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“Die Mathematik ist eine Methode der Logik.[...] Die Erforschung
der Logik bedeutet die Erforschung aller Gesetzmäßigkeit. Und
außerhalb der Logik ist alles Zufall.”

Ludwig Wittgenstein, Tractatus Logico-Philosophicus (Logisch-Philosophische
Abhandlung), 1921, §6.234- 6.30 ([86]).





Preface

The logical form of a mathematical statement can, within a specific formal
framework, a priori guarantee by certain logical metatheorems the extrac-
tion of additional information via a study of the underlying logical structure
of its proof. This new information is usually of quantitative nature, in the
form of effective (computable) bounds -even if the original proof is prima facie
ineffective- and highly uniform. Logically analyzing proofs of mathematical
statements (of a certain logical form) and making their quantitative content
explicit to derive new, constructive information is described as proof mining,
and constitutes an ongoing research program in applied proof theory intro-
duced by Ulrich Kohlenbach about 15 years ago though it finds its origins in
the ideas of Georg Kreisel from the 1950’s who initiated it under the name
unwinding of proofs.

This thesis is a contribution of proof mining to nonlinear analysis. More specif-
ically, this thesis contains the first applications of proof mining to the theory
of partial differential equations and moreover to the theory of accretive, set-
valued operators on Banach spaces, as well as applications of proof mining
to nonexpansive semigroups and their fixed point theory. Essentially all the
results presented in this thesis can be classified under operator theory in gen-
eral and they all involve the study of nonlinear one-parameter semigroups of
nonexpansive mappings on a subset of a Banach space (nonexpansive semi-
groups for short). We finally include a short comment on an idea for future
work involving a proof-theoretic application in analysis of a different nature,
in particular a study of a proof for the existence of a weak solution of the
Navier-Stokes equations in the light of reverse mathematics.

This thesis contains a number of new results that are currently unpublished as
well as results that have been published in two papers coauthored with Ulrich
Kohlenbach (which had been formulated by the author of this thesis except
from their introductions and comments not reproduced in this thesis):

• Kohlenbach, U. and K.-A., A. : Effective asymptotic regularity for
one-parameter nonexpansive semigroups , J. Math. Anal. Appl. 433,
1883-1903 (2016),
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• Kohlenbach, U. and K.-A., A. : Rates of convergence and metasta-
bility for abstract Cauchy problems generated by accretive operators, J.
Math. Anal. Appl. 423, 1089-1112 (2015).
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Abstract

We present the first applications of proof mining to the theory of partial differ-
ential equations as well as to set-valued operators in Banach spaces, in partic-
ular to abstract Cauchy problems generated by set-valued nonlinear operators
that fulfill certain accretivity conditions. In relation to (various versions of)
uniform accretivity we introduce a new notion of modulus of accretivity. A
central result is an extraction of effective bounds on the convergence of the
solution of the Cauchy problem to the zero of the operator that generates it.
We also provide an example of an application for a specific partial differential
equation.

For such operators as well as for operators fulfilling the so-called φ-expansivity
property, again in general real Banach spaces, we give computable rates of
convergence of their resolvents to their zeros.

We give two applications of proof mining to nonlinear nonexpansive semi-
groups, analysing two completely different proofs of essentially the same state-
ment and obtaining completely different bounds. More specifically we obtain
effective bounds for the computation of the approximate common fixed points
of one-parameter nonexpansive semigroups on a subset of a Banach space and
(for a convex subset) we give corollaries on their asymptotic regularity with
respect to Krasnoselskii’s and Kuhfittig’s iteration schemata.

The bounds obtained in all the above works are all not only effective, but
also highly uniform and of low complexity.

We finally include a short comment on a different perspective of a (poten-
tial) proof-theoretic application to partial differential equations, namely a re-
verse mathematical study of a proof for the existence of a weak solution of the
Navier-Stokes equations motivating future work.
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Zusammenfassung

In dieser Arbeit werden die ersten Proof-Mining-Anwendungen auf die The-
orie Partieller Differentialgleichungen sowie auf mehrwertige Operatoren in
Banachräumen präsentiert. Vor allem werden abstrakte Cauchy-Probleme,
die durch mehrwertige nichtlineare Operatoren generiert werden, welche bes-
timmte Akkretivitätsbedingungen erfüllen, betrachtet. Ein neuer Begriff von
Akkretivitätsmodul wird eingeführt, der sich auf verschiedene Varianten von
uniformer Akkretivität bezieht. Das zentrale Ergebnis dieser Arbeit ist die Ex-
traktion von effektiven Schranken für die Konvergenz der Lösung des Cauchy-
Problems gegen die Nullstelle des erzeugenden Operators der es generiert. Ein
Anwendungsbeispiel auf eine spezifische partielle Differentialgleichung wird
ebenfalls präsentiert.

Für solche Operatoren in allgemeinen reellen Banachräumen sowie für Opera-
toren, welche die sogenannte φ-Expansivitätseigenschaft haben, werden berechen-
bare Konvergenzraten ihrer Resolventen gegen ihre entsprechenden Nullstellen
angegeben. Unter der Annahme, dass der Raum darüber hinaus gleichmäßig
konvex ist, wird eine Konvergenzrate von geringer Komplexität bewiesen.

Zwei Proof-Mining-Anwendungen auf nichtlineare, nichtexpansive Halbgrup-
pen werden durch die Analyse von zwei komplett unterschiedlichen Beweisen
derselben Aussage und durch das Erreichen von unterschiedlichen Schranken
vorgestellt. Genauer gesagt werden effektive Schranken für die Berechnung von
approximativen gemeinsamen Fixpunkten von einparameter-nichtexpansiven
Halbgruppen auf einer Teilmenge eines Banachraums gewonnen. Desweiteren
präsentieren wir für eine konvexe Teilmenge Korollare über die asymptotische
Regularität der Iterationsschemata von Krasnoselskii und Kuhfittig.

Alle erreichten Schranken sind nicht nur effektiv, sondern auch in hohem Maße
uniform und haben eine geringe Komplexität.

Diese Dissertation endet mit einem kurzen Kommentar zu einer Idee aus dem
Bereich der Reverse Mathematics zu partiellen Differentialgleichungen, die eine
andere Perspektive auf potentielle beweistheoretische Anwendungen aufzeigt,
um zukünftige Arbeit zu motivieren.
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Chapter 1

Introduction

1.1 Historical Notes

At the Second International Congress of Mathematicians in Paris on August
8, 1900, David Hilbert presented ten (from a list of a total of twenty-three)
problems that he considered of fundamental significance. His second problem
was entitled: “Die Widerspruchslosigkeit der arithmetischen Axiome” which
was translated as: “The compatibility of the arithmetical axioms”([30]). In
modern terminology, this is often interpreted as: “the consistency of Peano
arithmetic” (PA), though “the consistency of second order arithmetic” would
be more accurate, as the latter axiomatic system formalises not only natural
numbers-as is the case with first order PA- but also their subsets, thus also
real numbers, and most of ordinary mathematics is expressible in the language
of second order arithmetic, which is also known as “Analysis”.

Namely, what Hilbert envisioned was essentially the axiomatization of mathe-
matics - axiomatization meaning here a logical definition by using the method
of formal systems, that is, by finitistic proofs starting from an agreed-upon set
of axioms.

In Hilbert’s own words ([30]):“When we are engaged in investigating the foun-
dations of a science, we must set up a system of axioms which contains an
exact and complete description of the relations subsisting between the elemen-
tary ideas of that science. The axioms so set up are at the same time the
definitions of those elementary ideas; and no statement within the realm of the
science whose foundation we are testing is held to be correct unless it can be
derived from those axioms by means of a finite number of logical steps.[...]But
above all I wish to designate the following as the most important among the
numerous questions which can be asked with regard to the axioms: To prove
that they are not contradictory, that is, that a definite number of logical steps
based upon them can never lead to contradictory results.[...]A direct method is

1



2 CHAPTER 1. INTRODUCTION

needed for the proof of the compatibility of the arithmetical axioms.[...]”

The solvability of Hilbert’s Second Problem received a major blow in 1931,
when Kurt Gödel published his notorious Second Incompleteness Theorem ([26]
according to which any formal system (strong enough to formulate its own con-
sistency) can prove its own consistency if and only if it is inconsistent. In that
sense it is therefore impossible to prove the consistency of the axioms of PA
within PA.

Nagel and Newman comment in their book ([64]) on the impact of Gödel’s
Second Incompleteness Theorem: (Gödel )“presented mathematicians with the
astounding and melancholy conclusion that the axiomatic method has certain
inherent limitations, which rule out the possibility that even the ordinary arith-
metic of the integers can ever be fully axiomatized. What is more, he proved
that it is impossible to establish the internal logical consistency of a very large
class of deductive systems -elementary arithmetic, for example- unless one
adopts principles of reasoning so complex that their internal consistency is
as open to doubt as that of the systems themselves. In the light of these con-
clusions, no final systematization of many important areas of mathematics is
attainable, and no absolutely impeccable guarantee can be given that many sig-
nificant branches of mathematical thought are entirely free from internal con-
tradiction.”

In the years that followed, relative consistency proofs were developed: let T1

and T2 be formal theories with languages L(T1), L(T2). If it can be proved
that the consistency of T2 follows from the consistency of T1 then we say that
T2 is consistent relative to T1. (The fact that the consistency of T2 follows
from the consistency of T1 must of course be provable in a system not stronger
than the one in which the consistency of T1 is provable). In this spirit, via the
Gödel-Gentzen negative translation already in 1933 the consistency of PA was
reduced to the consistency of the intuitionistic Heyting Arithmetic (HA) ([27]).
In 1958, by Gödel’s functional “Dialectica” Interpretation the consistency of
PA was reduced to a quantifier-free calculus of primitive recursive functionals
of finite type ([28]). Obtaining relative consistency proofs has been a motiva-
tion for the development of various other such proof interpretations in addition
to negative translation and Dialectica. But except from their aforementioned
contribution to foundational questions, it turned out that such proof interpre-
tations could serve another significant purpose, which was brought to light by
the ideas of Georg Kreisel.

In the early 1950’s Kreisel proposed a shift of focus of proof theory towards
applying proof-theoretic methods for applications in mathematics -rather than
looking exclusively at foundational questions- introducing the program of Un-
winding of Proofs ([52], [53]). Kreisel’s motivation and the scope of his program
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can be summarized in his question:

"What more do we know if we have proved a theorem by restricted means
than if we merely know that it is true ?"

In Kreisel’s program proof interpretations are used as tools to extract con-
structive (i.e. computational) information from given proofs by recursion on
the proofs. Such information in the original proof is implicit -hidden behind
the use of quantifiers. Kreisel drew attention to the study of proofs of exis-
tential statements in particular (in contrast to Hilbert’s original quest which
referred to universal statements) aiming at extracting realizers for the existen-
tial quantifiers as functions of parameters from the proof.

For several decades that followed, applications of proof unwinding were scarce
and far-between, the two most known works being in algebra and number the-
ory: by Charles Delzell on Hilbert’s 17th problem ([18]) continuing work of
Kreisel and by Horst Luckhardt ([58], [59]) on Roth’s theorem. Starting in
[36], Ulrich Kohlenbach re-initiated Kreisel’s program focusing in particular
to applications in analysis. The program was later renamed, as suggested by
Dana Scott, as Proof Mining.

Early work by Kohlenbach was focused on uniqueness proofs in best approx-
imation theory and made use of Heine-Borel compactness in the form of the
noneffective binary weak König’s lemma (WKL) and of a proof-theoretic ap-
proach to eliminate WKL from the proofs (see, for example, [37], [38], [39]).
In 2000-2003, the focus was shifted to strong convergence results for iterative
procedures of nonexpansive and other classes of mappings in general normed
spaces and hyperbolic spaces (see, for example, [42], [43], [49]). The results
were the extraction of explicit, computable and highly uniform bounds. By
“highly uniform” it is meant that the dependence of the bounds is only limited
to general bounding information (majorants) and input data from the spaces
involved, while they are independent from the mapping used in the iteration
and from the starting point.

The above findings would soon be described as instances of proof-theoretic
phenomena by general logical metatheorems that were discovered in 2003-
2005 ([44], [24]). The metatheorems were based on modifications and exten-
sions of the aforementioned functional Dialectica interpretation. In particular,
the monotone functional interpretation is applied ([40]) together with Gödel’s
negative translation ([27]) 1. The latter provides an embedding of the classical
reasoning into an intuitionistic system so that the resulting interpretation can
be applied also to classical proofs, not just to constructive/ intuitionistic ones.

1To be more specific, in [45] Kuroda’s negative translation ([56]) is actually applied.
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It is therefore possible to extract constructive (i.e. computable) information
even from proofs that are prima facie nonconstructive. The passage to the
resulting interpretation is survived by mathematical statements of the logical
form ∀x ∃y A∃(x, y) (where A∃ denotes an existential formula). The metathe-
orem thus guarantees the possibility to extract an explicit, computable bound
on y from the proof of the mathematical statement of the above mentioned
logical form (within some formal framework). The general idea is that T1 is
transformed into T2 by transforming every theorem φ ∈ L(T1) into φI ∈ L(T2)
via the proof interpretation I such that the implication T1 ` φ ⇒ T2 ` φI
holds. Then a given proof p of φ in T1 is transformed into a proof pI of φI

in T2 by a simple recursion over φ in T1 as proof interpretations respect the
logical deduction rules. This gives new quantitative information. Moreover,
we may obtain qualitative information as well, in the sense that it may occur
that pI uses a restricted version of the assumptions of φ, thus φI can turn out
to be a generalisation of φ. Note that, as we will see in the next section in
more detail, the benefit of transforming proofs into functional programs, as is
the case with Dialectica and its variations, is that it is possible to make use
of the mathematical properties of the functionals (for example majorizability,
continuity etc.) so as to capture and make explicit the quantitative and com-
putational content of a proof. As a functional interpretation can be seen as
a reduction of a infinitary theory to a theory of functionals, proof interpreta-
tions can be seen as a generalization of the “finitary” standpoint of analysing
mathematical systems that Hilbert favored. Thus we can see proof mining as
a practice within the generalized Hilbert’s program. For an interesting discus-
sion we refer the reader to Section 4.2. in [89].

Proof mining has since been applied by Kohlenbach and his collaborators
to works in analysis in general and more specifically to approximation the-
ory, ergodic theory, fixed point theory, optimization theory and (recently by
Kohlenbach and the author in [47] for the first time) to the theory of partial
differential equations, and has produced a vast number of results. A review
of the results until 2008 can be found in the book by Kohlenbach ([45]) and
after 2008 in the report [46]. In this thesis we will present our contribution in
the first applications of proof mining to the theory of partial differential equa-
tions and to works on nonexpansive semigroups and their fixed point theory.
Essentially all the works presented in this thesis can also be seen as applica-
tions to operator theory in general as they all involve the study of nonlinear
one-parameter semigroups of nonexpansive mappings on a subset of a Banach
space.
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1.2 Proof Mining : An Elementary Introduction

In this section we will present a very basic introduction to the most essential
proof-theoretic background, as well as the notions and metatheorems that will
be employed throughout this thesis. As we will restrict to a very limited
presentation, for more details we refer the reader to [45].

1.2.1 On Herbrand’s Theorem, Kreisel’s No-Counterexample
Interpretation and Tao’s Metastability

Throughout Section 1.2 the set of natural numbers is defined as N := {0, 1, ...}.

Consider a statement of the form

A ≡ ∀k ∃n ∀m A0(k, n,m) (+)

where A0 denotes a quantifier-free formula. It is in general not possible to
extract a realizer i.e. a computable function f so that

∀k ∀m A0(k, f(k),m)

or even a computable bound on n i.e. a computable function f so that

∀k ∃n ≤ f(k) ∀m A0(k, n,m).

To see this, consider the following example (given in [45]). In (+) let us set

A0 :≡ T (k, k, n) ∨ ¬T (k, k,m)

where T is the primitive recursive Kleene-T -predicate i.e. T (x1, x2, x3) means :
“the Turing machine with Gödel number x1 applied to the input x2 terminates
with a computation whose Gödel number is x3”. Supposing there existed a
computable bound f so that

∀k ∃n ≤ f(k) ∀m (T (k, k, n) ∨ ¬T (k, k,m)),

then, the special halting problem

{k ∈ N : ∃n ∈ N T (k, k, n)}

would be decidable by the computable function

f̃(n) :=

{
0, if ∃n ≤ f(k) T (k, k, n)

1, otherwise.

Even though in general it is not possible to extract computable witnesses/
realizers/ bounds for A, it is possible to compute a bound on n for AH , the
Herbrand normal form of A which is a weakened form of A :

AH :≡ ∀k ∃n A0(k, n, g(n))
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where g is called the Herbrand index function (in theories allowing function
variables and function quantifiers we would writeAH :≡ ∀g, k ∃n A0(k, n, g(n))).
The general definition is as follows:

Definition 1. (see [45]) Let

A :≡ (∀y0) ∃x1 ∀y1... ∃xn ∀yn A0(y0, x1, y1, ..., xn, yn).

The Herbrand normal form of A is defined as

AH :≡ (∀y0) ∃x1, ..., xn A0(y0, x1, f1(x1), ..., xn, fn(x1, ..., xn))

where f1, ..., fn are new function symbols called Herbrand index functions. In
theories that permit function variables and function quantifiers we write

AH :≡ ∀(y0), f1, ..., fn ∃x1, ..., xn A0(y0, x1, f1(x1), ..., xn, fn(x1, ..., xn)).

The dual normal form of the Herbrand normal form, where instead of the uni-
versally quantified variables being replaced by new function symbols depending
on the existentially quantified variables, it is the existentially quantified vari-
ables being replaced by new function symbols depending on the universally
quantified variables, is the Skolem normal formal defined as follows:

Definition 2. (see [45]) Let

A :≡ (∃y0) ∀x1 ∃y1... ∀xn ∃yn A0(y0, x1, y1, ..., xn, yn).

The Skolem normal form of A is defined as

AS :≡ (∃y0) ∀x1, ..., xn A0(y0, x1, f1(x1), ..., xn, fn(x1, ..., xn)).

The new function symbols f1, ..., fn are called Skolem functions.

Note that Herbrandization preserves logical validity and Skolemization pre-
serves logical satisfiability (however none of them preserves logical equivalence,
except in the presence of the axiom of choice).

Considering now again a situation :

A :≡ ∀k ∃n ∀m(P (k, n) ∨ ¬P (k,m))

where P is some predicate symbol, for the Herbrand normal form AH of A
written as:

AH ≡ ∀k ∃n(P (k, n) ∨ ¬P (k, g(n))

we can have a list of candidates for ∃n in particular c, g(c) for any constant c,
since the disjunction

AH,D :≡ (P (k, c) ∨ ¬P (k, g(c)) ∨ (P (k, g(c)) ∨ ¬P (k, g(g(c))))
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is a tautology.

Now let us see how the extraction of such lists of candidates that can serve as
witnesses/ bounds for the Herbrand normal form of any sentence is in general
formally guaranteed. In the following let PL denote the first order predicate
logic with equality. We will say that a formula in the language of PL is a quasi-
tautology if it is a tautological consequence of instances of equality axioms.

Theorem 1. (Herbrand’s Theorem, see [45]) Let

A ≡ ∀y0 ∃x1 ∀y1... ∃xn ∀yn A0(y0, x1, y1, ..., xn, yn).

Then PL `A if and only if there are terms t1,1, ..., t1,k1 , ..., tn,1, ..., tn,kn that
are built up out of the constants, free variables and function symbols of A
and the index functions used for the formation of AH such that the Herbrand
disjunction

AH,D :≡
k1∨
j1=1

...

kn∨
jn=1

A0(y0, t1,j1 , f1(t1,j1), ..., tn,jn , fn(t1,j1 , ..., tn,jn))

is a quasi-tautology.

The terms ti,j can be extracted constructively from a given PL-proof of A and
conversely, one can construct a PL-proof for A out of a given quasi-tautology
AH,D.

(Note that the above also holds for PL without equality if “quasi-tautology” is
replaced by “tautology”.) We therefore see that for AH via Herbrand’s theo-
rem we obtain a list of candidates that serve as bounds. Note that replacing
all occurences of terms with variables in AH,D, we obtain a formula AD from
which we can re-derive A.

It is possible to extend Herbrand’s theorem for so called “open” theories i.e.
first-order theories whose non-logical axioms are all purely universal, however
it is not possible to extend it straightforwardly for PA which is not open.
Kreisel extended the idea behind Herbrand’s theorem for PA by introducing
a new proof interpretation : the so-called no-counterexample interpretation
([52], [53]).

Definition 3. (see [45]) Let

A :≡ ∀y0 ∃x1 ∀y1...∃xn ∀yn A0(y0, x1, y1, ..., xn, yn).

We say that a tuple of functionals Φ1, ...,Φn(=: Φ) satisfies the no-counterexample
interpretation of A if it realizes the Herbrand normal form AH of A, that is, if

∀f A0(Φ1(y0, f), f1(Φ1(y0, f)), ...,Φn(y0, f), fn(Φ1(y0, f), ...,Φn(y0, f)))

where f denotes the tuple f1, ..., fn.
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Let us now see how the above ideas are applied in analysis.

Consider the following formulation of the Cauchy property of a sequence of
reals {an} ⊆ [0,M ]:

∀k ∈ N ∃n ∈ N ∀m ∈ N ∀i, j ∈ [n;n+m] (|ai − aj | <R 2−k) (i)

where [n;n + g(n)] := {i ∈ N : n ≤ i ≤ n + g(n)}. As shown by Specker in
[77], it is in principle not possible to extract a computable bound on n. (In
particular Specker showed that it is impossible even for primitive recursive se-
quences of rational numbers where each an can be coded as a number theoretic
function N→ (N×N) ). However, for the Herbrand normal form of (i) which
is the following reformulation of (i):

∀k ∈ N ∀g : N→ N ∃n ∈ N ∀i, j ∈ [n;n+ g(n)](|ai − aj | <R 2−k) (ii)

it is possible to find a computable bound Φ(k, g,M) so that n ≤ Φ(k, g,M).
This bound solves the no-counterexample interpretation of (i). In particular:

Proposition 1. (Kohlenbach, see Propositions 2.26, 2.27 and Remark 2.29
in [45]) Let {an} be any nonincreasing sequence in [0,M ]. Then, for (ii) as
above, there is a primitive recursive bound

Φ(g, k,M) := g̃(M2k)(0)

with
g̃(n) := n+ g(n)

where the function iterations are defined as:

g(0)(k) := k, g(i+1)(k) := g(g(i)(k))

so that n ≤ Φ(k, g,M).

In this thesis we will see an instance of the above result in the proof of Theo-
rem 9 in Section 2.3 as well as in the proof of Lemma 12 in Section 3.3.

The above bound is called a rate of metastability and we usually refer to the
statement (ii) as the metastable version of (i). This terminology was intro-
duced by T. Tao (see [83, 84]), who rediscovered this phenomenon in analysis
without any use of proof theory. We stress that in general there is no con-
structive way to obtain a bound on n in (i) using the rate of metastability of
(ii).

We can extend this phenomenon for convergence statements, namely, con-
sidering a statement of the form

lim
t→∞

P (t) = 0
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which can be formally written as

∀k ∈ N ∃n ∈ N ∀t ≥ n (|P (t)| <R 2−k) (a).

In principle it is not possible to extract a computable rate of convergence,
i.e. a computable bound on n ∈ N (in general there exist cases where this
is impossible). However, it is always possible to extract a computable rate of
metastability so that n ≤ Φ(k, g, ·) for its metastable version that coincides
with its Herbrand normal form:

∀k ∈ N ∀g : N→ N ∃n ∈ N ∀t ∈ [n, n+ g(n)] (|P (t)| <R 2−k) (b).

Note that Φ(k, g, ·) will moreover be highly uniform and will depend on general
uniform bounds on the input data of the proof. Although obviously (b) follows
from (a) constructively just by restricting [n,∞) to [n, n+ g(n)], because for
the other direction we have to argue by contradiction, there is no way to pass
from a bound on (b) to a bound on (a) in a computational way. It is moreover
noteworthy that (b), unlike (a) is a finitary statement as we now restrict things
to the interval [n, n+ g(n)].

In Theorem 7 of Chapter 2.3, we will see that we are able to extract a rate
of convergence indeed as the proof happens to be constructive, however as we
explained this is not expected in general for a classical proof. (In Chapter 2.4
it happens that we extract full rates of convergence instead of metastability
because of monotonicity that reduces a statement of a form ∀∃∀ to a statement
of the form ∀∃).

For statements of the form ∀∃∀ that we have so far seen in our examples,
the no-counterexample interpretation is a special case of the Gödel functional
interpretation (combined with negative translation) which we will discuss in
the next subsection.

When attempting to extract realizing functionals in a modular way, that is,
by recursion over the proof-tree keeping the basic structure of the proof un-
changed, the no-counterexample interpretation admits only functionals of type
2 and manifests a problem in relation to modus ponens. This problem stems
from the fact that for formulas of complexity ∀∃∀∃ and higher, the passage
of the Herbrand normal form back to the original formula requires the axiom
of choice (AC) for universal formulas which are undecidable. (see [45] and for
more details [41]). This problem is resolved by using Gödel’s functional inter-
pretation (and its variations) that is modular thus well-behaved with respect
to modus ponens and, unlike the no-counterexample interpretation, also works
for formulas with a higher complexity than ∀∃∀ as it admits counterfunctions
of arbitrary (finite) types and only uses the quantifier-free axiom of choice.
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1.2.2 On Gödel’s Functional “Dialectica” Interpretation

The set T of all finite types over N is generated inductively by the clauses:

(i) 0 ∈ T, (ii)ρ, τ ∈ T⇒ τ(ρ) ∈ T.

The type 0 is the type of natural numbers, while objects of type τ(ρ) are func-
tions that map objects of type ρ to objects of type τ . For example, for number
theoretic functions instead of writing that they are of type 1 we can also write
that they are of type 0(0) i.e. of type 0→ 0. Likewise, the type of functionals
mapping number theoretic functions to naturals is (0 → 0) → 0 for which we
can alternatively write 0(00).

Let WE-HAω and WE-PAω denote the weakly extensional intuitionistic Heyt-
ing arithmetic in all finite types and weakly extensional classical Peano arith-
metic in all finite types respectively. The latter follows from the former by
adding the law of excluded middle schema A ∨ ¬A. For the full definition in-
cluding the axioms and rules we refer the reader to Chapter 3.3 in [45]. What
we want to stress here is that by weak extensionality it is meant that the full
extensionality axioms :

Eρ : ∀zρ, xρ1
1 , y

ρ1
1 , ..., x

ρk
k , y

ρk
k (

k∧
i=1

(xi =ρi yi)→ zx =0 zy),

where ρ = 0(ρk)...(ρ1) which are assumed in the corresponding extensional
theories E-HAω and E-PAω, are weakened to a quantifier-free rule of exten-
sionality

A0 → s =ρ t

A0 → r[s/xρ] =τ r[t/xρ]

where A0 is quantifier-free and sρ, tρ, rτ are terms of WE-HAω. The reason
for this weakening is that, as explained in [45] (see Chapter 8 there) any
interpretation that satisfies the Markov principle

¬¬∃xA0(x)→ ∃xA0(x)

(where x denotes tuples of arbitrary finite type) and extracts computational
witnesses from proofs cannot admit full extensionality.

We now present the complete definition of Gödel’s functional Dialectica inter-
pretation ([28], also [45]) combined with Krivine’s negative translation ([54]).
The role of negative translation is to implement classical reasoning within an
intuitionistic system so that the resulting interpretation can be applied also to
classical proofs. For this reason as we have earlier mentioned proof mining can
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provide the extraction of effective bounds even from nonconstructive proofs.
In [78] it was shown that this combination of Gödel’s functional Dialectica
interpretation with Krivine’s negative translation coincides with the so-called
Shoenfield’s functional interpretation ([72]) A 7→ AS . This fulfills the following
(where x, y denote tuples of functionals of finite type over the base type of the
system):

• To every formula A in L(WE-HAω) we assign a a translation AS ≡
∀x ∃y AS(x, y) where AS is quantifier-free.

• For A ≡ ∀x ∃y A0(x, y) we have AS ≡ A.

• By classical logic and the quantifier-free axiom of choice QF-AC defined
by

∀x ∃y F0(x, y)→ ∃B ∀x F0(x,B(x))

we have AS ↔ A.

(In the following, for simplicity we omit the tuple notation): Let AS ≡
∀u ∃x AS(u, x) and BS ≡ ∀v ∃y BS(v, y). We have:

• PS ≡ P ≡ PS for atomic P .

• (¬A)S ≡ ∀f ∃u ¬As(u, f(u))

• (A ∨B)S ≡ ∀u, v ∃x, y (AS(u, x) ∨BS(v, y))

• (∀zA)S ≡ ∀z, u ∃x AS(z, u, x)

• (A→ B)S ≡ ∀f, v ∃u, y (AS(u, f(u))→ Bs(v, y))

• (∃z AS)S ≡ ∀U ∃z, f AS(z, U(z, f), f(U(z, f)))

• (A ∧B)S ≡ ∀n, u, v ∃x, y ((n = 0→ AS(u, x)) ∧ (n 6= 0→ BS(v, y)))
↔ ∀u, v ∃x, y (AS(u, x) ∧BS(v, y)).

The idea is that that S extracts from a given proof p:

p ` ∀x ∃y A(x, y)

an explicit effective functional that realizes AS , that is:

∀x AS(x,Φ(x)).

A variation of the above is the monotone functional interpretation introduced
by Kohlenbach in [40] (again combined with negative translation) which ex-
tracts a Φ∗ such that:

∃Y (Φ∗ & Y ∧ ∀x AS(x, Y (x))).
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The relation & corresponds to a notion of being a “bound” that applies also
to higher order function spaces, originally introduced by W.A. Howard ([32]).
Such a bound is called a majorant and the corresponding relation is called
a majorizability relation. If an element has a majorant, we say that it is
majorizable. The relation is defined as follows:

x∗ &N x :≡ x∗ ≥ x,

x∗ &ρ→τ x :≡ ∀y∗, y (y∗ &ρ y → x∗(y∗) &τ x(y)).

1.2.3 Proof Mining Metatheorems

In this section we will present two main metatheorems of proof mining (ex-
tensions of) which will manifest themselves in the course of this thesis, in the
sense that in the concrete cases that will be studied, the metatheorems will
guarantee the extractability of computable and highly uniform bounds. This
will be the motivation behind our study of the proofs at hand, and after our
analysis such bounds will indeed be extracted. The proofs of the following
metatheorems involve running the Dialectica interpretation as introduced in
the previous section thus ensuring the extractability of the bounds.

Consider the system of E-PAω enriched with WKL i.e. the axiom that ev-
ery infinite subtree of the tree of all finite sequences of 0’s and 1’s has an
infinite path (which is a non-effective axiom) and the quantifier-free versions
of the axiom of choice QF-AC1,0 and QF-AC0,1 i.e.

QF-AC ∀xρ ∃yτ A0(x, y)→ ∃Y ρ→τ ∀xρ A0(x, Y (x))

where (ρ, τ) = (1, 0) and (ρ, τ) = (0, 1) respectively.

Metatheorem 1. (Kohlenbach, Theorem 15.1 in [45]) Let X be a Polish
space, K a compact metric space and A∃(n

0, x1, y1,m0) a purely existential
formula of L(E-PAω) where the types of the existential quantifiers are of degree
at most 1 and n, x, y,m are the only free variables. Assume that

E-PAω + QF-AC1,0 + QF-AC0,1 + WKL

proves

∀n0,m0, x1
1, x

1
2, y

1
1, y

1
2 (x1 =X x2∧y1 =X y2∧A∃(n, x1, y1,m)→ A∃(n, x2, y2,m)).

If a sentence

∀n ∈ N ∀x ∈ X ∀y ∈ K ∃m ∈ N A∃(n, x, y,m)

is proved in the above system, then one can extract a uniform bound Φ(n, x)
that is primitive recursive in the sense of Gödel’s T for ∃m, that is,

WE-HAω ` ∀n ∈ N ∀x ∈ X ∀y ∈ K ∃m ≤ Φ(n, x) A∃(n, x, y,m)



1.2. PROOF MINING : AN ELEMENTARY INTRODUCTION 13

such that Φ(n, x) depends on x ∈ X via a representation fx ∈ N → N of
x ∈ X. If ∃m A∃ is monotone in m, then Φ(n, x) provides a uniform realizer
for ∃m.

It is important to stress that Φ(n, x) does not depend on y ∈ K.

We moreover stress that the noneffective WKL can be eliminated from the
system in which the bound is extracted. An instance of this phenomenon will
be observed in Lemma 7, see Remark 10 in connection to that.

Compactness means constructively completeness and total boundedness and
we note that both the total boundedness and the completeness of the compact
space K are necessary for the above result to hold in general (see [45]). We saw
that Metatheorem 1 guarantees the possibility to extract computable uniform
bounds that are independent from parameters in compact metric spaces K
but only depend on representatives of elements in Polish spaces X. However
while working with general classes of abstract metric spaces it is possible in
certain contexts to obtain bounds that are independent from noncompact but
only metrically bounded spaces, provided that no separability assumptions on
the spaces are used. To this end, we will consider the system Aω, defined as:

Aω :≡ WE-PAω+QF-AC+WKL

(Note that WKL is a weak form of the axiom schema of dependent choice DC:

DC : ∀x0, yρ ∃zρ A(x, y, z)→ ∃fρ→0 ∀x0 A(x, f(x), f(S(x)))

where ρ := ρ1 → (ρ2 → ...(ρn−1 → ρn)) and S is a function symbol of type
0→ 0 for the successor function).

We extend the system Aω to Aω[X, d]. This is done by extending the previ-
ously defined type systemT toTX over both ground types N, X by introducing
the clauses

(i)0 ∈ TX , X ∈ TX (ii)ρ, τ ∈ TX ⇒ τ(ρ) ∈ TX .

Moreover we add constants 0X , 1X of type X as well as bX of type 0 and dX
of type 1(X)(X). (Note that in Aω real numbers are represented by sequences
of rationals thus of objects of type 1). All the axioms and rules of Aω are
extended to the new set of types TX (see [45]) and the new constants fulfill
a number of new (universal) axioms, see [45], Chapter 17. Without the con-
stant bX and the axiom that corresponds to it we obtain the systemAω[X, d]−b.

For ρ ∈ TX we define ρ̂ ∈ T inductively by

0̂ := 0, X̂ := 0, ˆτ(ρ) := τ̂(ρ̂).
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Majorants of functionals of type ρ ∈ TX are functionals of type ρ̂ ∈ T. Kohlen-
bach introduced a new notion of strong majorizability relation for all types
ρ ∈ TX between objects x, y, α of type ρ̂, ρ,X respectively, that is denoted by
&α
ρ as follows (see for example Def. 17.50 in [45]):

• x0 &α
0 y

0 :≡ x ≥0 y,

• x0 &α
X yX :≡ (x)R ≥R dX(y, α),

• x &α
τ(ρ) y :≡ ∀z′, z (z′ &α

ρ z → xz′ &α
τ yz)∧∀z′, z (z′ &α

ρ̂ z → xz′ &α
τ̂ xz).

