
Real-World Aspects of Secure Channels:
Fragmentation, Causality,

and Forward Security

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

von

Giorgia Azzurra Marson, M.Sc.
geboren in Rom

Referenten: Prof. Dr. Marc Fischlin
Dr. Martijn Stam

Tag der Einreichung: 30.08.2016
Tag der mündlichen Prüfung: 12.10.2016

Darmstadt, 2017
D 17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/80587069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt.
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-60212
URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6021

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Attribution – NonCommercial – NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-60212
http://tuprints.ulb.tu-darmstadt.de/id/eprint/6021
https://creativecommons.org/licenses/by-nc-nd/4.0/

Erklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in ihr ausdrücklich
genannten Hilfen – selbständig verfasst habe.

Giorgia Azzurra Marson

Academic CV

October 2006 – December 2009
Bachelor of Science in Mathematics, Sapienza University of Rome

January 2010 – December 2011
Master of Science in Applied Mathematics, Sapienza University of Rome

January 2012 – October 2016
PhD candidate in Computer Science, Technische Universität Darmstadt

ii

List of Publications

[1] Giorgia Azzurra Marson and Bertram Poettering. Security Notions for Bidirectional Chan-
nels. IACR Transactions on Symmetric Cryptology, 2017. (To appear.) Part of this
thesis.

[2] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Günther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID: a
cryptographic analysis of an iso-standards-track authentication protocol. Int. J. Inf. Sec.,
15(6):637–657, 2016.

[3] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and Giorgia Azzurra
Marson. An Efficient Lattice-Based Signature Scheme with Provably Secure Instantiation.
In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, Progress in
Cryptology - AFRICACRYPT 2016 - 8th International Conference on Cryptology in Africa,
Fes, Morocco, April 13-15, 2016, Proceedings, volume 9646 of Lecture Notes in Computer
Science, pages 44–60. Springer, 2016.

[4] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data Is
a Stream: Security of Stream-Based Channels. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 545–564. Springer, 2015. Part of this thesis.

[5] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Günther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID
- A Cryptographic Analysis of an ISO-standards-track Authentication Protocol. In Liqun
Chen and Chris Mitchell, editors, 1st International Conference on Research in Security
Standardisation, London, U.K., December 16-17, 2014. Proceedings, volume 8893 of Lecture
Notes in Computer Science, pages 1–25. Springer, 2014.

[6] Giorgia Azzurra Marson and Bertram Poettering. Even More Practical Secure Logging:
Tree-Based Seekable Sequential Key Generators. In Miroslaw Kutylowski and Jaideep
Vaidya, editors, Computer Security - ESORICS 2014 - 19th European Symposium on Re-
search in Computer Security, Wrocław, Poland, September 7-11, 2014. Proceedings, Part
II, volume 8713 of Lecture Notes in Computer Science, pages 37–54. Springer, 2014. Part
of this thesis.

[7] Giorgia Azzurra Marson and Bertram Poettering. Practical Secure Logging: Seekable
Sequential Key Generators. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
Computer Security - ESORICS 2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, volume 8134 of Lecture Notes in
Computer Science, pages 111–128. Springer, 2013. Part of this thesis.

iii

[8] Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno
Mittelbach, and Cristina Onete. A Cryptographic Analysis of OPACITY - (Extended Ab-
stract). In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer Security
- ESORICS 2013 - 18th European Symposium on Research in Computer Security, Egham,
UK, September 9-13, 2013. Proceedings, volume 8134 of Lecture Notes in Computer Sci-
ence, pages 345–362. Springer, 2013.

[9] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On
the Non-malleability of the Fiat–Shamir Transform. In Steven D. Galbraith and Mridul
Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, 13th International Conference
on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, volume 7668 of
Lecture Notes in Computer Science, pages 60–79. Springer, 2012.

[10] Giorgia Azzurra Marson and Bertram Poettering. Causality Matters: Security Models and
Constructions for Bidirectional and Broadcast Channels. Unpublished manuscript,
Part of this thesis.

iv

Acknowledgments

During my PhD time several people contributed to my development as a scientist and as a
person. They all, directly or indirectly, had an influence on this work.

I was very fortunate to have the opportunity of joining Marc Fischlin’s team Cryptoplexity.
Marc shared with me relevant research questions from the start. He guided me with steady
support and a lot of patience, especially in the first phase of my PhD, when I was looking for
my specific direction in research. He always found the time to discuss about cryptography and
anything else I needed his advise for. He encouraged me to visit conferences, workshops, and
schools all over the world. I am deeply thankful to him for the time and care he dedicated to
me—and he continues to dedicate to his amazing group.

The results presented in this thesis are the product of engaging collaborations with Marc
Fischlin, Felix Günther, Kenny Paterson, and Bertram Poettering.

Doing research with Felix was a mix of looking at problems from orthogonal angles and
meeting each other with similar solutions and interpretations. Working with him has been
constructive, refreshing, and a lot of fun. Beyond being a fantastic colleague and co-author,
Felix is also great as a friend and as a travel companion. I will always be grateful for the
unforgettable time we spent together, in Darmstadt and around the world.

Doing research with Bertram was somewhat the opposite: tackling problems from the same
angle and then diverging on how to solve them (until we finally had an agreement). Bertram
and I had countless research discussions,face to face and remotely, at any time of the day.
Some of these discussions ended up in joint projects. All of them contributed largely to what I
learned about cryptography. I thank him for all this, but also for the nice time we jointly had
in Darmstadt, Egham, Bochum, and during our numerous trips.

I am deeply grateful to Kenny for the incredible amount of time and focused thought he
offered to Felix and me during a research visit at Royal Holloway in January 2015. It has been
also inspiring, and a great pleasure, to chat with Kenny during coffee breaks at conferences.

During my PhD I had the chance to work with other researchers. In particular I thank Nina
Bindel, Özgür Dagdelen, Jean Paul Degabriele, Victoria Fehr, Tommaso Gagliardoni, Juliane
Krämer, Arno Mittelbach, and Cristina Onete for the engaged collaborative work.

Darmstadt is like a second home for me. There I met fantastic people that are—and will
be—deeply connected to me. I thank (in alphabetical order) Paul Baecher, Nina Bindel, Jacque-
line Brendel, Chris Brzuska, Özgür (Özi) Dagdelen, Pooya Farshim, Victoria Fehr, Tommaso
Gagliardoni, Felix and Juliane Günther, Christian Janson, Agnes Kiss, Juliane Krämer, Sogol
Mazaheri, Heike Meißner, Arno Mittelbach, Cristina Onete, Andreas Peter, Bertram Poetter-
ing, Andrea Püchner, and Cristian Staicu for making my time in Darmstadt so enjoyable. I
thank in particular Özi, for taking care of me even before I moved to Darmstadt and keeping
always an eye on me; Pooya, for encouraging me, challenging me, and sharing his thoughts
about research as well as other relevant matters; and Chris, for all the support and care.

I am grateful to Martijn Stam for agreeing to be the co-referee of this thesis and for valuable
comments and discussions, and to Patrick Eugster, Iryna Gurevych, and Matthias Hollick for

v

joining the committee of my defense.
Last but not least, I am deeply thankful to my brother Alessio and my parents for their love

and support.

Giorgia Azzurra Marson

vi

My Contribution

The results presented in this thesis are the outcome of inspiring discussions and engaging col-
laborative work with Marc Fischlin, Felix Günther, Kenny Paterson, and Bertram Poettering.
I would like to thank them all for their contribution to our joint work. As it is common in a
collaborative research project, each individual achievement may be contributed by several, and
most often all, researchers participating to that project through sharing new ideas, questioning
results, discussing strategies, formalizing one’s intuition, etc. This makes it hard, if not impos-
sible, to pinpoint who contributed which specific part of the overall work. In what follows I will
give an account of the results presented in this thesis and pinpoint, when possible, what my
specific contribution is.

The results of Chapter 3 are joint work with Marc Fischlin, Felix Günther, and Kenny Pa-
terson. Felix and I developed together functionality, confidentiality and integrity notions for
stream-based channels (presented in Sections 3.2 and 3.3). Concerning the other results of Chap-
ter 3, I focused on studying the relations among confidentiality and integrity for stream-based
channels (presented in Section 3.4), in particular, on proving that the classic result of [BN00]
asserting that confidentiality against passive adversaries together with integrity of ciphertexts
implies confidentiality against active adversaries also holds in the streaming setting, as long as
decryption errors are predictable. This result is stated in Theorem 1. Felix instead focused
on the construction presented in Section 3.5, which builds a stream-based channel generically
from AEAD. He worked out the security proofs and explained to what extent the TLS record
protocol design compares to our construction.

The results of Chapters 7 and 8 are based on joint work with Bertram Poettering that
appeared in [MP13, MP14]. In the conference papers we left open whether our security model
for sequential key generators is strictly stronger than the one presented in [BY03]. As I prove
in this thesis, the two models turn out to be equivalent. This result does not appear elsewhere.
The notion of shortcut one-way permutations and the security proofs of our SSKG constructions
(presented in Sections 8.3 and 8.4) is my work. Section 8.5 reproduces the experimental results
appearing in [MP13] that compare our SSKG constructions, based on pseudorandom generators
and on shortcut one-way permutations, respectively. Both the scheme’s implementation and
the performance analysis is Bertram’s contribution.

The results of Chapters 4, 5 and 6 are also joint work with Bertram Poettering. The
security analysis of the canonic composition of unidirectional channels (Sections 5.5 and 5.6.2)
is exclusively my contribution; it appears in [MP17]. The other results presented in this thesis
were developed jointly and do not appear elsewhere.

vii

Abstract

A secure channel is a cryptographic protocol that adds security to unprotected network con-
nections. Prominent examples include the Transport Layer Security (TLS) and the Secure
Shell (SSH) protocols. Because of their large-scale deployment, these protocols received a lot
of attention from academia. Starting with the seminal work of Bellare, Kohno, and Namprem-
pre (BKN; CCS 2002) on the security of SSH, numerous authors analyzed channel protocols
using the same approach of BKN to model a channel as a stateful authenticated encryption
scheme. However, deployed protocols such as TLS and SSH are inherently complex, and a
single mathematical abstraction can hardly capture all aspects that are relevant to security.

In this thesis we reconsider the suitability of the stateful authenticated encryption abstrac-
tion for the analysis of real-world channel protocols. In particular, we highlight that such an
abstraction is too restrictive, in a sense that we clarify next, to capture three important aspects
that do not appear in existing cryptographic models for secure channels.

Firstly, we question the common approach that treats secure channels using atomic en-
cryption and decryption interfaces to transport a sequence of messages. This approach ignores
that many real-world protocols, including TLS and SSH, offer a streaming interface instead.
To formalize the non-atomic behavior of these protocols we initiate the study of stream-based
channels and their security. We formalize notions of confidentiality and integrity by extending
the BKN model for stateful authenticated encryption to take the peculiarities of streams into
account. Inspired by the TLS 1.3 protocol we present a generic construction of a stream-based
channel from any authenticated encryption scheme with associated data (AEAD), and prove its
security.

Secondly, we note that while TLS, SSH, and many other channel protocols are typically
used for bidirectional interaction, cryptographic models assessing the security of these proto-
cols exclusively account for unidirectional communication, from one sender to one receiver. We
correspondingly ask: Do security results for unidirectional channels extend to the bidirectional
case? And, in the first place, what does security in the bidirectional setting actually mean? How
does all this scale when more than two participants are involved? To answer these questions we
conduct a rigorous study of security notions for bidirectional channels and their generalization
to the broadcast setting with more than two participants. In a broadcast scenario, confidential-
ity and integrity need to capture aspects related to the causality of events in distributed systems
that have no counterpart in the much simpler unidirectional case. The causality between ex-
changed messages is particularly relevant, both in terms of functionality and of security, in the
context of instant messaging protocols such as TextSecure. Furthermore, we provide generic
constructions of broadcast channels from AEAD. We also analyze and validate a traditional
heuristic (used, among others, in TLS) of combining two unidirectional channels to realize a
bidirectional one.

Finally, we look at forward security, which strengthens regular security by demanding that
even if an adversary eventually obtains the secret key in use (by corruption), past uses of the
cryptosystem are not compromised. While being a standard requirement for authenticated

ix

key exchange, so far, providing forward security was not considered a goal of cryptographic
channels in the BKN model and its follow-ups. However, it is considered folklore that forward-
secure authenticated encryption schemes can be constructed in a modular way by replacing the
key generation procedure with one that produces a sequence of forward-secure keys and then
using these keys for re-keying the encryption and decryption routines in use. This approach
may also be applied for realizing forward-secure channels. Following this idea, in the last
part of the thesis we leave the domain of channels and focus on building forward-secure key
generation mechanisms. Secure solutions for the latter primitive have been proposed already
in the past. In this thesis we complement the current picture by contributing certain efficiency
improvements for sequential key generators. In particular, we illustrate that our solutions find
a natural application in the authentication of log files. Implementations of one of our schemes
are installed on millions of computers world-wide.

x

Zusammenfassung

Ein sicherer Kanal ist ein kryptographisches Protokoll das ungeschützte Netzwerkverbindun-
gen absichert. Die prominentesten Beispiele, Transport Layer Security (TLS) und Secure Shell
(SSH), erhielten aufgrund ihrer weiten Verbreitung besondere Aufmerksamkeit von Seiten aka-
demischer Forschung. Beginnend mit den Arbeiten von Bellare, Kohno, und Namprempre (BKN;
CCS 2002) über die Sicherheit von SSH haben zahlreiche Autoren kryptographische Kanalproto-
kolle mit einem Ansatz ähnlich dem von BKN analysiert, nämlich Kanäle als zustandsbehaftete
authentisierte Verschlüsselung modellierend. Verbreitete Protokolle wie TLS und SSH sind je-
doch ihrem Wesen nach komplex, und eine einzelne mathematische Abstraktion kann schwerlich
alle für ihre Sicherheit relevanten Aspekte berücksichtigen.

In dieser Dissertation stellen wir die Eignung der Abstraktion als zustandsbehaftete au-
thentisierte Verschlüsselung für die Analyse von Kanalprotokollen in der realen Welt in Frage.
Insbesondere zeigen wir auf, dass eine solche Abstraktion zu restriktiv ist, auf eine Weise die
wir im Folgenden erklären, um drei wichtige Aspekte abzudecken, die in bisher existierenden
kryptographischen Modellierungen von Kanälen nicht auftreten.

Zunächst stellen wir den allgegenwärtigen Ansatz in Frage, der Kanäle aufgrund entspre-
chend formalisierter Schnittstellen als Transportmittel für atomare Nachrichten auffasst. Der
genannte Ansatz ignoriert, dass viele Protokolle in der realen Welt, einschließlich TLS und
SSH, tatsächlich strom-orientierte Schnittstellen anbieten. Zum Studieren des nicht-atomaren
Verhaltens solcher Protokolle und ihrer Sicherheit entwickeln wir Vertraulichkeits- und Inte-
gritätsbegriffe auf Basis des Modells für zustandsbehaftete authentisierte Verschlüsselung von
BKN, um den Eigenheiten von strom-basierten Protokollen Rechnung zu tragen. Inspiriert vom
TLS 1.3-Protokoll präsentieren wir eine generische Konstruktion eines strom-basierten Kanals,
auf Grundlage von authentisierter Verschlüsselung mit assoziierten Daten (AEAD), und bewei-
sen ihre Sicherheit.

