants, the performances of these different approaches were compared against one another.  

The study revealed a surprising result: Not the most-knowledgeable intervention mechanism emerged 

as a winner, but it was rather the triggering variant that relied on a reduced number of contextual 

information to achieve both the highest triggering success rates and the best user acceptance. The study 

also showed that intervention mechanisms can indeed increase the prevalence of a desired behavior, 

but only if the user has a positive attitude towards the respective activity. As such, both the conceptual 

model for technology-based interventive measures and the evaluation results that are presented in this 

thesis offer valuable insights for developers of devices and applications that aim to foster desired 

behaviors in general and increased levels of daily physical activity in particular. 

 



 
 

  



 
 

Kurzfassung 

Die gesundheitlichen Folgen körperlicher Inaktivität sind durch umfangreiche epidemiologische 

Kohortenstudien hinreichend belegt. Entsprechend empfiehlt die Weltgesundheitsorganisation jedem 

Erwachsenen ein Mindestmaß von täglich dreißig Minuten körperlicher Aktivität mittlerer Intensität, 

also beispielsweise zügiges Gehen oder gemütliches Radfahren. Einem taiwanesisch-amerikanischen 

Forscherteam gelang der Nachweis, dass bereits die Hälfte dieser Menge, also nur fünfzehn Minuten, 

genügen, um die eigene Lebenserwartung um bis zu drei Jahre zu erhöhen. Allerdings führt das Wissen 

über den Zusammenhang zwischen Bewegung und Gesundheit nicht zwingend zu einer Erhöhung des 

Aktivitätslevels. Etwa ein Drittel der europäischen und US-amerikanischen Bevölkerung leistet nicht 

einmal das erforderliche Mindestmaß, obwohl das Wissen um die möglichen Folgen dieses Verhaltens 

meist vorhanden ist. In der Häufung hat dieses bewusste Fehlverhalten Einzelner auch Auswirkungen 

auf die Gesamtgesellschaft, insbesondere durch einen Anstieg staatlicher Gesundheitsausgaben. 

Wenn Bewegungsmangel aber nicht auf mangelnde Informiertheit zurückzuführen ist, worauf dann? 

Und welche alternativen Maßnahmen können helfen? Das Foggsche Verhaltensmodell (FBM) des an 

der Stanford-Universität lehrenden Psychologen B.J. Fogg beschreibt die Faktoren, die darüber 

entscheiden, ob eine Person ein gewünschtes Zielverhalten zeigt. Die wesentlichen Komponenten des 

FBM sind ein wahrnehmbarer und gedanklich mit dem Zielverhalten verbundener Auslöser, der 

Trigger, sowie Befähigung und Motivation für das gewünschte Verhalten zum Zeitpunkt des Auftretens 

eines solchen Triggers. Sind Befähigung und Motivation in ausreichendem Maße vorhanden und 

überschreiten in Kombination die sogenannte Aktivierungsgrenze, so zeigt die ‚getriggerte‘ Person das 

Zielverhalten – andernfalls nicht. Basierend auf diesem Verständnis menschlichen Verhaltens  befasst 

sich die vorliegende Arbeit mit der Frage, wie mobile Endgeräte dazu genutzt werden können, um 

Personen zuverlässig zum erforderlichen Mindestmaß an körperlicher Aktivität anzuregen. 

Die Analyse der Problemstellung macht deutlich, dass von den drei möglichen Ansätzen – 

Steigerung der Befähigung für körperliche Aktivität, Steigerung  der Motivation und Steigerung des 

Bewusstseins für Notwendigkeit und Machbarkeit durch den Einsatz von Triggern – die Entwicklung 

adaptiver Triggering-Mechanismen am vielversprechendsten ist. Diese Herausforderung lässt sich 

ihrerseits in mehrere Teilprobleme unterteilen, etwa das Problem des Erfassens der gegenwärtigen 

Situation, das Problem der Entscheidung, ob ein Interventionsversuch unternommen werden sollte, 

sowie das Problem der eigentlichen Nutzerinteraktion. Aus dem Nutzerverhalten zu lernen, um 

Vorlieben und Möglichkeiten des Nutzers richtig einzuschätzen, ist dabei die Schlüsselfähigkeit 

erfolgreicher Maßnahmen. Vor diesem Hintergrund wird von Smartphonesensorik, Wearables und Web 

Services Gebrauch gemacht, um Informationen über den Nutzer und die aktuelle Situation zu erhalten. 

Ein überwachter Lerner analysiert diese Daten und entschiedet auf Basis zurückliegender Erfahrungen, 

ob ein Aktivierungsversuch erfolgen sollte. Im Idealfall stellt der Lerner dabei fest, dass ein kairotischer 

Moment vorliegt: eine Situation, in der ein Trigger zuverlässig das gewünschte Verhalten auslöst. 

Mehrere unterschiedliche Triggering-Mechanismen wurden in das mobile Fitnessspiel ‚Twostone‘ 

eingebettet, eine Anwendung, die vom Nutzer zügiges Gehen oder lockeres Laufen erfordert. In einer 

umfangreichen Feldstudie mit dreißig Teilnehmern wurden alle Varianten miteinander verglichen und 

ein unerwartetes Ergebnis erzielt: nicht derjenige Mechanismus mit der umfangreichsten Wissensbasis 

erreichte die höchsten Erfolgsraten und die beste Nutzerakzeptanz, sondern eine Variante mit einer 

reduzierten Menge an Kontextwissen. Zudem zeigt die Evaluation, dass intelligente Trigger tatsächlich 

die Häufigkeit eines gewünschten Verhaltens erhöhen können, aber nur, sofern beim Nutzer bereits 

eine positive Grundeinstellung gegenüber diesem Zielverhalten vorhanden ist. Mit diesen Erkenntnissen 

leistet die vorliegende Arbeit einen wichtigen Beitrag zur zukünftigen Entwicklung interventiver 

Maßnahmen und insbesondere diejenigen technischen Anwendungen, die Personen dabei unterstützen 

sollen, das für positive Gesundheitseffekte erforderliche Mindestmaß  an körperlicher Aktivität zu 

erfüllen, können darauf aufbauen. 
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1. Introduction 

Maintaining physical health is a key factor in maintaining overall wellbeing and quality-of-life. 

However, having knowledge of behavior that promotes one’s health and acting in a way to actually 

benefit from the positive effects of such behavior are two pairs of shoes. More often than not, short-

term wants such as the desire for comfort, the longing for entertainment, or the craving for unhealthy 

food dominate our long-term health goals. For many people, health only becomes a real concern when 

it is lost. 

Practicing frequent physical activity has been shown to significantly increase the chance of staying 

healthy. From the results of their extensive cohort study involving more than 400,000 individuals, a 

team of Taiwanese and U.S. American scientists deduced that as little as 15 minutes of moderate-

intensity physical activity per day will extend an individual’s lifespan for three years on the average 

[WWT+11]. On the contrary, sedentary behavior heightens the risk of suffering from various chronic 

diseases, such as coronary artery disease, hypertension, type 2 diabetes, colon cancer, and breast cancer 

[KGS00]. Despite a general awareness for the importance of leading an active life , barriers exist that 

keep many people from being physically active [OB92]. This work focuses on utilizing the means of 

contemporary technology – mainly mobile devices such as smartphones and wearables – to help 

overcome these barriers. 

1.1 Motivation 

The 2008-published, evidence-based report of the U.S. Physical Activity Guidelines Advisory Committee 

explains that a number of health benefits can be achieved by performing  30 minutes of physical activity 

a day for five days a week [US08]. According to this report, the health benefits that come with such 

amounts of physical activity include “lower risk for all-cause mortality, coronary heart disease, stroke, 

hypertension, and type 2 diabetes”. Doubling the minimal recommendations and performing up to 300 

minutes (five hours) of physical activity 

per week results in “significantly lower 

rates of colon and breast cancer and the 

prevention of unhealthy weight gain or 

significant weight loss” [US08, p.31/A-5]. 

In their global guidelines published in 

2010, the World Health Organization 

(WHO) largely adopts the 

recommendations of the U.S. Advisory 

Committee and suggests at least 150 

minutes of moderate-intensity physical 

activity per week, or 75 minutes of 

vigorous-intensity physical activity per 

week, or any combination of moderate-

intensity and vigorous-intensity physical 

activities that lies in between these 

bounds [WHO10]. 

The terms ‘moderate-intensity physical 

activity’ and ‘vigorous-intensity physical 

activity’ are implicit references to the 

Metabolic Standard of Tasks (MET). This 

coding scheme was conceptualized by 

Stanford university emeritus William 

 

Table 1: MET Value Table. 

Physical Activity MET 

Sleeping 0.9 

Resting Metabolic Rate (watching TV)  1.0 

Working on PC 1.5 

Tai Chi 3.0 

Cleaning windows 3.2 

Bowling 3.9 

Walking (brisk, level ground) 4.3 

Skiing (general) 7.0 

Bicycling (general) 7.5 

Running at 14 mph 23.0 

 

MET values of different physical activities, 

selected from a total of 821 entries as specified 

in [AHH+11] 
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Haskell [AHL+93] and establishes a classification 

hierarchy of the intensities of all kinds of physical activity, 

whereby the intensity of an activity is derived from its 

rate of energy expenditure relative to the so-called 

Resting Metabolic Rate (RMR). The RMR is defined as the 

energy expenditure while sitting quietly, for instance 

while watching a (not too exciting) TV show, and has an 

associated MET value of 1.0. A physical activity with a 

MET value of 3.0, such as practicing Tai Chi, thus requires 

three times the energy expenditure of sitting quietly. The 

second update of the MET classification, published in 

2011 [AHH+11], updated several of the original MET 

values and now lists values for a total of 821 different 

physical activities. Table 1 shows an excerpt of this list. 

Based on the MET value hierarchy, the WHO groups physical activities into three categories: The 

(not explicitly defined) low-intensity group includes all those activities that have less than three times 

the intensity of rest, that is, activities that have a MET value of less than 3.0 assigned to them. 

Moderate-intensity activities are physical activities with a MET value in between 3.0 and 5.9. And 

finally, any activity with a MET value of 6.0 and above qualifies as a vigorous -intensity activity 

[WHO10]. A frequent example for a moderate-intensity activity is brisk walking on level ground 

[HLP+07]. According to [AHH+11], the physical activity with the highest intensity is  running at 14 

miles per hour (about 22.5 kilometers per hour), which is reflected by an associated MET value of 23.0. 

It is worth noting that even amateur athletes cannot necessarily perform all types of vigorous-intensity 

activities. Rather, the maximum capacity of a normal, healthy person will usually lie at about 10 to 13 

METs. Only professional athletes can reach a capacity of 20 and above [Cam13]. 

In the aforementioned cohort study by Wen et al. [WWT+11], the authors compared the all-cause 

mortality of active and inactive individuals and found that even less than the recommended 30 minutes 

of medium-intensity physical activity per day can have significant positive health effects. According to 

their findings, exercising for only 15 minutes a day results in a 14% reduced risk of all-cause mortality, 

and every additional 15 minutes of exercise reduce the all-cause mortality risk by an additional 4% (up 

to a maximum of 100 minutes of exercise a day, after which no additional health benefits were found).  

Figure 1 shows the relationship between the amount of daily physical activity and the reduction of the 

all-cause mortality risk. The authors of the study go on to point out that “compared with individuals in 

the inactive group, at age 30 years, life expectancy for individuals in the low-volume activity group 

[author’s note: individuals exercising for only 15 minutes/day] was 2.55 years longer for men and 3.10 

years longer for women, and life expectancy in those who met the recommended amount of daily exercise 

[author’s note: WHO recommendation of 30 minutes/day] was 4.21 years longer for men and 3.67 years 

longer for women” [WWT+11, p.1249]. 

Martinez-Gonzalez et al. conducted an extensive study on the prevalence of physical inactivity in 15 

European Union member states, among them Germany, France, and Italy [MVS+01]. In each country, 

they selected a representative sample of roughly 1,000 persons, amounting to a total of 15,239 study 

participants, and used questionnaires and face-to-face interviews to determine each individual’s 

average amount of daily physical activity. The results of the survey show that the prevalence of physical 

inactivity in Europe is comparable to that of the U.S., as described in [PMB99], in that about a third of 

the population must be considered inactive. As an interesting side note, an extreme range exists 

between the portion of physically inactive Finish and Portuguese (8.1% and 59.3%, respectively). In 

their paper, the authors use the convention MET -hours per week (MET-h·wk
-1

) to estimate the amount 

and intensity of physical activity that an individual is performing per week on the average. This value is 

calculated by multiplying the hours dedicated to a specific physical activity per week by the MET value 

Table 2: Intensity Categories. 

Category  METs 

Low-intensity 0.9 to 2.9 

Moderate-intensity  3.0 to 5.9 

Vigorous-intensity 6.0 to 23.0 

 

The three general categories of 

physical activity, according to 

[WHO10] 
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assigned to this specific activity. In this regard, the minimal amount of MET-hours per week required 

for health benefits according to [WWT+11] would be 9, and the WHO recommendation of 30 minutes 

of moderate-intensity physical activity per day translate to 18 MET-h·wk
-1 

(a total of 120/240 minutes 

per week of brisk walking with an associated MET value of roughly 4.5, numbers rounded for easier 

handling). Martinez-Gonzalez et al. conclude their study with the consideration that “nevertheless, the 

amount of activity is low (…)” and they go on to state that their work can be a “(…) first step to define 

strategies to persuade populations to increase their physical activity” [MVS+01, p.1142]. 

Successfully persuading someone to show an intended behavior means to change the person’s 

attitude towards this specific behavior. If the person in question is aware of the meaningfulness of the 

desired behavior but nevertheless does not behave in such a way, then it must be assumed that barriers 

exist that keep her from doing so. Otherwise, if the person is not aware of the meaningfulness of the 

intended behavior, it may be sufficient to communicate the required knowledge. Initiating the intended 

behavior is then actually less a case of persuading and more a matter of informing. In this context, two 

questions arise: First, how widespread is the knowledge of the effects of physical inactivity on health 

and wellbeing and second, what barriers keep those people from being physically active that are fully 

aware of the negative effects of their behavior? 

A worldwide study carried out with almost 20,000 university students from a total of 23 countries 

showed that knowledge of the effects of physical inactivity is not sufficiently widespread, even among 

the members of the privileged group of university attendees [HSS+04]. The authors found that in 15 of 

the considered 23 countries, more than half of the population was not aware of the connection between 

physical inactivity and the risk of suffering from heart diseases. Even more concerning, however, is 

another finding. The study states that “nonetheless, knowledge was not associated with behavior” and 

continues with pointing out that “(…) knowledge of the relationship between physical activity and heart 

disease was not associated with leisure-time physical activity. These null findings are consistent with 

previous research [TOB+02]. Thus, although national economic development may relate to health 

knowledge, this does not translate at an individual level into participation in leisure -time physical activity. 

 
Figure 1: Daily Physical Activity and All-Cause Mortality Risk. 

FIGURE NOTES – The graph shows an aggregated function of the health effects that come from 

performing medium-intensity and vigorous-intensity physical activity. Figure adapted from [WWT+11]. 
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Improving knowledge about health effects 

should not be expected to be an effective 

physical activity promotion strategy, even in 

less developed countries” [HSS+04, p.188]. 

Apparently, simply creating awareness for 

the importance of physical activity will not 

necessarily result in significantly increased 

levels of activity.  

Surveys on the sedentary behavior of 

Australian adults show that the top three 

reasons that keep people from being more 

active are a (self-perceived) lack of time, a 

lack of physical ability, and a lack of 

motivation, in this order [OB92]. Table 3 

lists the most frequent arguments against 

regular exercise. A closer look reveals that 

indeed, all stated reasons for physical 

inactivity seem to be variations of either a 

perceived lack of opportunity (reasons 1, 

5), a perceived lack of different kinds of 

ability (reasons 2, 6, 7, 8), or a lack of 

motivation (reasons 3, 4). By adding up the numbers
 (1)

, we find that a lack of opportunity is the main 

culprit (41.9% stated this as their problem), while interestingly, the lack of motivation is the least 

pressing issue (only 22.2% mentions). Although a response bias cannot be ruled out, it still seems 

reasonable to assume that in order for them to be successful, measures that aim at increasing people’s 

amounts of physical activity should not just focus on solving the ‘motivational problem’, but also look 

into ways on how to increase their addressee’s perceived amounts of opportunities. 

All interventive measures will be the most effective, however, if they can influence the attitude and 

behavior of persons at any time, and not just during specific hours of the day or week. From a 

technological point of view, this means that mobile devices, most notably smartphones and wearables, 

are the ideal tools for this task, as they have the highest ‘pervasiveness quote’ of all modern-day 

computational devices. Since the introduction of the first iPhone in 2007, smartphones have become 

incredibly prevalent. The fact that many people always carry their smartphones with them, the  ongoing 

increase of their computational capabilities, and their contextual awareness through integrated sensors 

and a mobile access to Web services makes smartphones well suited for delivering health interventions 

[ICS+15]. Wearables such as smartwatches, wristbands, or chest straps can either be an alternative to 

smartphones for very specific purposes, i.e., for activity tracking, or used in conjunction with them and 

then function as an enhancement to their sensing and user interaction capabilities. How this interplay 

between smartphone and wearable can look like is demonstrated by Apple’s Activity application for iOS-

based devices. If available, it utilizes both the user’s iPhone and her Apple Watch to assess physical 

activity levels, the user’s heart rate, and other data, and it visualizes all this information to the user on 

request at any time. The Activity app even frequently urges the user to be more active with 

notifications, sounds, and soft vibrations of the watch. However, the way of how this feature is realized 

is unsatisfactory, as, for example, the Apple Watch also tries to activate users who are currently 

attending a theater performance or driving on the highway. This is just one example for how today’s 

state-of-the-art is still far from tapping into the full technological potential of contemporary mobile 

devices when it comes to the development of reliable interventive applications [DGH+16].  

                                                                 
1 While multiple answers were allowed, adding up the numbers in order to gain a rough overview is made acceptable by the fact 
that less than two percent of the study participants gave two reasons and none of them gave more than two [OB92, p.307]. 

Table 3: Reasons for Physical Inactivity. 

Reported Reason 
Absolute 

Amount 

Relative 

Amount 

1 No time 1,756 34.6 

2 Physically unable 1,234 24.3 

3 Don’t want to exercise 679 13.4 

4 Need encouragement 447 8.8 

5 No chance to exercise 350 6.9 

6 Exercising is too difficult 267 5.2 

7 No facilities 128 2.5 

8 No transport 118 2.3 

9 Other reasons 365 7.1 

   

Self-reported reasons for physical inactivity  

among Australian adults, n = 5,078, multiple 

answers possible, adapted from [OB92] 
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1.2 Thesis Contributions 

This thesis presents a model for the creation of pervasive interventive measures, targeted primarily at 

counteracting the problem of physical inactivity with the help of mobile devices. As pointed out before, 

the barriers that keep people from being active can be grouped into the categories ability-related 

barriers, motivational barriers, and opportunity-related barriers. Analogously, the problem of how to 

reliably increase the physical activity levels of users with the help of contemporary technology can also 

be broken down into three sub-problems.  

(1) CHALLENGE OF OVERCOMING ABILITY-RELATED BARRIERS – How to utilize contemporary 

technology to assist its users in overcoming any existing ability-related barriers that may prevent 

them from being more active? 
 

(2) CHALLENGE OF OVERCOMING MOTIVATIONAL BARRIERS – How to utilize contemporary 

technology to sufficiently motivate users so that they are willing to perform at least the minimum 

amount of physical activity required for health benefits (9 MET -h·wk
-1

)? 
 

(3) CHALLENGE OF OVERCOMING OPPORTUNITY-RELATED BARRIERS – How to utilize 

contemporary technology to create awareness for the importance and the feasibility of physical 

activity, i.e., how to use it to create reliable short-term awareness interventions (‘triggers’)? 

As a matter of fact, these problems are not of equal importance. Rather, as will be explained in chapter 

three, overcoming opportunity-related barriers with the help of intelligent adaptive triggers should be 

the core task of any interventive measure. Consequently, the main contribution of this work is the 

conceptualization of an accurate mobile user triggering mechanism that encourages smartphone users 

to be physically active. In contrast, all considerations made on how to overcome motivational and/or 

ability-related barriers are merely aimed at increasing the probability of successful triggering. The 

mobile application Twostone Interventive Measure (Twostone-IM) is based on the concepts described in 

this thesis and was evaluated in an extensive two-week field study with more than 30 test users to 

demonstrate their validity. Figure 2 depicts the main building blocks of my work and how they relate to 

the structure of this document. 

chapter 5

CONSOLIDATED APPROACH TWOSTONE-IM

chapter 7
EVALUATION OF TWOSTONE-IM

main contribution

abstract

concrete

chapter 4
TRIGGERS FOR OVERCOMING OPPORTUNITY-RELATED BARRIERS

main contribution

chapter 6
MECHANISMS AGAINST ABILITY- AND MOTIVATIONAL-BARRIERS

chapter 3
CONCEPT FOR TECHNOLOGY-BASED INTERVENTIVE MEASURES

main contribution

 

Figure 2: Thesis Contributions. 
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1.3 Organization and Conventions 

This document follows the well-established formula for scientific technical writing: An introductory 

motivation chapter is followed by a description of the related work, followed by a theoretical concept 

for solving the problem at hand, followed by a description of this concept’s actual (prototypical) 

implementation, followed by an evaluation of this prototype, and is finally concluded by a critical 

reflection on the achieved results. 

More specifically, this first chapter of the thesis explains the motivation for this work. The 

subsequent second chapter focuses on an analysis of the related work, divided into the three categories 

user motivation, ability adaptation, and opportunistic interactions. The three fields are discussed from a 

technical standpoint, meaning that the respective sections mainly focus on the relevant technical 

advances in industry and science, e.g., on context-aware behavior changing smartphone applications. 

The third chapter discusses the problem of technology-based behavior interventions on an abstract 

level. The fourth and the sixth chapter focus on the three types of barriers that keep people from being 

physically active, and they describe specific approaches that are supposed to help overcome such 

barriers. It is worth noting that the fourth chapter, which focuses on the topic of creating well-timed 

short-term awareness interventions called ‘triggers’, is the more important one of the two; chapter six, 

discussing means to adapt to the user’s ability and to increase her motivation, is more or less of 

supportive character. Chapter three explains the reasoning for this. The fifth chapter presents a 

consolidated approach that serves to unify the findings described in chapters three, four, and six within 

a prototypical application: The Android-based mobile exergame Twostone and an associated Interventive 

Measure Application; together they make up the Twostone Interventive Measure (Twostone-IM). Chapter 

seven presents the results of an end-user based study that compared the effects of several variants of 

this application. Finally, chapter eight concludes the thesis with a discussion and an outlook, reflecting 

on what was achieved and what new questions have emerged from my work. 

In regard to format conventions, the layout of this document is largely dictated by the corporate 

design guidelines of my alma mater, the Technische Universität Darmstadt. This concerns the thesis’ 

cover page, the font (Charter for standard text and Frontpage for headlines), the page spacing, and 

some other aspects. I am using italic face for direct quotations, also indicated by quotation marks, such 

as in this famous statement allegedly made by Abraham Lincoln: “The problem with quotes found on the 

Internet is that they are often not true”. I am also using italic to highlight pivotal lines, words, or 

characters, such as names, formal definitions, and variable symbols. I am using neither bold face  nor 

underlines. In-text citations are done using our institute’s citation style (the KOM Citation Style, if you 

will): The last name initials of the first three authors followed by the last two digits of the publication 

year, such as in [WWT+11]. A plus sign indicates that there are actually more than three contributing 

authors. Sometimes I add also a page reference, i.e., in case of direct quotations, such as in [WWT+11, 

p.1249]. If you cannot find a specific reference index in the Bibliography, then this is probably because 

it is either a self-reference, or because I referenced one of the student theses that I supervised. In such 

cases, you will find the corresponding work in appendix D or E. Some figures and tables are adapted 

from other sources, which means that I redid (and possibly altered) a figure that I found somewhere 

else. This will be indicated by an “adapted from”, followed by a reference index. If no reference is 

specified in the caption, then the respective figure is entirely my own creation. No figures in this 

document are directly copied from other sources. This also applies to all screenshots and images. 

However, for some of my figures I have used the ‘Google Material Icons’
 (2)

 and the ‘Android Device Art 

Generator’
 (3)

 with hopes to enhance my own limited design skills. Footnotes are meant to support the 

main text with additional information that may not be essential, but that I still find noteworthy.    

I am using the generic she as a pronoun for no other reason than just because. 

                                                                 
2 https://design.google.com/icons/index.html 

3 https://developer.android.com/distribute/tools/promote/device -art.html 
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2. Related Work 

The core question of this thesis is how the daily amount of physical activity can reliably be increased 

with the help of technology in general and with mobile devices in particular. As pointed out in the first 

chapter, a lack of knowledge about the potentially harmful effects of physical inactivity is not the 

problem. While roughly one in three Europeans and US-Americans does not even meet the minimum 

recommendations for physical activity [MVS+01], the majority of these people are well aware of the 

fact that their sedentary lifestyle is likely to have undesired consequences [HSS+04]. Apparently, 

barriers exist that prevent parts of the populace from being more active and technological measures 

that aim at increasing the physical activity levels of people must be equipped with the means to help 

their users overcome those barriers. In other words, they must be able to help them to achieve a desired 

behavior. As such, a precondition for the systematic development of such measures is an understanding 

of what determines human behavior.  

The psychologist and Stanford University lecturer B.J. Fogg coined the term ‘persuasive technology’. 

In his like-named monography, Fogg describes how computers can be used to change a person’s 

attitude or behavior [Fog03]. The gist of his work is the Fogg  Behavior Model, FBM for short. This 

conceptual model conveys the three factors that decide whether or not someone will show a desired 

behavior b
 (4)

: First, the person’s motivation m for behaving in the intended way; second, her ability a 

for doing so; and finally the occurrence of a trigger t that basically functions as a well-timed reminder. 

Fogg summarizes this interdependence with the equation b = mat
 (5)

. According to Fogg, the absence of 

a desired behavior can thus either be explained by a lack of motivation, and/or a lack of ability, and/or 

a lack of a trigger that calls the respective person to action. Figure 3 shows a graphical representation 

of the FBM. 

The figure visualizes a person’s motivation and ability for a specific behavior b at a given time 𝛿 
(6)

 

as the two axes on a coordinate plane. Moving away from the origin along the x- or y-axis symbolizes a 

person’s increased ability or motivation for showing the intended behavior, respectively; moving closer 

to the origin translates to a lower ability or motivation. Marking a point in a significant distance from 

the origin thus implies that the respective person finds the desired behavior very easy to do at this point 

in time, and/or that she is highly motivated for performing it. For a given person, the ability and the 

motivation are dependent on two factors, namely the desired behavior 𝑏̅, and the point in time 𝛿  when 

this behavior is supposed to occur. This becomes obvious when we compare a person’s ability and 

motivation for showing two different behaviors at two different points in time. 

Consider average Jane’s ability and motivation for a 10-mile run on a Monday noon and on a 

Saturday early evening. While her motivation for running may be equally high (or low) on both times, 

her ability for doing so will usually be lower on a Monday noon than on a Saturday late afternoon, 

since in the earlier case, she will be at work. Now consider her ability and motivation for socializing 

with her coworkers at these two points in time, for instance by having coffee together. Irrespective of 

how high her motivation for the inevitable small talk may be, it is safe to assume that usually, Jane’s 

ability for spending some time with her colleagues will be higher during a Monday lunch break than on 

a Saturday afternoon. It is simply much easier to get together with one’s coworkers on a working day 

than during the weekend. 

The FBM adds a third factor to the equation: The aforementioned triggers. According to Fogg, a 

trigger can be anything that a person can notice and that this person relates to the desired behavior. 

Ideally, the perception then triggers the associated action. In this regard, a trigger can be something 

that a person sees, hears, feels, tastes, or smells, as long as this stimulus is mentally linked to the 

                                                                 
4 Different to Fogg, I am using a small b to denote a specific person’s behavior. Fogg capitalizes the letter. 
5 This is not an equation in a mathematical sense. 
6 I am using δ, derived from Gr. διάστημα (diastima), time interval, as the variable symbol for time instead of the established t to 
avoid confusion with Fogg’s symbol for triggers. This is in line with the fact that δ actually denotes a time interval of variable 
length, as explained in chapter three. 
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desired behavior. The ‘bing’ of a 

microwave is a trigger, as 

hearing it will usually make a 

person get the food waiting 

inside the oven. The classical 

knot in the handkerchief, on the 

other hand, will not always 

work as a trigger. Although 

intended to be, the 

handkerchief’s owner may have 

forgotten about the reason for 

tying the knot at the time when 

she notices it. The stimulus is 

perceived, but it is no more 

associated with an action. 

Fogg further differentiates 

between hot triggers and cold 

triggers; the earlier being 

triggers that occur at a time of 

high ability for showing the 

desired behavior, the latter 

occurring when the perceiving 

person is currently unable to 

perform the behavior in 

question. Fogg summarizes his 

findings with the words that the 

key to achieving desired 

behaviors is to put “hot triggers 

in the path of motivated people” [FHK+10]. Cold triggers on the other hand, triggers occurring when 

the perceiving person is not able to do as intended, are practically worthless.  

Sketched into Figure 3 are the ‘Action Line’ and the three situations A, B, and C. The Action Line 

represents the border that separates a sufficiently high combination of motivation and ability from an 

insufficient amount. Triggers that occur at a point in time when a person’s motivation and ability for 

performing the desired behavior meet above the Action Line will succeed and result in the triggered 

person behaving in the intended way. Analogously, triggers that occur below the Action Line will fail, 

and the triggered person will not show the desired behavior. Fogg calls opportune moments in which 

the combined amount of ability and motivation lies above the activation threshold represented by the 

Action Line “kairoi”
 (7)

. The FBM also teaches that ability and motivation can compensate one another 

to a certain extent. If highly motivated, a person may do something even if she finds the behavior hard 

or tedious. For instance, offering someone a significant amount of money for running a marathon may 

result in that person trying to do so, even if she never before ran for more than two miles straight. On 

the contrary, a high ability may compensate for a low motivation. If something is very easy to do, one 

may do it despite being not the least bit motivated. Casually voting in an online poll stumbled upon on 

a website is an example for this effect, as this is something that people do although they neither know 

the website’s owner nor do they really care about the poll’s overall result. But because the entire act 

consists of just a single click with the mouse button – because it is so easy to do – users will 

occasionally participate in such polls nevertheless. 

                                                                 
7 From Gr. καιρός (kairos), opportunity. Fogg is not the first to apply this ancient Greek term for denoting the ‘right time’ and 
indeed, the question of how the term is used correctly has already been a matter of scientific discourse [Mil92].  
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Figure 3: Fogg Behavior Model. 

FIGURE NOTES – The Fogg Behavior Model (FBM) shows the 

interdependence between motivation, ability, and triggers. 

Adapted from [Fog03]. 
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The points A, B, and C that have been marked in Figure 3 illustrate this interplay of ability and 

motivation. Starting from the upper left and going clockwise, they represent situations in which the 

desired behavior is rather difficult for the target person to do, a fact that is compensated by her high 

motivation (A), a situation in which the target person finds the desired behavior fairly easy to do, 

although she is not very motivated for behaving in this way (B), and finally a situation in which she is 

neither particularly able nor motivated to perform the desired behavior (C). An occurring trigger will 

succeed in the situations A and B, but it will fail in the case of situation C. In this situation, neither 

ability nor motivation can compensate for one another and a perceived trigger thus cannot initiate the 

desired behavior, although it may still have a certain effect on the target person. These ‘side effects’ of 

triggering pose a significant challenge to all interventive measures. The problem is discussed in more 

detail in chapters three and four.  

We find that there is a clear correspondence between the three types of barriers for physical activity 

[OB92] and the core elements of the FBM, which reinforces the plausibility of Fogg’s model for human 

behavior. As pointed out in the first chapter, many people are kept from being physically active by a 

self-perceived lack of ability and/or a lack of motivation. Ability and motivation make up the two axes 

of the FBM. The third barrier that prevents physical activity, the perceived lack of time, also has a 

representation in the FBM: Well-timed triggers that reach a person in a situation when both her ability 

and her motivation are sufficiently high will initiate the desired behavior by grasping an opportunity – 

an opportunity that the triggered person may not even have been aware of herself. Helping a person 

realize that a desired behavior is both meaningful and possible – intervening at the right time – must be 

the main competency of interventive measures for behavior change and the number of attempts 

required before the desired behavior is shown defines the corresponding measure’s quality.  An accurate 

measure will await the right situation, a kairotic moment, before issuing a (hot) trigger. In contrast, 

educating people on the benefits of a certain behavior with the intention of increasing its prevalence 

may not be a successful strategy as such advice will oftentimes turn out to be a cold trigger. The 

audience, such as a school class, will not be able to act upon the trigger immediately. When they would 

be able to do so, however, the ‘out of sight, out of mind’-effect has taken hold and the previously 

perceived trigger is long gone and forgotten
 (8)

. In this regard, instead of trying to induce behavior 

change by spreading long-term knowledge, a more promising approach for overcoming  opportunity-

related barriers may lie in the creation of measures that are capable of initiating well-timed 

interventions – hot triggers – that reach people in situations when they can be immediately acted upon. 

This notion will be picked up later. That aside, it can be subsumed that all three identified types of 

barriers for physical activity have their representation in the FBM and that the FBM thus appears be a 

fitting foundation for the conceptualization of technology-based interventive measures that aim to 

stimulate increased physical activity by helping their users overcome any perceived barriers.   

In accordance with the FBM, this work also has three main building blocks: On the one hand, it 

investigates how a lack of motivation and a lack of ability for physical activity can be counteracted with 

the help of mobile devices. On the other hand, it analyzes how well-timed triggers can help users 

overcome their perceived lack of opportunity by pointing out situations in which a few minutes of 

physical activity are possible. The reminder of this chapter is structured into the same three general 

categories, but delves into an analysis of how these challenges are already being addressed by science 

and industry. The described state of the art forms the basis for the development of a new, innovative 

concept for how to utilize mobile technology to reliably increase the daily amount of people’s physical 

activity. This concept is described in chapters three to six. 

                                                                 
8 It is likely that additional factors besides the ‘out of sight, out of mind’-effect prevent people from showing a beneficial behavior. 
The phenomenon to act against one’s better knowledge is called ἀκρασία (akrasia) and is a well-known philosophical problem 
that has been discussed for millennia [Bau02]. Examples for ‘willful wrongdoing’ are legion and can be found almost anywhere, 
such as in the domains of personal health [HSS+04], individual mobility [TKV97], and social interaction [DL68], to name just a 
few. This phenomenon, however, does in no way contradict our understanding of how behavior change works: If a person acts in 
a certain way although she is aware that another behavior would be more beneficial, then this is simply because either her 
motivation or her ability for the respective behavior is not sufficiently high. 
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2.1 User Motivation 

The most common conception of the term motivation is that people are focused on gaining pleasure 

while trying to avoid pain. The notion of this so-called ‘hedonic principle’ can be traced back at least to 

Aristoteles and the ancient Greeks [Csi90]. This understanding of motivation can alternatively be 

formulated as “people are motivated to approach desired end-states” [Hig97, p.1282], which implies that 

motivation is some type of ‘energy’ that drives people in all their deliberate actions. In other words, 

motivation consists of an orientation, being the direction of actions, and strength, being the amount of 

commitment invested into these actions [RD00]. It should not come as a surprise that such an 

understanding of motivation spurs some peoples’ desires to take advantage of this mechanism: For 

them, motivation is “energy to be directed” and others simply need to be “fired up” before being released 

in the right direction [Hig11, p.18]. 

Social sciences usually distinguish between multiple kinds of motivation, whereby the most basic 

distinction is the one between extrinsic and intrinsic motivation [RD00]. Extrinsic motivators are 

specific outcomes of actions that a person desires and aims to achieve. Such rewards may be material, 

such as money, or immaterial, such as approval [Fre94]. The required ‘energy’ for the corresponding 

activities is then drawn from the perspective of eventually obtaining these rewards. On the contrary, 

intrinsically motivated persons draw the energy required for the performance of actions from within 

themselves, because they find the activities interesting or enjoyable. The intrinsically motivated receive 

no apparent reward [Dec71]. A widespread and often-cited [Meh13, Kon13, Wen15] explanation for 

intrinsic motivation is the ‘Flow Theory’ as first described by American-Hungarian psychologist Mihaly 

Csikszentmihalyi. He points out that people are at their happiest when they “do feel in control of [their] 

actions” and are “masters of [their] own fate” [Csi90, p.3]. Being in the flow is thus the state of enjoying 

an action for its own sake, as it fully involves a person and puts her in a form of trance. Among other 

things, digital media such as TV or music can induce this flow trance [Nor97] – and digital games. 

Sweetser and Wyeth investigated, why digital games are entertaining  – intrinsically motivating – to 

many people and introduced the ‘GameFlow Model’ [SW05]. Based on the original Flow Theory, this 

model tries to grasp the core mechanics that make digital games enjoyable, but the authors also point 

out that their contribution is only meant as a starting point to the development of an understanding on 

how motivation is being induced by digital games. Based on the findings of Bartle [Bar96], Yee 

[Yee06], and others, it at least seems safe to assume that not every game mechanic is equally enjoyable 

to every player. However, what exactly the elements are that motivate people to keep playing a certain 

game are still difficult to pinpoint. As a consequence, parts of the professional video game industry 

have resorted to creating games based on fixed ‘formulas’ that reliably produce results well-received by 

the majority of their potential customer base instead of experimenting with innovative game designs
 (9)

. 

Serious games are (mostly digital) games that aim to utilize the intrinsic motivation that well-made 

games induce by including elements into the gameplay that require the player to behave in a certain 

way in order to advance in the game [GHW+10]. This required behavior will usually be something  

“that would otherwise either be not done or at least with much less enthusiasm” [Mal14]. In this way, 

serious games aim to combine the entertaining with the useful and to be “more than fun” [SG12]. While 

the majority of serious games prototypes that come from the scientific community remain accessible to 

only small groups of users, Japanese game manufacturer Nintendo has already demonstrated twice that 

serious games can also be commercially successful. The game Wii Sports that was released in late 2006 

for the game console Wii requires users to be physically active in order to play several mini-games such 

as tennis or golf, whereby the player’s movements are tracked by sensor devices that she must hold in 

her hands while playing [DHK+14]. Ten years later, Wii Sports was still the commercially most 

                                                                 
9 The best-known example for this approach is the so-called ‘Ubisoft formula’ used by French publisher Ubisoft, see 
https://www.washingtonpost.com/news/comic-riffs/wp/2016/02/26/far-cry-primal-follows-the-tried-and-true-ubisoft-formula-
for-success/ 
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successful video game with well over 80 million sold units worldwide
 (10)

, impressively demonstrating 

the massive demand for approaches that promise to make physical activity a little more entertaining.  

In 2016, Nintendo was able to follow up on its previous success in the serious games niche with the 

release of the mobile location-based game Pokemon Go. To this end, Nintendo partnered with the 

American Google-spinoff Niantic, a company that had already earned renown in the mobile games 

market with their previous product, the location-based game Ingress. Pokemon Go subtly enforces 

physical activity by requiring the player to reach certain locations or to cover specific distances in order 

to achieve game-related goals. For example, the ‘egg hatching’ mechanic of the game demands players 

to walk or run a minimal distance before they will gain access to a desired game element, while the 

game utilizes the smartphone’s sensors to ensure that the player is  not trying to circumvent this 

requirement by traveling with a car or another vehicle. A mere three weeks after its release, Pokemon 

Go had already reached more than 50 million downloads worldwide and still continued to attract 

additional users
 (11,12)

. It must thus be considered to be the most successful mobile exergame up to date, 

although certainly not the first of its kind. A good example for an early mobile exergame is the 2012-

released game Zombies, Run! by UK-based software company ‘Six to Start’, which combined two game 

modes: An exercise mode during which the player listens to a series of audio books while running, and 

an additional strategy-mode, where the player tends to a virtual community [KDH+14]. The 

connection between the two modes is established by virtual resources that the player automatically 

gathers during the exercise-mode and that are required for advancing in the strategy-mode. 

As both Pokemon Go and Zombies, Run! can only be meaningfully played when the player is outside 

and on the move, they can both be considered to be ‘pervasive games’. Although the term is heavily 

debated and there are multiple definitions available [Mon05, HLM+07, Nie07], it should be agreeable 

to state that pervasive games are digital games that somehow blur the traditional boundaries between a 

virtual game world and the real world. In other words, pervasive games do not try to block the 

influences of the real world, but rather embrace them and incorporate them into the gameplay. This 

sets such games apart from regular digital games played on PCs or TV-based game consoles, where 

players oftentimes find influences from the real world disturbing and immersion breaking. 

The genre of pervasive gaming is usually described with the help of the term ‘magic circle’, which 

can be traced back to Dutch philologist Johan Huizinga’s monograph ‘Homo Ludens’: “All play moves 

and has its being within a playground marked off beforehand either materially or ideally, deliberately or as 

a matter of course. Just as there is no formal difference between play and ritual, so the ‘consecrated spot’ 

cannot be formally distinguished from the play-ground” [Hui49, p.10]. Huizinga goes on to list a number 

of terms to denote this consecrated spot, with ‘magic circle’ being one of them. Salen and Zimmerman 

later adopted this term and sharpened its meaning: “Beginning a game means entering into the magic 

circle. Players cross over this boundary to adopt the artificial behaviors and rituals of a game. During the 

game, the magic circle persists until the game concludes. Then the magic circle dissolves and playe rs return 

to the ordinary world” [SZ04, p.333].  

A good example for this effect is a boxing fight [Cra09]. Within a boxing ring, hitting another 

person is fully acceptable and even required. However, if the same two people would meet on a public 

street and started punching one another, this would likely draw a crowd and eventually policemen 

would stop the combatants. The boxing ring is a magic circle that establishes certain rules which define 

the game. While the game is ongoing, actions that adhere to the rules are considered to be acceptable. 

The boxing example also hints at the fact that the magic circle has not only a spatial dimension (the 

boxing ring), but also a temporal, as the fight only lasts for a predefined amount of time. Finally, the 

contest also has a social dimension: It is clear, who the fighters are; the rules do not allow one fighter 

to be replaced by another, let alone a third person to join the ongoing fight. Montola points out, where 

                                                                 
10 http://www.vgchartz.com/gamedb/ 

11 https://sensortower.com/blog/pokemon-go-50-million-downloads  

12 Steinmetz et al. point out that there are technical challenges that need to be solved before multiplayer location-based gaming 
can evolve any further and before more advanced concepts for such games will become practical [SHK+15]. 



12 – Related Work 
 

exactly the differences between regular games and pervasive games lie: “The regular game is played in 

certain spaces at certain times by certain players [whereby a] pervasive game is a game that has one or 

more salient features that expand the contractual magic circle of play socially, spatially or temporally” 

[Mon05]. As stated before, pervasive games somehow blur the boundaries between the game world 

and the actual real world, for example by extending the playground beyond a limited area or by 

allowing people to join and leave the game while it is still ongoing. The EU-funded project IPerG 

investigated the potentials of this type of game even before the era of mobile devices really kicked off 

with the release of the first iPhone in 2007, and the project consortium created game concepts such as 

Love City and Rider Spoke that explored the possibilities of how to best entangle the real world with a 

(digital) game world [Opp09]. Many more design ideas for pervasive games have emerged since 

[HLP+12, JS13, KG15].  

In the context of this work, pervasive games are an important concept, as they may strengthen 

intrinsic motivators for the voluntary integration of physical activities into people’s everyday lives. As 

pointed out in the first chapter, knowledge for the benefits of physical activity alone is oftentimes not 

sufficient. To many people, the external motivator of increasing the odds for staying healthy apparently 

does not provide enough ‘energy’ for regular physical activity of sufficient intensity. Trying to create 

intrinsic motivation instead by making the activity itself more enjoyable may be a more promising 

approach – and one that has already been shown to be successful by Nintendo’s Wii Sports, Pokemon 

Go, and other exergames
 (13)

. The aforementioned problem of how to reliably create ‘good’ games, 

remains, however. As a consequence, Malaka suggests enhancing commercially successful games with 

exergaming mechanics, practically ‘piggybacking’ them on tested and proven platforms [Mal14]. 

In regard to using game mechanics for the purpose of motivating  a desired behavior, an alternative 

to serious games is the gamification approach. The most established definition for gamification is the 

one coming from Deterding et al., who define gamification as “the use of game design elements in non-

game contexts” [DDK+11]. There are plenty of examples for gamification in commercial applications, 

such as NikeFuel, a measure used by the company Nike to quantify the amount of physical activity 

performed by members of their online community Nike+ [BL13]. NikeFuel is a typical case of 

gamification, as it follows the widespread ‘points, badges, leaderboards’-formula that gamification is 

usually being associated with [HKS14]. This formula, and gamification in general, has gained some 

infamy for focusing on the creation of (immaterial) extrinsic motivators, although studies show that 

their installment may actually have a negative effect on the preferable intrinsic motivation [DKR99]. 