For any nonempty setX, the full set-theoretic type structure J ω,X := 〈Sρ〉ρ∈TX
over N and X is defined by

S0 := N, SX := X, Sρ(τ) := SSτρ

where SSτρ is the set of all set-theoretic functions Sτ → Sρ. J ω,X is a model
of Aω[X, d] that satisfies the quantifier-free rule of extensionality since in a
metric space we have d(x, y) = 0↔ x = y.

The following fundamental theorem of proof mining refers to any nonempty
metric space (X, d).

Metatheorem 2. (Gerhardy and Kohlenbach, Theorem 17.52 in [45], also see
[24]) Let ρ be any finite type. Let B∀(x, u) C∃(x, v) containing only x, u free
respectively x, v free. Assume that 0X does not occur in B∀, C∃. From a proof
of

∀xρ (∀u0 B∀(x, u)→ ∃v0 C∃(x, v))

in Aω[X, d]−b one can extract a total functional Φ, that is primitive recursive
in the sense of Gödel’s T , from the strongly majorizable elements Sρ̂ to N so
that for all nonempty metric spaces (X, d) and for all x ∈ Sρ, x∗ ∈ Sρ̂, if there
exists an α ∈ X so that x∗ &α x then

∀u ≤ Φ(x∗) B∀(x, u)→ ∃v ≤ Φ(x∗) C∃(x, v)

holds in the sense of Definition 17.29 in in [45].

Note that because here we have defined Aω :≡ WE-PAω+QF-AC+WKL i.e.
with WKL instead of DC, we can allow for arbitrary finite types, compare with
Theorem 17.52 in [45] and see Remark 4.11 in [24] as well as Remark 17.37
in [45]. Because all constructions are realized on the level of the majorants,
the bounds are primitive recursive in the sense of Gödel’s T . As we extract
functionals over N, these are computable without the need to impose any com-
putability structure on the underlying space.

The above metatheorem is adapted accordingly in various concrete cases. For
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abstract normed spaces we extend the system Aω to Aω[X, ‖ · ‖] again by ex-
tending to TX over both ground types N, X, adding constants 0X , 1X of type
X and instead of bX and dX as for Aω[X, d] we add +X of type X(X)(X),
−X of type X(X), .X of type X(X)(1), ‖·‖X of type 1(X) for vector addition,
substraction, scalar multiplication and the norm respectively. For the latter a
number of universal axioms are introduced (see [45], Chapter 17.3). Note that
for normed spaces we take always α := 0X .

We mention in particular how Kohlenbach’s strong majorizability relation ap-
plies for the concrete cases that will be studied in this thesis : If x ∈ N, then
also x∗ ∈ N and it is x∗ ≥ x. If x ∈ N→ N, then also x∗ ∈ N→ N and x∗ is a
nondecreasing upper bound on x. If x ∈ X where X is a normed space, then
x∗ ∈ N and x∗ & x := x∗ ≥ ‖x‖. If x ∈ X → N then x∗ ∈ N → N and it is
nondecreasing with x∗(n) ≥ ‖x(m)‖ whenever n ≥ m. Finally, If x ∈ X → X
then x∗ ∈ N → N and it is nondecreasing with x∗(n) ≥ ‖x(y)‖ whenever
n ≥ ‖y‖. Note that all elements of N, X,N → N, X → N are majorizable but
this is not always the case for X → X, it is however true in particular for the
class of nonexpansive mappings in X → X.

Without going into any more detail here, we only mention that it is possi-
ble to enrich such metatheorems also for extended theories by adding new
axioms, provided that these are universal, and new constants (corresponding
to the new axioms), provided that these have majorants. This has already
been done for many abstract types of metric structures (see [45], [46]). In
Section 3.1.3 of this thesis we will see such adaptations formalized for concrete
mathematical settings. Another example (that is also relevant for this thesis)
is that of the theory Aω[X, ‖ · ‖, η] for uniformly convex spaces which follows
from Aω[X, ‖ · ‖] by adding a constant η of type 1 together with the following
universal axiom:

∀xX , yX ∀k0 (‖x‖, ‖y‖ <R 1R ∧ ‖
x+X y

2
‖ >R 1− 2−η(k) → ‖x−X y‖ ≤ 2−k).

Essentially, as we will see in Section 1.3 where some preliminary mathematical
notions are introduced, the above amounts to η being a modulus of uniform
convexity for the space.

1.2.4 Remarks on the Possibilities and Limits of Proof
Mining

We have so far seen a very minimal introduction on the logical background and
tools as well as the main metatheorems of proof mining that will be used in the
course of this thesis. In relation to the above and regarding the possibilities
and limits of proof mining in actual mathematical practice, we can make the
following comments.
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The information a priori given by the proof mining metatheorems (in con-
texts where the latter are applicable) regardless of whether the given proof of
a certain statement is constructive or not, is the following :

• That it is possible to extract a bound from the given proof.

• That the bound will be computable (moreover in the setting introduced
above it will be primitive recursive in the sense of Gödel’s T ).

• That the bound will depend on general bounding information on the
input data (majorants).

• That the bound will not depend on anything else, in other words, the
bound will be ’uniform’.

If it happens to turn out that the obtained bound depends on less input data
than expected, then we would have also achieved to obtain a strengthening of
the original statement by eliminating one (or more) of the assumptions.

The information that we cannot know a priori by the proof mining metathe-
orems is the following:

• How easy or difficult it will eventually be to extract the bound from the
proof.

• The complexity of the bound. (An estimation about the complexity
of the bound, however, can be made by inspecting the original proof
itself. More specifically, for a sufficiently weak system, for a single use of
sequential compactness we can obtain a bound that is at most primitive
recursive in the sense of Kleene, for instance see Proposition 13.27 in
[45]. If Heine-Borel compactness is used, again for a sufficiently weak
system, we will obtain bounds which are polynomial in the input data,
for instance see Corollary 12.37 in [45]. Also see Remark 17.37 in [45].)

• The precise method of extracting the bound. Typically, this is done in
three stages: (i) The statements involved must be written in a formal
version using quantifiers. (ii) The mathematical objects involved must
have the correct uniformity. While ensuring this, the quantitative con-
tent of their properties is made explicit (i.e. modulus of continuity for
uniform continuity, modulus of accretivity for uniform accretivity, mod-
ulus of convexity for uniform convexity, effective irrationality measure
for irrationality etc). In that way we obtain quantitative versions of the
statements/ lemmas involved. (iii) Finally, we put the latter together
in a deduction schema just like the one of the original proof, i.e. the
structure of the original proof is typically preserved.
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However, the above process and the steps thereof are not automated
and (even though they are not ad hoc) they are open to the manipula-
tions of the mathematician(s) performing proof mining on a given proof.
Moreover, after having obtained the bound, it is in principle not possible
to show that it is the optimal one for a specific proof.

In the case that we have two or more different proofs of the same statement,
it is expected that we will obtain different bounds from each one. In general,
the bounds may differ not only by numerical factors, but also with respect to
their complexity. An instance of this phenomenon appears in Section 3.

1.3 Basic Mathematical Notions, Notation and
Conventions

From now on by N we denote the set of natural numbers {1, 2, ...}. By Z,
Q, R the sets of integers, rational and real numbers respectively and by Z+,
Q+ , R+ the sets of nonnegative integers, rationals and reals respectively. For
x ∈ R, by [x] we denote the floor function (the largest integer not exceeding
x) and by dxe the ceiling function (the smallest integer exceeding or equal to x).

Let X be a Banach space. We recall the following basic definitions.

Definition 4. (Clarkson ([14]), also see [43]) A Banach space X is called
uniformly convex if

∀ε ∈ (0, 2] ∃δ ∈ (0, 1] ∀x, y ∈ X

(‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→ ‖1

2
(x+ y)‖ ≤ 1− δ).

A mapping η : (0, 2] → (0, 1] giving such a δ := η(ε) is called a modulus of
uniform convexity.

For example, as a modulus of uniform convexity one may consider Clarkson’s
modulus of convexity ([14]) defined for any Banach space X as the function
ηX : (0, 2]→ (0, 1] given by

ηX(ε) := inf{1− ‖x+ y

2
‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

Remark 1. For the Banach spaces Lp, p ≥ 2, it is useful to consider the
“asymptotically optimal” modulus of convexity η(ε) := εp

p2p (see, for example,
[29], also [43] and [42] ). The motivation is that it has the advantage that it
can be written in the form η(ε) = εη̃(ε) where η̃ is increasing with ε, in which
case it can often be shown that then in the bound we can replace η with η̃.
There will be several instances of applications of this remark throughout this
thesis.
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Definition 5. Given a Banach space X and a subset C ⊆ X, a mapping T
on C is called nonexpansive if

∀x, y ∈ C ‖Tx− Ty‖ ≤ ‖x− y‖.

Definition 6. (Bruck [10], also see [66]) Let C be a convex, nonempty subset
of a real Banach space X. For t ∈ (0, 1) a mapping T : C → X is called
t-firmly nonexpansive if T is nonexpansive and

∀x, y ∈ C ‖Tx− Ty‖ ≤ ‖(1− t)x+ tTx− ((1− t)y + tTy)‖.

If T is t-firmly nonexpansive for every t ∈ (0, 1), then we say that T is firmly
nonexpansive.

Definition 7. (Krasnoselskii ([51]), also see [45]) Let C be a convex subset of
a Banach space X and let T : C → C nonexpansive. The sequence

xn+1 :=
1

2
xn +

1

2
Txn

is called the Krasnoselskii iteration of T starting at x0.

If
‖xn − Txn‖

n→∞
→ 0

for all x0 ∈ C, where {xn} is a given iteration starting at x0, then T , or more
precisely

T1/2 :=
1

2
(I + T ),

is called asymptotically regular. A rate of convergence for the above convergence
is called a rate of asymptotic regularity for T .

Although the above notion was originally introduced by Browder and Petryshyn
in [9] in particular with respect to the Picard iteration xn+1 := Txn, in the
following we will refer to convergence results of the above form also for dif-
ferent iterations {xn} as asymptotic regularity results. The following classical
results will be of use in the course of this thesis :

Theorem 2. (Ishikawa ([33]) Let (X, ‖ · ‖) be a normed space, C ⊆ X convex
and T : C → C nonexpansive. If the Krasnoselskii iteration {xn}n∈N of T is
bounded, then

‖xn − Txn‖
n→∞
→ 0 ,

that is, T , or more precisely

T1/2 :=
1

2
I +

1

2
T,

is asymptotically regular.
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Theorem 3. (Baillon and Bruck ([3]) Let X be a Banach space, C ⊆ X
convex and T : C → C nonexpansive. Then for the Krasnoselskii iteration xn
of T we have

∀ε > 0 ∀n ≥ θ(ε, d) (‖xn − Txn‖ < ε)

with a rate of asymptotic regularity

θ(ε, d) :=
4d2

πε2

where d > 0 is such that d ≥ ‖x0 − Txn‖ for all n ∈ N.

It is well-known that firmly nonexpansive selfmappings T : C → C on a convex
subset C ⊆ X have the interesting property that if they have a fixed point,
then they are asymptotically regular.

A central mathematical object that will be studied throughout this thesis (and
can be considered as the common ground between the different applications of
proof mining that we will carry out, both in PDE theory and fixed point the-
ory) is a one-parameter semigroup of nonexpansive mappings (or nonexpansive
semigroup for short) defined as follows.

Definition 8. (See, for instance, [4], [20]) Let X be a Banach space with a
subset T ⊆ X. Let F = {T (t) : C → C, t ≥ 0} be a family of self-mappings
of C ⊆ X. F is said to be a nonexpansive semigroup acting on C if

1. T (0) = I, where I is the identity mapping on C,

2. T (s+ t)x = T (s) ◦ T (t)x for all s, t ∈ [0,∞) and x ∈ C,

3. ‖T (t)x− T (t)y‖ ≤ ‖x− y‖ for all x, y ∈ C and t ∈ [0,∞),

4. t 7→ T (t)x is continuous in t ∈ [0,∞) for each x ∈ C.

Property 4 in Definition 8 refers here to continuity with respect to the strong
operator topology (hence in the literature the above is often referred to as
“strongly continuous”). It is important to point out that here we deal with
nonlinear nonexpansive semigroups. Such nonlinear nonexpansive semigroups
play a central role in the study of Cauchy problems (some classical references
are [4], [7], [15], [68])

In this thesis such semigroups are studied indirectly in Chapter 2 as they
arise within the Crandall-Liggett formula which gives the solution of a ho-
mogeneous Cauchy problem generated by an accretive operator and moreover
within the definition of an almost-orbit.

In Chapter 3 nonexpansive semigroups are studied directly in terms of their
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(approximate) common fixed points. (However note that in the definition used
throughout Chapter 3, as is the case in the fixed point literature in general,
Property 1 of Definition 8 is formally not included, see for instance [80], [79].)



Chapter 2

Proof Mining for Classes of
Accretive Operators and PDE
Theory

2.1 Preliminaries

Let X be a real Banach space. By B[x, r] we denote the closed ball of X with
radius r and center x ∈ X. Let X̃ be the dual space of X. The normalized
duality mapping is defined by

J (x) := {j ∈ X̃ : 〈x, j〉 = ‖x‖2, ‖j‖ = ‖x‖}.

Let
〈y, x〉+ := max{〈y, j〉 : j ∈ J (x)}.

Note that for all x, y ∈ X, 〈y, x〉+ ≤ ‖x‖‖y‖ (for example see (1.4) in [4]).

A mapping A : X → 2X will be called an operator on X. The domain and
range of A will be denoted by D(A) and R(A) respectively. Here x ∈ D(A) :≡
Ax 6= ∅.

Note that for such a set-valued operator A, “∀(x, u) ∈ A ” is equivalent to
writing “∀x ∈ D(A) ∀u ∈ Ax”. In the following, both alternative notations
will be used.

We say that A satisfies the range condition if D(A) ⊆ R(I + λA) for all
λ > 0 where D(A) denotes the closure of D(A).

Definition 9. An operator A is said to be accretive if for all λ ≥ 0, u ∈ Ax,
v ∈ Ay,

‖x− y + λ(u− v)‖ ≥ ‖x− y‖.

21
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This notion was originally introduced in 1967 independently by F.E. Browder
([8]), T. Kato ([34]) and Y. Komura ([50]). Note that A is accretive if and
only if −A is dissipative.

Some standard references on accretive and dissipative operators and appli-
cations thereof, especially in differential equations, are [4], [13], [17], [7], [15],
[68].

Definition 10. An accretive operator A is said to be m-accretive if for all
λ > 0, R(I + λA) = X.

For an accretive A, for each λ > 0 we may define a single-valued mapping
JAλ : R(I+λA)→ D(A) by JAλ := (I+λA)−1 where I is the identity operator.
JAλ is called the resolvent of A. If it is clear from the context what A is, for
simplicity we will write Jλ instead of JAλ . We will make use of the following
well-known facts about accretive operators:

Proposition 2. (Proposition 2.1. in [21] for a proof see, for example, [4])
(i) An operator A on X is accretive if and only if for all (x, u), (y, v) ∈ A

〈u− v, x− y〉+ ≥ 0.

(ii) An operator A : X → 2X is accretive if and only if for each λ > 0 the
resolvent JAλ is a single-valued nonexpansive mapping.

(iii) If A is accretive, for all x ∈ R(I + λA) with λ > 0, I−JAλ
λ x ∈ AJAλ x.

If assuming x 6= y and u 6= v only the strict inequality in (i) above holds, we
will say that A is strictly accretive ([1], [17]).

Consider the following initial value problem :

Problem 1. (Non-Homogeneous Abstract Cauchy Problem)

u′(t) +A(u(t)) 3 f(t), t ∈ [0,∞)

u(0) = x

where A : D(A) → 2X is an accretive operator with the range condition and
f ∈ L1(0,∞, X).

Definition 11. A continuous function u : [0,∞) → X is an integral solution
of Problem 1 if u(0) = x and for s ∈ [0, t] and (w, y) ∈ A

‖u(t)− w‖2 − ‖u(s)− w‖2 ≤ 2

∫ t

s
〈f(τ)− y, u(τ)− w〉+dτ.
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It is known (for instance see [4], Chapter III.2) that for each x ∈ D(A) Problem
1 has a unique integral solution u so that u(t) ∈ D(A) for all t. Moreover, it
is known ([15]) that for x0 ∈ D(A) the following initial value problem :

Problem 2. (Homogeneous Abstract Cauchy Problem)

u′(t) +A(u(t)) 3 0, t ∈ [0,∞)

u(0) = x0,

where A : D(A)→ 2X is an accretive operator with the range condition,

has a unique integral solution given by the Crandall-Liggett formula :

u(t) := S(t)(x0) = lim
n→∞

(I +
t

n
A)−n(x0),

see for example Chapter III 1.2 in [4], [15]. We say that the operator −A
generates the nonexpansive semigroup F : {S(t) : D(A) → D(A) : t ≥ 0}.
(Note that the Crandall-Liggett formula for an operator A that is accretive
instead of dissipative it is written with limn→∞(I − t

nA)−n ).

Definition 12. A continuous function u : [0,∞) → X is said to be a strong
solution of Problem 2 if it is Lipschitz on every bounded subinterval of [0,∞),
almost everywhere differentiable on [0,∞), u(t) ∈ D(A) almost everywhere,
u(0) = x0 and u′(t) +A(u(t)) 3 0 for almost every t ∈ [0,∞).

A classical reference where the theory of such Cauchy problems generated
by linear, single-valued operators A, is treated, is [69]. For the theory with
nonlinear and moreover set-valued and dissipative A (equivalently accretive
−A) that we will study in this thesis see [4], [7], [15], [68].

2.2 Special Notions of Accretivity and Introduction
of the Modulus

This section covers certain special notions of accretivity introduced by García-
Falset (see [20], [23], [21]) that we will work on, as well as the new notion of
the modulus of accretivity that was introduced by Kohlenbach and the author
in [47] which is definable for uniform versions of such accretivity notions and
corresponds to quantitative versions for the latter.

As discussed in Chapter 1, our approach is based on a logical metatheorem by
Kohlenbach which uses the proof-theoretic extraction algorithm of monotone
functional “Dialectica” interpretation combined with negative translation. to
obtain uniform effective bounds. Because this algorithm keeps track of uni-
form bounding information by recursion over the given proof, starting from
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the assumptions used and proceeding to the conclusion of the proof, the as-
sumptions have to have the right uniformity. Imposing sufficient uniformity
for the assumptions amounts to precisely guaranteeing the existence of a mod-
ulus of accretivity, which is well-defined for corresponding uniform accretivity
notions. Such a modulus of accretivity was first introduced by Kohlenbach
and the author in [47] and can be understood in an analogy with the concept
of a modulus of continuity for uniform continuity, or a modulus of convexity
for uniform convexity. We we will see in praxis how imposing the appropriate
uniformity for accretivity provides a modulus in the course of this section.

Analogously, for the notion of ψ-expansivity we will see that we can intro-
duce a similar notion of a modulus of ψ-expansivity. The said moduli will be
employed in the proof mining analysis in the next sections, as it will be essen-
tial to capture and make explicit the quantitative content of the accretivity,
respectively expansivity notion. This quantitative content will appear in the
resulting bounds that will be derived.

Definition 13. (See e.g. [63], [23]) Let X be a real Banach space and let
ψ : [0,∞)→ [0,∞) be a continuous function such that ψ(0) = 0 and ψ(r) > 0
for r > 0. A mapping A : D(A) → 2X is said to be ψ-expansive if for every
x, y ∈ D(A) and every u ∈ Ax and v ∈ Ay

‖u− v‖ ≥ ψ(‖x− y‖).

The above notion is already uniform, therefore we can introduce here a mod-
ulus of ψ-expansivity (in analogy to the notions that had been introduced by
Kohlenbach and the author in [47]) as follows:

Definition 14. Given a real Banach space X and a function ∆(·)(·) : N×N→
N we say that a ψ-expansive operator A : D(A) → 2X has a modulus of ψ-
expansivity ∆ if

∀k ∈ N ∀K ∈ N ∀(x, u), (y, v) ∈ A

(‖x− y‖ ∈ [2−k,K]→ ‖u− v‖ ≥ 2−∆K(k)).

Proposition 3. Let X be a real Banach space. Every ψ-expansive operator
A : D(A)→ 2X has a modulus of ψ-expansivity ∆.

Proof. For k ∈ N,K ∈ N define

∆K(k) := minn (2−n ≤ inf{ψ(y) : y ∈ [2−k,K]})

The above is well-defined since ψ : [0,∞)→ [0,∞) is continuous with ψ(x) > 0
for x > 0.
Then,

∀k ∈ N ∀K ∈ N ∀(x, u), (y, v) ∈ A
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( ‖x− y‖ ∈ [2−k,K]→ ‖u− v‖ ≥ ψ(‖x− y‖) ≥ 2−∆K(k) ).

Definition 15. (See e.g. [23], [20]) Let ψ : [0,∞) → [0,∞) be a continuous
function such that ψ(0) = 0 and ψ(x) > 0 for x 6= 0. A mapping A : D(A)→
2X on a real Banach space X is ψ-strongly accretive if

∀(x, u), (y, v) ∈ A 〈u− v, x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖).

Operators that are accretive and ψ-expansive are a larger family than the
family of operators that are ψ-strongly accretive. This is easy to see as follows:
if A is ψ-strongly accretive i.e. if

∀(x, u), (y, v) ∈ A 〈u− v, x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖

then
∀(x, u), (y, v) ∈ A ‖u− v‖‖x− y‖ ≥ ψ(‖x− y‖)‖x− y‖

thus
∀(x, u), (y, v) ∈ A ‖u− v‖ ≥ ψ(‖x− y‖)

so A is ψ-expansive. However, the converse does not hold. For a counterex-
ample see for instance Example 3.6. in [21].

Notice that if A is ψ-strongly accretive, and if A has a zero z ∈ D(A) then z
is unique. To prove this, let z, z′ ∈ D(A) so that Az 3 0, Az′ 3 0 and z 6= z′.
Then

〈0, z − z′〉+ ≥ ψ(‖z − z′‖)‖z − z′‖

but by definition
ψ(‖z − z′‖) ≤ 0→ ‖z − z′‖ = 0,

hence z = z′.

We introduce a quantitative form of the above already uniform notion that we
call modulus of accretivity Θ for ψ-strong accretivity :

Definition 16. (Kohlenbach and K.-A. ([47])) Given a real Banach space X
and a function Θ(·)(·) : N×N→ N we say that a ψ-strongly accretive operator
A : D(A)→ 2X has a modulus of accretivity Θ if

∀k ∈ N ∀K ∈ N ∀(x, u), (y, v) ∈ A

(‖x− y‖ ∈ [2−k,K]→ 〈u− v, x− y〉+ ≥ 2−ΘK(k)‖x− y‖).

Proposition 4. (Kohlenbach and K.-A. ([47])) Let X be a real Banach space.
Every ψ-strongly accretive operator A : D(A) → 2X has a modulus of accre-
tivity Θ.
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Proof. For k ∈ N,K ∈ N define

ΘK(k) := minn (2−n ≤ inf{ψ(y) : y ∈ [2−k,K]})

The above is well-defined since ψ : [0,∞)→ [0,∞) is continuous with ψ(x) > 0
for x > 0.
Then,

∀k ∈ N ∀K ∈ N ∀(x, u), (y, v) ∈ A ( ‖x− y‖ ∈ [2−k,K]→

〈u− v, x− y〉+ ≥ ψ(‖x− y‖)‖x− y‖ ≥ 2−ΘK(k)‖x− y‖ ).

In [20] the notion of φ-accretivity at zero for an operator A : D(A) → 2X is
introduced:

Definition 17. (García-Falset, Definition 2 in [20]) Let X be a real Banach
space, let φ : X → [0,∞) be a continuous function such that φ(0) = 0, φ(x) > 0
for x 6= 0 so that for every sequence (xn) in X such that (‖xn‖) is nonincreasing
and φ(xn)→ 0 as n→∞, then ‖xn‖ → 0. An accretive operator A : D(A)→
2X with 0 ∈ Az is said to be φ-accretive at zero if

∀(x, u) ∈ A (〈u, x− z〉+ ≥ φ(x− z)) (]).

Proposition 5. (García-Falset, Proposition 4 in [20]) Let A : D(A)→ 2X be
an m-accretive operator on X such that there exists z ∈ X satisfying expression
(]). Then A is φ-accretive at zero (i.e. it is moreover 0 ∈ Az).

Theorem 4. (García-Falset and Morales, Theorem 8 in [23]) Let X be a real
Banach space. Let A : D(A)→ 2X be an m-accretive and ψ-expansive mapping
on D(A). Then A is surjective.

By the above theorem, if A : D(A)→ 2X is m-accretive and ψ-strongly accre-
tive A (as we saw that every ψ-strongly accretive A is also ψ-expansive so the
above applies) then A is also φ-accretive at zero with φ(·) := ψ(‖ · ‖)‖ · ‖ (as
surjectivity guarantees the existence of a z ∈ D(A) so that 0 ∈ Az).

So, in short, the situation is summarized in the following diagram:

ψ-strongly accretive

⇓ ⇓ if moreover m-accretive

ψ-expansive 6= φ-accretive at zero
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Now notice that for a φ-accretive at zero operator A as in Definition 17, for
z ∈ D(A) so that Az 3 0 we can again show uniqueness of z, as assuming that
there exists a D(A) 3 z′ 6= z so that Az′ 3 0, for (z′, 0) ∈ A we obtain

〈0, z′ − z〉+ ≥ φ(z′ − z)

therefore
φ(z′ − z) = 0,

and because z′ − z 6= 0→ φ(z′ − z) > 0,

z = z′.

However, here there exists no uniform notion of a modulus of accretivity as the
distance that φ(x) has from 0 not only depends on the distance that ‖x‖ > 0
has from 0 but on x 6= 0 itself.

In our proof-theoretic analysis of the proofs we will have to consider oper-
ators A : D(A)→ 2X that have a well-defined modulus of accretivity, in order
to capture and make explicit the quantitative content of the accretivity no-
tion. This is the case, for instance, when A has the -more restrictive (in the
sense that we impose additionally uniformity)- accretivity property that we
introduce below.

Definition 18. (Kohlenbach and K.-A. ([47])) We say that a φ-accretive at
zero operator A : D(A) → 2X , where X is a real Banach space, is uniformly
φ-accretive at zero if φ : X → [0,∞) is in particular of the form

φ(x) = g(‖x‖)

where g : [0,∞) → [0,∞) is a continuous function such that g(0) = 0 and
g(α) > 0 for α 6= 0.

The motivation for this choice is the possibility to define again a uniform notion
of modulus of accretivity Θ for uniformly φ-accretive at zero operators in the
following sense:

Definition 19. (Kohlenbach and K.-A. ([47]))Given a real Banach space X
and a function Θ(·)(·) : N × N → N, we say that a uniformly φ-accretive at
zero operator A : D(A)→ 2X with Az 3 0 has a modulus of accretivity Θ if

∀k ∈ N ∀K ∈ N ∀(x, u) ∈ A (‖x− z‖ ∈ [2−k,K]→ 〈u, x− z〉+ ≥ 2−ΘK(k)).

Proposition 6. (Kohlenbach and K.-A. ([47]))Let X be a real Banach space.
Every uniformly φ-accretive at zero operator A : D(A)→ 2X with Az 3 0 has
a modulus of accretivity Θ.
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Proof. By assumption

∀(x, u) ∈ A (〈u, x− z〉+ ≥ φ(x− z) = g(‖x− z‖)).

In a similar spirit as in the previous proof for the case of a ψ-strongly accretive
operator, we have

∀k ∈ N ∀K ∈ N ∀x ∈ D(A) (‖x− z‖ ∈ [2−k,K] → g(‖x− z‖) ≥ 2−ΘK(k))

where we have defined

ΘK(k) := min n(2−n ≤ inf{g(α) : α ∈ [2−k,K]}).

Remark 2. For a uniformly φ-accretive at zero operator, in the case where
the function g is nondecreasing, the modulus of accretivity Θ does not depend
on K, as in this case, clearly,

inf{g(α) : α ∈ [2−k,K]} = g(2−k).

This is usually the case in many applications and, in particular, in the applica-
tion that we discuss in Section 2.3.3. Clearly, the analogous conclusion holds
for ψ-strongly accretive operators.

Note that given a ψ-strongly accretive operator A, if A is also uniformly φ-
accretive at zero with 0 ∈ Az, given a modulus of ψ-strong accretivity Θψ

K(k),
we easily obtain a modulus of uniform φ-accretivity at zero Θφ

K(k) by noticing
that

∀k ∈ N ∀K ∈ N ∀(x, u) ∈ A

(‖x− z‖ ∈ [2−k,K]→ (〈u, x− z〉+ ≥ 2−ΘψK(k)‖x− z‖ ≥ 2−ΘψK(k) · 2−k))

which gives
Θφ
K(k) := Θψ

K(k) + k

as a modulus of uniform φ-accretivity at zero.

In [21] García-Falset introduces a definition of φ-accretivity at zero that is
different to his aforementioned definition (Definition 17 i.e. Definition 2 in
[20]):

Definition 20. (García-Falset, Definition 3.3. in [21]) Let X be a real Banach
space and let φ : [0,∞) → [0,∞) be a continuous function such that φ(0) = 0
and φ(r) > 0 for r > 0. We say that an accretive operator A : D(A)→ 2X is
φ-accretive at zero whenever there exists z ∈ X such that for all (x, u) ∈ A

〈u, x− z〉+ ≥ φ(‖x− z‖).
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The above Definition 20 (i.e. Definition 3.3. in [21]) differs from the aforemen-
tioned Definition 17 (i.e. Definition 2 in [20]) in two ways:

(1) In Definition 17 the existence of the zero of the operator A, i.e. the fact
that z is actually such that 0 ∈ Az is included, though it is not included
here. However, note that for an m-accretive operator A, by Proposition 5,
Definition 20 is consistent with Definition 17, i.e. m-accretivity together with
φ-accretivity at zero as in [21] give that 0 ∈ Az Another way to see that 0 ∈ Az
(again for an m-accretive operator A) is by the following theorem:

Theorem 5. (García-Falset, Llorens-Fuster and Prus, Theorem 6 in [22] or
Theorem 4.1 (a) in [21]) Let X be a Banach space, let A : D(A) ⊆ X → 2X

and z ∈ X be as in Definition 20. Then, assuming z ∈ R(I + A), we have
0 ∈ Az.

The above is applicable as z ∈ R(I + A) clearly follows from m-accretivity.
m-accretivity for A is indeed always assumed throughout both [20] and [21] as
well as in this work.

(2) “Uniformity” due to the norm : Definition 20 involving the norm is al-
ready uniform as it is considered φ : [0,∞) → [0,∞), however Definition 17
was not as it was considered φ : X → [0,∞) thus the distance of φ(·) from 0
would not depend only on the norm ‖x‖ for an input x ∈ X but on x ∈ X itself.
So we will refer to this notion as in Definition 20 as “uniform” φ-accretivity at
zero as it now coincides with Definition 18.

At this point we introduce in higher generality (in the sense of omitting the
information of the function φ) the property of uniform accretivity at zero for
an operator A : D(A)→ 2X with 0 ∈ Az as follows:

Definition 21. (Kohlenbach and K.-A. ([47])) Let X be a real Banach space.
An accretive operator A : D(A)→ 2X with 0 ∈ Az is called uniformly accretive
at zero if

∀k ∈ N ∀K ∈ N ∃m ∈ N ∀(x, u) ∈ A

(‖x− z‖ ∈ [2−k,K]→ 〈u, x− z〉+ ≥ 2−m) (∗).

Any function Θ(·)(·) : N×N→ N is called a modulus of accretivity at zero for
A if m := ΘK(k) satisfies (∗).

In the following sections we will see that for all the results by García-Falset
that we will analyse in this thesis as well as for all the quantitative versions
thereof that we will show, instead of uniform φ-accretivity at zero, it would
actually be sufficient to assume just uniform accretivity at zero as above (thus
eliminating the information of the function φ).
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We are now in the position to make the observation that a modulus of ac-
cretivity at zero can follow as a consequence just of the weaker notion of strict
accretivity at zero (defined below) by imposing the correct uniformity as ex-
pected from the discussion in Chapter 1 and in the beginning of this chapter.

Definition 22. For a real Banach space X, an operator A : X → 2X with
0 ∈ Az is called strictly accretive at zero if

∀(x, u) ∈ A (x− z 6= 0→ 〈u, x− z〉+ > 0)(∗∗).

Notice that Definition 22 also guarantees the uniqueness of the zero z.

Clearly if an operator is strictly accretive (i.e. if 〈u − v, x − y〉+ > 0 for
all (x, u), (y, v) ∈ A where x 6= y and u 6= v), it is also in particular strictly
accretive at zero, but the converse does not hold. Therefore one should be
careful not to restrict to this weaker notion of Definition 22 in general as in
praxis for the operator A we need also full accretivity for all (x, u), (y, v) ∈ A
and not just at zero.

The important point that we want to make here is that (∗) of Definition 21
can be seen only as a consequence of (∗∗) of Definition 22 by ’uniformizing’
the latter as follows: The statement (∗∗) can be written as

∀(x, u) ∈ A (∃k ∈ N ‖x− z‖ ≥ 2−k → ∃m ∈ N〈u, x− z〉+ > 2−m)

which by prenexation gives

∀(x, u) ∈ A ∀k ∈ N ∃m ∈ N(‖x− z‖ ≥ 2−k → 〈u, x− z〉+ > 2−m)

or equivalently

∀K, k ∈ N ∀x ∈ DK ∀u ∈ Ax ∃m ∈ N(‖x− z‖ ≥ 2−k → 〈u, x− z〉+ > 2−m)

where DK := {x ∈ D(A) : ‖x− z‖ ≤ K}. Now the above statement is made
uniform by moving the quantifier ∃m ∈ N forward and we write the above as:

∀K, k ∈ N ∃m ∈ N ∀(x, u) ∈ A

(‖x− z‖ ≤ K ∧ ‖x− z‖ ≥ 2−k → 〈u, x− z〉+ > 2−m).

A computable bound χ(k,K) ≥ m can be seen as a modulus Θ as in (∗).

Remark 3. It is interesting to investigate how a modulus of accretivity/ ex-
pansivity for an operator A is associated with a modulus of uniqueness (see
[38, 45]) for the zero z so that 0 ∈ Az (if the zero exists). We distinguish the
following four cases.
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• For a ψ-expansive operator A, any modulus of ψ-expansivity ∆ yields a
‘modulus of uniqueness for the zero z of A’ (if the zero z exists) in the
following sense: Let Az 3 0 and suppose ∃v ∈ Az′ with ‖v‖ ≤ 2−δ, where
δ ∈ N. Then, for all k ∈ N, K ∈ N by making the choice (0, z), (v, z′) ∈
A,

‖z − z′‖ ∈ [2−k,K]→ ‖v − 0‖ ≥ 2−∆K(k)

and so
‖z − z′‖ ∈ [2−k,K]→ 2−δ ≥ 2−∆K(k).