Zweitens stellen wir fest, dass TLS, SSH, und viele weitere Kanalprotokolle typischerwei-
se für bidirektionale Interaktion verwendet werden, während kryptographische Modelle solche
Protokolle ausschließlich im Hinblick auf unidirektionale Kommunikation bewerten, d.h., mit
genau einem Sender und einem Empfänger. Entsprechend fragen wir: Lassen sich Ergebnisse
über unidirektionale Kanäle auf den bidirektionalen Fall übertragen? Und, unmittelbarer, was
bedeutet Sicherheit im bidirektionalen Fall überhaupt? Wie skalieren diese Eigenschaften wenn
mehr als zwei Teilnehmer vorhanden sind? Um diese Fragen zu beantworten studieren wir Si-
cherheitsbegriffe für bidirektionale Kanäle und ihre Verallgemeinerung zum Broadcast Setting,
in dem mehrere Teilnehmer vorhanden sind und jede Sendung eines Teilnehmers alle übrigen
Teilnehmer erreicht. Im letzteren Fall müssen die Definitionen von Vertraulichkeit und Integri-
tät Aspekte von Kausalität in Verteilten Systemen umfassen, die keine Entsprechung im viel
einfacheren Fall unidirektionaler Kommunikation haben. Kausale Zusammenhänge zwischen
ausgetauschten Nachrichten sind besonders relevant, in Hinblick auf sowohl Funktionalität als
auch Sicherheit, im Kontext von Protokollen zum Instant Messaging, etwa TextSecure. In diesem
Teil der Dissertation geben wir generische Konstruktionen von Broadcast-Kanälen auf Basis von

xi

AEAD an. Wir analysieren und validieren die traditionelle heuristische Methode (benutzt etwa
für TLS), einen bidirektionalen Kanal durch die Kombination zweier unidirektionaler Kanäle
zu erhalten.

Im dritten Teil dieser Arbeit studieren wir Vorwärtssicherheit, die reguläre Sicherheitsdefi-
nitionen durch die Forderung stärkt, dass sogar im Fall wenn Angreifer (durch Korrumpierung)
zu einem Zeitpunkt Zugriff auf verwendetes Schlüsselmaterial erhalten, vergangene Anwendun-
gen des Kryptosystems nicht kompromittiert werden. Obwohl dies ein standardmäßiges Sicher-
heitsziel von authentisiertem Schlüsselaustausch ist, wurde sein Erreichen bisher nicht als ein
Ziel von kryptographischen Kanälen verstanden, zumindest nicht nach den Modellen von BKN
und seinen Nachfolgern. Es wird jedoch als Folklore-Ergebnis aufgefasst, dass vorwärtssiche-
re authentisierte Verschlüsselung auf modulare Weise erreicht werden kann durch Ersetzen der
Schlüsselerzeugungsprozedur durch eine, die eine Folge von vorwärtssicheren Schlüsseln erzeugt,
um dann diese zum Erneuern der Schlüssel von Ver- und Entschlüsselungsroutine zu verwenden.
Dieser Ansatz kann auch zum Realisieren vorwärtssicherer Kanäle verwendet werden. Dem fol-
gend verlassen wir im dritten Teil der Dissertation das Gebiet sicherer Kanäle und konzentrieren
uns auf die Konstruktion vorwärtssicherer Schlüsselerzeugungsmechanismen. Sichere Lösungen
bereits in der Vergangenheit vorgeschlagen worden. Hier komplementieren wir das aktuelle Bild
durch explizit effizienzsteigernde Verbesserungen für vorwärtssicheren Schlüsselerzeugungsme-
chanismen, und illustrieren, dass unsere Lösungen insbesondere eine natürliche Anwendung in
der Authentisierung von Log-Dateien finden. Implementationen einer unserer Konstruktionen
sind auf Millionen von Computern weltweit installiert.

xii

Contents

1 Introduction 1

2 Notation and Definitions 7
2.1 General Notation . 7
2.2 Cryptographic Assumptions and Primitives . 8
2.3 Cryptographic Models for Secure Channels . 10

3 Stream-Based Channels 17
3.1 Introduction . 17
3.2 Syntax and Functionality . 18
3.3 Defining Security for Stream-Based Channels . 21
3.4 Relations Among Notions . 29
3.5 Constructions . 34
3.6 A Note on the TLS Record Protocol . 39

4 Broadcast Communication 41
4.1 Introduction . 41
4.2 Communication Graphs . 42
4.3 Technical Results . 47

5 FIFO Channels 53
5.1 Introduction . 53
5.2 Syntax and Functionality . 54
5.3 Defining Security for FIFO Channels . 56
5.4 Relations Among Notions . 59
5.5 Unidirectional Channels . 61
5.6 Constructions . 64

6 Causal Channels 73
6.1 Introduction . 73
6.2 Syntax and Functionality . 75
6.3 Security and Relations Among Notions . 76
6.4 Constructions . 78

7 Sequential Key Generators 87
7.1 Introduction . 87
7.2 Syntax and Functionality . 88
7.3 Security . 89
7.4 Comparison with Stateful Generators . 90
7.5 Constructions . 93

xiii

7.6 A Digression on Secured Local Logging . 94

8 Seekable Sequential Key Generators 95
8.1 Introduction . 95
8.2 Seekability . 95
8.3 Shortcut One-Way Permutations . 97
8.4 Constructions . 99
8.5 Practical aspects and deployment . 111

9 Conclusion and Open Problems 115

Bibliography 117

xiv

Chapter 1
Introduction

Cryptography originates from the need to communicate securely. Modern cryptography goes
hand in hand with provable security, which offers a mathematical framework to determine
whether and in how far a given cryptosystem is secure. The provable security approach essen-
tially reduces to the following steps. Firstly, one defines formally what security means for a
given cryptographic task. A security definition consists of a mathematical model that describes
the expected functionality of cryptosystems that achieve the targeted task as well as how these
systems should behave if an attacker misuses them. Secondly, one proves that a specific cryp-
tosystem is secure by presenting a reduction, i.e., an efficient algorithm turning any adversary
that breaks the security of the cryptosystem (according to the definition of security established
in the first step) into one that solves a problem that is assumed to be hard. Then, if the chosen
problem is truly hard, security of the cryptosystem is implied.

In fact, a proof of security is a conditional result: one can only derive the conclusion that
security holds in an idealized world where the underlying hardness assumption is true and the
scheme in place can be (mis)used by attackers only to the extent described by the model. Thus,
for sound security results it is extremely important to rely on well-studied assumptions and to
make the security model as close as possible to the reality. The focus of this thesis will be on
modeling security.

Secure Channels in Cryptography

The fundamental applications of cryptography—critical for nearly every operation in our in-
terconnected world—remains secure communication. Suppose that two parties, Alice and Bob,
wish to communicate in a secure way over the Internet. In an ideal world with no adversaries
they would simply do so by exchanging messages in the clear over a reliable network, for in-
stance over TCP/IP. In the real world, however, adversaries exist who may eavesdrop on the
communication or manipulate the transmitted data. To protect against this threat, Alice and
Bob can strengthen their network connection by adding a layer of protection: they may use
a cryptographic channel (a.k.a. secure channel). Widely-deployed examples of cryptographic
channels include the Transport Layer Security (TLS) [DR08] and the Secure Shell (SSH) [YL06]
protocols, the encryption layer of mobile telecommunication systems, and protocols connecting
bank computers with ATMs, to name a few.

Informally, a secure channel is similar to a symmetric encryption scheme: assuming that
Alice and Bob share some key material, Alice can encapsulate a message into a ciphertext,
send the latter to Bob over the (unprotected) network, and be sure that only Bob will be able
to decrypt the ciphertext; this property is called confidentiality. Moreover, Bob can be sure

1

that if he receives a ciphertext that was not genuinely produced by Alice then the channel
will explicitly notify him that an adversarial manipulation took place; this property is called
integrity. The cryptographic tool that simultaneously offers both confidentiality and integrity
(in the symmetric-key setting) is authenticated encryption.

Authenticated encryption (AE) has emerged as being a natural cryptographic tool for build-
ing secure channels; however, it does not constitute a secure channel on its own. For instance,
in most practical situations a secure channel should also guarantee detection of (and possibly
recovery from) out-of-order delivery and replays of ciphertexts. As another difference, some
secure channel designs have additional features that can be used to provide protection against
traffic analysis. Furthermore, a secure channel should deal with error handling; it may ac-
cept messages of arbitrary length and, for technical reasons, fragment these before encryption,
and may reassemble these fragments again after decryption; alternatively, it may present to
applications a maximum message size that is well-matched to the underlying network.

A rigorous study of channel security was initiated by Bellare, Kohno, and Namprem-
pre (BKN) [BKN02] to assess the security of the SSH Binary Packet Protocol. These authors
proposed as an abstraction of a secure channel the notion of stateful authenticated encryption,
which extends the standard notions of confidentiality and integrity to also incorporate protection
against replays and reorderings. Later work by the same and other authors also used the state-
ful AE primitive to analyze real-world channel protocols. For instance, [JKSS12] and [KPW13]
model the TLS channel protocol as a stateful AE scheme that additionally accepts associated
data (AEAD) [Rog02] and specifically aims at hiding the length of encrypted plaintexts.

The analysis of Bellare et al. [BKN02] provably shows that the SSH Binary Packet Protocol
achieves security in the stateful AE sense. However, a few years after the analysis was published,
Albrecht et al. [APW09] developed a plaintext-recovery attack on SSH, questioning the confi-
dentiality of SSH. There is no flaw in the proof of Bellare et al. [BKN02], though. The attack
of [APW09] specifically exploits the adversary’s ability to deliver arbitrary sequences of SSH
packet fragments to the receiver and observe the receiver’s behavior upon processing each of the
fragments. In contrast, the BKN model assumes that the adversary can only see the reaction
of the decryption algorithm on input atomic, rather than fragmented, ciphertexts. With other
words, the attack presented by Albrecht et al. cannot be expressed within the BKN model. A
similar issue concerns the CBC-mode based construction of MAC-then-Encrypt (MtE) of TLS,
which enjoys a proof of security by Krawczyk [Kra01] while its OpenSSL implementation was
later shown to be vulnerable to a plaintext-recovery attack by Canvel et al. [CHVV03]. Here
the attack was possible because the targeted implementation leaks on decrypting invalid ci-
phertexts more than the mere fact that decryption failed, while the security model of [Kra01],
instead, assumes that the decryption algorithm always outputs the same error symbol, thus
only revealing that decryption failed.

The above attacks highlight the importance (and the difficulty) of designing security mod-
els that adequately match how protocols can be attacked in reality. In order to model the
plaintext recovery attack given by Albrecht et al. [APW09] against the SSH channel protocol,
Boldyreva, Degabriele, Paterson, and Stam (BDPS) [BDPS12] proposed an extension of sym-
metric encryption that allows the decryption algorithm to accept fragmented ciphertexts, and
developed corresponding confidentiality notions. The same authors in [BDPS14] revised syntax
and security of (stateless and stateful) authenticated encryption by letting the decryption al-
gorithm output distinguishable decryption errors, again to make attacks like the one by Canvel
et al. [CHVV03] visible.

2

Stream-Based Channels

Characteristic of all the above-mentioned prior works on channels is that they treat secure
channels as providing an atomic interface for messages, meaning that the channel is designed
only for sending sequences of messages that are considered units. However, this only captures
a fraction of secure channel designs that are actually used in practice. For example, even
though the TLS specification does not include a formal API definition, it is clear that the
design intention is to provide a secure channel for data streams. A stream-oriented treatment
of channels is neither possible in the traditional AE models nor in the model proposed by
Boldyreva et al. [BDPS12] that allows for ciphertext fragmentation.

To capture this important aspect, in Chapter 3 we develop a new channel primitive that
we call a stream-based channel. We provide functional specifications and corresponding con-
fidentiality and integrity notions for this channel type. Differently from traditional (stateful)
encryption primitives, a stream-based channel is expected to provide secure transmission of
a stream of data rather than a sequence of atomic messages. These syntactical differences
are reflected in the security notions, that become considerably more complex than the secu-
rity notions for stateful AE. While our methodology and modeling closely resembles that of
Boldyreva et al. [BDPS12], and indeed builds upon this work, a crucial difference lies in our
treatment of the sending algorithm, which is atomic in [BDPS12] while it allows for fragmen-
tation in the case of stream-based channels and can arbitrarily buffer and fragment the input
message when preparing ciphertexts for sending. As a consequence, while for symmetric en-
cryption supporting fragmentation there is a one-to-one correspondence between sent messages
and sent ciphertexts, in stream-based channels such a correspondence is lost. This requires
careful reconsideration of the confidentiality definitions of [BDPS12]. In addition, we develop
suitable integrity notions for the streaming setting, whereas [BDPS12] only defines confiden-
tiality. Bringing integrity into the picture for stream-based channels also enables us to prove a
composition result analogous to the classical result of [BN00] for symmetric encryption, which
states that confidentiality against passive adversaries in combination with integrity of cipher-
texts guarantees confidentiality against active adversaries. To demonstrate the feasibility of our
notions we provide a construction of a stream-based channel that uses AEAD as a component
and achieves the strongest confidentiality and integrity notions that we define. This construc-
tion closely mimics the use of AEAD in the TLS Record Protocol; our results thus serves as a
validation of the latter.

Bidirectional and Broadcast Channels

All the above security models for channel protocols assume that a sender transmits data to a
receiver, providing an abstraction of a unidirectional channel. However, secure channels are
typically used for bidirectional interaction instead. Concretely, bidirectional channels are often
realized by running two unidirectional channels in opposite directions. For instance, in TLS the
handshake protocol establishes a total of four keys: two are used to protect the communication
in one direction, the other two for protecting the other direction. Thus, security claims about
TLS and SSH like those in [BKN02, PRS11, JKSS12, KPW13] (which rely on stateful AE
abstractions), in fact, establish results for the unidirectional components of the TLS and SSH
channel protocols. A natural question arises: if TLS and SSH are secure in a unidirectional
sense, are they also secure bidirectional channels? One may naively argue that they are, as long
as their components provide unidirectional security. However, cryptographic research shows
that, in general, using secure building blocks does not necessarily imply that the resulting
composed protocol is secure, too. Even worse, what security means in the bidirectional case

3

is not even defined (yet). Thus, whether TLS and SSH are secure as bidirectional channels
remains, so far, an open issue.

In this thesis we develop appropriate security notions for bidirectional channels. We further
lift them to the scenario of multiple parties that communicate in a broadcast fashion, i.e., such
that each message is transmitted to all communicating parties. In both cases the interactiveness
introduces new challenges that have no counterpart in the much simpler unidirectional setting.
As a basis of our considerations, in Chapter 4 we formalize different models of network commu-
nication, in particular those of FIFO and causal broadcast (bidirectional communication is a
special case of broadcast). FIFO broadcast is a natural extension of (two-party) unidirectional
communication: it guarantees that the messages sent by each participant are delivered reliably
to all other participants, i.e., following the first-in-first-out (FIFO) principle. Causal broadcast
provides stronger guarantees than FIFO delivery: a participant should receive a message only
if he received all messages that were globally sent before (where the term ‘globally’ emphasizes
that we do not restrict the attention to any specific sender but consider a global ordering of
sending and receiving events). This property is particularly suitable for applications in which
more than two participants wish to communicate simultaneously, e.g., in a multi-party chat.