Nevertheless, a systematic survey on gamification by Seaborn and Fels showed a “positive-leaning but 

mixed picture of the effectiveness of gamification” [SF15, p.28] with the actual performance depending 

on the application domain. It appears that gamification can indeed succeed in creating ‘motivational 

energy’ – if it is applied in the right context and not in a way that it feels artificially enforced. 

This finding correlates with the success of the quantified-self movement [CLL+14], which is closely 

related to the principles of gamification. The core idea of quantified-self is that the self-tracking of one’s 

behavior helps with the regulation and ideally the improvement of the same. A widespread example for 

this idea are smartphone-based activity tracking apps such as Runtastic, RunKeeper, or Edomondo that 

monitor one’s performance during aerobic activities, mainly running and cycling . Such apps have 

become increasingly popular among amateur athletes  in recent years [FM15]. A similar function is 

provided by wearable activity trackers such as Jawbone Up, Fitbit, or the Nike Fuelband [FRO+15]. 

These devices, usually worn on the wrist, assess their wearer’s overall physical activity with the help of 

their built-in inertial sensors and quantify this effort, either directly or indirectly via a smartphone 

application or a website. A very recent addition to the family of wearables is the Apple Watch and its 

Activity App [DGH+16]. This application has already been mentioned in the first chapter, and we will 

come back to it on several occasions. 

                                                                 
13 If only for a limited time. While a number of contributions show the positive short-term effects that exergames can have, e.g . 
[GHW+10], it still remains to be demonstrated that a long -term adherence to such measures can also be achieved [LSH+13]. 



Related Work –  13 
 

2.2 Ability Adaptation 

In his 2009-published paper ‘A behavior model for persuasive design’, B.J. Fogg speaks about his 

observation that a person’s inclination for showing a specific behavior is closely related to how simple 

the person finds the behavior. He goes on to list six aspects of simplicity and points out that “simplicity 

is a function of a person’s scarcest resource at the moment a behavior is triggered” [Fog09]. In other 

words, the question of how high a person’s ability for a behavior is at a given moment, how simple she 

finds it, is determined by the one simplicity factor that she lacks the most at this point in time. 

According to Fogg, the aspects of simplicity are time, money, physical effort, brain cycles, social 

deviance, and non-routine. The role of time, money, and physical effort in the determination of one’s 

overall ability should be clear. If a person is lacking the time or money that is required for a desired 

behavior, then this behavior becomes more difficult and thus less likely to be shown. Likewise, as many 

people try to avoid behavior that is physically demanding, a behavior that requires significant physical 

effort will usually be considered more difficult or harder to do than one that does not. The factor ‘brain 

cycles’ refers to the necessity that a person has to reflect on a subject and possibly must find solutions 

for more or less difficult problems. In this regard, solving crossword puzzles or playing chess will 

usually be considered more demanding than watching TV. The final two elements of simplicity 

according to Fogg are ‘social deviance’ and ‘non-routine’. Both refer to activities contradicting a ‘norm’, 

whereby social deviance means that a person is required to act against a social norm and non-routine 

means that a person acts against her own norm in the sense of having to change the procedures that 

she has grown accustomed to. Commuting to work with a bicycle instead of using the car for the first 

time in many years would be a case of a behavior that is ‘non-routine’; wearing a full-body chicken suit 

while doing so might be a rather extreme example for a behavior with a high level of ‘social deviance’. 

We find that in modern-day societies, ‘time’ is more often than not the critical element that decides 

what is considered to be easy or difficult to do. When people speak of the need for “making things 

easier”, possibly with the help of technology, they regularly want to see a certain process to be 

accelerated. This consideration is in accordance with the main reason for physical inactivity, as 

discussed in the first chapter: More than a third of all interviewees claim that they simply lack the time 

for sports [OB92]. Some other examples for the time as the behavior determining factor include the 

choice between private car use and public transport, where saving time is considered more relevant 

than saving money [BC07], the choice for mobile banking instead of traditional banking irrespective of 

privacy, security, and other concerns [KRW07], or many people’s preference for ready-prepared food 

instead of investing time in the preparation of healthy meals [JD06]. However, although time will 

oftentimes be the scarcest resource, it is not necessarily so. As Fogg points out, “each person has a 

different simplicity profile” [Fog09]. For instance, a person with a low income will probably value 

money higher than time and may eventually even sell her car to instead fully rely on public transport. 

Likewise, a chronically sick person may be willing to invest many hours per week into the preparation 

of healthy meals. This is a case where a high motivation compensates for a comparably low ability, as 

although another, more simple-to-do behavior – eating convenience food – would also be possible, the 

high motivation of wanting to stay as healthy as possible entails the more time-consuming healthy 

eating. It is not always the easiest alternative that wins the race. 

Since computer technology is generally either supposed to support or entertain its users (or both), 

the examples for devices and programs that are meant to simplify behavior seem to be legion at first 

sight. The obvious cases include devices and programs to support the writing of texts, to simplify 

complex calculations, to accelerate long distance communication, and to simplify researching and the 

distribution of knowledge. But all these domains have one thing in common: Computers more or less 

replaced all other ways of doing such things. Of all the documents written every day, the vast majority 

is being written using computers; analogously, almost every communication between two people who 

are not in shouting distance is done via a computing device. More interesting are those cases where 
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technology is used to simplify behavior that could also be performed without this aid. One such case is 

the use of navigation systems that simplify planning and orientation while traveling . Even specialized 

variants of such navigation aids exist that are meant to suit the specific needs of high demanding target 

groups, such as public transport navigation assistants for the sight or hearing impaired [DMM+14]. 

Other examples for ability-enhancing computer technologies include Augmented Reality-based 

guidance tools in machinery maintenance tasks [WBE+13], e-cash systems for making seamless 

payments in public transportation and supermarkets [HZB+13], and home automation systems that 

enable their owners to efficiently control the electronic devices in their households [CP10]. 

 The last example is of particular importance, as it hints at the evolutionary goal of computer 

technology in general, at least according to American computer scientist Mark Weiser and his 

immensely popular visionary paper ‘The computer for the 21
st
 century’ [Wei91]: Eventually, computers 

will have pervaded every aspect of our daily lives, being embedded into floors, walls, and appliances. 

They will surround us invisibly and silently and spring  to life whenever we ask for – or require – their 

assistance. But although the appropriateness of Weiser’s prediction can already be witnessed, we have 

not quite achieved truly ubiquitous assistive systems. This is in part because the retrieval of information 

about the state of the user’s environment, about her current activity, and especially about her physical 

and emotional wellbeing turned out to be a bigger problem than originally expected. Such knowledge 

is usually being referred to as being contextual information [Dey01] and countless contributions 

investigate ways of how to gain it with technological means, ranging from physical activity detection 

with inertial sensors [ABM+10], over situation recognition based on the emittance of smartphone 

ringtones and notification sounds [DRC+14], to the precise indoor localization of persons, e.g., with 

the help of regular webcams [BD16]. The immense quantity of such papers that is available on different 

aspects of the problem of ‘context awareness’ shows its size and prevalence. Contextual information 

retrieval has become core to many aspects of modern-day technology. 

So far, we have only considered the simplification of behavior, which is in line with Fogg’s notion of 

how the occurrence of a desired behavior can be provoked: By reducing  the levels of all six 

aforementioned elements of simplicity, the target person’s ability for the desired behavior rises and 

behaving in the desired way becomes easier for her, which in turn makes it more likely that she actually 

does behave in this way. However, a person’s ability for a desired behavior may also increase (or 

decrease) by itself, without any external factors artificially simplifying the behavior. If a person 

regularly uses her bicycle to get to work, this behavior will eventually become normal to her, slowly 

reducing the degree of this behavior’s ‘non-routine’. Furthermore, as her body gets used to the strain, 

the degree of ‘physical effort’ that is required for commuting with a bike decreases as well, which may 

in turn reduce the ‘time’ that she has to invest. Eventually, as she adapts to the behavior, her ability for 

it increases and it gets easier. In some cases, this is a welcomed effect. In others, not so much. 

The previously introduced ‘Flow Theory’ clarifies that enjoyment lies in between boredom and 

worriedness. The model’s creator Csikszentmihalyi elaborates on this and writes that “activities that 

reliably produce flow experiences are similar in that they provide opportunities for action which a person 

can act upon without being bored or worried” [Csi75, p.49]. Csikszentmihalyi explains this principle with 

the help of a sketch. An adapted version of the original diagram can be seen in Figure 4. Given three 

rock climbers A, B, and C, who are of different skill and experience , but who are all trying to take on 

the same climbing rock. Climber A has the lowest skill of the lot and her experience lies below the 

climbing route’s grade. It is thus likely that rather than looking forward to the climb, she will be 

worried and possibly even stressed (under the precondition that she is able to correctly assess her own 

skill level). In contrast, climber C who has the highest skill of the group, a skill level that lies well above 

the climbing route, will feel bored and annoyed by the necessity of climbing a route below her standard 

because the other two cannot manage a more challenging ascent. Only climber B, whose skill level 

perfectly matches the climb ahead, will really enjoy the tour. She is within the ‘Flow Channel’, the zone 

where ability and challenge are well-balanced. Csikszentmihalyi points out that “people in a state of 
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worry can return to flow through an almost 

infinite combination of two basic vector 

processes: decreasing challenges or 

increasing skills” and continues to state 

that “conversely, if one is bored one can 

return to flow either by finding a means to 

increase environmental challenges or by 

handicapping oneself and reducing the level 

of skills” [Csi75, p.52f]. The ‘Flow Theory’ 

thus teaches that it can indeed be 

desirable to raise the physical and/or 

mental challenge that is imposed by an 

activity in order to ensure that it remains 

enjoyable, which in turn means that 

adapting to one’s ability does not 

necessarily imply simplification. 

A domain where this principle 

immediately becomes obvious is sports 

and games. When confronted with a task 

or an opponent, most people prefer a 

situation where their skill and the 

challenge that they face are well-balanced 

in a way that a triumph will convey a 

sense of actual accomplishment. This 

holds true for both individual training and 

competitive sports. The ‘Heart Rate Reserve Method’, for instance, is an established way of ensuring 

that exercise intensity matches an athlete’s capabilities by modulating the physical strain so that her 

heart rate is kept within a tight interval in between her resting and her maximum heart rate [PAR+14, 

p.170]. It is not a coincidence that this approach bears a strong resemblance to the ‘Flow Channel’.  

The importance of keeping a ‘balance’ is also encountered in digital games. For instance, Microsoft 

relies on a method named TrueSkill to balance the composition of matches in multiplayer games played 

on the servers of the Xbox game console family. The method is based on Bayesian inference and 

supposed to deliver better balancing results than the ‘Elo rating system’  that is used to find balanced 

opponents for chess matches [HMG06]. Reuter proposes the use of Petri nets to ensure that digital 

cooperative multiplayer games are well-balanced and pose the same level of challenge to all players , 

stating that unbalanced games have the potential “to leave everyone involved dissatisfied” [Reu16, p.3]. 

In a similar manner, Wendel proposes the use of an intelligent agent named GameAdapt to recognize 

player behavior and game states in collaborative multiplayer games. When deemed necessary, the 

agent automatically intervenes by increasing or decreasing the challenge for individual players in order 

to ensure that game progress remains balanced among all members of a team [Wen15].  

Steinmetz and Nahrstedt state that “adaptive systems monitor the user's activity pattern and 

automatically adjust the interface or content provided by the system to accommodate (…) changes in user 

skills, knowledge and preferences.” [SN04, p.182] Such adaptions to a user’s ability are a delicate issue, 

however, as they harbor the danger of negatively affecting her motivation for the desired behavior. On 

the one hand, an activity that is (too) difficult for a person to perform will only occur if a sufficiently 

high motivation compensates for this. On the other hand, however, the ‘Flow Model’ teaches that 

finding something too easy may have a negative impact on motivation; in this case, simplicity 

effectively lowers the probability of occurrence. The developers of adaptive systems that adjust to the 

user’s behavior must take this interdependence into account. 
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Figure 4: Flow Channel. 

FIGURE NOTES – The Flow Channel maintains the 

balance between worry and boredom, figure adapted 

from [Csi75]. 
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2.3 Opportunistic Interactions 

The studies on the sedentary lifestyle of Australian adults revealed that the main reason for physical 

inactivity is a lack of opportunity [OB92]. Although it cannot be excluded that a response bias has had 

an influence on the results, the high amount of participants who gave such answers makes it safe to 

assume that it is indeed a self-perceived chronic shortage of time that prevents many from being more 

active. This assumption is supported by several other studies, for instance a more recent one by Welch 

et al., who found that an alarming 73% of the Australian women perceive time pressure as a barrier to 

physical activity [WMH+09]. 

Modern-day societies have high demands on their citizens. Technological and cultural changes such 

as the Internet and globalization have accelerated the everyday lives of people. The German 

philosopher Hartmut Rosa uses the term ‘social acceleration’ to describe the phenomenon that “the 

history of modernity seems to be characterized by a wide-ranging speed-up of all kinds of technological, 

economic, social, and cultural processes and by a picking up of the general pace of life ” [Ros03]. Following 

up on Rosa’s thoughts, Wajcman points out what she calls the ‘time pressure paradox’: Although 

technology increases man’s efficiency in many of life’s aspects such as in the production and transport 

of wares, this does not “entail an increase in free time, which in turn would slow down the pace of life” but 

rather “time seems to be increasingly scarce” [Waj14, p.16]. Computer technology plays not a small part 

in this acceleration, as its advancements are accompanied by several double-edged developments such 

as permanent connectivity and information overload. But, as the problem of time scarcity becomes 

more and more prevalent, a growing number of technological innovations also try to assist the user in 

coping with this by ensuring that she does things when she wants to – or should. 

The majority of these innovations share a common philosophy: That there is a right time for 

interacting with the user. The least sophisticated examples of such timed interactions simply occur at 

fixed intervals, relying on the flow of time itself as the criterion for when to initiate an interaction. The 

smartphone application Plant Nanny, for example, is meant to ensure the sufficient hydration of its 

users and allows them to manually define, how many times per day the app should send a reminder 

that some drinking is due [KOM-B-0540]. In a very similar manner, the Activity App of the Apple Watch 

sends a notification to the user every ten minutes before the hour
 (14)

, asking her to stand up and move 

around
 (15)

. While this is supposed to help users fight a sedentary lifestyle, the actual realization of this 

feature can easily lead to irritation and users share stories of all the inappropriate situations in which 

the Apple Watch tried to make them stand up [DGH+16]. 

There are two alternatives to timed-interactions: Event-based interactions and signal-based 

interactions. This categorization is based on the findings of Wheeler and Reis, who had analyzed how 

researchers can self-report relevant information during scientific studies [WR91]. They state that in 

contrast to the ‘interval-contingent recording ’ approach that demands the aggregate recording of 

occurred events at the end of each reporting interval, ‘event-contingent recording ’ is done whenever a 

certain, predefined event takes place, and ‘signal-contingent recording’ happens when a certain person 

gives the corresponding command. We find that interactions between users and devices can be grouped 

into the same three categories. Either the device times the interaction (interval-based) or it awaits the 

occurrence of specific events (event-based). Finally, the user can always initiate the interaction herself 

by signaling this intention to the device, usually by a click, a tap, or the utterance of a voice command 

(signal-based). We also find that event-based interactions can in turn be grouped into those 

interactions that await events happening inside the device or application, such as the execution of a 

specific line of code, and those interactions that wait for external events. In the 1990s, an increasing 

                                                                 
14 It must be pointed out that the device does not solely rely on the time to initiate an activity trigger. Rather, the Activity App 
tries to estimate the user’s amount and intensity of physical activity during the last hour, based on the device’s built -in 
accelerometer. Only if this estimation value does not exceed a certain threshold, the notification is triggered.  

15 The message says “Time to stand! Stand up and move a little for one minute .“
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interest in finding ways of how to blur the strict borders between computers and the real world and to 

simplify the flow of information between the two led to a new field of research: Context awareness. 

According to Dey [Dey01], the first documented use of the term ‘context aware’ can be traced back 

to Schilit and Theimer and their 1994-published paper “Disseminating active map information to mobile 

hosts”. They state that “context-aware computing is the ability of a mobile user’s application to discover 

and react to changes in the environment they are situated in” [ST94, p.23]. Later, Schilit et al. 

investigated examples of context-aware computing and found that the three most important aspects of 

context are “where you are, who you are with, and what resources are nearby”, but stressing that “context 

includes more than just the user’s location” and may also encompass “lighting, noise level, network 

connectivity, (…) and even the social situation” [SAW95]. They also gave two examples of what they 

called ‘context-triggered action applications’. The first example is a UNIX application named Watchdog 

that executes predefined commands when infrared identification tags worn by users [WHF+92] are 

registered at specific locations. The authors give the example of playing a rooster sound when 

somebody is in the vicinity of the coffee machine. The second application named Contextual Reminders 

makes use of the same type of identification tags and allows to set reminders that are not only based on 

time like regular alarms, but additionally also based on the location of oneself and of other (tag 

wearing) users. As such, Contextual Reminders takes two types of information into account when 

deciding, whether or not to interact with the user, with one of these two being information coming 

from an external source and being specific to the individual user (namely her current location). 

Watchdog and Contextual Reminders may indeed be the first cases of context aware applications. 

Two decades lie between these first occurrences of context aware computing and today, and many 

applications of the event-based interaction paradigm have been created since. IBM’s Intelligent 

Notification System of 2001 was meant as a tool against the growing problem of information overflow 

and supposed to monitor information streams coming from Web services. In case of the occurrence of 

certain events, such as a stock’s price rising above a defined limit, the Intelligent Notification System 

would notify its users [BCE+01]. The system is interesting because of its two-step decision process. The 

first decision is whether to interact with the user at all. This decision is based on the analysis of the 

retrieved Web service content, which technically translates to the execution of SQL queries. If certain 

conditions are found to be met, the system then decides on how to notify the user about this . This is the 

actual context aware application, as the decision is based on the situation that the user is currently in. 

However, the authors do not go into much detail on how their Secure Context Service gathers the 

information about the user’s contextual state and only list the user’s location, her calendar entries, and 

her “instant messaging online status” as possible types of context information to be taken into account. 

This lack of diversity is typical for early context aware systems and the majority of them rely either 

solely or to a large part on the user’s location to decide, whether to trigger interactions
 (16)

. Some 

examples include the stick-e notes by Brown, digital documents that are automatically opened by mobile 

devices such as PDAs when the user is at a certain location [Bro96], the GUIDE system, an electronic 

tourist guide for the city of Lancaster
 (17) 

[CDM+00], and the comMotion system of the Massachusetts 

Institute of Technology, a speech based tool for defining location-specific reminders [MS00]. It must be 

noted that many of the papers treating early prototypes of context aware systems express the desire to 

also be able to use other types of context information besides the user’s location. Schmidt et al. even 

published a (heavily cited) paper titled ‘There is more to context than location’, in which they point out 

that the “the use of location is dominant [in context aware computing]” and they proceed to suggest 

various other types of context information that could be used to enhance applications , such as ambient 

light or user activity [SBG99]. However, at the time of their writing, technical limitations set a tight 

                                                                 
16 The early fixation on the exploration of application concepts that somehow make use of the user’s location can to some extent  
be explained by the deactivation of the so-called ‘selective availability’ in the year 2000 – a mechanism, that had artificially 
reduced the accuracy of the U.S. military owned GPS system for civilian users [KDH+14].  

17 A similar system named GEIST was developed for the German city of Heidelberg a few years later [GSH+04]. 
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limit to how sophisticated context aware applications could possibly become. This changed a great deal 

when sensor-packed smartphones with constant access to Web services became widespread, enabling 

all kinds of applications based on the occurrence of different types of events external to the device. 

While the 2005-introduced and Nokia Series 60-based ContextPhone platform, being one of the first 

smartphone-based context aware applications, was still only relying on the user’s location, her 

interaction with apps, and various system states as information sources [ROP+05], a survey by 

Hoseini-Tabatabaei et al. revealed eight years later how rich the use of context in mobile applications 

had become since [HGT13]. Table 4 is an incomplete list of the different types of indicators
 (18)

 that 

were reported to be used in context aware applications. The list was assembled by the author of this 

thesis from twenty-one randomly selected scientific papers published between the years of 1995
 (19)

 and 

2015. And although the user’s location is still one of the most prevalent types of information used to 

adapt mobile apps to the user, the consideration of many other indicators such as ambient noise, the 

user’s current activity, and even of the local weather conditions has become a frequent practice. 

Especially the detection of user activity has become pivotal for context aware applications. For 

example, Okoshi et al. rely solely on activity detection (using GPS, inertial sensors, and direct user 

interactions) to identify situations in which the user is about to change her activity. These so-called 

‘breakpoints’ are then used to deliver all notifications that occurred since the last breakpoint but that 

were temporarily held back by the smartphone. In an extensive four-week study with 41 participants, 

Okoshi et al. were able to show that their system indeed had the envisioned effect: It significantly 

reduced the workload perception of the study participants [ORN+15]. In direct contrast, Mehrotra et 

al. suggest the use of a much larger set of indicators to predict opportune moments for delivering 

notifications, among them user activity, user location, ambient sound, ringer mode, and the 

notification’s title [MMH+15]. The inclusion of parts of the notification’s content was a novel aspect 

and an extension to a system that the authors had presented in an earlier paper [PM14], which had 

touched on another innovative subject: Assessment of the user’s emotional state. The inferring of the 

user’s mood and stress level may be considered the supreme discipline  of context awareness research, 

as these factors are among the core determinants of human behavior. However, at the time of this 

writing, a reliable automatic inference of the emotional state with mobile devices appears to be still 

years – if not decades – away. Although first considerations were made [LLL+11, LCL+12, LLL+13], 

the majority of contemporary scientific papers describe systems that rely on a very practical approach 

when it comes to the assessment of the user’s mood: They simply ask. 

An important remark that must to be made at this point is that context aware applications are not 

only encountered on smartphone. For example, Hardy et al. use a desktop PC for gathering information 

about the user’s activity, her schedule, and the local weather and then suggest the one exergame from a 

list of available (indoor and outdoor) exergames that appears to be the best fit for the current situation 

[HSG+11]. And as an example from an entirely different domain, consider advanced driver assistance 

systems that are part of many modern cars. Among other things, they can detect driver drowsiness by 

monitoring vehicle parameters and driver behavior such as the car’s lane position and the frequency of 

the driver’s eye blinking. If such a system detects significant deviations from expected averages, it 

warns the driver that a break is due [SSM12] and thus tries to influence the driver in a way that she 

changes her behavior to a more preferable one (such as having a coffee at the nearest gas station). 

Such interventive measures, applications and devices that try to change the user’s behavior, are a special 

type of context aware computing and they are central to this work. 

                                                                 
18 For referring to a specific and well-defined piece of information that a context-aware application is based on, such as the user’s 
location or the ambient temperature, I propose the term ‘indicator value’, based on [KOM-M-0543]. Indicator values can be both 
discrete (such as the amount of steps that the user has taken during the day) or continuous (such as the ambient temperature) , 
although the values of indicators of the latter type have to be discretized in some way before they can be used. Indicators are the 
middlemen between raw sensor data and identified situations. There are a number of alternative terms for this type of 
information, such as “cues” as used by Schmidt et al. [SBG99], “information category” as used by Santos et al. [STC+09], or 
simply “context” as used by Hoseini-Tabatabaei et al. [HGT13], among others. For more on indicators, please see chapter four. 

19 The year of the first occurrence of context-aware applications [Dey01]. 
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Table 4: Indicators in Context Aware Systems. 

Indicator Used by 

 01 User location 
[SAW95], [Bro96], [AAH+97], [Dey98], [MS00], [BCE+01], [HHS+02], 

[MHA04], [ROP+05], [BPT06], [BC08], [CNC10], [BLP+11], [MLC+13], [PM14] 

 02 Date/time of day 
[SAW95], [Bro96], [AAH+97]*, [MS00], [STC+09],  

[CNC10], [BLP+11], [WRW12], [MLC+13], [PM14] 

 03 Location of other people 
[SAW95], [Bro96]*, [AAH+97]*, [Dey98], [MS00]*,  

[HHS+02], [ROP+05]*, [BLP+11]†, [PM14]† 

 04 
Program status  

(e.g., of messenger app) 

[BCE+01], [HHS+02], [MHA04], [ROP+05],  

[MLE+07], [CNC10], [MLC+13], [ORN+15] 

 05 
User posture/activity 

(e.g., sitting vs. walking) 

[SBG99], [SSF+03], [BPT06], [MLE+07],  

[PM14], [BLP+11]†, [WRW12], [ORN+15] 

 06 Ambient noise [SAW95]*, [SSF+03], [MLE+07], [STC+09], [WRW12] 

 07 Ambient light [SAW95]*, [SBG99], [SSF+03], [MLE+07], [STC+09] 

 08 Ambient temperature [Bro96]*, [SBG99], [MLE+07], [STC+09], [BLP+11] 

 09 Emotional state of user [AAH+97]*, [SBG99]*, [MLE+07]*, [BLP+11]†, [PM14]† 

 10 
Indoor/outdoor  

distinction 
[AAH+97]*, [SBG99], [MS00], [MLE+07] 

 11 Location of objects  [SAW95], [Bro96]*, [Dey98], [HHS+02] 

 12 
News feed content 

(e.g., stock prices) 
[Bro96], [BCE+01], [MLC+13] 

 13 Conversation detection [SSF+03], [BPT06], [MLE+07] 

 14 
Local weather conditions 

(e.g., dry vs. raining) 
[SBG99], [BLP+11], [MLC+13] 

 15 User speed [BC08], [STC+09] 

 16 
User schedule  

(i.e., calendar entries) 
[BCE+01], [SSF+03] 

 17 
Physiological data of user 

(i.e., heart rate) 
[SBG99]*, [BC08] 

 18 
System state 

(e.g., battery level) 
[Bro96]*, [ROP+05] 

  

An incomplete list of indicators used by (mainly) mobile context aware applications,  

based on a sample of twenty-one scientific publications from the years 1995 to 2015,  

items ordered by relevance & bibliography indices ordered chronologically 
 

*
 use suggested without actual implementation of a detection mechanism 
†
 not automatically detected, but requires manual input from the user 
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3. General Considerations 

The second chapter revealed the existing concepts and approaches for increasing a person’s motivation 

for doing something and for adapting a system to her individual skills or her behavior. We have also 

looked into sophisticated context aware mechanisms that rely on their knowledge of the current 

situation to time their interactions with the user; some of these intelligent notifiers are meant for 

creating awareness for the feasibility or the necessity of a desired behavior. The FBM teaches that all 

three aspects – motivation, ability, and short-term awareness – must be paid attention to if one aims to 

create reliable persuasive technologies. This chapter thus investigates, how all elements of the FBM can 

be unified within a single concept for technology-based approaches that aim to increase the user’s 

amount of daily physical activity – although the considerations made here also hint at the fact that 

certain qualities of such interventive measures may indeed be more important than others. 

3.1 Behavior Interventions 

The desire to change someone’s behavior – either one’s own or somebody else’s – is the intention of 

altering the original behavior of this person at a specific point in time in a way that rather than 

maintaining her original behavior, the person instead shows a different behavior. There are two types 

of this wish. The first type is focused on a person’s original behavior and wants this behavior to end. In 

this case, the new behavior is more or less irrelevant, as long as it replaces the original behavior. In 

most cases, terminating an undesired behavior will be possible, at least in principle. The second type of 

desire for behavior change is focused on a target behavior instead and aims to replace the original 

behavior with this specific other behavior. Here, the original behavior is usually only as much of a 

concern as it influences the probability of the target person switching to the desired behavior. This 

work focuses on the latter case; that is, on the problem of how to replace an arbitrary original behavior 

with a specific desired behavior. 

Just as there are two types of behavior change, there are also two types of interventive measures 

that intend (or are intended) to change a person’s behavior. The first type is the group of stubborn 

measures. As the name implies, such measures do not differentiate between appropriate and 

inappropriate situations for trying  to initiate a specific behavior, but will rather always occur at a fixed 

time or place. Our everyday lives are full of examples of such stubborn behavior interventions that were 

either installed by ourselves or by somebody else with the intention of making us behave in a certain 

way; we usually refer to such measures as ‘alarms’, ‘signals’, or ‘reminders’.  The alarm clock that wakes 

us in the morning, the red street light that makes us stop at the crossroads, and the  verbal “please mind 

your step” reminder at the end of the airport walkway are all stubborn behavior interventions. The 

alarm clock does not realize that its owner woke up early and is already having breakfast when it goe s 

off. The red light is not aware of trying to stop a racing ambulance on an empty street. And the voice 

message is undeterred by the fact that most passengers are already minding their step. For the most 

part, we will simply ignore such stubborn interventions if we consider them to be inappropriate, but we 

may also try to get rid of them when given the opportunity once their frequent ill-timed intervention 

attempts have amounted to annoyance. And usually, stubborn measures will not see this coming. 

This is where the difference to discerning interventive measures lies. Prior to trying to initiate a 

desired behavior, this type of interventive measure will ponder its chances for succeeding – and it may 

decide to withhold an intervention attempt if it is given reason to believe that the intervention may not 

have the desired effect. The discerning measure does this, because it fears the consequences of ill-timed 

intervention attempts; a good example is a young man patiently awaiting the perfect opportunity for 

asking his crush for a first date. But not only people are capable of discerning interventions. The driver 

assistance system mentioned in the second chapter that constantly monitors the driver’s behavior in 

order to detect deviations and that recommends a coffee break if it deems this necessary is  an example 
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for a technology-based discerning measure. Such measures try to await an appropriate situation before 

making an intervention attempt. This thesis mainly focuses on this type of behavior intervention 

measures. 

 

Let U be the set of all persons
 (20)

, let B be the set of all types of human behavior (being all 

observable actions and emotions), and let ∆ be the ordered set of all points in time. Let 𝑢 ∈ 𝑈 

be an arbitrary but fixed person (the ‘target person’) and let 𝛿 ∈ ∆ be an arbitrary but fixed 

point in time (‘observed time’ or ‘𝛿-period’). The ‘behavior reveal function’ 𝜑: 𝑈 × ∆ → 𝐵
 (21)

 

specifies the original, uninfluenced behavior 𝑏 ∈ B of the target person at the observed time: 

 

𝜑(𝑢, 𝛿) = 𝑏 

 

Let 𝑏̅ ∈ 𝐵 be an arbitrary but fixed behavior (the ‘desired behavior’). The ‘behavior 

transformation function’  𝜇: 𝑈 × 𝐵 × ∆ → 𝐵
 (22) 

specifies the behavior of the target person after 

an interventive measure has triggered the person for the desired behavior. We will speak of a 

‘successful behavior intervention’ by the interventive measure, if the following two conditions 

apply: 

 

(I) 𝜑(𝑢 , 𝛿) = 𝑏 ≠ 𝑏̅ 
 

(𝐼𝐼) 𝜇(𝑢, 𝑏̅, δ) = 𝑏̅ 

 

The behavior reveal function 𝜑 specifies a person’s original and uninfluenced behavior b at a certain 

point in time  𝛿. If the interventive measure intervenes at this point and issues a trigger with the 

intention of changing the behavior of this person in a specific way (the  required preconditions for 

successful triggering – that the respective person must perceive the trigger and relate it to the intended 

target behavior – will henceforth be implied), the person may or may not change her behavior to the 

desired behavior 𝑏̅. The behavior transformation function 𝜇 specifies the behavior that results from the 

intervention attempt. If this resulting behavior is the desired behavior 𝑏̅, then we will speak of a 

‘successful behavior intervention’. 

The parameters of the behavior transformation function 𝜇 imply, that the chances for successfully 

changing a person’s behavior are dependent on three factors: First, the target person u, second, the 

desired behavior 𝑏̅, and third, the situation that the target person is currently in, represented by the 

point in time 𝛿. Note that referring to the time 𝛿 is sufficient for characterizing the target person’s entire 

contextual situation, including her current behavior. This is because the interventive measure – person 

or device – functions as a mere observer to the behavior of the target person until it influences her by 

issuing a trigger.
 
If the target person is not triggered and her behavior not influenced, she simply 

proceeds as she sees fit. There is a resemblance here to watching a play: The progress time determines 

the setting that the actors are in and how they behave on stage. If uninterrupted by the audience, the 

actors will proceed with their performance, and their behavior on the stage is decided by the time 

period that has elapsed since the start of the play. To a passive observer, the current time thus entirely 

determines the contextual situation of the actors and their behavior, and likewise, from the perspective 

of an interventive measure, the current point in time determines the situation that the observed person 

is in and how she is behaving in this situation. This effect becomes especially obvious in retrospect: 

When looking back at the things that were, the specification of a point in time determines all other 

aspects of our lives, such as where we were at, who we were with, and how we did behave. 

                                                                 
20 I am using U for users instead of P for persons to set the stage for a later application of these theories in a technical context. 
21 From Gr. φανερόω (phanero), to reveal. 

22 From Gr. μεταστρέφω (metastrepho), to transform. 
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Even if an intervention is not successful and the target person does not change her behavior in the 

desired way (or not at all), it must be assumed that the intervention attempt still somehow influences 

the target person.
 
Most importantly, the intervention attempt may increase or decrease the target 

person’s motivation and/or her ability to comply to similar intervention attempts in the future. 

However, this effect will usually be hidden from the observer and only become apparent at a later point 

in time. We must thus assume that triggering always changes the success probability of similar 

subsequent triggers occurring within a certain time period and that triggering attempts are never ‘for 

free’. Obviously, these side-effects of triggering are a potential problem. In contrast, the mere 

consideration of a triggering attempt that is ultimately withheld will not have an effect on the target 

person, as long as she remains unaware of it. A noteworthy special case of interventions occurs when 

the target person already shows the desired behavior. In this case, a successful behavior intervention is 

not possible, as the current behavior cannot be changed to the desired behavior. Intervention attempts 

undertaken nevertheless may instead have significant negative effects. We will get back to this later. 

The success of interventions does not only depend on the current situation and the target behavior, 

but also on the person whose behavior is supposed to be changed. Consider a manager who intends to 

ask her employees who are just preparing to leave to instead stay late and to finish the task that they 

have been working on, such as preparing presentation slides for a next day’s meeting. Chances are that 

one of them will agree, while another one will refuse and leave. Although the current situation and the 

desired behavior are the same for both these persons, there are more subtle differences that also have 

an effect on the outcome of the intervention attempt. The FBM reveals what these differences are: An 

intervention will only be successful if both a target person’s ability and motivation for the desired 

behavior are sufficiently high at the time of the intervention attempt. 

 

The ‘ability function’ 𝑎: 𝑈 × 𝐵 × ∆ → [0, 1] determines the ability of an individual u to show 

the desired behavior 𝑏̅ ∈ 𝐵 at the point in time  𝛿 ∈ ∆. Likewise, the ‘motivation function’ 

𝑚: 𝑈 × 𝐵 × ∆ → [0, 1] determines the motivation of an individual u to show the desired 

behavior 𝑏̅ ∈ 𝐵 at the point time𝛿 ∈ ∆. The dependent ‘behavior factors product function’ 

BFP: 𝑈 × 𝐵 × ∆ → [0, 1] specifies the product of these two functions’ results: 

 

𝐵𝐹𝑃(𝑢, 𝑏̅, 𝛿) = 𝑎(𝑢, 𝑏̅, 𝛿) × 𝑚(𝑢, 𝑏̅, 𝛿) 

 

Let 𝑏 ∈ 𝐵 be a behavior different to the desired behavior, such that 𝑏 ≠ 𝑏̅ .Given a fixed (but 

unspecific) ‘activation threshold’  𝜃 ∈ [0, 1] , we can then define the behavior transformation 

function 𝜇: 𝑈 × 𝐵 × ∆ → 𝐵  
 
as follows: 

 

   

 

 

Maybe the manager in above’s example is aware of the fact that one of her employees has a child to 

look after and is thus not able to stay late. Or maybe the manager already knows from past experience 

that another employee does not have the motivation for going the extra mile. In both cases, the 

manager anticipates that the value of the respective employee’s BFP function for the desired behavior of 

staying late will not exceed the employee’s activation threshold 𝜃, and that she is thus going to refuse 

the manger’s request. The manager would then be well advised to not even ask, as unsuccessful 

interventions are potentially harmful. Oftentimes, however, she will find herself in situations when she 

cannot state a priori, whether or not a successful behavior intervention is possible, or not. If one cannot 

safely predict the outcome of an intervention attempt, the only option of finding out is usually to 

simply give it a try. 

 

{ 𝜇(𝑢, 𝑏̅ , 𝛿) = 
𝑏 

𝑖𝑓 𝐵𝐹𝑃(𝑢, 𝑏̅ , 𝛿) > 𝜃; 

𝑒𝑙𝑠𝑒 . 

𝑏̅ 
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Given a target person 𝑢 ∈ 𝑈, and an observed point in time  𝛿 ∈  ∆. Let 𝑏̅ ∈ 𝐵 be the desired 

behavior. The ‘intervention success determination function’  𝐼𝑆𝐷: 𝑈 × 𝐵 × ∆  → {0, 1} states, 

whether the product of the target person’s motivation and ability for the desired behavior 

exceeds the activation threshold and thus, whether an intervention attempt will be successful: 

 

 

 

A trigger is essential to the initiation of behavior change. Irrespective of an employee’s ability and 

motivation for staying late, if the manager does not intervene to ask, the employee is likely to pack up 

and leave. Of course, the employee may also decide herself to stay until the task is finished, without the 

manager having to explicitly ask for this. In this case, the desired behavior is already achieved and 

there is no need for a change of behavior. An intervention attempt that is undertaken nevertheless may 

even be harmful. A manager that urges her employees to stay although they are not indicating that they 

intend to stop may actually achieve the opposite and find her team leaving within minutes, essentially 

having reminded them that it is time to call it a day. Analogously, a manager asking an employee to 

work late although she knows that this employee has a low ability of staying may be considered 

insensitive; a manager asking an employee with low motivation may be called disrespectful. Ill-timed 

triggers can do harm, and as such, the act of triggering is a double-edged sword. Ideally, triggers will 

only be initiated when they have a significant chance of changing the target person’s behavior in the 

desired way. Alas, triggering oftentimes involves guesswork. 

Given a target person 𝑢 ∈ 𝑈, and an observed time  𝛿 ∈  ∆. Let 𝑏̅ ∈ 𝐵 be the desired behavior.  

The ‘intervention success confidence function’ 𝐼𝑆𝐶: 𝑈 × 𝐵 × ∆ → [0, 1] specifies the confidence 

of an observer – possibly of the interventive measure itself – in an intervention attempt aimed 

at changing a person’s behavior to the desired behavior at the observed time to be successful. 

 

If 𝐼𝑆𝐶(𝑢, 𝑏̅, 𝛿) = 1.0, then the observer assumes a ‘kairotic situation’; 

if (0.5 < 𝐼𝑆𝐶(𝑢, 𝑏̅, 𝛿) < 1.0), then the observer assumes a ‘parakairotic situation’; 

if 𝐼𝑆𝐶(𝑢, 𝑏̅, 𝛿) = 0.5, then the observer assumes an ‘adilotic situation’;
 (23)

 

if (0.0 < 𝐼𝑆𝐶(𝑢, 𝑏̅, 𝛿) < 0.5), then the observer assumes a ‘parachronotic situation’; 

and if 𝐼𝑆𝐶(𝑢, 𝑏̅, 𝛿) = 0.0, then the observer assumes a ‘chronotic situation’.
 (24) 

 

The observer making assumptions about the success chances of an intervention attempt may be the 

interventive measure itself, such as the manager. It should be obvious that only discerning interventive 

measures can make such assumptions and indeed, it is this ability combined with a willingness to 

withhold unpromising interventions that makes the difference between a stubborn and a discerning 

measure. Note that the ‘intervention success confidence function’ ISC does not state anything about the 

actual success chance of a behavior intervention attempt, as specified by the (unknown) ISD function. 

ISC merely expresses what the observer believes this chance to be, which does not necessarily have to be 

an accurate assumption. A responsible manager who wants to avoid doing damage to the relationship 

to her employees will estimate the chances for a successful intervention before asking and if she deems 

herself in a parakairotic situation, then she may decide that asking has a point. In doing so, she may 

possibly be able to convince her employees to stay, but the manager may also discover that her guess is 

completely off and witness her employees react with outrage. There are plenty of reasons that may lead 

                                                                 
23 From Gr. ἄδηλος (adilos), uncertain. 
24 I am aware that εὐκαίρως (eukairos) and ἀκαίρως (akairos) would have been better suited as denominators for the two 
extremes. However, following Fogg’s nomenclature, if καίρως (kairos) denotes an opportune moment that must be grasped then 
χρόνος (chronos) seems to be a fitting antagonist to denote a situation in which time should just be let flown by.  

{ 𝐼𝑆𝐷(𝑢, 𝑏̅, 𝛿) = 
0 

𝑖𝑓 𝐵𝐹𝑃(𝑢, 𝑏̅ , 𝛿) > 𝜃; 

 𝑒𝑙𝑠𝑒 . 

1 
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to this kind of misjudgment, but we can identify three main types of problems that can negatively affect 

a measure’s intervention success rate. We will refer to these as the ‘three troubles of triggering’. 

(1) LACK OF INSIGHT – The observer does not know of a factor that influences the triggered person’s 

ability and/or motivation for the desired behavior at the observed time 𝛿. Due to this, an accurate 

calculation of the chances for a successful intervention is not possible and any estimation will have 

to involve guesswork.  
 

(2) LACK OF REASON – Although the observer has access to certain knowledge that is relevant to the 

outcome of a triggering attempt, this information is essentially ignored. 
 

(3) LACK OF EXPERIENCE – The observer has knowledge of multiple parameters but cannot correctly 

judge their relevance, especially in regard to the question of how they relate to one another.  

Successful behavior interventions manifest as well-timed triggers that reach the target person at a 

time when the value of her BFP function is higher than her activation threshold  𝜃. Ideally, the ISC 

function of a discerning interventive measure will be so accurate that it only differentiates kairotic 

situations from chronotic situations, meaning that no uncertainty is involved and that the measure 

always knows, when to trigger and when not to. In this case, the intervention success confidence 

function ISC perfectly resembles the intervention success determination function ISD. Usually, however, 

the measure will not be able to prognosticate the outcome of a triggering attempt with perfect 

accuracy. One strategy to solve this problem is to fully investigate the factors that influence the target 

person’s decision, which oftentimes is not possible. A second approach is to try and increase the values 

of the target person’s ability function 𝑎, or of her motivation function 𝑚, or of both, thus making it 

easier and/or more desirable for her to show the intended behavior
 (25)

. This would have the welcomed 

side-effect that successful triggering would even become possible in situations where it originally has 

not been. For some employees, the promise of financial compensation or of a paid time off may go a 

long way towards increasing motivation. Fostering the ability of an employee, for instance by offering 

to organize a babysitter, may help as well. Usually, a combined approach that consists of researching 

the influencing factors on the one hand and of trying to raise the target person’s ability and motivation 

for the desired behavior on the other will be the most promising strategy. 

But in any case we find that the trigger is always the linchpin of the behavior intervention. Without 

a trigger, no behavior change will occur. It thus seems meaningful to focus on the problem of triggering 

first when trying to initiate behavior change, an insight that is in line with Fogg’s conclusion
 (26)

. But if 

both the target person who is supposed to be influenced and the desired behavior which is meant to be 

initiated are given, solving the problem of successfully changing a target person’s behavior translates to 

solving the problem of identifying appropriate situations that are suited for interventions. In other 

words: The secret of successful interventive measures lies in their calculation of an accurate ISC 

function that closely resembles the actual ISD. A person does this calculation implicitly based on her 

empathy, her situational awareness, and past experiences. A young man planning to ask his crush for a 

first date, for example, will usually wait for the perfect moment. This implies that he believes to be able 

to distinguish between well-suited and ill-suited situations; he may possibly even have an idea of what 

makes a terrible, an ill-suited, a well-suited, and a perfect opportunity for popping his question. This 

thesis is focused around the problem how technical systems must be designed so that they can 

accurately make these kinds of distinctions. Which takes us to the question, what exactly accuracy 

means in this specific context. 