Let us take
δ = δK(k) := ∆K(k) + 1 > ∆K(k).

Then
2−δK(k) < 2−∆K(k)

and therefore

‖z − z′‖ ≤ K ∧ ∃v ∈ Az′(‖v‖ ≤ 2−δK(k) → ‖z − z′‖ < 2−k).

In the special case where ψ(·) is nondecreasing, the K dependence for the
modulus of uniqueness disappears and the condition ‖z − z′‖ ≤ K is not
needed (see Remark 2).

• For a ψ-strongly accretive operator A, any modulus of accretivity Θ yields
a ‘modulus of uniqueness for the zero z of A’ (if the zero z exists) in the
following sense: Let Az 3 0 and suppose ∃v ∈ Az′ with ‖v‖ ≤ 2−δ, where
δ ∈ N. Then, for all k ∈ N, K ∈ N

‖z−z′‖ ∈ [2−k,K]→ ‖v‖‖z−z′‖ ≥ 〈v, z−z′〉+ ≥ 2−ΘK(k)‖z−z′‖

and so
‖z − z′‖ ∈ [2−k,K]→ 2−δ ≥ 2−ΘK(k).

Let us take
δ = δK(k) := ΘK(k) + 1 > ΘK(k).

Then
2−δK(k) < 2−ΘK(k)

and therefore

‖z − z′‖ ≤ K ∧ ∃v ∈ Az′(‖v‖ ≤ 2−δK(k) → ‖z − z′‖ < 2−k).

As above, in the special case where ψ(·) is nondecreasing, the K de-
pendence for the modulus of uniqueness disappears and the condition
‖z − z′‖ ≤ K is not needed (see Remark 2).
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• For a φ-accretive at zero operator A, as it has been already stressed, there
exists no well-defined modulus of accretivity, thus we cannot associate a
modulus of uniqueness for the zero z of A with a modulus of accretivity
for A.

• For a uniformly accretive at zero operator A, any modulus of accretivity
Θ also yields a modulus of uniqueness for the zero z of A as follows: Let
Az 3 0 and suppose ∃v ∈ Az′ with ‖v‖ ≤ 2−δ, where δ ∈ N. Then for all
k ∈ N, K ∈ N

‖z−z′‖ ∈ [2−k,K]→ 2−δ·K ≥ ‖v‖‖z−z′‖ ≥ 〈v, z−z′〉+ ≥ 2−ΘK(k).

Let us take

δ = δK(k) := log2K + ΘK(k) + 1 > log2K + ΘK(k).

Then
2−δK(k) <

1

K · 2ΘK(k)

and so

‖z − z′‖ ≤ K ∧ ∃v ∈ Az′(‖v‖ ≤ 2−δK(k) → ‖z − z′‖ < 2−k).

Here, even in the special case where A is uniformly φ-accretive at zero
with g(·) nondecreasing thus making the K dependence for the modulus
of accretivity disappear (Remark 2), the K dependence for the modulus
of uniqueness does not disappear as we still have the term log2K.

2.3 Effective Information on the Solution of Cauchy
Problems Generated by Accretive Operators

2.3.1 Overview

In this section we present some results by García-Falset in [20] of which we
will obtain quantitative versions by logically analysing their proofs in Section
2.3.2. We start with a basic definition:

Definition 23. Given a nonexpansive semigroup F = {S(t) : C → C, t ≥ 0}
on C ⊆ X, a continuous function u : [0,∞) → C ⊆ X is said to be an
almost-orbit of F if

lim
s→∞

( sup
t∈[0,∞)

‖u(t+ s)− S(t)u(s)‖) = 0.

The following theorem shown in [20] is of fundamental importance.
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Theorem 6. (García-Falset, Theorem 8 in [20]) Let X be a real Banach space.
If A is an operator on X with the range condition that is φ-accretive at zero
and such that Problem 2 has a strong solution for each x0 ∈ D(A) and F :=
{S(t) : D(A)→ D(A) : t ≥ 0} is the nonexpansive semigroup generated by −A
via the Crandall-Liggett formula, then every almost-orbit u : [0,∞) → D(A)
of F is strongly convergent to the zero z of A.

What we can view as the central result is the following corollary of the above
theorem :

Corollary 1. (García-Falset, Corollary 9 in [20]) Let X be a real Banach
space. Suppose that A : D(A) → 2X is an m-ψ-strongly accretive operator on
X. Suppose that Problem 2 has a strong solution for each x0 ∈ D(A). Then,
for each x ∈ D(A) the integral solution u(·) of Problem 1 converges strongly
to the zero z of A as t→∞.

Note that although in [20] the above corollary is stated with the assumption
of m-ψ-strong accretivity, φ-accretivity at zero and the range condition are
sufficient conditions for the proof. (Note that clearly m-accretivity implies the
range condition and as already mentioned in Section 2.2, every m-ψ-strongly
accretive operator is φ-accretive at zero).

The proof of the above Corollary 1 follows from the following key lemma :

Lemma 1. (Miyadera and Kobayasi, Proposition 7.1 in [62] or Lemma 1(b)
in [20] ) Let X be a Banach space. Let A be an accretive operator A : D(A)(⊆
X) → 2X with the range condition. Then the integral solution of the initial
value problem

u′(t) +Au(t) 3 f(t), t ≥ 0, u(0) = x ∈ D(A),

with f(.) ∈ L1(0,∞, X) is an almost-orbit of the nonexpansive semigroup gen-
erated by −A.

So as the above lemma states that under the conditions of the corollary the
integral solution u(·) of Problem 1 is an almost-orbit of the nonexpansive
semigroup

F := {S(t) : D(A)→ D(A) : t ≥ 0}
generated by −A via the Crandall-Liggett formula, it enables the application
of Theorem 6 (Theorem 8 in [20]) giving directly Corollary 1.

We also state the following:

Corollary 2. (García-Falset, Corollary 10 in [20]) Let X be a Banach space
with the Radon-Nikodym property. Suppose that A : D(A)(⊆ X) → 2X is
an m-accretive operator satisfying condition (]) of Definition 17 for some
z ∈ D(A). Then for each x ∈ D(A), the integral solution u(·) of Problem
1 converges strongly to z as t→∞.
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2.3.2 Proof-theoretic Analysis and Results

The work presented in this section is included in [47].

This is the first case study within the program of proof mining where abstract
Cauchy problems given by general set-valued accretive operators A : X → 2X

are treated. More specifically, this is both the first time set-valued accretive
operators are treated within proof mining, and the first application of proof
mining to partial differential equations.

We will show here the extraction of computable and highly uniform rates
of convergence and metastability in the sense of Tao (recall the discussion in
Chapter 1) for the convergence results regarding abstract Cauchy problems
generated by φ-accretive at zero operators A : D(A)(⊆ X) → 2X for a real
Banach space X that were proved by García-Falset in [20] and presented in
the previous section. That is, we will establish explicit quantitative versions of
the asymptotic behavior of solutions of a certain very general class of abstract
Cauchy problems. In particular, recall from the previous section that the op-
erator A is assumed to satisfy the range condition, to have a zero z ∈ D(A) i.e.
0 ∈ Az, and to satisfy the condition of being φ-accretive at zero that implies
that z is unique.

The bound extractions will be achieved by proof-theoretic analysis of the proofs
in [20] and having assumed uniform accretivity at zero, yielding the new notion
of modulus of accretivity as firstly introduced by Kohlenbach and the author
in [47] and presented in Section 2.2. A central result is the computation of
the rate of metastability for the convergence of the solution of the abstract
Cauchy problem generated by a uniformly accretive at zero operator to the
unique zero of A.

More specifically, recall from the previous section (Corollary 1) that in [20]
it is shown that the integral solution of the problem

u′(t) +A(u(t)) 3 f(t), t ∈ [0,∞)

u(0) = x0,

where f ∈ L1(0,∞, X) and A is as described above, converges to z as t→∞.

In fact, this followed as a corollary of Theorem 6, a general theorem in [20]
about this convergence for almost-orbits v(t) of the nonexpansive semigroup
F := {S(t) : D(A)→ D(A) : t ≥ 0} generated by −A. Analyzing the proof of
Theorem 6, we will extract an explicit computation which eventually translates
any given rate of convergence for an almost-orbit into a rate of convergence of
the integral solution of the Cauchy problem towards the unique zero z of A.
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In the case of f ∈ L1(0,∞, X) such a rate of convergence for an almost-orbit
amounts to knowing a rate of convergence of (∗)

∫∞
s ‖f(ξ)‖dξ s→∞−→ 0. Such a

rate of convergence, however, would in general not be possible to compute in
just f and an upper boundM ≥

∫∞
0 ‖f(ξ)‖dξ, and even when it is computable

it will strongly depend on the particulars of f.

In the case at hand it is however possible to compute a rate of metastability
for (∗) which only depends on M but not on f itself, by applying Proposi-
tion 1. To this end, also the conclusion of Theorem 6 has to be rephrased in
metastable terms. Therefore, after obtaining a quantitative version of The-
orem 6 (extracting a rate of convergence which here happens to be possible
although this is in general not the case) we will also obtain a metastable quan-
titative version of Theorem 6 (i.e. extracting a rate of metastability). Even
though the latter is weaker, it is essential as we will insert in it the information
related to (∗) so as to eventually obtain the main result of this paper which
the explicit construction for the metastable version of the convergence of the
solution of our Cauchy problem towards the unique zero z of A i.e. a quanti-
tative and metastable version of Corollary 1.

The uniformity of the bounds extracted is witnessed by the fact that f only
enters via a bound on its L1-norm and also by the fact that they do not depend
on the (uniformly accretive at zero) operator A itself but only on its modulus
of accretivity at zero as introduced in Section 2.2.

After the above very general outline, we now present and prove our results.

Theorem 7. (Kohlenbach and K.-A., ([47]), Quantitative version of Theorem
6) Let X be a real Banach space. Let A be an operator on X with the range
condition that is uniformly accretive at zero with a modulus of accretivity Θ,
and such that Problem 2 has a strong solution for each x0 ∈ D(A) and F :=
{S(t) : D(A) → D(A) : t ≥ 0 } is the nonexpansive semigroup generated by
−A via the Crandall-Liggett formula. Then every u : [0,∞) → D(A) that
fulfills the condition1:

∃Φ : N→ N ∀k ∈ N ∃s ∈ [0,Φ(k)] (sup
t≥0
‖u(s+ t)− S(t)u(s)‖ ≤ 2−k),

is strongly convergent to the zero z of A, i.e.

∀k ∈ N ∀x ≥ Ψ(k,B,Φ,Θ) (‖u(x)− z‖ < 2−k)

1clearly this is a weakening of the assumption of u : [0,∞)→ D(A) being an almost-orbit
of F := {S(t) : D(A)→ D(A) : t ≥ 0} i.e.

∃Φ : N→ N ∀k ∈ N ∀s ≥ Φ(k) (sup
t≥0
‖u(s+ t)− S(t)u(s)‖ ≤ 2−k).
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with rate of convergence

Ψ(k,B,Φ,Θ) = (B(Φ(k + 1)) + 2) · 2ΘK(Φ(k+1))(k+2)+1 + Φ(k + 1)

where
K(s) := d

√
2(B(s) + 1)e

and B(s) is any nondecreasing upper bound on 1
2‖u(s)− z‖2.

In the entire section we will assume that ΘK(k) is nondecreasing in K. Note
that this assumption is possible without loss of generality, as for any ΘK(k)
we may define a nondecreasing

ΘMK (k) := max{Θi(k) : i ≤ K}.

Proof. The proof is based on performing proof mining on the proof of Theorem
6 (i.e. Theorem 8 in [20]).

Let u : [0,∞) → D(A) be as in the assumption of the theorem. Let s ≥ 0 be
fixed.

Case 1. Assume that u(s) ∈ D(A).

Consider the following initial value problem, which is of the form of Prob-
lem 2:

Problem 3.
w′s(t) +A(ws(t)) 3 0,

ws(0) = u(s).

Problem 3 has a unique solution

ws(t) = S(t)u(s)

which is a strong solution by assumption. Thus the derivative w′s(t) is defined
almost everywhere and −w′s(t) ∈ Aws(t) almost everywhere, i.e.

∃S ⊂ [0,∞)(µ(S) = 0 ∧ ∀t ∈ [0,∞) \ S w′s(t) ↓),

∃S ′ ⊂ [0,∞)(µ(S ′) = 0 ∧ ∀t ∈ [0,∞) \ S ′ − w′s(t) ∈ Aws(t)),

where µ(·) denotes the Lebesgue measure. There exists j(t) ∈ J (ws(t) − z),
where J (·) is the normalized duality mapping as defined in Section 2, so that,
for all t ∈ [0,∞) \ S :

〈−w′s(t), ws(t)− z〉+ = 〈−w′s(t), j(t)〉 = 〈−1

h
(ws(t)−ws(t− h)) + ξ(t, h), j(t)〉

=
1

h
〈ws(t− h)− ws(t), j(t)〉+ 〈ξ(t, h), j(t)〉 (1)
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where limh→0 ξ(t, h) = 0.

(Notice: 〈ws(t)− z, j(t)〉 = ‖ws(t)− z‖2 = ‖j(t)‖2. ) Now :

〈ws(t− h)− ws(t), j(t)〉 = 〈ws(t− h)− ws(t) + z − z, j(t)〉

= 〈ws(t− h)− z, j(t)〉+ 〈z − ws(t), j(t)〉

= 〈ws(t− h)− z, j(t)〉 − 〈ws(t)− z, j(t)〉

= 〈ws(t− h)− z, j(t)〉 − ‖ws(t)− z‖2 (2).

Notice that by the properties of the duality mapping (see [4] page 12 (1.4))

〈ws(t− h)− z, j(t)〉

≤ ‖ws(t− h)− z‖‖j(t)‖

≤ 1

2
‖ws(t− h)− z‖2 +

1

2
‖j(t)‖2

=
1

2
‖ws(t− h)− z‖2 +

1

2
‖ws(t)− z‖2(3)

By (2) and (3)

〈ws(t− h)− ws(t), j(t)〉 ≤
1

2
‖ws(t− h)− z‖2 − 1

2
‖ws(t)− z‖2 (4).

Define qs(t) := 〈−w′s(t), j(t)〉 = 〈−w′s(t), ws(t)−z〉+. Note that qs(t) is defined
almost everywhere, as w′s(t) is defined almost everywhere. Now −w′s(t) ∈
Aws(t) almost everywhere. By the accretivity of A, the condition qs(t) ≥ 0
holds for all t ∈ [0,∞)\ (S ∪S ′). By (4), for all t ∈ [0,∞)\ (S ∪S ′), (1) gives :

0 ≤ qs(t) = 〈−w′s(t), j(t)〉 ≤
1

h

1

2
(‖ws(t−h)−z‖2−‖ws(t)−z‖2)+〈ξ(t, h), j(t)〉

thus
0 ≤ qs(t) ≤ −

1

2

d

dt
‖ws(t)− z‖2 a.e. (5)

as the derivative of ‖ws(t)− z‖ is defined almost everywhere i.e.

∃S ′′ ⊂ [0,∞)(µ(S ′′) = 0 ∧ ∀t ∈ [0,∞) \ S ′′ d
dt
‖ws(t)− z‖ ↓)

since t→ ‖ws(t)− z‖ is Lipschitzian, because by assumption ws(t) is
Lipschitzian, as we can see that assuming

‖ws(t1)− ws(t2)‖ ≤ λ|t1 − t2|

for some λ ∈ (0, 1), we have

|‖ws(t1)− z‖ − ‖ws(t2)− z‖| ≤ ‖ws(t1)− z − ws(t2) + z‖
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= ‖ws(t1)− ws(t2)‖ ≤ λ|t1 − t2|.

By (5) we deduce that d
dt‖ws(t) − z‖2 ≤ 0 almost everywhere. Therefore

‖ws(t)− z‖2 is nonincreasing in t (see [11], p.120 and note that ‖ws(t)− z‖2 is
Lipschitz on bounded intervals thus absolutely continuous). For all t ∈ [0,∞)
by (5) we have

0 ≤
∫ t

0
qs(t)dt ≤ −

1

2

∫ t

0

d

dt
‖ws(t)− z‖2dt

= −1

2
‖ws(t)− z‖2 +

1

2
‖ws(0)− z‖2 ≤ 1

2
‖ws(0)− z‖2.

Thus qs(t) is Lebesgue integrable on [0,∞). Therefore

lim
t→∞

inf qs(t) = 0

and
∀k ∈ N ∃t ∈ [0,∞) \ (S ∪ S ′ ∪ S ′′) (qs(t) ≤ 2−k).

We now construct an upper bound T (k, s) on t as follows. Let B(s) be a
nondecreasing upper bound on

1

2
‖ws(0)− z‖2.

For instance let

B(s) =
1

2
max{‖wr(0)− z‖2 : r ≤ s}.

We set
T (k, s) := (B(s) + 1) · 2k.

We claim that

∀k ∈ N ∃t ∈ [0, T (k, s)] \ (S ∪ S ′ ∪ S ′′) (qs(t) ≤ 2−k).

Assume the contrary, i.e. assume that

∃k ∈ N ∀t ∈ [0, T (k, s)] \ (S ∪ S ′ ∪ S ′′) (qs(t) > 2−k);

then, by the monotonicity property of the Lebesgue integral∫ T (k,s)

0
2−kdt ≤

∫ T (k,s)

0
qs(t)dt

therefore

T (k, s) · 2−k = B(s) + 1 ≤
∫ T (k,s)

0
qs(t)dt
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which is a contradiction.

Hence we have for each k a tk ≤ T (k, s) with tk /∈ (S∪S ′∪S ′′) and qs(tk) ≤ 2−k.
By the definition of the modulus of accretivity Θ we have

∀n, k ∈ N ∀K ∈ N (‖ws(tk)− z‖ ∈ [2−n,K]→ 2−ΘK(n) ≤ qs(tk))

therefore

∀n, k ∈ N ∀K ∈ N (‖ws(tk)− z‖ ∈ [2−n,K]→ 2−ΘK(n) ≤ 2−k).

We set k = ΘK(n) + 1 and thus obtain :

∀n ∈ N ∀K ∈ N (‖ws(tΘK(n)+1)− z‖ ∈ [2−n,K]→ 2−ΘK(n) ≤ 2−ΘK(n)−1)

whose conclusion is obviously false. Thus the premise is false. Since for all
t ≥ 0 (recall that ‖ws(t)− z‖ is nonincreasing in t )

K = K0(s) := d
√

2B(s)e ≥ ‖ws(0)− z‖ ≥ ‖ws(t)− z‖

we, therefore, have

∀n ∈ N (‖ws(tΘK0(s)(n)+1)− z‖ < 2−n)

where
tΘK0(s)(n)+1 ≤ (B(s) + 1) · 2ΘK0(s)(n)+1

and so, using again the fact that ‖ws(t)− z‖ is nonincreasing in t,

∀n ∈ N ∀t ≥ (B(s) + 1) · 2ΘK0(s)(n)+1 (‖ws(t)− z‖ < 2−n) (6).

Case 2. Now assume that u(s) ∈ D(A). Then there exists a sequence
(xk(s)) ⊆ D(A) such that xk(s)→ u(s). Let

w̃k,s(t) := S(t)xk(s) ⊆ D(A).

We want to show that
lim
t→∞
‖ws(t)− z‖ = 0

where
ws(t) := S(t)u(s).

By the triangle inequality:

|‖w̃k,s(t)− z‖ − ‖ws(t)− z‖| ≤ ‖w̃k,s(t)− ws(t)‖.

Notice that

‖w̃k,s(t)− ws(t)‖ = ‖S(t)xk(s)− S(t)u(s)‖ ≤ ‖xk(s)− u(s)‖,
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the above inequality following from Definition 8(3) . Thus

| ‖w̃k,s(t)− z‖ − ‖ws(t)− z‖| ≤ ‖xk(s)− u(s)‖.

We assume, without loss of generality, that we can make an appropriate choice
of xk̃(s) ∈ D(A) so that

‖xk̃(s)− u(s)‖ ≤ 2−k̃

thus ∣∣∣‖w̃k̃,s(t)− z‖ − ‖ws(t)− z‖∣∣∣ ≤ 2−k̃.

In particular this gives

1

2
‖w̃k̃,s(t)− z‖

2 ≤ 1

2
(‖ws(t)− z‖2 + 2 · 2−k̃‖ws(t)− z‖+ (2−k̃)2)

≤ 1

2
‖ws(0)− z‖2 + 2−k̃‖ws(t)− z‖+

1

2
(2−k̃)2

≤ B(s) + 2−k̃‖ws(t)− z‖+
1

2
(2−k̃)2.

Now for k ∈ N, take N 3 k̃ > k such that:

2−k̃‖ws(0)− z‖+
1

2
(2−k̃)2 ≤ 1.

Then (by evaluating the previous estimate at t = 0) an upper bound on
1
2‖w̃k̃,s(0) − z‖2, denoted by B̃(s, k̃), can be taken as B̃(s, k̃) := B(s) + 1,
where B(s) is a nondecreasing upper bound on 1

2‖ws(0)− z‖2.

By (6) of Case 1 applied to ‖w̃k̃,s(t)− z‖ here:

∀t ≥ (B̃(s, k̃) + 1) · 2ΘK(s)(k)+1 (‖w̃k̃,s(t)− z‖ < 2−k)

i.e.
∀t ≥ (B(s) + 2) · 2ΘK(s)(k)+1 (‖w̃k̃,s(t)− z‖ < 2−k)

and thus

∀t ≥ (B(s) + 2) · 2ΘK(s)(k)+1 (‖ws(t)− z‖ < 2−k̃ + 2−k < 2 · 2−k).

Since k ∈ N and s ≥ 0 were arbitrary we thus have

∀k ∈ N ∀s ≥ 0 ∀t ≥ (B(s) + 2) · 2ΘK(s)(k+1)+1 (‖ws(t)− z‖ < 2−k) (7).
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Note that here we have taken

K(s) := d
√

2(B(s) + 1)e,

as
B̃(s, k̃) = B(s) + 1 ≥ 1

2
‖w̃k̃,s(0)− z‖2.

Now, by assumption, u : [0,∞)→ D(A) fulfills the condition:

∃Φ : N→ N ∀k ∈ N ∃s ∈ [0,Φ(k)] (ϕ(s) ≤ 2−k) (8)

where we have set

ϕ(s) := sup
t≥0
‖u(s+ t)− S(t)u(s)‖.

The triangle inequality gives, for all t ≥ 0,

‖u(t+ s)− z‖ ≤ ‖u(t+ s)− S(t)u(s)‖+ ‖S(t)u(s)− z‖

= ‖u(t+ s)− S(t)u(s)‖+ ‖ws(t)− z‖

≤ ϕ(s) + ‖ws(t)− z‖.

By (7)

∀k ∈ N ∀s ≥ 0 ∀t ≥ (B(s) + 2) · 2ΘK(s)(k+1)+1 (‖u(t+ s)− z‖ < ϕ(s) + 2−k).

For Φ as in (8) the above gives

∀k ∈ N ∃s ∈ [0,Φ(k)] ∀t ≥ (B(s) + 2) · 2ΘK(s)(k+1)+1 (‖u(t+ s)− z‖ < 2 · 2−k)

which, using that (B(·) + 2) · 2ΘK(·)(k+1)+1 is nondecreasing, implies

∀k ∈ N ∀x ≥ (B(Φ(k)) + 2) · 2ΘK(Φ(k))(k+1)+1 + Φ(k) (‖u(x)− z‖ < 2 · 2−k),

that is,

∀k ∈ N ∀x ≥ (B(Φ(k+1))+2)·2ΘK(Φ(k+1))(k+2)+1+Φ(k+1) (‖u(x)−z‖ < 2−k).

Remark 4. Our logical analysis shows that Theorem 1 (Theorem 8 in [20]) is
true not only under the assumption that the continuous function u(·) : [0,∞)→
D(A) is an almost-orbit, i.e.

∀k ∈ N ∃s0 ≥ 0 ∀s ≥ s0 (sup{‖u(t+ s)− S(t)u(s)‖ : t ∈ [0,∞)} ≤ 2−k),

i.e., equivalently,

∀k ∈ N ∃s0 ≥ 0 ∀s ≥ s0 ∀m ∈ N (sup{‖u(t+s)−S(t)u(s)‖ : t ≤ m} ≤ 2−k) (∗),
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but also under the weaker assumption

∀k ∈ N ∃s0 ≥ 0 ∀m ∈ N (sup{‖u(t+ s0)− S(t)u(s0)‖ : t ≤ m} ≤ 2−k) (∗∗).

Notice, moreover, that (∗) implies

∀k ∈ N ∃n ∈ N ∀m ∈ N (sup{‖u(t+ n)− S(t)u(n)‖ : t ≤ m} ≤ 2−k),

whose noneffectively equivalent metastable form is

∀k ∈ N ∀g : N→ N ∃n ∈ N (sup{‖u(t+n)−S(t)u(n)‖ : t ≤ g(n)} ≤ 2−k) (+),

while (∗∗) implies

∀k ∈ N ∃q ∈ Q+ ∀m ∈ N (sup{‖u(t+ q)− S(t)u(q)‖ : t ≤ m} ≤ 2−k),

whose noneffectively equivalent metastable form is

∀k ∈ N ∀g : Q+ → N ∃q ∈ Q+ (sup{‖u(t+q)−S(t)u(q)‖ : t ≤ g(q)} ≤ 2−k) (++).

Moreover, note that instead of using metastability in the form of (+) one could
also work with the still weaker form (++) which, however, makes things more
complicated without any apparent benefit.

Remark 5. The reader will notice that in the above theorem we have obtained
a full rate of convergence instead of a rate of metastability. This is due to the
fact that the proof is constructive. It should be stressed that even for (semi)-
constructive proofs the extraction of highly uniform bounds is guaranteed by
general logical metatheorems ([25]). The rate of convergence given by the above
theorem, however, contains the black box information Φ which is the unknown
rate of convergence of an almost-orbit (note that the definition of an almost
orbit involves in itself a convergence statement).

In the following theorem we show a metastable (in the sense of Tao) version
of Theorem 7 above, namely a version where the statement referring to the
(weakening of the condition of the) almost-orbit is replaced by a metastable
statement in the form (+), thus giving a metastable version for the convergence
of the result. That is, the rate of convergence Φ(k) that appeared in Theorem
7 so that

∀k ∈ N ∃s ∈ [0,Φ(k)] (sup
t≥0
‖u(s+ t)− S(t)u(s)‖ ≤ 2−k)

is substituted with a rate of metastability Φ : N× (N → N) → N in Theorem
8 below so that

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g) ∀t ∈ [0, g(n)]
(‖u(t+ n)− S(t)u(n)‖ ≤ 2−k).
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Clearly, the conclusion of Theorem 8, being metastable, is weaker than that of
Theorem 7, however it will serve a useful purpose; it will illustrate the pattern
of metastability, which will be realized in Theorem 9 later on. We will later see
that Theorem 9 can be regarded as a corollary of Theorem 8 below, where in
particular the quantity Φ(k, g, . . .) corresponding to the metastability informa-
tion relating to the almost-orbit in Theorem 8 (i.e. Φ(k, g)), can be computed
by applying Proposition 1, thus providing, as we will see, a computable rate of
metastability for the strong convergence of the solution of the abstract Cauchy
problem generated by a uniformly accretive at zero operator A to the zero z
of A, which can be considered as the central result of this chapter.

Theorem 8. (Kohlenbach and K.-A., ([47]), Quantitative and metastable ver-
sion of Theorem 6) Let X be a real Banach space. Let A be an operator on X
with the range condition that is uniformly accretive at zero with modulus of ac-
cretivity Θ and such that Problem 2 has a strong solution for each x0 ∈ D(A)
and F := {S(t) : D(A) → D(A) : t ≥ 0 } is the nonexpansive semigroup
generated by −A via the Crandall-Liggett formula. Then every almost-orbit
u : [0,∞) → D(A) of F is strongly convergent to the zero z of A with rate of
metastability Ψ(k, ḡ, B,Φ,Θ) so that

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k, ḡ, B,Φ,Θ) ∀x ∈ [n̄, n̄+ḡ(n̄)] (‖u(x)−z‖ < 2−k),

where
Ψ(k, ḡ, B,Φ,Θ) = Φ(k + 1, g) + h(Φ(k + 1, g))

with
g(n) := ḡ(n+ h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K(n) := d
√

2(B(n) + 1)e.

Here Φ : N × (N → N) → N is a rate of metastability (in the sense that we
discussed above) corresponding to a given almost-orbit u : [0,∞) → D(A) of
F , i.e.

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g) ∀t ∈ [0, g(n)] (‖u(t+ n)− S(t)u(n)‖ ≤ 2−k)

and B(n) ∈ N is any nondecreasing upper bound on 1
2‖u(n)− z‖2.

Proof. Let u(·) ∈ D(A).

We consider the metastable (in the sense of Tao [83, 84]) version of an almost-
orbit discussed in the form (+) as in Remark 4:

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g) ∀t ∈ [0, g(n)] (ϕt(n) ≤ 2−k) (9)
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where we have defined, for n ∈ N,

ϕt(n) := ‖u(t+ n)− S(t)u(n)‖.

Notice that by the triangle inequality :

‖u(t+ n)− z‖ ≤ ‖u(t+ n)− S(t)u(n)‖+ ‖wn(t)− z‖ = ϕt(n) + ‖wn(t)− z‖,

where wn(t) is as in Problem 3. Note that here n ∈ N. We claim that

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Φ(k+1, g)+(B(Φ(k+1, g))+2) ·2ΘK(Φ(k+1,g))(k+2)+1

∀x ∈ [n̄, n̄+ ḡ(n̄)] (‖u(x)− z‖ < 2−k)

where
n̄ := n+ (B(n) + 2) · 2ΘK(n)(k+2)+1,

g(m) := ḡ(m+ (B(m) + 2) · 2ΘK(m)(k+2)+1) + (B(m) + 2) · 2ΘK(m)(k+2)+1

so that
g(n) + n = ḡ(n̄) + n̄,

where B(m) : N→ N is any nondecreasing upper bound on 1
2‖u(m)− z‖2 and

K(m) := d
√

2(B(m) + 1e. Note that here n ≤ Φ(k + 1, g) is chosen for k + 1
and g as defined above according to (9). By the monotonicity of B(m) and
K(m) it follows that

n̄ ≤ Φ(k + 1, g) + (B(Φ(k + 1, g)) + 2) · 2ΘK(Φ(k+1,g))(k+2)+1.

To show the above claim, let x = t+ n ∈ [n̄, n̄+ ḡ(n̄)] with

t ∈ [(B(n) + 2) · 2ΘK(n)(k+2)+1, ḡ(n̄) + (B(n) + 2) · 2ΘK(n)(k+2)+1] ⊆ [0, g(n)].

By (7) in the proof of Theorem 7 with t chosen in the above interval we have

‖wn(t)− z‖ < 2−k−1

and, therefore,

‖u(x)− z‖ = ‖u(t+n)− z‖ < ‖u(t+n)−S(t)u(n)‖+ 2−k−1 = ϕt(n) + 2−k−1.

Thus, by our choice of n to be n ≤ Φ(k + 1, g) based on (9), we obtain :

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Φ(k+1, g)+(B(Φ(k+1, g))+2) ·2ΘK(Φ(k+1,g))(k+2)+1

∀x ∈ [n̄, n̄+ ḡ(n̄)] (‖u(x)− z‖ < 2 · 2−k−1 = 2−k).
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As previously mentioned, we will now show a result where the information on
the almost-orbit is not any more “black box information” but explicitly given
and the rate of metastability Φ(k, g, ...)- thus also the rate of metastability for
the final result- can be computed using Proposition 1.

In particular, we will show the following theorem, which can be seen as a
corollary of Theorem 8, in an analogy to Corollary 1 (Corollary 9 in [20])
being a corollary of Theorem 6 (Theorem 8 in [20]):

Theorem 9. (Kohlenbach and K.-A., ([47]), Quantitative version of Corol-
lary 1) Let X be a real Banach space. Suppose that A : D(A) → 2X is a
uniformly accretive at zero operator on X with the range condition that has
a modulus of accretivity Θ. Suppose that Problem 2 has a strong solution for
each x0 ∈ D(A). Then, for each x ∈ D(A) the integral solution u(·) of Problem
1 converges strongly to the zero z of A as t→∞ and one has

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k, g,M,B,Θ) ∀x ∈ [n̄, n̄+ḡ(n̄)] (‖u(x)−z‖ < 2−k)

with rate of metastability

Ψ(k, g,M,B,Θ) = g̃(M ·2k+1)(0) + h(g̃(M ·2k+1)(0)),

where
g̃(n) := g(n) + n

with
g(n) := g(n+ h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K(n) := d
√

2(B(n) + 1)e.

Here B(n) ∈ N is any nondecreasing upper bound on 1
2‖u(n)− z‖2, M ∈ N is

any upper bound on the integral I :=
∫∞

0 ‖f(ξ)‖dξ, and in general the function
iterations are defined recursively in the following way:

g(0)(k) := k

g(i+1)(k) := g(g(i)(k)).

Proof. Let s ≥ 0 be arbitrarily fixed. Set us(t) = u(t + s), fs(t) = f(t + s),
v(t) = S(t)u(s) for t ≥ 0. Then us is an integral solution of

(d/dt)us ∈ Aus + fs, us(0) = u(s).

and (d/dt)v ∈ Av, v(0) = u(s) respectively. By a result in [4] ( see (2.4) in
p.124),

‖us(t)− v(t)‖2 ≤ 2

∫ t

0
‖fs(ξ)‖‖us(ξ)− v(ξ)‖dξ.
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Therefore 2

‖u(t+ s)− S(t)u(s)‖ ≤
∫ t

0
‖f(s+ ξ)‖dξ.

(Note: the above argumentation was taken from the proof of Lemma 1 which
is given in [62].)

We now set

ϕt(s) := ‖u(t+ s)− S(t)u(s)‖

so we have

ϕt(s) ≤
∫ t

0
‖f(s+ ξ)‖dξ =

∫ s+t

s
‖f(ξ)‖dξ.

Let I :=
∫∞

0 ‖f(ξ)‖dξ and let M ∈ N be any upper bound of I. We define a
nonincreasing path on [0,M ] by

ϕ̄(s) := M −
∫ s

0
‖f(ξ)‖dξ

so that

ϕt(s) ≤
∫ s+t

s
‖f(ξ)‖dξ = |ϕ̄(s+ t)− ϕ̄(s)|.

We now claim that we can give a bound Φ(k, g,M) on the metastable version
of the Cauchy property of this path, i.e.