In Chapters 5 and 6 we introduce notions of cryptographic channels that run on top of these
networks, FIFO and causal channels, and study their security. In lifting the common definitions
of confidentiality and integrity to the multi-user and multi-directed setting, we incorporate the
ordering properties into the security definitions. For instance, in causal channels, if an adversary
does not modify any ciphertext but instead violates the causal order of deliveries, also this
should be considered an active attack. According to our notions, causal channels come with an
extended functionality: we require that, upon each invocation, sending and receiving algorithms
additionally output a history of the past communication which informs the user about the causal
relationships among all the messages that he has seen so far. We formalize a corresponding
integrity notion that prevents adversaries from falsifying this history output without detection.
We formally assess the relations among the new security notions and, beyond others, confirm
the expectation that also in the multi-directed setting confidentiality against passive adversaries
together with strong integrity implies confidentiality against active adversaries (this is analogous
to the result first proven in [BN00] for authenticated encryption), both in the FIFO and in the
causal setting. As a feasibility result we show how to build generically a FIFO channel from
AEAD, and we then construct a causal channel from a FIFO channel; the second step turns out
to be considerably more involved. Our formalism for broadcast channels allows us to investigate
the security of the traditional design paradigm that, as for TLS and SSH, builds a bidirectional
channels from two unidirectional ones.

Forward-Secure Sequential Key Generators

Cryptographic designs are usually built around the assumption that honest parties hold some
secret key that the adversary does not know, and any given guarantee of security vanishes
instantaneously when this assumption is not fulfilled any more, i.e., an adversary manages to
obtain a copy of the key material. This is not the case if the system is designed to offer forward
security. In a nutshell, forward security means that the use of a cryptosystem is not affected by
the potential exposure of the cryptosystem’s key at some point in the future. For example, a
symmetric encryption scheme is forward-secure if ciphertexts produced before the adversary gets
the encryption key remain confidential. Forward security is considered a fundamental property
for authenticated key exchange (AKE) protocols: here, it requires that session keys derived prior
to corruption of participants are still safe to use. Perhaps surprisingly, cryptographic models
for secure channels (e.g., [BKN02] and its follow-ups) do not incorporate forward security.

4

Nevertheless, the importance of forward-secure communication seems to be highly recognized
by practitioners. For instance, the TLS 1.3 specification [Res16] hints to forward security as
one of the targeted properties of the record protocol, and messaging applications like the Off-
the-Record (OTR) [OTR16] and the more recent TexSecure [Tex14] protocols explicitly list it
as one of their goals.

It is considered folklore that a forward-secure symmetric-key primitive can be obtained from
the corresponding ‘regular’ primitive by frequently replacing the secret key with a fresh one.
Bellare and Yee (BY) [BY03] show how to bootstrap from a regular pseudorandom generator
(PRG) a so-called stateful generator, a deterministic algorithm that takes an initial random
seed and expands it into a sequence of random-looking keys. They also build forward-secure
symmetric encryption and message authentication codes (MACs) from the latter primitive.

In Chapter 7 we define sequential key generators (SKGs) as an alternative to stateful PRGs.
We propose in particular a new security model for SKGs that, compared to the model of [BY03],
is more appropriate for concrete applications where multiple participants run the SKG on the
same initial seed (and thus generate the same key sequence). Note that this level of synchrony
is required when remote parties use such generators, as symmetric primitives need keys to
match on both sides. Our model lets the adversary see the generated keys in an adaptive
fashion, independently of the order in which they are generated, while BY’s model limits the
adversary to obtain keys incrementally, thus implicitly modeling that participants are always
perfectly synchronized with their key updates. Surprisingly, the higher degree of freedom that
the attacker has does not result in a strictly stronger notion: as we prove in this thesis, our
model is in fact equivalent to that of [BY03].

In Chapter 8 we define an enhanced version of SKGs, called seekable sequential key gener-
ators (SSKGs), that additionally provide random access to the sequence of generated keys. We
propose two generic constructions of SSKGs and prove their security. The first construction is
based on a novel primitive, a shortcut one-way permutation (ScP), and enjoys forward security
in the random oracle model down to the one-wayness of the ScP. We also propose two concrete
instantiations of ScPs, based on the hardness of RSA and of factoring. The second construction
only relies on a regular PRG as building block, and is considerably more efficient than the first.

The property of seekability is particularly advantageous in the setting of secured local log-
ging, where an SKG is used in combination with a MAC scheme to authenticate log files.
Protecting the authenticity of log files, indeed, was the main motivation for the need of seek-
ability, as described in [MP13, MP14]. In the context of computer forensics, in a local logging
scenario, log entries are stored on each of the machines to be monitored, together with an au-
thentication tag for each entry to ensure the integrity of the latter. To prevent an attacker that
manages to break into the system from manipulating log entries created prior to the intrusion,
the keys used to produce the authentication tags are frequently updated using an SKG. The
property of seekability allows a system administrator to verify the authenticity of a specific
subset of entries without the need to recover all authentication keys iteratively.

Further Related Work

Authenticated Encryption and Secure Channels. An approach towards cryptographic
channels from the perspective of composability with other primitives is pursued in [CK01,
CK02, PW01, MRT12]. For instance, Canetti and Krawczyk [CK02] consider channels in the
UC framework. Prior work [CK01] by the same authors has a slightly more restricted model
but receives a closer look by Namprempre [Nam02] who characterizes (game-based) notions
that suffice to achieve a UC secure channel as per [CK01]. Pfitzmann and Waidner [PW01]
consider aspects of composability in their paper on concurrent secure message transmission

5

(for stateless security notions), and Maurer et al. [MRT12] model cryptographic channels from
the point of view of Constructive Cryptography. With the analysis of TLS in mind, Jager et
al. [JKSS12] developed the ACCE security notion, which combined the security of key exchange
and the subsequent use of the resulting session keys in a secure channel. Their work builds
on that of Paterson et al. [PRS11], who introduced extensions of the standard AEAD notions
to allow for length hiding; the ACCE approach was subsequently adopted and extended by
Krawczyk et al. [KPW13] to analyze a wider set of TLS Handshake Protocol options. Again in
the constructive cryptography setting, Badertscher et al. [BMM+15] propose an abstraction of
a secure channel that should represent a high-level counterpart of an AEAD scheme, showing
that (a modified version of) the TLS 1.3 Record Protocol fulfills the corresponding security goal.

Causality of events in distributed systems. Starting with Lamport’s groundbreaking
work on (distributed) logical clocks [Lam78], the role of causality in communication systems
has been extensively investigated in the distributed computing community. For a survey on
logical time, its connections to causality, and related notions we suggest the work by Schwarz
and Mattern [SM94]. Cryptographic challenges related to causality have been recognized and
studied extensively. Although targeting more general problems arising in the context of secure
replication of services, Reiter and Birman [RB94] consider attacks on causality that specifically
exploit causality violations among service requests, and propose countermeasures. In the same
vein, Reiter and Gong [RG95] highlight the importance of detecting causal relations between
messages exchanged by distributed processes; they introduce the notions of causality denial,
i.e., making a server believe that a pair of causally related messages is not in such a relation,
and causality forgery, i.e., convincing a server of a causality relation which does not exist. More
recently Cachin, Kursawe, Petzold and Shoup [CKPS01] combined different techniques from
modern cryptography and distributed computing to improve secure solutions of service replica-
tion. Among several variants of reliable broadcast primitives they propose a causal broadcast
protocol which tolerates a Byzantine adversary and offers input causality—a property intro-
duced in [RB94] ensuring that honest servers deliver client-requests in the right order and that
exchanged messages remain secret until delivery.

We observe that while many of the works discussed above employ cryptographic techniques
for solving problems from distributed computing, none of them addresses what we are interested
in: the secure exchange of messages in multi-directional channels. We finally remark that
functionality and security issues related to our concepts of causal channels and history integrity
were recognized, but not formalized, by Goldberg, Ustaoglu, Van Gundy and Chen [GUVC09]
in the context of designing multiparty chat protocols.

6

Chapter 2
Notation and Definitions

In this chapter we introduce the basic notation used in this thesis as well as background concepts
and definitions, such as symmetric encryption, that may be helpful to understand the content
of the next chapters.

2.1 General Notation

If X is a set we denote its cardinality by |X|. Let Σ be a finite set. We denote by Σ∗ the
set of strings containing symbols in Σ. In particular, {0, 1}∗ denotes the set of binary strings.
Given a string s ∈ Σ∗ we denote by |s| its length, i.e., the number of symbols it contains. We
denote the empty string by ε. Given two strings s, t ∈ Σ∗ we denote by s‖ t their concatenation.
If s ∈ {0, 1}∗ we denote by s the bit-inverse of s. For n ∈ N and a vector v = (v1, . . . , vn) we
say that n is the length of v and denote it by |v|. If n = 0 we say that the vector is empty,
and indicate this by writing v = (). For all 0 ≤ i ≤ j ≤ |v| we write v[i, . . . , j] = (vi, . . . , vj).
Slightly overloading notation, we denote by v ‖w the vector obtained by appending to v the
components of w, i.e., (v1, . . . , vn, w1, . . . , wm). For n,m ∈ N, n ≤ m, we denote by [n ..m] the
set of integers {i : n ≤ i ≤ m}, and by Jn ..mK the set of pairs {(i, j) : i, j ∈ [n ..m], i 6= j}.
For N ∈ N we denote by Z∗N the set of invertible elements of ZN , by ϕ(N) its cardinality, and
by QRN the set of quadratic residues modulo N , i.e., QRN = {x2 : x ∈ Z∗N}. We write x← y to
assign value y to variable x. This is different from x = y which indicates that variables x and y
have the same value. We use the symbol := to define functions; for instance, f(x) := x for all
x ∈ X indicates the identity function on domain X. If X is a finite set we write x ←$ X for
sampling x uniformly at random from X. We write y ←$ A(x) to indicate that a randomized
algorithm A is run on input x and internal coin tosses and outputs y. If the algorithm is
deterministic we emphasize this by writing y ← A(x). Within an algorithm specification we use
the instruction ‘Return y’ to instruct the algorithm to halt with output y; we may also write
simply ‘Return’ to indicate that no output will be produced. All logarithms are assumed to be
to base 2 unless stated otherwise.

Defining security. We define security in the asymptotic setting and view runtime of algo-
rithms and probabilities as functions of a security parameter λ ∈ N (which implicitly describes
recommended key-lengths) that is conventionally passed to algorithms in unary form. We say
that an algorithm is efficient if it runs in (probabilistic) polynomial time, i.e., if its runtime is
in O(λc) for some c ∈ N. We say that a function f : N→ R is negligible if it is bounded by the
inverse of any polynomial, i.e., if |f(λ)| ∈ λ−ω(1). At a high level, we say that a cryptosystem
is secure if its security can be efficiently violated only with negligible probability.

7

In this thesis we define security following the game-based tradition. A security game is a
probabilistic experiment in which an adversary A plays against a challenger. The game shall
encode what it means for a given cryptographic scheme to be secure. To this end, the challenger
runs A as one of its subroutines and executes specific instructions that let A interact with the
cryptographic scheme under consideration; eventually it outputs a bit b ∈ {0, 1} as outcome of
the game, which determines whether the adversary won the game or not. If the adversary wins
the game, this means that it successfully violated the security of the scheme. Suppose a security
experiment consists of instructions I1, I2, . . . , In (in this order); we write Pr[b = 1 : I1; I2; . . . ; In]
for the probability that an execution of this experiment terminates with outcome 1, where the
probability is taken over the random choices of the experiment and the adversary’s randomness;
for a more compact notation we may also write Pr[E = 1] where E is a label for the above
experiment. Within a specific security experiment we use the instruction ‘Terminate with b’
to indicate that the challenger terminates with outcome b. We may also use the shortcut ‘Re-
quire C’ for the instruction that forces termination of the experiment with output 0 in case the
condition C is not met, i.e., ‘If ¬C: Terminate with 0’. When a security experiment terminates
prematurely because the adversary triggers some particular event, we may write that the ex-
periment ‘penalizes’ the adversary (as we will see, premature termination always implies that
the adversary loses).

2.2 Cryptographic Assumptions and Primitives

2.2.1 Number-Theoretic Assumptions

The SQRT Assumption. Let N be a Blum integer, i.e., N = pq for primes p, q such that
p ≡ q ≡ 3 mod 4. It is well-known [MvV97] that the squaring operation x 7→ x2 mod N
is a permutation on QRN . Moreover, computing square roots in QRN , i.e., inverting this
permutation, is as hard as factoring N . This intuition is the basis of the following hardness
assumption.

Definition 1 (SQRT assumption). For any probabilistic algorithm SQRTGen that takes as input
security parameter 1λ and outputs tuples (N, p, q, ϕ) such that N = pq, factors p and q are prime
and satisfy p ≡ q ≡ 3 mod 4, and ϕ = ϕ(N), the SQRT problem is said to be hard if for all
efficient adversaries A the success probability

Pr
[
x2 = y mod N : (N, p, q, ϕ)←$ SQRTGen(1λ); y ←$ QRN ; x←$ A(1λ, N, y)

]
is negligible in λ, where the probability is taken over the random choices of the experiment
(including A’s randomness). The SQRT assumption states that there exists an efficient proba-
bilistic algorithm SQRTGen for which the SQRT problem is hard.

The RSA Assumption. LetN = pq for primes p, q, let ϕ = ϕ(N), and let e > 0 be an integer
such that gcd(e, ϕ) = 1. The exponentiation to the e-th power modulo N , i.e., x 7→ xe mod N ,
is a permutation on Z∗N [MvV97], and it is widely believed that inverting this permutation is
hard.

Definition 2 (RSA assumption). For any probabilistic algorithm RSAGen that takes as input
security parameter 1λ and outputs tuples (N,ϕ, e) such that ϕ = ϕ(N) and gcd(e, ϕ) = 1, the
RSA problem is said to be hard if for all efficient adversaries A the success probability

Pr
[
xe = y mod N : (N,ϕ, e)←$ RSAGen(1λ); y ←$ Z∗N ; x←$ A(1λ, N, e, y)

]
8

is negligible in λ, where the probability is taken over the random choices of the experiment (in-
cluding A’s randomness). The RSA assumption states that there exists an efficient probabilistic
algorithm RSAGen for which the RSA problem is hard.

2.2.2 One-Way Functions and Permutations

Intuitively, a one-way function (OWF) is easy to compute but hard to invert on average. More
formally, f is one way if, given x chosen uniformly at random from the function’s domain,
computing f(x) can be done efficiently while, given f(x), finding a preimage cannot, but with
negligible probability. We formalize this through an ‘inverting’ game where an adversary A has
to find preimages of the function, as described below.

Definition 3 (One-Way Function). An efficiently computable function f : {0, 1}∗ → {0, 1}∗ is
one way if the following advantage function is negligible for all efficient A:

Advowf
f,A (λ) := Pr

[
A(1λ, f(x)) ∈ f−1(f(x)) : x←$ {0, 1}λ

]
,

where the probability is taken over the choice of x as well as over A’s randomness.

A one-way permutation (OWP) is a one-way function π : {0, 1}∗ → {0, 1}∗ that is length-
preserving, i.e., |π(x)| = |x| for all x ∈ {0, 1}∗, and one-to-one. For OWPs it follows directly
from the definition that every y ∈ {0, 1}∗ uniquely determines its preimage x = π−1(y).

Concretely, one-way functions and permutations are built from (assumed) hard problems,
e.g., the RSA problem (see Section 2.2). In fact, from RSA we can construct a family of
one-way permutations. At a high level, a family of OWP consists of a tuple of efficient algo-
rithms (Gen, Samp,Eval) as follows. The parameter generation algorithm creates some public
parameters P ←$ Gen(1λ); each OWP defines a set DP and a permutation πP : DP → DP . The
sampling algorithm Samp takes as input P and selects uniformly at random an element x ∈ DP
and outputs such element. Finally, the evaluation algorithm Eval effectively implements the
permutation πP : on input parameters P and an element x ∈ DP , this deterministic algorithm
returns πP(x). Security of the family requires each πP to be one way. Note that a OWP fam-
ily can be readily derived from the RSA assumption by setting P = (N, e), DP = Z∗N , and
πP(x) := xe mod N . A similar observation holds for the SQRT assumption.