                                                                 
25 There may indeed be another option to increase the probability of successful trigge rs: To decrease a person’s activation 
threshold 𝛩, which equals increasing that person’s capacity for enthusiasm – a topic well out of scope of this thesis. 
26 “In our academic and industry work, we’ve found a specific sequence that works best. And our conclusion may surprise you: When 
you design for persuasion, you don’t start by manipulating motivation. That’s what you do last. So what’s first? Focus on Triggers 
first. This is the simplest change, and is often all that is needed.” [Fog10, p.12] 
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3.2 Accuracy, Effectiveness, Reliability 

As pointed out in the previous section, there are two types of interventive measures. The first type 

intends to prevent a certain behavior from happening, or at least to stop it as soon as it occurs. Such 

measures can only be successful if they can survey the target person’s behavior as exhaustively as 

possible. Consider a parent trying to prevent her teenage child from smoking. As soon as  the child is 

out of her parents’ sight, it may secretly smoke nevertheless, maybe with the conspiratorial support of a 

cigarette-sharing friend. In this case, the measure fails because it is disrupted and cannot observe all 

situations that the target person goes through. The second type of interventive measures is those 

measures that try to enforce a certain behavior. While it may be somewhat less obvious than in the first 

case, we find that they will also strongly benefit from having constant access to the target person. As an 

example, consider a loving daughter trying to ensure that her elderly mother who is living 

independently is drinking enough water. Because she only visits for half an hour in the evenings, there 

is a limit for how much her mother can drink under her supervision, while many opportunities for 

drinking during the day are missed as no one is there to enforce the desired behavior (and the old 

woman herself simply forgets). In addition, the mother may eventually refuse to drink substantial 

amounts of water in front of her daughter, feeling forced and controlled. Instead, reminding the 

woman multiple times a day to take small sips would have been the better approach. Opportunities for 

triggering the desired behavior, situations in which the product of the target person’s ability and 

motivation is sufficiently high, come and go. 

 

Given a target person 𝑢 ∈ 𝑈. Let 𝑏̅ ∈ 𝐵 be the desired behavior. Given furthermore the ordered 

set of points in time 𝑂 ⊂ ∆, a proper subset of ∆ which we will refer to as the ‘observed period’ 

or as the ‘O-period’. Let 𝑖 ∈ ℕ be a natural number and let 𝛿𝑖 ∈ 𝑂  be a point in time within 

the observed period. The ‘total opportunities counter’ 𝑇𝑂𝐶: 𝑈 × 𝐵 × ∆|𝑂|  → ℕ specifies the total 

number of opportunities occurring during the observed period at which successfully changing 

the behavior of the target person to the desired behavior would be possible:  

 

𝑇𝑂𝐶(𝑢, 𝑏̅, 𝑂) = ∑ 𝐼𝑆𝐷(𝑢, 𝑏̅, 𝛿𝑖)
|𝑂|

𝑖=1
 

 

The TOC is a theoretical construct and usually cannot really be calculated. Among other things, its 

value depends on the exact definition of the ‘observed point in time 𝛿 ∈ ∆’. The implicit understanding 

of 𝛿 contained in the definitions of the behavior transformation function 𝜇 and of the intervention 

success determination function ISD is that such a 𝛿-period is long enough to allow the target person to 

perceive and interpret a trigger. It thus seems meaningful to not go below the minimum of one second 

for the length of  𝛿. However, a corresponding upper bound for the interval is much harder to find. If 

we define the length of 𝛿 to be, say, one hour, the target person can easily go through a multitude of 

situations during this time. This is problematic, as different situations may mean different levels of 

ability and/or motivation for the desired behavior. Within one hour, one can be talking to colleagues in 

the office, be driving home in a car, be taking a shower, and be watching TV. Behavior interventions 

aimed at inducing a desired behavior may have very different chances of succeeding in these different 

settings, depending on the target person’s traits and the desired behavior’s preconditions. The longer 

that the time interval 𝛿 is, the higher the chances are that a behavior intervention occurring at some 

point during this period will be successful. As such, an overly large interval reduces the expressiveness 

of parameters such as the TOC. We will thus agree on the following convention: The upper bound of 

the 𝛿-period equals the length of the period that an intervention attempt can be assumed to have a 

‘reverberant effect’ on the target person. A trigger reaching the target person while she is in the office 

may still lead to the desired behavior half an hour later when she is at home. Specifying how long 
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exactly this ‘reverberant effect’ lasts requires further investigation, but as we require an upper bound to 

work with, we will assume that a trigger will usually not change a person’s behavior at a point in time 

later than an hour after its occurrence (although it may influence the person for a much longer period, 

see below). Hence, an hour shall be the upper limit for  𝛿. For the sake of simplicity, we will also 

assume that if an intervention attempt is made by an interventive measure, this is always done right at 

the beginning of a 𝛿-period. This is obviously not the case for the majority of interventive measures  in 

general, and especially not for the stubborn ones. Many of them rather happen when the target person 

reaches a certain location, or when a specific event occurs. Some discerning measures, however, may 

indeed consider interventions only in fixed time intervals. We will get back to this  ‘interval-based 

intervention strategy’ – and discuss its alternatives – in chapter four. 

When trying to count the total amount of intervention opportunities within a certain time period, 

we also encounter another problem: The act of triggering itself is likely to affect both the triggered 

person’s ability and her motivation for the desired behavior, regardless of whether the trigger was 

actually successful. If the daughter in above’s example has succeeded in making her mother drink a 

glass of water, then a second attempt of making her drink another glass just minutes later may not 

succeed. The success of the first intervention may have lowered the mother’s motivation for the desired 

behavior and thus influences the probability of subsequent successful interventions . Likewise, a 

successful trigger may also have an effect on the person’s ability: If the mother just emptied her last 

bottle of water, then she will simply not be able to drink a second glass. And even unsuccessful triggers 

may affect a person, as having been requested to do something before may lower or raise one’s 

willingness to comply with subsequent requests. As stated earlier, we must thus assume that triggering 

always affects a person and that it is never ‘for free’ in the sense of being without consequences. But 

here is a dilemma: On the one hand, for a given target person 𝑢 ∈ 𝑈, a given desired behavior  𝑏̅ ∈ 𝐵, 

and a given point in time 𝛿 ∈ O, we cannot state with absolute certainty a priori whether or not at 

trigger occurring at 𝛿 with the intention of changing the target person’s behavior to 𝑏̅ will be successful. 

On the other hand, actually issuing a trigger to discover its effects is likely to affect the chances of all 

subsequent triggers during the observed time period and to thus change the total number of triggering 

opportunities during O. This makes counting the opportunities for successful interventions within a 

given time period practically impossible, as the attempt of doing so affects this number – the classical 

observer effect [MDH+08]. We will assume the hypothetical existence of the TOC nevertheless, as we 

require it for another definition. 

 

Given a target person 𝑢 ∈ 𝑈, the desired behavior 𝑏̅ ∈ 𝐵, and the observed period 𝑂 ⊂ ∆. Let 

𝑖, 𝑗 ∈ ℕ be natural numbers and let 𝛿𝑖 ∈ 𝑂 be a single point in time within the observed 

period. Given furthermore one or more points in time during the observed period at which the 

interventive measure does NOT have access to the target person: 𝛿𝑗 ∈ 𝑂  with 𝑂̃ ⊆ 𝑂 . We can 

then define the ‘missed opportunities quote’ 𝑀𝑂𝑄: 𝑈 × 𝐵 × ∆|𝑂|→ ℚ which specifies the ratio of 

triggering opportunities that this interventive measure has missed during the O-period: 

 

𝑀𝑂𝑄(𝑢, 𝑏̅, 𝑂) =
∑ 𝐼𝑆𝐷(𝑢, 𝑏̅, 𝛿𝑗)|𝑂̃|

𝑗=1

𝑇𝑂𝐶(𝑢, 𝑏̅ , 𝑂)
 

 

Just as the TOC that it is based on, the missed opportunities quote MOQ is a theoretical construct 

that cannot actually be calculated. It is, however, the representation of a well-known phenomenon: The 

“you should have asked earlier”-reproach. Vainly requesting a certain behavior from a person may result 

in that person pointing out that the respective behavior would have been possible at an earlier point in 

time. Sincere or not, this explanation serves to make clear that the requester has missed an opportunity 

for a successful intervention. There are three reasons why such an opportune moment may have gone 

by unused. First, although the interventive measure has been aware of such a moment, she (or it) may 
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have willfully decided against an intervention, for whatsoever reason. Second, the interventive measure 

may not have recognized the opportunity and thus erroneously decided to wait for a better chance. And 

finally, the measure may have simply not have had the chance of triggering the desired behavior 

because she (or it) did not have access to the target person at this specific time. The first two reasons 

are related to the aforementioned ‘three troubles of triggering ’, that is a lack of insight, a lack of reason, 

and a lack of experience. The third case, however, is caused by another problem: The disruption of the 

interventive measure’s access to the person who is meant to be triggered. The missed opportunities 

quote MOQ specifies the severity of this problem and the higher that the MOQ is for the observed 

period, the less likely it is for the respective interventive measure to succeed in initiating the desired 

behavior. A low MOQ is thus preferable, which can only be achieved by the interventive measure  

accompanying the target person throughout the day and throughout all the different settings that she 

finds herself in. In other words: The measure needs to be pervasive. 

 

The ‘pervasiveness quote’ PQ of an interventive measure specifies the measure’s level of access 

to the target person at the relevant points in time occurring during the observed period O:  

 

𝑃𝑄 = 1 − 𝑀𝑂𝑄 

 

We will call an interventive measure ‘semi-pervasive’ during the observed period O, if  

 

𝑃𝑄 ≥ 0.5 

 

Analogously, we will call the measure ‘(fully-)pervasive’ during the observed period O, if  

 

𝑃𝑄 = 1 

 

According to this definition, a semi-pervasive interventive measure misses at most half of the 

occurring opportunities for successful interventions and a fully-pervasive interventive measure misses 

none. Note that this definition of pervasiveness is not focusing on a general availability, but that it 

rather requires the measure to have access to the target person at the relevant points in time. This 

means that a measure that accompanies a person for large parts of the day but that misses the few 

minutes during which the person could be successfully triggered for the desired behavior is not even a 

semi-pervasive measure in the sense of above’s definition, as it is not present when it counts. Likewise, 

a measure that does not have access to the target person for many hours of the day but that is close to 

her whenever an opportunity for a successful behavior change arises may be fully-pervasive, although it 

does not have a high presence. A post-it sticker on the refrigerator that states to not forget to buy the 

milk is not a pervasive interventive measure. While it will be in the vicinity of the message’s intended 

recipient for long hours of the day, it will not be there just when the desired behavior is possible, 

namely at the supermarket. The target person may still remember the note on the refrigerator when she 

is at the supermarket, thanks to the intervention’s ‘reverberant effect’, but it is equally likely that she 

forgets the milk. On the contrary, the tank light of a car is a good example for a pervasive measure that 

is usually able to remind the driver in time to refuel her vehicle, even if the driver only spends a few 

minutes of the day in her car. 

We find that pervasiveness is not a quality characteristic by itself. Above’s definitions of the 

triggering opportunities counter TOC and the missed opportunities quote MOQ do not imply actual 

interventions. They rather only indicate the presence of the corresponding interventive measure during 

the relevant points in time, which is the basis for being able to make successful interventions. Without 

this presence, opportunities cannot be identified and grasped. However, an interventive measure with a 

high pervasiveness quote is not necessarily a good interventive measure, and can, in terms of successful 
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interventions, be outperformed by a measure with a very low pervasiveness quote.  A high pervasiveness 

quote simply means that the measure potentially has more opportunities for changing the behavior in 

the desired way. As an analogy, think of a game of soccer: While one team shots in vain at the 

opponent’s goal over and over again, the other team may shot but once and score. The fact that it has 

had many more opportunities for scoring a goal may have made it unlikely for the dominant team to 

lose the game – but it certainly has not rendered it entirely impossible. Likewise, a pervasive 

interventive measure may have a principle advantage over a non-pervasive one, but that does not 

necessarily make it the more reliable measure. 

 

Given a target person 𝑢 ∈ 𝑈, a desired behavior 𝑏̅ ∈ 𝐵, and an observed period 𝑂 ⊂ ∆ . Let 

furthermore be 𝑇𝑂𝐶(𝑢, 𝑏̅, 𝑂) > 0. We will call an interventive measure that aims to change 

the target person’s behavior to the desired behavior ‘reliable during the observed period’, if  

 

∃𝛿 ∈ 𝑂 → 𝜇(𝑢, 𝑏̅, 𝛿) = 𝑏̅ 

 

Analogously, we will call an interventive measure ‘effective during the observed period’, if  

 

∀𝛿 ∈ 𝑂. (𝐼𝑆𝐷(𝑢, 𝑏̅, 𝛿) = 1) → 𝜇(𝑢, 𝑏̅, 𝛿) = 𝑏̅ 

 

Under the condition that a behavior change is possible at some point during the observed period, we 

find that a reliable interventive measure will successfully initiate the desired behavior at least once 

during this time interval, while an effective interventive measure will successfully initiate the desired 

behavior every single time when the opportunity for such an intervention arises. Naturally, for a given 

interventive measure the odds for achieving reliability will increase with the length of the observed 

period while at the same time, increasing this duration also decreases the measure’s chances for staying 

reliable. Pervasiveness is a precondition for effectiveness, as this trait ensures that no opportunities are 

being missed by the measure. An effective interventive measure is thus always a pervasive measure, but 

not necessarily the other way around. Reliability, on the contrary, does not require pervasiveness, but 

the latter will make the achievement of the earlier easier, as the measure will  profit from a high 

amount of opportunities to successfully trigger the intended behavior. Summing up we find that a 

higher pervasiveness quote PQ and a longer observed time period O both increase the odds that an 

interventive measure will be reliable in initiating the desired behavior at least once. Given a sufficient 

amount of attempts, every interventive measure may eventually be successful. Usually, however, a 

measure will not be granted a significant number of attempts. 

This makes accuracy another important characteristic of interventive measures. A fully-accurate 

measure has a perfect success rate of triggering the desired behavior, meaning that whenever a person 

perceives a trigger initiated by such a measure during the observed period, she will change her 

behavior in the desired way. In most cases, this will be because the measure is very good in assessing 

the target person’s ability and motivation for the desired behavior and it thus only initiates the behavior 

when it is certain that the product of ability and motivation – the value of the ISD function – exceeds 

the activation threshold 𝜃
 (27)

. But accuracy is not to be confused with reliability. The latter trait 

requires a measure to grasp every single opportunity for changing the behavior in the desired way, 

while accuracy only demands that when an intervention attempt is being made, it needs to be 

successful. Consequently, an accurate measure may let many opportunities go by unused. 

                                                                 
27 Some measures may also be able to successfully initiate the desired behavior with every single intervention attempt because 
they are capable of raising the target person’s ability and/or motivation above the activation threshold. Such measures do not 
need to await situations that are suited for triggering the target person, as they can rather create such situations themselves. As 
an example, consider a policeman asking a car driver to step out of her vehicle, to close her eyes, and to stand on one leg . The 
majority of people will not be inclined to show this kind of socially conspicuous behavior voluntarily in public, but the policeman 
is capable of infusing the required motivation into the target person almost at will. 
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The ‘accuracy quote’ AQ of an interventive measure specifies the relative amount of triggering 

attempts undertaken by this measure during the observed time period O that are successful in 

initiating the desired target behavior. We will call an interventive measure ‘semi-accurate’ 

during an O-period, if  

𝐴𝑄 ≥ 0.5 

 

Analogously, we will call the measure ‘(fully-)accurate’ during the observed period, if  

 

𝐴𝑄 = 1 

 

Accuracy is crucial for many interventive measures, as futile intervention attempts are potentially 

harmful. Repeatedly urging a person to do something specific in situations when that person is either 

not sufficiently able or not sufficiently motivated may result in annoyance, which in turn may lead to 

the respective person ensuring  that the measure and the frequent disruptions that it causes are 

pestering her no longer. An acquaintance frequently asking for a date may be avoided; a mistimed 

reminder may be turned off. The exact number of improper intervention attempts made by an 

interventive measure that a person is willing to tolerate may depend on that person’s patience and 

good-naturedness, but it must be assumed that even the most enduring character will eventually try to 

get rid of a nuisance. Every intervention attempt is thus accompanied by the potential risk of 

irrevocably annoying the target person. As such, the accuracy quote of any interventive measure should 

be as high as possible, and – depending on the target person and the desired behavior – it may 

oftentimes be better to let a potential opportunity for an intervention go by unused than to risk a failed 

attempt. In this regard, a discerning measure’s ability to clearly (and correctly) identify kairotic 

situations may be essentially if the measure is supposed to accompany and influence its target person 

for a long time.  

Up to this point, we have mostly considered people as discerning interventive measures: A manager 

trying to convince her employees to work overtime, a parent trying to prevent a child from smoking, 

and a woman trying to ensure the sufficient hydration of her elderly mother. However, discerning 

behavior interventions can also come from technical devices. A good example is the previously 

mentioned driver assistance system. Irrespective of whether it is a person or a technology-based system, 

every discerning interventive measure needs two qualities in order to be effective: It needs to be in the 

vicinity of the user when opportunities arise, meaning that it needs to be as pervasive as possible, and it 

needs to be able to distinguish situations that are suited for intervention attempts from those, that are 

not. We find that, depending on the desired behavior, the pervasiveness quote of smartphones may be 

higher than that of any other contemporary computational device, as many people keep their 

smartphones close to them throughout the day: Lying on their desks at the office, tucked away in their 

pockets and handbags when on the move, and resting on the bedside table during the night [DKH+13]. 

A smartphone is oftentimes not more than an arm’s length away from its owner, regardless of the 

situation that she is in and as such, it will rarely miss an opportunity for the initiation of a desired 

behavior 
(28)

. In addition, thanks to their internal sensors , smartphones have the means required to 

monitor various aspects of the user’s behavior and of the current state of her environment, which 

enables them to distinguish different contextual situations. And although the information that can be 

gathered by smartphones is by far not sufficient for making truly sophisticated decisions as we will 

discuss in chapter four, they are still more capable of doing so than any other type of mass-market 

computational device. As such, at the time of this writing, smartphones are the best suited option for 

the creation of technology-based interventive measures and should thus be the platform of choice for 

implementations of the concept that is described in chapter four. 

                                                                 
28 The evaluation results presented in chapter seven strongly sup port the assumption that the majority of users keeps their 
smartphones close to them throughout the entire day. 
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3.3 Pervasive Interventions for Physical Activity 

Although we have discussed all kinds of behavior interventions on the last pages, there is actually a 

very specific type of behavior in whose stimulation we are interested in: Physical activity. Since the 

desired behavior 𝑏̅ determines the value of the target person’s ability function 𝑎(𝑢, 𝑏̅, 𝛿), the value of 

her motivation function 𝑚(𝑢, 𝑏̅, 𝛿), and as such the value of the behavior factors product function BFP, it 

has a strong effect on the outcome of any intervention attempt. At a specific point in time 𝛿, the odds 

for successfully triggering a target person to do one thing may be completely different from the chances 

of making her do something else. In a meeting room, asking someone to close a window is  much more 

likely to be successful than asking that same person to close her eyes, to stand on one leg, and to sing a 

song. The success rate of a behavior intervention depends on the person whose behavior is supposed to 

be changed and on the situation that she is in; but first and foremost, it depends on the desired 

behavior that the trigger intends to initiate. It can thus not be assumed that an interventive measure 

that reliably triggers one behavior will have the same success rates in the initiation of another, even if 

similar, behavior. Usually, highly successful interventive measures will also be highly specialized. 

In this regard, the encouragement of physical activity ‘in general’ may not be a sufficiently specific 

field of consideration for the design of technology-based interventive measures. Physical activities differ 

in their intensities, as illustrated by the MET hierarchy [AHH+11], but they also differ in type and 

number of their preconditions. Many physical activities require the athlete to be at a specific place, to 

have access to specific equipment and/or infrastructure, and/or to be in the company of a certain 

amount of other people. Interventions for the last type of activity are especially challenging, as they 

demand the successful activation of multiple persons at the same time. As a target behavior for 

technology-based interventive measures, it seems reasonable to rather focus on physical activities that 

have as few preconditions as possible. In most cases, this should increase the total opportunities 

counter TOC and as such serve to strengthen the chances of successful interventions
 (29)

. Table 5 shows 

a shortlisted selection of medium-intensity and vigorous-intensity physical activities that have only a 

low number of preconditions and thus seem to be suited for pervasive behavior interventions. One of 

the activities that has no preconditions at all is ‘brisk walking’, which can be performed almost 

anywhere and at any time. With a MET value of 4.3, brisk walking is also well above the lower intensity 

limit required by the WHO recommendations and so appears to be a good pick for behavior 

interventions. But the goal of an interventive measure must not only lie in ensuring that an activity is 

performed sufficiently often, but also sufficiently long . 

As described in the introductory chapter, Wen et al. [WWT+11] found that 15 minutes of medium-

intensity physical activity per day already have a significant health benefit, resulting in an increase of 

average life expectancy of 2.55 years for men and 3.10 years for women, while 30 minutes of medium-

intensity physical activity per day result in a 4.21 years longer life expectancy for men and a 3.67 years 

longer life expectancy for women. Longer daily sessions of physical activity and/or an increase of the 

intensity level will lead to even greater health benefits. On the contrary, less than 15 minutes of activity 

per day may also entail health benefits, but this has not yet been validated [WWT+11, p.1250]. 

Because of this, behavior interventions that try to encourage physical activity should aim for the 

minimum amount of 15 minutes of medium-intensity physical activity per day – any excess of this 

amount in terms of duration or intensity should be considered an added bonus. Furthermore, studies 

support the assumption that the effects of multiple short sessions of physical activity are equivalent to 

                                                                 
29 Not necessarily, though. Having few or no preconditions means that the respective physical activity can in principle be 
performed almost anywhere and at any time. Examples for such activities include various types of own body-weight training 
(calisthenics) such as squads or push-ups. However, this immediacy only determines a person’s ability for the behavior. Since the 
TOC counts situations in which a person’s product of ability and motivation is sufficiently high, a constantly low motivation for a 
specific type of physical activity, maybe because the respective person considers this activity unbearably boring, may actually 
result in a lower TOC in comparison to another activity with significant preconditions, but one for which the person is highly 
motivated. 



32 – General Considerations  
 

those of single long sessions of their 

combined duration [WKO+99]. 

Consequently, instead of trying to 

activate the user to perform a single 

activity session of 30 minutes length or 

more, it may prove advantageous to 

instead encourage her for doing 

multiple short sessions distributed over 

the course of the day, such as two 10 

minute episodes of brisk walking . 

The considerations laid out in the 

earlier parts of this chapter revealed 

that the core element of any 

interventive measure is the trigger. 

Without triggering a person, the 

occurrence of the intended behavior 

cannot be controlled. Of course, the 

target person may also show the desired 

behavior without experiencing an 

external stimulation. Employees may 

choose to work overtime without their 

boss explicitly asking for this, just as a driver may choose to refuel her car without perceiving a blinking 

tank light. In such cases, the interventive measure is simply not needed and any intervention attempts 

undertaken regardless are unnecessary and potentially even harmful, as they harbor the danger of 

being deemed inappropriate. However, when the desired behavior is not occurring by itself, a trigger is 

required to ensure that the target person at least considers behaving in the intended way. And while 

interventive measures may additionally try to increase a person’s ability and/or her motivation for the 

desired behavior in order to raise the odds for successful triggering , this is an optional step of 

oftentimes obscure effectiveness. Triggering, however, is a must and whether a trigger was successful 

or not can be assessed almost immediately
 (30)

. 

Successfully triggering a person for a desired behavior such as brisk walking requires an 

understanding of the different situations that this person goes through and an understanding of what 

distinguishes a good – kairotic or parakairotic – situation from a bad – parachronotic or chronotic – one. 

More specifically, it requires the ability of estimating both the target person’s ability and motivation for 

the desired behavior, as, according to the FBM, the product of the ability function and the motivation 

function determines the success of triggers . We have already found that accurate triggering actually 

requires not one but three different abilities. First, the interventive measure needs to be able to obtain 

all parameters that affect the target person’s ability or motivation. A measure that is not capable of this 

suffers from a lack of insight. Even more crucial may be the second ability, however, which is to be able 

to make sense of the gathered information. Simply knowing that a person is ‘in a vehicle’ does not do 

any good if this knowledge is not linked to an understanding that one cannot perform certain activities 

when being ‘in a vehicle’, such as to stand up and to walk around. If this understanding is missing and 

the interventive measure thus suffers from a lack of reason, then meaningful triggering decisions cannot 

be expected from it. And finally, if a measure cannot correctly judge the importance of knowledge, then 

this lack of experience may lead to situations in which it erroneously assumes that a certain parameter, 

such as the target person’s current posture, is equally important for the determination of her ability and 

motivation as another parameter, such as the local weather conditions. 

                                                                 
30 As explained earlier, we will assume that the  ‘reverberant effect’  of a trigger will last for no more than an hour, which is very 
likely to be a simplification of reality. See chapter eight for some more thoughts on this matter. 

Table 5: Relevant Physical Activities. 

Physical Activity Precondition MET 

Tai Chi None 3.0 

Moderate Calisthenics None 3.8 

Brisk Walking None 4.3 

Single Moderate Dancing  Music 5.0 

Weight Lifting Weights 5.0 

Jogging Training Clothes 7.0 

Recreational Skating Inline Skates 7.5 

General Bicycling Bicycle 7.5 

Running Up Stairs Stairway 8.8 

 

 

A selection of medium-intensity and vigorous-

intensity physical activities with no or few  

preconditions, adapted from [AHH+11] 
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The difference between the lack of reason and the lack of experience is that the earlier is a general 

problem that requires nothing but common sense to resolve. This problem is also not related to specific 

target persons – no one can stand up and walk around while driving in a car on the highway. In 

contrast, the lack of experience will affect almost any measure until it has been able to gather extensive 

experience in triggering a specific target person (or a group of target persons) for a specific behavior. 

Resolving the lack of experience is only possible by adapting to an individual and by learning her 

preferences and priorities, usually through an extended trial-and-error process. On the negative side, 

this means that for its first number of intervention attempts, any interventive measure will suffer from 

this problem. On the plus side, however, the lack of experience is the only representative of the ‘three 

troubles of triggering ’ whose severity can be reduced, namely by gathering experience. In other words, 

a discerning measure may be able to improve its intervention accuracy by learning – if it can learn. 

Figure 5 depicts the entire five-stage process of a behavior intervention. In the example, the 

pervasive discerning measure is a smartphone application meant to encourage the desired behavior of 

‘brisk walking ’. However, the same general procedure holds true for all other pervasive discerning 

measures, irrespective of whether they are human or technological. All of them, being pervasive, will 
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Figure 5: Five-Stage Behavior Intervention Process. 

FIGURE NOTES – The figure shows the five stages of the behavior intervention process on the example of a 

mobile exergaming application meant to foster physical activity. The square in the upper left displays the 

original situation in which the target person is still uninfluenced by the measure. In stage (1) of the 

intervention process, the target person’s ability and motivation for the desired behavior may or may not 

have been affected by the measure. In stage (2), the measure gathers information on the current situation, 

and based on this knowledge, it decides in stage (3), whether or not an intervention attempt seems to be 

reasonable. If this decision is positive, as in the example, then the actual trigger is delivered using one or 

multiple communication modalities during stage (4). Finally, the measure observes the outcome of its 

intervention in stage (5) and learns from it by adjusting its confidence value (ISC value) for being able to 

successfully trigger this specific user for the desired behavior in the perceived situation. 
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accompany the target person through a number of different situations. Each such situation is 

characterized by a specific combination of the target person’s ability and motivation for the desired 

behavior. While in some situations her motivation for the behavior may be high, it will be low in others, 

and the same goes for her ability. According to the FBM, it is the size of the product of these two factors 

– as specified by the BFP function – which decides, whether or not an intervention attempt will be 

successful in initiating the desired behavior. The problem of an interventive measure lies in not 

knowing, just how high or low this value is exactly. It may hope to be able to increase the target 

person’s motivation and ability by either trying to create extrinsic motivators, by strengthening intrinsic 

ones, and/or by somehow simplifying the desired behavior (see the second chapter for more 

information on these topics). But still, the original problem will remain: The measure will be uncertain 

about whether or not the current value of the person’s BFP function exceeds her activation threshold  𝜃 

and thus, whether successful triggering is even possible in the given situation. In the example, the 

influence of the smartphone application indeed increases both the user’s motivation and her ability for 

the desired behavior of ‘brief walking ’ and in doing so lifts their product above the activation 

threshold  𝜃. This means that a trigger initiated by the measure at this time would lead to the desired 

behavior. Knowledge that the measure does not have. 

Instead, it must try to deduce the chances for a successful intervention from contextual information. 

More specifically, it must observe those ‘indicators’ of which it assumes that they will have a say in 

determining the target person’s reaction to an intervention attempt. In the example, the application 

makes use of various internal smartphone sensors and Web services to assemble an 8-tuple of indicator 

values; this tuple contains the measure’s entire knowledge of the current situation. Every decision made 

by the measure will be solely based on such an indicator tuple, although it is likely that other factors 

exist that influence the user’s ability or motivation for the desired behavior as well. This lack of 

knowledge is a very typical problem for technology-based interventive measures, not the least because 

they have no means of automatically determining the user’s emotional state, which in turn is crucial for 

assessing a person’s motivation for many types of behavior. Humans have a significant advantage here 

in that they can rely on their empathy to take educated guesses on how high or low their opposite’s 

motivation for a specific behavior may be. In contrast, technology-based measures such as smartphone 

applications must work with what they have got, which more often than not is just a gross 

simplification of reality 
(31)

. 

Based on the knowledge that it has available, the measure then estimates the success chances of an 

intervention attempt undertaken in the given situation. The intervention success confidence function ISC 

represents this act of considering the odds for a successful intervention. In the case of a fully-accurate 

measure whose triggers are always successful, the ISC function will perfectly resemble the intervention 

success determination function ISD and thus always return either a 1, or a 0. The ISC function then only 

differentiates between kairotic situations, in which triggers will succeed, and the opposed chronotic 

situations, in which triggers will fail, and the measure’s assumptions will always be correct. In such rare 

cases, the act of triggering does not involve any kind of uncertainty. But much more often than not, an 

interventive measure will distinguish between at least five different cases. Based on its contextual 

knowledge, it may still be convinced that, in a given situation, a trigger must be successful or must fail, 

which means that the ISC function can still assume its extremes. Usually, however, the measure will 

only be able to state a tendency, namely that a trigger is more likely to succeed than to fail 

(represented by an ISC value above 0.5, but below 1.0), or vice versa (represented by an ISC value lying 

in between 0.5 and 0.0). As stated earlier, these situations are called parakairotic and parachronotic, 

respectively. Finally, there may also be situations when the interventive measure is undecided, whether 

or not an intervention attempt will be successful. Such a moment is called an adilotic situation, a 

                                                                 
31 We find that there is a certain resemblance here to Plato’s famous Allegory of the Cave [Baa97]: Just like the prisoners that can 
only see shadows on the cave wall but not the outside world that casts them, the technology-based measure does not perceive 
reality, but only a reflection of it that cannot depict all aspects required for truly understanding the situation at hand. 
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situation of absolute uncertainty (represented by an ISC value of 0.5). These situations are the most 

problematic ones, as they force a measure to entirely resort to guessing. It will then be decided by its 

‘ideal’, whether or not it deems an intervention attempt to be reasonable. 

The exact meaning of ‘reasonability’ is thereby dependent of what the measure aims to achieve. A 

measure that strives for full accuracy may pass on many situations of uncertainty and only issue triggers 

when it assumes the occurrence of kairotic situations. This way, it minimizes the chances for triggering 

the target person in situations when she will decline the trigger. On the opposite , a measure that needs 

to be effective will usually seize every single opportunity for triggering and not even refrain from 

chronotic situations, as it must fear having made wrong assumptions about the target person’s current 

motivation or ability and that it may thus miss a moment in which the initiation of the desired behavior 

would have been possible. The triggering strategy of a measure that is supposed to be reliable will 

usually be a compromise lying in between these two extremes. 

All three traits, accuracy, effectiveness, and reliability may have their legitimacy, depending on the 

target person and the desired behavior. A high accuracy is important, if the target person has a low 

tolerance to ill-timed intervention attempts. As pointed out before, the frequent output of futile triggers 

may eventually annoy the target person, which in turn may make her get rid of the interventive 

measure
 (32)

. Likewise, effectiveness is important if the reliable occurrence of a behavior is required. In 

a way, the third trait reliability is a compromise between the other two, as it allows a measure to pass 

on situations with a high uncertainty, but also grants it a (limited) number of unsuccessful intervention 

attempts before it must fear the target person to draw consequences. Reliability merely requires that 

during the observed time period, at least one intervention attempt will be successful in initiating the 

desired behavior. As such, the design of reliable technology-based interventive measures is the easiest 

problem of the three and luckily, such measures will also suit the majority of application scenarios. As 

stated in the first chapter, this thesis focuses on the construction of such reliable interventive measures 

for the initiation of medium-intensity physical activities, specifically brisk walking . 

In the example of Figure 5, the smartphone application assumes a parakairotic situation. This means 

that while based on its understanding of the world and its past experiences with this specific user it 

leans more towards the assumption that a trigger will indeed be successful in initiating the desired 

behavior, it is not entirely certain. Still, the degree of its uncertainty is low enough such that it decides 

in favor of an intervention attempt. Technically, this decision process translates to the ISC value that 

the application attributes to the given situation (more specifically: to the perceived 8-tuple of indicator 

values) to exceed a certain threshold, the confidence gate 𝜋 
(33)

. The confidence gate is the border that 

separates merely considered intervention opportunities from actual intervention attempts. Triggering 

decisions depend on whether the ISC value that a measure attributes to a situation, the assumed chance 

for a trigger to be successful in this situation, is higher than this confidence gate. If this is the case, then 

the measure will issue a trigger. If it is not, then the measure is well advised to withhold the attempt. 

Defining confidence gates for technology-based measures is a non-trivial problem, and one that is 

always dependent on the corresponding measure’s desired primary trait. For a measure that is 

supposed to be accurate, the confidence gate will be high, whereby the confidence gate for measures 

that need to be effective is best set to a low value. The problem of how to define confidence gates for 

reliable measures is a matter that we will return to in the next chapter. 

If the triggering decision is positive, as in the provided example, then the measure needs to actually 

deliver the trigger. As pointed out earlier, a trigger must be both perceivable and clearly associated to 

the desired behavior. We find, however, that there is a third-requirement specific to technology-based 

interventive measures: The trigger must be timely. If, for whatsoever reason, there is a delay between 

the third and the fourth step of the intervention procedure (between context sensing and decision 

                                                                 
32 Albeit this is a mainly psychological phenomenon, it is nevertheless of a certain importance here. We will thus encounter it 
again in chapters four, seven, and eight. 

33 From Gr. πύλη (puli), gate. 
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making), or between the fourth step and the fifth (between decision making and trigger delivery), then 

this brings the danger of the intervention attempt to have become inappropriate because of a change of 

situation. If, for example, the measure determines that the target person is at home and sitting on the 

couch, but delivers the corresponding trigger meant to encourage brisk walking with a couple of 

minutes delay, then in the meantime the user may have left her house and may already be driving in 

her car. Such delayed triggers are bound to fail. But alas, although the immediacy of trigger delivery is 

essential for successful interventions, various reasons can lead to a technical device not being able to 

guarantee for this. 

Computational devices such as smartphones usually have a number of options at their disposal in 

regard to reaching out to the user, among them text-messages prominently appearing on the device’s 

main screen (the so-called push notifications), sounds being played from the device’s loudspeaker, and 

possibly also haptic feedback, most notably vibration alarms. Multimodal communication is of 

particular importance for pervasive measures, as the user may have to be contacted in situations where 

she is unlikely to perceive one of the communication channels, such as sound. Indeed, adjusting the 

feedback type to better fit the user’s current situation was one of the earliest application scenarios of 

context aware computing [BCE+01]. Creating both effective and appealing  methods for human-

computer interaction is a research field of its own, however, and the problem is thus largely 

sidestepped here by simply relying on all available modalities at once when it comes to triggering the 

user. The challenge of the design and the dynamic adaptation of communication means that are suited 

for smartphone-based interventions is a problem best addressed by experts of the domain. 

The final stage of the behavior intervention process, and a step not actually performed by every 

measure, is to learn from the user’s reaction to the intervention. More specifically, this step involves 

monitoring the user’s behavior 
(34)

 after she has perceived the trigger and, if adequate, to then adjust 

one’s confidence in whether or not the perceived situation was suited for making interventions with the 

goal of provoking the desired behavior from the target person. Technically, this means that a measure 

will either increase or decrease the ISC value that it attributes to the indicator value tuple that describes 

the situation. If the trigger was successful and the user did indeed change her behavior in the intended 

way, then this should strengthen the measure’s confidence in this situation and thus lead to an increase 

of the ISC value that the measure associates to the respective indicator value tuple representing the 

situation. Analogously, if the user did not change her behavior in the desired way after perceiving the 

trigger, then this hints at the fact that the situation may actually not be a good opportunity for trying to 

make the user behave in the desired way and consequently, the measure may want to lower the ISC 

value that it associates to it
 (35)

. The exact adaptation strategy, the speed with which the measure 

changes its established beliefs based on the acquisition of new experience, will thereby depend on the 

measure’s goals and its applied method of learning. 

After the completion of the final step, the intervention process starts anew. The following chapter 

treats three of the five stages of this process: Context sensing, decision making, and confidence 

adjustment. The conceptualization and prototypical implementation of a reliable triggering mechanic is 

the main contribution of this work. In contrast, chapter six focuses on the secondary goals of increasing 

a person’s motivation and ability for a few minutes of brisk walking . The stage of trigger delivery is 

largely ignored here and rather left to experts of human-computer interaction. 

                                                                 
34 This may actually be easier said than done. Depending on the desired behavior, determining its occurrence with the means that 
are available to the measure may not be possible. This is especially true for technology-based measures that must rely on sensors, 
Web services, and user input for information about external events. If none of these sources provides the desired knowledge then 
the measure cannot verify that the trigger has been successful. 
35 All these considerations are based on the assumption that human behavior is   rational and thus predictable. In other words, 
they are based on the assumption that given a specific target person and a specific desired behavior, triggering this person in 
comparable situations will always lead to the same reaction. While this may be the case, it seems just as likely that the model of 
an entirely rational actor is actually an improper simplification, much like the homo economics [HBB+01]. Still, the assumption of 
reproducible behavior is a necessity for the development of technology-based interventive measures, an issue that will be 
addressed again in chapter four. 
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4. User Activation 

Based on the findings of the related work as described in the second chapter and the general 

considerations on the nature of behavior interventions as laid out in the third, this chapter now delves 

into solving the problems encountered when trying to actually create technology-based mechanisms for 

overcoming opportunity-related barriers through the production of well-timed triggers. The concept 

presented here and its evaluation, as described in chapter seven, can be considered to be the main 

contributions of this thesis. 

4.1 Assumptions, Restrictions, Challenges 

Chapter three showed that the development of technology-based interventive measures can be a 

complex and challenging endeavor. Especially the implementation of user triggering mechanisms 

capable of the production of well-timed notifications for the generation of short-term awareness and for 

pointing out opportunities for a desired behavior requires finding approaches for overcoming a 

multitude of technical challenges. Furthermore, triggering mechanisms are difficult to generalize – 

successful solutions will usually be specialized on the activation of a specific user group and on the 

initiation of a specific behavior. We will thus begin our investigation with gathering a list of all 

employed assumptions and restrictions that sharpen the presented concept’s focus. The subsequent 

sections of the chapter will then treat individual aspects of this triggering mechanism. 

(A1) VALIDITY OF THE FBM – All considerations described in this document on how to make a target 

person show a desired behavior are based on the assumption that the Fogg Behavior Model FBM 

[Fog03] is correct. This is the axiom from which the rest of this work springs. More specifically, 

this thesis assumes that a person’s motivation and ability for a specific behavior can both be 

quantified and that the inclination of a person to show this behavior is determined by the 

question, whether or not the product of the two factors exceeds another value, the activation 

threshold 𝜃. Starting from this notion, we define the ‘behavior factors product function’ BFP that 

assumes the value of the aforementioned product of a person’s ability and motivation for the 

desired behavior. From the BFP function, we proceed to deduce the ‘intervention success 

determination function’ ISD that specifies for a given point in time, whether or not the BFP’s 

value lies above the activation threshold. The ‘intervention success confidence function’ ISC of a 

technology-based triggering mechanism aims to resemble the ISD function as much as possible. 

The question of what must be done to actually achieve this is this chapter’s main subject 
(36)

. All 

these considerations are meaningful if and only if the FBM is correct. 
 

(A2) HUMAN BEHAVIOR IS RATIONAL AND PREDICTABLE – This is an admittedly problematic 

assumption, but a necessary one. Only if a behavior can be reliably reproduced given the exact 

same circumstances, then measures will be able to improve by adapting to the individual user 

through learning from her reactions to intervention attempts. Otherwise, if human behavior is 

not entirely predictable, the triggering process will always involve a level of uncertainty, 

regardless of the amount of information that is available on the current physical and emotional 

state of the user and on the state of her environment
 (37)

. 

                                                                 
36 Figure 6 depicts the hypothetical BFP function of an office worker who is supposed to be triggered for a 15-minute episode of 
brisk walking by a smartphone application. The upmost graph shows the BFP’s corresponding ISD function, and the central and 
the lower graphs show two possible ISC functions of the mobile triggering application, with the upper one considering an 
intervention attempt every sixty minutes, and the lower one twice as often. See chapter two for more information on the FBM, 
and chapter three for details on the calculation of the BFP , ISD, and ISC functions. 
37 As discussed in the third chapter, this uncertainty may be inherent to technology-based interventive measures for many more 
years to come, as some types of relevant information, especially knowledge about the user’s emotional state, cannot be assessed 
automatically. Nevertheless, only if human behavior is predictable then fully-accurate triggering will ever become a possibility. 
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Figure 6: BFP, ISD, and ISC Functions. 

FIGURE NOTES – Comparison of a hypothetical BFP function, a corresponding ISD function, and two 

possible ISC functions. In this example, the interventive measure is a smartphone application, the target 

person is an office worker, and the desired behavior is ‘brisk walking’. The 𝛿–period of the upper ISC function 

is 60 minutes, the 𝛿–period of the lower one half that value. Note that both ISC functions undershoot and 

overshoot the BFP function several times (for example at 17:00 hours and at 21:00 hours, respectively), but 

that they both correctly indicate a kairotic situation at 19:00 hours. Due to its higher duty cycle, the 30-

minute ISC function is able to (correctly) indicate a second kairotic situation at 19:30 hours. 
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(A3) EXISTENCE OF OPPORTUNE MOMENTS – We will assume that there is at least one situation 

during the observed time period (the O-period) in which a successful intervention for making the 

target person change her current behavior to the desired behavior is possible. In other words: We 

assume that the O-period’s total opportunities counter TOC is larger than zero, and that there is 

at least one point in time when the product of the user’s motivation and ability for the desired 

behavior (here: 15 minutes of brisk walking, see restriction R1 below) is higher than the user’s 

activation threshold 𝜃. If this is not the case and if there is not a single such opportunity for 

achieving the desired behavior, then no interventive measure can ever be successful
 (38)

. This 

assumption also has implications on the length of the O-period. In our specific case, a full day of 

24 hours seems to be the most straightforward pick for this value, as the performance of one 15-

minute episode of brisk walking per day is both practicable and sufficient for meeting the 

minimum requirements for health benefits [WWT+11]. Furthermore, the consideration of 

individual 24-hour periods (more specifically, of the user’s awake time during such periods) is in 

line with other research, as the next assumption reveals. 
 

(A4) THE REVERBERANT TRIGGER EFFECT LASTS FOR ONE HOUR – This specifies the duration 

after which a measure can safely assume that the desired behavior will no longer occur as a 

consequence to its most recent intervention attempt. As such, it also defines the maximum length 

of the 𝛿–period, because in order to keep the user under a constant ‘trigger effect’, a new trigger 

must be produced at least once per hour. This amounts to a total of twelve triggers per day when 

one calculates with a ten hour resting period plus two one-hour ‘periods of grace’, one right 

before, and one right after the break. These values are not randomly chosen: We find that the 

‘once per hour and up to twelve times per day’ intervention strategy is being applied by various 

commercial products and scientific prototypes. Among others, the Activity App of the Apple Watch 

tries to make the user stand up for one minute once every hour for twelve hours in a row 

[DGH+16], while the NotifyMe application by Mehrotra et al. sends notifications to the user once 

every sixty minutes between 08:00 hours and 20:00 hours [MMH+15]. By taking together the 

assumptions A3 and A4, we can thus state that we consider one-day periods (O-periods) made 

up of 24 one-hour intervals (and possibly more, one hour is just the upper bound of the 𝛿–

period).  
 