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g,M) ∀s, t ∈ [n, n+g(n)] (|ϕ̄(s)−ϕ̄(t)| < 2−k) (∗)
2 We verify this conclusion using Bihari’s inequality [6] as follows: Assuming

‖us(t)− v(t)‖2 ≤ 0 +

∫ t

0

2‖fs(ξ)‖‖us(ξ)− v(ξ)‖dξ

we have

G(‖us(t)− v(t)‖2) ≤ G(0) +

∫ t

0

2‖fs(ξ)‖dξ

where
G(x) :=

∫ x

χ0

1√
t
dt = 2

√
x−√χ0.

(with χ0 > 0, x ≥ 0), so

G(‖us(t)− v(t)‖2) =

∫ ‖us(t)−v(t)‖2

χ0

1√
t
dt

= 2‖us(t)− v(t)‖ − 2χ0

and thus

2‖us(t)− v(t)‖ − 2χ0 ≤ −2χ0 +

∫ t

0

2‖fs(ξ)‖dξ

so

‖us(t)− v(t)‖ ≤
∫ t

0

‖fs(ξ)‖dξ.
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which by the monotonicity of ϕ̄(·) can be equivalently written as

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g,M) (|ϕ̄(n+ g(n))− ϕ̄(n)| < 2−k) (∗∗)

which is the no-counterexample interpretation of

∀k ∈ N ∃n ∈ N ∀m ∈ N (|ϕ̄(n+m)− ϕ̄(n)| < 2−k).

(∗) (and hence (∗∗)) yields

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g,M) ∀t ∈ [0, g(n)] (|ϕ̄(n+ t)− ϕ̄(n)| < 2−k)

so that in turn

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g,M) ∀t ∈ [0, g(n)] (ϕt(n) < 2−k).

To show the claim that we can give a bound Φ(k, g,M) for (∗∗), we refer to
Proposition 1 (shown as Proposition 2.26/ 2.27 in [45], also see Remark 2.29
there). Here we follow the proof of the aforementioned Propositions in [45]
adapted to the case at hand. For g : N→ N define g̃ : N→ N by

g̃(n) := n+ g(n)

and notice that

∀k ∈ N ∀g : N→ N ∃i ≤ 2k ·M (ϕ̄(g̃(i)(0))− ϕ̄(g̃(i+1)(0)) < 2−k),

where in general the function iterations are defined recursively in the following
way:

g(0)(k) := k

g(i+1)(k) := g(g(i)(k)),

for assuming on the contrary that for some k ∈ N and g : N→ N

∀i ≤ 2k ·M(ϕ̄(g̃(i)(0))− ϕ̄(g̃(i+1)(0)) ≥ 2−k)

by g̃(0)(0) = 0 we obtain

ϕ̄(0)− ϕ̄(g̃(2k·M+1)(0)) ≥ (2k ·M + 1) · 2−k > M

which is a contradiction. Now, because ϕ̄(·) is nonincreasing, we obtain

∀k ∈ N ∀g : N→ N ∃i ≤ 2k ·M (|ϕ̄(g̃(i)(0))− ϕ̄(g̃(i)(0) + g(g̃(i)(0)))| < 2−k).

Hence we may take

Φ(k, g,M) := g̃(M ·2k)(0)(= max{g̃(i)(0) : i ≤M · 2k}).
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From this point on the same pattern as in the proof of Theorem 8 is followed.

Assume that u(·) ∈ D(A).

Recall that
K(n) := d

√
2B(n) + 1e

where B(n) ∈ N is any nondecreasing upper bound on 1
2‖wn(0)−z‖2 and that

w′s(t) +A(ws(t)) 3 0, ws(0) =: u(s).

We claim that we obtain

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k, ḡ,M,Θ, B) ∀x ∈ [n̄, n̄+ḡ(n̄)] (‖u(x)−z‖ < 2−k)

with a rate of metastability

Ψ(k, g,M,B,Θ) = Φ(k + 1, g,M) + h(Φ(k + 1, g,M))

= g̃(M ·2k+1)(0) + h(g̃(M ·2k+1)(0))

where
h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

M ∈ N is any upper bound on the integral I :=
∫∞

0 ‖f(ξ)‖dξ,

g̃(n) := g(n) + n,

and we have defined
g(n) := g(n+ h(n)) + h(n).

To prove the above claim, let

x ∈ [n+ h(n), n+ h(n) + g(n+ h(n))],

where x := n+ t for some t ∈ [h(n), h(n) + g(n+ h(n))].

By (7) of Theorem 7 we have

∀k ∈ N ∀n ∈ N ∀t ≥ (B(n) + 2) · 2ΘK(n)(k+1)+1 (‖wn(t)− z‖ < 2−k)

Therefore, as we assumed that t ≥ h(n), the condition

‖wn(t)− z‖ < 2−k−1

is satisfied.

Now, by the triangle inequality, we obtain

‖u(n+ t)− z‖ ≤ ‖u(n+ t)− S(t)u(n)‖+ ‖S(t)u(n)− z‖
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= ‖u(n+ t)− S(t)u(n)‖+ ‖wn(t)− z‖

= ϕt(n) + ‖wn(t)− z‖

< ϕt(n) + 2−k−1

≤
∫ n+t

n
‖f(ξ)‖dξ + 2−k−1

≤
∫ n+h(n)+ḡ(n+h(n))

n
‖f(ξ)‖dξ + 2−k−1

= |ϕ̄(n+ g(n))− ϕ̄(n)|+ 2−k−1.

By the (metastable) Cauchy property above we have

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k+1, g,M) (ϕg(n)(n) ≤ |ϕ̄(n+g(n))−ϕ̄(n)| < 2−k−1)

where we recall that g(n) = h(n) + ḡ(n + h(n)) and Φ(k, g,M) is as before.
Hence we obtain

∀k ∈ N ∀ḡ : N→ N ∃n ≤ g̃(M ·2k+1)(0)
∀t ∈ [h(n), h(n) + ḡ(n+ h(n))] (‖u(n+ t)− z‖ < 2 · 2−k−1 = 2−k).

Thus, for n chosen as above (taking n̄ := n+h(n) and using the monotonicity
of h(·)) we get

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ g̃(M ·2k+1)(0) + h(g̃(M ·2k+1)(0))

∀x ∈ [n̄, n̄+ ḡ(n̄)] (‖u(x)− z‖ < 2−k).

Corollary 3. (Kohlenbach and K.-A., ([47])), Quantitative form of Corollary
2) Let X be a real Banach space with the Radon-Nikodym property. Let A :
D(A) → 2X be an m-accretive and uniformly accretive at zero operator with
0 ∈ Az and modulus of accretivity Θ. Then for each x ∈ D(A) the integral
solution u(·) of Problem 1 converges strongly to z as t → ∞ with a rate of
metastability as in Theorem 9.

Proof. As shown in [5] Chapter 7, because X has the Radon-Nikodym prop-
erty, the integral solution of Problem 2 is a strong solution. Because A is
m-accretive, A satisfies the range condition. Thus the result follows directly
by Theorem 9.

Note that it is well-known that every reflexive Banach space has the Radon-
Nikodym property. (Also note that in [4](Theorem 2.2, page 131) it is shown
that assuming that X is a reflexive Banach space, the integral solution of
Problem 2 is a strong solution).
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2.3.3 An Application

To demonstrate an application of our result, we present a case studied in [20]
where both Corollary 2 is applicable and A fulfills at the same time the uni-
form accretivity condition, so a modulus of accretivity exists and our result
can be directly applied.

In [20] the following nonlinear boundary value problem is studied :

Problem 4.

ut − div (|Du|p−2Du) + ϕ(x, u) = f, on (0,∞)× Ω,

−∂u
∂η
∈ β(u) on [0,∞)× ∂Ω,

u(0, x) = u0(x) ∈ Lq(Ω) in Ω,

where Ω is a bounded open domain in Rn with smooth boundary ∂Ω,
f ∈ L1((0,∞), Lq(Ω)), 1 ≤ p, q <∞, ∂u∂η = 〈|Du|p−2Du, η〉, η the unit outward
normal on ∂Ω, Du the gradient of u, β a maximal monotone graph in R× R
with 0 ∈ β(0) and ϕ : Ω× R→ R satisfying the following conditions:

1. for almost all x ∈ Ω, r → ϕ(x, r) is continuous and nondecreasing,

2. for every r ∈ R, x→ ϕ(x, r) is in L1(Ω),

3. ϕ(x, 0) = 0, ϕ(x, r) 6= 0 whenever r 6= 0 and there exist λ > 0, α ≥ 2
such that ϕ(x, r)r ≥ λ|r|α.

In [20] it is shown that the above problem can be written in the form :

u′(t) + Bu(t) = f(t), 0 < t <∞

u(0) = u0

where for any q ≥ 1, u0 ∈ Lq(Ω), f ∈ L1((0,∞), Lq(Ω)) and B is shown to be
an m-φ-accretive at zero operator in Lq(Ω) with

φ(x) := Cα,Ω,λ‖x‖αq

for zero z = 0 and some constant Cα,Ω,λ which can be explicitly computed in
α, λ and any upper bound µΩ ≥ 1 on the measure of Ω. In particular, using
Hölder’s inequality we compute that we can set

Cα,Ω,λ :=
λ

µα−2
Ω

.

It is shown in [20] that u(t) converges strongly in Lq(Ω) to z = 0 as t→∞ as it
is shown that Problem 2 has a strong solution. Then, because B is, moreover,
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uniformly φ-accretive at zero (thus has a well-defined modulus of accretivity),
the rate of metastability is given by Theorem 9. In particular, we have

∀k ∈ N ∀ḡ ∈ N→ N ∃n̄ ≤ Ψ(k, ḡ,M,B, α,Cα,Ω,λ) ∀t ∈ [n̄, n̄+ ḡ(n̄)]

(‖u(t)‖ < 2−k)

with a rate of metastability

Ψ(k, ḡ,M,B, α,Cα,Ω,λ) = g̃(M ·2k+1)(0) + h(g̃(M ·2k+1)(0))

where h(n) := (B(n) + 2) · 2Θ(k+2)+1,

g̃(n) := g(n) + n,

g(n) := ḡ(n+ h(n)) + h(n),

n̄ := n+ h(n),

B(n) is a nondecreasing upper bound on

1

2
‖u(n)‖2,

M ∈ N is any upper bound on the integral I =
∫∞

0 ‖f(t)‖dt, and Θ(k) may
be estimated (in terms of Cα,Ω,λ and α) as follows:

For any q ≥ 1 and assuming ‖x‖q ≥ 2−k, let Θ(k) be such that

Θ(k) ≥ minn{Cα,Ω,λ‖x‖αq ≥ Cα,Ω,λ · (2−k)α ≥ 2−n}.

We have

log2(Cα,Ω,λ · (2−k)α) ≥ log2 2−n

therefore for n fulfilling

n ≥ k · α− log2Cα,Ω,λ

we may take

Θ(k) ≥ k · α− log2Cα,Ω,λ.

Notice that because g(r) := Cα,Ω,λ · rα is nondecreasing, the modulus of accre-
tivity Θ for B depends only on k ∈ N but not on K (see Remark 2).
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2.4 Effective Information on the Behaviour of
Resolvents of Accretive Operators

2.4.1 Overview

In [21] García-Falset showed the convergence of the resolvents of set-valued, m-
accretive and either uniformly φ-accretive at zero or φ-expansive operators on
general real Banach spaces, to the zero of each operator. His work had been
inspired by a classical result by Reich in [70], later improved by Takahashi
and Ueda in [81]. In [21] there are not any additional assumptions on the
Banach space (as was the case in [70] and [81]), instead, the special notion
of uniform φ-accretivity at zero is assumed- in addition to m-accretivity. In
an earlier, related work by García-Falset and Morales ([23]) the removal of
additional assumptions on the Banach space had already been achieved only
for operators that are m-accretive and φ-expansive.

Theorem 10. (García-Falset, Theorem 4.4 in [21]) Let X be a Banach space.
Let A : D(A) ⊆ X → 2X be anm-accretive and either φ-expansive or uniformly
φ-accretive at zero 3 operator. Then there exists a unique z ∈ D(A) such that
0 ∈ Az. In addition,

(i) lim
λ→∞

Jλx = z for each x ∈ X

(ii) lim
n→∞

Jnλx = z for each λ > 0 and x ∈ X.

The following two recent results by Nicolae and Ariza-Ruiz, Leuştean, López-
Acedo respectively that we will present refer to the asymptotic regularity of
t-firmly nonexpansive mappings and will be applied in our analysis in Section
2.4.2. It is worthwhile to mention that both results involve computable bounds
that were also extracted by proof mining. As they will be applied for firmly
nonexpansive mappings, we will make in particular the choice

t =
1

2

for our application, nevertheless here we present them in full generality for any
t ∈ (0, 1).

Theorem 11. (Nicolae, Corollary 4.6 in [66]) Let X be a normed space and
let C ⊆ X be a nonempty and bounded set with diameter dC ≤ b. Suppose
T : C → C is t-firmly nonexpansive. Then, for all x ∈ C,

∀k ∈ N ∀n ≥ Φ̃(k, b, t) ‖Tnx− Tn+1x‖ ≤ 2−k

3in Theorem 4.4 in [21] Definition 20 is used for φ-accretivity at zero, so here this amounts
to uniform φ-accretivity at zero in the sense of Definition 18 and thus A has a modulus of
φ- accretivity at zero (recall the discussion in Section 2.2.).



2.4. EFFECTIVE INFORMATION ON THE BEHAVIOUR OF
RESOLVENTS OF ACCRETIVE OPERATORS 53

where
Φ̃(k, b, t) := Md2b(1 + eKM )2ke,

with
K = d1

t
e and M = db2k+2e.

The following result in [2] had been formulated in the more general case of
uniformly convex W - (UCW ) hyperbolic spaces 4, however we state it below
for the more special case of uniformly convex Banach spaces.

Theorem 12. (Ariza-Ruiz, Leuştean and López-Acedo, Corollary 7.3 in [2])
Let X be a uniformly convex Banach space with a modulus of convexity η :
(0, 2] → (0, 1]. Let b > 0, λ ∈ (0, 1). For any bounded subset C ⊆ X with
diameter dC ≤ b, for all t-firmly nonexpansive mappings T : C → C and all
x ∈ C,

∀k ∈ N ∀n ≥ Φ̃(k, η, b, t) ‖Tnx− Tn+1x‖ ≤ 2−k

with

Φ̃(k, η, b, t) =

[ 2k(b+1)

t(1−t)η( 2−k
b+1

)
], for 2−k < 2b

0, otherwise.

Remark 6. As it is also the case for Theorem 7.1. in [2], thus also in the
above result, if the modulus of convexity η can be written as η(ε) = εη̃(ε) where
η̃ is increasing with ε, then in the bound we can replace η with η̃ (see Remark
7.2. in [2] and recall Remark 1).

2.4.2 Proof-theoretic Analysis and Results

We extract explicit, effective and uniform rates for the convergence of the re-
solvents of set-valued, m-accretive and uniformly accretive at zero operators
on general real Banach spaces to the zero of each operator. This is achieved via
proof mining on the proof of Theorem 10. For the derivation of the bound here
we need to make explicit the quantitative content of uniform φ-accretivity at
zero assumed by García-Falset in [21] and for that we make use of the notion
of a modulus of accretivity at zero. (We also show here that even for Theorem
10, rather than assuming uniform φ-accretivity at zero for the operator A it
would be sufficient to just assume uniform accretivity at zero thus eliminating
the introduction of the function φ.) Analogously, for the case of φ-expansive
operators, we will make use of the corresponding notion of a modulus of φ-
expansivity.

We show the following result which is a quantitative version of Theorem 10.
4W -hyperbolic spaces were originally introduced by Kohlenbach in [44] and uniformly

convex W -hyperbolic spaces by Leuştean in [57].
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Theorem 13. (Quantitative version of Theorem 10) Let X be a real Banach
space, let A : D(A) ⊆ X → 2X be an m-accretive and either uniformly accre-
tive at zero operator with a modulus of accretivity at zero Θ or φ-expansive op-
erator with a modulus of φ-expansivity ∆. Then there exists a unique z ∈ D(A)
such that 0 ∈ Az. Moreover, for all x ∈ X, for the case of a uniformly accretive
at zero A :

(i) ∀k ∈ N ∀λ > 2ΘR(k)+1R2 ‖Jλx− z‖ < 2−k

(ii) ∀λ > 0 ∀k ∈ N ∀n ≥Mdb(1 + e2M )2dlog2 ΛRe+ΘR(k)+1e+ 1

‖Jnλx− z‖ < 2−k

with
M = db2dlog2 ΛRe+ΘR(k)+2e

and for the case of a φ-expansive A :

(i)′ ∀k ∈ N ∀λ > 2∆R(k)+1R ‖Jλx− z‖ < 2−k

(ii)′ ∀λ > 0 ∀k ∈ N ∀n ≥Mdb(1 + e2M )2dlog2 Λe+∆R(k)+1e+ 1

‖Jnλx− z‖ < 2−k

with
M = db2dlog2 Λe+∆R(k)+2e

where Λ ∈ N is such that 1
Λ ≤ λ, R ∈ N is such that ‖x − z‖ < R and

b > 0 is an upper bound on the diameter of co(D(A)) ∩ B[z,R] (for example
we can take b := 2R).

Remark 7. For a uniformly accretive at zero A, about the existence of the zero
z so that 0 ∈ Az, see Definition 21, compare with Definition 20 and see the
first point of the discussion below Definition 20. (Note that even if Definition
21 had been formulated assuming (∗) only for some z ∈ D(A) and without
incorporating the assumption 0 ∈ Az for z, it would be possible to show 0 ∈ Az
by Theorem 5. The latter would be applicable here as A is assumed to be m-
accretive, and by making the observation that it holds also for a uniformly
accretive at zero A, as in its proof (given in [21]) just the fact 0 < 〈u, x− z〉+,
which is indeed covered by the modulus as in (∗) of Definition 21 for any
z ∈ D(A), is sufficient).

Proof. For the case of a uniformly accretive at zero operator A, considering
the existence of z see the above remark. The uniqueness of z follows directly
by the fact that 0 ∈ Az and (∗) in Definition 21, as assuming we had z′ 6= z
so that 0 ∈ Az′, for (0, z′) ∈ A we would have 〈0, z′ − z〉+ = 0 therefore (∗) of
Definition 21 could not hold for any m ∈ N which gives a contradiction.
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For the case of a φ-expansive operator A, by Theorem 8 in [23], A is sur-
jective therefore 0 is in the range of A i.e. for some z ∈ D(A) we have 0 ∈ Az.
To show the uniqueness of such a z, assuming that for some z′ ∈ D(A) so that
z′ 6= z we had 0 ∈ Az′, then φ(‖z − z′‖) = 0 gives a contradiction.

(Regarding uniqueness in both cases also recall Remark 3).

We will firstly show (i).

Let x ∈ X and let R ∈ N be such that ‖x− z‖ < R. As A is m-accretive, for
all λ > 0 the range of I + λA is X, so we have Jλx ∈ D(A) i.e. for all λ > 0

x ∈ Jλx+ λAJλx.

If 0 ∈ Az clearly z ∈ (I + λA)−1z for all λ > 0 and because for an accretive A
the resolvent Jλ := (I + λA)−1 is single-valued (by Proposition 2 (ii)),

Jλz = z (I).

Again by Proposition 2 (ii), Jλ is nonexpansive, therefore by (I) we obtain:

‖Jλx− z‖ = ‖Jλx− Jλz‖ ≤ ‖x− z‖ (II).

Therefore, for any given λ > 0 the mapping Jλ is a self-mapping of

co(D(A)) ∩B[z,R].

By Proposition 2 (iii) we have Aλx ∈ AJλx (where Aλ := I−Jλ
λ ). Therefore

〈Aλx, Jλx− z〉+ ≤ ‖
Jλx− x

λ
‖‖Jλx− z‖

(by(II)) ≤ 1

λ
‖Jλx− x‖‖x− z‖

=
1

λ
‖Jλx− x+ Jλz − Jλz‖‖x− z‖

≤ 1

λ
(‖Jλx− Jλz‖+ ‖Jλz − x‖)‖x− z‖

≤ 1

λ
(‖x− z‖+ ‖Jλz − x‖)‖x− z‖

(because Jλ is nonexpansive by Proposition 2 (ii))

(and by(I)) =
1

λ
(‖x− z‖+ ‖z − x‖)‖x− z‖

=
2

λ
‖x− z‖2 < 2R2

λ
.
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Now clearly for λ→∞, 2R2

λ → 0 i.e.

∀k ∈ N ∃k0 ∀λ > k0 (
2R2

λ
< 2−k)

and by the decreasingness of 2R2

λ in λ it is enough to write

∀k ∈ N ∃k0 (
2R2

k0
< 2−k)

5 so we directly take
k0 := 2k+1R2.

Thus we also have

∀k ∈ N ∀λ > 2k+1R2 (〈Aλx, Jλx− z〉+ < 2−k).

By assumption

∀k,K ∈ N (‖Jλx− z‖ ∈ [2−k,K]→ 〈Aλx, Jλx− z〉+ ≥ 2−ΘK(k)).

Considering k,K ∈ N fixed, and taking the equivalent contrapositive of the
above

〈Aλx, Jλx− z〉+ < 2−ΘK(k) → ‖Jλx− z‖ < 2−k ∨ ‖Jλx− z‖ > K (III).

Considering that moreover

∀m ∈ N ∀λ > 2m+1R2 (〈Aλx, Jλx− z〉+ < 2−m)

as previously determined and setting

m := ΘK(k)

for our fixed k,K ∈ N to fulfill the premise of (III) we obtain

∀λ > 2ΘK(k)+1R2 (〈Aλx, Jλx− z〉+ < 2−ΘK(k))

and thus

∀λ > 2ΘK(k)+1R2 (‖Jλx− z‖ < 2−k ∨ ‖Jλx− z‖ > K)

and because k,K ∈ N had been arbitrary,

∀k,K ∈ N ∀λ > 2ΘK(k)+1R2

(‖Jλx− z‖ < 2−k ∨ ‖Jλx− z‖ > K.)

5Thanks to the decreasingness of the function, the statement : ∀∃∀ became ∀∃ for which
it is possible to find a bound. Indeed, we see that this is the case here.



2.4. EFFECTIVE INFORMATION ON THE BEHAVIOUR OF
RESOLVENTS OF ACCRETIVE OPERATORS 57

Choosing in the above K := R we have

∀k ∈ N ∀λ > 2ΘR(k)+1R2

(‖Jλx− z‖ < 2−k ∨ ‖Jλx− z‖ > R)

however recall that by (II)

‖Jλx− z‖ ≤ ‖x− z‖ < R.

We can therefore conclude that

∀k ∈ N ∀λ > 2ΘR(k)+1R2 (‖Jλx− z‖ < 2−k).

We will now show (ii).

Again let x ∈ X and let R ∈ N be such that ‖x − z‖ < R. Let λ > 0 be
fixed. Again recall that by Proposition 2 (iii) we have AλJnλx ∈ AJn+1

λ x
where Aλ is defined as previously. We have

〈AλJnλx, Jn+1
λ x− z〉+ ≤ ‖AλJnλx‖‖Jn+1

λ x− z‖

=
1

λ
‖Jnλx− Jn+1

λ x‖‖Jn+1
λ x− z‖

(by (I) :)

=
1

λ
‖Jnλx− Jn+1

λ x‖‖Jn+1
λ x− Jn+1

λ z‖

(since by Proposition 2 (ii) Jλ and thus Jnλ is nonexpansive :)

≤ 1

λ
‖Jnλx− Jn+1

λ x‖‖x− z‖

<
R

λ
‖Jnλx− Jn+1

λ x‖ (IV ).

Note that Jλ is moreover firmly nonexpansive, and thus in particular t-firmly
nonexpansive (a mapping is firmly nonexpansive if and only if it is the resolvent
for some accretive operator, see [71]). As a firmly nonexpansive mapping with
a fixed point z, by Corollary 1 of [71], Jλ is asymptotically regular, which
means that for n→∞, we have that

‖Jnλx− Jn+1
λ x‖ → 0.

A computable and highly uniform rate of asymptotic regularity is given by
Theorem 11 (recall that Jλ is a self-mapping on co(D(A))∩B[z,R] so we can
indeed apply Theorem 11 .) In particular we apply Theorem 11 with the choice
t := 1

2 and we obtain that (for fixed λ > 0)

∀k ∈ N ∀n ≥Mdb(1 + e2M )2k+1e ‖Jnλx− Jn+1
λ x‖ ≤ 2−k
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where b > 0 is any upper bound on the diameter of co(D(A))∩B[z,R] (e.g we
may take b := 2R) and

M = db2k+2e.

This gives that
∀k ∈ N ∀n ≥Mdb(1 + e2M )2k+1e

(
R

λ
‖Jnλx− Jn+1

λ x‖ ≤ R

λ
2−k)

and letting

k := d− log2

λ

R
e+m

for some m ∈ N we have (by the above shift and then renaming m to k and
by (IV ) :)

∀k ∈ N ∀n ≥Mdb(1 + e2M )2d− log2
λ
R
e+k+1e

(〈AλJnλx, Jn+1
λ x− z〉+ <

R

λ
‖Jnλx− Jn+1

λ x‖ ≤ 2−k)

and shifting n by 1

∀k ∈ N ∀n ≥Mdb(1 + e2M )2d− log2
λ
R
e+k+1e+ 1

(〈AλJn−1
λ x, Jnλx− z〉+ < 2−k)

with
M = db2d− log2

λ
R
e+k+2e.

We finally associate the rate of convergence of 〈AλJn−1
λ x, Jnλx− z〉+ to 0 with

the rate of convergence of ‖Jnλx − z‖ to 0. This is achieved by using the
analogous argument as in the end of part (i) considering (III) with ‖Jnλx− z‖
instead of ‖Jλx− z‖ i.e. setting in (III) Jn−1

λ x instead of x and we obtain (as
λ > 0 was arbitrary)

∀λ > 0 ∀k ∈ N ∀n ≥Mdb(1 + e2M )2d− log2
λ
R
e+ΘR(k)+1e+ 1

(‖Jnλx− z‖ < 2−k)

with
M = db2d− log2

λ
R
e+ΘR(k)+2e.

Finally, in order to ensure that the resulting bound will be computable for any
real Banach space X, we can write the above obtained bound substituting the
input λ > 0 with some 1

Λ so that λ ≥ 1
Λ where Λ ∈ N. That is, the computable

Λ ∈ N functions as a Skolem constant witnessing the positivity of λ > 0 (recall
Definition 2).

We will show (i′).
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Notice that we have by assumption

‖Aλx− 0‖ ≤ 1

λ
‖x− Jλx‖

(recall that by Proposition 2 (iii) we have Aλx ∈ AJλx (where Aλ := I−Jλ
λ ).

giving

‖Aλx‖ ≤
2

λ
‖x− z‖ < 2R

λ
.

Similarly as in (i), this gives

∀k ∈ N ∀λ > 2k+1R ‖Aλx‖ < 2−k

and by assumption
∀k ∈ N ∀K ∈ N ∀x ∈ D(A)

(‖Jλx− z‖ ∈ [2−k,K]→ ‖Aλx‖ ≥ 2−∆K(k)).

The above gives, arguing exactly as in (i), that

∀k ∈ N ∀λ > 2∆R(k)+1R ‖Jλx− z‖ < 2−k

so we get a bound that differs by a factor of R.

To show (ii′), it is enough to notice that

‖AλJnλx‖ =
1

λ
‖Jnλx− Jn+1

λ x‖

and proceed in exactly the same way as in (ii).

Under the supplementary assumption that the real Banach space X is more-
over uniformly convex, instead of Theorem 13 (ii), we may obtain a bound
that is polynomial if the modulus of convexity η(ε) is polynomial in ε (for
example this is the case for the Banach spaces Lp, that, for ∞ > p ≥ 2, have
an asymptotically optimal modulus of convexity εp

p2p ).

We show the following:

Theorem 14. (Quantitative version of Theorem 10 (ii)) Let X be a real Ba-
nach space that is uniformly convex with a modulus η : (0, 2] → (0, 1], let
A : D(A) ⊆ X → 2X be an m-accretive and either uniformly accretive at zero
with a modulus Θ or φ-expansive with a modulus ∆ operator. Then there exists
a unique z ∈ D(A) such that 0 ∈ Az. Moreover, for all x ∈ X

∀λ > 0 ∀k ∈ N ∀n ≥ Φ ‖Jnλx− z‖ < 2−k
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with

Φ(k, η, b, R,Λ,Θ) =

[2dlog2 ΛRe+ΘR(k)+2(b+1)

η( 2−(dlog2 ΛRe+ΘR(k))

b+1
)

] + 1, for 2−ΘR(k) < 2b

1, otherwise.

for a uniformly accretive at zero A, or

Φ(k, η, b, R,Λ,∆) =

[2dlog2 Λe+∆R(k)+2(b+1)

η( 2−(dlog2 Λe+∆R(k))

b+1
)

] + 1, for 2−∆R(k) < 2b

1, otherwise.

for a φ-expansive A,

where Λ ∈ N is such that 1
Λ ≤ λ, R ∈ N is such that ‖x − z‖ < R and

b > 0 is an upper bound on the diameter of co(D(A)) ∩ B[z,R] (for example
b := 2R).

Proof. The proof is exactly the same as the proof of Theorem 13(ii) above,
with the difference that instead of Theorem 11 we apply Theorem 12 (again
with the choice t := 1

2 so that t(1 − t) = 1
4) by which we obtain that, for

Jλ : co(D(A)) ∩ B[z,R] → co(D(A)) ∩ B[z,R] (where λ > 0 is fixed), for all
x ∈ co(D(A)) ∩ B[z,R] , letting b > 0 be an upper bound on the diameter of
co(D(A)) ∩B[z,R]

∀k ∈ N ∀n ≥ Φ̃(k, η, b) ‖Jnλx− Jn+1
λ x‖ ≤ 2−k

with

Φ̃(k, η, b) =

[2k+2(b+1)

η( 2−k
b+1

)
], for 2−k < 2b

0, otherwise.

To complete the proof we proceed with the exact same argumentation as in
Theorem 13 (ii) and (ii′) in the respective cases.

If the modulus of convexity η can be written as η(ε) = εη̃(ε) where η̃ is in-
creasing with ε, then in the bound we can replace η with η̃. (See Remark 6
and Remark 1).



Chapter 3

Proof Mining for the Fixed
Point Theory of Nonexpansive
Semigroups

3.1 Preliminaries and Overview

Considering a one-parameter nonexpansive semigroup {T (t) : t ≥ 0} as defined
in Definition 8 (possibly without Property (1)), for a given t ≥ 0, we denote
the set of the fixed points of T (t), i.e. all the points q ∈ C for which T (t)q = q,
by F (T (t)). It would be of interest to ask the question :

Question 1. How could one determine the set of the common fixed points of
the semigroup, i.e.

⋂
t≥0 F (T (t)), that is all the points q ∈ C such that

∀t ∈ [0,∞) T (t)q = q ?

Two different answers to the above question were given by T. Suzuki via two
different results that we present below.

Theorem 15. (Suzuki, Theorem 1 in [80]) Let {T (t) : t ≥ 0} be a nonexpan-
sive semigroup on a subset C ⊆ X for some Banach space X. Let α, β ∈ R+

satisfying α/β ∈ R+ \Q+. Then for all λ ∈ (0, 1) :⋂
t≥0

F (T (t)) = F (λT (α) + (1− λ)T (β)),

where
λT (α) + (1− λ)T (β)

is a mapping from C into X defined by

(λT (α) + (1− λ)T (β))x = λT (α)x+ (1− λ)T (β)x

for x ∈ C.

61
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Theorem 16. (Suzuki, Proposition 2 in [79]) Let X be a Banach space and
let {T (t) : t ≥ 0} be a one-parameter nonexpansive semigroup on a subset C
of X. Let α, β be positive real numbers so that α/β ∈ R \Q. Then we have⋂

t≥0

F (T (t)) = F (T (α)) ∩ F (T (β))

Clearly if q ∈ F (T (α)) ∩ F (T (β)), then q ∈ F (λT (α) + (1 − λ)T (β)) for any
λ ∈ (0, 1) as assuming that for some q ∈ C we have

T (α)q = q ∧ T (β)q = q

we obtain

(λT (α) + (1− λ)T (β))q = λT (α)q + (1− λ)T (β)q = λq + (1− λ)q = q.

However, the converse does not hold. In that sense, Theorem 15 is a generali-
sation of Theorem 16.

It is worthwhile to mention that Theorem 15 has the following important
consequence:

Theorem 17. (Suzuki, Theorem 4 in [80]) Let X be a Banach space and let
{T (t) : t ≥ 0} be a one-parameter nonexpansive semigroup on a subset C of
X. Assume that every nonexpansive mapping on C has a fixed point. Then
{T (t) : t ≥ 0} has a common fixed point.

Proof. (Suzuki, ([80])) Having assumed that every nonexpansive mapping on
C has a fixed point, then in particular the nonexpansive mapping 1

2T (1) +
1
2T (
√

2) on C has a fixed point, i.e. F (1
2T (1) + 1

2T (
√

2)) 6= ∅. By Theorem
15,

⋂
t≥0 F (T (t)) = F (1

2T (1) + 1
2T (
√

2)) 6= ∅.

Observe that the above could not follow from Theorem 16, as the assumption
that T (t1) 6= ∅ ∧ T (t2) 6= ∅ does not give T (t1) ∩ T (t2) 6= ∅.

We say that Theorem 15 and Theorem 16 shown in [80] and in [79] respec-
tively are “different” even though the two statements giving

⋂
t≥0 F (T (t)) are

similar- to be more specific as we saw the statement in [80] is a generalisation
of the statement in [79]. The point is, that the methodology, structure and
content of their proofs is completely different and this reflects to the different
bounds that we will eventually obtain after performing proof mining on both
said proofs in view of answering the question :

Question 2. What quantitative, computable information can one obtain re-
garding the computation of the set of the approximate common fixed points of
{T (t) : t ≥ 0} ?
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In Sections 3.2 and 3.3 we will show in detail our extraction of the bounds by
giving quantitative versions for the results of the two approaches by Suzuki
respectively, thus providing two different answers to the above question.

To this end, in Sections 3.1.1 and 3.1.2 we will explain certain notions that will
be later used in our quantitative analysis and bound extraction. After that, in
Section 3.1.3 we will present two corollaries of Metatheorem 2 for the general
case of a normed space (X, ‖ · ‖) with a subset C ⊆ X adapted in two different
concrete settings involving nonexpansive semigroups so as to illustrate how the
extractability of the bounds is a priori guaranteed proof-theoretically in the
specific cases that we will study.

3.1.1 Effective Irrationality Measure

Because both results by Suzuki make an irrationality assumption on γ := α/β,
we will need a quantitative version of this assumption in both of our quantita-
tive analyses of his proofs. For that we will make use of the following notion
from number theory.