2.2.3 Pseudorandom Generators

A pseudorandom generator (PRG) is an efficiently computable function that stretches a truly
random string into a longer, ‘random-looking’ string. In other words, a PRG deterministically
expands a small amount of true randomness into a larger amount of pseudorandomness. For-
mally, saying that a string ‘looks random’ means that it is computationally indistinguishable
from a uniformly chosen string of the same length.

Definition 4 (Pseudorandom Generator). Let ` : N→ N be a polynomial and let G : {0, 1}λ →
{0, 1}`(λ) be an efficiently computable function. We say that G is a pseudorandom generator
if for all λ ∈ N we have `(λ) > λ and for all efficient adversaries A the following advantage
function is negligible:

Advprg
G,A(λ) =

∣∣∣Pr
[
A(1λ, G(s)) = 1 : s←$ {0, 1}λ

]
− Pr

[
A(1λ, y) = 1 : y ←$ {0, 1}`(λ)

]∣∣∣ ,
where the probabilities are taken over the random choices of s, y, and over A’s randomness. The
string s is usually called seed and ` is called the expansion of the pseudorandom generator.

9

2.2.4 Random Oracles

It is often difficult to design cryptographic schemes that are efficient enough for deployment and
also provably secure under well-studied assumptions. In these cases, when a proof of security
seems to be out of reach, it may be helpful to consider an idealized model in which a security
reduction can be found. One of such idealizations is the random oracle model, which assumes
the existence of a truly random function H : {0, 1}∗ → {0, 1}∗ that can be publicly evaluated by
querying an oracle. That is, everybody (honest parties as well as adversaries) can pose queries
of the form x ∈ {0, 1}∗ to the random oracle and will instantaneously obtain as response the
corresponding value H(x). Using a random oracle H eases the security proof for two reasons:
as long as the input x is not new, the output H(x) can be assumed to be random; moreover,
H can be efficiently simulated by a reduction via lazy sampling, i.e., by picking a fresh random
value y ∈ {0, 1}n for any new query x ∈ {0, 1}n and setting H(x) ← y, or by returning
the previously chosen image y = H(x) in case x was already queried to the oracle. Clearly,
in practice there exists no such a function like a random oracle. However, many researchers
believe that having a proof in the random oracle model is better than nothing. The so-called
random oracle methodology, pioneered by Bellare and Rogaway [BR93], consists in proving the
security of a cryptographic scheme in the random oracle model and then ‘instantiating’ the
random oracle with a concrete cryptographic hash function.

2.3 Cryptographic Models for Secure Channels

2.3.1 Symmetric Encryption

Consider two parties that share some secret key and wish to communicate. A symmetric encryp-
tion scheme (SE) allows the sender to use the shared secret to turn messages into ciphertexts
and the receiver to recover from those ciphertexts the original messages. Moreover, it is hard
for anyone who does not know the key to infer from ciphertexts the underlying messages, or
any information about them.

Formally, a symmetric encryption scheme is specified by a key space K , a message space M ⊆
{0, 1}∗, a ciphertext space C , and algorithms KeyGen, Enc, and Dec as follows. The key gen-
eration algorithm KeyGen receives as input a security parameter and generates a symmetric
key K ∈ K ; the encryption algorithm Enc takes a key K and a message m ∈ M as input,
and outputs a ciphertext c ∈ C ; the decryption algorithm Dec takes as input a key K and a
ciphertext c ∈ C , and outputs a message m ∈ M or, optionally, a distinguished symbol ⊥ /∈ M
to indicate that an error occurred. If Dec returns a message m ∈ M we say that the algorithm
accepts, otherwise we say that it rejects.

The encryption and decryption algorithms may additionally use random coins and process
auxiliary input such as a nonce (‘number used once’) or an initialization vector (IV). Either
of the above choices leads to different SE variants: randomized, nonce-based, and IV-based
symmetric encryption. Without any further mention, in this thesis we assume that all encryption
algorithms are randomized and the decryption algorithms are deterministic. Correspondingly,
for K ←$ KeyGen(1λ), m ∈ M , m′ ∈ M ∪ {⊥}, and c, c′ ∈ C , we write c ←$ EncK(m) and
m′ ← DecK(c′). We also require all schemes to fulfill the following correctness condition: for
every key K ←$ KeyGen(1λ), every message m ∈ M and ciphertext c ←$ EncK(m) it holds
DecK(c) = m.

The security goal of symmetric encryption, called confidentiality, is modeled in the game-
based tradition via indistinguishability experiments. Such games consider a powerful adversary
that can obtain encryptions of messages of its choosing by querying an encryption oracle, in
which case we talk of a chosen-plaintext attack, or in addition can obtain decryptions of ci-

10

phertexts of its choosing by interacting with a decryption oracle, in a chosen-ciphertext attack.
The encryption oracle is a so-called ‘left-or-right’ oracle, which can be queried with pairs of
messages (m0,m1), and answers each of these queries by always returning either an encryption
of the ‘left’ message m0 or an encryption of the ‘right’ message m1, depending on a secret bit b;
the goal of the adversary is to guess b. Later in this section we will come back to SE security
and provide a detailed description of its security games.

2.3.2 Authenticated Encryption (with Associated Data)

While being often considered the most fundamental security goal, confidentiality alone is not all
what is needed for secure communication. In many practical scenarios, beyond the assurance
that only the intended recipient may read encrypted messages, it is also essential for the recipi-
ent to know that a given message really originated from the alleged sender and that it was not
adversarially modified. With other words, integrity of messages is a natural target for achieving
secure communication. A symmetric encryption scheme that offers both confidentiality and
integrity is called an authenticated encryption (AE) scheme. The integrity property essentially
says that Dec should only return messages that were encrypted by the sender. This property,
called integrity of plaintexts, is modeled via a security experiment that lets A obtain encryptions
of messages of its choice as well as decryptions of ciphertexts of its choice, again using corre-
sponding oracles; the goal of the adversary is to make the decryption oracle output a message
that has not been previously queried to the encryption oracle. A stronger flavor of integrity,
called integrity of ciphertexts, declares the adversary successful if it produces a ciphertext that
is accepted and that was not output by the encryption oracle.

As emerged from real-world applications, sometimes it is necessary to transmit along with
a ciphertext some additional information that needs not be kept confidential but should be
protected against modification (e.g., routing information should be authentic, but also needs
to be visible to all intermediate nodes), or to bind the ciphertext to a given context. To
this end, an AE scheme with associated data (AEAD) may be employed. Syntactically, an
AEAD scheme is similar to a symmetric encryption scheme, the only difference being that Enc
and Dec take an additional input ad from some associated data space AD. Originally AEAD
was introduced in [Rog02] as a variant of nonce-based encryption, however, its syntax can be
flexibly extended to randomized and stateful algorithms. In accordance with the notions of
symmetric encryption previously introduced, in this thesis we consider randomized and stateful
AEAD, and correspondingly write c ←$ EncK(ad,m) and m ← DecK(ad, c). No matter how
it is transmitted, the associated data is supposed to match on both sides. Correctness for
AEAD demands that for every key K ←$ KeyGen(1λ), every message m ∈ M , every associated
data ad ∈ AD, and every ciphertext c←$ EncK(ad,m) we have that DecK(ad, c) = m. AEAD
security is similar in spirit to AE security, and is thus a combination of confidentiality and
integrity. The corresponding security games are a refinement of the indistinguishability and
integrity experiments mentioned above that let A control the associated data used in encryption
and decryption queries.

2.3.3 Stateful Symmetric Encryption

Authenticated Encryption (with Associated Data) on its own does not constitute a secure
channel. Beyond offering confidentiality and integrity, a secure channel should also ensure that
messages are not replayed or reordered. Bellare, Kohno, and Namprempre [BKN02] introduced
the notion of stateful encryption to explicitly target these goals.

A stateful encryption scheme is a symmetric encryption scheme that additionally protects
against replay and reordering attacks. This is usually done by letting the sender and the receiver

11

keep some state information, e.g., a counter, that is synchronized on both sides at the moment
of initialization, and updated upon encryption and decryption invocations. Formally, let us
define a stateful encryption scheme from an SE scheme by introducing a state space S and
replacing algorithm KeyGen with an initialization algorithm Init that generates not only the key
but also encryption and decryption states. Further, let Enc and Dec take the encryption state
(or sending state), respectively, the decryption state (or receiving state), as additional inputs,
and output updated states. We write (K, stS , stR) ←$ Init(1λ), (st ′S , c) ←$ EncK(stS ,m) and
(st ′R,m) ← DecK(stR, c), respectively. Correctness for stateful encryption requires that if Enc
and Dec have synchronized states (e.g., after initialization), Enc is invoked sequentially on input
some messages m1,m2, . . . , and the resulting ciphertexts c1, c2, . . . are then processed by Dec in
the same order they were produced, then the original message sequence m1,m2, . . . is recovered.
Note that the correctness condition for stateful SE is milder than that for SE (which promises
message recovery regardless of the order in which decryptions are performed).

The syntax of stateful SE can be augmented to support associated data in the natural way.
We stress that when referring to a stateful SE scheme we mean that both Enc and Dec keep
state.1 If not clear from the context, we highlight that a symmetric encryption scheme is not
stateful (i.e., it does not fulfill the syntax just defined) by naming it a stateless SE scheme. We
will see next that security notions for stateful encryption are similar to, but more complex than,
the corresponding notions for stateless encryption.

2.3.4 Security Notions for Symmetric and Authenticated Encryption

In this section we formalize the security of SE, AE, AEAD and their stateful variants. For
all primitives we define confidentiality via indistinguishability games, namely indistinguisha-
bility under chosen-plaintext attacks (IND-CPA) for modeling passive adversaries, and under
chosen-ciphertext attacks (IND-CCA) for modeling active adversaries. We also define two fla-
vors of integrity, called plaintext integrity (INT-PTXT) and ciphertext integrity (INT-CTXT),
respectively. All notions are in the style of [BDJR97].

Stateless notions. In the IND-CPA game the adversary has access to a left-or-right encryp-
tion oracle OLoR that it can query multiple times. A left-or-right query consists of a pair of
messages of the same length, m0 and m1, and (if applicable) associated data ad; the oracle an-
swers by returning an encryption of mb (obtained using ad as associated data), where b ∈ {0, 1}
is not known to A.

The IND-CCA game also provides a decryption oracle O∗Dec that the adversary can query
on any arbitrary pair (ad, c) of associated data and ciphertext, and obtain the corresponding
decryption, with one exception: in case any prior left-or-right query (m0,m1) with associated
data ad produced ciphertext c, the oracle returns as a response the special symbol ‘�’ instead,
meaning that the output of the decryption algorithm has been artificially suppressed. This is to
avoid trivial attacks: in the above setting decryption by correctness would lead to DecK(ad, c) =
mb, which tells A the value of b right away.

The integrity experiments let the adversary interact with the encryption and decryption rou-
tines through oracles OEnc and ODec which, upon request, return encryptions c←$ EncK(ad,m)
and decryptions m← DecK(ad, c) for arbitrary chosen (ad,m) and (ad, c). In the INT-PTXT
game we declare the adversary successful if it submits to ODec a pair (ad∗, c∗) that decrypts to
a valid message m∗ (i.e., m∗ 6= ⊥) such that no query (ad∗,m∗) was previously posed to OEnc.

1Some schemes have a stateful encryption algorithm but a stateless decryption algorithm: according to our
convention, these fall in the class of ‘standard’ (a.k.a. stateless) SE schemes.

12

Exptind-cca,b
Π,A (1λ):

01 K ←$ KeyGen(1λ)
02 Q← ∅
03 b′ ←$ AOLoR,O∗Dec(1λ)
04 Terminate with b′

OLoR(ad,m0,m1):
05 Require |m0| = |m1|
06 c←$ EncK(ad,mb)
07 Q← Q ∪ {(ad, c)}
08 Return c to A

O∗Dec(ad, c):
09 m←$ DecK(ad, c)
10 If (ad, c) /∈ Q:
11 Return m to A
12 Else:
13 Return � to A

Exptint-ctxt
Π,A (1λ):

14 K ←$ KeyGen(1λ)
15 Q← ∅
16 AOEnc,ODec(1λ)
17 Terminate with 0

OEnc(ad,m):
18 c←$ EncK(ad,m)
19 Q← Q ∪ {(ad, c)}
20 Return c to A

ODec(ad, c):
21 m← DecK(ad, c)
22 If m 6= ⊥ ∧ (ad, c) /∈ Q :
23 Terminate with 1
24 Return m to A

Figure 2.1: AEAD security experiments for confidentiality and integrity. The set Q is maintained
by the experiment for bookkeeping pairs (ad, c) of associated data and ciphertext generated within each
encryption call. We assume ad ∈ AD, m0,m1,m ∈ M , and c ∈ C for all such values provided by
the adversary. The IND-CPA experiment can be readily obtained from the IND-CCA game by omitting
the decryption oracle O∗Dec. Similarly, the INT-PTXT experiment can be derived from the INT-CTXT
experiment by replacing the boxed text of lines 19 and 22 with instructions ‘Q ← Q ∪ {(ad,m)}’ and
‘(ad,m) /∈ Q’. Notice that by ignoring the associated data ad we obtain confidentiality and integrity
games for authenticated encryption.

Similarly, the adversary wins the INT-CTXT game if it submits a valid pair (ad∗, c∗) for which
no previous encryption query (ad∗,m∗) resulted in ciphertext c∗.

In Figure 2.1 we give full details of the indistinguishability experiments (upper row) and
integrity experiments (lower row). Given the experiments, we formalize security in Definition 5.

Stateful notions. Security for stateful encryption may be defined starting from stateless
SE security by modifying the security experiments such that they also capture protection
against replay and reordering attacks. Beyond the obvious syntactical modification that re-
places the KeyGen with Init and turns Enc and Dec into stateful algorithms, the IND-CPA game
remains essentially unchanged. Indeed, replay and reordering attacks concern active adversaries,
and hence cannot be described without a decryption oracle. All the other security experiments,
IND-CCA, INT-PTXT, and INT-CTXT, need a major adaptation to the stateful setting.

We start with describing the IND-CCA experiment. Recall that in the stateless setting
(Figure 2.1) the adversary can query the decryption oracle on any pair (ad, c) of associated
data and ciphertext but, in case the ciphertext c was previously returned by the left-or-right
oracle in response to a query with associated data ad, the oracle O∗Dec gives the adversary the
suppression symbol ‘�’ to prevent trivial wins. In the stateful setting this suppression mechanism
needs to be adapted to the functionality of a stateful SE scheme. To this end, as long as A
submits for decryption a prefix of the sequence of ciphertexts (and associated data) produced
by the left-or-right oracle, the oracle O∗Dec suppresses the output of Dec as it would otherwise
reveal mb, and hence b, by correctness. When A queries O∗Dec about the first pair (ad, c)
that deviates from the genuine sequence produced by OLoR, the algorithms Enc and Dec lose
synchronization and correct decryption is no longer guaranteed: from this moment on the attack
becomes active and the adversary is given the actual output of Dec (in particular, O∗Dec stops
suppressing messages). Observe that, as the correctness requirement for stateful encryption is
milder than for stateless encryption (genuine ciphertexts decrypt to the correct messages only
if they are fed to Dec in the same order as they were produced by Enc), the stateful decryption

13

oracle suppresses less than the stateless one.
Based on the above observation it is now easy to define stateful integrity. The adversary

wins in the INT-PTXT game if it causes the message sequence output by Dec to deviate from
the message sequence input to Enc. Similarly, the adversary is successful in the INT-CTXT
game if it submits for decryption an out-of-sync pair (ad, c) that is accepted by Dec.