(A5) USERS ARE TOLERANT TOWARDS ILL-TIMED INTERVENTION ATTEMPTS – Receiving multiple 

triggers per day from a single interventive measure, as considered in the previous two 

assumptions, certainly requires some good-naturedness from users. Thin-skinned characters may 

easily become aggravated by the frequent disruptions and as a consequence, they may try to get 

rid of the nuisance. This is especially critical for mobile applications, which can be turned off or, 

even worse, be entirely uninstalled. By making the assumption that the group of target persons is 

willing to tolerate up to twelve intervention attempts per day, the ‘high risk problem’ that comes 

from impatient users is practically sidestepped here. Determining the maximum number of 

tolerable intervention attempts – and how to reduce the number of ill-timed interventions – must 

nevertheless remain a central aspect of all considerations on how to create discerning 

interventive measures, and it will be discussed again later in this chapter (see challenge C2 and 

section 4.4). The topic also plays a significant role in the interpretation of the evaluation results 

as presented in chapter seven. 
 

(A6) HIGH PERVASIVENESS OF SMARTPHONE-BASED MEASURES – The most basic requirement for 

the success of pervasive interventive measures is the existence of a pervasive platform on which 

they are based on and that accompanies the target persons throughout the day and the majority 

                                                                 
38 Unless, of course, the measure has the means of increasing the target person’s motivation and/or ability for the desired 
behavior, see challenge C9. 
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of relevant – kairotic – situations. We have already found that mobile devices, most notably 

smartphones, have the highest pervasiveness quotes PQs of all contemporary computers. 

However, it would not be sufficient if such technologies would merely be more pervasive than 

any other device type such as desktop computers or video game consoles. Instead, we need to 

make the assumption that their pervasiveness is  so high that they will miss almost no 

opportunities for intervening; in other words, we will assume that the missed opportunity quotes 

MOQ of smartphone-based interventive measures will tend towards zero. And although initially 

this was indeed mainly an assumption
 (39)

, the evaluation results of the field test strongly support 

this theory, at least for a specific group of users 
(40)

. 

In addition to these assumptions, we will also have to employ several restrictions. They are 

necessary for sufficiently narrowing down the problem so that the development of a concrete model 

becomes viable. 

(R1) THE DESIRED BEHAVIOR IS BRISK WALKING – Interventive measures cannot be generalized. As 

explained in chapter three, the outcome of an intervention attempt, specified by the ‘behavior 

transformation function’ 𝜇(𝑢, 𝑏̅, 𝛿), depends on the individual target user u, the point in time 𝛿 

when the intervention takes place
 (41)

, and the desired behavior 𝑏̅ that the intervention is 

supposed to initiate. Given a specific target user or a group of users, we can influence two 

factors: First, the behavior that is supposed to be triggered and second, the  point in time when 

this triggering takes place. Consequently, if we also fixate the point in time 𝛿, then the success 

chances of an intervention will entirely depend on the desired behavior. We found in chapter 

two that a variation of the target behavior may lead to vastly differing success rates
 (42)

. It thus 

seems necessary to define a specific target behavior before starting with the conceptualization of 

a triggering mechanism. For reasons detailed in chapters one and three, this  behavior shall be 

the physical activity of ‘brisk walking’ – more specifically, a 15 minute episode of brisk walking. 
 

(R2) TARGET USERS ARE YOUNG ADULTS – People are different and one of the most obvious (and 

inevitably) differences lies in their age. A person’s age may have an influence on what motivates 

her, and on what she finds simple and hard to do. In addition, age may hint at what a person’s 

daily schedule looks like, at what technologies she uses and how, what communication 

modalities work best for her and how these must be designed, and so forth. In other words: Age 

can (but most not) have an effect on many of the factors that are relevant for the successful 

triggering of a target person with a technical device. As such, it seems meaningful to focus on a 

specific age group and for us this shall be young adults and adults between 20 and 39 years of 

age 
(43)

. This restriction will play a significant role in chapter six, when we consider means of 

increasing our target persons’ motivation and ability for brisk walking. 

                                                                 
39 The initial unconfirmed assumption of an overall high pervasiveness of smartphones and mobile devices was based on previous 
considerations and research [DKH+13, ICS+15]. 
40 Question pre14: “I’m always carrying my smartphone with me and I take it everywhere”, five point disagree-agree L ikert scale, 

𝑁 = 30, M = 4.67, SD = ± 0.66.  
41 As explained in chapter three, the specification of a point in time 𝛿 is sufficient for the specification of the entire contextual 
situation of the target person, including her current (uninfluenced) behavior.  

42 Compare, for example, the chances of making a specific person share a coffee with you with the odds of making that same 
person join you for a 10-mile run, both during a Monday’s lunch break.

  

43 An important question can be asked here: Whether this really is a relevant target group. It goes without saying that there is  
little point in the conceptualization of solutions that are trying to solve problems that do not exist. As such, if our target group of 
young adults does not require measures that help them to increase their levels of daily physical activity, simply because the y are 
already sufficiently active by themselves, then they would have been a bad pick. The study by Haase et al. that was mentioned in 
the introductory chapter surveyed the sedentary behavior of almost 20,000 university students. They found that only 28% of the 
male students and 19% of the female students met the recommended levels of leisure time activity [HHS+04], which shows that 
there is undoubtedly a need for increase here. As such, focusing on young adults as target persons is certainly not a bad decision. 
The question, however, whether they also make up the most urgent age group in regard to the prevalence of physical inac tivity 
and the success chances of technology-based interventions is left open for further discussion. 
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(R3) THE CONCEPT IS FOR SMARTPHONES – On a sufficiently high abstraction level, the process 

that needs to be followed in order to make successful behavior interventions is the same for all 

types of computational devices and resembles the one depicted in Figure 5: First, information 

about the user and the state of her environment needs to be gathered – the more, the better. 

Next, based on this information, on its understanding of the world, and on its past experiences, 

the measure needs to decide, whether or not the undertaking of an intervention attempt is 

reasonable in the current situation. If this is the case, then the subsequent step is to produce a 

trigger that can be perceived by the user and that she clearly associates with the desired 

behavior. As a last step, the measure will ideally also be able to observe the effects of its 

triggering attempt and to draw adequate conclusions for later intervention considerations. 

However, this general procedure is not sufficiently specific to allow for an actual 

implementation, as it leaves too many questions open. A first step to solve this is to narrow down 

our investigation to a specific type of device, and for several reasons, the choice falls on 

smartphones. The more of the relevant smartphone characteristics that another device type – 

possibly one that still needs to evolve – shares, the simpler the transfer of the presented concept 

to this other device will be 
(44)

. 
 

(R4) RELIABILITY IS SUFFICIENT – As discussed in chapter three, a discerning interventive measure  

can adhere to one of three ideals: It can either try to be accurate, or effective, or reliable. A high 

accuracy implies that intervention attempts rarely fail, while a high effectiveness means that 

almost every single opportunity for initiating the desired behavior is successfully grasped. 

Although possible, it is difficult to achieve both accuracy and effectiveness at the same time, 

because as soon as uncertainty is involved in the decision making process – which will be the 

case for the majority of target persons and desired behaviors – the two traits will require 

contradictory triggering strategies. In contrast, the requirements for reliability are significantly 

lower, as this characteristic simply demands that the target user is successfully triggered at least 

once during the O-period. Because it is sufficient to initiate the desired behavior of ‘brisk walking 

for 15 minutes’ once per day in order to profit from health benefits (see assumption A3), and 

because in comparison to the other two ideals , ‘reliability’ is considerably easier to achieve, we 

will focus on the creation of such a reliable intervention mechanism. 

Summing up these assumptions and restrictions, we can now be a lot more specific on what this 

chapter is about: ‘The conceptualization of a reliable pervasive smartphone-based intervention mechanism 

targeted at young adults between the age of 20 and 39 that aims for the successful initiation of a 15-

minute episode of brisk walking once per day through the identification of situations most suited for 

triggering the user, under the assumption that the user of such a mechanism carries her smartphone with 

her at almost any time and that she is willing to tolerate up to 12 intervention attempts per day.’ A 

number of challenges can be deduced from this ‘mission statement’ to whose overcoming the better 

part of this chapter is dedicated to. In this regard, the following list sets the stage for the further 

discussion. 

(C1) IDENTIFICATION OF KAIROTIC SITUATIONS – Just as there is a main assumption (namely that 

the FBM is valid, see assumption A1), there is also a main challenge to which all subsequent 

challenges are subordinate. Accurate triggering demands the ability of being able to reliably 

distinguish between well-suited and ill-suited situations for reaching out to the user. More 

specifically: It requires insight into the question, whether the product of the user’s motivation 

and ability for the desired behavior – here 15 minutes of brisk walking – is high enough so that 

an intervention attempt will be successful. Technically speaking, this is the ability of calculating 

                                                                 
44 The ‘relevant smartphone characteristics’ in this context are pervasiveness, sensitivity, and computing capability – also see 
[DKH+13]. 
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an ISC function in a way that it perfectly resembles the actual ISD function as only then, kairotic 

situations can be identified infallibly and triggering does not involve any uncertainty (also see 

Figure 6). The implementation of such a mechanism is certainly not impossible – provided that it 

is given access to all information and resources that it requires.  The existence of all other 

challenges stated below is due to the fact that for the majority of target users and desired 

behaviors, this cannot be accomplished by today’s smartphones or any other type of mobile 

device (or, as a matter of fact, by any kind of contemporary computational device), mainly 

because such devices lack the means of acquiring and processing all relevant information. This 

entire chapter is dedicated to the development of adequate strategies for compensating this 

shortcoming. 
 

(C2) HANDLING HIGH RISK AND LIMITED PREDICTABILITY – In principle, every intervention 

attempt harbors the danger of annoying the user so much that she will try to get rid of the 

measure. For smartphone applications, this means that they may be temporarily disabled or, 

even worse, be entirely uninstalled. It can be assumed that this risk of annoying the user is much 

higher for unsuccessful intervention attempts than for successful ones, and obviously, the 

problem grows and shrinks with the user’s patience and willingness to tolerate  unsuccessful 

interventions. If we assume that a given user is only willing to tolerate a certain number of 

intervention attempts per observation period (such as a single day), then an discerning 

interventive measure will want to make use of these ‘free throws’ as best as possible . In other 

words, it will be interested in trying to activate the user only in those situations during the O-

period in which it believes the chances for a successful intervention to be the highest. The 

problem lies in the fact that the measure will not know a priori at the beginning of the O-period, 

when exactly these situations will occur. Based on past experience, it may have reason to believe 

that their occurrence is more likely at certain times, than on others. But this does not guarantee 

that, for example, instead of grasping mediocre opportunities during the morning, waiting for 

the afternoon is the right thing to do. Just as well, the measure may find that there is not a single 

opportunity during the second half of the day, not even a mediocre one, because the day evolved 

differently than the measure had anticipated. In such a case the measure would have to choose 

between either making ill-timed interventions with a high failure rate, or decide to make no 

intervention attempts at all. This ‘limited predictability’ is a significant problem for discerning 

measures that try to reduce the number of ill-timed intervention attempts by focusing on the 

most promising situations while at the same time trying to ensure a  minimum of successful 

interventions during an O-period. As pointed out before, the concepts discussed on the following 

pages are all based on the assumption that users are willing to tolerate up to twelve intervention 

attempts per day, even if all of them are unsuccessful (assumption A5). This largely sidesteps the 

problem of ‘high risk and limited predictability’ and it is of course a belittlement. Finding 

strategies for actually overcoming this challenge instead is undoubtedly essential for the creation 

of sustainable measures that are not being muted, deactivated, or uninstalled at the first 

opportunity. We will discuss this problem again later. 
 

(C3) COPING WITH PARTIAL OBSERVABILITY – An interventive measure must be able of 

determining the user’s ability and motivation for the desired behavior. Given the capabilities of 

today’s technology, for the majority of desired behaviors this cannot be done in an automated 

way. Especially the user’s motivation is nigh impossible to assess reliably, as technical devices are 

simply lacking the means for accurately determining a person’s physical and – more importantly 

– emotional state. A measure thus has two options: To either ask the user
 (45)

, or to somehow 

                                                                 
45 Asking the user for a specification of her current motivation and/or ability for the desired behavior, in our case 15 minutes of 
brisk walking, is no guarantee for receiving the correct information, though. The user may either ignore the request for feedback, 
unintentionally provide wrong feedback, or simply lie (especially about her current ability if her motivation for the desired 
behavior is low and she fears that a truthful answer will lead to an intervention attempt by the device).  
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cope with the limited knowledge that it has available. This in turn means that the developers of 

such a measure must have provided it with the means to at least acquire all relevant information 

that can be acquired, and at the very least to be able to pick all ‘low hanging fruits’  (see section 

4.3). If a measure is not granted this ability, then the severeness of its lack of insight will 

basically render all other efforts of improving the measure irrelevant. 
 

(C4) HANDLING RESOURCE LIMITATIONS – The problem of suffering from resource limitations is 

typical for smartphone-based interventive measures. But this is not, as one could assume, mainly 

a problem of limited memory or processor power, but rather a problem of short battery life. 

Different to desktop computers and most video game consoles, mobile devices are usually not 

permanently connected to power outlets but for many hours of the day they rely on their internal 

battery instead. The acquisition of information that is required by the interventive measure to 

support its decision making process, however, will to a large part depend on the device’s internal 

sensors and on Web services – and frequently accessing both these information sources will be a 

drain on the device’s battery. Thus, finding an optimal compromise between the duty cycle of 

smartphone sensors/modules on the one hand and the acquisition of required information on the 

other is important, as a smartphone application that empties the smartphone’s battery within the 

hour will not be well-regarded by the majority of users. On the contrary, Figure 6 shows the 

necessity of a high duty cycle: A measure’s ISC function aims to approximate the actual ISD 

function as closely as possible and the measure with the one-hour duty cycle is a lot less flexible 

than the one with the thirty-minute duty cycle. The higher the measure’s duty cycle, the better its 

ISC function can resemble the ISD function 
(46)

. 
 

(C5) HANDLING COLD STARTS – As pointed out before, interventive measures cannot be generalized. 

They rather depend on the desired behavior that they aim to initiate just as much as they depend 

on the specific target user who is supposed to be activated. As such, a triggering mechanism that 

has perfectly adapted to one user and that has acquired a high reliability in that user’s activation 

cannot be expected to achieve similar success rates for another person. Rather, the lack of 

experience will affect the accuracy of every measure when it starts over with a new user until it 

has been able to sufficiently adapt to her preferences. Due to this limited transferability of 

triggering expertise, however, ‘cold starts’ are a significant problem of interventive measures and 

during their first number of intervention attempts their accuracy will almost inevitably be low. 

This becomes a real problem when the assumption that users are highly tolerant towards ill -

timed interventions proves wrong. In such cases, the measure may not be granted the chance to 

improve through an adaptation process but it may rather find itself being disposed after a short 

inspection phase. Strategies for reducing the severity of the ‘cold start’ problem are very 

important. 
 

(C6) LEARNING FROM USER BEHAVIOR – It is clear that the intervention mechanism needs to be 

able to adapt to the individual user through learning, as this is the only way of reducing the lack 

of expertise. This necessity was already pointed out several times. While there are different ways 

of how this can be achieved, we find that in any case, based on our understanding of how 

interventive measures in general – and technology-based measures in particular – are organized, 

learning will always imply that a measure observes the consequences that an intervention 

                                                                 
46 Note that the duty cycle and the accuracy of the ISC function do not necessarily go hand in hand. A high duty cycle is just a 
principle necessity for the ISC function to be able to resemble the ISD function, at least if confronted with an ISD function that 
frequently alternates such as the one in Figure 6. Only with a high enough duty cycle, the steps of the  ISC function can closely 
follow those of the ISD function. However, the question of whether they will do so is decided elsewhere. In the example of Figure 
6, both ISC functions erroneously state triggering opportunities when there are none and at other occasions fail to point them out 
when they occur. While this is a hypothetical example, very similar function lines can be expected to be found in real life 
applications. The question of how closely a measure’s ISC function is able to resemble the actual ISD function is then determined 
both by the height of the measure’s duty cycle and its ability to assess and process the relevant information.  



44 – User Activation 
 

attempt has caused an then adjust its confidence on whether the situation at hand is a good 

situation for making such attempts. In other words, learning means to adjust the ISC value of the 

indicator value tuple that makes up a measure’s  impression of the current situation. 
 

(C7) RECEIVING FEEDBACK – Dependent on the behavior that a measure aims to initiate, receiving 

reliable feedback on whether an intervention attempt was successful or not may be problematic. 

Especially the automatic monitoring of user behavior in order to determine, whether or not the 

user has changed her behavior in the intended way can be close to impossible, even with 

pervasive and sensitive devices such as smartphones. Certain activities, such as whether the user 

has drunk a glass of water, are simply not detectable with contemporary devices 
(47)

. As such, the 

receival of feedback in order to learn from the user’s reaction may pose a problem of itself.  
 

(C8) HANDLING BEHAVIOR DRIFT – We have made the assumption that the user’s behavior is 

rational and predictable – but even then it may change over time. Especially a person’s 

motivation for a specific activity may fluctuate. What a person finds interesting on one day may 

be considered to be boring on the next, and vice versa. In part, this can be explained by the Flow 

Model that was discussed in the second chapter: Once someone gains a certain expertise in doing 

something, such as a climber that keeps ascending the same rock wall, she may lose interest in 

this activity and rather start to look for other challenges [Csi75]. As such, it is important for an 

interventive measure to not stop adapting to a user once a certain level of triggering accuracy 

has been achieved. Rather, a constant learning and adaption process is required. 
 

(C9) INCREASING MOTIVATION AND ABILITY – Increasing the target user’s motivation and/or her 

ability for the desired behavior is an optional step and not a challenge of user triggering in the 

actual sense. Nevertheless, such steps can help the user’s BFP function to exceed the activation 

threshold a lot more often than it elsewise would and so can create opportunities for successful 

triggering where there originally had been none.  

A non-technical challenge that shall not go unmentioned here is the need for overcoming privacy 

concerns of potential users. If ignored, then this has the potential of completely foiling all efforts of 

constructing successful interventive measures. It lies in the nature of context aware applications that 

they gather information about the user and her environment and indeed, the more information that can 

be acquired, the better the user experience provided by such applications will usually be. However, 

many users are very sensitive about the type of personal information that is being collected about them, 

as well as the modus operandi of how this is done. Sometimes, this rejection is so severe that it entirely 

prevents certain mechanisms, regardless of what their benefits over other approaches would be
 (48)

. 

During the preparation of the field test that is described in chapter seven, we encountered the same 

problem. Several potential participants of the evaluation withdrew their application when they were 

informed of the types of information that our application Twostone-IM would collect about them
 (49)

. 

Findings ways of informing users without ‘scaring them off’ seems to be an important aspect of the 

development of interventive measures. 

                                                                 
47 This statement does of course not hold true in all generality. Already more than a decade ago, scientists used body-worn 
inertial sensors to create systems capable of reliably detecting activities of daily living, most notably eating and drinking . For 
example, Amft et al. achieved a detection accuracy of almost 95% with a total of four of such sensors worn on both arms 
[AJT05]. However, such scenarios are almost always artificial in that they utilize devices that are not found in the average 
household. Interventive measures that are meant to be employed in real life must be able to make do with the means that are 
available in real life. And a smartphone tucked away in a user’s pocket will not be able to reliably detect, whether the user has 
just drunk a g lass water, brushed her teeth, or waved a friend.  

48 A good example for this phenomenon is the use of low-end off-the-shelf cameras for the creation of indoor localization systems. 
Although mechanisms based on such devices are cheap and comparably accurate, the majority of users is not willing to tolerate 
camera-based systems in their apartments and especially not in sensitive areas such as the bedroom or the bathroom – a problem 
that the author of this work has run into himself [BD13, MDW14, BD16]. 
49 In the case of our study, especially the assessment of the user’s current activity and of the ambient noise in her surrounding 
were claimed to be problematic by several potential participants of the evaluation.  
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4.2 Overall Concept 

The considerations made up to this point allow for the deduction of a general procedure for the design 

of technology-based interventive measures. This section is dedicated to the description of this 

procedure on an abstract level, but also elaborates on how its individual steps were implemented to 

solve the problem at hand, namely the construction of a mobile measure for assisting users in 

increasing their overall levels of leisure-time physical activity. Figure 7 depicts the entire process whose 

six stages are discussed in the following. 

(I.1) SELECT DESIRED BEHAVIOR – The first step in the creation of any technology-based 

interventive measure is the exact definition of the behavior that the measure is intended to bring 

forth
 (50)

. It is safe to assume that in most cases, there will already be a rough notion of what the 

measure is supposed to achieve when one starts with its conceptualization. However, as chapter 

three clarifies, the selection of a general type of behavior will usually not be sufficient. Instead, 

narrowing down the focus to a single, very specific activity will help a great deal in the 

construction of a successful measure. To provide an example, a measure that is meant to ensure 

its users’ sufficient hydration may have undesired side-effects when it makes them drink three 

bottles of sugary soft-drinks per day rather than three bottles of pure water. As such, in order for 

the implementation process to lead to a successful measure, its conceptualization should start 

with a precise formulation of the desired behavior that it is supposed to bring forth. In the case 

at hand, we narrowed down the desired behavior from originally ‘15 minutes of medium-

intensity physical activity’ to ‘15 minutes of brisk walking’
 (51)

. See restriction R1 for details. 
 

(I.2) SPECIFY TARGET USERS – The specification of the measure’s target users is not a 

mandatory step, but it may help with further design choices. To a certain degree, the 

target users may indeed be predetermined by the selection of the desired behavior. For the 

creation of a measure that increases medium-intensity physical activity levels, we decided 

to focus on young adults, as made clear in restriction R2. 
 

(I.3) SPECIFY PLATFORM – Since we intend to create a technology-based interventive measure, 

we also need to specify the technological platform that the measure is supposed to run on. 

Whatever the choice is, it should enable the measure to pervasively accompany the user so 

that the overall number of kairotic situations missed by the measure (the MOQ) is low. As 

such, the desired behavior itself obviously strongly affects what technological platforms 

come into question. Furthermore, certain target user groups may also impose limitations 

on this choice – not all technological platforms are equally distributed among the 

populace. As stated in restriction R3, for solving the problem at hand we decided for a 

smartphone-based measure, more specifically for an Android application. As it turned out, 

this was a choice with a consequence: It limited the amount of potential users of our 

measure and this led to difficulties during the acquisition of candidates for the field study, 

as explained in chapter seven. 
 

(II.1) SELECT IDEAL – Once the desired behavior that the measure is supposed to bring forth is clearly 

defined, the next step consists in the specification of the measure’s ideal. This decision is crucial, 

as it will have an influence on almost all subsequent choices, not the least because a successful 

                                                                 
50 The entire procedure detailed in this chapter is based on the assumption that the respective technology-based interventive 
measures is supposed to increase the prevalence of a desired behavior. As explained in chapter three, the counterpart to this goal, 
namely the reduction of an activity’s prevalence (such as smoking), is not in the focus of this work. 

51 For reasons explained in chapters five and six, we will later change the desired behavior that our measure is supposed to bring 
forth once more, this time from ‘15 minutes of brisk walking’ to ‘playing a round of the mobile exergame Twostone’. Changing the 
desired behavior after the measure’s design phase is completed is not without problem and should normally be avoided, unless 
the two activities are very similar to one another. At least from a physiological perspective, this is the case here. 
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accurate measure will usually be based on an entirely different intervention strategy than an 

effective measure: An accurate measure intervenes only when it is certain that its  intervention 

will be successful, which may lead to it not intervening  at all for an extended period if no 

opportune situations arise. In contrast, an effective measure will usually try to intervene as often 

as possible, as it must ensure that the desired behavior occurs at every given opportunity.  For 

reasons explained by restriction R4, we decide for the implementation of a reliable measure that 

settles with a single successful initiation of the desired behavior of ‘15 minutes of brisk walking’ 

once during the observation period. 
 

(II.2) SPECIFY OBSERVATION PERIOD – The definition of the observation period (the O-period) 

is closely related to the selection of the measure’s ideal. The O-period is the time interval 

that the measure takes into account when it makes decisions, for instance on how to best 

distribute a limited number of intervention attempts (see below). In theory, the O-period 

can be infinitely long. Usually, however, it will make sense to limit it to a manageable 

length. As stated in assumption A3, we have selected an O-period of 24 hours for our 

interventive measure. 
 

(II.3) SPECIFY NUMBER OF ATTEMPTS – Another choice linked to the selection of the 

measure’s ideal (and to the specification of the O-period) is the specification of an upper 

limit for the number of intervention attempts that the measure is allowed to make . This 

may place severe restrictions on the measure and substantially restrict its liberty of action 

– which may be meaningful. In theory, this parameter can be left undefined. In the case of 

accurate and effective measures, this will not be a problem, as these ideals already 

establish intervention strategies in their own right. However, for reliable measures that 

only need to initiate the desired behavior once during an O-period, a lacking upper limit of 

the number of attempts may lead to the measure pestering the user with ill-timed 

interventions to a point at which she decides to get rid of it. In assumption A4 , we have 

decided for an upper limit of twelve attempts per day 
(52)

. 
 

(III.1) SELECT INDICATORS – Indicators are the building blocks that make up the measure’s 

understanding of the situation at hand. It depends on the desired behavior – and possibly the 

target user – which indicators are relevant and it is determined by the technological platform 

that the measure is based on, which indicators are obtainable. The meaningful selection of 

indicators is not as simple, as it may initially appear to be, as  additional factors such as an 

indicator’s impact on the user’s decision and the costs of obtaining it must also be taken into 

account. Section 4.3 discusses this problem in detail and also states, what indicators our specific 

solution is based on (and why).  
 

(III.2) HANDLE RESOURCE LIMITATIONS – As already pointed out, the obtaining of indicators is 

not equally difficult. The most preferable indicators are the ‘low hanging fruits’ which are 

both relevant and not very costly to assess. Many other indicators, however, will come at a 

price. Knowing the user’s current GPS position, for instance, is essential for many context 

aware applications, but leaving a smartphone’s GPS module active for a prolonged 

duration is guaranteed to quickly drain the device’s battery. The definition of a duty cycle 

may help here. At the beginning of each such cycle, all relevant information is obtained 

and packed into an ‘information batch’ for further processing. Afterwards, however, the 

                                                                 
52 Triggering attempts serve a dual purpose. On the hand, they are the requirement for successful interventions – if no attempt is 
made, then the user’s behavior cannot be changed. However, they are also a necessity for gaining confidence on which situations 
are suited for making such attempts, and which are not. A trigger that is limited to a low number of intervention attempts pe r 
day will be affected by the lack of experience much longer than a trigger that is allowed a significant number of attempts during 
the O-period. Balancing the three parameters ‘user annoyance – intervention attempts – learning speed’ is a non-trivial problem. 
Section 4.4 discusses a possible compensation strategy.  
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measure falls into a dormant state and awaits the end of the current cycle. For discerning 

interventive measures, this duty cycle resembles the measure’s  𝛿-period, as described in 

chapter three. Figure 6 illustrates, why the selection of the 𝛿-period’s length is a delicate 

matter. 
 

(IV.1) SELECT DECISION MAKING – This step decides the measure’s actual intervention strategy. Based 

on the indicators selected in the previous step, the measure needs to decide for each perceived 

situation (at the beginning of a 𝛿-period), whether the confidence of the measure that an 

intervention attempt will be successful in this situation lies above a certain limit, the confidence 

gate  𝜋 , whose value is determined by the measure’s ideal and the number of the allowed 

intervention attempts in the current O-period. The calculation of the measure’s ISC function that 

associates confidence values to situations can be achieved in a number of ways, some of which 

are discussed in section 4.4. 
 

(IV.2) HANDLE HIGH RISK – Finding a strategy that selects the best opportunities for making 

intervention attempts during the O-period if the number of allowed attempts is limited is a 

difficult problem, as explained before. 
 

(IV.3) HANDLE COLD STARTS – Another problem that is closely related to a measure’s decision 

making procedure, the measure must somehow be able to compensate for the ‘cold start’ 

problem that inevitably affects it while it tries to adapt to a new user. 
 

(V.1) SELECT LEARNING STRATEGY – A measure needs to be able to learn from its intervention 

attempts, both the successful and the unsuccessful ones. Technically, this means that the 

measure adjusts the confidence value that it associates to the perceived situation, but this can be 

realized in a number of ways, some of which are discussed in section 4.5. 
 

(V.2) HANDLE FEEDBACK RECEIVAL – Being able to learn from the observation whether or not 

an intervention attempts was successful implies that this information can be obtained. If 

this is technically difficult (or even impossible), then a workaround must be found. 
 

(V.3) HANDLE BEHAVIOR DRIFT – The user’s behavior will change over time, but some 

learning mechanisms will try to hold on to a once established understanding of the world. 

This problem must somehow be handled. 
 

(VI.1) CREATE CONSOLIDATING MECHANISM – As pointed out before, this step is optional and not 

actually part of the creation of an interventive measure – unless the measure is supposed to 

increase the usage of the consolidating mechanism, of course. However, creating a consolidating 

mechanism can be beneficial for a variety of reasons. This topic is discussed in the fifth chapter, 

which also introduces the consolidating mechanisms used for the interventive measure sketched 

out in this chapter, namely the Android-based exergame Twostone. 
 

(VI.2) INCREASE MOTIVATION AND/OR ABILITY – In most cases, the intention behind the 

employment of a consolidating mechanism will be to create the basis for features that are 

supposed to somehow increase the target user’s motivation and/or her ability for the 

desired behavior. While the reasoning behind this is understandable, the findings of our 

two studies, as described in chapters six and seven, point to the problem that such efforts 

may turn out to be counterproductive. Nevertheless, in some application scenarios the 

investment of effort into this step may prove worthwhile. 

Each of the three remaining sections of this chapter is dedicated to one ‘challenge group’, namely 

the selection of indicators, the selection of a decision making procedure, and the selecting of a learning 

strategy. The fifth and the sixth chapter then focus on the procedure’s sixth and optional step. 
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I.1 Select Desired Behavior

R1 15 minutes of brisk walking

I.2 Specify Target Users

R2 Young Adults (aged 20-39)

I.3 Specify Platform

R3 Smartphones

VI.1
(Optional) Create 

Consolidating Mechanism

C9 Chapter 5

VI.2
(Optional) Increase 

Motivation and/or Ability

C9 Chapter 6

II.1 Select Ideal

R4 Reliability

II.2 Specify Observation Period

A3 One day (24 hours)

II.3 Specify Number of Attempts

A4 12 per day

III.1 Select Indicators

C3 Chapter 4.3

III.2 Handle Resource Limitations

C4 Chapter 4.3

IV.3 Handle Cold Starts

C5 Chapter 4.4

IV.1 Select Decision Making

C1 Chapter 4.4

IV.2 Handle High Risk

C2 Chapter 4.4

V.1 Select Learning Strategy

C6 Chapter 4.5

V.2 Handle Feedback Receival

C7 Chapter 4.5

V.3 Handle Behavior Drift

C8 Chapter 4.5

 

 

Figure 7: Technology-based Interventive Measure Design Procedure. 

FIGURE NOTES – The figure shows the 6-step procedure of designing technology-based interventive 

measures, as developed in and applied by this thesis. While the upper part of each module specifies the 

respective procedure step, its lower part states, whether a decision for this step has already made and if 

so, what it is. Note that such decisions are always either related to an assumption (A), or a restriction 

(R), while all open problems have been formulated as challenges (C). Challenges are logically grouped 

together and each such ‘challenge group’ is addressed by an individual chapter, as its successful 

overcoming requires a detailed analysis and discussion.  
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4.3 Context Sensing 

From a technological perspective, discerning interventive measures are context aware applications and 

devices. This means that such mechanisms have a certain amount of knowledge about the state of the 

user’s – or, more specifically, their own – current environment and ideally also about the user herself, 

such as what she is doing, or how she is feeling. The main problem of discerning measures, and of 

many other types of context aware applications, is that this knowledge is limited. Such limitations may 

be voluntary, they may be necessary, and they may be unavoidable. 

In the case of technology-based measures, two choices determine, what knowledge is relevant and 

to what degree such relevant knowledge can be obtained. The specification of the exact activity that a 

measure is supposed to bring forth will stake out the boundaries that separate the interesting from the 

irrelevant. For example, a measure that is supposed to ensure that a person consumes a sufficient 

amount of water will rely on a different set of information to recommend and recognize the activity of 

drinking than a measure that aims to increase the frequency of short sessions of brisk walking. While in 

the earlier case, information about the user’s current location may be of importance, the local weather 

may play a role in the latter. In both cases, the outside temperature could be of interest. But none of 

the two interventive measures is likely to profit from knowing the user’s bank account balance. 

Pinpointing the exact parameters that influence a person’s motivation and/or ability for the desired 

behavior will oftentimes be difficult, however. While some factors, usually those with a high impact on 

the person’s decision, may be rather obvious, the borders between the barely relevant and the mostly 

irrelevant factors are fluent. Deciding for a set of relevant indicators that have an influence on the 

user’s motivation and ability for the desired behavior and separating those with a high impact from 

those that are only marginally relevant, is a challenge of its own and, depending on the behavior in 

question, may require the assistance of domain experts. For instance, only a psychologist or 

psychotherapist will be able to exactly identify the factors that a measure needs to be aware of for the 

meaningful recommendation of breaks in order to prevent burnouts, just as the driver assistance 

systems discussed in chapter two that are meant for the detection of driver drowsiness are based on the 

expertise of neuropsychologists [JPO+11]. 

But even if the relevant parameters are clear, it is likely that not all of them will be determinable. 

Which of the parameters can be obtained is rather dependent on the second design decision, the 

specification of the technological platform that the measure will be based on. Not every device can 

obtain each type of information, and, as pointed out in chapter three, especially the assessment of the 

user’s physical and emotional state is technically challenging, even if constant advancements are made 

in this field
 (53)

. As one also needs to take into account several other factors for the selection of a 

platform besides sensitivity – such as the spread of the platform among the target users and its ability 

to pervasively integrate itself into their users’ everyday lives – it may be necessary to pass on the option 

of obtaining certain types of information, even if platforms exist that can provide for this. For example, 

mobile sensor kits are capable of assessing a wide range of bio-signals that could be used for making 

reliable assumptions about a person’s wellbeing. However, such systems are usually both costly and 

impracticable and as such, they will not be a good pick as a basis for interventive measures that are 

meant to integrate themselves into the lives of a large number of users. In our specific case, we selected 

smartphones as the platform for the development of interventive measures and what we thus may have 

lost in regard to sensitivity we have certainly won in terms of prevalence and pervasiveness. 

                                                                 
53 Scientific research is pushing the boundaries of what is technologically possible in regard to the automatic assessment of a 
user’s health and wellbeing. A parameter that may be suited for making assumptions about the user’s emotional stress is the heart 
rate variability (HRV), the range of the time intervals between a person’s heart rate. The assumption is that a high HRV indicates 
that the respective person is healthy and feeling well, while a low HRV points towards increased stress levels [TAF+12]. While 
we have found that the current smartphone generations are not suited for correctly assessing HRV [KOM-M-0503], future 
generations with better cameras and higher frame rates may be able to do so. Once this is the case, the assessment of a user’ s 
HRV – and as such, making solid assumption about her level of emotional stress – may be as simple (and accurate) as the 
measurement of her heart rate by way of a smartphone camera via photoplethysmography [GDG16].  
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After having separated the obtainable 

knowledge from the not (automatically) 

obtainable by choice of platform, another factor 

comes into play: Cost efficiency. Usually, not all 

obtainable parameters will also be equally easy 

to assess. Rather, we can distinguish different 

categories of information with different levels 

of accessibility. Almost all types of information 

that are related to the system’s state and 

currently running applications will be 

obtainable at ‘no-cost’, such as the current time. 

Table 4 that states the most frequently 

employed indicators in context aware systems 

names lists four of such inexpensive types of 

indicators, namely date/time, program status, 

user schedule, and system state (items 02, 04, 

16, and 18). However, it lies in the nature of 

context aware applications to also require 

knowledge about events that are occurring 

outside of the device. Such information can 

either be gained from internal sensors or, if 

these cannot provide for it, possibly from 

external information sources such as the 

Internet, another device (most notably an 

external sensors), or the user. The most used type of contextual information is the user’s location, 

which is usually determined by way of the device’s built-in GPS module. But since this module is one of 

the most power consuming components in modern-day smartphones, alongside the Wi-Fi module and 

the cellular module [DBN12], it may actually be reasonable to pass on the assessment of this type of 

information if not absolutely necessary. Once again, the distinction between the relevant and the 

irrelevant plays a key role for make sophisticated design decisions that lead to successful measures 
(54)

.  

We thus find that we can distinguish five groups of context information, as can also be seen on 

Figure 8. As the two major categories, there is information that is relevant for the discerning measure, 

as it determines the user’s motivation and/or ability for the desired behavior, and there is information 

that is (automatically) obtainable from measures that are based on the selected platform, either by way 

of accessing internally managed sources, through the utilization of internal sensors, or from external 

information sources such as other devices, Web services, or user input. In addition, relevant 

information may be about parameters with a high impact on the user,  or not, and obtainable 

information may be costly to receive in terms of time, computing resources and – in the case of mobile 

devices most importantly – battery consumption, or not. The pairing of these different types of 

information makes the four general categories of indicators, whereby one of these categories is special: 

Those indicators that are both of high relevance and obtainable at a low cost. These are the ‘ low 

hanging fruits’ and their identification is the most crucial aspect of the third stage of the interventive 

measure design procedure. By contrast, there also exists a fifth category of indicators that can be totally 

ignored, as they are neither relevant nor obtainable (such as the user’s bank account balance in above’s 

example). 

                                                                 
54 In some cases, workarounds may be found that allow for obtaining the same type of information but at a much lower price. 
Exchanging the GPS information for the SSID (the identification code of the wireless network that the user’s device is logged 
into) is an example for such a workaround and one that is also applied in the context of this work. In other cases, a more efficient 
implementation may also serve to help. Researchers have found that a large number of context aware applications are realized in 
a way that they practically waste the smartphone’s resources, especially its battery life, without a real need [LXC13].  

high 
impact

low 
cost

relevant obtainable

priority information 
(low hanging fruit)

 

Figure 8: Indicator Types.  

FIGURE NOTES – Categories of indicators from 

the perspective of a discerning measure. The 

intersection marks the priority information (the 

low hanging fruits) whose obtaining should be 

considered mandatory. Information lying outside 

the two circles is neither obtainable nor relevant 

and thus entirely negligible. 
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As pointed out, the distinction between relevant and non-relevant information may require the 

assistance of domain experts and is in most cases not a technical problem. It is thus not discussed in 

detail here, although we will briefly come back to it when deciding for the parameters that our 

application for increasing physical activity will be based on. However, the question of how to obtain 

such relevant information with technical means and, possibly, how to find ways of reducing the costs of 

obtaining certain parameters is a fundamentally technical challenge. The first question in this regard is 

of course, just how expensive a parameter is to assess. While the exact costs will depend on the 

platform and the means utilized for gathering the respective piece of information, as a rule of thumb it 

can be assumed that obtaining information about the system’s state and currently running applications 

will always be less costly than employing internal sensors and modules, which, in most cases, will again 

come at a lower price than gathering information from any external source (excluding user input). 

However, this rule does not hold true in all cases and especially the complex processing of raw data 

acquired from internal sensors into high level information by way of machine learning algorithms may 

often prove to be a very costly endeavor (see below).  

In those cases where parameters are identified that are both relevant and costly, one may try to find 

workarounds for obtaining the same information in another, more cost-efficient way. A good example 

for such a workaround, and an approach that was also employed for the realization of the interventive 

measure discussed here, is to not assess a user’s location by way of her smartphone’s GPS module, but 

rather by relying on the SSID of the wireless network that she is currently logged in 
(55)

. While this may 

not be a feasible solution for all types of context aware applications  and especially not for all types of 

interventive measures, depending on the desired behavior it may sometimes be sufficient to just know 

when the user is at home or at work, as it is the case with the measure discussed here 
(56)

. Then, 

passing on the GPS access and instead relying on the SSID of the wireless network to assess location is 

a much more cost-effective approach. Of course, such workarounds may not always be possible and if a 

desired behavior requires one or more parameters that can only be obtained in a costly manner, then 

another strategy is required, namely the employment of a duty cycle.  

A duty cycle, which is measured in percent, specifies the relative amount of time that sensors and 

modules are active and obtaining information. This implies that there are also episodes during which 

these components are switched off, usually in order to safe battery life and computing resources. 

During these ‘energy saving episodes’ the respective device or application is practically deaf and blind 

and as such cannot make reasonable intervention decisions. Depending on the desired behavior and the 

measure’s intended ideal, these enforced interruptions may pose a significant problem. The duty cycle 

is closely related to a measure’s 𝛿-period, that is the interval between the points in time when the 

measure makes its decisions on whether or not to intervene. In chapter three, we discussed the example 

of a one-hour  𝛿-period and found that during such a long time, one can be at work and talk to 

colleagues, drive home, take a quick shower, and be lying on the couch and watch TV. On the one 

hand, the fact that the user is undergoing so many different situations while the measure is ‘aslee p’ 

means that it potentially misses many opportunities for intervening, whereby it mainly depends on the 

desired behavior, whether or not this is really the case. On the other hand, significantly increasing the 

duty cycle such that the relevant information is obtained much more frequently may lower the danger 

of missing relevant situations, but it will also increase the drain on the platform’s resources. If this drain 

is too significant then the measure is likely to not be used in the first place, which in turn means that it 

                                                                 
55 We have certainly not been the first to do this. Among others, Blum et al. used this approach to determine the user’s location 
already a decade ago [BPT06]. 

56 Of course, this assumes that all users have access to wireless networks at home and at their working places. While we initially 
thought so, we were proven wrong by our field study (see chapter seven). We asked users to specify by way of a configuration 
menu, whether they were currently logged into their wireless network at home or at work. In response, we received feedback 
from a number of users that were asking us what to do if they had no such wireless access at one or both locations. While thi s 
should probably have been anticipated for certain types of professions, the fact that some of our study participants did not have a 
wireless network at home, considering that the majority of them was young and technically interested, came as a surprise to us. It 
goes without saying that in this case, the alleged ‘workaround’ did not meet the expectations.  
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will not be able to make any 

interventions at all. Finding a good 

compromise between information 

availability (that is, 𝛿-period length) 

and resource consumption certainly is 

a non-trivial problem and the quality 

of a solution will be judged against the 

desired behavior and the measure’s 

ideal. 

Figure 6 shows the implications 

that the height of the duty cycle has on 

an interventive measure’s ISC-function. 

This function aims to approximate the 

probability for successful interventions, 

as specified by the ISD-function, which 

in turn depends on the user’s BFP-

function (see chapter three). The ISC-

function is always a step function, whereby the length of the individual steps corresponds to the length 

of the 𝛿-period. As discussed in chapter three, we will assume that intervention decisions are always 

made at the beginning of such a 𝛿-period. After such a decision is made, the measure falls into a 

dormant state. This is the only reasonable thing to do, as it lacks updated information on the user’s 

contextual situation. The longer that the 𝛿-period is, however, the more likely the measure is to miss 

relevant situations. In the example, the ISC-function of the measure with the shorter 𝛿-period and the 

higher duty cycle correctly indicates a kairotic situation at 19:30 hours, whereby the measure with the 

one-hour 𝛿-period practically ‘sleeps through’ this situation. In the case at hand, we decided for a δ-

period length of 15 minutes, a value that was in part motivated by our own considerations on how 

quickly relevant situations are likely to change, and in part based on the findings of others
 (57)

. 

In most cases, simply obtaining data from internal sensors will not be sufficient as a basis for 

making decisions, whether or not to trigger the user. Although some sources of information indeed 

deliver knowledge that can be directly utilized without requiring any kind of further processing, 

especially hardware sensors will only deliver raw data that must be transformed into meaningful 

knowledge before it can be used. This transformation is achieved by so-called detectors. Detectors can 

be understood as being the middlemen between raw data and the actual indicator values that the 

decision making process as described in the next section is based upon. To provide an example, the 

inference of a user’s activity will oftentimes be based on information that is acquired from the 

smartphone’s inertial sensors, in particular its accelerometer. If accessed, this module delivers 

acceleration curves for all three axes, such as the one shown in Figure 9. In order to transform such raw 

data into processable indicator values, two types of methods can be employed: Rule-based systems and 

machine learning algorithms 
(58)

. Rule-based systems are the much more simple approach and rely on 

the definition of fixed rulesets for the categorization of the obtained raw data. For example, in the case 

                                                                 
57 In their 2010-paper [CNC10], Conti et al. introduce their context information monitoring application CRePE (short for Context-
Related Policy Enforcing). In regard to the polling of GPS information, they state the following: “The experiments were conducted 
without any context active, just to measure the overhead of the GPS polling. We considered the energy consumption observed in  5 
consecutive hours, starting with a fully charged battery. We observed that if CRePE requests the current position to the GPS device 
every 5 minutes, the battery level decreases by 48%, while checking the position every 15 minutes would consume 11% of the battery. 
The results underline how the energy consumption is one of the main issues in today's solutions for mobile devices. While these results 
are not negligible, the energy consumption for checking every 15 minutes is quite promising”. Although we finally decided against 
the utilization of the GPS module for our own approach, we nevertheless hold onto the 15 minute 𝛿-period, as it appeared to be a 
reasonable compromise. However, only obtaining sensor data in 15 minute intervals and sending the application into a dormant 
state in between these situations actually led to unforeseen problems on Android devices, as explained in chapter seven. 
58 A very recent and promising trend of machine learning, deep learning, is not considered here, although thoroughly discussed 
by [KOM-M-0544]. 