Let γ ∈ R+ \Q+. Then

∀p ∈ N ∀p′ ∈ Z+ ∃z ∈ N (|γ − p′

p
| ≥ 1

z
).

The Skolem normal form of the above is

∃fγ : N× Z+ → N ∀p ∈ N ∀p′ ∈ Z+ (|γ − p′

p
| ≥ 1

fγ(p, p′)
) (i)

and fγ is the corresponding Skolem function (recall Definition 2).

Notice that , if γ ∈ (0, 1), assuming that we have

|γ − p′

p
| ≥ 1

f̃(p, p′)
,

in the case where p′ ≥ p+ 1, because p′

p ≥ 1 + 1
p we have

|γ − p′

p | ≥
1
p so we can take f(p) := p. For the other finitely many cases

where p′ < p+ 1 , we can take f(p) := max{f̃(p, p′) : p′ ≤ p}. So in any case
we may take

f(p) := max{p,max{f̃(p, p) : p′ ≤ p}}.
Therefore without loss of generality in the case that γ ∈ (0, 1), the following
is instead used :

∃fγ : N→ N ∀p ∈ N ∀p′ ∈ Z+ (|γ − p′

p
| ≥ 1

fγ(p)
) (I)
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Definition 24. Let γ ∈ R+ \Q+. The function fγ as in (I) (or fγ as in (i))
above is called an effective irrationality measure for γ.

Remark 8. Since γ > 0, both (I) and (i) can easily be seen to imply the claim
also for p′ ∈ Z.

Definition 25. Let γ ∈ R+\Q+. The function fγ as in (I) is called an effective
irrationality measure for γ.

Remark 9. Note that, in the context of this work (as in both works by Suzuki
one make any choice of α, β ∈ R+ as long they have an irrational ratio),
one may choose without loss of generality α, β ∈ R+ with 0 < α < β so that
γ := α/β ∈ R+\Q+ with an effective irrationality measure fγ that is known or
easy to compute. This may be computed by proof-mining on (i.e. an effective
version of) the proof of the irrationality of γ.

Example 1. For example, let us make the choice α :=
√

2, β := 2. Then,
f√2

2

is specified by writing down a quantitative version of the classical proof

of the irrationality of
√

2
2 as follows: Assuming that

√
2

2 ∈ Q, there will exist
p, p′ ∈ Z so that

√
2

2 = p′

p . Without loss of generality we may assume that p′

p

is in maximally simplified form. Then p2 = 2p′2 and so p2 is even. Hence p
is even, i.e. there exists k ∈ Z so that p = 2k. Thus 4k2 = 2p′2, so p′2 is
even and thus p′ is even contradicting the assumption that p′

p was maximally

simplified. Now, by the above proof (assuming without loss of generality that p
′

p

is in maximally simplified form, thus also p′2

p2 is in maximally simplified form),
we cannot have 2p′2 − p2 = 0. Thus,

|2p′2 − p2| ≥ 1

and therefore for all p, p′ ∈ Z

|
√

2

2
− p′

p
| =
|24 −

p′2

p2 |

|
√

2
2 + p′

p |
=
|p2 − 2p′2|

2p2|
√

2
2 + p′

p |
≥ 1

2p2|
√

2
2 + p′

p |
≥ 1

4p2

having assumed that
p′

p
≤ 2−

√
2

2
.

If we had assumed p′

p > 2 −
√

2
2 , then |

√
2

2 −
p′

p | > 2 −
√

2 > 1
4p2 for all p ∈ N

therefore in any case we may set f√2
2

(p) := 4p2.
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3.1.2 Equicontinuity

We introduce the following concepts of uniform equicontinuity for a nonexpan-
sive semigroup and modulus of uniform equicontinuity :

Definition 26. (Kohlenbach and K.-A. ([48]))We say that a nonexpansive
semigroup {T (t) : t ≥ 0} on a subset C of a Banach space X is uniformly
equicontinuous if the mapping t 7→ T (t)q is uniformly continuous on each
compact interval [0,K] for all K ∈ N and given a b ∈ N it has a common
modulus of continuity for all q ∈ Cb where Cb := {q ∈ C : ‖q‖ ≤ b}. Namely if
there exists a function ω : N× N× N→ N so that

∀b ∈ N ∀q ∈ Cb ∀m ∈ N ∀K ∈ N ∀t, t′ ∈ [0,K]

(|t− t′| < 2−ωK,b(m) → ‖T (t)q − T (t′)q‖ < 2−m).

We call ω a modulus of uniform equicontinuity for the nonexpansive semigroup
{T (t) : t ≥ 0}.

In the following we will assume uniform equicontinuity as defined above for
the nonexpansive semigroup {T (t) : t ≥ 0}. The motivation from introducing
equicontinuity i.e. the property of having a common modulus of continuity
for all q that are norm-bounded by a specific b ∈ N, and assuming this re-
quirement for our semigroup, comes from the need to fit the framework of the
logical metatheorems that will guarantee the extractability of the bounds (see
Section 3.1.3.). We will see that to achieve the majorizability of the semigroup
equicontinuity is required. In praxis one may a posteriori remove equiconti-
nuity but then the bound would be less uniform as it would depend on each
point which would not be desirable. Moreover it would then not be possible
to obtain the results on asymptotic regularity.

In the literature one may find several examples where uniform equicontinu-
ity is fulfilled. For instance, any nonexpansive semigroup generated from a
bounded accretive operator via the Crandall-Liggett formula (recall Chapter
2.1. in this thesis) fulfills the property of uniform equicontinuity, as can been
seen in [15] (see in particular (1.11) there). Moreover, we mention the following
example:

Example 2. In [67] the following mapping is studied (referring to [65] where
it is attributed to G.F. Webb) :

Let X = C = C[0,1] and for f ∈ C[0,1] and x ∈ [0, 1] define:

(T (t)f)(x) :=


t+ f(x) if f(x) ≥ 0,

t+ 1
2f(x) if f(x) < 0 and t+ 1

2f(x) ≥ 0,

2t+ f(x) if t+ 1
2f(x) < 0.
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It is easy to see that the above semigroup is nonexpansive: we distinguish the
following cases; In the case that for both f(x) and f(y) the first case holds
nonexpansivity is trivial. Similarly in the cases where for both f(x) and f(y)
the second case holds and where for both f(x) and f(y) the third case holds.
Now, in the cases where the first and second cases are combined, assume,
without loss of generality, that we have f(x) ≥ 0 and f(y) < 0∧ t+ 1

2f(y) ≥ 0
we have

|(T (t)f)(x)−(T (t)f)(y)| = |t+f(x)−(t+
1

2
f(y))| = |f(x)−1

2
f(y)| ≤ |f(x)−f(y)|

because both f(x) and −f(y) are positive quantities. In the cases where the
first and third cases are combined, assume, without loss of generality, that we
have f(x) ≥ 0 and t+ 1

2f(y) < 0 we have

|(T (t)f)(x)−(T (t)f)(y)| = |t+f(x)−(2t+f(y))| = |f(x)−f(y)−t| ≤ |f(x)−f(y)|

again because both f(x) and −f(y) are positive quantities. Finally, in the cases
where the second and third cases coincide, assume, without loss of generality,
that we have f(x) < 0 ∧ t+ 1

2f(x) ≥ 0 and t+ 1
2f(y) < 0 notice that we have

1

2
f(y) < −t ≤ 1

2
f(x) < 0

thus
1

2
f(y) +

1

2
f(x) < −t+

1

2
f(x) ≤ f(x) <

1

2
f(x).

Now by
1

2
f(y) <

1

2
f(x)

it is
f(y) <

1

2
f(x) +

1

2
f(y)

thus
f(y) <

1

2
f(x) +

1

2
f(y) < −t+

1

2
f(x) ≤ f(x)

so

|(T (t)f)(x)− (T (t)f)(y)| = |t+
1

2
f(x)− (2t+ f(y))| = |1

2
f(x)− t− f(y)|

= |f(y)− (−t+
1

2
f(x))| ≤ |f(x)− f(y)|.

Now, considering the modulus, in the first case where f(x) ≥ 0 we have

|(T (t)f)(x)− (T (t′)f)(x)| = |t− t′|

thus we may take ω(m) := m as we can see that

(|t− t′| < 2−m → |(T (t)f)(x)− (T (t′)f)(x)| = |t− t′| < 2−m).
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The same modulus can be taken in the case where f(x) < 0 and both t+ 1
2f(x) ≥

0 and t′ + 1
2f(x) ≥ 0. In the case where f(x) < 0 and both t+ 1

2f(x) < 0 and
t′ + 1

2f(x) < 0 we have

|(T (t)f)(x)− (T (t′)f)(x)| = 2|t− t′|

thus we may take ω(m) := m+ 1 as we can see that

(|t−t′| < 2−(m+1) → |(T (t)f)(x)−(T (t′)f))x| = 2|t−t′| < 2 ·2−(m+1) = 2−m).

Finally, in the cases where f(x) < 0 and t + 1
2f(x) < 0 ∧ t′ + 1

2f(x) ≥ 0 or
t+ 1

2f(x) ≥ 0 ∧ t′ + 1
2f(x) < 0 (let’s take without loss of generality the second

one:) we have

|(T (t)f)(x)−(T (t′)f)(x)| = |t+ 1

2
f(x)−(2t′+f(x))| ≤ |−t′− 1

2
f(x))|+|−t′+t|

≤ 2| − t′ + t|

(that is because | − t′ − 1
2f(x))| ≤ | − t′ + t| as here t′ < −1

2f(x) ) thus also in
this case we may take ω(m) := m+ 1. In conclusion as a common modulus of
continuity we may take ω(m) := m+ 1 to cover all cases.

3.1.3 Corollaries of Metatheorem 2 adapted for
Nonexpansive Semigroups

Consider a nonexpansive semigroup {T (t) : C → C, t ≥ 0} as defined in Defi-
nition 8 (without Property 1) on C ⊆ X for a Banach space X. As mentioned
in Section 3.1, we will present two corollaries of Metatheorem 2 adapted to
specific settings for the theory of nonexpansive semigroups. We will shortly
see that these settings correspond to the statements of Theorems 19 and 15
by Suzuki and therefore the extractability of the bounds is a priori guaranteed
proof-theoretically. (Since in this subsection we are referring again to the logi-
cal background, the natural numbers are here defined as N := {0, 1, ...} as was
done throughout Section 1.2.)

As we briefly explained in the end of Section 1.2.3. the system Aω is ex-
tended to Aω[X, ‖ · ‖] (for the details again we refer to [45]). In turn the
latter must now be extended to Aω[X, ‖ · ‖, C] as in this theory we introduce
a subset C ⊆ X. To this end new constants bX , cX , χC of type 0, X and 0(X)
respectively are added, together with the axioms:

• ∀xX (χC(x) =0 0→ ‖x‖X ≤R (bX)R),

• χC(cX) =0 0,

• ∀xX (χC(x) ≤0 1)
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In the above χC is to be interpreted as the characteristic function of C ⊆ X.
The latter fulfills a weak form of extensionality:

A0 → s =X t

A0 → χC(s) =X χC(t)

where A0 is a quantifier-free formula.

(Note that here C is not assumed to be convex, therefore we omit the convexity
axiom (axiom (13) of the construction as given in page 414 of [45]).

Without the constant bX and the axiom that corresponds to it from the system
Aω[X, ‖ · ‖, C] we obtain the system Aω[X, ‖ · ‖, C]−b.

Notice that the definition of a nonexpansive semigroup on a subset C of a
Banach space X involves only universal axioms, which are permitted to be
added for the extention of the theory. Considering that a nonexpansive semi-
group is an object of type 1→ (X → X) and having α := 0X as we are now in
a normed space setting, by the definition of the strong majorizability relation
(see Section 1.2.3) we have

T ∗ &0X
1→(X→X) T :≡

∀t∗, t(t∗ &0X
1 t→ T ∗(t∗, ·) &0X

X→X T (t, ·))

∧∀t∗, t(t∗ &0X
1 t→ T ∗(t∗, ·) &0X

1 T ∗(t, ·)).

In turn
T ∗(t∗, ·) &0X

X→X T (t, ·) :≡

∀x∗, x(x∗ &0X
X x→ T ∗(t∗, x∗) &0X

X T (t, x))

∧∀x∗, x(x∗ &0X
0 x→ T ∗(t∗, x∗) &0X

0 T ∗(t∗, x))

and
T ∗(t∗, ·) &0X

1 T ∗(t, ·) :≡

∀x∗, x(x∗ &0X
0 x→ T ∗(t∗, x∗) &0X

0 T ∗(t, x))

∧∀x∗, x(x∗ &0X
0 x→ T ∗(t∗, x∗) &0X

0 T ∗(t∗, x))

In total :
∀x∗, x, t∗, t

(
t∗ &0X

1 t ∧ x∗ &0X
X x

→ T ∗(t∗, x∗) &0X
X T (t, x)∧T ∗(t∗, x∗) &0X

0 T ∗(t, x)∧T ∗(t∗, x∗) &0X
0 T ∗(t∗, x)

)
.

The above can easily be reduced to (also see Lemma 17.80 in [45]):

∀x∗, x, t∗, t
(
t∗ &0X

1 t ∧ x∗ &0X
X x
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→ T ∗(t∗, x∗) &0X
X T (t, x) ∧ T ∗(t∗, x∗) &0X

0 T ∗(t∗, x)
)
.

We will find such a T ∗ as above so that

∀t̃, t, x∗, x (x∗ ≥ ‖x‖ ∧ t̃ ≥ t→ T ∗(t̃, x∗) ≥ ‖T (t)x‖ ∧ T ∗(t̃, x∗) ≥ T ∗(t̃, x))

assuming that for some z ∈ X with ‖z‖ ≤ K ∈ N and that for some t′ ∈ R+

with t′ ≤ n ∈ N we have ‖T (t′)z − z‖ ≤ K.

Now notice that x∗ ∈ N can be taken as a majorant of x ∈ X as it has
the correct type (type 0 in this case). However from the theory we would not
expect N 3 t̃ ≥ t to be considered as a majorant of t ∈ R+ as here the theory
says that the majorant should have type 1 and not type 0 (recall that the re-
als have type 1 so they should be majorized by a number-theoretic function).
However let us see how a natural number t̃ playing the role of a majorant of
a real could be “produced” : Each real number t is represented by a Cauchy
sequence of rational numbers that has a fixed rate of convergence while the
rationals are represented by naturals via a monotone coding function so that
t(m) ∈ N is an upper bound for the absolute value of tha rational number
that it encodes (see Chapter 4 in [45]). In Chapter 4 in [45] a 2−k rational
approximation t̂(k) of t is constructed so that

∀k(|t−R λn.t̂(k)|R <R 〈2−k〉)

where n 7→ 〈n〉 denotes the embedding of N into Q defined in Chapter 4 in [45].
So |t−R λn.t̂(0)|R <R 1 meaning that the natural t(0) + 1 is an upper bound
for the real number represented by |t|R. If t∗ &1 t we have t∗(0)+1 ≥0 t(0)+1
therefore we see that we have indeed “produced” a natural number t∗(0)+1 := t̃
that can be seen as a majorant for the real t.

We now consider the estimates:

‖T (t)x‖ = ‖T (t)x− T (t)z + T (t)z + T (t′)z − T (t′)z + z − z‖

≤ ‖T (t)x− T (t)z‖+ ‖T (t)z − T (t′)z‖+ ‖T (t′)z − z‖+ ‖z‖

≤ ‖x− z‖+ ‖T (t)z − T (t′)z‖+ ‖T (t′)z − z‖+ ‖z‖

≤ ‖x‖+ 3K + ‖T (t)z − T (t′)z‖(!).

Now to bound the term ‖T (t)z − T (t′)z‖ we consider that:

∀k ∈ N ∀t, t′ ∈ [0,max{n, t∗(0) + 1}]

(|t− t′| < 2−ωK,max{n,t∗(0)+1}(k) → ‖T (t)z − T (t′)z‖ ≤ 2−k).

Setting k = 0
∀t, t′ ∈ [0,max{n, t∗(0) + 1}]
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(|t− t′| < 2−ωK,max{n,t∗(0)+1}(0) → ‖T (t)z − T (t′)z‖ ≤ 1).

Now construct 2ωK,max{n,t∗(0)+1}(0) max{n, t∗(0) + 1} many points so that

|t− t1|, |t1 − t2|, ...,

|t
2
ωK,max{n,t∗(0)+1}(0)

max{n,t∗(0)+1}
− t′| < 2−ωK,max{n,t∗(0)+1}(0)

which give that

‖T (t)z − T (t1)z‖, ‖T (t1)z − T (t2)z‖, ...,

‖T (t
2
ωK,max{n,t∗(0)+1}(0)

max{n,t∗(0)+1}
z − T (t′)z‖ ≤ 1

and by applying the triangle inequality repeatedly the above give

‖T (t)z − T (t′)z‖ ≤ 2ωK,max{n,t∗(0)+1}(0) max{n, t∗(0) + 1}+ 1

and substituting this in (!) we obtain

‖T (t)x‖ ≤ 3K + ‖x‖+ 2ωK,max{n,t∗(0)+1}(0) max{n, t∗(0) + 1}+ 1.

So,
∀x∗, x, t∗, t

(‖x‖ ≤ x∗ ∧ t ≤ t∗(0) + 1→ ‖T (t)x‖ ≤ T ∗(t∗, x∗) ∧ T ∗(t∗, x) ≤ T ∗(t∗, x∗))

with

T ∗(t∗, x∗) := 3K + x∗ + 2ωK,max{n,t∗(0)+1}(0) max{n, t∗(0) + 1}) + 1.

As we have just seen that a nonexpansive semigroup on a subset C of a Banach
spaceX is majorizable, we can state the following two versions of Metatheorem
2 but for the theory Aω[X, ‖·‖, C]−b (we emphasize again that throughout this
thesis Aω is defined as in Chapter 1 with WKL and not with DC as in [45]) and
are formulated in an analogy to Corollary 17.71 in [45] that refers to a single
nonexpansive mapping, but adapted here to the case of an equicontinuous
nonexpansive semigroup {T (t) : t ≥ 0} with a modulus ω. (Also see Corollary
17.55 in [45] where the majorants are treated as in Corollary 17.54 in [45].) In
the following, the real numbers are assumed to be extensional with respect to
equality (as explained in page 398 in [45]). Also note that an object of type C
in this context is to be understood as described by the axioms on page 415 in
[45]. Firstly we state a corollary of the metatheorem explicitly for the setting
as in Theorem 15 :

Metatheorem 3. (Relevant to Metatheorem 2 and Corollary 17.71 in [45])
Assume that we have a proof of a sentence in Aω[X, ‖ · ‖, C]−b

∀α, β, t ∈ R+ ∀N ∈ N ∀λ ∈ (0, 1) ∀z ∈ C ∀T ∈ C × R+ → C
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∀ω ∈ N× N× N→ N ∀fα
β
∈ N→ N ∀m ∈ N ∃k ∈ N(

(∀t ∈ R+ ∀x, y ∈ C ‖T (t)x− T (t)y‖ ≤R ‖x− y‖)

∧(∀x ∈ C ∀t, s ∈ R+ T (s) ◦ T (t)(x) =X T (s+ t)(x)) ∧ (
1

N
≤R β)

∧(∀p ∈ N∀p′ ∈ Z+ (|α
β
− p′

p
| ≥R

1

fα
β

(p)
))

∧(∀b ∈ N ∀q ∈ C ∀m ∈ N ∀K ∈ N ∀t, t′ ∈ [0,K]

(‖q‖ <R b ∧ |t− t′| <R 2−ωK,b(m) → ‖T (t)q − T (t′)q‖ ≤R 2−m))

∧(‖(λT (α) + (1− λ)T (β))z − z‖ ≤R 2−k)→ ‖T (t)z − z‖ <R 2−m
)
.

Then one can extract from the proof a primitive recursive in the sense of
Gödel’s T functional Φ so that

∀D ∈ N ∀α, β ∈ [0, D] ∀N ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∀λ ∈ (0, 1) ∀Λ ∈ N

∀B,B′ ∈ N ∀z ∈ CB ∀T ∈ C × R+ → C ∀ω ∈ N× N× N→ N

∀fα
β
∈ N→ N ∀m ∈ N ∃k ≤ Φ(B,D,M,Λ, N,m, f ′α

β
, ω′)(

(∀t ∈ R+ ∀x, y ∈ C ‖T (t)x− T (t)y‖ ≤R ‖x− y‖)

∧(∀x ∈ C ∀t, s ∈ R+ T (s) ◦ T (t)(x) =X T (s+ t)(x)) ∧ (
1

N
≤R β)

∧(
1

Λ
≤R λ) ∧ (

1

Λ
≤R 1− λ)

∧(∀p ∈ N ∀p′ ∈ Z+ (|α
β
− p′

p
| ≥R

1

fα
β

(p)
))

∧(∀b ∈ N ∀q ∈ C ∀m ∈ N ∀K ∈ N ∀t, t′ ∈ [0,K]

(‖q‖ <R b ∧ |t− t′| <R 2−ωK,b(m) → ‖T (t)q − T (t′)q‖ ≤R 2−m))

∧‖z‖ ≤R B ∧ ‖T (τ)z − z‖ ≤R B
′

∧τ ≤R M ∧ (‖(λT (α) + (1− λ)T (β))z − z‖ ≤R 2−k)→ ‖T (t)z − z‖ ≤R 2−m
)

holds (in the sense of Definition 17.68 in [45]) for any nontrivial normed space
X with a nonempty C ⊆ X.
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The bound Φ will not depend on B′ as the latter can eventually be reduced to a
function of other input data 1. It suffices to replace the number theoretic func-
tions f, ω with the nondecreasing functions f ′, ω′ so that the latter are their
own majorants (Note that for any function g : N→ N one can define a nonde-
creasing g′(n) := max{g(i) : i ≤ n} and we can replace a ternary function -as is
here the case of the function ω - with one that is nondecreasing in all three ar-
guments by simply taking g′(n, k,m) := max{g(i, j, l) : i ≤ n∧j ≤ k∧l ≤ m}).

It is important to stress that we have ensured that all the axioms above are
formulated as universal statements. This can be easily verified by prenexation,
by using that ∀ → ∃ ≡ ¬∀∨∃ ≡ ∃∨∃ and ∃ → ∀ ≡ ¬∃∨∀ ≡ ∀∨∀, and by the
fact that =R thus also =X are universal while <R are existential statements
(see [45]).

We now also state another corollary explicitly fitting the setting of Theorem
19 :

Metatheorem 4. (Relevant to Metatheorem 2 and Corollary 17.71 in [45])
Assume that we have a proof of a sentence in Aω[X, ‖ · ‖, C]−b

∀t ∈ R+ ∀z ∈ C ∀T ∈ C × R+ → C ∀{αn} ⊆ R+ ∀α∞ ∈ R+

∀ω ∈ N× N× N→ N

∀Φ,Ψ ∈ N→ N ∀m ∈ N ∃k ∈ N ∃n ∈ N(
(∀t ∈ R+ ∀x, y ∈ C ‖T (t)x− T (t)y‖ ≤R ‖x− y‖)

∧(∀x ∈ C ∀t, s ∈ R+ T (s) ◦ T (t)(x) =X T (s+ t)(x))

∧(∀b ∈ N ∀q ∈ C ∀m ∈ N ∀K ∈ N ∀t, t′ ∈ [0,K]

(‖q‖ <R b ∧ |t− t′| <R 2−ωK,b(m) → ‖T (t)q − T (t′)q‖ ≤R 2−m))

∧(∀n ∈ N |αn − α∞| ≥R 2−Ψ(n))

∧(∀k ∈ N ∀n ≥ Φ(k) |αn − α∞| ≤R 2−k)

∧(‖T (αn)z − z‖ ≤R 2−k)→ ‖T (t)z − z‖ <R 2−m
)
.

1(In particular: we take τ := α and we will see in the proof in page 92 that we will make
use of the estimate ‖T (α)z − z‖ ≤ ‖λT (α)z + (1− λ)T (β)z − z‖+ (1− λ)‖T (α)z − T (β)z‖
≤ 1 + (1 − 1

Λ
)‖T (α)z − T (β)z‖. To estimate the quantity ‖T (α)z − T (β)z‖, as α, β ∈

[0, D], construct D · 2ωb,D(0) many points such that |α− t1|, |t1 − t2|, ...., |t
D·2ωb,D(0) − β| <

2−ωb,D(0). Then by equicontinuity we will accordingly have ‖T (α)z − T (t1)z‖, ‖T (t1)z −
T (t2)z‖, ...., ‖T (t

D·2ωb,D(0))z − T (β)z‖ < 2−0 = 1.) By repeatedly applying the triangle
inequality ‖T (α)z − T (β)z‖ ≤ D · 2ωb,D(0) + 1 so overall ‖T (α)z − z‖ ≤ 1 + (1 − 1

Λ
)(D ·

2ωb,D(0) + 1).
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Then one can extract from the proof primitive recursive in the sense of Gödel’s
T functionals W, W̃ so that

∀M ∈ N ∀t ∈ [0,M ] ∀L ∈ N ∀{αn} ∈ [0, L]N ∀α∞ ∈ [0, L] ∀B ∈ N ∀z ∈ CB

∀T ∈ C × R+ → C ∀ω ∈ N× N× N→ N ∀Φ,Ψ ∈ N→ N

∀m ∈ N ∃k ≤W (B,M,L,Ψ′,Φ′,m, ω′) ∃n ≤ W̃ (B,M,L,Ψ′,Φ′,m, ω′)(
((∀t ∈ R+ ∀x, y ∈ C ‖T (t)x− T (t)y‖ ≤R ‖x− y‖)

∧(∀x ∈ C ∀t, s ∈ R+ T (s) ◦ T (t)(x) =X T (s+ t)(x))

∧(∀b ∈ N ∀q ∈ C ∀m ∈ N ∀K ∈ N ∀t, t′ ∈ [0,K]

(‖q‖ <R b ∧ |t− t′| <R 2−ωK,b(m) → ‖T (t)q − T (t′)q‖ ≤R 2−m))

∧(∀n ∈ N |αn − α∞| ≥R 2−Ψ(n))

∧(∀k ∈ N ∀n ≥ Φ(k) |αn − α∞| ≤R 2−k)

∧(‖T (αn)z − z‖ ≤R 2−k)→ ‖T (t)z − z‖ <R 2−m
)

holds (in the sense of Definition 17.68 in [45]) for any nontrivial normed space
X with a nonempty C ⊆ X.

Here the displacement assumption for some arbitrary element of the sequence
is trivially covered because of the premise ‖T (αn)z − z‖ ≤R 2−k. As before,
we can replace the input number theoretic functions Φ,Ψ, ω with the nonde-
creasing functions Φ′,Ψ′, ω′ so that the latter are their own majorants, and, as
before, we have ensured that all the axioms introduced are formulated as uni-
versal statements. Notice that the bound will not depend on representatives
of the sequence of reals {αn} ⊆ R+ nor its limit α∞ ∈ R+ but on L ∈ N as we
can instead write ∀L ∈ N ∀αn ∈ [0, L]N ∀α∞ ∈ [0, L] and they can therefore
be seen as elements not of the Polish space R+ but of the compact spaces
[0, L]N and [0, L] respectively. Therefore the bound will depend only on such
a parameter L ∈ N. This approach has similarly been followed for t ∈ R+, as
instead of ∀t ∈ R+ we write ∀M ∈ N ∀t ∈ [0,M ] so that t will be considered
an element of the compact space [0,M ] and the bound will only depend on
the parameter M ∈ N.

3.2 First Approach: Proof Theoretic Analysis and
Results

The work presented in this section is included in [48].

The main result of this section will be a quantitative version of Theorem 15.
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In particular we will give an explicit, uniform and effective bound for the
computation of approximate common fixed points of nonexpansive semigroups
on a subset C of a general Banach space by applying proof mining on the proof
of Theorem 15 by Suzuki. Moreover, for a convex C ⊆ X we provide the first
explicit and highly uniform rate of convergence for an iterative procedure to
compute such points, in particular the main result will be applied to extract
rates of asymptotic regularity for {T (t) : t ≥ 0} with respect to the Krasnosel-
skii iteration.

The inclusion ⋂
t≥0

F (T (t)) ⊆ F (λT (α) + (1− λ)T (β))

is trivial to show as assuming q ∈
⋂
t≥0 F (T (t)), then

(λT (α) + (1− λ)T (β))q = λT (α)q + (1− λ)T (β)q = λq + (1− λ)q = q,

thus q ∈ F (λT (α) + (1− λ)T (β)).

We will extract a bound from (the proof of) the nontrivial inclusion⋂
t≥0

F (T (t)) ⊇ F (λT (α) + (1− λ)T (β))

in the following sense: Notice that the above inclusion gives

∀q ∈ C ((λT (α) + (1− λ)T (β))q = q → ∀t ≥ 0 T (t)q = q)

which can be written as:

∀q ∈ C ∀m ∈ N ∀t ≥ 0 ∃k ∈ N

(‖(λT (α) + (1− λ)T (β))q − q‖ ≤ 2−k → ‖T (t)q − q‖ < 2−m).

The above statement is a ∀∃(∀ → ∃) equivalently a ∀∃ statement. Therefore
as guaranteed by Metatheorem 3, also see [24], [44]), it is possible to extract a
computable bound Ψ > 0 depending on bounds on the input data so that

∀λ ∈ (0, 1) ∀b ∈ N ∀q ∈ Cb ∀M ∈ N ∀t ∈ [0,M ] ∀m ∈ N

(‖(λT (α) + (1− λ)T (β))q − q‖ ≤ Ψ(M,m, b, ...)→ ‖T (t)q − q‖ < 2−m),

where, given b ∈ N, Cb := {q ∈ C : ‖q‖ ≤ b}. Note that here we have replaced
∀t ≥ 0 with the equivalent ∀M ∈ N ∀t ∈ [0,M ] so as to have a natural instead
of a real number as input data (serving as a majorant).

As mentioned, we will achieve the above bound extraction by proof mining
on the proof of Theorem 15 given in [80]. To this end, we will first obtain
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quantitative versions of a number of preliminary lemmas by Suzuki in [80]
which will then be combined in a deduction schema following the pattern of
the original proof of Theorem 15 to obtain a quantitative version of the latter,
i.e. our Theorem 18.

Notice that because, for any t ∈ R, z ∈ Z we have

t+ z − [t+ z] = t− [t],

for all t ∈ R, z ∈ Z we have

[t+ z] = [t] + z. (II)

Let γ ∈ (0, 1) and θ ∈ [0, 1]. Define a sequence {Ãn} of subsets of [0, 1] by
Ã1 = {θ} and

Ãn+1 =
⋃
t∈Ãn

{|1− t|, |γ − t|}

for n ∈ N and set

Ã(θ) :=

∞⋃
n=1

Ãn.

Moreover define a sequence {An} of subsets of [0, β] by

A1 = {θβ},

An+1 =
⋃
t∈An

{|α− t|, |β − t|}

for n ∈ N. Set

A(θ) :=

∞⋃
n=1

An.

The following lemma in [80] will be used:

Lemma 2. (Suzuki, Lemma 1 in [80]) Let γ ∈ (0, 1) and t ∈ R. Then the
following statements hold.

(i) t− [t] ∈ [0, 1).

(ii) t− [t] = 0→ t ∈ Z.

(iii) 0 < t− [t] < 1→ −[−t] = [t] + 1.

(iv) γ ≤ t− [t]→ [t− γ] = [t]).

(v) t− [t] < γ → [t− γ] = [t]− 1 ∧ [γ − t] = −[t].

In [80] the proof was omitted, but for completeness we give a proof here:
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Proof. (i) By the definition we have [t] ≤ t < [t] + 1 so trivially 0 ≤ t− [t] < 1.

(ii) Trivial, as then t = [t] ∈ Z.

(iii) Notice that, because
[−t] < −t < −[t]

we have (−[t]− (−t)) + (−t− [−t]) = 1 i.e. −[t]− [−t] = 1 i.e. −[−t] = [t] + 1.

(iv) By γ ≤ t− [t] we have t− γ ≥ [t] thus [t− γ] ≥ [[t]] = [t]. But, moreover,
it is t− γ ≤ t thus [t− γ] ≤ [t]. By combining the above [t− γ] = [t].

(v) By assumption we have t − [t] < γ < 1 i.e. −[t] < γ − t < 1 − t i.e.
[−[t]] ≤ [γ − t] ≤ [1− t] i.e. by (II) [−[t]] ≤ [γ − t] ≤ [1− t] = 1 + [−t].

In the case where 0 < t− [t], by (iii) we get

[−t] = −[t]− 1

therefore
[−[t]] ≤ [γ − t] ≤ 1− [t]− 1

i.e.
−[t] ≤ [γ − t] ≤ −[t].

So we showed that
[γ − t] = −[t].

The above, by applying (iii) to γ−t (this is possible because 0 < t−[t] < γ < 1
gives here 0 < γ − t− [γ − t] < 1) gives:

−[−(γ − t)] = −[t] + 1

i.e. −[t− γ] = −[t] + 1 i.e. [t− γ] = [t]− 1.

In the other case where 0 = t − [t], by (ii) we have t ∈ Z and thus (II)
gives

[t− γ] = t+ [−γ] = t− 1

and similarly, again by t ∈ Z here we have

[γ − t] = [γ]− t = 0− t = −[t].

In the following, let α, β, γ, θ ∈ R with 0 < α < β, 0 ≤ θ ≤ 1 and let γ :=
α/β ∈ R+ \Q+ with a modulus of irrationality fγ .
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Lemma 3. (Suzuki, Lemma 2 in [80]) Let {Ãn} be the sequence of subsets of
[0, 1] and Ã(θ) :=

⋃∞
n=1 Ãn as previously defined. Then

Ã(θ) \ {1} = {eθ + lγ − [eθ + lγ] : e ∈ {+1,−1}, l ∈ Z}.

Moreover, if h ∈ Ã(θ), then Ã(h) = Ã(θ).

Lemma 4. (Suzuki, Lemma 3 in [80]) Let {An} be the sequence of subsets of
[0, β] and A(θ) :=

⋃∞
n=1An as previously defined. Then

A(θ) \ {β} = {(eθ + lγ − [eθ + lγ])β : e ∈ {+1,−1}, l ∈ Z}.

Moreover, if h ∈ A(θ), then A(h) = A(θ).

(Note that the notation we choose to use here slightly differs from the one in
[80]).

The following quantitative version of (relevant parts of) Lemmata 3 and 4
is extracted below by inspecting step-by-step the proof of Lemma 3 in [80] and
then extending it to also show a quantitative version of Lemma 4 (the proof
of the latter is not given in [80]).