In Figure 2.2 we specify the security experiments of indistinguishability (upper row) and
integrity (lower row) for stateful encryption. Security is formalized in Definition 5.

Exptind-cca,b
Π,A (1λ):

01 (K, stS , stR)←$ Init(1λ)
02 s← r ← 0
03 active← 0
04 b′ ←$ AOLoR,O∗Dec(1λ)
05 Terminate with b′

OLoR(ad,m0,m1):
06 Require |m0| = |m1|
07 s← s+ 1
08 (stS , c)←$ EncK(stS , ad,mb)
09 ads ← ad, cs ← c
10 Return c to A

O∗Dec(ad, c):
11 r ← r + 1
12 If r > s ∨ (ad, c) 6= (adr, cr):
13 active← 1
14 (stR,m)←$ DecK(stR, ad, c)
15 If active = 1:
16 Return m to A
17 Else:
18 Return � to A

Exptint-ctxt
Π,A (1λ):

19 (K, stS , stR)←$ Init(1λ)
20 s← r ← 0
21 AOEnc,ODec(1λ)
22 Terminate with 0

OEnc(ad,m):
23 (stS , c)←$ EncK(stS , ad,m)
24 s← s+ 1
25 ads ← ad, cs ← c
26 Return c to A

ODec(ad, c):
27 (stR,m)← DecK(stR, ad, c)
28 r ← r + 1
29 If m = ⊥: Return ⊥ to A
30 Else if r > s ∨ (ad, c) 6= (adr, cr) :
31 Terminate with 1
32 Return m to A

Figure 2.2: Security experiments for stateful authenticated encryption. We assume ad ∈ AD,
m0,m1,m ∈ M , and c ∈ C for all such values provided by the adversary. The integers s and r denote the
number of encryption calls (sent messages) and of decryption calls (received messages) performed by the
adversary. The IND-CPA experiment can be readily obtained from the IND-CCA game by omitting the
decryption oracle O∗Dec. Similarly, the INT-PTXT experiment can be derived from the INT-CTXT experi-
ment by replacing the boxed text of lines 25 and 30 with instructions ‘ms ← m’ and ‘(ad,m) 6= (adr,mr)’.
Notice that by ignoring the associated data ad we obtain confidentiality and integrity games for stateful
authenticated encryption (named INDCPA, IND-sfCCA, INT-sfPTXT and INT-sfCTXT in [BKN02]).

Definition 5 (Stateless and stateful security for symmetric encryption). Let Π be an encryption
scheme with associated data and let K , S , M , C , and AD be its key space, state space, message
space, ciphertext space and associated data space, respectively. In case Π is stateless ignore
the state space S and consider the experiments from Figure 2.1, otherwise consider those from
Figure 2.2. For atk ∈ {cpa,cca} we say that Π offers atk-indistinguishability if for all
efficient adversaries A the following advantage function is negligible,

Advind-atk
Π,A (λ) =

∣∣∣Pr
[
Exptind-atk,1

Π,A (1λ) = 1
]
− Pr

[
Exptind-atk,0

Π,A (1λ) = 1
]∣∣∣ .

Similarly, for atk ∈ {ptxt,ctxt} we say that Π offers atk-integrity if for all efficient
adversaries A the following advantage function is negligible,

Advint-atk
Π,A (λ) =

∣∣∣Pr
[
Exptint-atk

Π,A (1λ) = 1
]∣∣∣ .

We abbreviate indistinguishability under chosen-plaintext attacks (cpa-indistinguishability) and
chosen-ciphertext attacks (cca-indistinguishability) by writing IND-CPA and IND-CCA, re-
spectively. Similarly, for plaintext integrity (ptxt-integrity) and ciphertext integrity (ctxt-
integrity) we use the shortcuts INT-PTXT and INT-CTXT.

14

For consistency with the notation used in this thesis we abbreviate the security notions for
stateless encryption as well as for stateful encryption using the same labels. We point out that
the stateful notions are equivalent to the INDCPA, INDsfCCA, INTsfPTXT, and INTsfCTXT
notions from [BKN02].

The relations among the above security notions for symmetric encryption are well under-
stood, both in the stateless setting [BN00] and in the stateful setting [BKN02]. Confidentiality
against active adversaries implies confidentiality against passive adversaries; shortly, IND-CCA
=⇒ IND-CPA, and ciphertext integrity implies plaintext integrity, INT-CTXT =⇒ INT-PTXT.
Moreover, confidentiality against passive adversaries, when combined with ciphertext integrity,
implies confidentiality against active adversaries: IND-CPA ∧ INT-CTXT =⇒ IND-CCA. For
this reason, usually AEAD security is defined as the combination of IND-CPA and INT-CTXT.

2.3.5 Modeling Secure Channels

In this thesis we develop various notions of cryptographic channels: stream-based, FIFO, and
causal channels. Our syntactical model assumes that channels support send and receive op-
erations executed by the parties that use the channel, where the send operation transforms a
message into a ciphertext and hands it over to the network layer, and the receive operation
takes an incoming ciphertext and translates it back to a message. In our model, a ‘message’ is
a data object that is seen and processed by an application, while a ‘ciphertext’ is a lower-level
object that is transmitted over a network. If required, both the send and the receive operations
can also take associated data that is assumed to match on both sides. The endpoints of a
channel, i.e., the parties that communicate via the channel, are assumed to keep state between
invocations of the algorithms.

Our syntax reflects the generic functionality that a channel should provide, i.e., allowing
users to transmit messages and to obtain messages from other users in a reliable way. Note
that, while a secure channel is generally realized from some authenticated encryption primitive,
an authenticated channel might choose to leave confidentiality aside and provide only integrity.
We prefer to keep a higher level of abstraction and explicitly separate the generic notion of a
channel from its building blocks and hence replace encryption and decryption algorithms with
sending (Send) and receiving (Recv) procedures.

Cryptographic channels necessarily require some key material for setup (for instance, a
password, a pre-shared symmetric key, or a combination of public and secret keys that are used
in interactive key agreement). As the technical details connected to channel initialization are
irrelevant for our work, our syntax definition abstracts them away. We assume a centralized
setup algorithm that generates the initial states for all participating users and distributes them
securely. In practice, this function is likely implemented by some authenticated key exchange
step.

All channels considered in the next chapters obey the syntax of Definition 6, adapted to the
streaming setting and to the broadcast setting respectively.

Definition 6 (Generic syntax of channels). A channel with associated data space AD, message
space M , ciphertext space C , state space S , and error space E, with M ∩ E = ∅, is a tuple Ch =
(Init,Send,Recv) of efficient algorithms as follows:

• Init. This randomized algorithm takes as input a security parameter 1λ and a number of
participants N ∈ N, and generates initial states st1, . . . , stN ∈ S , one per participant. We
write (st1, . . . , stN)←$ Init(1λ, N).

• Send. This algorithm takes as input a state st ∈ S , associated data ad ∈ AD, and a
message m ∈ M , and outputs a state st ′ ∈ S , a ciphertext c ∈ C , and optionally some

15

auxiliary information aux. We write (st ′, c, aux)←$ Send(st, ad,m).

• Recv. This algorithm takes as input a state st ∈ S , an origin indicator j ∈ [1 .. N],
associated data ad ∈ AD, and a ciphertext c ∈ C , and outputs a state st ′ ∈ S , an element
in m ∈ M ∪E, and optionally some auxiliary information aux. We write (st ′,m, aux)←$
Recv(st, j, ad, c). In case m ∈ E we say that the algorithm rejects, otherwise that it accepts.

For stream-based channels we assume a communication model in which a sender transmits
data to a receiver; thus, all exchanged messages are sent in one direction, from the sender to
the receiver. This can be expressed in our syntax by setting N = 2 and letting the initialization
algorithm output a state for the sender, st1 = stS , and a state for the receiver, st2 = stR (clearly,
in this setting the sender only invokes algorithm Send and the receiver only invokes Recv). As we
will see in Chapter 3, for stream-based channels algorithm Send also takes as additional input
a flush flag f ∈ {0, 1}, which specifies if the sender should empty its buffer. For stream-based
channels we also let the error space E be any non-empty set (as long as it is disjoint from the
message space). This allows us to capture the fact that a channel may produce more than one
error symbol within the model.

Broadcast channels instead are meant to be used by potentially more than two parties
and, more importantly, each party can perform both send and receive operations. As it is not
meaningful, in this setting, to refer to users as senders or receivers, in broadcast channels we
instead refer to participants. We will define two variants of broadcast channels: FIFO channels
(in Chapter 5) and causal channels (in Chapter 6). The algorithms Send and Recv of a causal
channel return, besides a state and a message, respectively, a ciphertext, also a history as
auxiliary output aux = h. Such history roughly describes the view that a user should have of
the ongoing communication.

16

Chapter 3
Stream-Based Channels

In this chapter we develop functional specifications, security notions, and a construction for
stream-based channels. The security models turn out to be quite complex. This seems to be
a natural consequence of the increased degree of freedom of the stream-based channel algo-
rithms (due to fragmentation and flushing) compared to traditional authenticated encryption
primitives, that has to be reflected in the adversary’s capabilities.

3.1 Introduction

Well-established cryptographic models like [BKN02] treat secure channels as providing an atomic
interface for messages, meaning that the channel is designed only for sending and receiving se-
quences of messages, where each message is considered a unit. However, this only captures
a fraction of secure channel designs that are actually used in the real world. In particular,
TLS and SSH provide a streaming interface for the applications that use them: applications
submit fragments of message streams to an API, and similarly receive fragments of message
streams from the API. The sending algorithm may arbitrarily buffer and/or fragment its input,
and so can the receiving algorithm. Thus, there is a mismatch between atomic descriptions of
secure channels in the cryptography literature and the reality of how secure channels process
their inputs. As one may expect, such mismatches can have negative consequences for security.
A prominent example of this comes from the plaintext recovery attack against SSH given by
Albrecht et al. [APW09]. Their attack specifically exploits the adversary’s ability to deliver
arbitrary sequences of SSH packet fragments to the receiver (over TCP/IP) and observe the
receiver’s behavior in response. The attack is possible despite the analysis of [BKN02] which
proved that the SSH secure channel satisfies suitable atomic stateful security notions. Related
attacks against certain IPsec configurations (and exploiting IPsec’s need to handle IP frag-
mentation) were presented in [DP10]. To make the attack from [APW09] visible (within the
security model) and prevent similar attacks, Boldyreva et al. [BDPS12] (BDPS) extended the
classical, atomic encryption notions to cover the case of SSH-like stream-based secure channels,
broadening the SSH-specific work of [PW10]. However, while BDPS allow for fragmented de-
livery of ciphertexts to the receiver, their work still assumes that the encryption process on the
sender’s side is atomic, meaning that there is a one-to-one correspondence between messages
and ciphertexts produced by the sender. This may be the case for SSH when used in interactive
sessions, but it is not necessarily the case for the tunneling mode of SSH and for other secure
channels protocols.

In this Chapter we develop a new notion of channel that is stream-oriented. In contrast
to previous cryptographic models for secure channels (with the exception of [BDPS12]) that

17

consider sending and receiving routines handling atomic messages, our syntax augments the
interfaces of the algorithms Send and Recv to input and output fragments of a message stream.
Our models extend those of [BKN02, BDPS12] to handle the streaming nature of the channels
that we consider. While our methodology and modeling closely resembles that of [BDPS12],
and indeed builds upon it, a crucial difference comes in our treatment of the sending (or en-
crypting) function of a stream-based channel: in [BDPS12], this is still atomic (while decryption
is not), whereas in our stream-based channel setting both the sending and receiving function
support streams of data, with potentially arbitrary buffering and fragmentation on the send-
ing and receiving side. This requires careful modification, reconsideration, and rework of the
confidentiality definitions of [BDPS12]. In addition, we develop suitable integrity notions for
the streaming setting, whereas [BDPS12] does not consider this aspect. This is important be-
cause the (implicit) security properties that applications expect a secure channel to provide are
confidentiality as well as integrity.

Before going on with the formal definition of a stream-based channel we need to set some
notation.

String notation. Let Σ be an alphabet and let s, t ∈ Σ∗. Recall that s ‖ t denotes the
concatenation of strings s and t. We say that s is a prefix of t and write s 4 t if there exists
r ∈ Σ∗ such that s‖ r = t; in this case we write r = t % s and say that r is the remainder of t
modulo s. We write s ≺ t to indicate that s is a strict prefix of t, i.e., s 4 t and s 6= t. We
denote the longest common prefix of s and t by [s, t] = [t, s]. Note that s 4 t if and only if
[s, t] = s. Throughout this chapter we will often encounter expressions of the form s % [s, t],
that is, the suffix of s with the longest common prefix of s and t stripped off. For example,
if s = 01001 and t = 0101101 then [s, t] = [t, s] = 010, s % [s, t] = 01 and t % [s, t] = 1101.
We also anticipate that in what follows we may overload the notation just described and use
it between strings that belong to different alphabets. In this case, the alphabets are assumed
to be disjoint and the resulting string is over the union of the alphabets. For instance, we
may write m ‖ ⊥ for the concatenation of a bit-string m ∈ {0, 1}∗ and an ‘error symbol’
⊥ /∈ {0, 1}∗. If v = (v1, . . . , vn) is a vector of strings, i.e., v ∈ (Σ∗)∗, we write ‖v for the
concatenation v1 ‖ . . .‖vn mapping the entries of v to a single string, and conventionally define
‖() = ε. For example, if v = (110, 0110, 01) then ‖v = 110011001.

3.2 Syntax and Functionality

As for traditional cryptographic channels induced by stateful AE schemes, a stream-based
channel should allow secure transmission of data between two parties that share secret key
material. In contrast to the former schemes, however, the data to be transmitted is a stream
rather than a sequence of messages. From a functionality perspective, we view stream-based
channels as a mathematical abstraction of reliable network protocols like the Transmission
Control Protocol (TCP) [Pos81]. In what follows we formalize what ‘transmitting a stream of
data’ actually means.

For stream-based channels we define message space and ciphertext space to be the set of bit
strings, i.e., M = C = {0, 1}∗, as it is usually the case for real-world channel implementations.
In fact, we understand messages and ciphertexts not as atomic units but as fragments (i.e.,
substrings) of a message stream and of a ciphertext stream. Additionally, we do not stipulate
a particular input/output behavior on the sender side but allow the sending algorithm Send to
process input data at its discretion, e.g., implementing some form of buffering. This is different
from the approach chosen by Boldyreva et al. [BDPS12] for modeling symmetric encryption
supporting ciphertext fragmentation. There, fragmentation may occur at the receiver, while the

18

(from application)

m1 m2 m3 m4 m5 message stream

c1 c3 c4 c5 ciphertext stream

Send

(lower-layer transmission)

c′1 c′2 c′3 c′4 c′5 ciphertext stream

m′1 m′2 m′4 m′5 message stream

Recv

(to application)

Figure 3.1: Illustration of the behavior of the Send and Recv algorithms of a stream-based channel,
indicating the message and ciphertext fragments being sent (mi resp. ci) and received (m′i resp. c′i).

sender only processes atomic messages (i.e., each ciphertext output by Enc is the encapsulation
of the input message). To enforce that particular chunks of the message stream are sent out
within a specific invocation of Send we employ the established concept of ‘flushing a stream’
known from network socket programming, and provide the Send algorithm with an auxiliary
input, namely a flush flag f ∈ {0, 1}, for each call. If the flush flag is set to f = 1 then all
message fragments that Send has buffered so far are processed instantaneously; otherwise, the
algorithm may internally decide to accept more message fragments, to empty its buffer, or to
send out only parts of it, depending on its implementation and resources. We note that our
model also captures implementations that, instead of offering an explicit flushing mechanism,
keep buffering their input until a specified timeout is reached. Figure 3.1 illustrates the behavior
of the sending and receiving algorithms of a stream-based channel.