-20

-10

0

10

20

acceleration
[m/s  ]2

time (s)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

x-axis y-axis z-axis

 

Figure 9: Accelerometer Curves.  

FIGURE NOTES – The acceleration curves of a 

smartphone’s 3-axis accelerometer during brisk walking. 

Figure adapted from [KOM-M-0544]. 
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of the accelerometer curves, the oscillation of the y-axis-curve could be used to differentiate between 

different types of movement such as standing, walking, and running , as it represents the smartphone’s 

vertical movement. Simply by defining intervals for the y-axis values, straightforward recognitions can 

be achieved 
(59)

. The main advantage of such rule-based approaches is their low complexity: For simple 

problems, they quickly deliver results without requiring much processing power. As such, it makes 

sense to rely on rule-based systems whenever the complexity of the problem is low. However, their 

‘straightforwardness’ is also the weak point of rule-based systems. Domain experts are required to 

define the rules, especially for more complex problems; but if an expert does not consider all 

eventualities, then the system will not work as intended. Furthermore, rule-based systems can never 

adapt to a changing situations and this inflexibility renders them improper for usage in many cases. 

The alternative to rule-based systems are machine learning algorithms. Instead of relying on 

predefined rules, they try to find patterns in the raw data and aim to infer a model that can later 

automatically recognize these patterns. The problem with machine learning approaches is twofold. On 

the one hand, they usually require significant more computing resources for their execution than rule-

based systems. In addition, they require training samples that they can learn from and even significant 

numbers of such samples do not guarantee absolute classification accuracy. Table 6 compares the 

accuracy of three different machine learning approaches for the categorization of three different types 

of indicators, whereby the machine learning algorithms are all based on the popular Weka toolkit 
(60)

. 

The Android-based context detection framework ContextRec was developed by a master’s student 

supervised by the author of this thesis [KOM-M-0544]. ContextRec provides for the recognition of 

several types of indicators, among them activity recognition, conversation detection, and smartphone 

position, and it achieves an overall accuracy of 88.3%. This framework was used as a basis for the 

detection of various indicators that the interventive measure discussed here is based on. Table 7 

specifies those indicators. Why exactly these indicators were selected is discussed in the next section.  

                                                                 
59 Such as in “if ((max(y) – min(y)) >= 2G) then activity = running”. 
60 The Weka software suite, which has been under development for many years by the Machine Learning Group at the University 
of Waikato, New Zealand, is the most advanced and widespread collection of machine learning algorithms. It is available at no 
charge at http://www.cs.waikato.ac.nz/~ml/weka/ 

Table 6: Machine Learning Comparison. 

Indicator 
Machine Learning 

Approach 

Number of Training Samples & Accuracy 

5 10 20 50 100 200 

Phone Position 

Random Forest 0.57 0.73 0.82 0.91 0.92 0.93 

Support Vector Machine 0.73 0.82 0.89 0.92 0.93 0.93 

Logistic Regression 0.84 0.75 0.86 0.92 0.92 0.93 

Indoor  

vs. Outdoor 

Random Forest 0.71 0.74 0.80 0.88 0.90 0.91 

Support Vector Machine 0.76 0.48 0.81 0.87 0.87 0.90 

Logistic Regression 0.87 0.62 0.84 0.87 0.87 0.92 

Activity 

Recognition 

Random Forest 0.41 0.40 0.43 0.60 0.65 0.73 

Support Vector Machine 0.35 0.37 0.48 0.57 0.60 0.69 

Logistic Regression 0.20 0.31 0.47 0.57 0.62 0.69 

 

A comparison of the accuracy of different machine learning algorithms with varying training set 

sizes. The data was assessed during the development of the ContextRec framework and all machine 

learning algorithms are based on the Weka suite. 
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Table 7: Employed Indicators. 

Indicator Name Raw Data Detector 
Indicator Values 

Identifier Range Crit. 

1 User Location 
system state 

SSID of WiFi 
rule-based 

home specific ID  

work specific ID  

other neither of above x 

2 User Activity 

ContextRec 

smartphone sensor 

accelerometer 

machine learning  

SVM 

Weka 

at rest -  

moving  -  

in vehicle - x 

3 Battery Level  system state rule-based 

high > 70%   

medium 30% - 70%  

low < 30% x 

4 Ambient Noise 

ContextRec 

smartphone sensor 

microphone 

rule-based 

high > 80 dB x 

medium 40 dB - 80 dB  

low < 40 dB  

5 Local Weather 

ContextRec 

Web service 

openweathermap.org 

rule-based 

nice CLEAR, ATMOSPHERE  

average CLOUDLY, DRIZZLE  

bad all other x 

6 
Outdoor 

Temperature 

ContextRec 

Web service 

openweathermap.org 

rule-based 

warm > 25 °C  

moderate 15 °C - 25 °C  

cool < 15 °C x 

7 Steps Counter 

ContextRec 

smartphone sensor 

Android step counter  

rule-based 

high > 6.700 x 

medium  3.300 - 6.700  

low < 3.300  

8 
Notifications 

Priority Mode 
system state rule-based 

normal all notifications allowed  

priority only priority notifications  

off no notifications allowed x 

 

The table lists the indicators that were used as a basis for the interventive measure discussed in this  

thesis. The right side of the table specifies the indicator values that the raw data as obtained from 

the smartphone’s system state, internal sensors, or Web Services was transferred to by suited 

detectors. The information was categorized in a way such that each indicator can assume one of 

three values, plus a fourth undefined state for indicators that cannot be obtained, such as the local 

weather or the outside temperature when the user has no Internet access. The rightmost column 

marks those indicator values that were considered to be ‘critical’, as they denote situations in which 

a user may not be sufficiently motivated or able for performing the desired behavior of brisk 

walking. These critical values are of special importance to the measure’s decision making 

procedure, as discussed in section 4.4.  
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4.4 Decision Making 

As explained in chapter three, two general types of interventive measures can be distinguished: 

Stubborn measures and discerning measures. The main difference between the two lies in the act of 

decision making. While a discerning measure distinguishes between kairotic situations for undertaking 

interventions attempts and those moments that are not suited for doing so, stubborn measures will 

never hold back a trigger. They will rather release it in fixed time-intervals, at the occurrence of 

predefined events, or when being signaled to do so, for instance by the user
 (61)

. 

Of the three named types, the interval-based measures are by far the most simple and 

straightforward ones to create and as such, also the most common. Contrary to them, both the signal-

based and the event-based variants will require information coming from sources outside of the 

measure and in the case of technology-based measures, the acquisition of such knowledge may be 

technical challenging and costly. The three different types of stubborn interventions are best explained 

on the example of a traffic light. The most simple of such appliances switch from green to red and back 

again in fixed time intervals. This is easier to realize than to additionally supply the device with a 

manual switch that allows pedestrians to signal that they want to cross the street. The most complex of 

three variants, however, are event-based traffic lights that switch when they detect the presence of 

vehicles. This variant requires the installation of inductive loops into the street, which is a costly and 

time-consuming procedure. A similar increase in cost and complexity when one compares interval-

based, signal-based and event-based measures is encountered in the case of interventive measures that 

are based on mobile devices, such as smartphones. All mobile devices – and all computing devices in 

general – feature internal clocks that can initiate triggers in fixed intervals. The detection of events 

external to the device, however, such as the user’s arrival at a certain location, requires the utilization 

of additional modules and sensors, whose powering and processing will consume battery and 

computing resources. As especially battery life is precious and the primary limitation of mobile devices 

[SW05], event-based interventions are much more complex and costly to realize than their interval-

based counterparts. As such, at the time of this writing , the state of the art still mainly relied on 

interval-based measures; a good example is the Apple Watch and its Activity App, as discussed in chapter 

two. 

In the focus of this work, however, are discerning measures that estimate, whether or not a given 

situation is suited for an intervention attempt prior to actually making one. Such a measure’s decision is 

based on its understanding of the user’s current contextual situation; more specifically it is based on its 

insight of the allegedly behavior determining parameters, at least those that it knows of. These 

parameters have been selected by the designers of the measure because they were deemed to be 

relevant. Ideally, the designers were correct and all of the selected parameters indeed have a high 

impact on the user’s decision. If in addition no other parameters exist that have a similar high impact 

on the user and if all this information can be obtained in a cost-efficient manner, then the path for a 

highly accurate and successful interventive measure is paved. For most desired behaviors and 

technological platforms, this is a highly unlikely scenario. Rather, the parameters made available to the 

measure by its designers will consist of a good mix of relevant, somewhat relevant, and possibly even 

entirely irrelevant ones. Furthermore, some of the relevant indicators will be missing  in the list, and 

resource limitations will not allow for a constant monitoring of the user’s contextual state. This leads to 

the necessity of somehow compensating  this lack of insight in order to nevertheless enable the making 

of reasonable decisions. 

In principle, we find that for a discerning measure’s decision making mechanic, we have the same 

two categories to choose from as in the case of the construction of detectors. The first option is to base 

the measure’s decisions on fixed rules that specify certain combinations of indicator values that should 

lead to interventions. This approach will work well for low-complexity problems in which the user’s 

                                                                 
61 See chapter two and [WR91] for a more detailed discussion on these three categories. 



56 – User Activation 
 

decision is merely dependent on a very limited amount of parameters
 (62)

. The advantage of rule-based 

systems is that they will not suffer from a lack of experience and as such are not faced with the cold start 

problem (see below). Because their decisions are predetermined, these measures do not need to adapt 

over time – that they usually cannot do this is also their weak point. For complex problems that involve 

a large number of indicators, the ability to learn through studying the user’s reactions to interventions 

is essential for successful measures. The more indicators that come into play, the more likely it is that 

target users will differ in their individual preferences. If the occurrence of a behavior depends on a 

larger number of parameters, then a corresponding interventive measure that is supposed to bring forth 

this behavior will usually also rely on a significant number of indicators. Such a system should never be 

rule-based, as it must be assumed that different target users will have different preferences
 (63)

. Instead, 

the decision making procedure of these complex interventive measures  should utilize learning 

algorithms that provide it with the ability to learn from experience and adapt.  

 Considering all conditions that such a system must satisfy – see challenges C1, C2, and C5 to C8 –, 

two principle approaches come into question: Reinforcement learning and supervised learning (more 

specifically: active learning). We will discuss these alternatives in the next section. But regardless of the 

mechanism employed, it must be capable of stating its confidence for how likely a trigger is to succeed 

in a situation, rather than to simply differentiate between two classes of situations
 (64)

. Only the 

specification of such a confidence value allows for the definition of different intervention strategies, 

which has to do with the problem of high risk that was discussed before. The assumption that a user is 

only willing to tolerate a limited number of intervention attempts may result in a measure choosing to 

pass on the more doubtful opportunities for triggers in order to not upset the user. Analogously, a user 

that is known to be more tolerant can be triggered more often, which allows for a more relaxed 

intervention strategy. For discerning machine learning-based measures, this degree of ‘cautiousness’ is 

resembled by the measure’s confidence gate 𝜋 – but the specification of this parameter is only possible, if 

the measure is capable of stating its confidence for a successful intervention in the situation at hand. 

As discussed in chapter three, the question of whether or not a user shows a desired behavior in 

consequence to an intervention attempt depends on the height of the BFP function value. The BFP 

function of a person always assumes the product of her (quantified) motivation and (quantified) ability 

for the desired behavior. Only if this value is sufficiently high and exceeds the activation threshold 𝜃, 

then the desired behavior will occur. Both the value of the BFP function and the height of the threshold 

𝜃 are not known to an interventive measure, just as it does not know the value of the ICD function that 

states, whether or not the BFP function value exceeds  𝜃. A technology-based discerning measure will try 

to approximate the ICD function with its ICS function, usually by learning from observations. But since 

it must be assumed that only a subset of the relevant parameters can be assessed by the measure and 

that it thus suffers from the problem of partial observability as explained by challenge C3, it can never 

be certain that triggering the user in the situation at hand will really lead to the desired behavior. 

Rather, based on experience, it should only state its confidence that this will happen. This confidence 

value resembles the value of the measure’s ISC function and triggering decisions depend on the 

question, whether or not it is higher than another value, namely the confidence gate 𝜋 .  

                                                                 
62 As an example of a rule-based interventive measure that would perform well, think of a mobile system that is supposed to 
remind the user to buy milk when she is at the supermarket. Such a system can be based on just two indicators, each with two 
values: The user’s location with the two values supermarket and else, and the amount of milk that is still in the fridge, with the 
values sufficient and lacking. Only in the case of the situation (supermarket, lacking), the measure would trigger a reminder to buy 
milk. Such a system could be realized with a single rule and it would still perfectly fulfill its purpose. Of course, this hypothetic 
measure would be based on a mechanism that is capable of somehow assessing the amount of milk that is still left in the fridg e, 
which, irrespective of this idea having been part of ambient assistant living scenarios for many years [GHL05], is still a piece of 
home automation science fiction. 
63 In the case of the interventive measure for the encouragement of brisk walking that is discussed here, one such example for 
differing preferences may be related to the ‘local weather’ indicator, see Table 7. While one user may consider a light drizzle to be 
bad weather and thus not suited for outdoor activity, another user may find this kind of weather refreshing  and will thus be 
inclined to accept intervention attempts made in such situations . Rule-based systems are not capable of representing such 
differences in individual preferences. 
64 ‘To trigger, or not to trigger’, if you will. 
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The definition of such a confidence gate fundamentally determines the behavior of discerning 

measures. For a measure that is supposed to be accurate, the confidence gate needs to be close to its 

maximum value of 1.0. This means that the measure will only reach out to the user if it is absolutely 

certain that an intervention attempt will be successful. In contrast, the confidence gate of an effective 

measure may be set to a much lower value and a corresponding measure will then trigger the user even 

if it believes in parachronotic situations. Defining the confidence gate for a reliable measure is a 

problem of its own and best considered in dependence of the intended target users. If they are willing 

to tolerate ill-timed intervention attempts, then the confidence gate can be much more relaxed than 

otherwise. It may also help to establish an upper limit for the number of intervention attempts that a 

measure is allowed to make during the O-period, as discussed in the context of assumption A4. 

However, such a limit leads to another problem, the problem of ‘limited predictability’. A measure with 

a limited number of attempts at its disposal will want to make use of these attempts as reasonably as 

possible and only trigger the user in those situations during the O-period that have the highest ISC 

function values. In other words, the measure is interested in determining the global maxima of the  ISC 

function. However, since people’s lives evolve dynamically, these maxima are not known at the 

beginning of an O-period, but can only be determined in hindsight. In may thus be advisable to analyze 

a measure’s behavior after some time and increase or decrease the confidence value  in order to adjust 

its behavior. Defining the confidence value for reliable measures is  thus mostly a try-and-error process. 

For the measure at hand, we have decided for an initial confidence value of  𝜋 =0.75; by analyzing the 

results of the field study, it became apparent that this value may have been too relaxed.  

Table 7 lists the indicators that we selected as a basis for our interventive measure meant for 

bringing forth the activity of brisk walking. All indicators were selected because they were believed to 

provide relevant information on parameters that influence a user’s decision, but not all of them are low-

hanging fruits: Rather, user activity, ambient noise, local weather, and the outdoor temperature are 

moderately costly to obtain, as they rely on internal smartphone sensors or external information 

sources, such as a Web service 
(65)

. As pointed out earlier, we were at least able to get rid of the most 

power-hungry detector, the readout of the GPS module, by replacing it with the asse ssment of the 

SSID. The reader may have noticed that none of the indicators is related to the current time or date. 

This is easily explained: If used in conjunction with other indicators, then time and date usually only 

provide redundant knowledge. While one can assume that physical activity is easier for a person on a 

weekend than on a working day, this easiness is not due to the day itself, but rather caused by the fact 

that the person is at home and has free time at her disposal. Thus, although we heavily relied on time 

and date for earlier prototypes as can be seen from Table 8, we decided to not make us of them here.  

Even if a large number of indicators are available to a measure, it may be reasonable not to employ 

all of them. This can either be motivated by limited system resources, or because there is reason to 

believe that not all parameters are as relevant as initially thought. In such cases, it may make sense to 

willfully reduce the level of insight that a measure has in order to be able to separate helpful from 

irrelevant knowledge. Such a differentiation between low-, medium-, and high-insight measures may 

lead to interesting findings. For the problem at hand, we created three variants: A low-insight trigger 

that only relies on the user’s activity and location, a medium-insight trigger that also takes the device’s 

battery level and the ambient noise into account, and finally a high insight trigger that utilizes all 

indicators specified in Table 7. As all learners need a knowledge base to start (the ‘cold start’ problem, 

see challenge C5), we identified critical indicator values for which we assumed that a user will not 

want to be triggered in the corresponding situations. The ISC values of these situations were manually 

set to a low value, such that the occurrence of triggers in such situations was made unlikely. Based on 

this knowledge, the measure was then able to adapt to the individual user by way of learning.   

                                                                 
65 The ‘step counter’ indicator relies on the pedometer built into many Android-based devices. This hardware sensor automatically 
calculates the user’s steps and allows applications to directly access this value without having to analyze the smartphone’s 
accelerometer readings. This is a much more cost-efficient way of obtaining the total number of steps and can be considered ‘low 
cost’. 
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4.5 Learning Strategy 

Obviously, stubborn measures do not learn from their attempts , and neither do rule-based discerning 

measures. While this means that they do not suffer from the cold start p roblem, they will also not be 

able to adapt to the individual user, which is problematic for two reasons. First, it must be assumed 

that the preferences of users are different and what may be a kairotic situation to one person will be a 

terrible moment for intervening to another. For many types of behaviors, intervention strategies will 

not be generalizable and must rather be tailored to the individual user. In addition, the attitude of a 

user may change over time. As such, it is mandatory that measures never stop learning from the user’s 

reactions so that they can handle this behavior drift. Because of these reasons, learning discerning 

measures are generally preferable to their rule-based counterparts, unless the activity that the measure 

is supposed to bring forth only depends on a low number of known and observable parameters. 

In principle, two different approaches are suited for solving the problem of constructing a learning 

discerning measure. The first of these two options consists in reinforcement learning [RN16]. Here, a 

software agent tries to maximize its internally managed score by finding those actions that yield the 

highest reward, whereby the agent’s actions consist in the release of triggers in different types of 

situations and its reward is the verification that a trigger was successful. The challenge in constructing 

a good triggering agent lies in finding a reasonable strategy for the exploration-exploitation-tradeoff, the 

balance between triggering the user in promising situations and trying out new and unknown 

situations. While discerning measures can in principle be implemented as software agents, this is not 

the best of options for two reasons. First, a measure will usually not need to learn triggering-chains that 

allow it to concatenate a high number of successful interventions. This, however, is what the agent is 

trying to do 
(66)

. In addition, the high risk problem limits the agent’s ability to explore different paths, 

which reduces the quality of such measures. As such, the alternative to agent-based systems seems to 

be better suited for solving the problem at hand: The employment of ‘classical’ supervised learners such 

as support vector machines, decision trees, or k-nearest neighbor algorithms.  

The problem with supervised learners is that they require a large set of pre-classified samples before 

they are able to make reasonable decisions. As can be seen from Table 6, their classification accuracy 

significantly increases with the amount of labeled training samples that they can build upon. As most 

measures must adapt to the individual user, only a small number of indicator tuples will be correctly 

classified from start. In the case of our specific measure, these may just be the indicators tuples that 

contain one or multiple of the indicator values that have been labeled as ‘critical’ in Table 7. The 

combination of the cold start problem and the high risk problem that limits the number of intervention 

attempts may result in a measure making many ill-timed intervention attempts during its initial period 

of application. Even worse, the measure’s triggering accuracy will only improve slowly. An active 

learning strategy may help here. Depending on a selection strategy, active learners pick those samples 

from the set of unlabeled data that they can learn from the most and present them to the user with a 

request for labeling [Set10]. Active learners are often used in conjunction with support vector machines 

(SVMs), such as by Tong and Koller [TK98], Tong and Chang [TC01], and more recently by Kremer et 

al. [KSI14]. Such SVMs represent samples as feature-vectors in an n-dimensional feature-space. During 

its training phase, a SVM tries to find a hyperplane that separates the samples of different classes, 

whereby it aims to find the one hyperplane that maximizes the distance to all vectors. An advantage of 

SVMs is that once they have been trained, the classification of new samples is a fast and 

straightforward process, as the SVM ‘simply’ needs to assess, on which side of the hyperplane the 

sample is located on. For the interventive measure discussed here, we have decided to rely on a SVM 

with active learning (also see chapter five). However, in previous approaches we have also 

experimented with other types of supervised learners (and rule-based systems), see Table 8. 

                                                                 
66 It should be noted that such chains may indeed be of interest to measures that aim to be accurate or effective. However, we will 
not investigate this approach any further as we focus on reliable measures that are content with a single successful intervention. 
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A core problem of learning is obtaining feedback that allows for the correct labeling of samples. In 

the case of interventive measures, this means that only if the desired behavior really occurs in 

consequence to an intervention attempt, then the confidence value for the situation at hand should be 

increased. As discussed earlier, obtaining such information through monitoring the user is not always 

possible. For instance, it is not possible to reliably recognize with a smartphone only that someone has 

drunk a glass. For this reason, applications that try to bring forth such a behavior, such as Plant Nanny 

(see chapter two), rely entirely on user input. Admittedly, this is not ideal, as the user may provide 

wrong feedback, but for many types of desired behaviors, no alternatives exist. If the behavior in 

question can be observed with technical means, however, then an obvious precondition is that the 

interventive measure must be provided with the ability for doing so, but such monitoring tasks are two-

sided swords. While they allow for the verification that the user has really shown the desired behavior, 

they will also require system resources and as such, they will increase the resource drain on the user’s 

device. It must thus be decided from case to case, whether the verification of a successful intervention 

is worth the effort
 (67)

. Table 8 states the decision making procedures of three prototypes for 

interventive measures that have been developed by students supervised by the author of this thesis.   

                                                                 
67 There is indeed another benefit that comes from observing the user’s response to a trigger: It may allow for the distinction 
between marginally successful interventions and highly successful ones. If a user is triggered for brisk walking, for example, but 
only takes a brief five minute walk around the block, then this is another category of ‘success’ as when she spends an hour 
outside. This kind of information may be used to optimize a measure’s decision making procedure even further.  

Table 8: Previous Prototypes. 

Prototype 
Decision  

Making 

Employed 

Learner 

Indicator Values 

# Name Values 

1 [KOM-B-0517] rule-based - 

1 day of week Monday, Tuesday, …, Sunday 

2 time of day 30 minute intervals  (48 in total) 

3 location (GPS) home, work, other_1, other_2, else 

4 activity (acc.) resting, moving, fast, vehicle 

5 local weather (Web) 73 different conditions 

6 outside temp. (Web) very_cold, cold, average, warm, hot 

2 [KOM-M-0535] 
machine 

learning  

supervised 

(decision tree, 

naïve Bayes, 

k-NN) 

1 day of week Monday, Tuesday, …, Sunday 

2 time of day daytime, evening, nighttime 

3 location (GPS) location_1, location_2 

4 local weather (Web) nice, average, bad 

5 outside temp. (Web) cold, average, warm, hot 

3 [KOM-M-0543]  
machine 

learning  

supervised 

(decision tree) 

1 day of week Monday, Tuesday, …, Sunday 

2 time of day 8 groups 

3 location (SSID) up to 10 different locations 

4 activity (acc.) lying, sitting, walking, running, other 

5 steps counter < 1.000, 1.000 – 2.000, … , > 10.000 

6 hours since last trig . 1, …, 23 

 

The desired behavior of all three prototypes was medium-intensity physical activity such as brisk 

walking; none of the prototypes verified intervention success through user monitoring.  
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5. Consolidated Approach 

In principle, triggering mechanisms such as the one described in chapter four can be used 

independently of all other means. Their task is to point out opportunities that are suited for showing a 

desired behavior, and in that they are entirely self-sufficient. However, the FBM explains that the 

highlighting of opportunities – the act of triggering – is just one of three aspects that decide whether or 

not a target person will behave in a desired way. Also raising this person’s motivation and/or ability for 

the behavior in question may make the difference between successful and unsuccessful intervention 

attempts. In this regard, this chapter investigates the ‘embedding application’ in which a trigger ing 

mechanism based on the concepts as described in the previous chapter was integrated into. Thereby, 

the application named Twostone-IM – which was selected because of its supposed ability for raising 

peoples’ motivation for being  physically active – actually consists of two apps to each of which a section 

of the chapter is dedicated to. While this fifth chapter is mainly focused on the description of Twostone-

IM on a general level with the goal of providing a good overview alongside pointing out some of the 

more interesting implementation details , the following sixth chapter explains the elements of Twostone-

IM that are specifically meant for raising the user’s motivation for brisk walking (without overly 

decreasing her ability for this activity). 

5.1 PacStudent and Twostone 

One of the earliest location-based games, designed and played at a time when modern-day smartphone 

technology was still in its infancy, was New York University’s Pac-Manhattan
 (68)

. The game, that 

enjoyed an astonishing amount of media coverage during the spring of 2004, was strongly based on 

Namco’s arcade classic Pac-Man, with the main difference being that in the case of Pac-Manhatten, both 

the protagonist and her opponents were actual people who were running through the streets of 

Manhatten, New York. Directed via mobile phones by a group of game masters, the ghost players were 

trying to catch the Pac-Man player before she had collected all virtual dots that were spread across the 

streets of Manhatten – but that were only visible on a computer screen back at the university’s lab and 

thus, only visible to the supervisors [Joh04]. Due to the game’s multiplayer aspect and its heavy 

dependence on all-knowing game masters, it actually resembled a real life version of Scotland Yard just 

as much as the original Pac-Man and from today’s perspective, the game appears as if it was more of an 

art project than a scientific prototype. But, nevertheless, there was much fascination for Pac-Manhatten, 

which can be explained by the at that time innovative concept of pervasively fusing digital game 

mechanics with a real world setting. As pointed out in the second chapter, such pervasive games quickly 

became popular in the first decade of the 21
st
 century and besides trying out many other concepts 

(69)
, 

some research groups also kept experimenting  with the idea of creating a ‘real life version’ of Pac-Man, 

such as the University of Singapore with Human Pacman [CFG+04], and the University of Lancaster 

with PAC-LAN [RBC+06]. 

In the lecture series Urban Health Games that took place at the Technische Universität Darmstadt 

between the years of 2013 and 2016, and in whose organization and administration the author of this 

thesis was involved, students from several disciplines were brought together with the intention of 

amplifying their creative potential for the conceptualization of pervasive mobile games, specifically for 

mobile exergames played in an urban context – hence the lecture’s name. During the course of three 

years, a multitude of game prototypes was created by the participating students under the supervision 

of this thesis’ author and others
 (70)

. One of these prototypes was the mobile location-based exergame 

                                                                 
68 In late 2016, the game’s Web site was still online at http://www.pacmanhattan.com/ 

69 See [Opp09] for a good overview of early pervasive game prototypes . 
70 For more information on the Urban Health Games lecture series and on some of the game prototypes that it brought forth, 
please refer to [KDH+13, KKN+14, KDH+14]. 
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PacStudent, which, as its name implies, was yet another interpretation of the ‘Pac-Man in real life’-idea, 

much like the game prototypes listed above. Different to them, however, PacStudent was fully playable 

by a single player on a smartphone and did not require any additional devices or people. As soon as the 

player was in the vicinity of a location for which a virtual game map had been created, she was able to 

start the game, whose interface mainly consisted of a 2D-map of the respective level. The player was 

then supposed to move along the level’s virtual lanes and to collect virtual dots while avoiding virtual, 

computer controlled opponents, very similar to the original Pac-Man (with the notable twist that the 

player had to move in the real world in order to move her virtual avatar, of course). Our paper 

[DHB+14] contains some screenshots of PacStudent, and also points out two of the game’s problems. 

The first of them consisted in PacStudent’s limitation to pre-defined maps; a classical issue of location-

based gaming in general 
(71)

. PacStudent was only playable at a small number of locations distributed 

across the city of Darmstadt, Germany, among them the public park ‘Prinz-Georgs-Garten’ whose 

distinctive grid-like layout allowed for an easy mapping of virtual game lanes to real world walking 

paths, much simplifying a player’s orientation in the real and the virtual world. This was made 

necessary by the second problem of this early prototype, which was related to the game’s user interface. 

The 2D-map view of the game, displayed on the comparably small screen of a handheld smartphone, 

was not suited for a moving player. The inevitable shaking of the smartphone’s screen while running 

forced players into regular stops in order to allow them to re-orientate themselves in the virtual game 

world. However, while players were standing still and looking at the map as displayed on the 

smartphone’s screen, their virtual opponents kept moving . This occasionally led to players getting 

caught by opponents and losing the game – a frustrating experience. 

The intention of finding solutions for these problems sprung two bachelor theses that were 

supervised by the author of this work [KOM-B-0488, KOM-B-0489]. The integration of their results into 

the original PacStudent prototype led to a new application named Twostone. In the following two years, 

Twostone was constantly refined and served as a fundament for a multitude of lab courses and student 

theses under the author’s supervision [KOM-B-0517, KOM-B-0518, KOM-B-0519, KOM-M-0535, KOM-

B-0549, KOM-M-0572]. Eventually, a stable release version of the game was uploaded into the Google 

Play Store and thus made publically available 
(72)

. While the work of the author has brought forth a 

variety of other mobile applications, most notably a handful of mobile exergames, Twostone was 

selected as an integrative solution because it was the most advanced of these prototypes. Indeed, due to 

the significant amount of student work that went into the game over the course of almost three years, 

the game can probably be considered to be significantly more advanced than many other scientific 

prototypes used in lab and field studies. Knowing this is relevant for fully understanding the 

implications of the evaluation results that will be presented at a later time. However, choosing 

Twostone as an integrative solution was also not without problems. The most obvious issue is that by 

doing so, the desired behavior that triggers are supposed to initiate was changed from ‘brisk walking’ to 

‘playing Twostone’. The consequences of this are analyzed in chapters six and seven. 

Please see appendix B for screenshots that provide an impression of what Twostone looked like at 

the time of this writing. It is also worth pointing out that both the game and the triggering application 

described in the next section were only available for Android-based devices. The reason is easily 

explained: Twostone started as a student’s project and originally was not meant to be used by a 

significant number of users. Its evolving into a comparably stable, feature-complete application was a 

slow process. It goes without saying that in contrast, real life interventive measures should not be 

limited to a single operating system and instead be made available to the broadest group of users 

possible. Indeed, Twostone’s limitation to a single operating system turned out to be highly problematic 

when we tried to find participants for our field study, as will be explained in detail in chapter seven. 

                                                                 
71 Typically, location-based games can only be meaningfully played at the locations for which game designers have created 
content a priori  – unless such game content is randomly created in the player’s vicinity, which is a feasible but usually not an 
optimal solution. For more on this topic, see chapter six.  

72 The game can be downloaded free of charge from https://play.google.com/store/apps/details?id=de.tu.darmstadt.uhg  
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5.2 Twostone Interventive Measure 

The theoretical concept for a smartphone-based interventive measure as described in chapter four was 

implemented as a stand-alone Android application by a student as part of his master thesis [KOM-M-

0572]. Although this ‘triggering application’ was intended to be an interventive measure for Twostone 

from start, we decided against a full integration of the two applications. The reason for this is that the 

triggering application relied on the ContextRec framework [KOM-M-0544] for the assessment of several 

of the indicators that are listed in Table 7. This framework, however, makes use of features of the 

Android operating system that are only available from Android version 5.0 upwards. As pointed out in 

the previous section, Twostone is publically available from the main online distribution platform for 

Android applications, the Google Play Store, and compatible with Android version 4.0. As a full 

integration of the triggering application into Twostone would have also increased the operating system 

requirements of the latter, we decided against this step and instead asked the evaluation participants to 

install a second application from the Google Play Store
 (73)

. Together, Twostone and the triggering 

application made up the Twostone Interventive Measure (the Twostone-IM) that was evaluated during 

the field study 
(74)

.  

 As described in chapter four, the triggering application relied on a support vector machine based on 

the Weka suite for its decision making procedure. In addition, it also employed an active learner that, 

whenever the triggering algorithm decided against an intervention attempt, analyzed whether the 

situation at hand was considered to be interesting enough to ask the user for feedback nevertheless. We 

found the entire procedure to be sufficiently performant such that it could entirely be run on a 

smartphone. Nevertheless, the triggering application uploaded its locally stored database to the 

Twostone server once a day and used this opportunity to check for updated settings, most significantly 

for a change of phase. In order to be able to compare different variants of the triggering application 

(stubborn, low-insight, medium-insight, and high-insight, see chapter seven), we made the triggering 

application’s behavior dependent on a database entry. Changing this entry enabled us to make the 

trigger behave as any of the four types of interventive measures that were supposed to be evaluated 

during the field study. In addition, this mechanism also allowed us to simultaneously enable and 

disable interventions for all study participants, which ensured comparable study conditions.  

When the triggering application decided for an intervention attempt, it presented a trigger to the 

user, which was essentially a push-up notification accompanied by a vibration of the device and a beep-

sound. Screenshots of such a triggering message can be found in appendix B. Furthermore, as we used 

active learning in order to improve the accuracy of the discerning measures more quickly, users whose 

triggering application were set to this mode were also occasionally prompted with learning 

notifications. While these practically looked like regular triggering messages, the confirmation of such a 

learning notification did not automatically start Twostone with the nearest map, but rather only served 

as a feedback to the learner that a trigger would have been successful in the given circumstances. The 

fact that triggering messages and learning notifications were not clearly distinguishable from one 

another turned out to be problem, as discussed in chapter seven. Another shortcoming of the triggering 

application was that it did not assess, whether or not the desired behavior had really been performed. 

Rather, if the user confirmed the trigger, then this was registered as a successful intervention. 

Analogously, we did not ensure that users did not play Twostone unless triggered for doing so, which 

may have led to some users declining triggers only to play the game a few minutes later nevertheless. 

                                                                 
73 Although not meant for the general public, the triggering application was also uploaded to the Google Play Store. Past 
experiences had shown that directly sending APKs to study participants oftentimes led to several critical questions in regard to 
the installation process and data security. Distributing software instead directly via the Google Play Store was found to be a much 
more uncomplicated and better accepted procedure. 

74 The number of potential study participants that did not have a smartphone with a  sufficiently high version of the Android 
operating system actually made it necessary to quickly find a workaround for the operating system demands of the ContextRec 
detection framework. This is discussed in more detail in chapter seven.  
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6. Motivation and Ability Increase 

While the fifth chapter describes the application Twostone-IM from a chronological perspective and as a 

whole, this chapter is dedicated to an analysis of those features of the application that were specifically 

meant for increasing a person’s motivation and, albeit to a lesser extent, her ability for the desired 

behavior of brisk walking. Thereby, the first section of this chapter focuses on the motivational 

elements of Twostone-IM, and the second section describes the aspects that were implemented with the 

goal of somehow adapting to the user’s ability (mainly in the sense of simplifying the act of playing). 

The chapter’s final section is an addendum and describes a theoretical concept that is not actually part 

of the application as it is. The notion of Sliced Serious Games originated from a brain storming session 

with my doctoral advisor Ralf Steinmetz and my superior Stefan Göbel and it is mentioned here 

because it provides an outlook on where pervasive games in general – and pervasive behavior changing 

games in particular – may evolve to in the near future. 

6.1 Gamification and Game Mechanics 

The most straightforward way of creating extrinsic motivation for an activity – besides offering material 

rewards, most notably monetary compensation – is to quantify one’s performance. A logical second step 

then consists in allowing people to compare their own performances to that of others. And the third 

escalation of this approach is to abstract from numerical values and to instead award achievements for 

reaching certain goals, thus replacing sterile numbers with more tangible titles, such as ‘Most Valuable 

Player’ or ‘Salesperson of the Year’. In a nutshell, this is what gamification is about. And although, as 

pointed out in the second chapter, the topic has been the subject of much discussion in recent years, 

this simple formula of ‘points, badges, and leaderboards’ is known to work, at least in certain fields of 

application. It has long been known that people will improve their efforts when being supervised
 (75)

, 

and apparently, this effect will also set in if the supervising entity is merely a computer program. 

Twostone-IM features two of the three listed gamification mechanics, namely points and a 

leaderboard. For one, players are awarded a score for each game session that they complete, based on 

the session’s difficulty setting (see next section) and the relative amount of the level that the player was 

able to complete before she was captured by one of her computer controlled opponents. The game also 

keeps track of the player’s average speed, of the distance that she has covered, and of the time that she 

has played, and total counts of these values that are being summed up over all game sessions can be 

reviewed from the player’s profile screen. Furthermore, an additional high score screen allows players 

to compare the total distances in meters that they have covered over the course of all their game 

sessions to that of other players
 (76)

. See appendix B for screenshots of the game’s user profile screen, of 

the leaderboard screen, and of the application in general. 

A quick look at Twostone-IM reveals that it is not only an activity tracker with gamification 

mechanics. Indeed, as pointed out in the previous chapter, the application’s gamification elements are 

just an extension to its actual core: At heart, Twostone-IM is an exergame, a video game that requires 

physical activity from its players in order for them to make progress (to ‘win’ the game, if you will). 

Twostone-IM and its predecessor PacStudent are both based on the arcade game classic Pac-Man in that 

players are meant to gather virtual items while evading computer controlled opponents. If a player 

manages to collect all items, she wins. If she is caught by a ghost while trying to do so, she loses. 

                                                                 
75 The phenomenon that a person will intensify her efforts when aware that she is being watched is named Hawthorne effect, 
derived from the name of the factory in the vicinity of Chicago where it was first discovered [Han67].  

76 There is no compelling reason why players are only allowed to compare their total distances. Since various other values, such 
as the total score and the total game time, are already being assessed, they could also easily be made available for comparis on. 
An interesting question that arises in this context is, which of such values has the most significant motivational effect on players 
in average (if there is any at all), and whether multiple leaderboards that allow players to compare their performances based on 
different factors will increase or possibly even decrease the motivational effect that a single high score list has. However, as this 
work does not focus on how to increase user motivation for a desired behavior, such questions are out of scope here.  
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Twostone-IM, being an exergame, shares the principle idea of serious gaming, which is to use video 

games as motivators for activities “that would otherwise not be done” [Mal14]. While this reasoning is 

easily understood, the scientific perspective demands the same question to be asked here as in the case 

of gamification and that is whether serious games can really provide for the desired motivational 

effects. More specifically: Whether such games are equally suited for the motivation of all types of 

‘serious’ behaviors and all types of players. As already pointed out in the second chapter, the creation of 

‘good games’ that a large relative amount of players finds equally enjoyable is a difficult problem that 

even the professional games industry occasionally struggles with. As such, it is at least questionable 

whether a game such as Twostone-IM that was developed by a small team and in a comparably short 

amount of time is really suited as a motivator for physical activity. 

During a first evaluation of the game, we made an interesting observation. The author of this work 

and a student investigated several of the application’s features under lab conditions, whereby each of 

the N=23 study participants was asked to fill a pre-study questionnaire, to then play the game for 45 

minutes, and to finally fill two post-study questionnaires. The actual purpose of the evaluation was to 

find out, whether the classification of players into the different player types  of an established player 

model would allow for a reliable prediction of what game elements they would enjoy the most 
(77)

. In 

the following, this evaluation will be referred to as the lab study, in contrast to the field study, whose 

results are detailed in chapter seven. 12 of the lab study’s 23 participants were male, the majority of 

them was in their twenties
 (78)

, and they claimed to have an average amount of video gaming 

experience 
(79)

. The interested reader is referred to [KOM-B-0549] for more detailed information on the 

study’s organization and for a full list of the evaluation results. 

While we were not able to confirm our initial hypothesis – the classification into player types did not 

allow for a reliable prediction of the preferred game elements – the study revealed some unexpected 

findings. Among many other questions, players were asked to rate their overall impression of Twostone, 

how much they enjoyed being able to compare their performance with that of others via a leaderboard, 

and how much they enjoyed the game’s short story that we had written to give some meaning to the 

game’s name and the role of the player. Taken for itself, none of these results was exceptionally positive 

or negative
 (80)

, but the correlation matrix showed a strong negative and significant correlation between 

a player’s gaming experience and how high she scored the enjoyment that the game and its specific 

components had brought her
 (81)

. In other words: The more experience with video games that a player 

had, the less she enjoyed playing Twostone, and this effect held true for both the game’s core mechanics 

and its added gamification elements. This may point towards a general problem of serious gaming. 

Once a person gets used to playing video games, her demands on this type of media increase. In times 

when companies are willing to invest half a billion US Dollars into the production of a single video 

game [Luc14], this becomes a huge problem for small development teams that can never hope to reach 

the high degrees of production values that many players have grown accustomed to
 (82)

. 

                                                                 
77 The study was based on the player type model by Yee [Yee06]. All study participants were asked to fill a questionnaire meant 
for the classification of players into Yee’s three overarching components (achievement, social, and immersion) at the beginning of 
the study. To this end, the orig inal questionnaire by Yee was translated into the German language (with his permission). In 
addition, participants had to fill the NEO-FFI questionnaire by Costa and MacCrae [CM92] in order to determine their ‘Big  Five’ 
personality traits (neuroticism, openness to experience, extraversion, conscientiousness, and agreeableness). 

78 “How old are you?”, ratio scale, N=23, M=23.6, SD=±5.99. 
79 “I have a lot of gaming experience”, five point disagree-agree L ikert scale, N=23, M=3.12, SD=±1.37. 
80 “I enjoyed the application as a whole“, five point disagree-agree L ikert scale, N=23, M=3.74, SD=±0.86. “I enjoyed the game’s 
leaderboard“, five point disagree-agree Likert scale, N=23, M=3.74, SD=±1.29. “I enjoyed the game’s story“, five point disagree-
agree L ikert scale, N=23, M=2.39, SD=±1.16. 
81 Data pair ‘experience-overall’, correlation coefficient r=-.42, p<.01. Data pair ‘experience-leaderboard’, correlation coefficient 
r=-.51, p<.01. Data pair ‘experience-story’, correlation coefficient r=-.50, p<.01. Another noteworthy correlation was found in 
the pair ‘gender-story’: Women enjoyed the game’s story significantly more than men, correlation coefficient r=.51, p<.01. 
82 Exceptions prove the rule. The game Minecraft was originally developed by a single person and became an incredible financial 
success with a disruptive effect on the entire gaming industry. Indeed, there are a number of examples for small teams that have 
been able to produce well-received games and this trend sprung a new industry branch, the ‘indie games’. However, such games 
(with the notable exception of Minecraft) usually only appeal to the small number of self-proclaimed ‘hardcore-gamers’, while the 
vast majority of players prefers the so-called AAA-titles from the likes of Call of Duty and Grand Theft Auto. 
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6.2 Pervasiveness and Difficulty Adaptation 

The lab study revealed a negative correlation between a player’s video gaming experience and her 

enjoyment of the game Twostone. Furthermore, the study only assessed a player’s motivation for 

playing further game sessions after a single, 45-minute test run. It goes without saying that such a set 

up does not allow for any sound conclusions on whether Twostone-IM can create long-term motivation 

for the ‘serious’ behavior that it is supposed to bring forth, namely brisk walking or easy running. At 

this point, it must thus be concluded that no clear statement on whether or not Twostone-IM is suited as 

a motivator for physical activity can be made. It must rather be assumed that if any long-term 

motivational effects of the game exist that they are likely to be small, at least for the majority of 

players. Obviously, the creation of extrinsic motivators and/or the strengthening of intrinsic motivation 

are difficult tasks, which is far from being a novel insight. As mentioned in the third chapter, Fogg 

suggests that designers of persuasive technologies should focus  their attention on the creation of 

intelligent triggering mechanics first, to then turn to raising ability for the desired behavior, and only 

consider increasing motivation as the last option. He points out the exact same problem that we 

experienced during the development of Twostone-IM, namely that it is difficult to pinpoint, what exactly 

makes a motivational mechanic: “People designing interventions often start by focusing on motivation, 

believing it is the most effective way to change behavior. However, motivation is the trickiest, most nebulous 

area. It’s harder to measure, and it’s hardest to change predictably” [Fog10, p.12]. 