Lemma 5. (Kohlenbach and K.-A. ([48]), Quantitative version of relevant
parts of Lemmas 2 and 3 in [80])
Let {An} be the sequence of subsets of [0, β] and let {Ãn} be the sequence of
subsets of [0, 1] as previously defined. Then
(i)For t ∈ R, if t− [t] ∈ Ãn then −t− [−t] ∈ Ãn+1 in the case 0 < t− [t] < 1
and −t− [−t] ∈ Ãn in the case t− [t] = 0.
(ii) For t ∈ R, if t − [t] ∈ Ã(θ) then t − γ − [t − γ] ∈ Ãn+1 in the case where
γ ≤ t− [t] and t− γ − [t− γ] ∈ Ãn+2 in the case t− [t] < γ.
(iii) Define for l ∈ N

Bl := {(eθ + iγ − [eθ + iγ])β : e ∈ {+1,−1}, i ∈ Z, |i| ≤ l}

and
A∗n :=

⋃
i≤n

Ai.

Then for each l ∈ N we have
Bl ⊆ A∗2l+8

i.e. for each x ∈ Bl there exists an n ≤ 2l + 8 with x ∈ An.

Proof. First of all, recall by the definition of {Ãn} that if t ∈ Ãn, then
|1− t|, |γ − t| ∈ Ãn+1.
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We will show step (i). Let t ∈ R with t − [t] ∈ Ãn. If t − [t] = 0, (i)
follows immediately by Lemma 2(ii) as then t ∈ Z thus

−t− [−t] = 0 = t− [t].

If 0 < t− [t] < 1, Lemma 2(iii) gives −[−t] = [t] + 1 therefore

−t− [−t] = −t+ [t] + 1 = |1− (t− [t])|

but recall that assuming t − [t] ∈ Ãn, then |1 − (t − [t])| ∈ Ãn+1, thus
−t− [−t] ∈ Ãn+1.

We will now show step (ii). Let t ∈ R with t − [t] ∈ Ãn. We distinguish
cases: In the case where γ ≤ t − [t], by Lemma 2 (iv) we have [t − γ] = [t].
Thus:

t− γ − [t− γ] = t− [t]− γ = |γ − (t− [t])|

and by |γ− (t− [t])| ∈ Ãn+1 we have t− γ− [t− γ] ∈ Ãn+1. Now consider the
other case where t− [t] < γ. Then Lemma 2(v) gives:

[t− γ] + 1 = [t].

Therefore
γ − t+ [t− γ] + 1 = γ − t+ [t] = |γ − (t− [t])|

but recall that |γ− (t− [t])| ∈ Ãn+1 thus also γ− t+ [t− γ] + 1 ∈ Ãn+1. Now,
considering the quantity γ − t+ [t− γ] + 1 , we will therefore have
|1− (γ − t+ [t− γ] + 1)| ∈ Ãn+2 i.e.

t− γ − [t− γ] ∈ Ãn+2.

We will now show step (iii). First of all, notice that for all n ∈ N,

∀t(t ∈ Ãn ↔ βt ∈ An).

The above claim is shown by induction on n; For n = 1, we have

t ∈ Ã1 = {θ} if and only if tβ ∈ A1 = {θβ}

as clearly t = θ if and only if tβ = θβ.

Now, assuming
∀t(t ∈ Ãn0 ↔ βt ∈ An0)

for some n0 ∈ N , we have,
t ∈ Ãn0+1 ↔

tβ ∈ βÃn0+1 = β
⋃

s∈Ãn0

{|1− s|, |γ − s|}
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=
⋃

s∈Ãn0

{|β − βs|, |α− βs|}

(because, by the induction hypothesis s ∈ Ãn0 ↔ βs ∈ An0 )

=
⋃

βs∈An0

{|β − βs|, |α− βs|}

= An0+1

so the claim is proved. Therefore, to show (iii) it suffices to show the following:
For l ∈ N, defining

B̃l := {(eθ + iγ − [eθ + iγ]), e ∈ {+1,−1}, i ∈ Z, |i| ≤ l}

and
Ã∗n :=

⋃
i≤n

Ãi

we have, for each l ∈ N,
B̃l ⊆ Ã∗2l+8,

i.e. for each x ∈ B̃l there exists an n ≤ 2l + 8 with x ∈ Ãn.

Case I : θ 6= 1. We have [θ] = 0, therefore θ − [θ] = θ ∈ Ã1. Now we
apply step (ii) l times which results in an increase by at most 2 in each step.
Hence we obtain

θ − lγ − [θ − lγ] ∈ Ã∗1+2l.

Now we apply step (i) which increases the level at most by 1, hence we have

−θ + lγ − [−θ + lγ] ∈ Ã∗2+2l.

This in particular holds for l = 1 and so

−θ + γ − [−θ + γ] ∈ Ã∗4.

We now apply again step (ii) l + 1 times resulting in at most

−θ − lγ − [−θ − lγ] ∈ Ã∗4+2(l+1) = Ã∗6+2l.

At this point we have obtained the result for the e = −1 case, having now
covered the e = −1 case for both positive and negative l ∈ Z. We now apply
step (i) which gives a shift by at most 1 and therefore we obtain

θ + lγ − [θ + lγ] ∈ Ã∗7+2l.

So we have now also covered the e = +1 case for both positive and negative
l ∈ Z.



80
CHAPTER 3. PROOF MINING FOR THE FIXED POINT THEORY OF

NONEXPANSIVE SEMIGROUPS

Case II : θ = 1. Here θ − [θ] = 0 ∈ Ã2, therefore there is a shift by 1
on all the above.

Combining Cases I and II, we obtain at most

θ + lγ − [θ + lγ] ∈ Ã∗8+2l

where l ∈ Z.

The proof of the following lemma was omitted in [80] because it originates
from well-known classical results. However, we give a proof here because we
will later make use of it so as to extract our quantitative version of this lemma
that will be needed for the proof of Theorem 18.

Lemma 6. (Suzuki, Lemma 4 in [80]) It is A(θ) = [0, β] where by A(θ) we
denote the closure of A(θ).

Proof. By Lemma 3 in [80]

A(θ) \ {β} ⊇ {(eθ + lγ − [eθ + lγ])β : e ∈ {+1,−1}, l ∈ Z}.

Notice that it is always true, by the definition of the floor function [·], that

∀l ∈ Z (eθ + lγ − [eθ + lγ] ∈ [0, 1)).

We will show that A(θ) is dense in [0, β]. It is enough to show that A(θ) \ {β}
is dense in [0, β]. For that we will first show that the set {lγ − [lγ] : l ∈ Z}
is dense in [0, 1] 2. We argue as follows. Fix k ∈ N. Cut [0, 1] into pieces of
length 1

k+1 each. Then by the pigeonhole principle there must exist i, j ∈ Z
with i 6= j so that

0 ≤ j, i ≤ k + 1

such that iγ − [iγ] and jγ − [jγ] belong to the same piece so that

|iγ − [iγ]− (jγ − [jγ])| ≤ 1/(k + 1) < 1/k.

Notice that because γ /∈ Q and since i 6= j we have

iγ − [iγ] 6= jγ − [jγ],

for iγ − [iγ] = jγ − [jγ] would give

γ =
[iγ]− [jγ]

i− j
∈ Q

2This is a classical fact. We provide a proof here inspired by a proof given in [61] but
we replaced the use of Bolzano-Weierstrass by the finitary pigeonhole principle.
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which is a contradiction. Without loss of generality assume that

iγ − [iγ]− (jγ − [jγ]) > 0.

We now define

X := max{x ∈ Z+ : x(iγ − [iγ]− (jγ − [jγ])) < 1}.

Now notice that for all p ∈ N we have

|p(iγ − [iγ]− (jγ − [jγ]))− (p+ 1)(iγ − [iγ]− (jγ − [jγ]))|

= |iγ − [iγ]− (jγ − [jγ]))| < 1/k.

Therefore, for any m ∈ [0, 1, ..., k − 1] we can find a m̃ ∈ [1, ..., X] so that

m̃(iγ − [iγ]− (jγ − [jγ])) ∈ [
m

k
,
m+ 1

k
].

Moreover notice that, because of

0 < m̃(iγ − [iγ]− (jγ − [jγ])) < 1

we have
[m̃(iγ − [iγ]− (jγ − [jγ]))] = 0

therefore
m̃(iγ − [iγ]− (jγ − [jγ]))

= m̃(iγ − [iγ]− (jγ − [jγ]))− [m̃(iγ − [iγ]− (jγ − [jγ]))]

(by (II) )

= m̃(iγ − [iγ]− (jγ − [jγ]))− m̃(−[iγ] + [jγ])− [m̃(i− j)γ]

= m̃(i− j)γ − [m̃(i− j)γ].

Therefore

m̃(i− j)γ − [m̃(i− j)γ] ∈ [
m

k
,
m+ 1

k
] ∩ {lγ − [lγ] : l ∈ Z}

and, because k ∈ N was arbitrary, we conclude that {lγ − [lγ] : l ∈ Z} is
dense in [0, 1]. Therefore, by (II) for θ ∈ {0, 1} the set

{eθ + lγ − [eθ + lγ] : l ∈ Z, e ∈ {+1,−1}}

is dense in [0, 1]. To show the density of the set

{eθ + lγ − [eθ + lγ] : l ∈ Z, e ∈ {+1,−1}}
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in [0, 1] where θ ∈ (0, 1) it is enough to show the density of

{θ + lγ − [θ + lγ] : l ∈ Z} ⊂ {eθ + lγ − [eθ + lγ] : l ∈ Z, e ∈ {+1,−1}}

in [0, 1].

Fix k ∈ N.

Case A : Let x ∈ [θ, 1 − 1
k ]. Then x′ := x − θ ∈ [0, 1]. Hence there ex-

ists an i ∈ Z so that
|x′ − (iγ − [iγ])| < 1

k
(!).

Then
iγ − [iγ] + θ < x′ + θ +

1

k
= x+

1

k
≤ 1.

Notice that iγ− [iγ] + θ < 1, by Lemma 2 (v), gives us [iγ− (1− θ)] = [iγ]− 1
and by (II) we have

[iγ − (1− θ)] = [iγ + θ]− 1.

Therefore
θ + iγ − [θ + iγ] = θ + iγ − [iγ].

By (!) we have (since x = x′ + θ)

|x− (iγ − [iγ] + θ)| < 1

k

and so

|x− (θ + iγ − [θ + iγ])| < 1

k
.

Case B : Let x ∈ [ 1
k , θ). Then x

′ := x− θ + 1 ∈ [0, 1). Again there exists an
i ∈ Z so that

|x′ − (iγ − [iγ])| < 1

k
(!).

Then

iγ − [iγ] + θ ≥ x′ − 1

k
+ θ

= x+ 1− 1

k
≥ 1.

Therefore, by Lemma 2 (iv), we have [iγ − (1− θ)] = [iγ]. Moreover, by (II),

[iγ − (1− θ)] = [iγ + θ]− 1.
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Therefore

θ + iγ − [θ + iγ] = θ + iγ − ([iγ] + 1) = iγ − [iγ] + θ − 1.

By (!) (since x = x′ + θ − 1)

|x− (iγ − [iγ] + θ − 1)| < 1

k

and so

|x− (θ + iγ − [θ + iγ])| < 1

k
.

By combining Cases A and B together, we have that

∀x ∈ [1/k, 1− 1/k] ∃i ∈ Z (|x− (θ + iγ − [θ + iγ])| < 1

k
)

and hence
∀x′ ∈ [0, 1] ∃i ∈ Z ∃x ∈ [1/k, 1− 1/k]

(|x′ − (θ + iγ − [θ + iγ])| ≤ |x− (θ + iγ − [θ + iγ])|+ |x− x′| < 2

k
).

Therefore
∀x̃ ∈ [0, β] ∃x′ := x̃/β ∈ [0, 1] ∃i ∈ Z

(|x̃−(θ+iγ−[θ+iγ])β| = |x′β−(θ+iγ−[θ+iγ])β| = β|x′−(θ+iγ−[θ+iγ])| < 2β

k
).

Hence for N 3 D ≥ β we have

∀x̃ ∈ [0, β] ∃i ∈ Z (|x̃− (θ + iγ − [θ + iγ])β| < 2D

k
).

Since k ∈ N was arbitrary, the claim follows.

We will show a quantitative version of the above lemma.

Lemma 7. (Kohlenbach and K.-A. ([48]), Quantitative version of Lemma 4
in [80]) Let α, β, θ ∈ R be as before and define a sequence {An} of subsets of
[0, β] and the set A(θ) as before. Let N 3 D ≥ β. Let γ := α/β ∈ R+ \ Q+ .
Then

∀k ∈ N ∀fγ : N→ N ∃nk ∈ N ∀s ∈ [0, β] ∃p ∈ N ∃p′ ∈ Z+ ∃s′ ∈
⋃
r≤nk

Ar

(|γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2D

k
)(∗)

and we can extract a computable bound φ(k, f) ≥ nk with

φ(k, f) := max{2f(i− j) + 6 : 0 ≤ j < i ≤ k + 1}.
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Proof. In the previous lemma we essentially showed that

∀k ∈ N ∀s ∈ [0, β] ∃s′ ∈ A(θ) =
∞⋃
n=1

An

(∃fγ ∀p ∈ N ∀p′ ∈ Z+ |γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2D

k
)

i.e.

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃p ∈ N ∃p′ ∈ Z+ ∃s′ ∈ A(θ) =

∞⋃
n=1

An

(|γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2D

k
).

The above essentially means that

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃n ∈ N ∃p ∈ N ∃p′ ∈ Z+ ∃s′ ∈
⋃
r≤n

Ar

(|γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2D

k
). (III)

Notice that (III) is a ∀∃(∀ → ∃) i.e. a ∀∃ statement. Therefore we can
apply Metatheorem 1, which ensures that we can find a computable bound
φ on n . This will be done by analyzing the proof of the previous lemma
as follows. Recall that in the previous lemma the conclusion that gave the
density of the set {lγ − [lγ] : l ∈ Z} in [0, 1], thus also the density of the set
{(eθ + lγ − [eθ + lγ])β : e ∈ {+1,−1}, l ∈ Z} in [0, β] for a fixed θ ∈ [0, 1],
was

m̃(i− j)γ − [m̃(i− j)γ] ∈ [
m

k
,
m+ 1

k
] ∩ {lγ − [lγ] : l ∈ Z}

for arbitrary k ∈ N (where m̃,X are as in the previous lemma). Moreover
recall that

X(iγ − [iγ]− (jγ − [jγ])) < 1

where i 6= j ∈ Z with 0 ≤ j, i ≤ k + 1 and we had assumed, without loss of
generality,

iγ − [iγ]− (jγ − jγ]) > 0.

To bound the quantity m̃|i − j| it will therefore be enough to bound the
quantity X|i− j|. Now, notice that by the proof of the previous lemma, as γ
is by assumption irrational with an effective irrationality measure fγ ,

∃fγ : N→ N(|γ − [iγ]− [jγ]

i− j
|) ≥ 1

fγ(|i− j)|
.

Therefore, taking in (III)
p′ := [iγ]− [jγ]
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and
p := i− j

if i > j and −p′,−p otherwise using Remark 8, we have

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃n ∈ N ∃s′ ∈
⋃
r≤n

Ar ∃j 6= i ∈ Z : 0 ≤ j, i ≤ k + 1

(|γ − [iγ]− [jγ]

i− j
| ≥ 1

fγ(|i− j|)
→ |s− s′| < 2D

k
)

i.e.

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃n ∈ N ∃s′ ∈
⋃
r≤n

Ar ∃j 6= i ∈ Z : 0 ≤ j, i ≤ k + 1

(|γ(i− j)− ([iγ]− [jγ])

i− j
| ≥ 1

fγ(|i− j|)
→ |s− s′| < 2D

k
)

thus

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃n ∈ N ∃s′ ∈
⋃
r≤n

Ar ∃j 6= i ∈ Z : 0 ≤ j, i ≤ k + 1

(|γ(i− j)− ([iγ]− [jγ])| ≥ |i− j|
fγ(|i− j|)

→ |s− s′| < 2D

k
)

therefore

∀k ∈ N ∀fγ ∀s ∈ [0, β] ∃n ∈ N ∃s′ ∈
⋃
r≤n

Ar ∃j 6= i ∈ Z : 0 ≤ j, i ≤ k + 1

(|γ(i− j)− ([iγ]− [jγ])| ≥ |i− j|
fγ(|i− j|)

∧X(iγ − [iγ]− (jγ − [jγ])) < 1

→ |s− s′| < 2D

k
∧X <

fγ(|i− j|)
|i− j|

).

Having bounded X means having bounded m̃ (where X, m̃ are as in the pre-
vious lemma) and recall that in the previous lemma our conclusion that gave
the density of the set {lγ − [lγ] ∈ [0, 1], thus (replacing k by 2D/k) also the
density of the set {(eθ + lγ − [eθ + lγ])β : e ∈ {+1,−1}, l ∈ Z} ∈ [0, β] for a
fixed θ ∈ [0, 1], was

m̃(i− j)γ − [m̃(i− j)γ] ∈ [
m

k
,
m+ 1

k
] ∩ {lγ − [lγ] : l ∈ Z

for arbitrary k ∈ N. Note that the proof of the previous lemma shows that in
order to construct an l ∈ Z such that for a given x ∈ [0, β] one has

|x− (θ + lγ − [θ + lγ])β| < 2D

k
,
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it suffices to construct for a suitable x′ ∈ [0, 1] an l ∈ Z such that

|x′ − (lγ − [lγ])| < 1

k
.

Hence a bound on |l| for the latter problem gives also a bound on |l| for the
former problem.

We have

|m̃(i− j)| = m̃|i− j| ≤ X|i− j| < fγ(|i− j|)
|i− j|

|i− j| = fγ(|i− j|)

and so
|m̃(i− j)| ≤ fγ(|i− j|)− 1.

thus

2m̃|i− j|+ 8 ≤ 2fγ(|i− j|) + 6.

Recall now that by Lemma 5(iii)⋃
i≤2m̃(|i−j|)+8

Ai ⊇ {(eθ + m̃(i− j)γ − [eθ + m̃(i− j)γ])β : e ∈ {+1,−1}}.

so we may set

φ(k, f) := max{2f(i− j) + 6 : 0 ≤ j < i ≤ k + 1}.

Finally, notice that the bound extracted for n in (III) is also a witness because
(III) is clearly monotone in n , and does not depend on s. Therefore the same
bound serves as a bound for nk in (∗) (i.e. the reversal of the quantifiers ∀s ∃n
in (III) to ∃nk ∀s in (∗) plays no role here) and our proof is complete.

Lemma 8. (Suzuki, Lemma 6 in [80]) Let {T (t) : t ≥ 0} be a strongly con-
tinuous semigroup of nonexpansive mappings on a subset C of a Banach space
X. Assume that there exist q ∈ C, λ ∈ (0, 1) such that

λT (α)q + (1− λ)T (β)q = q

and assume that τ ∈ A(θ) where A(θ) is as defined previously so that

‖T (τ)q − q‖ = max{‖T (t)q − q‖ : t ∈ A(θ)}.

Define a sequence {Hn} of subsets of [0, β] by H1 = {τ} and

Hn+1 =
⋃
t∈Hn

{|α− t|, |β − t|}.

Then
∀n ∈ N ∀t ∈ Hn ‖T (τ)q − q‖ = ‖T (t)q − q‖.
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We show the following:

Lemma 9. (Kohlenbach and K.-A. ([48]), Quantitative version of Lemma
8) Let {T (t) : t ≥ 0} be a strongly continuous semigroup of nonexpansive
mappings on a subset C of a Banach space X. Let Λ ∈ N be such that 1/Λ ≤
λ, 1− λ. Let δ > 0 and q ∈ C be such that

‖(λT (α) + (1− λ)T (β))q − q‖ ≤ δ.

Let τ ∈ A(θ) where A(θ) is defined as previously so that

‖T (τ)q − q‖ = max{‖T (t)q − q‖ : t ∈ A(θ)}.

Define a sequence {Hn} of subsets of [0, β] as in the lemma above. Then

∀n ∈ N ∀t ∈ Hn ‖T (τ)q − q‖ ≤ ‖T (t)q − q‖+ δ
n−1∑
i=1

Λi) (∗∗)

Proof. Note that by Lemma 3 in [80] our assumption that τ ∈ A(θ) gives us
that

A(θ) =
∞⋃
n=1

Hn.

and by the definition of the sets

∞⋃
n=1

Hn = A(τ).

The proof is by induction. Let n = 1. Then by definition H1 = {τ}. Notice
that it is true that

‖T (τ)q − q‖ ≤ ‖T (τ)q − q‖+ δ

0∑
i=1

Λi = ‖T (τ)q − q‖

therefore we see that for n = 1, (∗∗) holds. Assume that (∗∗) holds for some
fixed n. Let t ∈ Hn. Then

|α− t|, |β − t| ∈ Hn+1.

We therefore have:

‖T (τ)q − q‖ ≤ ‖T (t)q − q‖+ δ

n−1∑
i=1

Λi

= ‖T (t)q − q − λT (α)q − (1− λ)T (β)q + λT (α)q + (1− λ)T (β)q‖+ δ

n−1∑
i=1

Λi
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≤ ‖T (t)q− (λT (α)q+(1−λ)T (β)q)‖+‖λT (α)q+(1−λ)T (β)q− q‖+ δ

n−1∑
i=1

Λi

≤ ‖T (t)q − (λT (α)q + (1− λ)T (β)q)‖+ δ + δ

n−1∑
i=1

Λi

= ‖T (t)q − λT (α)q − (1− λ)T (β)q + λT (t)q − λT (t)q‖+ δ + δ

n−1∑
i=1

Λi

≤ λ‖T (t)q − T (α)q‖+ (1− λ)‖T (t)q − T (β)q‖+ δ + δ
n−1∑
i=1

Λi

= λ‖T (t)q − T (α)q‖+ (1− λ)‖T (t)q − T (β − t+ t)q‖+ δ + δ
n−1∑
i=1

Λi

= λ‖T (t)q − T (α)q‖+ (1− λ)‖T (t)q − T (t)T (β − t)q‖+ δ + δ
n−1∑
i=1

Λi

≤ λ‖T (t)q − T (α)q‖+ (1− λ)‖q − T (β − t)q‖+ δ + δ
n−1∑
i=1

Λi

and similarly, by replacing, in ‖T (t)q − T (α)q‖ , t with t− α + α in the case
where t > α or α by α− t+ t in the case where t ≤ α, (notice that we always
have t ≤ β) again by the definition of a nonexpansive semigroup the above
gives

≤ λ‖T (|t− α|)q − q‖+ (1− λ)‖T (|t− β|)q − q‖+ δ + δ

n−1∑
i=1

Λi.

Therefore ( since by
⋃∞
n=1Hn = A(θ) we have ‖T (|t−α|)q−q‖ ≤ ‖T (τ)q−q‖)

‖T (τ)q − q‖ ≤ λ‖T (τ)q − q‖+ (1− λ)‖T (|t− β|)q − q‖+ δ + δ

n−1∑
i=1

Λi

i.e.

(1− λ)‖T (τ)q − q‖ ≤ (1− λ)‖T (|t− β|)q − q‖+ δ + δ
n−1∑
i=1

Λi

i.e.

‖T (τ)q − q‖ ≤ ‖T (|t− β|)q − q‖+
1

1− λ
(δ + δ

n−1∑
i=1

Λi)

≤ ‖T (|t− β|)q − q‖+ Λ(δ + δ
n−1∑
i=1

Λi)
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= ‖T (|t− β|)q − q‖+ Λδ + Λδ(Λ + Λ2 + ...+ Λn−1)

= ‖T (|t− β|)q − q‖+ δ
n∑
i=1

Λi,

and similarly: (since by
⋃∞
n=1Hn = A(θ) we have ‖T (|t−β|)q−q‖ ≤ ‖T (τ)q−

q‖)

‖T (τ)q − q‖ ≤ λ‖T (|t− α|)q − q‖+ (1− λ)‖T (τ)q − q‖+ δ + δ
n−1∑
i=1

Λi

i.e.

λ‖T (τ)q − q‖ ≤ λ‖T (|t− α|)q − q‖+ δ + δ

n−1∑
i=1

Λi

i.e.

‖T (τ)q − q‖ ≤ ‖T (|t− α|)q − q‖+
1

λ
(δ + δ

n−1∑
i=1

Λi)

≤ ‖T (|t− α|)q − q‖+ Λ(δ + δ
n−1∑
i=1

Λi)

= ‖T (|t− α|)q − q‖+ Λδ + Λδ(Λ + Λ2 + ...+ Λn−1)

= ‖T (|t− α|)q − q‖+ δ

n∑
i=1

Λi.

We have thus shown that for all s ∈ Hn+1

‖T (τ)q − q‖ ≤ ‖T (s)q − q‖+ δ

n∑
i=1

Λi

so we have shown that (∗∗) holds for n+1 which concludes the inductive proof
of (∗∗) for all n.

We can now proceed to show our main theorem Theorem 18.

Theorem 18. (Kohlenbach and K.-A. ([48]), Quantitative version of Theorem
15) Let {T (t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C ⊆ X
for some Banach space X. Let α, β ∈ R+ with 0 < α < β. Let γ := α/β ∈
R+ \Q+ with an effective irrationality measure fγ. Let

λT (α) + (1− λ)T (β)

be a mapping of C into X defined by

(λT (α) + (1− λ)T (β))x = λT (α)x+ (1− λ)T (β)x
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for x ∈ C with λ ∈ (0, 1). Let Λ ∈ N be such that 1/Λ ≤ λ, 1−λ and N ∈ N so
that β ≥ 1/N , N 3 D ≥ β, Moreover assume that {T (t) : t ≥ 0} is uniformly
equicontinuous with a modulus of uniform equicontinuity ω. Then

∀b ∈ N ∀M ∈ N ∀q ∈ Cb ∀m ∈ N

(‖(λT (α) + (1− λ)T (β))q − q‖ ≤ Ψ→ ∀t ∈ [0,M ]‖T (t)q − q‖ < 2−m)

with

Ψ = Ψ(m,M,N,Λ, D, b, fγ , ω) =
2−m

4(
∑φ(k,fγ)−1

i=1 Λi + 1)(1 +MN)

where k := D2ωD,b(3+[log2(1+MN)]+m)+1 ∈ N and

φ(k, f) := max{2f(i− j) + 6 : 0 ≤ j < i ≤ k + 1} ∈ N.

Proof. As already mentioned, we will obtain a quantitative version of⋂
t≥0

F (T (t)) ⊇ F (λT (α) + (1− λ)T (β))

by proof mining on the proof of Theorem 15 given in [80].

We will follow the same pattern as in the proof of Theorem 15 shown in [80]
but use our quantitative versions of the corresponding lemmata in [80] that we
have obtained.

Recall that in general by assumption we have

∀b ∈ N ∀q ∈ Cb ∀K ∈ N ∀m ∈ N ∀s, s′ ∈ [0,K]

(|s− s′| < 2−ωK,b(m) → ‖T (s)q − T (s′)q‖ < 2−m).

Assume that given b ∈ N, for an arbitrary q ∈ Cb , for any given λ ∈ (0, 1)
and for an unknown δ > 0

‖(λT (α) + (1− λ)T (β))q − q‖ ≤ δ.

The map t 7→ T (t)q is by assumption continuous, hence the map h(t) :=
||T (t)q − q|| is continuous. Because [0, β] is compact, h attains its maximum
on [0, β] at a point τ ∈ [0, β], i.e.

∃τ ∈ [0, β] ∀t ∈ [0, β](‖T (τ)q − q‖ ≥ ‖T (t)q − q‖).

Note that the statement that a general continuous function h : [a, b] → R
attains its maximum is equivalent to WKL over RCA0 (see Theorem I.10.3(6)
in [76] ).
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Let γ := α/β ∈ (0, 1) and θ := τ/β ∈ [0, 1], let A(θ) be as in the previ-
ous lemmata.

Then, by definition, τ = θβ ∈ {θβ} = A1 ⊆ A(θ) ⊆ [0, β]. So

‖T (τ)q − q‖ = max{‖T (t)q − q‖ : t ∈ A(θ)}.

Without loss of generality we may set

K := D

where N 3 D ≥ β i.e. here we have

∀m ∈ N ∀s, s′ ∈ [0, D]

(|s− s′| < 2−ωD,b(m) → ‖T (s)q − T (s′)q‖ < 2−m) (∗ ∗ ∗).

From now on recall the assumption that γ is irrational with an effective irra-
tionality measure fγ .

Now recall (∗) shown in Lemma 7:

∀k ∈ N ∀fγ : N→ N ∃nk ≤ φ(k, fγ) ∀s ∈ [0, β] ∃p ∈ N ∃p′ ∈ Z ∃s′ ∈
⋃

r≤nk≤φ(k,fγ)

Ar

(|γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2D

k
)(∗)

and notice that the premise of (∗ ∗ ∗) is fulfilled for

2D

k
≤ 2−ωD,b(m)

i.e. for
k ≥ D2ωD,b(m)+1.

We therefore set k := D2ωD,b(m)+1 in (∗) of Lemma 7 and we get

∀m ∈ N ∀fγ : N→ N ∀s ∈ [0, β] ∃p ∈ N ∃p′ ∈ Z ∃s′ ∈
⋃

r≤φ(D2
ωD,b(m)+1

,fγ)

Ar ⊆ [0, β]

(|γ − p′

p
| ≥ 1

fγ(p)
→ |s− s′| < 2−ωD,b(m)).

By (∗ ∗ ∗) the above gives

∀m ∈ N ∀s ∈ [0, β] ⊆ [0, D] ∃s′ ∈
⋃

r≤φ(D2
ωD,b(m)+1

,fγ)

Ar
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(‖T (s)q − T (s′)q‖ < 2−m).

By the triangle inequality:

‖T (s′)q − q‖ ≤ ‖T (s)q − T (s′)q‖+ ‖T (s)q − q‖,

therefore

∀m ∈ N ∀s ∈ [0, β] ∃s′ ∈
⋃

r≤φ(D2
ωD,b(m)+1

,fγ)

Ar (‖T (s′)q−q‖ < ‖T (s)q−q‖+2−m).

Thus by (∗∗) shown in Lemma 9 and using that Hn =
⋃
i≤nAi (since τ = θβ)

∀m ∈ N ∀s ∈ [0, β] ∃s′ ∈
⋃

r≤φ(D2
ωD,b(m)+1

,fγ)

Ar

(‖T (τ)q − q‖ ≤

‖T (s′)q−q‖+δ
φ(D2

ωD,b(m)+1
,fγ)−1∑

i=1

Λi < ‖T (s)q−q‖+2−m+δ

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi).

Now, applying the above to both s = α, β ∈ [0, β], we have, for all m ∈ N

2‖T (τ)q− q‖ < ‖T (α)q− q‖+ ‖T (β)q− q‖+ 2δ

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 2 · 2−m

= ‖T (α)q − q + λT (α)q + (1− λ)T (β)q − λT (α)q − (1− λ)T (β)q‖

+‖T (β)q − q + λT (α)q + (1− λ)T (β)q − λT (α)q − (1− λ)T (β)q‖

+2δ

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 2−m+1

≤ ‖λT (α)q + (1− λ)T (β)q − q‖+ (1− λ)‖T (α)q − T (β)q‖

+‖λT (α)q + (1− λ)T (β)q − q‖+ λ‖T (β)q − T (α)q‖

+2δ

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 2−m+1

≤ 2δ + ‖T (α)q − T (β)q‖+ 2δ

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 2−m+1

= ‖T (α)q − T (α)T (β − α)q‖+ 2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1
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≤ ‖q − T (β − α)q‖+ 2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1

≤ ‖T (τ)q − q‖+ 2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1

Therefore

∀m ∈ N (‖T (τ)q − q‖ < 2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1)

and, because for all t ∈ [0, β], by the definition of τ ∈ [0, β] we have

‖T (t)q − q‖ ≤ ‖T (τ)q − q‖,

it is :

∀m ∈ N ∀t ∈ [0, β](‖T (t)q − q‖ < 2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1).

Now for all R+ 3 t > β there exist r ∈ N, s ∈ [0, β] such that

t = rβ + s.

Therefore

‖T (t)q − q‖ = ‖T (rβ + s)q − q‖ = ‖T (rβ)T (s)q − q‖ = ‖T r(β)T (s)q − q‖

= ‖T r(β)T (s)q − q + T r(β)q − T r(β)q‖

≤ ‖T r(β)T (s)q − T r(β)q‖+ ‖T r(β)q − q‖

≤ ‖T (s)q − q‖+ ‖T r(β)q − q‖

= ‖T (s)q − q‖+ ‖T r(β)q − q + T (β)q − T (β)q‖

≤ ‖T (s)q − q‖+ ‖T (β)T r−1(β)q − T (β)q‖+ ‖T (β)q − q‖

≤ ‖T (s)q − q‖+ ‖T r−1(β)q − q‖+ ‖T (β)q − q‖

= ‖T (s)q − q‖+ ‖T r−1(β)q − q + T (β)q − T (β)q‖+ ‖T (β)q − q‖

≤ ‖T (s)q − q‖+ ‖T (β)T r−2(β)q − T (β)q‖+ 2‖T (β)q − q‖

≤ ‖T (s)q − q‖+ ‖T r−2(β)q − q‖+ 2‖T (β)q − q‖

≤ ....

≤ ‖T (s)q − q‖+ r‖T (β)q − q‖

≤ ‖T (τ)q − q‖(1 + r)
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< (2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1)(1 + r).

Let M ∈ N so that t ≤ M and N ∈ N so that β ≥ 1/N . We may then
write:

M ≥ t = rβ + s ≥ r/N + s ≥ r/N

thus we have
r ≤MN.

Therefore

∀M ∈ N ∀t ∈ [0,M ] ∀m ∈ N

(‖T (t)q − q‖ < (2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1)(1 +MN)).

For a yet to be determined m ∈ N, we set δ > 0 to be so small so that

2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) ≤ 2−m+1

i.e.

(2δ(

φ(D2
ωD,b(m)+1

,fγ)−1∑
i=1

Λi + 1) + 2−m+1)(1 +MN) ≤ 2 · 2−m+1(1 +MN)

= 4 · 2−m(1 +MN) ≤ 2−m̃

for some m̃ ∈ N. We have

4 · 2−m(1 +MN) ≤ 2−m̃

thus

log2(4 · 2−m(1 +MN)) ≤ log2(2−m̃)

thus
2−m+ log2(1 +MN) ≤ −m̃

thus
m ≥ 2 + log2(1 +MN) + m̃

we may thus choose

m := 3 + [log2(1 +MN)] + m̃
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i.e. we have

(2δ(

φ(D2
ωD,b(3+[log2(1+MN)]+m̃)+1

,fγ)−1∑
i=1

Λi+1)+2−(2+[log2(1+MN)]+m̃))(1+MN) ≤ 2−m̃.

Renaming

(2δ(

φ(D2
ωD,b(3+[log2(1+MN)]+m)+1

,fγ)−1∑
i=1

Λi+1)+2−(2+[log2(1+MN)]+m))(1+MN) ≤ 2−m

and solving for δ we obtain

δ ≤ 2−m − 2−(2+[log2(1+MN)]+m)(1 +MN)

2(
∑φ(D2

ωD,b(3+[log2(1+MN)]+m)+1
,fγ)−1

i=1 Λi + 1)(1 +MN)
.