We proceed with defining the syntax and the correctness condition of stream-based channels.

Definition 7 (Stream-Based Channels). A stream-based channel Ch = (Init,Send,Recv) with
state space S and error space E, E∩{0, 1}∗ = ∅, consists of three efficient probabilistic algorithms:

• Init. The initializtion algorithm takes as input a security parameter 1λ and outputs ini-
tial states stS , stR ∈ S for the sender and the receiver, respectively. We write this as
(stS , stR)←$ Init(1λ).

• Send. The sending algorithm takes as input a state stS ∈ S , a message fragment m ∈
{0, 1}∗, and a flush flag f ∈ {0, 1}, and outputs an updated state st ′S ∈ S and a ciphertext
fragment c ∈ {0, 1}∗. We write (st ′S , c)←$ Send(stS ,m, f).

• Recv. The receiving algorithm takes as input a state stR ∈ S and a ciphertext fragment c ∈
{0, 1}∗, and outputs an updated state st ′R ∈ S and a fragment m ∈ ({0, 1}∪E)∗. We write
(st ′R,m)←$ Recv(stR, c).

Our syntax allows Send to return an empty output. This is to model the situation that
no flush is requested and the input fragment is too short to be processed, thus, it is buffered

19

for later sending. In our definition below, for any message fragment m processed by Send we
denote by c the (potentially empty) resulting ciphertext output by the algorithm. We stress
that c should not be interpreted as an encapsulation of m (i.e., we do not require that c decrypts
to m, as we explain later), but as a label for the output of Send on input m (and the current
sending state). Similar considerations hold for Recv, which may as well buffer its input and
return an empty output for the moment. Observe that our syntax lets Recv output a ‘string’ of
message bits, error symbols from E , or a combination of these; this is to capture the case that
a portion of an input fragment c causes the receiving algorithm to return some message bits,
while the rest of it is declared as invalid, leading to a string of errors. Note that in contrast
to the other channel notions considered in this thesis, stream-based channels do not support
associated data.1

Before formalizing the functionality of stream-based channels we set some notation used
throughout this chapter. For a fixed state pair (stS,0, stR,0), an integer ` ≥ 0, and tuples
of message fragments m = (m1, . . . ,m`) ∈ {0, 1}∗∗ and of flush flags f = (f1, . . . , f`) ∈
{0, 1}∗, let (stS , c)←$ Send(stS,0,m, f) be shorthand for the sequential execution (stS,1, c1)←$
Send(stS,0,m1, f1), . . . , (stS,`, c`) ←$ Send(stS,`−1,m`, f`) with c = (c1, . . . , c`) and stS = stS,`.
For ` = 0 we define c to be the empty vector and stS,` = stS,0 to be the initial state. We use
an analogous notation for the receiver’s algorithm.

Correctness requires that if Send is fed with a message stream, and later (a prefix of)
the resulting ciphertext stream is processed by Recv, then no matter how the ciphertexts are
fragmented at the sender’s side and re-fragmented at the receiver’s side (provided that the order
of the bits is preserved), the returned message stream must be a prefix of the initial message
stream. Moreover, when Recv consumes a full ciphertext fragment generated by a call to Send
with the flush flag set to 1, the stream output by Recv should contain all the message fragments
input to Send up to that call. We formalize this intuition in the definition below.

Definition 8 (Correctness of stream-based channels). Let Ch = (Init, Send,Recv) be a stream-
based channel. We say that Ch provides correctness if for all state pairs (stS,0, stR,0) ←$
Init(1λ), all `, `′ ∈ N, all choices of the randomness for algorithms Init, Send and Recv, all
message-fragment vectors m ∈ ({0, 1}∗)`, all flush-flag vectors f ∈ {0, 1}`, all output se-
quences (stS,`, c) ←$ Send(stS,0,m, f), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)`′, and all
output sequences (stR,`′ ,m′)←$ Recv(stR,0, c′), we have for every 1 ≤ i ≤ ` : fi = 1 that

‖c[1, . . . , i] 4‖c′ 4‖c =⇒ ‖m[1, . . . , i] 4‖m′ 4‖m .

Our interpretation of correctness for stream-based channels is as follows. If the receiver
obtains (in an arbitrarily fragmented way) a prefix ‖c′ of the string ‖c of ciphertexts created by
the sender for an input-message vector m = (m1, . . . ,m`) and flush-flag vector f = (f1, . . . , f`),
and if the string ‖c′ contains the concatenation c1 ‖ . . . ‖ ci of the first i ciphertexts of c, then
the message string ‖m′ returned on the receiver’s side contains as a prefix the concatenation
m1 ‖ . . . ‖mi. In particular, if the last sending invocation flushed its input then the receiver
outputs the full genuine message stream.

Remark 1. Let us compare our correctness condition for stream-based channel with that defined
by Boldyreva et al. [BDPS12] for symmetric encryption supporting ciphertext fragmentation
(abbreviated as FrSE throughout the thesis). There, correctness requires that if a sequence m of
discrete messages is encrypted, and the resulting ciphertext stream‖c is then decrypted (possibly
in a fragmented manner), then the obtained message sequence (when message separators ¶ are
removed) is identical to the original sequence m. In the special case of a single message, this

1Indeed, the concept of associated data seems to be meaningful only in the atomic setting.

20

implies that encryption ‘always flushes’ in the setting of [BDPS12], and is in turn the reason why
encryption is necessarily an atomic operation. By contrast, in our setting the Send algorithm
is equipped with a flush flag and, when the latter is set to zero, potentially the entire message
fragment is buffered for delayed sending. This is, then, an essential difference between the
setting of Boldyreva et al. [BDPS12] and ours. An additional difference is that the correctness
condition in [BDPS12] is technically stronger than ours as it incorporates a certain amount of
‘robustness’. More specifically, the sequence of ciphertext fragments c′ submitted for decryption
in the correctness definition of [BDPS12] may extend the sequence produced by encryption, i.e.,
‖c is only required to be a prefix of ‖c′ for decryption to still work correctly up to ‖c. We find
such a correctness requirement artificially strong as it explicitly demands correct decryption
also in case of an active attack (which appends non-genuine fragments to a genuine stream).

3.3 Defining Security for Stream-Based Channels

We proceed with formalizing the security properties to be expected from a stream-based channel.
For this we closely follow the modeling strategy that Bellare, Kohno, and Namprempre [BKN02]
(BKN) introduced for analyzing the security of SSH. Since BKN see the SSH channel protocol
as a stateful authenticated encryption scheme, their model is applicable to channels that offer an
atomic interface. When reworking the confidentiality and integrity notions from [BKN02] to the
streaming setting we are instead faced with the fact that stream-based channels support process-
ing of arbitrary message and ciphertext fragments rather than atomic messages and ciphertexts.
Prior to this work, ciphertext fragmentation has been considered by Boldyreva et al. [BDPS12]
(BDPS). However, we stress that BDPS insist in letting the encryption algorithm only process
atomic messages, hence ignoring the fragmentation at the sender.

3.3.1 Confidentiality

Following the general approach of BKN, we model confidentiality of stream-based channels via
an indistinguishability game where an adversary A interacts with the sending and the receiving
procedures of a channel instance through oracles.

Confidentiality against passive adversaries. To define security against passive attacks
(a.k.a. chosen plaintext-fragment attacks, IND-CPFA) we follow the common left-or-right ap-
proach. More specifically, we letA query a left-or-right sending oracleOLoR on any pair (m0,m1)
of message fragments with |m0| = |m1|, together with a flush flag f ; the latter allows the ad-
versary to control the fragmentation at the sender to the same extent a honest user does. The
oracle replies each query with the ciphertext c output by Send on input the so-called challenge-
message fragment mb, the flush flag f , and the current sending state. As usual, the goal of the
adversary is to find out the secret bit b. We note that the presence of a flush flag is a direct
consequence of our syntax and, in fact, represents the distinguishing (but non crucial) element
between atomic security (see Section 2.3 on page 10) and ours.

Defining confidentiality against active adversaries. Defining indistinguishability against
active attacks (a.k.a. chosen ciphertext-fragment attacks, IND-CCFA) turns out to be more
challenging. In addition to a left-or-right oracle, here we grant decryption capabilities to the
adversary through a receiving oracle O∗Recv which A can query on any ciphertext fragment of
her choice. The working principle of O∗Recv is based on the synchronization strategy introduced
by BKN and later refined by BDPS—which essentially suppresses the decryptions of in-sync
queries as they would coincide with challenge messages by correctness.

21

Recall that in the confidentiality experiment for stateful symmetric encryption (from Sec-
tion 2.3) decryption queries are considered in-sync as long as the sequence of received ciphertexts
matches the sequence of sent ciphertexts, while they are out-of-sync starting with the first de-
cryption query that deviate from the genuine sequence. In case of symmetric encryption support-
ing fragmentation (FrSE) [BDPS12] instead the first deviating ciphertext fragment may be not
entirely out-of-sync, as it may contain (or complete) genuine ciphertexts that would be decrypted
correctly.2 For this reason, the corresponding confidentiality experiment—‘indistinguishability
under a chosen-fragment attack’, IND-CFA—identifies the point where synchronization is lost
within the deviating fragment. Precisely, this point concides with the boundary of the last
genuine ciphertext that is received entirely, since correctness is guaranteed up to this boundary
(see [BDPS12]). We stress that for FrSE messages and ciphertexts correspond one-to-one at the
sender, thus, by comparing the sequence of received ciphertext fragments with the sequence of
sent ciphertexts, it is immediate to identify in-sync fragments and suppress the corresponding
(atomic) messages. In stream-based channels, however, this one-to-one relation between sent
messages and sent ciphertexts is lost.

In the IND-CCFA experiment for stream-based channels we adopt a suppression strategy
similar to that of BKN and BDPS. We let O∗Recv answer each receiving query by either returning
the entire output of Recv, by returning only a portion of it, or by suppressing all of it, depending
on whether the received ciphertext stream is in-sync with the genuine stream or not. More
formally, the experiment maintains strings CS and CR to store (the concatenation of) all sent
and received ciphertext fragments, respectively, and a flag active that is set to 1 if an active
measure of the adversary takes place. In line with BKN and BDPS, our experiment declares the
attacker to become active in the moment it causes the received stream CR to deviate from the
sent stream CS (in symbols: CR 64 CS). In this case we also say that synchronization has been
lost, or that CR is out-of-sync. Correspondingly, we say that a query c to O∗Recv is out-of-sync
if CR ‖ c 64 CS , otherwise we say that it is in-sync. Clearly, if c is in-sync we are under the
correctness regime and suppress the entire output of Recv that results from c. If c is out-of-sync
and synchronization has been lost already, then we give the full output of Recv to the adversary.
The interesting case appears when CR goes out-of-sync with c, i.e., CR 4 CS and CR ‖c 64 CS .
We are now faced with the question: at which point exactly shall we declare synchronization to
be lost? Observe that in the streaming setting we cannot go for the choice of BDPS and lose
synchronization at the ciphertext boundaries: as the output of Send is not atomic the concept
of ‘ciphertext boundary’ does not make sense, as we clarify in the following remark.

Remark 2 (BDPS security is too strong for TLS). As stated in the TLS specification [DR08], the
encryption routine that the TLS Record Protocol uses internally processes at most 214 bytes
per invocation. Consider an implementation where the sending procedure always flushes its
input (this is indeed the case for the OpenSSL implementation). If we would instruct O∗Recv
to suppress the output of Recv up to the last genuine ‘ciphertext boundary’ (as for BDPS),
the channel would be vulnerable to the following chosen ciphertext-fragment attack, no matter
how secure the underlying encryption primitive is. The adversary first asks a left-or-right query
on a pair of messages (m0,m1), both of length at least 214 + 1 bytes and such that mb has as
first bit b, and gets back a ciphertext c; then A flips the last bit of c, submits the resulting
ciphertext c′ for decryption, and obtains a message fragment m′. If the first bit of m′ is 0
then the adversary outputs 0, otherwise it outputs 1. Given that the payload of a single TLS
record may not exceed 214 bytes, Send is forced to output a ciphertext fragment c encapsulating

2Note that for FrSE supporting fragmentation we refer to the output of the encryption algorithm as a sequence
of ‘ciphertexts’ and we name the input to the decryption algorithm a sequence of ‘ciphertext fragments’; this
is to highlight that the encryption algorithm outputs atomic entities ciphertexts while the decryption algorithm
takes as input fragments.

22

(at least) two TLS records c1 and c2. Nevertheless, c is the output of a single invocation
of Send and hence is deemed an ‘atomic ciphertext’ according to BDPS. As a consequence, c′ is
declared fully out of sync and hence the entire underlying message m′ is given to the adversary.
Now, since c′ spans over both the first, unmodified TLS record c1 and a second, non-genuine
record c2, by correctness m′ contains at least the full message-fragment underlying c1, which
reveals a non-empty prefix of mb.

In the rest of this section we first discuss two candidate suppression strategies and then
present our model. The natural choice in the streaming setting seems to declare synchronization
to be lost with the first bit of CR that deviates from CS . Let CS and CR denote the streams
of ciphertexts sent and received after O∗Recv processed in-sync queries and let c be the first
out-of-sync ciphertext fragment. Let c̃ be the longest prefix of c such that CR ‖ c̃ 4 CS and
let c′ be such that c = c̃‖ c′. Then we consider synchronization to be lost starting with c′. We
are left with the question: which portion of the output of Recv on input c shall be suppressed
by the oracle? One option would be to split the queried fragment c into its in-sync part c̃ and
its out-of-sync part c′, process sequentially c̃ and c′ through Recv, and only return the output
of the second invocation to the adversary. This approach, however, is sound only if the output
of Recv is independent on the fragmentation of the input, which is true only for a very restricted
class of channel protocols.

For a second option, we consider a suppression strategy based on the following observation: if
the channel is confidential against chosen ciphertext-fragment attacks then any prefix of m that
matches the corresponding challenge message-fragment mb likely originates from the genuine
prefix c̃ of c. Thus, to rule out trivial wins it suffices to polish m from any bit of the challenge-
message fragment before giving it to the adversary. Concretely, the idea would be that O∗Recv
removes from m any common prefix with the message fragment m̃ that Recv would output on c̃,
and returns only the message fragment m′ = m% [m, m̃] (containing the suffix of m that does
not match m̃) to the adversary. This should ensure that any potential challenge bit of m that
comes from the genuine part of c is suppressed.

The suppression strategy just described is the one proposed in [FGMP15]. Unfortunately,
without further modification, the resulting confidentiality notion fails to exclude a class of trivial
attacks,3 as we explain next.

Remark 3 (The IND-CCFA notion from [FGMP15] is too strong). Consider a chosen ciphertext-
fragment attack that proceeds as follows. The adversary starts with asking a decryption query
on a bit d chosen uniformly at random (that, for any reasonable scheme, results in an empty
plaintext output by Recv). Note that, as no sending query has been made, this first decryption
query is out-of-sync. The adversary then asks a left-or-right query (m0,m1, 1) with m0 6= m1
and, if the first bit of the resulting ciphertext c coincides with d, i.e., d 4 c, it asks for decryption
of the fragment c% d, gets back a message m, and finally returns 0 if m = m0 and 1 if m = m1.
Otherwise, if its guess was wrong and d 64 c, it halts with output d. Note that if d 4 c we have
m = mb by correctness, so A wins with non-negligible probability.