Following this notion, the better alternative to trying to raise motivation would be to focus on 

increasing the user’s ability instead – which spawns the question how this could be achieved when, as 

in the case at hand, the interventive measure is a smartphone application and the desired behavior is 

brisk walking. However, if we assume that Twostone-IM does at least somewhat increase a user’s 

motivation for being physically active, then we would already be on the winning  side if we could 

ensure that the application does not reduce the user’s ability for the desired behavior, as then, the 

product of motivation and ability for the desired behavior would still be higher than without the game ’s 

influence. On the other hand, a reduction of the user’s ability caused by the game that is so significant 

that it outweighs its positive motivational effects would mean that the application’s employment would 

actually reduce the probability of the desired behavior’s occurrence. Indeed, in the case of brisk 

walking, taking care that an application such as Twostone-IM does not artificially impose new 

restrictions is easier said than done, as we selected brisk walking specifically for being performable 

anywhere and at any time (see chapter three). The fact that Twostone-IM is a location-based game and 

as such requires users to be at certain locations before they can play does not help with this problem. 

When choosing to use Twostone-IM as the embedding application for the triggering mechanism, the 

desired behavior was practically changed from brisk walking to playing a session of the game. While 

this makes almost no difference from a physiological perspective, it does make a huge difference in 

terms of organizational requirements. Twostone-IM, being a location-based game, can only be played at 

locations for which game levels have been created a priori. In the case of the game’s original prototype 

PacStudent, this limited the game’s usability to a handful of predefined maps spread across the city of 

Darmstadt, Germany. In order to play the game, a person first had to travel to one of these locations for 

which the game’s creators had designed a game map and made it publically available . Obviously, this 

made ‘being physically active with PacStudent’ much more difficult than taking a mere (but brisk) walk 

around the block. An overall positive effect of such a game is then only brought forth in those rare 

cases when players are so extremely motivated for playing  that they are willing to put up with any 

hindrances
 (83)

. 

                                                                 
83 The existence of extreme motivational effects that outweigh all imposed burdens should not be entirely excluded. For example,  
reports exist of players of the location-based game Pokemon Go who are going to extreme lengths for the achievement of certain 
in-game goals, such as the man who claimed to have lost 12 kilograms by walking close to 230 kilometers in less than three 
weeks, only for the purpose of advancing quickly in the game [Eas06].  
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Since the creation of a large enough number of maps by ourselves was not a feasible solution and 

because we deemed algorithms for the automatic generation of levels in the player’s vicinity to be not 

sufficiently reliable, we decided for providing players with the ability of creating their own levels
 (84)

. 

Simply drawing the level’s lanes on a map seemed to be the most straightforward solution, but this also 

harbored the danger of users creating overly ambitious or unplayable levels. We thus decided for 

another approach and to require the player to actually walk the map that she intends to create herself: 

Twostone-IM’s level editor is based on the player’s position and while the level creation mode is active, 

the game automatically connects the user’s detected locations to a new map that can then be uploaded 

to the game’s server and shared with other players. This allows players to create new maps in close 

vicinity to their homes, their working places, or close to any other area that they frequently visit. In 

addition, a ‘quickplay’-button was added to the game that automatically starts the level closest to the 

player and thus shortens the delay that a player has to wait before she is in-game and (literally) ready 

to go. Please see [KOM-B-0489] for more information on the game’s level editor, its implementation 

details, and the results of a small usability evaluation with eleven test users . 

The level editor simplified playing the game PacStudent (and its successors Twostone and Twostone-

IM) by increasing the game’s pervasiveness. Pervasiveness is an essential trait for interventive measures 

in general and for behavior changing games in particular – a topic that we will get back to in the next 

section
 (85)

. As stated before, in order to ensure that the game Twostone-IM has an overall positive 

impact on the probability of its players to be physically active, it is important to reduce its ability 

impeding effects to an absolute minimum. It was already pointed out that besides it being limited to a 

handful of game levels, the original PacStudent suffered from another problem: Its user interface. Many 

of the game’s early players complained that while walking quickly – necessary for evading the game’s 

virtual ghosts – the inevitably shaking of the screen made one’s orientation within the virtual world 

difficult. Instead of being able to focus on moving quickly, players were rather constantly distracted by 

their device and forced into regular stops. In their publication ‘Considerations for the design of 

exergames’, Sinclair et al. describe this exact problem, stating that exergames are especially difficult to 

design since their players move while playing. They come to the conclusion that “for a player to enter 

the flow state, they must be able to focus on a narrow field of attention” and give the game Dance Dance 

Revolution as a good example for an exergame, because its user interface is reduced to an absolute 

minimum, allowing the player to fully focus on her movements while playing [SHM07].  

In the paper [DHB+14], I argue that a problem of the original PacStudent was that its interface was 

lying outside the ‘Focus Corridor’. It was too complex for the amount of focus that the player was able 

to provide while moving, and thus it required the player to stop from time to time and to focus on the 

smartphone’s screen. In order to reduce the problem, we experimented with different interface types 

                                                                 
84 There are three principle options for creating content for location-based games. The first of them is to have the content created 
manually or semi-manually by professional designers. While this approach is likely to yield the best results in terms of quality, it 
is also the slowest and least cost-effective and will thus usually limit the game’s playability to certain small areas, such as a single 
city. The second option is to utilize algorithms that automatically create game content in the vicinity of the player. The quality of 
this content then depends on the quality of the algorithms used, but this approach will usually not lead to satisfactory results, at 
least not when compared to the content that can be provided by human designers. The third option is to include the community 
into the process, to enable players to create content for their respective locations, and to allow them to then share this custom 
made content with other players. Most commercially successful applications such as Ingress combine two or all three of these 
options and for example allow players to make suggestions for new content which is checked and possibly altered by professional 
designers before being made publically available to the entire player base.  

85 As a side note, several of the student theses supervised by the author of this work have investigated ways of how location-based 
games can be made more pervasive. In addition to the level editor for the game PacStudent as conceptualized and implemented 
by [KOM-B-0489], the master thesis [KOM-M-0498] looked into options for how to integrate reoccurring urban elements, most 
notably street name signs, into a game in order to automatically create game content focused around such ‘anchors’. In this 
specific case, an image detection algorithm analyzed the camera feed of the user’s smartphone and, if a street name sign was 
recognized, it created an augmented reality puzzle based on the characters of the respective street name. The player then had a 
limited amount of time to solve the puzzle and to thus ‘conquer’ the corresponding street for his team. The benefit of such an 
approach is that the game content created is guaranteed to be at a location accessible to the player, as well as being meaningfully 
linked to her surroundings. The thesis [KOM-M-0573] investigated a similar approach: It used car company logos as dynamic 
anchors for a location-based game for children. 
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and finally settled for an augmented reality 

based user interface that allows players to 

identify the relevant virtual game elements 

while also being able to keep their eyes on 

the real world ahead of them. Players can 

thus maintain high speed without needing 

to stop and look at the game’s 2D-map. 

However, if desired, they can switch 

between the two interface modes at any 

time simply by changing the angle in which 

they hold their smartphones. See [KOM-B-

0488] for more information. 

Determined to increase the game’s 

overall accessibility, we also experimented 

with different ways of adapting its difficulty 

to the player’s individual capabilities. The 

most notable of these approaches was the 

linking of the player’s heart rate to the 

speed of her computer opponents. At first, 

we assessed the player’s average heart rate 

during rest and medium-intensity exercise 

in order to acquire an individual ‘base line’. 

While playing a map of Twostone, the 

player was then given the option to 

manually indicate via the smartphone’s 

loudspeaker buttons if she wanted the game’s difficulty to increase or decrease. We compared three 

different mechanisms (direct adaptation based on player feedback, an adaptation based on player 

feedback and player heart rate, and an adaptation based on player feedback, her heart rate, and her 

average speed) and found that all of our six test users preferred the ‘full adaptation mode’ that took all 

three aspects into account over all other versions of the game, especially the one without any options 

for difficulty adaptation. This may be because the automatic adaptation essentially removed ‘idle states’ 

from the game – if the player’s speed and/or heart rate dropped, the intelligence and speed of her 

opponents automatically increased and thus kept her on her feet 
(86)

. While this is a positive effect, it 

actually contributes to the player’s motivation, but reduces her ability for playing Twostone – playing 

the game then requires her to bring a heart rate monitor. Because we wanted to avoid making the 

game even more complicated to play, we decided to remove all adaptation features and to only leave 

the manual difficulty adaptation via loudspeaker buttons that allows players to dynamically set their 

opponents’ speed and intelligence in five steps. See [KOM-B-0518] for details on this mechanism.  

The main question that remains at this point – and a question that is left unanswered – is, whether 

Twostone-IM increases a player’s motivation for being physically active to such a high degree that this 

balances out the game’s negative impact on her ability. As we are mainly interested in the effects of 

different types of user triggers, selecting Twostone as an embedding application is a choice as good as 

any, as it is not the application itself that we are interested in but rather what triggering mechanics will 

increase the probability of its usage. However, when designing actual interventive measures that are 

meant to reliably increase the prevalence of physical activity, utmost care must be taken that the 

application in question really increases the probability of occurrence and not decreases it by negatively 

affecting the user’s motivation and/or ability for the desired behavior.  

                                                                 
86 The professional games industry refers to the automatic adaptation of a game’s difficulty to a player’s individual skills as ‘rubber 
banding ‘, and this is the subject of much discussion among game designers, games journalists, and gamers. 
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6.3 Perspective: Sliced Serious Games 

During a discussion with my doctoral advisor Ralf Steinmetz and my superior Stefan Göbel on the topic 

of pervasive games in general and pervasive behavior changing games in particular, we came up with 

the notion of Sliced Serious Games. As this may well be the next evolutionary step of context-aware 

mobile games such as Twostone-IM, I find the concept worth mentioning here. 

Behavior changing games are meant to influence the behavior of a person. It seems reasonable to 

assume that the effect of such games will be strongest if they accompany their players pervasively 

throughout the day. However, the constant availability of such games is a double-edged sword. On the 

one hand, it means that they can permanently influence the player and so hopefully increase the 

prevalence of a desired behavior (or help decrease the prevalence of an undesired one). On the other 

hand, this constant availability demands that such games are playable in all the different settings in 

which a player wishes to play them, regardless of whether she is standing in a driving bus while 

surrounded by other people or lying on her couch at home. It is these changing contextual situations 

that distinguish pervasive games from ‘regular’ video games that are being played at home and in front 

of a TV screen or a PC monitor. The player of a pervasive game cannot always dedicate her full 

concentration to the game and the game cannot count on being played for hours in a row. Rather, 

frequent breaks are the norm for pervasive games and such breaks slice the game experience into parts 

of varying length. Highly adaptive pervasive games must be able to adjust to the different settings that 

the player is in and they must always expect to be cut in two by an enforced break. Sliced Serious Games 

have this ability. 

Developing such highly adaptive games brings challenges on both a technical and a conceptual 

level. The technical challenges concern the detection of the player’s current situation (the classical 

problem of context aware applications), the preservation of information across different game sessions 

and, in the case of multiplayer games, the question of how to enable player-to-player communication.  

While client-server-architectures may be the most obvious choice here, other means of connecting 

players to one another may provide for more interesting game experiences. Already a decade ago, 

Sony’s mobile video game console PlayStation Portable allowed a player to connect to another player’s 

nearby device via an ad-hoc connection, thus enabling spontaneous game sessions with complete 

strangers, for instance at an airport. And Sliced Serious Games are also challenging on a conceptual 

level. There is, for example, the question of how game content can be adapted fluently to the situation 

at hand. We envision an artificial intelligence titled ‘game director’ that dynamically assembles game 

content by filling game patterns with predefined game assets (graphics, sounds, texts), and that thus 

manages to create a game experience best suited to the player’s current situation, as detected by the 

game’s underlying context awareness framework. The idea of such a game director is closely related to 

the principle of procedural content generation, as employed by games such as Minecraft or, more 

recently, No Man’s Sky. However, different to Sliced Serious Games, these examples are not context-

sensitive – they do not take the player’s situation into account when they expand their game worlds.  

The recent success of games such as Ingress and Pokemon Go demonstrates the demand of users for 

games that can pervasively integrate themselves into peoples’ everyday lives. And although the idea of 

digital games that blur the borders between the real word and a virtual world can be traced back to a 

time before the availability of modern-day smartphones, this vision only now starts to become 

realizable. Highly adaptive Sliced Serious Games may be the next evolutionary step of such games and 

enable users to integrate behavior changing mechanics into their daily routines fluently and in a non-

disruptive manner, mainly because such games adapt so well to ever changing contexts. We expect that 

in the next few years, a fusion of the concepts of contextual awareness, procedural content generation, 

and behavior change techniques will bring forth this entirely new type of serious gaming
 (87)

. 

                                                                 
87 Also see our 2013-published paper on ‘Calm Gaming’ [DKH+13]. 
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7. Evaluation 

Between August and September of 2016, a field test evaluation of the Twostone Interventive Measure 

(see chapter five) was conducted in the city of Darmstadt, Germany. During a two week period, the 

thirty participants of the study were frequently prompted by their smartphones with triggering 

notifications, asking them whether they wanted to play a session of the mobile exergame Twostone. The 

three hypotheses that were supposed to be tested by the evaluation were as follows: 

(1) ACCURACY ADVANTAGE OF INTELLIGENT TRIGGERS – The first hypothesis was that an 

intelligent and adaptive trigger that uses a set of indicators to identify situations suited for 

intervention attempts would have a higher intervention accuracy (number of successful 

intervention attempts divided by total number of intervention attempts) than a stubborn trigger 

trying to activate the user in fixed intervals. 
 

(2) IMPROVEMENT THROUGH ADDITIONAL INDICATORS – The second hypothesis assumed that a 

high-insight trigger that makes use of a larger number of indicators would have an advantage in 

terms of triggering accuracy over both low- and medium-insight triggers based on (significantly) 

lower numbers of indicators. 
 

(3) HIGHER ACCEPTANCE OF DISCERNING MEASURES – The third hypothesis stated that a user’s 

acceptance for and her overall satisfaction with discerning interventive measures that distinguish 

between opportune and ill-timed interventions would be higher than her acceptance for stubborn 

mechanisms that do not make this differentiation. 

The original plan was to compare all four trigger types as discussed in chapter four, namely a 

stubborn interval-based trigger and three discerning triggers with varying levels of insight. However, 

due to difficulties in the acquisition of suited study participants (see section 7.2) the evaluation had to 

be limited to the comparison of only three triggers instead. In order to ensure sufficiently large study 

groups of at least ten members each, it was decided to exclude the low-insight trigger from the 

evaluation in favor of the other three trigger types. Prior to the beginning of the actual evaluation 

phase, all study participants were supplied with the Twostone-IM as described in chapters five and six, 

consisting of the mobile exergame Twostone and an additional application that added a triggering 

mechanism to the game. Every participant was then assigned to one of three study groups and the 

participants’ triggering applications were remotely set to function as the corresponding  type of trigger. 

In addition, all participants were asked to specify their resting times in the trigger application’s 

configuration menu. On each day of the evaluation, beginning one hour after their specified wake up 

time and until one hour prior to their bedtime, the trigger application released trigger notifications, 

with the exact triggering policy depending on the participant’s respective study group. All such triggers 

appeared as push-up notifications on the user’s smartphone screen and were accompanied by a soft 

vibration of the device and a short beep-sound 
(88)

. If a user chose to confirm the trigger, then a session 

of Twostone was automatically started and the map closest to the user’s current position was loaded. If 

the trigger was denied, then this was registered as an indication that the respective situation was not 

suited for triggering, at least by the two discerning measures. Finally, triggers that were simply ignored 

by the user automatically disappeared after a short period. The only rule that participants were given 

was that they were not allowed to play Twostone unless triggered for doing so. They were also expected 

to not uninstall either of the two applications, although a low number of participants apparently did so 

for short periods of time, judging from their server-based profiles. Three participants dropped out of the 

running evaluation entirely, leaving a total of N=27 field study participants. 

                                                                 
88 The push-up notification stated “Time for Twostone – This is a good opportunity to play Twostone, don’t you think?” and featured 
a button for confirmation and another one for cancelation. Appendix B contains a screenshot showing such a triggering message . 
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7.1 Planning and Conduction 

The field study of Twostone-IM was originally scheduled to begin on Monday, the 15
th

 of August 2016 

and planned to last for three full weeks until Sunday, the 4
th

 of September. During a two-week 

acquisition period, roughly four hundred people were asked to participate, both friends and relatives of 

the evaluation team
 (89)

, as well as students of Darmstadt’s two universities. Candidates were either 

invited personally, or by mail. The invitation flyer that can be found at the beginning of appendix B was 

attached to all mails in German and English language. All candidates were promised two movie theatre 

vouchers as an incentive and informed that these would be handed out at the end of the study. The 

tickets were financed privately by this thesis’ author. 

A total of fifty-six persons announced an interest in participation by sending a mail to the address 

specified in the flyer. These people were considered to be the ‘potential participants’. To all of them, the 

first study manual and the pre-study questionnaire were sent, see appendices B and C
 (90)

. On Sunday, 

the 14
th

 of August, one day prior to the originally planned beginning of the field test, all potential 

participants were informed that due to technical difficulties
 (91)

, the start of the evaluation had to be 

postponed by a week until Monday, the 22
nd

 of August. Because the planned ending of the study had 

already been communicated to the study participants and due to other time constraints, the originally 

envisioned evaluation length of 21 days had thus to be reduced to 14 days. 

On Saturday, the 20
th

 of August, the second manual was sent to all potential participants and they 

were told that only those persons could be included into the study that had worked through both 

manuals and that had the full Twostone Interventive Measure running on their smartphones. At the 

beginning of the two-week evaluation, a total of thirty-two persons had completed this step
 (92)

. Two of 

them were excluded from the study, one because of technical problems and a second one for 

organizational reasons
 (93)

. The remaining N=30 persons were considered to be the actual ‘study 

participants’. The nine pre-study questionnaires received from potential participants who had chosen to 

not take part in the actual evaluation (including those of the two excluded candidates) were dropped. 

The evaluation team then manually allocated the study participants to three groups: The ‘Babbage 

group’, the ‘Von Neumann group’, and the ‘Turing group’. Membership in the Babbage group meant 

that the respective person’s triggering mechanism was remotely set to function as a stubborn, one-hour 

interval trigger, while membership in the Von Neumann group or the Turing group implied the 

provision with a medium-insight or a high-insight trigger, respectively. Due to the low total number of 

participants, a fourth group that was originally planned – the ‘Zuse group’ – had to be canceled. Figure 

11 depicts the evaluation’s originally planned and actual procedures. 

                                                                 
89 The team of five that was supervising the evaluation consisted of this thesis’ author, a master thesis student under the author’s 
supervision [KOM-M-0572], and three of the author’s student assistants (Chris Michel, Gerhard Säckel, and Tobias Welther).  

90 The questionnaires were sent as fillable PDF documents so that they could be answered electronically. 
91 We encountered two main problems during the final testing of the ‘Trigger Application’ (see chapter five for details). The fi rst 
problem was related to the ‘Doze’-mode that had been newly introduced with the latest update of the Android operating system, 
Android 6.0  (API level 23). Doze is a feature meant to reduce the battery consumption of applications constantly running in the 
background, such as the trigger app. This new mechanism affected our application in a way that when the trigger’s sleep time 
exceeded a certain length – apparently five minutes –, then the application did not wake up from its dormant state. We 
discovered this problem only a few hours before the orig inally planned start of the evaluation, but were able to fix it in the 
subsequent days. Our second technical problem that contributed to the decision to delay the evaluation’s start was the significant 
number of interested participants that did not meet the minimum requirements of participation that we had orig inally asked for. 
For reasons related to the specific implementation of the context recog nition framework (see chapters four and five), the 
evaluation flyers stated that participants needed an Android-based smartphone running the Android OS in version 5.0 or above. 
However, the amount of interested participants that did not meet this requirement on the one hand, and the low total number of 
potential participants on the other, led to the decision to delay the evaluation and to use the acquired time for trying to also 
make the triggering application work on Android version 4.0 and above, which was achieved. While this decision may have 
reduced the duration of the evaluation, it also increased the number of participants; this seemed to be a meaningful tradeoff.   

92 We asked for a short feedback by mail when a person had successfully installed and initialized the full Twostone-IM. 
93 The participant that had to be ruled out due to technical problems was using an exotic low-end phone that did not feature the 
same hardware components as most other smartphone models. The second participant was excluded from the study because a 
number divisible by 3 was required in order to evenly distribute the participants among the three groups. Both participants were 
informed of the reasons for their exclusion and each was compensated with the two promised movie vouchers.  
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For technical reasons, the allocation of the study participants to the three evaluation groups was not 

entirely randomized; the exact process is explained in the next section. In the following two weeks, all 

participants were triggered by their respective interventive measures up to twelve times a day with the 

O-period beginning one hour after a participant’s  specified wake up time and ending one hour before 

the start of her specified bedtime. As pointed out previously, the only rule that was given to the study 

participants was that they were not allowed to play the game Twostone unless they had received and 

confirmed a trigger notification. 

Three days before the planed ending of the study, on Thursday afternoon, the application’s server 

experienced a crash. For the time until the server was restored, the study participants were not able to 

play Twostone. After about an hour of the crash, they were informed of the problem by mail. At the 

evening of the same day, the server was successfully restored and the study participants were once 

again able to play. Alas, as was later discovered, all data sets that were uploaded after the crash were 

corrupted and had to be omitted from the analysis. As a consequence, the evaluation was thus 

effectively shortened by another three days and only eleven days of data could be used. 

On the morning of Monday, the 5
th

 of September, the study participants were informed that the 

evaluation had ended and they were sent the second questionnaire that can be found in appendix B. A 

total of N=27 study participants returned this second questionnaire within three days. The other three 

participants (one of them was assigned to the Babbage group, two were members of the Turing group) 

were considered to be drop-outs and their data sets were excluded from the results. 

data analysis

Babbage group
stubborn interval trigger, 25 members 

2016-08-08

Zuse group
low-insight 2-indicator trigger, 25 members 

Von Neumann group
medium-insight 4-indicator trigger, 25 members 

Turing group
high-insight 8-indicator trigger, 25 members 

search for participants

2016-08-15 2016-09-04 2016-09-12

ORIGINAL PLANNING

ACTUAL PROCEDURE

21 days

data analysis

Babbage group
stubborn interval trigger, 9 members 

2016-08-08

Zuse group
low-insight 2-indicator trigger (canceled) 

Von Neumann group
medium-insight 4-indicator trigger, 10 members 

Turing group
high-insight 8-indicator trigger, 8 members 

search for participants

2016-08-22 2016-09-01 2016-09-1211 days

 

Figure 11: Evaluation Timelines. 

FIGURE NOTES – The upper timeline depicts the original planning with four groups and a duration of 21 

days, while the lower timeline shows the actual procedure with three groups and a duration of 11 days.  
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7.2 Problems and Limitations 

The evaluation suffered from several shortcomings and the results presented in the next section need to 

be understood in this light. The known problems and limitations are as follows. 

(1) CHANGE OF DESIRED BEHAVIOR – It was already pointed out that changing the desired behavior 

from originally ‘15 minutes of brisk walking’ to ‘playing a map of Twostone’ is not without problem. 

While the actual physical activity remained practically the same and the two behaviors can thus be 

assumed to have comparable health effects, triggering a user for playing a mobile exergame instead 

of asking her to simply take a walk around the block may have resulted in lower intervention 

success rates (also see chapter six). This  can in part be explained by the quality of the employed 

application. Although Twostone-IM was in development for several years and must be considered to 

be a fairly advanced prototype for ‘scientific standards’, we received multiple bug reports and 

feature requests from our participants. While several users positively remarked on the underlying 

game mechanic, they also negatively commented on the game’s actual realization. The aspects that 

were most frequently criticized were the usability of the game’s level editor, the accuracy of the 

user’s positioning in the virtual world, and the game’s overall polishing and stability. In 

consequence to this early feedback, an updated version of the game was made available prior to the 

start of the actual two week evaluation. However, based on the initial feedback, we (rightly) 

assumed the existence of a negative effect on some participants’ motivation for playing the game. 

This, of course, also affected their inclination to accept intervention attempts intended to make 

them play the game. Furthermore, being a location-based game, Twostone-IM requires a map in the 

player’s vicinity in order to be playable. While we asked all participants to create such maps in 

close vicinity to their homes and their working places  in advance of the actual evaluation phase 
(94)

, 

we did not verify the execution of this step. In addition, triggers reaching a user while she was on 

the move were also likely to be unsuccessful as a confirmation would have required the user to first 

create a map at her location before she was able to play the game. These problems have negatively 

affected the users’ ability for the desired behavior. In sum, this means that for some users, the 

employment of Twostone-IM is likely to have had a negative effect on the probability of successful 

intervention attempts. However, due to the lack of a real control group, we were not able to verify 

this assumption (see below). An additional problem related to the employment of the game 

Twostone-IM consisted in the fact that although we had asked the study participants to not play the 

game without the receival of a trigger notification, we did not establish means to enforce this 

restriction. It cannot be excluded that some participants may have played the game although 

having declined a timely trigger and thus distorted the automatically assessed intervention attempt 

success rates. 
 

(2) LOW TOTAL NUMBER OF PARTICIPANTS – The total number of N=27 participants is too low to 

allow for any firm statistical conclusions. The original planning was for a hundred persons to be 

equally distributed among four groups (see Figure 11), but the actual number of participants even 

enforced the cancelation of one of these planned groups to ensure to not go below a total of ten 

persons per group. Four reasons have been identified to have contributed to the difficulties in the 

acquisition of study participants. The first and possibly the main problem was that the Twostone-IM 

was only available for Android phones – and originally only for Android phones running at least the 

Android operating system in version 5.0. A significant number of persons contacted the evaluation 

team and asked for an “iPhone version” of the Twostone-IM. While the cross development of an 

additional iOS-based version of the application would have been time and cost consuming, in 

hindsight it seems as if these efforts would have been worthwhile. With limiting the availability of 

                                                                 
94 See the two manuals in appendix B for the full instructions that were g iven to the potential participants prior to the beginning 
of the evaluation. 
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Twostone-IM to Android-based devices, a significant number of potential candidates were excluded 

from the study from start. The second problem that may have had an effect on the user acquisition 

was the long duration of the evaluation in conjunction with a relatively small incentive for 

participation. While lab-based evaluations usually do not require more than a single hour to 

participate, we initially asked for three full weeks. This may have put off some of the potential 

candidates
 (95)

. The third obstacle that we found to interfere with our search for study participants 

were privacy concerns. We informed all potential participants that we would make use of their 

smartphone’s internal sensors in order to gather information about their contextual situation. We 

received feedback from a number of candidates that this was the main reason for them to lose their 

interest for taking part in the study. And finally, the timing of the evaluation phase apparently also 

contributed to some potential candidates deciding against a participation (see below). 
 

(3) HOMOGENEITY OF PARTICIPANTS – Related to the problem of the low total number of 

participants is their homogeneity. The vast majority of our participants were between 20 and 39 

years of age, had pursued or were currently pursuing university studies, were fairly active, and 

spent multiple hours per week playing  video games. Furthermore, they had a surprisingly high 

knowledge of technical details, indicating that the majority of them had a technical background 
(96)

. 

The homogeneity of the participants can be considered a double-edged sword, being both a 

problem and a benefit. On the one hand, it reduces the validity of statements about potential 

effects of pervasive smartphone-based interventive measures on the general populace. On the other 

hand, however, it also increases the validity of statements about this specific subgroup. A thorough 

analysis of the group of study participants follows in the next section. 
 

(4) NON-RANDOMIZED ALLOCATION OF PARTICIPANTS – For technical reasons, the allocation of the 

participants to the three trigger groups (see Figure 11) was not entirely randomized. We originally 

asked for participants owning a smartphone with an Android version higher than 5.0 (‘Android 

Lollipop’). The main reason for this was that the context detection framework that was developed 

in part by [KOM-M-0544] and discussed in chapter four made use of certain operating system 

features that were not available in its lower versions. However, we nevertheless received multiple 

requests for participation by users who used Android in a lower version, and the low overall 

number of persons interested in participation did not permit us to easily exclude these persons 

from the evaluation. We thus decided to postpone the start of the evaluation by a week and to use 

this time to adapt the context recognition framework in order to also make it work on older 

devices. As an extensive change to the framework would have required more time and testing, we 

decided for a compromise: All users using a smartphone with Android version 5.0 or below would 

automatically be assigned to the stubborn trigger group (the Babbage group) that did not rely on 

the assessment of indicators and thus not on the critical aspects of the underlying context 

recognition framework. The automatic readout and upload of the users’ OS versions into the 

Twostone-IM database allowed us to separate those users with a lower OS version from the rest. A 

total of seven people had a version equal to or lower than 5.0 and were thus directly assigned to 

the Babbage group. After this step, the other twenty-three evaluation participants were randomly 

distributed among the three groups such that at the end of the procedure, each group had exactly 

                                                                 
95 Other comparable field studies promised significantly larger rewards for participation. [ORN+15] rewarded each of the 41 
participants of their four week study with 100 U.S. dollars and the chance to win one  of two smart watches, [LLL+13] 
compensated each of their 32 study participants with 75 U.S. dollars and the chance to win an iPad. On the other hand, 
[MMH+15] managed to recruit 35 participants for their three week study without the provision of any material incentives. 
96 Question pre02: “How old are you?”, four possible answers with second answer being “20-39”, N=30, M=2.03, SD=±0.18. 
Question pre03: “What’s your highest qualification (including currently pursuing)?”, four possible answers with fourth answer 
being “Bachelor/Master”, N=30, M=3.77, SD=±0.57. Question pre05: “How many hours per week do you do sports or exercise?”, 
four possible answers with third answer being “1-3 hours”, N=30, M=2.20, SD=±0.85. Question pre06: “How many hours per 
week do you spend playing video games?”, four possible answers with third answer being “4-7 hours”, N=30, M=2.63, SD=±1.30. 
Question pre17: “I could explain the difference between an accelerometer and a gyroscope”, five point disagree-agree L ikert scale, 
N=30, M=3.37, SD=±1.77. 
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ten members. Although we consider this interference to be a minor violation of the rules of good 

scientific practice, it is still a noteworthy one.  
 

(5) MISSING CONTROL GROUP – Another cutback caused by the low total number of participants was 

the lack of real control groups, one of which would have been triggered for simply taking a 15 

minute walk, a second one which would have received no interventions at all but would have been 

supplied with the game Twostone, and finally a group that would have used neither of the two 

applications. This would have allowed for more solid assumptions about the relative amount of 

physical activity that could directly be attributed to the interventive measure (if any at all) and also 

for making more clear statements about the effects (positive or negative) that the consolidating 

mechanism Twostone had on the study participants. The most preferable study design would have 

been the alternating assignment of the study participants to the seven different groups 
(97)

 based on 

the latin square principle [Gra48], such that each study participant would have been confronted 

with each variant. This, however, would have required far more participants and a significantly 

longer duration. 
 

(6) SHORT DURATION – The short duration of the study is a problem in so far as the two discerning 

triggering mechanisms were not given the opportunity to completely adapt to their respective 

users. Rather, especially the full-insight triggers of the Turing group were still learning from the 

user feedback and adjusting their ISC-functions when the evaluation ended. As such, both the 

accuracy rates of the intervention attempts and the feedback results from the study participants do 

not entirely reflect the potential quality of this approach. 
 

(7) FRIENDS’ BIAS – As pointed out in the first section, the study participants were both students of 

Darmstadt’s two universities and friends and relatives of the study support team. The relation of 

these groups was about 2:1 in favor of the students. Although all participants were urged to fill 

both questionnaires based on their true opinions and to react to intervention attempts as normally 

as possible, the existence of a ‘friends’ bias’ that may have led to more favorable feedback and 

behavior cannot be fully excluded. However, as we distributed the participants over the three study 

groups as randomly as possible (see above), the effect of such a bias should be equally high or low 

in all three groups. 
 

(8) BAD TIMING – During the study preparation we anticipated several timing -related problems that 

were later confirmed expressis verbis by our study participants (and can also be deduced from the 

evaluation results). To begin with, the evaluation phase overlapped with the exam dates of several 

students. Some of the potential candidates announced a general interest in participants, but 

excused themselves due to vacation plans. And finally, at some days during the evaluation phase, 

the outside temperatures in Western Germany were lying well above average and reached 30 

degrees Celsius (86 Fahrenheit) and more. All these factors are likely to have (negatively) affected 

the motivation and ability of study participants for playing Twostone as well as their tolerance 

towards ill-timed intervention attempts. It must thus be assumed that some of the results presented 

in the next section would differ if a similar evaluation was conducted at another time of year. 

While all these problems limit the significance of the findings presented in the next section, they are 

not so severe as to render them entirely irrelevant. Rather, the results of the study indicate a clear 

tendency of the effectiveness of smartphone-based interventions for physical activity, even if only 

applicable to a very specific group of users. 

                                                                 
97 The seven groups are as follows: The first group being supplied with a stubborn trigger and Twostone, three groups being  
supplied with discerning triggers of varying insight levels and Twostone, a control group with discerning interventions of any type 
but without Twostone, its ‘counterpart’ with Twostone but without a trigger, and finally a group with neither of the two apps but 
means to assess its participant’ s overall activity levels. 
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7.3 Results 

At the end of the evaluation phase, the automatically logged and uploaded reactions of our study 

participants to their respective measures’ intervention attempts revealed the following numbers
 (98)

. The 

members of the Babbage group, who had been supplied with a stubborn one -hour trigger, had 

confirmed a total of 20 interventions and declined 180, which equals an overall accuracy of 0.10. The 

study participants that belonged to the Von Neumann group who had been supplied with a medium-

insight measure
 (99)

 had confirmed 33 interventions and declined 152, resulting in an accuracy of 0.18. 

Finally, the members of the Turing group who had tested a high-insight measure
 (100)

 had confirmed 19 

and declined 224 triggers, which means an accuracy of 0.08. In regard to the three initially stated 

hypotheses, this implies that the first hypothesis – discerning measures have an accuracy advantage 

over stubborn measures – had been partly confirmed by the study, while the second hypothesis – 

additional indicators increase accuracy – had been disproved. 

These results require some explanation. Most notably, the numbers appear to be fairly low. For 

instance, given that the Babbage group had nine members (one of the initially ten members dropped 

out of the running evaluation) and was supplied with a stubborn one-hour trigger, then during a period 

of eleven days a total of roughly 9 (members) * 11 (days) * 12 (triggers per day) = 1,188 intervention 

attempts should have been made in this group, under the assumption that all participants had defined 

their sleeping times in a way that they allowed for the initiation of twelve triggers per day. However, 

only about a tenth of these triggers had been answered by the study participants, and similar 

proportions are encountered with the other two groups. This phenomenon may have been caused by 

several different factors. First, it can indeed not be excluded that some study participants defined their 

‘awake times’ so narrowly that these only allowed for a small number of triggers per day. Second, 

several study participants confessed that their triggering applications were temporarily disabled, either 

by accident 
(101)

 or on purpose. And finally, almost all participants confirmed that they had occasionally 

ignored intervention attempts and assumed to also have missed a few
 (102)

. Especially the last of the 

named problems is worthy of investigation and should be addressed by further research. In the context 

of this work, the question of how to trigger the user was essentially ignored, which, according to the 

evaluation results, may be problematic. But as all of these problems affected all three groups, the 

numbers stated above can be considered to correctly reflect the accuracy proportions between the three 

groups – which leads to the question, why the accuracy of the stubborn measure used by the Babbage 

group was surprisingly high, and why the accuracy of the high-insight measure that the Turing group 

was supplied with so low. 

Figure 12 shows that this difference cannot be accredited to significant differences in the study 

group compositions, although it must be remarked that by chance, the majority of the female study 

participants were assigned to the Babbage group, while the Turing group may have only consisted of 

male participants (one member of this group did not report his or her gender). The leftmost bars of the 

figure display the mean responses to the question, how much a participant enjoyed playing Twostone, a 

factor that can be assumed to have had a significant influence on the probability of successful 

                                                                 
98 The numbers for discerning measures include confirmed and declined learning notifications. 

99 The medium-insight measure was based on the user’s location, activity, the device’s battery level, and the ambient noise.  

100 In addition to the indicators employed by the medium-insight measure, the high-insight measure of the Turing group also 
relied on the detection of the local weather conditions, the outdoor temperature, the number of steps that already taken during 
the day and whether or not she had enabled her smartphone’s do-not-disturb-mode for making intervention decisions.  

101 As pointed out before, the triggering application was implemented to function as so-called ‘background application’ and thus 
capable of changing into a dormant state. It was also programmed to automatically start itself when the user turned on her 
device after it had been switched off. However, we found this functionality not to be reliable on all types of devices; especially 
Samsung devices are problematic in this regard in that they prevent such background applications to automatically start 
themselves. About a quarter of our participants used Samsung smartphones and they were informed about this problem. Still, it  
must be assumed that at least a few of them accidentally left the triggering application disabled after having switched their 
devices off and on again, until they thought of the evaluation and started the triggering application by hand.  

102 Question pos36: “I sometimes did not notice the trigger”, five point disagree-agree L ikert scale, 𝑁 = 27, M = 3.22, SD =
± 1.53, question pos37: “I sometimes ignored the trigger”, five point disagree-agree L ikert scale, 𝑁 = 27, M = 3.74, SD = ± 1.46. 
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interventions. As can be seen, the differences between the three groups were small here, while in 

contrast, we find significant differences for the questions of how annoying the intervention attempts 

were considered by the participants (pos32), and whether they believed that the application selected 

good opportunities for such interventions (pos34). While the medium-insight trigger of the Von 

Neumann group performs best for all questions, both the comparably high approval for the stubborn 

trigger and the low values of the high-insight trigger may be found to be irritating. 

One possible explanation for the low performance of the high-insight measure is that it was not 

given sufficient time to successfully adapt to the respective users. As, due to its larger number of 

possible indicator value combinations, it had much more situations to learn than the medium-insight 

trigger, it may still have adjusted its confidence values at the time when the evaluation ended. In 

addition, its apparent ill-timed interventions may also be attributed to a too relaxed confidence gate 

(see chapter four). Another explanation for the bad performance of the high-insight measure may be 

that one or multiple of the additionally employed indicators were not as relevant to the user’s decision 

as assumed. As such, they would only have served to complicate the development of a sound 

intervention strategy. In contrast, the comparably high approval for the stubborn-trigger may be in part 

due to its predictability. We had asked our study participants to not play Twostone unless having been 

triggered for doing so. In this regard, users may have utilized the stubborn measure’s predictability to 

their advantage and actively awaited a trigger in order to be able to play the game. 
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Figure 12: Mean Responses to Selected Trigger-related Questions. 

FIGURE NOTES – The figure shows the mean responses to selected questions from the post-study 

questionnaire, along their associated standard deviations. The values were calculated separately for the 

members of each of the three study groups, whereby the bars marked with ‘B’ visualize the answers of the 

members of the Babbage group (stubborn trigger, N=9), the bars marked with ‘N’ represent those of 

members of the Von Neumann group (medium-insight discerning trigger, N=10), and the bars marked 

with a ‘T’ show the answers of the members of the Turing group (high-insight discerning trigger, N=8). The 

five questions were as follows. Question pos20: “I enjoy playing Twostone”, question pos32: “The trigger 

was annoying”, question pos34: “The trigger selected good opportunities for playing”, pos38: “Without the 

trigger, I would have played less Twostone”, and pos39: “The trigger needs to be more intelligent”.  
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The comparably high approval rates found in the Babbage and the Von Neumann groups make it 

difficult to draw a clear conclusion on whether or not the third hypothesis  – whether discerning 

measures have higher acceptance rates than stubborn measures – was confirmed by the evaluation. 

Although the stubborn trigger was indeed found to be slightly more annoying than the medium-insight 

measure, the results are ‘too close to call’. It thus seems reasonable to leave the third hypothesis 

undecided and open for further investigation. 

An interesting finding of the evaluation came from the analysis of the correlation coefficients that 

quantify the dependencies between the responses to the second questionnaire (see appendix C for both 

questionnaires and see appendix A for the full listings of all response means and all statistically relevant 

correlations). Strong and statistically relevant correlation values were found to exist between a person’s 

disposition, in this context whether or not she enjoys being outside and running, her attitude towards 

the activity in question, here playing the mobile exergame Twostone, and the success of interventions. 

Persons who are likely to enjoy running as a sport are also likely to enjoy playing Twostone and either 

of the two traits increases the probability of successful interventions. This finding is highly satisfactory, 

as it indicates that interventive measures can increase the prevalence of a desired behavior, at least if 

the target user is sufficiently motivated for this activity. Combined with the comparably high overall 

accuracy of the medium-insight trigger, this means that such technology-based discerning measure can 

be employed to assist users in overcoming perceived barriers for physical activity and to thus increase 

their chances of staying healthy.    
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Figure 13: Disposition, Activity, and Interventions. 

FIGURE NOTES – The figure shows the interdependence between a person’s disposition, the desired 

behavior, and the success of intervention attempts. Displayed are only statistically relevant 

correlations (p<.05). 
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8. Discussion and Outlook 

Performing frequent physical activity of sufficient duration and intensity is essential for the 

preservation of one’s health and wellbeing , but large parts of the European and the US-American 

population perceive barriers that prevent them from doing so. Of the three main types of such barriers, 

the lack of time appears to be the biggest problem in modern-day societies. Pervasive technology-based 

interventive measures that are capable of pointing  out opportunities for a few minutes of medium-

intensity physical activity such as brisk walking may be able to help counteract this problem. In recent 

years, first commercially available products such as the Apple Watch have appeared that aim to do just 

this. However, as of today, the majority of such devices and applications are little more than stubborn 

reminders that will simply notify their users in fixed time intervals and usually do not take into account 

the specific circumstances that the user is currently in. As such, they will also try to reach out to the 

user when she is neither able nor motivated for performing the respective activity.  

This thesis is focused on the development of a theoretical model for a more advanced type of such 

interventive measures: Discerning measures, context-aware devices and applications that base their 

decisions of whether or not to trigger the user on a number of contextual parameters and that are 

capable of withholding intervention attempts if given reason to believe that these will not be successful. 

In a two-week field study with almost thirty participants, the performance of such discerning measures 

was compared to the performance of a stubborn, interval-based variant, and the study revealed that 

discerning measures can indeed achieve higher accuracy rates and approval ratings than their stubborn 

counterparts – but only, if they are well designed. The theoretical concept presented in this thesis lays 

the foundation for the creation of such well-designed discerning interventive measures. But while the 

thesis’ main goal, the verification of the model’s validity, was achieved, not all of the encountered 

problems were solved; instead, several additional questions emerged. A good part of the sidestepped 

problems is thereby related to non-technical questions that demand the attention of domain experts 

from other fields of study. Among these is the investigation of the number of intervention attempts that 

a user can be expected to tolerate. The evaluation results of the field study indicate that the upper limit 

of twelve attempts per day that was employed by the tested prototypes may indeed have been much too 

high. As a related problem, the question of how triggering notifications should be designed was also 

largely ignored, which again was proven to be problematic by the study results.  

The majority of opportunities for further research, however, are related to the decision making 

procedure of discerning measures. For example, finding ways of efficiently overcoming the cold start 

problem that affects all discerning measures is crucial for shortening their adaptation phases. As during 

this initial period of its employment, a discerning measure still learns from the user’s reactions to its 

intervention attempts, its overall accuracy will be low and as such, the risk of annoying the user to a 

point that she decides to get rid of the measure will be the highest. Consequently, approaches for 

shortening this phase to an absolute minimum are highly desirable. Analogously, finding strategies for 

minimizing the problem of limited predictability by making best use of the limited number of allowed 

intervention attempts is another pressing issue. If granted only a few ‘free throws’ during a specific 

period, how can the measure identify the most promising situations for making use of these? However, 

for many more years to come, the problem of partial observability will remain to be the main challenge 

of the design of discerning measures. Given the current state of the art, many of the parameters that 

will affect a user’s ability and/or motivation for a desired behavior such as brisk walking are simply not 

observable with technical means. While general advances in the field of contextual awareness will also 

serve to reduce the severity of this problem, finding workarounds that can compensate the lack of 

insight in other ways promises to improve the overall accuracy of discerning measures much more 

quickly.  
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 p.23 

FBM Fogg Behavior Model. Created by American psychologist B.J. Fogg, explains the 

three requirements that need to be met in order for a person to show a target 

behavior (a sufficiently high ability, sufficiently high motivation, and a well-timed 

trigger). Also see à BFP function. 

 

 p.7 

ISC Intervention Success Confidence function. States an observer’s confidence in an 

intervention attempt to be successful in changing the target person’s original 

behavior to the desired behavior at the observed point in time. Aims to 

approximate the à ISD function. 

 

 p.24 

ISD Intervention Success Determination function. States the actual chance of an 

intervention attempt to successfully change a target person’s original behavior to 

a desired behavior at a specific point in time. Is always either 1 or 0. Dependent 

on the à BFP function and approximated by the à ISC function. 
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MET Metabolic Equivalent of Tasks. A convention that specifies the intensities of 

physical activities by assigning ‘MET values’ to them. The current hierarchy 
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MET value of 0.9 to the most intense activity – running at 14 mph – with an 

associated MET value of 23.0. The intensities of all other physical activities lie 

somewhere in between these two extremes. 