Now notice that we can find a lower bound on the right hand side as follows.
Notice that

2−(2+[log2(1+MN)]+m)(1 +MN)

= 2−22−[log2(1+MN)]2−m(1 +MN)

(by using that for x > 0 we have −[x] ≤ −x+ 1)

≤ 1

4
2− log2(1+MN)2−m+1(1 +MN)

=
1

4

1

1 +MN
2−m+1(1 +MN)

=
1

4
2−m+1 = 2−m−1

Therefore

2−m − 2−(2+[log2(1+MN)]+m)(1 +MN) ≥ 2−m − 2−m−1 = 2−m−1

i.e. we have shown that

∀b ∈ N ∀q ∈ Cb ∀M ∈ N ∀t ∈ [0,M ] ∀m ∈ N

(‖(λT (α) + (1− λ)T (β))q − q‖

≤ 2−m

4(
∑φ(D2

ωD,b(3+[log2(1+MN)]+m)+1
,fγ)−1

i=1 Λi + 1)(1 +MN)

→ ‖T (t)q − q‖ < 2−m).
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Corollary to the proof. If the semigroup {T (t) : t ≥ 0} is just a strongly
continuous semigroup of nonexpansive mappings without the equicontinuity
condition, then the bound holds with ωD,b being replaced by a modulus ωD,q
of uniform continuity for [0, D] 3 t 7→ T (t)q. Then, however, the bound would
no longer be independent of q.

Remark 10. The statement that a general continuous function h : [0, β]→ R
attains its maximum at some τ ∈ [0, β] used in the proof above is noneffective
(even when, as in our case, h is given with a modulus of uniform continuity)
as even for computable h such a point τ will in general not be computable (see
Theorem I.10.3(6) in [76] where this principle is shown to be equivalent to
WKL, which is not computable). The reason why this noneffectiveness does
not cause a problem in the quantitative analysis is that τ is only used via θ
and that the bound obtained in Lemma 7 is independent of θ where the latter
is obtained by a majorization argument applied to θ ∈ [0, 1]. Therefore it
is indeed possible to eliminate WKL while carrying out a verification of the
obtained bound, see the remark below Metatheorem 1 (Lemma 7 is in fact an
instance of Metatheorem 1) and [45] for a general logical discussion of this
point.

We will now give a result following by the above theorem on the asymptotic
regularity of a nonexpansive semigroup {T (t) : t ≥ 0} (imposing the extra
assumption that is defined on a convex C ⊆ X) with respect to the Krasnosel-
skii iteration. Considering the classical result by Ishikawa (Theorem 2) we will
apply our main result Theorem 18 to obtain Corollary 4.

Corollary 4. (Kohlenbach and K.-A., [48]) Let {T (t) : t ≥ 0} be a one-
parameter nonexpansive semigroup on a convex subset C ⊆ X for some Banach
space X. Let α, β ∈ R+ with 0 < α < β and let γ := α/β ∈ R+ \Q+ with an
effective irrationality measure fγ. Let S : C → C be defined by

S := λT (α) + (1− λ)T (β)

with λ ∈ (0, 1). Let Λ ∈ N such that 1/Λ ≤ λ, 1 − λ and N ∈ N so that
β ≥ 1/N , N 3 D ≥ β. Moreover assume that {T (t) : t ≥ 0} is uniformly
equicontinuous with a modulus of uniform equicontinuity ω. Then for the Kras-
noselskii iteration {xn}n∈N of the mapping λT (α) + (1 − λ)T (β), starting at
x0, if {xn}n∈N is bounded by b ∈ N, we have

∀b ∈ N ∀M ∈ N ∀m ∈ N ∀n ≥ Φ(m,M,N,Λ, D, b, fγ , ω, d)

(∀t ∈ [0,M ] ‖T (t)xn − xn‖ < 2−m)

with a rate of asymptotic regularity

Φ(m,M,N,Λ, D, b, fγ , ω, d) =
22m+6d2

π
((

φ(k,fγ)−1∑
i=1

Λi + 1)(1 +MN))2,
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where d > 0 is such that
d ≥ ‖x0 − Sxn‖

for all n ∈ N,
k := D2ωD,b(3+[log2(1+MN)]+m)+1 ∈ N

and

φ(k, f) := max{2f(i− j) + 6 : 0 ≤ j < i ≤ k + 1} ∈ N.

Proof. The mapping Sx := (λT (α) + (1− λ)T (β))x is nonexpansive as for all
x, y ∈ C we have

‖(λT (α) + (1− λ)T (β))x− (λT (α) + (1− λ)T (β))y‖

≤ λ‖T (α)x− T (α)y‖+ (1− λ)‖T (β)x− T (β)y‖ ≤

≤ λ‖x− y‖+ (1− λ)‖x− y‖ = ‖x− y‖.

By Theorem 3, for the nonexpansive S : C → C and for its Krasnoselskii
iteration xn we have

∀ε > 0 ∀n ≥ θ(ε, d) (‖xn − Sxn‖ < ε)

with a rate of asymptotic regularity (using that ‖xn − Sxn‖ = 2‖xn+1 − xn‖)

θ(ε, d) :=
4d2

πε2

where d > 0 is such that
d ≥ ‖x0 − Sxn‖

for all n ∈ N. In Theorem 18 we showed that

∀b ∈ N ∀q ∈ Cb ∀M ∈ N ∀m ∈ N

(‖Sq − q‖ ≤ Ψ(m,M,N,Λ, D, b, fγ , ω)→ ∀t ∈ [0,M ] ‖T (t)q − q‖ < 2−m)

with

Ψ(m,M,N,Λ, D, b, fγ , ω) =
2−m

4(
∑φ(D2

ωD,b(3+[log2(1+MN)]+m)+1
,fγ)−1

i=1 Λi + 1)(1 +MN)
.

Thus, by the above it directly follows that (having substituted ε with Ψ)

∀b ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∀m ∈ N ∀n ≥ Φ(m,M,N,Λ, D, b, fγ , ω, d)

(‖T (t)xn − xn‖ < 2−m)

with a rate of asymptotic regularity
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Φ(m,M,N,Λ, D, b, fγ , ω, d) := θ(Ψ(m,M,N,Λ, D, b, fγ , ω), d)

=
4d2

π(Ψ(m,M,N,Λ, D, b, fγ , ω))2
.

We emphasize that the rate above is highly uniform, as it depends on the
semigroup only via the modulus ω.

Remark 11. Instead of the Krasnoselskii iteration of S := λT (α)+(1−λ)T (β)
as above one may also have the more general iteration from Theorem 6 in [80]
defined by

x1 ∈ C, xn+1 = κT (α)xn + λT (β)xn + (1− κ− λ)xn

for n ∈ N where κ, λ > 0 are fixed and κ + λ < 1, which is the Krasnosel-
skii–Mann iteration with κ + λ instead of 1

2) of S := κ
κ+λT (α) + λ

κ+λT (β)).
Then one uses the bound from Theorem 3 with κ+λ and applies our Theorem
18 with κ

κ+λ instead of λ.

3.3 Second Approach : Proof Theoretic Analysis
and Results

We give an -alternative to the one obtained in the previous section- explicit,
computable and uniform bound for the computation of approximate common
fixed points of one-parameter nonexpansive semigroups on a subset C of a
Banach space, by proof mining on the proof of Theorem 16 by Suzuki. The
bound obtained here is completely different to the bound obtained in the pre-
vious section. For uniformly convex C, as a corollary to our result we will
afterwards give a computable rate of asymptotic regularity with respect to
Kuhfittig’s [55] classical iteration schema, by applying a theorem by Khan and
Kohlenbach ([35]) which had been derived via proof mining on a the proof of
a result by Kuhfittig ([55]).

Our main result will be a quantitative version of Theorem 16. Exactly as
was the case for the inclusion⋂

t≥0

F (T (t)) ⊆ F (λT (α) + (1− λ)T (β))

in the previous section, also the inclusion⋂
t≥0

F (T (t)) ⊆ F (T (α)) ∩ F (T (β))
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is trivial, so in the proof of Theorem 16 the nontrivial inclusion⋂
t≥0

F (T (t)) ⊇ F (T (α)) ∩ F (T (β))

is proved. Our main result (Theorem 21) which we will show here, constitutes
in particular a quantitative version of the latter statement. As this can be
written as

∀z ∈ C (∀m ∈ N ‖T (α)z − z‖ ≤ 2−m ∧ ‖T (β)z − z‖ ≤ 2−m →

∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ] ‖T (t)z − z‖ < 2−k)

i.e. (by prenexation)

∀z ∈ C ∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∃m ∈ N

(‖T (α)z − z‖ ≤ 2−m ∧ ‖T (β)z − z‖ ≤ 2−m → ‖T (t)z − z‖ < 2−k),

we have a a ∀∃(∀ → ∃) i.e. ∀∃ statement, so it is possible to extract a com-
putable bound on m ∈ N as guaranteed by (an obvious variant of) Metatheo-
rem 3. This will be done by proof mining on the proof of Theorem 16.

To derive our quantitative versions of Suzuki’s results, we will need to make
use of the concepts of uniform equicontinuity for the nonexpansive semigroup
{T (t) : t ≥ 0} and modulus of equicontinuity as already presented. Without
the equicontinuity assumption for {T (t) : t ≥ 0}, the bound that we will ob-
tain would be less uniform as it would depend on the point z ∈ C instead of
the input b ∈ N so that Cb := {z ∈ C : ‖z‖ ≤ b}.

We will obtain quantitative versions of Theorem 19 and Lemma 11 which
will be used to obtain our main result Theorem 21 (which is a quantitative
version of Theorem 16). Lemma 10 will be auxiliary.

Lemma 10. (Suzuki, Lemma 2 in [79]) Let t ∈ R+ and let {βn} be a sequence
in (0,∞) converging to 0. Define sequences {δn} ∈ [0,∞) and {kn} ∈ N∪ {0}
as follows:

• δ1 = t,

• kn = [δn/βn] for n ∈ N,

• δn+1 = δn − knβn for n ∈ N.

Then the following hold:

1. 0 ≤ δn+1 < βn for all n ∈ N,

2. kn ∈ N ∪ {0} for all n ∈ N,
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3. {δn} converges to 0,

4.
∑n

j=1 kjβj + δn+1 = t for all n ∈ N,

5.
∑∞

j=1 kjβj = t.

Lemma 11. (Suzuki, Lemma 3 in [79]) Let α, β ∈ R+ satisfying α/β /∈ Q.
Define sequences {αn} ∈ (0,∞) and {kn} ∈ N as follows:

• α1 = max{α, β},

• α2 = min{α, β},

• kn = [αn/αn+1] for all n ∈ N,

• αn+2 = αn − knαn+1 for all n ∈ N.

Then the following hold:

• 0 < αn+1 < αn for all n ∈ N,

• kn ∈ N for all n ∈ N,

• αn/αn+1 /∈ Q for all n ∈ N,

• {αn} converges to 0.

Theorem 19. (Suzuki, Proposition 1 in [79]) Let X be a Banach space and
let {T (t) : t ≥ 0} be a one-parameter nonexpansive semigroup on C ⊆ X.
Let {αn} be a sequence in [0,∞) converging to α∞ ∈ [0,∞), and satisfying
αn 6= α∞ for all n ∈ N. Suppose that z ∈ C satisfies T (αn)z = z for all
n ∈ N. Then z is a common fixed point of {T (t) : t ≥ 0}.

Theorem 20. (Quantitative version of Theorem 19) Let X be a Banach space
and let {T (t) : t ≥ 0} be a one-parameter uniformly equicontinuous semigroup
of nonexpansive mappings on a subset C of X, with a modulus of uniform
equicontinuity ω. Let {αn} be a sequence of reals in [0,∞) converging to α∞ ∈
[0,∞) with a rate of convergence Φ : N → N, and so that ∀n ∈ N(|αn −
α∞| > 2−Ψ(n)) where Ψ : N → N. Let L ∈ N be such that for all n ∈ N
{αn}, α∞ ∈ [0, L]. Then

∀k ∈ N ∀b ∈ N ∀z ∈ Cb ∀M ∈ N ∀L ∈ N

(∀n ≤ W̃ ‖T (αn)z − z‖ ≤W → ∀t ∈ [0,M ] ‖T (t)z − z‖ < 2−k) (∗)

with

W̃ = W̃ (k, b,M,L,Φ,Ψ, ω) =
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max{Φ(ωb,M+1(k + 1)),Φ(ωb,L(k + 1 + dlog2(3M

Φ(ωb,M+1(k+1))∑
i=1

2Ψ(i))e))}

and

W = W (k, b,M,Φ,Ψ, ω) =
2−(k+1)

3M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)
.

Remark 12. By Theorem 19, if z ∈ C is a fixed point of T (αn) for all n ∈ N,
then z ∈ C is a fixed point of T (t) for all t ∈ [0,∞). A formalized version of
the above statement is the following:

∀z ∈ C(∀δ > 0 ∀n ∈ N ‖T (αn)z−z‖ ≤ δ → ∀k ∈ N ∀t ∈ [0,∞)‖T (t)z−z‖ < 2−k).

By prenexing the above we have

∀z ∈ C ∀k ∈ N ∀t ∈ [0,∞) ∃δ > 0 ∃n ∈ N(‖T (αn)z−z‖ ≤ δ → ‖T (t)z−z‖ < 2−k)

i.e. (setting Cb := {z ∈ C : ‖z‖ ≤ b})

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∃δ > 0 ∃n ∈ N

(‖T (αn)z − z‖ ≤ δ → ‖T (t)z − z‖ < 2−k).

For the above statement which is of the logical form ∀∃, Metatheorem 4 guar-
antees the extraction of computable bounds on δ and n. We will extract such
bounds by proof mining on Theorem 19 and therefore obtain (∗).

Proof. As in Theorem 19, we define

βn := |αn − α∞|.

By this definition, clearly the rate of convergence of {βn} to 0 is the same as
the rate of convergence Φ of {αn} to α∞ and, moreover, by the assumption
we have

∀n ∈ N βn > 2−Ψ(n).

Now, in both cases αn = α∞ + βn and α∞ = αn + βn we claim that we have,
for all n ∈ N,

‖T (βn)z − z‖ ≤ ‖T (α∞)z − z‖+ ‖T (αn)z − z‖.

The above claim follows directly by the semigroup properties and the triangle
inequality i.e. if αn = α∞ + βn we have

‖T (βn)z − z‖ = ‖T (βn)z − z + T (αn)z − T (αn)z‖

≤ ‖T (βn)z − T (αn)z‖+ ‖T (αn)z − z‖

= ‖T (βn)z − T (α∞ + βn)z‖+ ‖T (αn)z − z‖
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= ‖T (βn)z − T (βn)T (α∞)z‖+ ‖T (αn)z − z‖

≤ ‖z − T (α∞)z‖+ ‖T (αn)z − z‖

and analogously if α∞ = αn + βn we have

‖T (βn)z − z‖ = ‖T (βn)z − z + T (α∞)z − T (α∞)z‖

= ‖T (βn)z − z + T (αn + βn)z − T (αn + βn)z‖

≤ ‖T (βn)z − T (βn)T (αn)z‖+ ‖T (αn + βn)z − z‖

≤ ‖z − T (αn)z‖+ ‖T (α∞)z − z‖.

Now let t ∈ [0,M ] for some M ∈ N. By Lemma 10, there exists a sequence
{kn} ∈ N ∪ {0} (as defined in Lemma 10) such that

∀m ∈ N ∀n ≥ Φ(m)(|
n∑
i=1

kiβi − t| < 2−m).

(Note that as by Lemma 10 we have that for all n ∈ N

0 ≤ t−
n∑
i=1

kiβi < βn,

as a rate of convergence of {
∑n

i=1 kiβi} to t we can take the rate of convergence
Φ of {βn} to 0 (i.e. the rate of convergence Φ of {αn} to α∞).
Now the triangle inequality gives

‖T (t)z − z‖ = ‖T (t)z − z + T (
n∑
i=1

kiβi)z − T (
n∑
i=1

kiβi)z‖

≤ ‖T (

n∑
i=1

kiβi)z − z‖+ ‖T (t)z − T (

n∑
i=1

kiβi)z‖.

We moreover have

‖T (
n∑
i=1

kiβi)z − z‖

= ‖T (k1β1)T (k2β2)...T (knβn)z − z‖

= ‖T (k1β1)T (k2β2)...T (knβn)z − z + T (k1β1)z − T (k1β1)z‖

≤ ‖T (k1β1)T (k2β2)...T (knβn)z − T (k1β1)z‖+ ‖T (k1β1)z − z‖

≤ ‖T (k2β2)...T (knβn)z − z‖+ ‖T (k1β1)z − z‖

= ‖T (k2β2)...T (knβn)z − z‖+ ‖T k1(β1)z − z‖

= ‖T (k2β2)...T (knβn)z − z‖+ ‖T k1(β1)z − z + T (β1)z − T (β1)z‖
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≤ ‖T (k2β2)...T (knβn)z − z‖+ ‖T k1(β1)z − T (β1)z‖+ ‖ − z + T (β1)z‖

≤ ‖T (k2β2)...T (knβn)z − z‖+ ‖T k1−1(β1)z − z‖+ ‖ − z + T (β1)z‖

≤ ‖T (k2β2)...T (knβn)z − z‖+ k1‖T (β1)z − z‖

≤ k1‖T (β1)z − z‖+ k2‖T (β2)z − z‖+ ....+ kn‖T (βn)z − z‖

≤ k1(‖T (α1)z− z‖+ ‖T (α∞)z− z‖) + ...+ kn(‖T (αn)z− z‖+ ‖T (α∞)z− z‖)

= (k1‖T (α∞)z − z‖+ ....+ kn‖T (α∞)z − z‖) + (k1‖T (α1)z − z‖

+...+ kn‖T (αn)z − z‖)

= ‖T (α∞)z − z‖
n∑
i=1

ki +
n∑
i=1

ki‖T (αi)z − z‖

and by the triangle inequality

‖T (α∞)z − z‖ ≤ ‖T (αm)z − T (α∞)z‖+ ‖z − T (αm)z‖

for any arbitrary m ∈ N, so, overall, we have calculated that

‖T (t)z − z‖ ≤

(‖T (αm)z − T (α∞)z‖+ ‖z − T (αm)z‖)
n∑
i=1

ki +
n∑
i=1

ki‖T (αi)z − z‖

+‖T (t)z − T (
n∑
i=1

kiβi)z‖.

By the construction of Lemma 10, it is

kn = [
δn
βn

], n ∈ N

where {δn} is a sequence in [0,∞) defined by

δ1 = t;

δn+1 = δn − knβn.

So, as for all n ∈ N
δn − δn+1 = knβn ≥ 0,

{δn} is decreasing. Therefore, for all n ∈ N,

kn = [
δn
βn

] ≤ δn
βn
≤ δ1

βn
=

t

βn
< t 2Ψ(n) ≤M 2Ψ(n).

Therefore we may write the above calculated estimate as

‖T (t)z − z‖ ≤
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(‖T (αm)z − T (α∞)z‖+ ‖z − T (αm)z‖)M
n∑
i=1

2Ψ(i) +M
n∑
i=1

2Ψ(i)‖T (αi)z − z‖

+‖T (t)z − T (
n∑
i=1

kiβi)z‖ (∗∗).

Now consider, together with the uniform equicontinuity assumption for the
semigroup (as m ∈ N was arbitrary):

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀L ∈ N ∀m ∈ N ∀α∞, αm ∈ [0, L]

(|α∞ − αm| < 2−ωb,L(k) → ‖T (α∞)z − T (αm)z‖ < 2−k),

the convergence assumption :

∀k ∈ N ∀m ≥ Φ(k)(|αm − α∞| < 2−k)

that combined give:

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀L ∈ N ∀α∞, αm ∈ [0, L] ∀m ≥ Φ(ωb,L(k))

‖T (αm)z − T (α∞)z‖ < 2−k.

Now, the convergence statement (as already mentioned by Lemma 10 here we
have again the same rate of convergence Φ) :

∀m ∈ N ∀n ≥ Φ(m)(|
n∑
i=1

kiβi − t| < 2−m)

combined with the uniform equicontinuity assumption for the semigroup (no-
tice that for t ∈ [0,M ] if n ≥ Φ(m) by the above we have |

∑n
i=1 kiβi − t| ∈

[0,M + 1]) gives

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀t ∈ [0,M ] ∀n ≥ Φ(ωb,M+1(k))

‖T (

n∑
i=1

kiβi)z − T (t)z‖ < 2−k.

Substituting in (∗∗), for a given j ∈ N which satisfies

∀n ∈ N ‖T (αn)z − z‖ < 2−j

, we obtain:

∀k ∈ N ∀t ∈ [0,M ] ‖T (t)z−z‖ ≤ (2−j+‖z−T (αΦ(ωb,L(j))z)‖)M
Φ(ωb,M+1(k))∑

i=1

2Ψ(i)
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+M

Φ(ωb,M+1(k))∑
i=1

2Ψ(i)‖T (αi)z − z‖+ 2−k.

Because
∀k ∈ N ∃n ∈ N(‖T (αn)z − z‖ < 2−j →

‖z−T (αΦ(ωb,L(j))z)‖ < 2−j∧
Φ(ωb,M+1(k))∑

i=1

2Ψ(i)‖T (αi)z−z‖ < 2−j
Φ(ωb,M+1(k))∑

i=1

2Ψ(i))

we have
n ≤ max{Φ(ωb,M+1(k)),Φ(ωb,L(j))}.

In total, as M ∈ N was arbitrary:

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∀L ∈ N ∀αn, α∞ ∈ [0, L]

∃n ≤ max{Φ(ωb,M+1(k)),Φ(ωb,L(j))}

(‖T (αn)z − z‖ ≤ 2−j →

‖T (t)z − z‖ < (2−j + 2−j)M

Φ(ωb,M+1(k))∑
i=1

2Ψ(i) + 2−jM

Φ(ωb,M+1(k))∑
i=1

2Ψ(i) + 2−k

= 3 · 2−jM
Φ(ωb,M+1(k))∑

i=1

2Ψ(i) + 2−k)

Now let the above arbitrary j ∈ N be such that for a yet to be determined
k ∈ N,

2−j ≤ 2−k

3M
∑Φ(ωb,M+1(k))

i=1 2Ψ(i)
.

Choosing

j := k + dlog2(3M

Φ(ωb,M+1(k))∑
i=1

2Ψ(i))e

we thus have

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ] ∀L ∈ N

∃n ≤ max{Φ(ωb,M+1(k)),Φ(ωb,L(k + dlog2(3M

Φ(ωb,M+1(k))∑
i=1

2Ψ(i))e))}

(‖T (αn)z − z‖ ≤ 2−k

3M
∑Φ(ωb,M+1(k))

i=1 2Ψ(i)
→ ‖T (t)z − z‖ < 2−k + 2−k).
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i.e. we have extracted the bounds:

W̃ := max{Φ(ωb,M+1(k+1)),Φ(ωb,L(k+1+dlog2(3M

Φ(ωb,M+1(k+1))∑
i=1

2Ψ(i))e))},

W :=
2−(k+1)

3M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)
.

Lemma 12. (Quantitative version of Lemma 11) Let 2−G < α, β ∈ R+ for
some G ∈ N and satisfying α < β and β/α ∈ R \ Q with an effective irra-
tionality measure (with domain restricted to N × N) f β

α
. Define a sequence

{αn} ∈ (0,∞) as

α1 := β, α2 := α, αn+2 := αn − [
αn
αn+1

]αn+1.

Then
(A) ∀n ∈ N αn > αn+1 > 0 and ∀n ∈ N αn

αn+1
∈ R \Q.

(B) ∀n ∈ N αn > 2−Ψ(n) where Ψ(n) is defined simultaneously with f αn
αn+1

:

N× N→ N as follows :
fα1
α2

(p, q) := f β
α

(p, q)

fαn+1
αn+2

(p, q) := max
k≤dβe2Ψ(n+1)

{f αn
αn+1

(kp+ q, p)}|dq
p
e|,

and
Ψ(1) := G,Ψ(2) := G

and for n > 2:

Ψ(n) :=

n−2∑
i=2

dlog2( max
l≤dβe2Ψ(i+1)

{f αi
αi+1

(l, 1)})e+G.

(C) ∀k ∈ N ∀n ≥ Φ(k) αn < 2−k with

Φ(k) := dβe2k + 2.

Proof. The proof of (A) is carried out by induction, it is in fact the proof of
Lemma 11 that is given in [79] and we present it here as for the next step we will
write down a quantitative version of it. By definition α1/α2 = β/α ∈ R\Q and
α1 = β > α2 = α > 0 so A(n = 1) holds. Consider the induction hypothesis :

for some j ∈ N 0 < αj+1 < αj and
αj
αj+1

∈ R \Q (A(j))
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(Note that then in particular [αj/αj+1] ≥ 1). By the definition of the sequence
we have

αj+2 = (
αj
αj+1

− [
αj
αj+1

])αj+1

and by the definition of the floor function [·] for any x ∈ R we have x− [x] ∈
[0, 1) while here, by (A(j)),

αj
αj+1

− [
αj
αj+1

] > 0 and αj+1 > 0

therefore
0 < αj+2 < αj+1.

As by definition
αj+2

αj+1
=

αj
αj+1

− [
αj
αj+1

],

it is αj+2

αj+1
∈ R \ Q and thus αj+1

αj+2
∈ R \ Q. So we have shown (A(j + 1)) and

thus by induction we have shown (A(n)) i.e. 0 < αn+1 < αn and αn+1

αn+2
∈ R \Q

for all n ∈ N.

Showing (B) amounts to writing down a quantitative version of (A). Since
(A) was shown by induction and the statements on the irrationality of αn

αn+1

for all n ∈ N and the fact that for all n ∈ N αn > 0 were shown simultaneously,
f αn
αn+1

is defined recursively and simultaneously with Ψ(n) (the latter is in fact

the quantitative information that is of interest here) thus the proof will be
carried out again by induction. For n = 1 by the definition of {αn} we have

fα1
α2

(p, q) = f β
α

(p, q)

where f β
α
is a function N× N→ N so that

∀p, q ∈ N |β
α
− p

q
| ≥ 1

f β
α

(p, q)

i.e. the effective irrationality measure of β
α with the domain restricted to

exclude zero (compare with Definition 24) and moreover α1 = β > 2−Ψ(1)

respectively α2 = α > 2−Ψ(2) are clearly fulfilled when

Ψ(1) := G, Ψ(2) := G

as by assumption
β > α > 2−G.

Consider the following induction hypothesis B(j): Let us assume, that for
some j ∈ N we have

∀p, q ∈ N | αj
αj+1

− p

q
| ≥ 1

f αj
αj+1

(p, q)
and αj+1 > 2−Ψ(j+1) (B(j)).
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Using (B(j)) we will show (B(j + 1)).

Notice that for all p, q ∈ N,

|αj+2

αj+1
− p

q
| = | αj

αj+1
− [

αj
αj+1

]− p

q
| = | αj

αj+1
− (

[
αj
αj+1

]q + p

q
)|

≥ 1

f αj
αj+1

([
αj
αj+1

]q + p, q)

≥ 1

maxk≤dβe2Ψ(j+1){f αj
αj+1

(kq + p, q)}

(because

[
αj
αj+1

] ≤ [
β

αj+1
] ≤ [β2Ψ(j+1)] ≤ β2Ψ(j+1) ≤ dβe2Ψ(j+1) ).

Therefore
∀p, q ∈ N |αj+1

αj+2
− p

q
| = |αj+1

αj+2

p

q
| |q
p
− αj+2

αj+1
|

≥ |αj+1

αj+2

p

q
| 1

maxk≤dβe2Ψ(j+1){f αj
αj+1

(kp+ q, p)}

≥ |p
q
| 1

maxk≤dβe2Ψ(j+1){f αj
αj+1

(kp+ q, p)}

(as by (A) αj+1 > αj+2 > 0) so

fαj+1
αj+2

(p, q) = max
k≤dβe2Ψ(j+1)

{f αj
αj+1

(kp+ q, p)}|dq
p
e|

indeed gives

∀p, q ∈ N |αj+1

αj+2
− p

q
| ≥ 1

fαj+1
αj+2

(p, q)
.

We will now show that αj+2 > 2−Ψ(j+2). To this end, in (B(j)) we make the
choice (recall that [αj/αj+1] ≥ 1)

p = [
αj
αj+1

], q = 1

and thus obtain (as by the definition of the floor function [·] for any x ∈ R we
have [x] ≤ x and moreover [

αj
αj+1

] ≤ dβe2Ψ(j+1) ):

αj
αj+1

−[
αj
αj+1

] = | αj
αj+1

−[
αj
αj+1

]| ≥ 1

f αj
αj+1

([
αj
αj+1

], 1)
≥ 1

maxl≤dβe2Ψ(j+1){f αj
αj+1

(l, 1)}
.
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By recalling that by the definition of {αn} we have

αj+2 = (
αj
αj+1

− [
αj
αj+1

])αj+1

and by B(j) we obtain

αj+2 ≥
1

maxl≤dβe2Ψ(j+1){f αj
αj+1

(l, 1)}
αj+1

>
1

maxl≤dβe2Ψ(j+1){f αj
αj+1

(l, 1)}
2−Ψ(j+1).

Therefore, as by having set

Ψ(n) :=

n−2∑
i=1

dlog2( max
l≤dβe2Ψ(i+1)

{f αi
αi+1

(l, 1)})e+ Ψ(2)

we have

Ψ(j + 2)−Ψ(j + 1) = dlog2( max
l≤dβe2Ψ(j+1)

{f αj
αj+1

(l, 1)})e

we have shown by the above that

αj+2 > 2−Ψ(j+2)

so the proof of (B(j + 1)) is complete and by induction

∀n ∈ N αn > 2−Ψ(n).

We will now show (C). By (A) {αn} is convergent, and thus Cauchy. We will
show that the limit of {αn} is zero, i.e. that

∀m ∈ N ∃n ∀i, j ≥ n |αi − αj | < 2−m → ∀k ∈ N ∃l ∈ N ∀n ≥ l αn < 2−k

and we will moreover find a computable bound on l ∈ N. Because by (A) {αn}
is decreasing, it is enough to show that

∀m ∈ N ∃n ∀i, j ≥ n |αi − αj | < 2−m → ∀k ∈ N ∃l ∈ N αl < 2−k (!) .

Note that, in order to derive the quantitative (and effective) information of
interest, i.e. the bound Φ, we will apply proof mining to the entire statement
(!), and not to just its conclusion. This is because the premise will be weak-
ened to a metastable Cauchy statement in order to apply Proposition 1.
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We claim that the negation of (!) will give a contradiction, that is, we claim
that

∀m ∈ N ∃n ∈ N ∀i, j ≥ n |αi − αj | < 2−m (I)

∧∃k ∈ N ∀l ∈ N αl ≥ 2−k (II)

will give a contradiction. To show this claim, in (I) above we make the choices
3 m := k where k ∈ N is as in (II), i := n and j := n+ 1 i.e. :

∃n |αn − αn+1| = αn − αn+1 < 2−k (III)

(as {αn} is decreasing by (A)). The assumption (II) for such a k, together
with (III) in which k is as in (II) give

2−k ≤ αn+1 < αn < αn+1 + 2−k.

Dividing the above by αn+1 > 0 we have

2−k

αn+1
≤ 1 <

αn
αn+1

<
αn+1 + 2−k

αn+1
= 1 +

2−k

αn+1
≤ 2

so
1 <

αn
αn+1

< 2

which gives
[
αn
αn+1

] = 1.

Now, by the definition of the sequence {αn}, substituting the above we obtain

αn+2 = αn − [
αn
αn+1

]αn+1 = αn − αn+1 < 2−k

and clearly αn+2 < 2−k gives a contradiction to the assumption (II) for
l := n+ 2.

Thus the bound Φ on l corresponds to a bound on n shifted by 2. The latter
is obtained by applying Proposition 1. Since {αn} ∈ (0, β] ∈ [0, dβe] we obtain

Φ(k) := dβe2k + 2

i.e. we have shown that

∀k ∈ N ∀n ≥ Φ(k) αn < 2−k

with
Φ(k) := dβe2k + 2.

3this amounts to making the choice g(k) := 1 for g as in Proposition 1.
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We now show our main result.

Theorem 21. (Quantitative version of Theorem 16) Let X be a Banach space
and let {T (t) : t ≥ 0} be a one-parameter uniformly equicontinuous semigroup
of nonexpansive mappings on a subset C of X with a modulus of uniform
equicontinuity ω. Let α, β ∈ R+ with 2−G < α < β for some G ∈ N and
satisfying β/α ∈ R \ Q with an effective irrationality measure (with domain
restricted to N× N) f β

α
. Then

∀k ∈ N ∀M ∈ N ∀b ∈ N ∀z ∈ Cb

(‖T (α)z − z‖ ≤ X ∧ ‖T (β)z − z‖ ≤ X → ∀t ∈ [0,M ] ‖T (t)z − z‖ < 2−k)

with
X = X (f β

α
, dβe, G, b,M, k,Φ,Ψ, ω, W̃ ) =

√
5 2−(k+1)

6M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)

((1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1)
∏W̃−2
i=1 dβe2Ψ(i+1)

where
Ψ(1) := G,Ψ(2) := G

and for n > 2

Ψ(n) :=

n−2∑
i=2

dlog2( max
l≤dβe2Ψ(i+1)

{f αi
αi+1

(l, 1)})e+G

with
fα1
α2

(p, q) := f β
α

(p, q)

fαn+1
αn+2

(p, q) := max
k≤dβe2Ψ(n+1)

{f αn
αn+1

(kp+ q, p)}|dq
p
e|,

where {αn} is a sequence defined by α1 := β, α2 := α and αn+2 := αn −
[ αn
αn+1

]αn+1,

Φ(k) := dβe2k + 2

and
W̃ = W̃ (k, b,M, dβe,Φ,Ψ, ω) =

max{Φ(ωb,M+1(k + 1)),Φ(ωb,dβe(k + 1 + dlog2(3M

Φ(ωb,M+1(k+1))∑
i=1

2Ψ(i))e))}.
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Proof. Define a sequence {αn} ∈ (0,∞) as in Lemma 12. For convenience set

kn := [αn/αn+1].

We have

‖T (αn+2)z − z‖ = ‖T (αn+2)z − z + T (αn)z − T (αn)z‖

≤ ‖T (αn+2)z − T (αn)z‖+ ‖T (αn)z − z‖

= ‖T (αn+2)z − T (αn+2 + knαn+1)z‖+ ‖T (αn)z − z‖

= ‖T (αn+2)z − T (αn+2)T (knαn+1)z‖+ ‖T (αn)z − z‖

≤ ‖z − T (knαn+1)z‖+ ‖T (αn)z − z‖

= ‖z − T kn(αn+1)z‖+ ‖T (αn)z − z‖

= ‖z − T kn(αn+1)z + T (αn+1)z − T (αn+1)z‖+ ‖T (αn)z − z‖

≤ ‖T kn(αn+1)z − T (αn+1)z‖+ ‖T (αn+1)z − z‖+ ‖T (αn)z − z‖

≤ ‖T kn−1(αn+1)z − z‖+ ‖T (αn+1)z − z‖+ ‖T (αn)z − z‖

≤ ...