We stress that the attack above renders all schemes insecure according to the IND-CCFA
notion from [FGMP15], and effectively applies also to the IND-CFA notion of [BDPS12], mean-
ing that these security properties are not achievable. The problem originates from stopping the
suppression process when the stream of received ciphertext only extends the stream of sent ci-
phertexts, even if no actual deviation from the sent ciphertext stream occurs. As the adversary
can guess a short prefix of the next challenge ciphertext with constant probability, the game

3The issue was discovered by Jean Paul Degabriele, one of the authors of [BDPS12], who found the flaw
applicable to the BDPS’s syncing strategy, leading to a confidentiality notion (IND-CFA) that is not achievable.
The confidentiality notion from [FGMP15] inherits the same flaw.

23

declares synchronization to be lost ‘too early’. The third option is based on the above, but
excludes the attack illustrated in Remark 3.

Before giving the details of the third option, the one we actually adopt, let us pause on why
a similar problem does not arise in the context of stateful encryption. Note that the standard
(i.e., atomic) IND-CCA notion also declares synchronization to be lost in case the adversary
causes the sequence of received ciphertexts to extend the sequence of sent ciphertexts; this
happens if A submits to ODec all the ciphertexts output by the left-or-right oracle, in correct
sequential order, and then asks for more decryptions (see line 12 of Figure 2.2, on page 14).
However, guessing an entire valid ciphertext is much harder than guessing just a few bits of it.
Clearly, if an adversary can a priori produce the challenge ciphertext c that the left-or-right
oracle will output before the corresponding left-or-right query (m0,m1) is made, it should get
credit for this and obtain the decryption of that ciphertext. This observation is the idea behind
how we salvage the experiments of [FGMP15] and obtain a sound notion.

The IND-CCFA experiment proposed in this thesis is similar to the one from [FGMP15]
except for a small but crucial tweak of the O∗Recv oracle that modifies the suppression mechanism.
Namely, if A submits for decryption more ciphertext bits than those output by OLoR, causing the
stream of received ciphertext fragments to extend the stream of sent ciphertexts, i.e., CS ≺ CR,
then O∗Recv returns the (potentially ‘polished’) output of Recv but does not necessarily declare
synchronization to be lost. It does if the part of CR exceeding CS results in a non-empty output
of Recv. This allows O∗Recv to later suppress further message bits in case, as a consequence of
the adversary posing more left-or-right queries, CS and CR end up being matching again (in the
sense that CR 4 CS). Intuitively, the idea behind our choice is to give credit to the adversary,
and hence declaring it active (active← 1) and switching off the suppression mechanism forever,
only if it produces a ciphertext fragment c that either deviates from, or exceeds, the stream
of sent ciphertexts in such a way that its deviating or exceeding part c′ = c % c̃ leads Recv to
return a non-empty output.

In Figure 3.2 we specify the experiments of indistinguishability under chosen plaintext-
fragment attacks (IND-CPFA) and under chosen ciphertext-fragment attacks (IND-CCFA) for
stream-based channels. Based on the experiments, we define security as follows.

Definition 9 (Indistinguishability for stream-based channels). For atk ∈ {cpfa,ccfa} we say
that a streaming channel Ch offers atk-indistinguishability if for all efficient adversaries A the
following advantage function is negligible,

Advind-atk
Ch,A (λ) :=

∣∣∣Pr
[
Exptind-atk,1

Ch,A (1λ) = 1
]
− Pr

[
Exptind-atk,0

Ch,A (1λ) = 1
]∣∣∣ .

We abbreviate the notions of indistinguishability under chosen plaintext-fragment attacks (cpfa-
indistinguishability) and of indistinguishability under chosen ciphertext-fragment attacks (ccfa-
indistinguishability) for streaming channels by writing IND-CPFA and IND-CCFA, respectively.

3.3.2 Integrity

We proceed with defining integrity notions for stream-based channels. While integrity in the
atomic setting (stateless and stateful authenticated encryption, e.g., [BN00, BKN02]) is well-
understood, no previous work considered integrity in the presence of fragmentation. In particu-
lar, for symmetric encryption supporting ciphertext fragmentation, Boldyreva et al. [BDPS12]
only address confidentiality. Again we formalize security via games involving an adversary A
that interacts with sending and receiving algorithms through oracles.

Plaintext-stream integrity. Intuitively, the security property of plaintext-stream integrity
(INT-PST) says that it is difficult to make Recv output a message stream that is not a prefix

24

Exptind-atk,b
Ch,A (1λ)

01 (stS , stR)←$ Init(1λ)
02 active← 0
03 CS ← ε, CR ← ε
04 b′ ←$ A(1λ)OLoR,O∗Recv

05 Terminate with b′

OLoR(m0,m1, f):
06 Require |m0| = |m1|
07 (stS , c)←$ Send(stS ,mb, f)
08 CS ← CS ‖c
09 Return c to A

atk = ccfa
O∗Recv(c):
10 If active = 1:
11 (stR,m)←$ Recv(stR, c)
12 Return m to A
13 Else if CR ‖c 4 CS :
14 (stR,m)←$ Recv(stR, c)
15 CR ← CR ‖c
16 Return ε to A
17 Else:
18 If CR ≺ [CR ‖c, CS]:
19 c̃← [CR ‖c, CS] % CR
20 s̃tR ← stR
21 (s̃tR, m̃)←$ Recv(s̃tR, c̃)
22 (stR,m)←$ Recv(stR, c)
23 m′ ← m% [m, m̃]
24 Else:
25 (stR,m′)←$ Recv(stR, c)
26 If CS 64 CR ‖c or m′ 6= ε:
27 active← 1
28 Else:
29 CR ← CR ‖c
30 Return m′ to A

Figure 3.2: Indistinguishability experiments for stream-based channels. We assume m0,m1, c ∈ {0, 1}∗
and f ∈ {0, 1} for all such values provided by the adversary. In the IND-CPFA experiment the adversary
has access to the oracle OLoR only.

of the message stream originally input to Send. Our experiment provides A with a sending
oracle OSend that, upon being queried on any message fragment m and flush flag f , returns
the output of Send on these inputs, as well as a receiving oracle ORecv which returns on input
any ciphertext fragment c the corresponding output of Recv. The game maintains strings MS

and MR to store (the concatenation of) the sequence of message fragments queried to OSend
and of the sequence of fragments returned by ORecv, respectively. The adversary wins the game
as soon as MR deviates from MS and the deviation contains some message bits (beyond error
symbols).

Ciphertext-stream integrity. Intuitively, from ciphertext-stream integrity (INT-CST) we
expect that not only the message stream be transmitted without modification but also that
the ciphertext stream cannot be manipulated without detection. This is, clearly, a stronger
requirement than plaintext-stream integrity. The setup here is as for the INT-PST experiment
except for replacing the message strings MS and MR with the ciphertext strings CS and CR,
for the sent and received ciphertext streams respectively. Our experiment reflects the intuition
that, when processing an out-of-sync ciphertext fragment, the receiving algorithm should return
an error. Formalizing this intuition requires some care. Indeed, for a streaming interface it
may happen that Recv processes a ciphertext fragment which does not yet contain ‘enough
information’ to be verified; in this case the receiving algorithm would buffer that fragment and

25

Exptint-atk
Ch,A (1λ)

01 (stS , stR)←$ Init(1λ)
02 active← 0
03 MS ← ε, MR ← ε
04 CS ← ε, CR ← ε
05 A(1λ)OSend,ORecv

06 Terminate with 0

OSend(m, f):
07 (stS , c)←$ Send(stS ,m, f)
08 MS ←MS ‖m
09 CS ← CS ‖c
10 Return c to A

atk = pst
ORecv(c):
11 (stR,m)←$ Recv(stR, c)
12 MR ←MR ‖m
13 If MR % [MR,MS] /∈ E∗:
14 Terminate with 1
15 Return m to A

atk = cst
ORecv(c):
16 If active = 1:
17 (stR,m)←$ Recv(stR, c)
18 If m /∈ E∗: Terminate with 1
19 Else if CR ‖c 4 CS :
20 (stR,m)←$ Recv(stR, c)
21 CR ← CR ‖c
22 Return m to A
23 Else:
24 If CR ≺ [CR ‖c, CS]:
25 c̃← CS % CR
26 s̃tR ← stR
27 (s̃tR, m̃)←$ Recv(s̃tR, c̃)
28 (stR,m)←$ Recv(stR, c)
29 m′ ← m% [m, m̃]
30 Else:
31 (stR,m′)←$ Recv(stR, c)
32 m← m′

33 If CS 64 CR ‖c or m′ 6= ε:
34 active← 1
35 Else:
36 CR ← CR ‖c
37 If m′ /∈ E∗: Terminate with 1
38 Return m to A

Figure 3.3: Integrity experiments for stream-based channels. We assume m, c ∈ {0, 1}∗ and f ∈ {0, 1}
for all such values provided by the adversary.

wait for further input until a sufficiently long string is available. In such a scenario, a naive
adaptation of the ciphertext integrity definition of [BKN02] (INT-CTXT, see Section 2.3 on
page 10) would allow trivial attacks by declaring any adversary successful that makes Recv
buffer (part of) an out-of-sync ciphertext. Our experiment identifies the case just described
and consistently lets ORecv wait for further ciphertext fragments in case Recv produces no
output when processing an out-of-sync fragment; it only declares the adversary successful if Recv
outputs a non-empty message fragment resulting from a deviating or exceeding portion of the
ciphertext stream. This is in line with our IND-CCFA confidentiality notion, declaring the
adversary active if it produces a deviation or an extension of the stream CS that yields a
non-empty message string.

In Figure 3.3 we specify the experiments of integrity of plaintext streams (INT-PST) and of
ciphertext streams (INT-CST) for stream-based channels. Security is defined below.

Definition 10 (Integrity for stream-based channels). For atk ∈ {pst,cst} we say that a
stream-based channel Ch offers atk-integrity if for all efficient adversaries A the following
advantage function is negligible,

Advint-atk
Ch,A (λ) :=

∣∣∣Pr
[
Exptint-atk

Ch,A (1λ) = 1
]∣∣∣ .

26

We abbreviate the notions of integrity of plaintext streams (pst-integrity) and of integrity of
ciphertext streams (cst-integrity) by writing INT-PST and INT-CST, respectively.

3.3.3 Evaluation of Our Security Notions

When formalizing a security goal, a common challenge in cryptography is to develop a notion
that is simultaneously as strong as possible and achievable. On the one hand, we would like a
security model to account for the largest class of potential adversaries. On the other hand, we
also would like that reasonable schemes exist which are secure in this model. What ‘potential
adversary’ and ‘reasonable scheme’ mean depends on the application that is to be cryptograph-
ically protected. The stronger the model, the fewer the schemes which are secure. As shown
by the number of schemes that were proven secure on paper but turned out to be vulnerable in
practice, designing models that take into account a large class of attacks is highly critical. The
inability of foreseeing new attacks is the main reason for aiming at the strongest (achievable)
notion of security.

Ideally we would also like to prevent that our model errs in the opposite direction by declaring
insecure schemes that are, in fact, intuitively secure.4 If this happens, we say that the security
notion is too strong. All in all, a cryptographer is left with the difficult task of finding a trade-off
between making the model sufficiently strong to capture realistic attacks while keeping it weak
enough in order not to exclude good schemes.

As an example of a security model that is (arguably) too strong consider the IND-CCA
notion, understood by most researchers as ‘the right’ confidentiality goal for symmetric encryp-
tion. This notion allows the adversary to see the decryption of any chosen ciphertext except
for challenge ciphertexts (or in-sync ciphertexts in the stateful setting), i.e., ciphertexts that
decrypt to challenge messages by correctness. Indeed, obtaining the decryption of challenge
ciphertexts would let the adversary win the distinguishing game in a trivial way and, thus,
render the corresponding notion unreasonably strong. The IND-CCA model is, to some extent,
too strong for some applications, in the sense that we explain below. There exist encryption
schemes which are intuitively secure but provably IND-CCA-insecure. For instance, if one starts
with an IND-CCA-secure encryption scheme and modifies it by letting the encryption routine
append a redundant bit to each ciphertext and letting the decryption routine ignore the last
bit of each ciphertext, the resulting scheme is no longer IND-CCA-secure. However, adding a
redundant bit that is then ignored for decryption should not cause any harm.5 Put differently,
the IND-CCA notion allows for ‘trivial attacks’, namely attacks that are possible within the
model because of some artificial capabilities the adversary is given in the security experiment
(here, flipping a bit and getting the decryption of a ciphertext that by design decrypts to the
challenge message). Our IND-CCFA notion for stream-based channel is likewise too strong for
some applications, as we show next.

An intuitively confidential stream-based channel. In July 2016 the authors of [FGMP15]
were informed about the existence of a class of stream-based channels that are intuitively confi-
dential but deemed insecure according to the IND-CCFA model.6 The channel uses an AEAD
scheme as a building block and works as follows. Send chops the input message fragment m

4Of course, claims about the ‘intuitive security’ of a scheme have no formal ground and cryptographers should
be careful not to blindly follow one’s intuition, which may be misleading. However, behind a security notion there
is always one’s intuition regarding the properties that a scheme should (or should not) offer.

5An alternative notion of confidentiality that precisely aims at resolving this issue, called RCCA security (for
‘replayable’ CCA), was proposed by Canetti et al. in [CKN03].

6The scheme depicted in Figure 3.2 was proposed by Bertram Poettering during the second workshop on
‘Secure Key Exchange and Channel Protocols’ (SKECH2), Bertinoro, Italy.

27

Init(1λ)
01 K ←$ KeyGen(1λ)
02 stS,0 ← (K, 0)
03 stR,0 ← (K, 0, ε, 0)
04 Return (stS,0, stR,0)

Send(stS ,m, f)
05 Parse stS as (K, ctr)
06 l← |m|
07 m1 . . .ml ← m
08 c← ε
09 For j ← 1 to l:
10 cj ← EncK(ctr,mj)
11 c← c‖cj
12 ctr← ctr + 1
13 stS ← (K, ctr)
14 Return (stS , c)

Recv(stR, c)
15 Parse stR as (K, ctr, buf , fail)
16 buf ← buf ‖c
17 l← b|buf |/clenc
18 c1 . . . cl ‖buf ← buf
19 m← ε
20 For j ← 1 to l:
21 mj ← DecK(ctr, cj)
22 If mj = ⊥: fail← 1
23 m← m‖mj

24 ctr← ctr + 1
25 If fail = 1: m← 0l
26 stR ← (K, ctr, buf , fail)
27 Return (stR,m)

Figure 3.4: A stream-based channel Ch′ = (Init, Send,Recv) that uses an AEAD scheme AEAD =
(KeyGen,Enc,Dec) as a building block. In line 07 we assume |mj | = 1 and in lines 10 and 18 we assume
|cj | = clen, for all 1 ≤ j ≤ l and some constant clen. As we explain in this section, Ch′ is intuitively a
confidential channel but is declared insecure according to our IND-CCFA notion.

into fixed-length blocks m1 . . .ml (with |mi| = 1 for simplicity), AEAD encrypts these blocks
sequentially using a counter as associated data, and outputs the concatenation c = c1 ‖· · ·‖cl of
the corresponding ciphertexts (which also have fixed length, |ci| = clen); Recv appends the input
ciphertext fragment c′ to its buffer buf , extracts from the updated buffer the longest sequence of
ciphertext blocks c1 . . . cl and keeps the remaining fragment in the buffer, AEAD decrypts each
block ci and outputs the concatenation of the resulting message blocks m1 ‖ · · · ‖ml as long as
no AEAD decryption fails, otherwise it returns an l-bit string of 0s. We name this scheme Ch′
and give full details in Figure 3.4.