 

 p.1 

MOQ Missed Opportunities Quote. Specifies the percentage of triggering opportunities 

that an interventive measure misses due to a disruption of access to the target 

person. The MOQ is complementary to the PQ.  

 

 p.27 

PQ Pervasiveness Quote. The relative amount of triggering opportunities during 

which an interventive measure has access to the person whose behavior is 

supposed to be changed. The PQ is complementary to the MOQ.  

 

 p.28 

RMR Resting Metabolic Rate. A special à MET value that specifies the intensity of 

sitting still. Provides the baseline for defining the relative intensities of other 

activities. 

 

 p.2 

TOC Total Opportunities Counter. The total number of opportunities arising during a 

specific time period for changing the target person’s behavior in the desired way. 

  

 p.26 

WHO World Health Organization.  p.1 
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Table 9: Results of the Pre-Study Questionnaire (1/2). 

Question Result 

  ID Text Options N M SD 

pre01 Boy or girl? 
2 options 

(m/f) 
28 

18 male, 10 female, 

2 not reported 

pre02 How old are you? 
4 options 

(low to high) 
30 2.03 0.18 

pre03 
What’s your highest qualification (including 

currently pursuing?) 

4 options 

(low to high) 
30 3.77 0.57 

pre04 
How many hours per week do you spend 

working or studying? 

4 options 

(low to high) 
30 2.40 0.72 

pre05 
How many hours per week do you do sports 

or exercise? 

4 options 

(low to high) 
30 2.20 0.85 

pre06 
How many hours per week do you spend 

playing video games? 

4 options 

(low to high) 
30 2.63 1.30 

pre07 
How many hours per week do you spend 

watching TV (including Netflix, etc.)? 

4 options 

(low to high) 
30 2.73 1.17 

pre08 
How many hours per week do you spend 

with other hobbies (excluding TV/PC)? 

4 options 

(low to high) 
30 2.67 1.03 

pre09 
I would like to exercise more, but I simply 

lack the time. 

5 point Likert 

disagree-agree 
30 2.70 1.42 

pre10 Honestly: I was never into sports. 
5 point Likert 

disagree-agree 
30 2.13 1.46 

pre11 
I would like to exercise more, but the 

conditions are not ideal. 

5 point Likert 

disagree-agree 
30 3.10 1.30 

pre12 If I do sports, I prefer the outside to indoors. 
5 point Likert 

disagree-agree 
30 3.33 1.63 

pre13 
Computers and technical stuff are not my 

thing. 

5 point Likert 

disagree-agree 
30 1.60 1.16 

pre14 
I’m always carrying my smartphone with me 

and I take it everywhere. 

5 point Likert 

disagree-agree 
30 4.67 0.66 

pre15 I occasionally play games on my smartphone. 
5 point Likert 

disagree-agree 
30 3.53 1.33 

pre16 
My life got a lot more hectic during the last 

ten years. 

5 point Likert 

disagree-agree 
30 3.93 1.31 

pre17 
I could explain the difference between an 

accelerometer and a gyroscope. 

5 point Likert 

disagree-agree 
30 3.37 1.77 

 

(continued on next page) 
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Table 11: Pre-Study Correlations (1/2). 

Strong Correlations 

Item A Item B r 

pre01 Is female pre13 Lacks technical interest +.63 

pre04 Works a lot pre16 Feels stressed +.65 

pre06 Plays a lot of video games pre13 Lacks technical interest -.63 

pre13 Lacks technical interest pre17 Has technical knowledge -.63 

Moderate Correlations  

Item A Item B r 

pre01 Is female pre06 Plays lots of video games -.54 

pre01 Is female pre17 Has technical knowledge -.56 

 

(continued on next page) 
 

 

 

 

 

 

 

 

 

 

Table 10: Results of the Pre-Study Questionnaire (2/2). 

Question Result 

  ID Text Options N M SD 

pre18 [How familiar are you with] Twostone 
5 options 

(low to high) 
30 1.47 0.82 

pre19 [How familiar are you with] Pokemon Go 
5 options 

(low to high) 
30 3.30 1.39 

pre20 [How familiar are you with] Ingress 
5 options 

(low to high) 
30 1.97 0.93 

pre21 [How familiar are you with] Zombies, Run! 
5 options 

(low to high) 
30 1.60 0.86 

pre22 
[How familiar are you with]  

Wii Fit or Wii Sports 

5 options 

(low to high) 
30 3.27 0.91 

pre23 
[How familiar are you with] Xbox Fitness, 

PlayStation Move Fitness or Zumba 

5 options 

(low to high) 
30 1.97 0.67 

pre24 [How familiar are you with] Minecraft 
5 options 

(low to high) 
30 3.03 1.07 

pre25 
[How familiar are you with]  

Grand Theft Auto V 

5 options 

(low to high) 
30 2.63 1.19 
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Table 12: Pre-Study Correlations (2/2). 

Moderate Correlations  (cont’d) 

Item A Item B r 

pre01 Is female pre20 Played Ingress -.43 

pre06 Plays a lot of video games pre17 Has technical knowledge +.49 

pre06 Plays a lot of video games pre25 Played GTA V +.42 

pre08 Spends time with other hobbies pre09 Lacks time for sport -.40 

pre09 Lacks time for sport pre13 Lacks technical interest +.51 

pre09 Lacks time for sport pre16 Feels stressed +.55 

pre13 Lacks technical interest pre25 Played GTA V -.41 

pre18 Played Twostone pre21 Played Zombies, Run! +.42 

pre20 Played Ingress pre24 Played Minecraft +.49 

Weak Correlations 

Item A Item B r 

pre04 Works a lot  pre06 Plays a lot of video games -.39 

pre05 Spends much time doing sport pre10 Lacks motivation for sport -.39 

pre06 Plays a lot of video games pre20 Played Ingress +.36 

pre13 Lacks technical interest pre23 Played PlayStation Move +.38 

pre18 Played Twostone pre20 Played Ingress +.38 

pre20 Played Ingress pre21 Played Zombies, Run! +.37 

 

Table lists only statistically relevant correlations (p<.05) 

Correlation categories according to [Eva96] 
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Table 13: Results of the Post-Study Questionnaire (1/3). 

Question Result 

ID Text Options N M SD 

pos01 Boy or girl? 
2 options 

(m/f) 
25 

16 male, 9 female, 

2 not reported 

pos02 How old are you? Ordinal 27 26.41 7.28 

pos03 What name did appear in your Trigger App? 3 options 27 
9 Babbage, 10 

Neumann, 8 Turing 

pos04 I have a lot of video gaming experience. 
5 point Likert 

disagree-agree 
27 3.56 1.45 

pos05 I’m a sportsperson. 
5 point Likert 

disagree-agree 
27 3.11 1.50 

pos06 
I’m kind of a geek and love to have new 

technical stuff. 

5 point Likert 

disagree-agree 
27 3.70 1.20 

pos07 I’m extroverted. 
5 point Likert 

disagree-agree 
27 3.00 0.96 

pos08 
I’m very busy at the moment (with work, 

exams, etc.). 

5 point Likert 

disagree-agree 
27 4.07 1.24 

pos09 I try to eat healthy. 
5 point Likert 

disagree-agree 
27 3.74 1.10 

pos10 I like being outside. 
5 point Likert 

disagree-agree 
27 3.74 1.06 

pos11 I dislike sweating. 
5 point Likert 

disagree-agree 
27 3.22 1.53 

pos12 I always have my smartphone with me. 
5 point Likert 

disagree-agree 
27 4.59 0.50 

pos13 I have enough time for sport. 
5 point Likert 

disagree-agree 
27 3.15 1.38 

pos14 I like doing sport. 
5 point Likert 

disagree-agree 
27 4.04 1.06 

pos15 I like to go running. 
5 point Likert 

disagree-agree 
27 2.59 1.67 

pos16 
Sport is a bit complicated for me at the 

moment (driving to sports range, etc.). 

5 point Likert 

disagree-agree 
27 2.96 1.29 

pos17 I prefer team sports. 
5 point Likert 

disagree-agree 
27 2.63 1.62 

pos18 I am a competitive person. 
5 point Likert 

disagree-agree 
27 3.00 1.41 

 

(continued on next page) 
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Table 14: Results of the Post-Study Questionnaire (2/3). 

Question Result 

ID Text Options N M SD 

pos19 I should probably do more sport. 
5 point Likert 

disagree-agree 
27 3.56 1.22 

pos20 I enjoy playing Twostone. 
5 point Likert 

disagree-agree 
27 2.48 1.19 

pos21 I will keep playing Twostone. 
5 point Likert 

disagree-agree 
27 2.07 1.07 

pos22 
I think Twostone can help me to stay active 

and healthy. 

5 point Likert 

disagree-agree 
27 2.26 1.26 

pos23 
I think Twostone could help others to stay 

active and healthy. 

5 point Likert 

disagree-agree 
27 3.70 0.95 

pos24 Twostone is for kids. 
5 point Likert 

disagree-agree 
27 3.41 1.19 

pos25 Twostone is for adults. 
5 point Likert 

disagree-agree 
27 3.41 0.97 

pos26 Twostone is for seniors. 
5 point Likert 

disagree-agree 
27 2.26 0.94 

pos27 I like playing my own maps. 
5 point Likert 

disagree-agree 
27 3.22 1.28 

pos28 
I like playing maps that were made by 

others. 

5 point Likert 

disagree-agree 
27 2.81 1.11 

pos29 
Twostone needs to be improved in regard to 

usability and bugs. 

5 point Likert 

disagree-agree 
27 3.67 1.00 

pos30 
I would probably play a game like Twostone 

if it was of higher quality. 

5 point Likert 

disagree-agree 
27 2.85 1.35 

pos31 Playing Twostone is too complicated. 
5 point Likert 

disagree-agree 
27 3.11 1.25 

pos32 The trigger was annoying. 
5 point Likert 

disagree-agree 
27 3.89 1.22 

pos33 
The trigger was more annoying during the 

first week. 

5 point Likert 

disagree-agree 
27 2.63 1.42 

pos34 
The trigger selected good opportunities for 

playing. 

5 point Likert 

disagree-agree 
27 2.37 1.11 

pos35 The trigger improved over time. 
5 point Likert 

disagree-agree 
27 2.96 1.16 

pos36 I sometimes did not notice the trigger. 
5 point Likert 

disagree-agree 
27 3.22 1.53 

 

(continued on next page) 
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Table 16: Post-Study Correlations (1/6). 

Very Strong Correlations  

Item A Item B r 

pos05 Has athletic self-perception pos14 Has sport motivation +.80 

Strong Correlations 

Item A Item B r 

pos05 Has athletic self-perception pos19 Feels lack of exercise -.69 

pos10 Has outdoor affinity pos15 Enjoys running +.63 

pos13 Has time for sport pos16 Lacks ability for sport -.67 

pos20 Enjoys Twostone pos21 Is strongly motivated by Twostone +.73 

pos20 Enjoys Twostone pos22 Thinks Twostone is good for self +.66 

pos20 Enjoys Twostone pos27 Enjoys playing own maps +.63 

pos20 Enjoys Twostone pos38 Reports successful interventions +.63
*
 

pos23 Thinks Twostone is good for others pos24 Thinks Twostone is for kids +.66 

pos26 Thinks Twostone is for seniors pos33 Got used to trigger  +.71
†
 

 

(continued on next page) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15: Results of the Post-Study Questionnaire (3/3). 

Question Result 

ID Text Options N M SD 

pos37 I sometimes ignored the trigger. 
5 point Likert 

disagree-agree 
27 3.74 1.46 

pos38 
Without the trigger, I would have played less 

Twostone. 

5 point Likert 

disagree-agree 
27 2.59 1.45 

pos39 The trigger needs to be more intelligent. 
5 point Likert 

disagree-agree 
27 3.70 0.87 

pos40 
The trigger needs to be improved in regard 

to usability and bugs. 

5 point Likert 

disagree-agree 
27 3.37 1.08 
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Table 17: Post-Study Correlations (2/6). 

Strong Correlations (cont’d) 

Item A Item B r 

pos34 Thinks triggers were reasonable pos35 Thinks trigger adapted over time +.64
†
 

pos34 Thinks triggers were reasonable pos38 Reports successful interventions +.62
†
 

Moderate Correlations  

Item A Item B r 

pos01 Is female pos04 Has video game expertise -.44 

pos01 Is female pos06 Has technical interest -.49 

pos04 Has video game expertise pos10 Has outdoor affinity -.48 

pos05 Has athletic self-perception pos11 Has sweating aversion -.48 

pos05 Has athletic self-perception pos13 Has time for sport +.57 

pos05 Has athletic self-perception pos16 Lacks ability for sport -.46 

pos05 Has athletic self-perception pos17 Prefers team sports +.44 

pos05 Has athletic self-perception pos18 Has competitive character +.43 

pos05 Has athletic self-perception pos23 Thinks Twostone is good for others +.43 

pos08 Feels stressed pos13 Has time for sport -.43 

pos08 Feels stressed pos32 Was annoyed by trigger +.44
*
 

pos09 Has healthy lifestyle pos21 Is strongly motivated by Twostone +.41 

pos09 Has healthy lifestyle pos22 Thinks Twostone is good for self +.41 

pos09 Has healthy lifestyle pos23 Thinks Twostone is good for others +.48 

pos09 Has healthy lifestyle pos26 Thinks Twostone is for seniors +.44 

 

(continued on next page) 
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Table 18: Post-Study Correlations (3/6). 

Moderate Correlations (cont’d) 

Item A Item B r 

pos10 Has outdoor affinity pos11 Has sweating aversion -.43 

pos10 Has outdoor affinity pos34 Thinks triggers were reasonable +.41
†
 

pos11 Has sweating aversion pos14 Has sport motivation -.41 

pos11 Has sweating aversion pos16 Lacks ability for sport +.44 

pos11 Has sweating aversion pos28 Enjoys playing maps by others +.43 

pos13 Has time for sport pos14 Has sport motivation +.55 

pos13 Has time for sport pos19 Feels lack of exercise -.55 

pos13 Has time for sport pos30 Has interest in quality exergame +.40 

pos14 Has sport motivation pos15 Enjoys running +.40 

pos14 Has sport motivation pos16 Lacks ability for sport -.42 

pos14 Has sport motivation pos17 Prefers team sports +.46 

pos14 Has sport motivation pos19 Feels lack of exercise -.58 

pos15 Enjoys running pos16 Lacks ability for sport -.44 

pos15 Enjoys running pos20 Enjoys Twostone +.49 

pos15 Enjoys running pos34 Thinks triggers were reasonable +.50
†
 

pos15 Enjoys running pos38 Reports successful interventions +.49
*
 

pos16 Lacks ability for sport pos19 Feels lack of exercise +.55 

pos17 Prefers team sports pos18 Has competitive character +.59 

 

(continued on next page) 
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Table 19: Post-Study Correlations (4/6). 

Moderate Correlations (cont’d) 

Item A Item B r 

pos19 Feels lack of exercise pos38 Reports successful interventions -.41
*
 

pos20 Enjoys Twostone pos23 Thinks Twostone is good for others +.40 

pos20 Enjoys Twostone pos24 Thinks Twostone is for kids +.54 

pos20 Enjoys Twostone pos26 Thinks Twostone is for seniors +.40 

pos20 Enjoys Twostone pos31 Thinks Twostone is complicated -.45 

pos21 Is strongly motivated by Twostone pos22 Thinks Twostone is good for self +.58 

pos21 Is strongly motivated by Twostone pos23 Thinks Twostone is good for others +.55 

pos21 Is strongly motivated by Twostone pos24 Thinks Twostone is for kids +.58 

pos21 Is strongly motivated by Twostone pos26 Thinks Twostone is for seniors +.51 

pos21 Is strongly motivated by Twostone pos27 Enjoys playing own maps +.55 

pos21 Is strongly motivated by Twostone pos31 Thinks Twostone is complicated -.58 

pos22 Thinks Twostone is good for self pos23 Thinks Twostone is good for others +.55 

pos22 Thinks Twostone is good for self pos26 Thinks Twostone is for seniors +.52 

pos22 Thinks Twostone is good for self pos31 Thinks Twostone is complicated -.58 

pos22 Thinks Twostone is good for self pos33 Got used to trigger +.51
†
 

pos22 Thinks Twostone is good for self pos34 Thinks triggers were reasonable +.42
†
 

pos22 Thinks Twostone is good for self pos38 Reports successful interventions +.48
*
 

pos23 Thinks Twostone is good for others pos26 Thinks Twostone is for seniors +.47 

 

(continued on next page) 
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Table 20: Post-Study Correlations (5/6). 

Moderate Correlations (cont’d) 

Item A Item B r 

pos23 Thinks Twostone is good for others pos31 Thinks Twostone is complicated -.58 

pos23 Thinks Twostone is good for others pos33 Got used to trigger +.57
†
 

pos23 Thinks Twostone is good for others pos34 Thinks triggers were reasonable +.43
†
 

pos23 Thinks Twostone is good for others pos35 Thinks trigger adapted over time +.55
†
 

pos23 Thinks Twostone is good for others pos38 Reports successful interventions +.41
*
 

pos24 Thinks Twostone is for kids pos26 Thinks Twostone is for seniors +.45 

pos25 Thinks Twostone is for kids pos27 Enjoys playing own maps +.42 

pos24 Thinks Twostone is for kids pos33 Got used to trigger +.46
†
 

pos24 Thinks Twostone is for kids pos39 Thinks trigger lacks intelligence +.53
†
 

pos26 Thinks Twostone is for seniors pos28 Enjoys maps made by others +.52 

pos26 Thinks Twostone is for seniors pos40 Thinks Trigger lacks polish +.47
*
 

pos27 Enjoys playing own maps pos31 Thinks Twostone is complicated -.52 

pos29 Thinks Twostone lacks polish pos30 Has interest in quality exergame +.45 

pos29 Thinks Twostone lacks polish pos31 Thinks Twostone is complicated -.49 

pos29 Thinks Twostone lacks polish pos39 Thinks Trigger lacks intelligence +.41
†
 

pos29 Thinks Twostone lacks polish pos40 Thinks Trigger lacks polish +.40
*
 

pos30 Has interest in quality exergame pos31 Thinks Twostone is complicated -.45 

pos31 Thinks Twostone is complicated pos35 Thinks trigger adapted over time -.47
†
 

 

(continued on next page) 
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Table 21: Post-Study Correlations (6/6). 

Moderate Correlations (cont’d) 

Item A Item B r 

pos33 Got used to trigger pos34 Thinks triggers were reasonable +.43
†
 

pos33 Got used to trigger pos35 Thinks trigger adapted over time +.55
†
 

pos33 Got used to trigger pos38 Reports successful interventions +.49
†
 

pos34 Thinks triggers were reasonable pos39 Thinks trigger lacks intelligence -.48
†
 

pos35 Thinks trigger adapted over time pos38 Reports successful interventions +.47
†
 

Weak Correlations  

Item A Item B r 

pos04 Has video game expertise pos06 Has technical interest +.38 

pos05 Has athletic self-perception pos38 Reports successful interventions +.39 

pos06 Has technical interest pos27 Enjoys playing own maps +.39 

pos08 Feels stressed pos37 Ignored trigger +.39
*
 

pos11 Has sweating aversion pos13 Has sufficient time for sport -.38 

pos15 Enjoys running pos22 Thinks Twostone is good for self +.38 

pos16 Lacks ability for sport pos33 Got used to trigger -.39
†
 

pos16 Lacks ability for sport pos34 Thinks triggers were reasonable -.39
†
 

pos20 Enjoys Twostone pos33 Got used to trigger +.38
†
 

pos22 Thinks Twostone is good for self pos24 Thinks Twostone is for kids +.39 

 

Table lists only statistically relevant correlations (p<.05) 

Correlation categories according to [Eva96] 
 

* 
Denotes correlation coefficients with somewhat limited expressiveness due to the  

aggregation of three trigger groups (concerns pos32, pos37, pos38, pos40) 
 

†
 Denotes correlation coefficients with highly limited expressiveness due to the  

aggregation of three trigger groups (concerns pos33, pos34, pos35, pos39) 
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Table 22: Results of the Post-Study Questionnaire – Babbage only (1/3). 

Question Result 

ID Text Options N M SD 

pos01 Boy or girl? 
2 options 

(m/f) 
8 

3 male, 5 female, 

1 not reported 

pos02 How old are you? Ordinal 9 24.22 3.87 

pos03 What name did appear in your Trigger App? 3 options 9 9 Babbage 

pos04 I have a lot of video gaming experience. 
5 point Likert 

disagree-agree 
9 3.56 1.24 

pos05 I’m a sportsperson. 
5 point Likert 

disagree-agree 
9 3.33 1.50 

pos06 
I’m kind of a geek and love to have new 

technical stuff. 

5 point Likert 

disagree-agree 
9 3.33 1.50 

pos07 I’m extroverted. 
5 point Likert 

disagree-agree 
9 2.56 1.01 

pos08 
I’m very busy at the moment (with work, 

exams, etc.). 

5 point Likert 

disagree-agree 
9 3.67 1.32 

pos09 I try to eat healthy. 
5 point Likert 

disagree-agree 
9 3.56 1.33 

pos10 I like being outside. 
5 point Likert 

disagree-agree 
9 3.89 1.05 

pos11 I dislike sweating. 
5 point Likert 

disagree-agree 
9 2.78 1.56 

pos12 I always have my smartphone with me. 
5 point Likert 

disagree-agree 
9 4.78 0.44 

pos13 I have enough time for sport. 
5 point Likert 

disagree-agree 
9 3.67 1.00 

pos14 I like doing sport. 
5 point Likert 

disagree-agree 
9 4.22 0.97 

pos15 I like to go running. 
5 point Likert 

disagree-agree 
9 2.56 1.74 

pos16 
Sport is a bit complicated for me at the 

moment (driving to sports range, etc.). 

5 point Likert 

disagree-agree 
9 2.78 1.30 

pos17 I prefer team sports. 
5 point Likert 

disagree-agree 
9 2.67 1.87 

pos18 I am a competitive person. 
5 point Likert 

disagree-agree 
9 3.22 1.30 

 

(continued on next page) 
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Table 23: Results of the Post-Study Questionnaire – Babbage only (2/3). 

Question Result 

ID Text Options N M SD 

pos19 I should probably do more sport. 
5 point Likert 

disagree-agree 
9 3.44 1.24 

pos20 I enjoy playing Twostone. 
5 point Likert 

disagree-agree 
9 2.67 1.50 

pos21 I will keep playing Twostone. 
5 point Likert 

disagree-agree 
9 2.22 1.09 

pos22 
I think Twostone can help me to stay active 

and healthy. 

5 point Likert 

disagree-agree 
9 2.11 1.27 

pos23 
I think Twostone could help others to stay 

active and healthy. 

5 point Likert 

disagree-agree 
9 3.33 1.12 

pos24 Twostone is for kids. 
5 point Likert 

disagree-agree 
9 3.33 1.22 

pos25 Twostone is for adults. 
5 point Likert 

disagree-agree 
9 3.11 1.05 

pos26 Twostone is for seniors. 
5 point Likert 

disagree-agree 
9 2.44 1.01 

pos27 I like playing my own maps. 
5 point Likert 

disagree-agree 
9 3.11 1.54 

pos28 
I like playing maps that were made by 

others. 

5 point Likert 

disagree-agree 
9 2.78 1.20 

pos29 
Twostone needs to be improved in regard to 

usability and bugs. 

5 point Likert 

disagree-agree 
9 3.67 0.87 

pos30 
I would probably play a game like Twostone 

if it was of higher quality. 

5 point Likert 

disagree-agree 
9 2.89 1.27 

pos31 Playing Twostone is too complicated. 
5 point Likert 

disagree-agree 
9 3.56 1.13 

pos32 The trigger was annoying. 
5 point Likert 

disagree-agree 
9 4.00 1.22 

pos33 
The trigger was more annoying during the 

first week. 

5 point Likert 

disagree-agree 
9 2.44 1.24 

pos34 
The trigger selected good opportunities for 

playing. 

5 point Likert 

disagree-agree 
9 2.33 1.22 

pos35 The trigger improved over time. 
5 point Likert 

disagree-agree 
9 2.67 1.12 

pos36 I sometimes did not notice the trigger. 
5 point Likert 

disagree-agree 
9 3.56 1.51 

 

(continued on next page) 
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Table 24: Results of the Post-Study Questionnaire – Babbage only (3/3). 

Question Result 

ID Text Options N M SD 

pos37 I sometimes ignored the trigger. 
5 point Likert 

disagree-agree 
9 3.56 1.74 

pos38 
Without the trigger, I would have played less 

Twostone. 

5 point Likert 

disagree-agree 
9 2.89 1.54 

pos39 The trigger needs to be more intelligent. 
5 point Likert 

disagree-agree 
9 3.67 0.87 

pos40 
The trigger needs to be improved in regard 

to usability and bugs. 

5 point Likert 

disagree-agree 
9 3.00 0.71 

 
 

 

 

 

 

 

 

  

Table 25: Results of the Post-Study Questionnaire – Neumann only (1/3). 

Question Result 

ID Text Options N M SD 

pos01 Boy or girl? 
2 options 

(m/f) 
10 7 male, 3 female 

pos02 How old are you? Ordinal 10 25.10 2.47 

pos03 What name did appear in your Trigger App? 3 options 10 10 Neumann 

pos04 I have a lot of video gaming experience. 
5 point Likert 

disagree-agree 
10 3.40 1.71 

pos05 I’m a sportsperson. 
5 point Likert 

disagree-agree 
10 2.90 1.73 

pos06 
I’m kind of a geek and love to have new 

technical stuff. 

5 point Likert 

disagree-agree 
10 3.70 0.95 

pos07 I’m extroverted. 
5 point Likert 

disagree-agree 
10 3.30 0.95 

pos08 
I’m very busy at the moment (with work, 

exams, etc.). 

5 point Likert 

disagree-agree 
10 4.40 1.07 

pos09 I try to eat healthy. 
5 point Likert 

disagree-agree 
10 4.00 0.67 

pos10 I like being outside. 
5 point Likert 

disagree-agree 
10 3.60 1.07 

pos11 I dislike sweating. 
5 point Likert 

disagree-agree 
10 3.10 1.66 

 

(continued on next page) 
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Table 26: Results of the Post-Study Questionnaire – Neumann only (2/3). 

Question Result 

ID Text Options N M SD 

pos12 I always have my smartphone with me. 
5 point Likert 

disagree-agree 
10 4.50 0.53 

pos13 I have enough time for sport. 
5 point Likert 

disagree-agree 
10 3.20 1.55 

pos14 I like doing sport. 
5 point Likert 

disagree-agree 
10 4.00 1.25 

pos15 I like to go running. 
5 point Likert 

disagree-agree 
10 3.10 1.66 

pos16 
Sport is a bit complicated for me at the 

moment (driving to sports range, etc.). 

5 point Likert 

disagree-agree 
10 2.60 1.07 

pos17 I prefer team sports. 
5 point Likert 

disagree-agree 
10 2.20 1.14 

pos18 I am a competitive person. 
5 point Likert 

disagree-agree 
10 2.70 1.49 

pos19 I should probably do more sport. 
5 point Likert 

disagree-agree 
10 3.20 1.48 

pos20 I enjoy playing Twostone. 
5 point Likert 

disagree-agree 
10 2.60 1.17 

pos21 I will keep playing Twostone. 
5 point Likert 

disagree-agree 
10 2.00 0.82 

pos22 
I think Twostone can help me to stay active 

and healthy. 

5 point Likert 

disagree-agree 
10 2.50 1.18 

pos23 
I think Twostone could help others to stay 

active and healthy. 

5 point Likert 

disagree-agree 
10 3.90 0.74 

pos24 Twostone is for kids. 
5 point Likert 

disagree-agree 
10 3.50 1.18 

pos25 Twostone is for adults. 
5 point Likert 

disagree-agree 
10 3.30 1.06 

pos26 Twostone is for seniors. 
5 point Likert 

disagree-agree 
10 2.30 1.06 

pos27 I like playing my own maps. 
5 point Likert 

disagree-agree 
10 2.90 1.10 

pos28 
I like playing maps that were made by 

others. 

5 point Likert 

disagree-agree 
10 2.60 1.17 

pos29 
Twostone needs to be improved in regard to 

usability and bugs. 

5 point Likert 

disagree-agree 
10 3.60 1.07 

 

(continued on next page) 
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Table 27: Results of the Post-Study Questionnaire – Neumann only (3/3). 

Question Result 

ID Text Options N M SD 

pos30 
I would probably play a game like Twostone 

if it was of higher quality. 

5 point Likert 

disagree-agree 
10 2.90 1.45 

pos31 Playing Twostone is too complicated. 
5 point Likert 

disagree-agree 
10 3.00 1.25 

pos32 The trigger was annoying. 
5 point Likert 

disagree-agree 
10 3.40 1.35 

pos33 
The trigger was more annoying during the 

first week. 

5 point Likert 

disagree-agree 
10 2.90 1.66 

pos34 
The trigger selected good opportunities for 

playing. 

5 point Likert 

disagree-agree 
10 2.90 1.10 

pos35 The trigger improved over time. 
5 point Likert 

disagree-agree 
10 3.30 1.25 

pos36 I sometimes did not notice the trigger. 
5 point Likert 

disagree-agree 
10 3.30 1.64 

pos37 I sometimes ignored the trigger. 
5 point Likert 

disagree-agree 
10 3.80 1.40 

pos38 
Without the trigger, I would have played less 

Twostone. 

5 point Likert 

disagree-agree 
10 3.10 1.45 

pos39 The trigger needs to be more intelligent. 
5 point Likert 

disagree-agree 
10 3.50 0.97 

pos40 
The trigger needs to be improved in regard 

to usability and bugs. 

5 point Likert 

disagree-agree 
10 3.70 1.25 

 

 

 

 

 

 

 

Table 28: Results of the Post-Study Questionnaire – Turing only (1/3). 

Question Result 

ID Text Options N M SD 

pos01 Boy or girl? 
2 options 

(m/f) 
7 

7 male, 

1 not reported 

pos02 How old are you? Ordinal 8 30.50 12.00 

pos03 What name did appear in your Trigger App? 3 options 8 8 Turing 

pos04 I have a lot of video gaming experience. 
5 point Likert 

disagree-agree 
8 3.75 1.49 

 

(continued on next page) 
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Table 29: Results of the Post-Study Questionnaire – Turing only (2/3). 

Question Result 

ID Text Options N M SD 

pos05 I’m a sportsperson. 
5 point Likert 

disagree-agree 
8 3.13 1.36 

pos06 
I’m kind of a geek and love to have new 

technical stuff. 

5 point Likert 

disagree-agree 
8 4.13 1.13 

pos07 I’m extroverted. 
5 point Likert 

disagree-agree 
8 3.13 0.83 

pos08 
I’m very busy at the moment (with work, 

exams, etc.). 

5 point Likert 

disagree-agree 
8 4.13 1.36 

pos09 I try to eat healthy. 
5 point Likert 

disagree-agree 
8 3.63 1.30 

pos10 I like being outside. 
5 point Likert 

disagree-agree 
8 3.75 1.16 

pos11 I dislike sweating. 
5 point Likert 

disagree-agree 
8 3.88 1.25 

pos12 I always have my smartphone with me. 
5 point Likert 

disagree-agree 
8 4.50 0.53 

pos13 I have enough time for sport. 
5 point Likert 

disagree-agree 
8 2.50 1.41 

pos14 I like doing sport. 
5 point Likert 

disagree-agree 
8 3.88 0.99 

pos15 I like to go running. 
5 point Likert 

disagree-agree 
8 2.00 1.60 

pos16 
Sport is a bit complicated for me at the 

moment (driving to sports range, etc.). 

5 point Likert 

disagree-agree 
8 3.63 1.41 

pos17 I prefer team sports. 
5 point Likert 

disagree-agree 
8 3.13 1.89 

pos18 I am a competitive person. 
5 point Likert 

disagree-agree 
8 3.13 1.55 

pos19 I should probably do more sport. 
5 point Likert 

disagree-agree 
8 4.13 0.64 

pos20 I enjoy playing Twostone. 
5 point Likert 

disagree-agree 
8 2.13 0.83 

pos21 I will keep playing Twostone. 
5 point Likert 

disagree-agree 
8 2.00 1.41 

pos22 
I think Twostone can help me to stay active 

and healthy. 

5 point Likert 

disagree-agree 
8 2.13 1.46 

 

(continued on next page) 

 

 

 

 

 

 



Appendix A – Evaluation Result Tables  –  113 
 

 

Table 30: Results of the Post-Study Questionnaire – Turing only (3/3). 

Question Result 

ID Text Options N M SD 

pos23 
I think Twostone could help others to stay 

active and healthy. 

5 point Likert 

disagree-agree 
8 3.88 0.99 

pos24 Twostone is for kids. 
5 point Likert 

disagree-agree 
8 3.38 1.30 

pos25 Twostone is for adults. 
5 point Likert 

disagree-agree 
8 3.88 0.64 

pos26 Twostone is for seniors. 
5 point Likert 

disagree-agree 
8 2.00 0.76 

pos27 I like playing my own maps. 
5 point Likert 

disagree-agree 
8 3.75 1.16 

pos28 
I like playing maps that were made by 

others. 

5 point Likert 

disagree-agree 
8 3.13 0.99 

pos29 
Twostone needs to be improved in regard to 

usability and bugs. 

5 point Likert 

disagree-agree 
8 3.75 1.16 

pos30 
I would probably play a game like Twostone 

if it was of higher quality. 

5 point Likert 

disagree-agree 
8 2.75 1.49 

pos31 Playing Twostone is too complicated. 
5 point Likert 

disagree-agree 
8 2.75 1.39 

pos32 The trigger was annoying. 
5 point Likert 

disagree-agree 
8 4.38 0.92 

pos33 
The trigger was more annoying during the 

first week. 

5 point Likert 

disagree-agree 
8 2.50 1.41 

pos34 
The trigger selected good opportunities for 

playing. 

5 point Likert 

disagree-agree 
8 1.75 0.71 

pos35 The trigger improved over time. 
5 point Likert 

disagree-agree 
8 2.88 1.13 

pos36 I sometimes did not notice the trigger. 
5 point Likert 

disagree-agree 
8 2.75 1.49 

pos37 I sometimes ignored the trigger. 
5 point Likert 

disagree-agree 
8 3.88 1.36 

pos38 
Without the trigger, I would have played less 

Twostone. 

5 point Likert 

disagree-agree 
8 1.63 0.92 

pos39 The trigger needs to be more intelligent. 
5 point Likert 

disagree-agree 
8 4.00 0.76 

pos40 
The trigger needs to be improved in regard 

to usability and bugs. 

5 point Likert 

disagree-agree 
8 3.38 1.19 
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Appendix B – Evaluation Instructions 

Request for Participation  
 

Hi and thanks for taking an interest in our study. :) 

 

Knowledge about the connection between physical activity and health is widespread. Still, more than a 

third of the European populace is not being sufficiently active. And this, although a mere 15 minutes of 

activity per day can increase one’s life expectancy for up to three years, a goal achievable without 

having to shed even a single drop of sweat.  

 

For some time now there has been an ongoing discussion on whether location-based games such as 

Ingress or Pokemon Go have the potential of helping people to achieve the recommended minimum 

amount of daily physical activity. We have developed our own version of such a game: Twostone. 

 

In a three week study that starts on Monday, the 15
th

 of August and goes until Sunday, the 4
th

 of 

September, we would like to find out what effects this game and its “intelligent user trigger” really 

have. Participants of the evaluation should own an Android-based smartphone, ideally running at least 

Android OS version 5.0. All participants are required to fill two short questionnaires, one at the 

beginning of the three week study and one at the end. Additionally, they are asked to fully initialize the 

game once prior to the evaluation’s start. All other steps are fully optional. As a small token of 

appreciation, all participants are handed two movie vouchers for any Kinopolis cinema at the end of the 

evaluation – as well as that warm feeling of having contributed to mankind’s scientific advancement. ;) 

 

If you want to support us, please send a short mail until Friday the 12
th

 of August to this email-address: 

 

twostonestudy@gmail.com 

 

Simply write your name and what kind of smartphone you own. On Saturday, the 13
th

, we will send 

two documents to all participants: A manual on how to install and initialize the game, as well as the 

first of a total of two questionnaires. 

 

Thanks a bunch!  

Tim, Jens, Chris, Gerhard & Tobi 
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Manual I 

 

Thank you for your participation in our study. You will need an Android smartphone. If you have 

multiple of such devices at your disposal, please select the one that you carry with you the most.  

 

This evaluation is about physical activity. Based on long and extensive studies, scientists found that a 

mere 15 minutes of medium-intensity physical activity per day will increase one’s life expectancy by up 

to three years. Every additional minute of activity adds to the positive effect on one’s health. But 

although the knowledge about the connection between physical activity and health is fairly widespread, 

about a third of the European populace is still not sufficiently active. Many types of diseases are the 

consequence: Hypertension, diabetes, and even cancer. A multitude of different and in part 

contradictory theories exist, why people will not move, even against their better knowledge, but there 

is one thing that everybody can agree on: People won’t do things that they don’t enjoy. For this reason, 

scientists are looking into ways of how physical activity can be made a little more entertaining. One 

approach lies in the so-called exergames, sometimes also referred to as fitness games. Such games 

require the player to move while she is playing them. Many of you p robably remember this concept 

from the Wii and in recent years, multiple exergames have also been released for smartphones. The 

insanely successful Pokemon Go is just one example.   

 

At the TU Darmstadt, we have developed our own version of such a mobile exergames, the Android-

based game Twostone. In this study, we would like to investigate what kind of effects this game has. 

Alas, we cannot tell you what exactly we are looking for, as this is likely to influence your behavior. 

And we need you to act all natural, as if there was nobody watching.  

 

Speaking of “nobody watching”: Please be informed that we are tracking all kinds of information about 

you. This ranges from your location over the speed with which you are moving to your smartphone’s 

battery level and how loud it is in your vicinity (note that we are just monitoring the decibel level and 

not recording noise or speech). And this is something that we are doing not just while you are playing, 

but regularly. This may seem a little off-putting at first, but please be assured that preserving your 

privacy is our utmost concern. To begin with, we are utilizing your data only on an abstracted level. For 

instance, instead of assessing “she is in a train”, we will rather abstract this information to “she is in a 

vehicle”. More importantly, however, we will ensure that any link between your identify and your data 

is being removed. Among other things, we will delete all your emails after the study has ended, we will 

remove all your data from our servers, and we will erase the list of study participants. Not fishing for 

compliments here, but we are sure that neither Google nor Facebook would do such things. If you are 

still concerned about your privacy, please let us know. 

 

One more thing: Please bear with us. We are a small team and although we have been working hard on 

both Twostone and the reminder application (we will get back to this one later), there will be crashes 

and other problems. In addition, your battery may drain a little faster than what you are used to. If you 

encounter such problems, try to ignore them. However, if things don’t seem to work at all, just let us 

know via twostonestudy@gmail.com and we will try to come up with a solution as fast as possible. 

 

Enjoy! 

Tim, Jens, Chris, Gerhard & Tobi 
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Study Plan 

A few words regarding our study planning. Today, on Saturday the 13
th

 of August, you should have 

received two documents: This manual and in addition to it, a first questionnaire. Please follow the 

instructions in this manual, fill out the questionnaire and send it back to us. Here is what is going to 

happen next:   

 

 Sunday, the 14
th

 of August: You will receive another manual. Please work through this second 

manual as soon as possible, but DO NOT start with the second manual before you haven’t 

finished this first one.   

 

 Monday, the 15
th

 of August: The actual beginning of the study. It will last 20 days, until 

Saturday the 3
rd

 of September. Your only task during this time is to keep the reminder 

application running (more on that tomorrow) and to play Twostone whenever you feel like it.  

 

 Sunday, the 4
th

 of September: We are going to send to you a second questionnaire. Please also 

fill this second questionnaire as soon as possible and then send it back to us. As a small token 

of appreciation, everyone who completed the study and returned the second questionnaire will 

be handed two Kinopolis movie vouchers. To obtain them, simply get in touch with the person 

who asked you to participate in this study. 

 

 You can have a look at our results! If you take an interest in what we have found (and what we 

may publish in a scientific paper), simply let us know. We well then send you a document with 

all our findings as soon as we are done with our analysis.  
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Installation and Initialization of Twostone 

Today’s manual is about installing and initializing Twostone. The second part of the manual, which we 

are going to send you tomorrow, is about another application that we need you to install. Please follow 

the instructions below and in the second manual in their exact order and without skipping any.  

 

1. If you already had Twostone installed on your device: Please delete it. 

 

2. Install the latest version of Twostone. To do this, either follow the link below on our smartphone, 

or go to the Google Play Store application on your phone and look for „Twostone“. 

 

https://play.google.com/store/apps/details?id=de.tu.darmstadt.uhg 

 

3. At the first start you will have to register. The corresponding link is right beneath the Login-button. 

Please note that your user name will be case sensitive. If you already had an account, please create 

a new one specifically for this study. 

 
 

4. Once you have registered successfully, please log in to get to the main screen. There are a couple of 

options here. Twostone is a location-based game and for playing, you will have to create a new 

level at your current location. Please look for a spacious area in your vicinity. Any medium-sized 

lawn, park, or parking lot should do. You can also create levels on streets – but if you do so, please 

mind the traffic! To start the level editor, tap the “Create new level” button.  

 

5. Creating new levels is done in a simple and straightforward way: You walk them. In the level editor 

you should see two buttons for adding and removing waypoints on the left side of the screen. The 

larger of the two, the one with the plus symbol, adds a new waypoint. Tap it once to start creating 

a new level. Now walk in a straight line until you need to change your direction. Place a new 

waypoint at this spot and then turn to the left or right in a 90 degree angle. Keep proceeding in this 

way until you have at least three lanes next to one another. If you finally arrive back at your 

original position, add a final waypoint.  
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6. If you now hit the “Save level” button, Twostone will ask you to name your creation. You can also 

add a short level summary if you like. In any case, please make sure that the “Publish level to 

server”-box is checked so that other people will be able to play this level as well. Using the main 

menu’s “Level overview”-button, you can take a look at existent levels in your vicinity. You should 

give them a full 5-star rating if you like what you see. And before you are asking: You can also rate 

your own levels with a 5-star rating. But why would anyone want to do that? ;)  
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7. Use the “Quickplay”-button on the main screen to automatically start playing the level closest to 

you. How about trying the level you just created? You have probably already noted that Twostone 

resembles the game Pac-Man in many ways: The caterpillar Twostone needs to consume stones 

while it tries to evade a bunch of nerdowells. The main difference to this classic of video game 

history lies in the fact that this time, it is you who needs to do the escaping! If you ever find the 

game too easy or too difficult, use your smartphone’s volume buttons to dynamically adapt your 

opponent’s speed and intelligence.  

 

 
 

 

8. After you have successfully completed your first level, why not take a look at your personal player 

profile or the highscore list? You can access both via the main menu. 

 

 



120 – Appendix B – Evaluation Instructions 
 

9. There is a somewhat hidden feature that we would like to point out to you. If you go to the options 

screen you can enable Twostone’s Augmented Reality user interface. If you do so, you will find that 

the game automatically switches between a bird’s eye map view and a camera-based perspective, 

depending on how you are holding your phone. Try it!  

 

 

  

 

IMPORTANT 
 

Please create a level in close vicinity to every location that  

you frequently visit. Ideally, you will do this whenever you arrive  

at such a location the first time during the next three weeks.  

 

If you experience any technical difficulties such as crashes,  

or if the game does not look anything like the one on  

the screenshots showed here, then please let us know.  

 

Thank you! 
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Manual II 
 

This manual will explain to you how to install and initialize the “Trigger Application”. You can think of 

triggers as being well-timed notifications meant to remind you that there was something you wanted to 

do – such as playing Twostone in order to be physically active and to increase the probability of staying 

healthy. 

 

In this context, we would like to thank all of you for your feedback on our game. We received lots of 

ideas for improvement and requests for bug fixes and we tried to implement as many of them as 

possible. An updated version of Twostone is now available to you from the Google Play Store. Among 

other things, we significantly improved the game’s level editor, which should now be a lot easier to use. 

Although you can still play on your old maps, you should also try to create a new one just to see the 

differences. Chris has taken the opportunity to design a sophisticated map named “Frystone”, which is 

located at the Herrngarten park and publically available. Doesn’t the map’s layout look strange ly 

familiar? ;) 

 

Thanks for participating and stay active! 

Tim, Jens, Chris, Gerhard & Tobi 
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Installation and Initialization of the Trigger App 

Please perform the following instructions in their given order. Please do not skip any of the steps. If you 

have not yet completed “Manual I”, please do not proceed with this manual before you have not 

completely worked through the first one.  