≤ kn‖T (αn+1)z − z‖+ ‖T (αn)z − z‖.

We have therefore shown that

‖T (αn+2)z − z‖ ≤ kn‖T (αn+1)z − z‖+ ‖T (αn)z − z‖

≤ kn(‖T (αn+1)z − z‖+ ‖T (αn)z − z‖).

(because by Lemma 12
0 < αn+1 < αn

for all n ∈ N, thus
kn = [αn/αn+1] ≥ 1

for all n ∈ N).

Now let b ∈ N and z ∈ Cb such that

‖T (α1)z − z‖ = ‖T (β)z − z‖ ≤ δ ∧ ‖T (α2)z − z‖ = ‖T (α)z − z‖ ≤ δ

for some δ > 0. Let us consider the sequence

{‖T (αn)z − z‖}n∈N

defined by

‖T (αn+2)z − z‖ ≤ kn(‖T (αn+1)z − z‖+ ‖T (αn)z − z‖)
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and

‖T (α1)z − z‖ = ‖T (β)z − z‖ ≤ δ ∧ ‖T (α2)z − z‖ = ‖T (α)z − z‖ ≤ δ

for some δ > 0. We will estimate the nth term as follows. Observing the form
of the first terms:

‖T (α3)z − z‖ ≤ k12δ,

‖T (α4)z − z‖ ≤ k2(k12δ + δ) = δ(k2 + 2k1k2),

‖T (α5)z − z‖ ≤ k3(δ(k2 + 2k1k2) + k12δ) = δ(k3k2 + 2k1k2k3 + 2k1k3),

‖T (α6)z − z‖ ≤ k4(δ(k3k2 + 2k1k2k3 + 2k1k3) + δ(k2 + 2k1k2))

= δ(k4k3k2 + 2k4k3k2k1 + 2k4k1k3 + k4k2 + 2k4k2k1)

(≤ 2δ(k4k3k2 + k4k3k2k1 + k4k1k3 + k4k2 + k4k2k1))

(...)

Now note that because, as mentioned above, for all n ∈ N, kn ≥ 1, for n ≤ m
we have

n∏
i=1

ki ≤
m∏
i=1

ki.

Moreover, note that the number of summands in the respective bound of each
term of the above sequence (where each summand is a product of kis) follows
the Fibonnacci sequence, i.e.

number of summands of products of kis
‖T (α3)z − z‖ 1
‖T (α4)z − z‖ 2
‖T (α5)z − z‖ 3
‖T (α6)z − z‖ 5
(...) (...)

clearly as each term approximation involves the sum of the two previous term
approximations. In particular, the nth term of the sequence {‖T (αn)z−z‖}n∈N
has a factor which is the n−1th Fibonnacci number. The nth Fibonnacci num-
ber is given by the well-known Binet’s formula:

Fn =
(1+
√

5
2 )n − (1−

√
5

2 )n
√

5
.

Hence, for the nth term of the sequence {‖T (αn)z − z‖}n∈N we have

‖T (αn)z − z‖ ≤
(1+
√

5
2 )n−1 − (1−

√
5

2 )n−1

√
5

2δ

n−2∏
i=1

ki.
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Moreover, note that, for each i ∈ N

ki = [αi/αi+1] ≤ [α1/αi+1] = [β/αi+1] ≤ [β2Ψ(i+1)] ≤ β2Ψ(i+1) ≤ dβe2Ψ(i+1).

Therefore we may write

‖T (αn)z − z‖ ≤
(1+
√

5
2 )n−1 − (1−

√
5

2 )n−1

√
5

2δ

n−2∏
i=1

dβe2Ψ(i+1).

Thus, for
n := W̃

with W̃ as it was previously obtained in our Theorem 20 with L := dβe , as
the above obtained bound on ‖T (αn)z−z‖ is nondecreasing on n we have that

‖T (α)z − z‖ ≤ δ ∧ ‖T (β)z − z‖ ≤ δ → ∀n ≤ W̃‖T (αn)z − z‖ ≤

≤
(1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1

√
5

2δ

W̃−2∏
i=1

dβe2Ψ(i+1).

By choosing δ > 0 to be such that

(1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1

√
5

2δ
W̃−2∏
i=1

dβe2Ψ(i+1) ≤W

where W is the bound extracted in Theorem 20, i.e. by choosing

δ ≤

√
5 2−(k+1)

6M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)

((1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1)
∏W̃−2
i=1 dβe2Ψ(i+1)

the premise of Theorem 20 is now fulfilled, and therefore by Theorem 20 we
obtain that

∀b ∈ N ∀z ∈ Cb ∀k ∈ N ∀M ∈ N ∀t ∈ [0,M ]

(‖T (α)z − z‖ ≤ X ∧ ‖T (β)z − z‖ ≤ X → ‖T (t)z − z‖ < 2−k)

with

X :=

√
5 2−(k+1)

6M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)

((1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1)
∏W̃−2
i=1 dβe2Ψ(i+1)

where Φ,Ψ for the particular sequence {αn} are as extracted in Lemma 12.

Remark 13. Corollary to the proof. It would be possible to remove the
equicontinuity assumption for the semigroup {T (t) : t ≥ 0}. Then, the modu-
lus of continuity of {T (t) : t ≥ 0}, and thus also the final bound, would depend
on z ∈ C instead of the input b ∈ N so that Cb := {z ∈ C : z ≤ ‖b‖}. That
would, strictly speaking, constitute a direct quantitative version of Suzuki’s
result Theorem 16. However, omitting our supplementary equicontinuity as-
sumption would have the following disadvantages:
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• Clearly the result would be less uniform,

• it would not be possible to derive the corollary on asymptotic regularity,
that we will derive here in the end of this section.

We can compare the result of Theorem 21 of this second approach with the
result of Theorem 18 of the first approach.

Let us assume that we have z ∈ Cb so that, for some δ > 0,

‖T (α)z − z‖ ≤ δ ∧ ‖T (β)z − z‖ ≤ δ.

Then

‖(λT (α) + (1− λ)T (β))z − z‖ = ‖(λT (α) + (1− λ)T (β))z − z + λz − λz‖

≤ λ‖T (α)z − z‖+ (1− λ)‖T (β)z − z‖ < δ.

In Theorem 18 let us make the choice λ := 1
2 ∈ (0, 1) and Λ := 2. Therefore

the bound could be stated as:

∀b ∈ N ∀z ∈ Cb ∀M ∈ N ∀m ∈ N

((‖T (α)z − z‖ ≤ Ψ ∧ ‖T (β)z − z‖ ≤ Ψ)→ ∀t ∈ [0,M ] ‖T (t)z − z‖ < 2−m)

with

Ψ = Ψ(m,M,N,D, b, fγ , ω) =
2−m

4(
∑φ(k,fγ)−1

i=1 2i + 1)(1 +MN)

where k ∈ N and φ(k, f) ∈ N are as in Theorem 18.

Comparing the bound Ψ that would follow from Theorem 18 from the first
approach to the bound X obtained in Theorem 21 from the second approach
we make the interesting observation that proof mining on Suzuki’s two com-
pletely different proofs of essentially the same statement gave us a completely
different result. Also note that both proofs by Suzuki (in [80] and [79] respec-
tively) although completely different to each other, both used an irrationality
assumption on the ratio of α and β thus both the quantitative analyses pre-
sented for the first and second approach made use of the notion of effective
irrationality measure for an irrational number. (Recall that within the first
approach the effective irrationality measure for reasons of simplicity was made
to depend only on one variable).

Finally, under the assumption that the Banach space X is moreover uniformly
convex, we will now give a corollary to Theorem 21 using a result by Khan and
Kohlenbach in [35] on the asymptotic regularity of the semigroup {T (t) : t ≥ 0}
with respect to a classical iteration schema introduced by Kuhfittig in 1981
([55]) :
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Definition 27. (Kuhfittig ([55])) Let C be a nonempty convex subset of a
Banach space X and let {Ti : 1 ≤ i ≤ k} be a finite family of nonexpansive self-
mappings. Let U0 := I where I denotes the identity mapping. Let λ ∈ (0, 1).
Consider the mappings:

U1 = (1− λ)I + λT1U0

U2 = (1− λ)I + λT2U1

...

Uk = (1− λ)I + λTkUk−1.

Define
x0 ∈ C, xn+1 := (1− λ)xn + λTkUk−1xn, n ≥ 0.

By proof mining on a the proof of a theorem by Kuhfittig (implicit) in [55] (also
see Theorem 1.2 in [35]), Khan and Kohlenbach showed in [35] the following
Theorem 22 which is a quantitative version of Kuhfittig’s theorem. Note that
in [35] Theorem 22 is actually shown in the more general context of UCW -
hyperbolic spaces but here we state it adapted to the special case of Banach
spaces :

Theorem 22. (Khan and Kohlenbach (Theorem 3.2 in [35])) Let C be a
nonempty convex subset of a uniformly convex Banach space X with a mod-
ulus of uniform convexity η and let {Ti : 1 ≤ i ≤ k} be a finite family of
nonexpansive self-mappings of C with ∩ki=1F (Ti) 6= ∅. Let p ∈ ∩ki=1F (Ti) and
D > 0 such that ‖x0 − p‖ ≤ D for some x0 ∈ C. Then for the sequence {xn}
generated by the iteration schema of Definition 27, we have, for all 1 ≤ i ≤ k

∀ε ∈ (0, 2] ∀n ≥ Θi(D, ε,N, η) (‖Tixn − xn‖ ≤ ε)

with a rate of asymptotic regularity

Θi := θ(η̂(k−i+min(1,k−1))(
ε

2
)),

where N ∈ N is such that 1
N ≤ λ(1− λ),

θ(ε) := d D
η̂(ε)
e,

η̂(ε) :=
1

N
η(

ε

D + 1
)ε.

Remark 14. In the case where the Banach space has a modulus of convexity
η that can be written as η(ε) = εη̃(ε) where η̃(ε) is increasing, ( for instance,
in the case of the Banach spaces Lp, that, for p ≥ 2 have an asymptotically
optimal modulus of convexity εp

p2p ) then η can be replaced with η̃ in the bound
(see Remark 1 as well as Remark 3.3 in [35]).
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We show the following corollary to Theorem 21 by making use of the above
Theorem 22.

Corollary 5. Let C be a nonempty convex subset of a uniformly convex Ba-
nach space X with a modulus of uniform convexity η and let {T (t) : t ≥ 0} be
a one-parameter uniformly equicontinuous semigroup of nonexpansive map-
pings on C with a modulus of uniform equicontinuity ω. Let α, β ∈ R+

with 2−G < α < β for some G ∈ N and satisfying β/α ∈ R \ Q with ef-
fective irrationality measure (with domain restricted to N × N) f β

α
and let

F (T (α)) ∩ F (T (β)) 6= ∅. Let p ∈ F (T (α)) ∩ F (T (β)) and let D > 0 such that
‖x0 − p‖ ≤ D for some x0 ∈ C. Then for the sequence {xn} generated by the
iteration schema of Definition 27, we have

∀k ∈ N ∀M ∈ N ∀b ∈ N ∀n ≥ Θ̃ ∀xn ∈ Cb ∀t ∈ [0,M ] ‖T (t)xn − xn‖ ≤ 2−k

with a rate of asymptotic regularity

Θ̃ := max
i=1,2
{Θi},

where
Θi = Θi(D,N, η, f β

α
, G, dβe, ω, b,M, k) := θ(η̂(3−i))(

X
2

)),

where
θ(ε) := d D

η̂(ε)
e,

η̂(ε) :=
1

N
η(

ε

D + 1
)ε,

N ∈ N is such that 1
N ≤ λ(1− λ), and

X = X (f β
α
, G, dβe, W̃ ,Ψ,Φ, ω, b,M, k) =

=

√
5 2−(k+1)

6M
∑Φ(ωb,M+1(k+1))

i=1 2Ψ(i)

((1+
√

5
2 )W̃−1 − (1−

√
5

2 )W̃−1)
∏W̃−2
i=1 dβe2Ψ(i+1)

where
Ψ(1) := G,Ψ(2) := G

and for n > 2

Ψ(n) :=

n−2∑
i=2

dlog2( max
l≤dβe2Ψ(i+1)

{f αi
αi+1

(l, 1)})e+G

with
fα1
α2

(p, q) := f β
α

(p, q)
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fαn+1
αn+2

(p, q) := max
k≤dβe2Ψ(n+1)

{f αn
αn+1

(kp+ q, p)}|dq
p
e|,

where {αn} is a sequence defined by α1 := β, α2 := α and αn+2 := αn −
[ αn
αn+1

]αn+1,

W̃ = W̃ (k, b,M, dβe,Φ,Ψ, ω) =

max{Φ(ωb,M+1(k + 1)),Φ(ωb,dβe(k + 1 + dlog2(3M

Φ(ωb,M+1(k+1))∑
i=1

2Ψ(i))e))}.

and
Φ(k) := dβe2k + 2.

Proof. By Theorem 22, for k = 2 and setting T1 := T (α1) = T (α), T2 :=
T (α2) = T (β) we have

∀ε ∈ (0, 2] ∀n ≥ Θ1(D, ε,N, η) (‖T (α)xn − xn‖ ≤ ε),

∀ε ∈ (0, 2] ∀n ≥ Θ2(D, ε,N, η) (‖T (β)xn − xn‖ ≤ ε)

with
Θ1 := θ(η̂(2)(

ε

2
)),Θ2 := θ(η̂(

ε

2
)),

where N ∈ N is such that 1
N ≤ λ(1− λ),

θ(ε) := d D
η̂(ε)
e,

η̂(ε) :=
1

N
η(

ε

D + 1
)ε.

We may therefore write

∀ε ∈ (0, 2] ∀n ≥ max
i=1,2
{Θi(D, ε,N, η)} (‖T (α)xn−xn‖ ≤ ε∧‖T (β)xn−xn‖ ≤ ε).

By setting ε := X ∈ (0, 2] in the above, where X is as in Theorem 21, the
premise of Theorem 21 is fulfilled, and we thus directly obtain:

∀k ∈ N ∀M ∈ N ∀b ∈ N ∀n ≥ max
i=1,2
{Θi(D,X , N, η)}

∀xn ∈ Cb ∀t ∈ [0,M ]‖ T (t)xn − xn‖ ≤ 2−k)

where X = X (f β
α
, G, dβe, W̃ , b,M, k,Φ,Ψ, ω) is as in Theorem 21.



Chapter 4

A Short Comment on Future
Work

In this thesis we have presented several case studies of the proof mining pro-
gram that involved applications in nonlinear analysis. As we saw, proof mining
can be considered as a practice within the generalized Hilbert’s program. An-
other program of proof theory that can also be of service to analysis and, like
proof mining, seeks in a wider sense to reduce mathematics to constructive
reasoning, is reverse mathematics. This program fits rather in the category
of relativized Hilbert programs as it concentrates on so-called proof-theoretic
reductions of systems of classical mathematics to more restricted systems, the
reductions being carried out using finitistic means. Essentially the question
examined is how much of classical mathematics can be reduced to finitary
mathematics and to this end the program seeks to determine which axiomatic
systems are required to prove mathematical theorems. Harvey Friedman, who
originally initiated the program ([19]), has pointed out the empirical fact that
“when the theorem is proved from the right axioms, the axioms can be proved
from the theorem” ([76]).

Some interesting comments on the philosophical and foundational significance
of the program, especially with respect to Hilbert’s program, can be found in
[75], also see Section 4.3 in [89].

Stephen Simpson, a pioneer of reverse mathematics, summarizes the main
scope of the program in the following question :

Question 3. ([76]) “Given a theorem τ of ordinary mathematics, which is the
weakest natural subsystem of second order arithmetic in which τ is provable?”

For a future project, as suggested by U. Kohlenbach to the author, it would
be of interest to explore Question 3 for τ being the theorem that asserts the
existence of a weak solution for the Navier-Stokes equations.

119
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In the following we briefly explain the motivation behind this idea.

The Navier-Stokes equations are nonlinear partial differential equations de-
scribing the time evolution of the velocity of a fluid. They are of significant
interest as they model many physical and engineering systems. A comprehen-
sive reference on Navier-Stokes is for instance [85]. In the known literature
all proofs for the existence of (weak) solution for the Navier-Stokes equations
from a foundational point of view require a theory of sequential compactness
which is provided by the axiom system ACA0 (Arithmetical Comprehension)-
in particular the Ascoli lemma is needed which is equivalent to ACA0 within
RCA0 (see [76]). For example, a proof of the existence of a weak solution for
Navier-Stokes is given in the classical paper by Masuda ([60]). Another proof,
via nonstandard analysis, is given in [12], also see [16].

The existence of a solution for ordinary differential equations (also known
as Peano existence theorem) has been shown within the axiom system WKL0.
The latter consists of the axioms of RCA0 (Recursive Comprehension) plus
WKL. WKL0 is a mathematically stronger natural subsystem of second order
arithmetic than RCA0 and weaker than ACA0. We refer to Simpson’s proof
([76]) and to [74] as well as Tanaka’s much shorter proof via nonstandard anal-
ysis ([82]). We also refer to [73]. Note that in [76] the converse is also shown,
i.e. it is shown that the Peano existence theorem is equivalent to WKL within
RCA0.

Motivated by the above results, we would like to attempt to give a proof for the
existence of a weak solution for the Navier-Stokes equations formalized within
the axiom system WKL0, while all the proofs in the literature seem to be car-
ried out within the mathematically stronger axiom system ACA0 (though an
actual formalization within ACA0 or any other system has in fact not been
carried out yet). In particular, motivated by Tanaka’s proof via nonstandard
analysis ([82]) for the Peano existence theorem, as well as by the nonstandard
proofs for Navier-Stokes in [12], [16], it would be reasonable to attempt this
within the setting of nonstandard analysis, especially as Keita Yokoyama has
been developing in recent years a framework for second order arithmetic within
nonstandard analysis, see [88], [31], [87].

It is however at the moment not clear whether/how the aforementioned state-
ment and some proof of it could be described within a formal framework for
reverse mathematics. If such a formalization were possible, one would suggest
to attempt to show the following:

Conjecture 1. The existence of a weak solution for the Navier-Stokes equa-
tions can be shown within the axiom system WKL0.



Bibliography

[1] Alber, Y. and Ryazantseva, I. : Nonlinear Ill-posed Problems of
Monotone Type, Springer (2006).

[2] Ariza-Ruiz, D., Leuştean, L. and López-Acedo, G. : Firmly non-
expansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc.
366, No. 8, 4299-4322 (2014).

[3] Baillon, J and Bruck, R.E. : The rate of asymptotic regularity is
O( 1√

n
), Theory and Applications of Nonlinear Operators of Accretive and

Monotone Type, Lecture Notes in Pure and Appl. Math., 178, 51–81,
Dekker, New York (1996.)

[4] Barbu, V.: Nonlinear semigroups and differential equations in Ba-
nach spaces, Noordhoff International Publishing, Leyden, The Netherlands
(1976).

[5] Benilan, Ph., Crandall, M.G. and Pazy, A. : Nonlinear Evolution
Equations in Banach Spaces, unpublished book.

[6] Bihari, I. : A generalization of a lemma of Bellman and its applica-
tion to uniqueness problems of differential equations, Acta Mathematica
Academiae Scientiarum Hungarica, 7, Issue 1, 81-94 (1956).

[7] Brezis, H. and Pazy, A.: Semigroups of nonlinear contractions on con-
vex sets, J. Funct. Anal. 6, 237-281(1970).

[8] Browder, F.E. : Nonlinear accretive operators in Banach spaces, Bull.
Amer. Math. Soc. 73, 470-476 (1967).

[9] Browder, F.E. and Petryshyn, W.V. :The solution by iteration of
nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc.
72, 571-575 (1966).

[10] Bruck, R.E. :Nonexpansive projections on subsets of Banach spaces, Pa-
cific J. Math. 47, 341-355 (1973).

[11] Bruckner, A.M. : Differentiation of Real Functions, Springer-Verlag,
New York (1978).

121



122 BIBLIOGRAPHY

[12] Capinski, M. and Cutland, N.J.: Nonstandard Methods for Stochastic
Fluid Mechanics, World Scientific Publishing (1995).

[13] Cioranescu, I. : Geometry of Banach Spaces, Duality Mappings and
Nonlinear Problems, Kluwer Academic, Dordrecht (1990).

[14] Clarkson, J.A. : Uniformly convex spaces, Trans. Amer. Math. Soc. 40,
396-414 (1936).

[15] Crandall, M.G., Liggett, T.M. : Generation of semigroups of non-
linear transformations on general Banach spaces, Amer. J. Math. 93, 265-
298 (1971).

[16] Cutland, N.J. Loeb Measures in Practice : Recent Advances, Lecture
Notes in Mathematics, Springer (2010).

[17] Deimling, K. : Nonlinear Functional Analysis, Springer, Berlin (1985).

[18] Delzell, C.N: Kreisel’s unwinding of Artin’s proof-Part I, Odifreddi,
P., Kreiseliana, 113-246, A K Peters, Wellesley, MA (1996).

[19] Friedman, H. : Some systems of second order arithmetic and their use,
Proceedings of the International Congress of Mathematicians, Vancouver
1974, 1, Canadian Mathematical Congress, 235-242 (1975).

[20] García-Falset, J. : The asymptotic behavior of the solutions of the
Cauchy problem generated by φ-accretive operators, J. Math. Anal. Appl.
310, 594-608 (2005).

[21] García-Falset, J. : Strong convergence theorems for resolvents of ac-
cretive operators, Fixed point theory and its applications, 87-94, Yokohama
Publ., Yokohama (2006).

[22] García-Falset, J., Llorens-Fuster, E. and Prus, S.,: The fixed
point property for mappings admitting a center, Nonlinear Analysis, 66,
Issue 6, 1257–1274 (2007).

[23] García-Falset, J. and Morales, C.H : Existence theorems for m-
accretive operators in Banach Spaces, J. Math. Anal. Appl. 309, 453-461
(2005).

[24] Gerhardy, Ph. and Kohlenbach, U. : General logical metatheorems
for functional analysis, Trans. Amer. Math. Soc., 360, 2615-2660 (2008).

[25] Gerhardy, Ph. and Kohlenbach, U. : Strongly uniform bounds from
semi-constructive proofs, Ann. Pure and Appl. Logic 141, 89–107(2006).



BIBLIOGRAPHY 123

[26] Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme, I. (1931) and On formally undecidable
propositions of Principia Mathematica and related systems I in Solomon
Feferman, ed., Kurt Gödel Collected works, I. Oxford University Press:
144-195 (1986).

[27] Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie, Ergeb-
nisse eines Mathematischen Kolloquiums, 4, 34-38 (1933).

[28] Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes, Dialectica 12, 280-287 (1958).

[29] Hanner, O.: On the uniform convexity of Lp and lp, Ark. Mat. 3,
239-244(1956).

[30] Hilbert, D. : Mathematische Probleme, Archiv der Mathematik und
Physik, v.3 n.1, 44–63 and 213–237 (1901), English translation, Maby
Winton, Bull. Amer. Math. Soc. 8 (1902), 437–479. Available online at
http://aleph0.clarku.edu/ djoyce/hilbert/problems.html

[31] Horihata, Y. and Yokoyama, K. : Nonstandard second-order arith-
metic and Riemann’s mapping theorem, Ann. Pure Appl. Logic 165,
520–551(2014).

[32] Howard, W.A. : Hereditarily majorizable functionals of finite type,
Troelstra (ed.), Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, LNM 344, 454-461, Springer, New York (1973).

[33] Ishikawa, S. : Fixed points and iterations of a nonexpansive mapping in
a Banach space, Proc. Amer. Math. Soc. 59, 65-71(1976).

[34] Kato, T. : Nonlinear semigroups and evolution equations, J. Math. Soc.
Japan 19, 508-520 (1967).

[35] Khan, M.A.A. and Kohlenbach, U. : Bounds on Kuhfittig’s iteration
schema in uniformly convex hyperbolic spaces, J. Math. Anal. Appl. 403,
633-642 (2013).

[36] Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale
und ihre Anwendung bei der Extraktion von Schranken aus inkonstruk-
tiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen
aus ineffektiven Beweisen PhD Thesis, Frankfurt am Main, xxii+278pp.
(1990).

[37] Kohlenbach, U. : Effective bounds from ineffective proofs in analy-
sis: an application of functional interpretation and majorization, J. Symb.
Logic 57, 1239-1273 (1992).



124 BIBLIOGRAPHY

[38] Kohlenbach, U. : Effective moduli from ineffective uniqueness proofs.
An unwinding of de La Vallee Poussin’s proof for Chebycheff approximation,
Ann. Pure Appl. Logic 64, 27-94 (1993).

[39] Kohlenbach, U. : New effective moduli of uniqueness and uniform a-
priori estimates for constants of strong unicity by logical analysis of known
proofs in best approximation theory, Numer. Funct. Anal. Optimiz. 14, 581-
606 (1993).

[40] Kohlenbach, U. : Analysing proofs in analysis, W. Hodges, M. Hy-
land, C. Steinhorn, J. Truss, editors, Logic: from Foundations to Applica-
tions. European Logic Colloquium (Keele, 1993), 225-260, Oxford Univer-
sity Press (1996).

[41] Kohlenbach, U.: On the no-counterexample interpretation, J. Symb.
Logic 64, 1491-1511 (1999).

[42] Kohlenbach, U. : On the computational content of the Krasnoselski and
Ishikawa fixed point theorems, Proceedings of the FourthWorkshop on Com-
putability and Complexity in Analysis, J. Blanck, V. Brattka, P. Hertling
(eds.), Springer LNCS 2064, 119-145 (2001).

[43] Kohlenbach, U. : Uniform asymptotic regularity for Mann iterates, J.
Math. Anal. Appl. 279, 531-544 (2003).

[44] Kohlenbach, U. : Some logical metatheorems with applications in func-
tional analysis, Trans. Amer. Math. Soc. 35, 89-128 (2005).

[45] Kohlenbach, U. : Applied Proof Theory: Proof Interpretations and their
Use in Mathematics, Springer Monographs in Mathematics (2008).

[46] Kohlenbach, U. : Recent Progress in Proof Mining in Nonlinear Anal-
ysis, To appear in forthcoming book with invited articles by recipients of
a Gödel Centenary Research Prize Fellowship.

[47] Kohlenbach, U. and Koutsoukou-Argyraki, A. : Rates of conver-
gence and metastability for abstract Cauchy problems generated by accretive
operators, J. Math. Anal. Appl. 423, 1089-1112 (2015).

[48] Kohlenbach, U. and Koutsoukou-Argyraki, A. : Effective asymp-
totic regularity for one-parameter nonexpansive semigroups, J. Math. Anal.
Appl. 433, 1883-1903 (2016).

[49] Kohlenbach, U. and Leuştean, L. : Mann iterates of directionally
nonexpansive mappings in hyperbolic spaces, Abstr. Appl. Analysis, no.8,
449-477 (2003).



BIBLIOGRAPHY 125

[50] Komura, Y. : Nonlinear semi-groups in Hilbert space, J. Math. Soc.
Japan 19, 493-507 (1967).

[51] Krasnoselskii, M.A. : Two remarks on the method of successive ap-
proximation, Usp. Math. Nauk (N. S.) 10,123-127 (1955).

[52] Kreisel, G. : On the interpretation of non-finitist proofs, part I, J. Symb.
Logic, 16, 241-267 (1951).

[53] Kreisel, G. : On the interpretation of non-finitist proofs, part II, J.
Symb. Logic, 17(1), 43-58 (1952).

[54] Krivine, J.-L. : Opérateurs de mise en mémoire et traduction de Gödel,
Arch. Math. Logic 30, no.4, 241-267 (1990).

[55] Kuhfittig, P.K.F.: Common fixed points of nonexpansive mappings by
iteration, Pacific J. Math. 97, 137-139 (1981).

[56] Kuroda, S. :Intuitionistische Untersuchungen der formalistischen Logik,
Nagoya Math. Vol 3, 35-47 (1951).

[57] Leuştean, L.: A quadratic rate of asymptotic regularity for CAT (0)
spaces, J. Math. Anal. Appl. 325, 386-399 (2007).

[58] Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von
Roth: Polynomiale Anzahlschranken, J. Symb. Logic 54, 234-263 (1989).

[59] Luckhardt, H.: Bounds extracted by Kreisel from ineffective proofs, P.
Odifreddi, Kreiseliana, 289-300, A K Peters, (1996).

[60] Masuda, K. : Weak solutions of Navier-Stokes equations, Tohoku Math.
J. 36, 623-646 (1984).

[61] Math.stackechange : http://math.stackexchange.com/questions/2725
45/multiples-of-an-irrational-number-forming-a-dense-subset

[62] Miyadera, I. and Kobayasi, K. : On the asymptotic behaviour of
almost-orbits of nonlinear contraction semigroups in Banach spaces, Non-
linear Analysis, Theory, Methods & Applications, 6, No.4, 349-365, (1982).

[63] Morales, C.H. : Surjective theorems for multi-valued mappings of ac-
cretive type, Comment. Math. Univ. Carolin. 26, 397-413 (1985).

[64] Nagel, E. and Newman, J.R.: Gödel’s Proof, Routledge (1958), Rout-
ledge Classics (2005).

[65] Neuberger, J. W. : Quasi-analyticity and semigroups, Bull. Amer.
Math. Soc. 78, 909-922 (1972).



126 BIBLIOGRAPHY

[66] Nicolae, A. : Asymptotic behavior of averaged and firmly nonexpansive
mappings in geodesic spaces, Nonlinear Analysis 87, 102-115, (2013).

[67] Parker, G.E. : A class of one-parameter nonlinear semigroups with
differentiable approximating semigroups, Proc. Amer. Math. Soc., 66, No 1
(1977).

[68] Pazy, A.: The Lyapunov method for semigroups of nonlinear contractions
in Banach spaces, Journal d’ Analyse Mathématique, 40, 239-262 (1981).

[69] Pazy, A.: Semigroups of linear operators and applications to partial dif-
ferential equations, Appl. Math.l Sciences 44, Springer (1983).

[70] Reich, S.: Strong convergence theorems for resolvents of accretive oper-
ators in Banach spaces, J. Math. Anal. Appl. 75, 287-292 (1980).

[71] Reich, S. and Shafrir, I.: The asymptotic behavior of firmly nonex-
pansive mappings, Proc. Amer. Math. Soc. 101, 246-250 (1987.)

[72] Shoenfield, J.S.: Mathematical Logic, Addison-Wesley, Reading (1967).

[73] Siu-Ah-Ng : Non Standard Methods for Functional Analysis- Lectures
and Notes, World Scientific (2010).

[74] Simpson, S.G. : Which set-existence axioms are needed to prove the
Cauchy-Peano theorem for ordinary differential equations ?, J. Symb. Logic
49, 783-802 (1984).

[75] Simpson, S.G. : Partial Realizations of Hilbert’s Program, J. Symb. Logic
53, No. 2, 349-363 (1988).

[76] Simpson, S.G. : Subsystems of Second Order Arithmetic, Perspectives in
Logic, 2nd Edition, Cambridge University Press (2009).

[77] Specker, E. : Nicht konstruktiv beweisbare Sätze der Analysis, J. Symb.
Log. 14, 145-158 (1949).

[78] Streicher, T. and Kohlenbach, U.: Shoenfield is Gödel after Kriv-
ine, Math. Logic Quaterly 53, 176-179 (2007).

[79] Suzuki, T. : The set of common fixed points of a one-parameter contin-
uous semigroup of mappings is F (T (1)) ∩ F (T (

√
2)), Proc. Amer. Math.

Soc. 134, No 3, 673-681 (2005).

[80] Suzuki, T. : Common fixed points of one-parameter nonexpansive semi-
groups, Bull. London Math. Soc. 38, 1009-1018 (2006).

[81] Takahashi, W. and Ueda, Y. : On Reich’s strong convergence the-
orems for resolvents of accretive operators , J. Math. Anal. Appl. 104,
546-553 (1984).



BIBLIOGRAPHY 127

[82] Tanaka, K. : Non-standard Analysis in WKL0, Math. Log. Quart. 43,
396-400 (1997).

[83] Tao, T. : Soft analysis, hard analysis, and the finite convergence prin-
ciple, Essay posted May 23, 2007, appeared in: ‘T. Tao, Structure and
Randomness: Pages from Year One of a Mathematical Blog. AMS, 298,
(2008).

[84] Tao, T. : Norm convergence of multiple ergodic averages for commuting
transformations, Ergodic Theory Dynam. Systems, 28, 657-688 (2008).

[85] Temam, R. : Navier-Stokes Equations and Nonlinear Functional Analy-
sis, CBMS-NSF Regional Conference Series in Applied Mathematics, So-
ciety for Industrial and Applied Mathematics, Second Edition (1995).

[86] Wittgenstein, L.: Tractatus Logico-Philosophicus (Logisch -
Philosophische Abhandlung), first edition in W. Ostwald’s Annalen der
Naturphilosophie (1921), an online version on people.umass.edu/phil335-
klement-2/tlp/tlp-ebook.pdf

[87] Yokoyama, K.: Non-standard analysis in ACA0 and Riemann mapping
theorem, Math. Log. Quart. 53, No. 2, 132 – 146 (2007).

[88] Yokoyama, K.: Formalizing non-standard arguments in second-order
arithmetic, J. Symb. Log. 75(4) 1199-1210 (2010).

[89] Zach, R.: Hilbert’s program then and now, D. Jacquette (ed.), Philosophy
of Logic, Amsterdam: North-Holland (2006).





Biographical Data

Angeliki Koutsoukou-Argyraki (Αγγελική Κουτσούκου-Αργυράκη)

1985- (Nov. 19) Born in Athens (Marousi), Greece, to Christos
Koutsoukos and Margarita Argyraki.

2009- Diploma, National Technical University of Athens, School of Applied
Mathematical and Physical Sciences, Greece.

Master de Sciences et Technologies, Mention: Physique et Applications, Spe-
cialité: Noyaux, Particules, Astroparticules et Cosmologie, Orientation: Recherche,
Université Paris VI (Pierre et Marie Curie), France.

2012- Master of Science in Mathematics (title: Candidata Scientiarum), Uni-
versity of Copenhagen, Denmark.

2013-2016- PhD research within the German-Japanese IRTG 1529 under the
supervision of Prof. Dr. Ulrich Kohlenbach, Technische Universität Darm-
stadt, Germany.

2016 (Since Oct. 1st) Scientific Associate, Research Group Logic, Depart-
ment of Mathematics, Technische Universität Darmstadt, Germany.

129