 

10.  (Optional) Install the updated version of Twostone. To do so, go to the Google Play Store and look 

for “Twostone”, then tap the button labeled “Update”. If the respective button says “Open” instead, 

then the latest version of the app is already installed on your smartphone.  

 

11.  Install the “Twostone Evaluation Trigger” application (referred to in the following as the “Trigger 

App”). To do this, open the URL below from your smartphone, or open the Google Play Store 

application and look for „Twostone Evaluation“. 

 

https://play.google.com/store/apps/details?id=de.dirty_bits.activity_trigger&hl=de 

 

ATTENTION: Should you already have installed the application prior to having received this 

manual than please contact us before you proceed! 

 

12. If you try to install the app it will ask you for several access rights, just like other applications. 

Please make sure to accept all of these requests.  

 
 

13.  Once you have successfully installed the Trigger App, you will find it in the list of your applications; 

look for the blue caterpillar. Please start the app, which basically consists of a single screen. To 

begin with, you should define your resting time. This is the time interval during which you don’t 

want to be disturbed because you are sleeping. On the upper right of the screen, click the left box 

to specify the time when you usually go to bed (such as 23:00 hours), and click the right one to 

specify when you usually get up (such as 09:00 hours). Please note that the Trigger App is NOT an 

alarm clock and that it WILL NOT wake you in time! 

 

https://play.google.com/store/apps/details?id=de.dirty_bits.activity_trigger&hl=de
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14. Next is the definition of your current location. We rely on the wireless network ID to figure out, 

where you are at. To define that the wireless network to which you are currently connected is your 

home network, click the button labeled “Home”. Analogously, if you are at work, please click the 

button labeled “Work”. A few remarks are required here: 

 

a. You can specify both locations as often as you want. You can change them at any time and 

if you accidently tapped the wrong button, don’t worry – simply correct your choice on the 

next opportunity.  
 

b. If you do not have a wireless network at home or at work, please pick another important 

location instead (such as your friend’s or parent’s place).  
 

c. It is very important that you specify these locations as early as possible. Please try to keep 

this in mind. 

 

15.  And that’s pretty much it in regard to the initialization of the Trigger App. If you close the app, you 

should see a small caterpillar icon on the upper left of your screen. In addition, there should now 

be a box with the app’s icon on the start screen. This means that the Trigger App is working as 

intended.  

 

16. Please also read through the notes on the next two pages and the request for feedback below.  

 

 

 

 

  

 

IMPORTANT 

 

In order to participate in the evaluation you must install the Trigger App on your  

smartphone until Sunday evening (21
st

 of August) the latest. Once you have  

completed this manual, please tap both the “Update Phase” and the “Upload  

Data”-button once (tapping multiple times won’t hurt either). This will  

inform us that a user has installed the Trigger App.  

 

For privacy reasons, your data is not linked to your real name. This means that  

we cannot tell, who has installed the Trigger App; we only know the amount of  

people who have done so. In order to keep control of who’s still in (and who’s  

not), please send a short mail to twostonestudy@gmail.com and simply state  

something in the line of “I’m still participating”. Thanks! 

 

mailto:twostonestudy@gmail.com
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Using the Trigger App 

Starting on Monday, the 22
nd

 of August, the Trigger App will regularly ask you whether you would like 

to play some Twostone. This will happen by way of so-called “trigger notifications” that appear on your 

start screen. You can either confirm these triggers, or decline them. In the earlier case, the Twostone 

level closest to you will automatically be started. The evaluation ends after two weeks on the evening 

of Sunday, the 4
th

 of September.  

 

IMPORTANT! Please read through the following list carefully and please adhere to all instructions. This 

is essential for ensuring the study’s success. 

 

 During the evaluation you are only allowed to play Twostone after you have been triggered 

and have confirmed the corresponding trigger. We do not enforce this behavior, and in theory, 

you could simply start Twostone by your own when you feel like it. Please refrain from doing 

so, however, as this would negatively affect the study results.  
 

 Please make sure to always start the Trigger App immediately after you have started your 

smartphone. You start the application simply by opening its main screen. Once you see it, you 

can return to your start screen. The Trigger App is a so-called background service, meaning 

that it should be able to start itself automatically. However, this does not reliably work on all 

smartphone models and especially Samsung devices have been found to be a little problematic 

in this regard. The small caterpillar in the upper left of your screen and the box on your start 

screen saying “Trigger” will let you know that the application is working as it should.   
 

 Every now and then, the application may send you a learner notification. This does not need 

to happen, though, as the amount of learner notifications will vary from user to user. These 

learner notifications are not triggers – as the name implies, the application just tries to learn 

about your preferences. If you want to help, you can either confirm the notification (stating 

that this would have been a good opportunity for playing  Twostone) or decline it (indicating 

that you wouldn’t have played Twostone in this specific situation). However, you can always 

just wait for the notification to disappear by itself. 
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 For certain reasons the app does not know, whether a Twostone map is anywhere near you. 

This is why it is important that you create maps in advance at all those locations that you 

spend a lot of time at – please keep this in mind. If, however, the app sends you a trigger 

when no map is anywhere near you and you still feel like playing, please confirm the trigger 

and let it open Twostone for you. Then make use of the updated editor to quickly create a map 

and enjoy playing. :)  
 

 Please also keep in mind that you should define your two most important places (they need to 

be places where you connect your phone to a wireless network). These locations can change 

over time, however, for instance if you go on a vacation. If “at home” is another place for you 

during the first week than during the second, then let the app know! 
 

 IMPORTANT: Please tap the button labeled “Update Phase” on the morning of Monday, the 

22
nd

. If done correctly, the “Evaluation not started”-label should disappear and be replaced by 

a name. Please remember this name, as we will ask you for it at a later time. Please also click 

the “Upload Data”-button at least once a day. Clicking it multiple times won’t do any damage, 

either. 

 

If you experience crashes, if you get the impression that the app is not running as it should, or if there 

are any other problems, please let us know as soon as possible via twostonestudy@gmail.com. Thanks 

for your help! 

  

mailto:twostonestudy@gmail.com
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Bitte um Teilnahme 
 

Hallo und Danke für Dein Interesse an unserer Studie. :) 

 

Das Wissen um den Zusammenhang zwischen Sport und Gesundheit ist zwar weit verbreitet, trotzdem 

bewegt sich mehr als ein Drittel der europäischen Bevölkerung zu wenig. Und dabei genügen 15 

Minuten Bewegung am Tag, um die eigene Lebenserwartung um bis zu drei Jahre zu erhöhen und zwar 

ganz ohne lästiges Schwitzen. 

 

Seit einigen Jahren wird diskutiert, ob mobile ortsbasierte Spiele wie Ingress oder Pokemon Go dazu 

beitragen können, dass Menschen freiwillig das empfohlene täg liche Mindestmaß an sportlicher 

Aktivität erreichen. Aus diesem Grund haben wir ein eigenes ortsbasiertes Spiel entwickelt: Twostone. 

 

Im Rahmen einer dreiwöchigen Evaluation von Montag, dem 15.08., bis Sonntag, dem 04.09, möchten 

wir nun gerne testen, welchen Effekt dieses Spiel und sein „intelligenter Reminder“ tatsächlich auf den 

Nutzer haben. Teilnehmer unserer Evaluation müssen über ein Android-Smartphone verfügen, 

idealerweise mit Android-Version 5.0 oder höher. Alle Teilnehmer sollten zudem zu Beginn und zum 

Ende der Evaluation jeweils einen kurzen Fragebogen ausfüllen, sowie das Spiel einmal vollständig 

initialisieren. Alle anderen Schritte sind komplett freiwillig. Als kleines Dankeschön erhält jeder 

Teilnehmer am Ende der Evaluation zwei Kinopolis -Kinofreikarten – sowie das schöne Gefühl, die 

Menschheit wieder ein kleines Stückchen vorangebracht zu haben. ;) 

 

Wenn Du uns unterstützen möchtest, dann schick bitte bis zum Freitag, den 12.08., eine kurze Mail an 

 

twostonestudy@gmail.com 
 

Bitte schreibe in die Mail Deinen Namen und welches Smartphone Du besitzt. Wir schicken Dir dann 

am Samstag, den 13.08., zwei Dokumente: eine Anleitung für die Installation und die Initialisierung 

des Spiels, sowie den ersten von insgesamt zwei Fragebögen. 

 

Besten Dank!  

Tim, Jens, Chris, Gerhard & Tobi 
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Anleitung I 
 

Danke für Deine Teilnahme an unserer Studie. Zur Teilnahme benötigst Du ein Android Smartphone. 

Solltest Du mehrere Geräte besitzen, dann nimm bitte dasjenige, das Du am häufigsten mit Dir führst.  

 

In dieser Studie geht es um körperliche Bewegung. In sehr umfangreichen, langjährigen 

Untersuchungen haben Forscher herausgefunden, dass täglich 15 Minuten Bewegung mittlerer 

Intensität die Lebenserwartung um bis zu drei Jahre erhöhen. Jede weitere Minute Bewegung steigert 

diesen positiven Effekt auf die Gesundheit sogar noch. Doch obwohl das Wissen über den 

Zusammenhang zwischen Bewegung und Gesundheit weit verbreitet ist, bewegt sich ein Drittel der 

europäischen Bevölkerung immer noch viel zu wenig. Viele  verschiedene Krankheiten sind die Folge: 

Bluthochdruck, Diabetes und sogar Krebs. Es gibt verschiedene und teils widersprüchliche Theorien, 

warum Menschen sich trotz besseren Wissens zu wenig bewegen, aber in einem Punkt sind sich alle 

einig: niemand tut gerne Dinge, die einfach keinen Spaß machen. Aus diesem Grund versuchen 

Forscher, Mittel und Wege zu finden, damit körperliche Aktivität unterhaltsamer wird und sich besser 

in den Alltag integrieren lässt. Ein Beispiel für einen solchen Ansatz sind die sog . „Exergames“, oft auf 

als „Fitnessspiele“ bezeichnet. Das sind Spiele, bei denen der Spieler sich bewegen muss, während er 

spielt. Das Prinzip kennen viele von Euch sicherlich noch von der Wii und auch für Smartphones 

werden immer mehr Exergames veröffentlicht, beispielsweise das derzeit sehr beliebte Pokemon Go.  

 

An der TU Darmstadt haben wir ein eigenes Exergame namens Twostone für Android-Smartphones 

entwickelt und in dieser Studie möchten wir nun gerne herausfinden, welchen Effekt dieses Spiel hat. 

Was genau wir dabei untersuchen möchten, können wir Dir leider nicht verraten, da wir Dich dadurch 

möglicherweise beeinflussen würden. Verhalte Dich im Umgang mit dem Spiel einfach „ganz natürlich“, 

als ob wir Dich nicht beim Spielen beobachten würden. 

 

Beobachten ist ein gutes Stichwort. Wir zeichnen verschiedene Daten über Dich auf – vom Ort, an dem 

Du dich befindest, über die Geschwindigkeit, mit der Du dich fortbewegst, bis hin zu dem Akkustand 

Deines Smartphones und wie laut es im Durchschnitt um Dich herum ist (wohlgemerkt: nur Messung 

von Dezibel, keine Aufzeichnung von Geräuschen oder Stimmen). Und wir tun das nicht nur, während 

Du spielst, sondern regelmäßig. Das klingt erst mal irritierend, aber sei Dir versichert, dass wir äußerst 

sensibel mit diesen Daten umgehen. Zum einen abstrahieren wir von Vorneherein. Statt „fährt gerade 

Zug“ kommt bei uns daher beispielsweise nur noch die Information „in einem Fahrzeug“ an. 

Insbesondere stellen wir aber sicher, dass jeder persönliche Bezug zwischen Dir und De inen Daten 

entfernt wird. So löschen wir etwa nach der Studie alle Deine Emails, entfernen Deine Datensätze vom 

Server und vernichten die Namensliste der Teilnehmer. Ohne uns an dieser Stelle selbst auf die 

Schulter klopfen zu wollen: Google und Facebook machen das alles sicher nicht. Falls Du trotzdem 

Bedenken zum Thema Datenschutz haben solltest, dann setz Dich bitte mit uns in Verbindung.  

 

Eine Sache noch: sei ein bisschen nachsichtig mit uns. Wir sind ein kleines Team und obwohl wir hart 

an Twostone und der Reminder-App gearbeitet haben (dazu später mehr), wird es sicherlich Fehler 

und Abstürze geben. Und auch Dein Akku könnte sich etwas schneller leeren, als Du es gewohnt bist. 

Wir würden uns freuen, wenn Du mit solchen Problemen wohlwollend und nachsichtig umgehst. Falls 

etwas aber einmal so gar nicht funktionieren sollte, dann wende Dich bitte an 

twostonestudy@gmail.com und wir versuchen, Dir schnellstmöglich zu helfen. 

 

Viel Spaß! 

Tim, Jens, Chris, Gerhard & Tobi 
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Ablauf der Studie 

Ein paar Worte zum Ablauf der Studie. Heute, am Samstag den 13.08., hast Du zwei Dokumente von 

uns bekommen: diese Anleitung, sowie einen ersten Fragebogen. Bitte führe diese Anleitung komplett 

durch, fülle den Fragebogen aus und schicke ihn an uns zurück.  Danach geht es so weiter: 

 

 Sonntag, 14.08.: Du erhältst eine zweite Anleitung. Bitte führe auch diese Anleitung 

vollständig durch. Falls möglich noch am Sonntag – aber unbedingt erst nachdem Du diese 

erste Anleitung durchgeführt hast. 

 

 Montag, 15.08.: Beginn der eigentlichen Studie. Die Evaluation dauert insgesamt 20 Tage, also 

bis einschließlich Samstag, den 03.09. Deine Aufgabe während dieser Zeit besteht darin, die in 

der zweiten Anleitung beschriebene Reminder-App im Hintergrund auf Deinem Smartphone 

laufen zu lassen und immer dann Twostone zu spielen, wenn Du Lust dazu hast.  

 

 Sonntag, 04.09.: Wir schicken Dir einen zweiten Fragebogen. Bitte fülle diesen 

schnellstmöglich aus und schicke ihn an uns zurück. Als kleines Dankeschön erhältst Du von 

uns nach Abgabe des zweiten Fragebogens zwei Kinopolis -Kinofreikarten. Setze Dich dazu mit 

demjenigen in Kontakt, der Dich für die Studie geworben hat.  

 

 Du kannst unsere Evaluationsergebnisse einsehen. Falls Du daran interessiert bist, welche 

Ergebnisse unsere Studie hervorgebracht hat (und was wir wissenschaftlich veröffentlichen 

werden), dann lass uns das wissen. Sobald wir mit der Auswertung der Daten fertig sind, 

schicken wir Dir eine Zusammenstellung.  
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Installation und Einrichten von Twostone 

In der heutigen Anleitung kümmern wir uns um Installation und Einrichten von Twostone. Im zweiten 

Teil der Anleitung, den wir Dir morgen schicken werden, kommt dann noch eine Reminder-Applikation 

hinzu. Bitte führe diese Anleitung genau so aus, wie sie beschrieben ist.  Bitte überspringe keine 

Anweisungen und bitte verändere nicht die Reihenfolge, in der Du die Schritte durchführst.  

 

17.  Lösche Twostone von Deinem Smartphone, falls es bereits installiert war.  

 

18.  Installiere die neuste Version von Twostone. Rufe dazu von Deinem Smartphone aus den 

nachfolgenden Link auf, oder suche im Google Play Store nach „Twostone“.  

 

https://play.google.com/store/apps/details?id=de.tu.darmstadt.uhg  

 

19. Beim ersten Starten von Twostone musst Du ein Benutzerkonto anlegen. Klicke dazu auf den Link 

unterhalb des Login-Buttons. Achtung, Dein Benutzername unterscheidet zwischen Groß - und 

Kleinschreibung. Falls Du bereits ein Benutzerkonto haben solltest, dann lege für diese Evaluation 

bitte ein weiteres Konto an. 

 
 

20. Nach erfolgreicher Registrierung gelangst Du auf den Hauptbildschirm. Hier stehen Dir mehrere 

Optionen zur Verfügung. Twostone ist ein ortsbezogenes Spiel und damit Du es spielen kannst, 

musst Du erst einen neuen Level anlegen. Suche dazu eine größere freie Fläche in Deiner Nähe. 

Geeignet sind Felder, Parks, Parkplätze, etc. Du kannst Level auch entlang von Straßenzügen 

anlegen, aber dann achte auf den Verkehr! Um den Leveleditor aufzurufen, drücke den „Neues 

Level erstellen“-Knopf. 

 

21. Das Erstellen neuer Level erfolgt nach einem denkbar einfachen Prinzip: Du läufst sie einfach ab. 

Im Leveleditor siehst Du auf der linken Seite des Bildschirms zwei Knöpfe. Der größere, obere 

Knopf (der mit dem Plus-Zeichen) setzt einen neuen Wegpunkt. Drücke ihn einmal zu Beginn und 

dann laufe in gerader Linie los. Falls Du Deine Richtung veränderst, dann setze an dieser Stelle 

einen weiteren Wegpunkt. Versuche zunächst, nur Abzweigungen in 90 Grad Winkeln zu machen 
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und erstelle auf diese Weise mindestens drei Spuren nebeneinander. Wenn Du schließlich an 

Deinen Ausgangspunkt zurückgekehrt bist, dann setze einen letzten Wegpunkt.  

 

 
 

22. Wenn Du jetzt den „Speichern“-Knopf drückst, dann wirst Du aufgefordert, Deinen Level zu 

benennen. Du kannst auch noch eine kurze Beschreibung hinzufügen. Stelle sicher, dass die Option 

„Auf Server veröffentlichen“ aktiviert ist, damit sich auch andere Spieler an Deinem Level 

versuchen können. Über den Knopf „Levelübersicht“ im Hauptmenü kannst Du bereits erstellte 

Level in Deiner Nähe ansehen und bei Gefallen mit der vollen Punktzahl  bewerten. Und ja, auch 

Deinen eigenen. Aber wer macht denn sowas? ;) 
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23. Über den „Schnellstart“-Knopf im Hauptmenü wird der nächstgelegene Level gestartet. Versuche 

Dich direkt mal an dem Level, den Du gerade erstellt hast. Wie Du siehst, ähnelt das Spielprinzip 

von Twostone dem von Pac-Man: Du musst als Raupe Twostone die grauen Steine fressen, 

während Dir bis zu fünf Unholde auf die Pelle rücken. Der Unterschied zu Pac-Man besteht darin, 

dass Du in Twostone tatsächlich selbst mit den Unholden um die Wette läufst. Falls Dir das Spiel 

mal zu leicht oder zu schwer wird, dann kannst Du Geschwindigkeit und Intelligenz Deiner Gegner 

jederzeit über die Lautstärkeknöpfe an der Seite Deines Smartphones dynamisch anpassen.  

 

 
 

 

24. Wirf nach dem erfolgreichen Beenden eines Levels ruhig mal einen Blick in Dein Spielerprofil und 

auf die Highscore-Liste. Beides erreichst Du über das Hauptmenü.  
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25. Es gibt noch ein verstecktes Feature, das wir Dir nicht vorenthalten möchten. Unter dem 

Menüpunkt Optionen kannst Du Twostones Augmented Reality Interface aktivieren. Das Spiel 

wechselt dann automatisch zwischen Kartenansicht und Kamerabild, je nachdem, wie Du Dein 

Smartphone hältst. Probier’s mal aus!  

 

 

 

 

  

 

WICHTIG 
 

Bitte erstelle in der Umgebung jedes Ortes, an dem Du dich länger aufhältst,  

mindestens einen Level – insbesondere in der unmittelbaren Umgebung Deiner  

Wohnung und Deines Arbeitsplatzes. Tu das innerhalb der nächsten drei Wochen  

am besten immer direkt dann, wenn Du zum ersten Mal an einem solchen  

für Dich zentralen Ort eintriffst. 

 

Solltest Du technische Schwierigkeiten mit dem Spiel haben, etwa häufige  

Abstürze oder falls das Spiel nicht so aussieht, wie auf den hier gezeigten  

Screenshots, dann setz Dich bitte mit uns in Verbindung.  

 

Danke! 
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Anleitung II 
 

In diesem Dokument erklären wir Dir, wie Du die „Trigger Anwendung“ installierst und initialisierst. 

Trigger sind gewissermaßen intelligente Reminder, die Dich daran erinnern sollen, dass Du etwas 

Bestimmtes tun wolltest. In diesem konkreten Fall erinnern Dich die Reminder daran, dass Du 

Twostone spielen wolltest, um Dein tägliches Mindestmaß an Bewegung zu erreichen und um auf diese 

Weise die Wahrscheinlichkeit zu erhöhen, dass Du lange fit und gesund bleibst.  

 

An dieser Stelle vielen herzlichen Dank für Eure zahlreichen Rückmeldungen zu unserem Spiel. Wir 

haben viele Verbesserungsvorschläge und –wünsche erhalten und uns bemüht, eine möglichst große 

Anzahl davon direkt umzusetzen. Im Google Play Store steht Euch jetzt ein Update für Twostone zur 

Verfügung, das einige Verbesserungen einführt und diverse Fehlerchen behebt. Unter anderem haben 

wir am Leveleditor gearbeitet, der jetzt hoffentlich einfacher zu bedienen ist und bessere Resultate 

erzeugt. Ihr könnt Eure alten Karten weiterhin nutzen, aber probiert ruhig auch einmal das Anlegen 

einer neuen Karte aus, um die Änderungen zu erleben. Chris hat sich direkt an einer etwas 

komplexeren Karte namens „Frystone“ probiert, die Ihr ab sofort im Herrngarten findet. Das Layout der 

Karte könnte dem ein oder anderen von Euch vielleicht bekannt vorkommen. ;) 

 

Danke für Eure Teilnahme und bleibt aktiv! 

Tim, Jens, Chris, Gerhard & Tobi 
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Installation und Einrichten der Trigger App 

Bitte führe die nachfolgenden Schritte in der angegebenen Reihenfolge durch und bitte überspringe 

keinen der Schritte. Falls Du „Anleitung I“ noch nicht vollständig abgearbeitet hast, dann tue das bitte 

unbedingt, bevor Du mit den nachfolgenden Anweisungen beginnst.  

 

26. (Optional) Installiere das Twostone-Update. Suche dazu im Google Play Store nach „Twostone“ 

und klicke auf den „Update“-Knopf. Falls anstelle des „Update“-Knopfs bei Dir nur ein „Öffnen“-

Knopf ist, dann hast Du bereits die neueste Version von Twostone auf Deinem Smartphone. 

 

27. Installiere die „Twostone Evaluation Trigger“-Anwendung (im Folgenden abkürzend Trigger App 

genannt). Rufe dazu von Deinem Smartphone aus den nachfolgenden Link auf, oder suche im 

Google Play Store nach „Twostone Evaluation“. 

 

https://play.google.com/store/apps/details?id=de.dirty_bits.activity_trigger&hl=de 

 

WICHTIG: Solltest Du diese Anwendung bereits vor Erhalt dieser Anleitung auf Deinem 

Smartphone installiert haben, dann kontaktiere uns bitte, bevor Du fortfährst! 

 

28. Beim Installieren der Trigger App wird Dich diese um Zugriff auf einige Funktionen des 

Smartphones bitten, wie Du es auch von anderen Anwendungen kennst. Bitte gewähre alle 

nachgefragten Zugriffe. 

 
 

29. Nach der erfolgreichen Installation findest Du die Trigger App wie gewohnt in der Liste Deiner 

Anwendungen – sie hat eine blaue Raupe als Icon. Bitte starte die App, die im Wesentlichen nur 

aus einem Hauptbildschirm besteht. Als erstes sollten wir Deine Ruhezeit einstellen. Das ist die 

Phase, während der Du normalerweise schläfst und daher nicht gestört werden möchtest. Stelle die 

Uhrzeit ein, indem Du auf die beiden entsprechenden Felder oben rechts klickst. Das linke Feld 

steht für die Uhrzeit, zu der Du für gewöhnlich zu Bett gehst (beispielsweise 23:00 Uhr) und das 

rechte Feld steht für die Uhrzeit, zu der Du normalerweise aufstehst (beisp ielsweise 09:00 Uhr). 

ACHTUNG: Die Anwendung ist kein Wecker! 

https://play.google.com/store/apps/details?id=de.dirty_bits.activity_trigger&hl=de
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30.  Als nächstes sollten wir den Ort spezifizieren, an dem Du dich befindest. Wir erkennen den Ort 

anhand des WLANs, in das Du eingeloggt bist. Um festzulegen, dass das aktuelle WLAN Dein 

heimisches WLAN ist, drücke bitte den Knopf „Zuhause“. Falls Du dich hingegen gerade auf der 

Arbeit befindest, so drücke bitte den Knopf „Arbeitsort“. Ein paar Anmerkungen zu diesem Punkt: 

 

a. Du kannst beide Orte beliebig oft festlegen und auch verändern. Es macht auch nichts, 

wenn Du dich mal verklickst – dann lege den Ort bei nächster Gelegenheit einfach noch 

mal neu fest. 
 

b. Falls Du zuhause oder auf der Arbeit kein WLAN haben solltest, dann nimm stattdessen 

diejenigen Orte mit WLAN, an denen Du dich am häufigsten aufhältst (beispielsweise bei 

Freunden oder Verwandten).  
 

c. Es ist wichtig, dass Du beide Orte so früh wie möglich festlegst. Bitte versuche, daran zu 

denken. 

 

31.  Und das war’s auch schon in Sachen Installation und Initialisierung. Nach dem Schließen der App 

solltest Du in der Icon-Leiste am oberen Bildschirmrand den Schattenriss einer Raupe sehen und 

auf dem Startbildschirm eine Box mit dem Logo der App. Das zeigt Dir, dass die Anwendung 

korrekt ausgeführt wird. 

 

32. Bitte lies Dir jetzt direkt noch die Hinweise zur Nutzung während der Evaluationsphase auf der 

nächsten Seite durch und bitte beachte auch die folgende Bitte um eine kurze Rückmeldung.  

 

 

 

 

 

 

 

 

 

WICHTIG 

 

Für die Teilnahme an unserer Studie musst Du die Trigger App unbedingt bis zum  

späten Sonntagabend (21.08.) installiert haben. Bitte drücke nach Abschluss  

der oben beschriebenen Installationsanleitung jeweils einmal den „Aktualisiere  

Phase“-Knopf und den „Sende Evaluationsdaten“ -Knopf (es macht nichts, wenn Du  

die Knöpfe mehrfach drückst). Auf diese Weise werden wir darüber informiert,  

dass ein Nutzer die Anwendung erfolgreich installiert und initialisiert hat.  

 

Aus Datenschutzgründen verknüpfen wir Deine Datensätze nicht mit Deinem  

Klarnamen. Wir wissen also nicht, welcher Nutzer die Trigger App schon installiert  

hat –  wir kennen lediglich die Anzahl der Personen, die das getan haben. Um den  

Überblick darüber zu behalten, wer überhaupt noch alles dabei ist, würden wir uns  

daher über eine kurze Rückmeldung von Dir an twostonestudy@gmail.com  

sehr freuen. Ein knappes „Ich bin noch dabei“ genügt uns schon. Danke! 

 

mailto:twostonestudy@gmail.com
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Nutzung während der Evaluationsphase 

Ab Montag, dem 22.08., wird Dich die Trigger App regelmäßig dazu auffordern, Twostone zu spielen. 

Du erhältst dazu auf Deinem Startbildschirm eine sog. „Trigger Notification“, die Du entweder 

bestätigen oder ablehnen kannst. Wenn Du den Trigger bestätigst,  dann wird automatisch der 

nächstgelegene Level gestartet. Die Evaluation endet nach zwei Wochen am Sonntagabend, dem 04.09.  

 

WICHTIG! Bitte lies Dir die nachfolgende Liste aufmerksam durch und beachte unbedingt alle 

aufgeführten Punkte. Du trägst damit wesentlich zum Erfolg der Evaluation bei. 

 

 Innerhalb der Evaluationsphase darfst Du Twostone nur spielen, wenn der Trigger Dich dazu 

auffordert und Du die entsprechende Nachfrage mit „Ja“ beantwortest. Im Prinzip kannst Du 

Twostone nach wie vor jederzeit manuell starten, aber wir bitten Dich, davon abzusehen, da 

Du andernfalls die Evaluationsergebnisse verfälscht. 
 

 Bitte starte die Trigger App nach jedem Neustart Deines Smartphones sofort erneut. Tu tust 

dies einfach, indem Du sie ausführst. Nachdem Du den Hauptbildschirm siehst, kannst Du die 

Anwendung direkt wieder schließen. Die Anwendung ist ein sog. „Background Service“ und 

sollte sich eigentlich von selbst starten. Bei einigen Smartphone-Modellen kann das aber auch 

mal nicht klappen – insbesondere Samsung-Geräte machen hier ein bisschen Probleme. Über 

das kleine Raupenicon in der oberen Bildschirmleiste und über die Benachrichtigungsbox auf 

Deinem Startbildschirm kannst Du dich vergewissern, dass die Anwendung tatsächlich läuft.  
 

 Gegebenenfalls schickt Dir die Trigger App ab und an auch mal eine Lernnachricht. Ob das 

überhaupt passiert, ist aber individuell verschieden und muss nicht unbedingt vorkommen. 

Diese Nachrichten sind keine richtigen Trigger – die Anwendung möchte nur besser verstehen, 

wann Du gerne Twostone spielen würdest. Wenn Du möchtest, dann kannst Du der App 

dadurch helfen, dass Du solche Lernnachrichten mit Ja (der Zeitpunkt der Nachricht wäre für 

Dich im Prinzip eine gute Gelegenheit für eine schnelle Runde Twostone) oder mit Nein (das 

wäre keine gute Gelegenheit) beantwortest. Du kannst diese Nachrichten aber auch einfach 

ignorieren – dann verschwinden sie nach kurzer Zeit wieder von selbst.  
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 Aus bestimmten Gründen weiß die Trigger App nicht, ob sich in Deiner Nähe ein geeignetes 

Spielfeld befindet. Daher ist es wichtig, dass Du an allen Orten, an denen Du dich häufig 

aufhältst, schon im Vorhinein Spielfelder anlegst, damit Du im Fall der Fälle dann auch direkt 

loslegen kannst – bitte denk daran! Falls Du mal zum Spielen aufgefordert wirst, obwohl kein 

Feld in der Nähe ist, Du aber trotzdem gerne spielen möchtest, dann bestätige die Rückfrage 

der App bitte mit „Ja“. Wenn Twostone sich geöffnet hat, dann kannst Du an Ort und Stelle 

direkt eine neue Karte anlegen – mit den neuesten Updates unseres Leveleditors sollte das 

noch schneller gehen. 
 

 Bitte denk auch daran, im Hauptmenü der Anwendung die beiden für Dich wichtigsten Orte 

einzustellen (es müssen Orte sein, an denen Du in ein WLAN eingeloggt bist). Diese Orte 

können sich auch über die Zeit verändern, beispielsweise, wenn Du in den Urlaub fährst. Falls 

also für Dich beispielsweise „Zuhause“ in der zweiten Woche der Evaluation ein anderer Ort 

sein sollte, als während der ersten Woche, dann ist das überhaupt kein Problem – klicke den 

entsprechenden Knopf im Hauptmenü dann einfach noch mal und definiere so neu, was 

gerade Dein „Zuhause“ ist. 
 

 WICHTIG: Bitte drücke zu Beginn der zweiten Phase (am Morgen des 22.08.) einmal den 

Knopf „Aktualisiere Phase“. Daraufhin erscheint unter dem Knopf ein Name – bitte merk ihn 

Dir, wir werden Dich später danach fragen. Bitte drücke zudem an jedem Tag der Evaluation 

möglichst einmal den „Sende Evaluationsdaten“-Knopf. Du kannst beide Knöpfe beliebig oft 

drücken, dadurch machst Du nichts kaputt. 

 

Falls Du Abstürze erlebst, falls Du das Gefühl hast, dass die Anwendung nicht richtig funktioniert, oder 

falls es andere Probleme gibt, dann wende Dich bitte so schnell wie möglich an 

twostonestudy@gmail.com. Danke für Deine Mithilfe! 

 

 

  

mailto:twostonestudy@gmail.com
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Appendix C – Evaluation Questionnaires 

Pre-Study Questionnaire 
 

Let’s start with a few general questions. Please be honest. All answers will be anonymized and no one 

will be able to tell from the study results how you filled this questionnaire. Additionally, on this first 

page you can always refuse to answer. However, please try to not make use of this if possible.  

 

pre01 Boy or girl? 

Boy Girl 
Not  

telling 

   

 

pre02 How old are you? 

Less  

than 20 
20-39 40-59 

60  

or more 

Not  

telling 

     

 

pre03 

What’s your highest 

qualification (including 

currently pursuing)? 

None 
High  

school 

Apprentice-

ship 

Bachelor/ 

Master 

Not  

telling 

     

 

pre04 

How many hours per  

week do you spend  

working or studying? 

Less  

than 20 
20-39 40-59 

60  

or more 

Not  

telling 

     

 

pre05 

How many hours per  

week do you do sports  

or exercise? 

Less  

than 1 
1-3 4-7 

More  

than 7 

Not  

telling 

     

 

pre06 

How many hours per  

week do you do spend 

playing video games? 

Less  

than 1 
1-3 4-7 

More  

than 7 

Not  

telling 

     

 

pre07 

How many hours per 

week do you do spend 

watching TV (including 

Netflix, etc.)? 

Less  

than 1 
1-3 4-7 

More  

than 7 

Not  

telling 

     

 

pre08 

How many hours per 

week do you do spend 

with other hobbies 

(excluding TV/PC)? 

Less  

than 1 
1-3 4-7 

More  

than 7 

Not  

telling 

     

 

On the next page we will ask for your opinion. Please read all questions carefully, but also try to 

answer spontaneously. 
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pre09 

I would like to exercise 

more, but I simply lack  

the time. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre10 
Honestly: I was  

never into sports. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre11 

I would like to  

exercise more,  

but the conditions  

are not ideal. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre12 
If I do sports, I prefer  

the outside to indoors. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre13 

Computers and 

technical stuff are  
not my thing. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre14 

I’m always carrying  

my smartphone with 

me and I take it 

everywhere. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre15 

I occasionally play 

games on my 

smartphone. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre16 

My life got a lot more  

hectic during the  

last ten years. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pre17 

I could explain the 

difference between  

an accelerometer  

and a gyroscope. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

And finally a few questions regarding your experience with video games.  
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pre18 Twostone 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre19 Pokemon Go 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre20 Ingress 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre21 Zombies, Run! 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre22 Wii Fit or Wii Sports 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre23 

Xbox Fitness, 

PlayStation  

Move Fitness or 

PlayStation Zumba 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre24 Minecraft 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

pre25 Grand Theft Auto V 

Never  

heard o f it 

Heard, but 

haven’t p layed 

I remember 

taking  a  look 

Played it, but not 

anymore 

Still  

enjoying ! 

     

 

 

And that’s it. Don’t forget to safe and then send the document back to twostonestudy@gmail.com, 

Thanks! :) 
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Post-Study Questionnaire 
 

Please try to be honest. Your answers will be aggregated and will not be reproducible. 

 

pos01 Boy or girl? 

Boy Girl 
Not  

telling 

   

 

pos02 How old are you?  

 

pos03 
What name did appear 
in your Trigger App? 

 

 

pos04 
I have a lot of video 

gaming experience. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos05 I’m a sportsperson. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos06 

I’m kind of a geek 

and love to have new 

technical stuff. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos07 I’m extroverted. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos08 

I’m very busy at the 

moment (with work, 

exams, etc.). 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos09 I try to eat healthy. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 
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pos10 I like being outside. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos11 I dislike sweating. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos12 
I always have my 

smartphone with me. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos13 
I have enough                      

time for sport. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos14 I like doing sport. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos15 I like to go running. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos16 

Sport is a bit 

complicated for me at 

the moment (driving to 

sports range, etc.) 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos17 I prefer team sports. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos18 
I am a                          

competitive person. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos19 
I should probably                 

do more sport. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 
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pos20 
I enjoy playing 

Twostone. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos21 
I will keep playing 

Twostone. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos22 

I think Twostone can 

help me stay active and 

healthy. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos23 

I think Twostone could 

help others stay active 

and healthy. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos24 
Twostone is 

for kids. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos25 
Twostone is 

for adults. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos26 
Twostone is 

for seniors. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos27 
I like playing                           

my own maps. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos28 

I like playing maps               

that were made by 

others. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos29 

Twostone needs to be 

improved in regard to 

usability and bugs. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 
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pos30 

I would probably play a 

game like Twostone if it 

was of higher quality. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos31 
Playing Twostone is 

too complicated. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos32 
The trigger was 

annoying. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos33 

The trigger was more 

annoying during the 

first week. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos34 

The trigger selected 

good opportunities                
for playing. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos35 
The trigger improved 

over time. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos36 
I sometimes did not 

notice the trigger. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos37 
I sometimes ignored          

the trigger. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos38 

Without the trigger I 

would have played less 

Twostone. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

pos39 
The trigger needs to   

be more intelligent. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 
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pos40 

The trigger needs to be 

improved in regard to 

usability and bugs. 

Totally 

incorrect 

Kind of 

incorrect 

Not  

sure 

Kind of 

correct 

Totally 

correct 

     

 

And that’s it. 

 
Please simply send this questionnaire back to twostonestudy@gmail.com and you’re done. 

 

Thanks for your help! :) 
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Vorstudienbogen 
 

Zunächst ein paar ganz allgemeine Fragen für unsere Statistik. Bitte sei ehrlich. Alle Antworten werden 

von uns anonymisiert und aus den Ergebnissen der Studie wird man nicht nachvollziehen können, wie 

Du diesen Fragebogen beantwortet hast. Du hast zudem bei dieser ersten Gruppe von Fragen die 

Option, keine Angaben zu machen. Bitte versuche aber, das so wenig wie möglich zu nutzen.  

 

pre01 
Männlein oder 

Weiblein? 

Männlein Weiblein 
Keine 

Angabe 

   

 

pre02 Wie alt bist Du? 

Unter 20 20-39 40-59 
60  

oder älter 

Keine 

Angabe 

     

 

pre03 

Was ist Dein höchster 

Abschluss (auch aktuell 

angestrebter)? 

Kein 

Abschluss 

Schul-

abschluss 
Lehre Studium 

Keine 

Angabe 

     

 

pre04 

Wie viele Stunden pro 

Woche arbeitest 

Du/lernst Du? 

Unter 20 20-39 40-59 
60 

oder mehr 

Keine 

Angabe 

     

 

pre05 

Wie viele Stunden  

pro Woche machst  

Du Sport? 

Unter 1 1-3 4-7 Über 7 
Keine 

Angabe 

     

 

pre06 

Wie viele Stunden  

Pro Woche verbringst 

Du mit Videospielen? 

Unter 1 1-3 4-7 Über 7 
Keine 

Angabe 

     

 

pre07 

Wie viele Stunden pro 

Woche verbringst Du 

mit Fernsehen (auch 

Netflix, etc.)? 

Unter 1 1-3 4-7 Über 7 
Keine 

Angabe 

     

 

pre08 

Wie viele Stunden pro 

Woche verbringst Du 

mit anderen Hobbies 

(ohne TV/PC)? 

Unter 1 1-3 4-7 Über 7 
Keine 

Angabe 

     

 

Auf der nächsten Seite kommen ein paar Fragen nach Deiner Meinung . Bitte lies Dir jede Frage genau 

durch, aber versuche dann möglichst spontan zu antworten. 
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pre09 

Ich würde gerne  

mehr Sport treiben, 

aber mir fehlt einfach 

die Zeit dazu. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre10 

Ganz ehrlich: Ich 

mochte Sport  

eigentlich noch  

nie so richtig. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre11 

Ich würde mehr  

Sport treiben, aber die 

Rahmenbedingungen 

passen nicht. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre12 

Wenn ich Sport mache, 

dann lieber draußen 

als drinnen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre13 

Ich hab es nicht so  

mit Computern  
und Technik. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre14 

Ich habe mein 

Smartphone so gut  

wie immer und  

überall dabei. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre15 

Ich spiele auch ganz 

gerne mal auf meinem 

Smartphone. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre16 

Mein Leben ist in  

den letzten 10 Jahren 

hektischer geworden. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pre17 

Ich kann den Unterschied 
zwischen einem 

Accelerometer und  
einem Gyroskop erklären. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

Abschließend noch ein paar Fragen zu Deiner Erfahrung mit verschiedenen Videospielen. 
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pre18 Twostone 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre19 Pokemon Go 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre20 Ingress 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre21 Zombies, Run! 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre22 Wii Fit oder Wii Sports 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre23 

Xbox Fitness, 

PlayStation  

Move Fitness oder 

PlayStation Zumba 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre24 Minecraft 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

pre25 Grand Theft Auto V 

Noch nie  

davon g ehört 

Kenne ich,  

aber nie g espielt 

Irg endwann mal 

ang eschaut 

F rüher g espielt, 

nicht mehr 

Spiele ich  

immer noch 

     

 

 

Das war’s schon. Speichern nicht vergessen und das Ganze einfach unkommentiert zurück an 

twostonestudy@gmail.com. Danke! :) 
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Nachstudienbogen 
 

Bitte versuche, ehrlich zu sein. Alle Antworten werden aggregiert und sind dadurch nicht zuordbar. 

 

pos01 
Männlein  

oder Weiblein? 

Männlein Weiblein 
Keine 

Angabe 

   

 

pos02 Wie alt bist Du?  

 

pos03 

Welcher Name  

stand bei Dir in der 
Trigger App? 

 

 

pos04 

Ich habe viel  

Erfahrung mit 

Videospielen.  

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos05 Ich bin Sportler. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos06 

Ich bin manchmal ein  

Geek und liebe neue 

technische Spielsachen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos07 Ich bin extrovertiert. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos08 

Zurzeit habe ich                   

Stress (durch Arbeit, 

Klausuren, etc.) 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos09 
Ich bin bemüht, mich 

gesund zu ernähren. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 
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pos10 Ich bin gerne draußen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos11 
Ich schwitze  

nicht gerne. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos12 

Ich habe mein 

Smartphone immer 

dabei. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos13 

Ich habe im Alltag 

ausreichend Zeit                   

für Sport. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos14 
Ich mache  

gerne Sport. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos15 
Ich gehe  

gerne joggen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos16 

Sport ist für mich 

derzeit aufwändig 

(Fahrt zum  

Training, usw.) 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos17 
Ich mag Mannschafts-

sportarten lieber. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos18 
Ich messe mich gerne 

mit anderen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos19 

Ich sollte vermutlich 

insgesamt mehr Sport 

treiben. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 
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pos20 
Ich spiele gerne 

Twostone. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos21 
Ich werde Twostone 

auch weiterhin spielen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos22 

Ich glaube, dass 

Twostone mir dabei 

helfen kann, aktiv und 

gesund zu bleiben. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos23 

Ich glaube, dass 

Twostone anderen 

helfen könnte, aktiv 

und gesund zu bleiben. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos24 
Twostone ist ein  

Spiel für Kinder. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos25 
Twostone ist ein Spiel 

für Erwachsene. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos26 
Twostone ist ein  

Spiel für Senioren. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos27 
Ich spiele gerne auf 

selbsterstellten Karten. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos28 

I spiele gerne auf 

Karten, die von  

anderen Spielern 

erstellt wurden. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos29 

Twostone muss noch 

stabiler werden (in 

Bezug auf Nutzer-

freundlichkeit & Bugs). 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

 



152 – Appendix C – Evaluation Questionnaires  
 

pos30 

Ich würde vielleicht ein 

Spiel wie Twostone 

spielen, aber es müsste 

von höher Qualität sein. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos31 
Es ist zu aufwändig, 

Twostone zu spielen. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos32 
Der Trigger  

hat genervt. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos33 

Der Trigger hat in der 

ersten Woche mehr 

genervt, als später. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos34 

Der Trigger hat gute 

Gelegenheiten für das 
Spielen herausgesucht.  

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos35 
Der Trigger wurde  

mit der Zeit besser. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos36 

Ich habe den Trigger 

 manchmal nicht 

bemerkt. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos37 
Ich habe den Trigger  

manchmal ignoriert. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos38 

Ohne den Trigger hätte 

ich weniger Twostone 

gespielt. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

pos39 
Der Trigger muss noch 

intelligenter werden. 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 
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pos40 

Der Trigger muss noch 

stabiler werden (in 

Bezug auf Nutzer-

freundlichkeit & Bugs). 

Stimmt 

nicht 

Stimmt 

eher nicht 

Bin mir 

unsicher 

Stimmt ein 

bisschen 

Stimmt 

absolut 

     

 

Und das war’s. 

 
Bitte schicke den ausgefüllten Fragebogen zurück an twostonestudy@gmail.com. 

 

Danke für Deine Unterstützung! :) 
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