By construction, Recv never outputs an error and hence Ch′ provides no integrity protection.
This, however, should not harm confidentiality. Indeed, by confidentiality of the AEAD scheme,
the left-or-right sending oracle should reveal no information about the challenge messages, while
AEAD integrity should guarantee that the receiving oracle only returns a string of 0s when
queried on out-of-sync ciphertext fragments. Thus, we expect Ch′ to provide confidentiality
against chosen ciphertext-fragment attacks (IND-CCFA).

Confidentiality attack against Ch′. The stream-based channel Ch′ is not confidential in
the IND-CCFA sense. Consider an adversary A that proceeds as follows: it chooses m0 =
00,m1 = 10 and queries c ←$ OLoR(m0,m1, 0). Let c = c1c2 with |c1| = |c2| = clen. The
adversary then derives c′ = c1c2 from c by inverting the bits of c2 but leaving c1 unmodified,
and requests the decryption m′ ←$ O∗Recv(c′). Within the O∗Recv oracle we obtain sync = 0,
c̃ = c1, m̃ = b, and m = 00. In particular, if b = 0 we have [m, m̃] = 0 and thus m′ = 0, and if
b = 1 we have [m, m̃] = ε and thus m′ = 00. The adversary outputs b′ = |m′| − 1 and achieves
a distinguishing advantage of 1.

Discussion. The receiving algorithm of channel Ch′ returns a valid message fragment even
if the AEAD decryption internally rejects, in which case it outputs a string of 0s. On the one
hand, this channel construction is artificial as it explicitly hides decryption errors, neglecting

28

integrity. On the other hand, it does constitute a reasonable scheme in a setting where only
confidentiality does matter. Thus, while Ch′ lacks integrity protection and hence does not
provide a ‘proper’ secure channel, it has no actual vulnerability in terms of confidentiality and
should be treated as such. This highlights that our IND-CCFA notion excludes some schemes
and might be considered too strong.

Which part of IND-CCFA is responsible for this? Why does Ch′ fall prey of the above
attack? As we saw, AEAD security should ensure that the decryption m of the out-of-sync
ciphertext c′ = c1c2 reveals nothing about the challenge message mb. However, within the
IND-CCFA experiment, when answering query c′ the receiving oracle does leak information
about mb. It says whether m = 00 has a non-empty common prefix with m̃ = b or, equivalently,
whether b = 0 or not. So, while m does not say anything about mb, the oracle O∗Recv itself
artificially does.

3.4 Relations Among Notions
In this section we explore relations between confidentiality and integrity—well-established for
atomic messages by [BN00, BKN02] and follow-up work—and investigate whether these relations
can be lifted to our streaming setting. We highlight that, since integrity for encryption schemes
supporting ciphertext fragmentation was not addressed in [BDPS12], we are the first to consider
such relations in the presence of fragmentation.

Ideally, we would like to translate the classic implications IND-CCA =⇒ IND-CPA for
confidentiality, INT-CTXT =⇒ INT-PTXT for integrity, and the powerful composition result
IND-CPA ∧ INT-CTXT =⇒ IND-CCA, all from [BN00], to the realm of stream-based chan-
nels. It is immediate to see that, as in the setting where messages are atomic, the stronger
notions implies the weaker ones for both confidentiality and integrity individually. Unfortu-
nately, when integrity and confidentiality are targeted simultaneously, the situation for streams
is fundamentally more challenging.

Recall that, in the atomic-message setting, the proof of the composition theorem proceeds in
two steps: starting from the IND-CCA game one first bounds the probability that the adversary
submits for decryption an out-of-sync ciphertext that turns out to be valid by using the INT-
CTXT advantage. This then allows a reduction to the IND-CPA experiment (now assuming
integrity of ciphertexts), simply by answering all decryption queries with the distinguished error
symbol ⊥.7 As already noted by Boldyreva et al. [BDPS14], the same proof strategy does not
work for schemes that have multiple decryption error symbols (which models common real-world
behavior of encryption schemes). This is because the reduction can no longer predict which one
of the several possible error symbols should be output when simulating decryption.

Thus the classic result IND-CPA ∧ INT-CTXT =⇒ IND-CCA does not follow in this situa-
tion. Worse, [BDPS14] shows that, in the multiple decryption error setting, there exist schemes
that are secure in both IND-CPA and INT-CTXT senses, yet are not IND-CCA secure. We
show later in this section that similar issues arise for stream-based channels, even when restrict-
ing to the case of single error messages. Specifically, fragmentation at the receiver’s side makes
it harder to emulate a receiving oracle for the IND-CCFA experiment given a receiving oracle
for the INT-CST game.

As a remedy we propose a stronger version of the composition theorem, resurrecting the
result both in our streaming setting and in the case of multiple errors that was considered in
[BDPS14]. However, this result can be proven only at the cost of introducing further assump-
tions on the output behavior of the receiving algorithm. The conditions for the composition

7We give an independent proof of this result in the atomic setting (but for broadcast channels, i.e., channels
that support multiple participants) in Chapter 5 (on page 60).

29

theorem may initially look quite demanding but, as we confirm in Section 3.5 (on page 34), there
exist natural schemes that satisfy the required conditions. Moreover, the use of the composition
theorem is not the only route to achieving IND-CCFA security: for specific schemes it may be
possible to prove IND-CCFA security directly.

Confidentiality. A study of the experiments in Figure 3.2 immediately shows that IND-CCFA
security implies IND-CPFA security, since an attacker in the IND-CPFA game only needs to
emulate the left-or-right oracle to provide a faithful simulation of the IND-CCFA game, and
can trivially do so by relaying all encryption queries to its own left-or-right oracle.

Integrity. Assume that ciphertext-stream integrity (INT-CST) from Definition 10 holds for
a stream-based channel. Then the channel also provides integrity of plaintext streams (INT-
PST) and the security reduction is tight. To see why consider the integrity experiment depicted
in Figure 3.3: given the INT-CST property, every efficient adversary either never produces a
ciphertext stream CR that deviates from the ciphertext stream CS (hence, by correctness, no
deviation will occur in the underlying message streams) or, if it generates a stream CR that
does deviate from CS , by INT-CST the underlying message streams will only differ by an error
string. We formalize this intuition in the proof of the following proposition.

Proposition 1. Let Ch = (Init, Send,Recv) be a correct stream-based channel which is INT-
CST-secure. Then the channel is also INT-PST secure. Furthermore, for every algorithm A
we have Advint-pst

Ch,A (λ) ≤ Advint-cst
Ch,A (λ).

Proof. Assume that A attacks the INT-PST property of the channel. First note that A has the
same interfaces as if attacking INT-CST such that we can think of running both experiments
simultaneously. It then suffices to show that, if we trigger line 13 of the INT-PST experiment,
then we would also trigger either line 18 or line 37 in the simultaneous execution of the INT-CST
experiment (both in Figure 3.3 on page 26). Note that as long as active = 0 and the ciphertext
stream submitted to ORecv is a prefix of the one created by OSend, then the receiver’s oracle in
experiment INT-CST would indeed return the recovered message fragment, as in the INT-PST
experiment.

Suppose that A triggers line 13 in the INT-PST experiment. If at this point CR 4 CS then,
because of correctness of the channel, we must also have MR 4 MS , implying that lines 18
and 37 would not have been triggered. It follows that there must exist some fragment c such
that CR ‖ c 64 CS and c is the first fragment queried to ORecv that causes CR to deviate
from CS . At this point we must also have active = 1 in the INT-CST experiment and we enter
the ‘else’ case in line 23. Now if c contains some non-deviating prefix c̃ 4 c, we compute c̃
such that CR ‖ c̃ 4 CS is maximal. It again follows from correctness that for the processed
c̃ we get a message fragment m̃ such that MR ‖ m̃ 4 MS . But in order to trigger line 13 in
the INT-PST experiment, we must have that the full fragment c makes Recv output a message
fragment m that contains message bits beyond the common prefix with MS . It follows that
m′ ← m% [m, m̃] must contain some non-error symbols. But then we also trigger line 37 in the
INT-CST experiment run.

If c contains only deviating (or exceeding) bits or if synchronization was lost before, then the
full resulting message fragment (m′ resp./ m) is considered for the winning condition: whenever
A in this case wins in the INT-PST experiment, it also does in the INT-CST experiment.

Generic composition. We already explained earlier in this section that standard arguments
to prove the composition theorem do not apply in the streaming setting. The issue here is
that losing the integrity game does not make the output of O∗Recv (in the confidentiality game)

30

Expterr-pre
Ch,A (1λ)

01 (stS , stR)←$ Init(1λ)
02 CS ← CR ← ε
03 A(1λ)OSend(·,·),ORecv(·)

04 Terminate with 0

OSend(m, f):
05 (stS , c)←$ Send(stS ,m, f)
06 CS ← CS ‖c
07 Return c to A

ORecv(c):
08 (stR,m)←$ Recv(stR, c)
09 If Pred(CS , CR, c) 6= 〈m〉E :
10 Terminate with 1
11 CR ← CR ‖c
12 Return m to A

Figure 3.5: Security experiment for error predictability (ERR-PRE) of stream-based channels. The
function 〈·〉E : ({0, 1} ∪ E)∗ → E∗ denotes the ‘projection onto the error space’ that extracts the error
components from a string of symbols in {0, 1}∗ ∪ E∗, e.g., if m = 01001⊥1⊥2, then 〈m〉E = ⊥1⊥2.

predictable. Therefore, any strategy which allows the recovery of the composition theorem
should make it possible to forecast the output behavior of the receiving algorithm when certain
conditions are met. In line with this observation we introduce a new notion, so-called error
predictability, which precisely formalizes the ability to efficiently predict (part of) the output
of Recv in case an empty output or error messages are expected. Intuitively speaking, error
predictability demands that error symbols (if any) returned by Recv on input any ciphertext
fragment c can be efficiently predicted given the ciphertext stream CS output by Send, the
ciphertext stream CR input to Recv, and c (i.e., given only public information).

As formalized in Definition 11 and through the security experiment of Figure 3.5, we say that
a channel is error-predictable (ERR-PRE) if there exists an efficient algorithm Pred that, given
CR, CS and c, outputs the above-mentioned error string, where we require the output of Pred
to be accurate with high probability, for every c chosen by the adversary. Put differently, the
ERR-PRE experiment declares the adversary to be successful if it ever queries a (counterfeit)
ciphertext c that induces Recv to produce a (potentially empty) error string that differs from
the output of the predictor.

Definition 11 (Error predictability (ERR-PRE)). Let Ch = (Init, Send,Recv) be a stream-
based channel with error space E, and let Pred : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → E∗ be an efficient
deterministic algorithm. We say that Ch provides error predictability with respect to the predic-
tor Pred if for every efficient adversary A playing the experiment defined in Figure 3.5 against
channel Ch, the following advantage function is negligible:

Adverr-pre
Ch,A (λ) := Pr

[
Expterr-pre

Ch,A (1λ) = 1
]
.

More generally, we say that Ch provides error predictability (ERR-PRE) if there exists a pre-
dictor Pred that satisfies the above condition.

The next theorem formalizes the idea that, for the class of error-predictable channels, the
generic composition theorem holds (even for channels supporting multiple decryption errors).

Theorem 1 (IND-CPFA∧ INT-CST∧ERR-PRE =⇒ IND-CCFA). Let Ch = (Init,Send,Recv)
be a (correct) stream-based channel with associated error space E. If Ch provides integrity of
ciphertext streams, error predictability, and indistinguishability under chosen plaintext-fragment
attacks then it also provides indistinguishability under chosen ciphertext-fragment attacks. For-
mally, for every efficient adversary A against the IND-CCFA properties of Ch there exist effi-
cient adversaries B, C, and D such that

Advind-ccfa
Ch,A (λ) ≤ 2 ·Advint-cst

Ch,B (λ) + 2 ·Adverr-pre
Ch,C (λ) + Advind-cpfa

Ch,D (λ) .

31

Proof. We will consider a sequence of game transitions from the IND-CCFA experiment to
the IND-CPFA experiment and bound the difference in probability between each game and its
successor in the sequence with the advantage of a specific adversary. For better legibility we
will denote the intermediate games by Ei,bA for i ∈ {0, 1, 2} and, with a slight abuse of notation,
use the shortcut Pr[Ei,bA] to indicate the probability Pr[Ei,bCh,A = 1].

Starting from the IND-CCFA experiment of Figure 3.2 (on page 25) against A, that we
denote by E0,b

A , we define a new experiment which penalizes the adversary in case it causes the
conditions to violate ciphertext integrity of streams. More precisely, let badbI be the event that
the output of Recv on input a deviating or exceeding ciphertext fragment be a valid, non-empty
message, i.e., m /∈ E∗ in line 11 or m′ /∈ E∗ in line 26 of Figure 3.2 (on page 25). Now, let
us define E1,b

A from E0,b
A by modifying the oracle O∗Recv as follows: we add extra check before

lines 11 and 26 (in Figure 3.2 on page 25) and force termination of the experiment (with output
value 0) in case badbI occurs. Since E1,b

A and E0,b
A execute the same instructions as long as badbI

does not happen, we can assert that Pr[E0,b
A ∧ ¬badbI] = Pr[E1,b

A ∧ ¬badbI], and hence obtain the
bound |Pr[E0,b

A]− Pr[E1,b
A]| ≤ Pr[badbI].

We show next how to convert any adversary A that triggers either event bad0
I or bad1

I into
an adversary B that violates the INT-CST security of Ch. Adversary B initially chooses a bit d
uniformly at random and then runs A, answering its queries as follows. If A queries (m0,m1, f)
to OLoR then B queries its oracle OSend about (md, f), and forwards the oracle’s answer to A.
Similarly B relays every receiving query c to its oracle ORecv, obtains a response m, and returns
the projection 〈m〉E of m onto the error space E to A. Note that if the fragment that A is
supposed to obtain would contain any non-error symbol then it would trigger the bad event.
When A halts, so does B.

Observe that B perfectly simulates the IND-CCFA experiment as long as A does not trigger
the event badbI . Moreover, if A triggers badbI , then B wins in the INT-CST experiment if it had
chosen d = b. We can hence derive the inequality Advint-cst

Ch,B (λ) ≥ Pr[bad0
I∧d = 0]+Pr[bad1

I∧d =
1] = 1

2 ·Pr[bad0
I] + 1

2 ·Pr[bad1
I], from which we can bound the advantage of A in the IND-CCFA

experiment as follows:

Advind-ccfa
Ch,A (λ) =

∣∣∣Pr[E0,1
A]− Pr[E0,0

A]
∣∣∣

≤
∣∣∣Pr[E0,1

A]− Pr[E1,1
A]
∣∣∣+ ∣∣∣Pr[E1,1

A]− Pr[E1,0
A]
∣∣∣+ ∣∣∣Pr[E1,0

A]− Pr[E0,0
A]
∣∣∣

≤ Pr[bad1
I] +

∣∣∣Pr[E1,1
A]− Pr[EA1,0]

∣∣∣+ Pr[bad0
I]

≤ 2 ·Advint-cst
Ch,B (λ) +

∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣ .

We can assume without loss of generality that in game E1,b
A the adversary does not trigger

event badbI (if it does, the game stops prematurely and gives the adversary no advantage). In
particular, from E1,b

A on we can assume that the receiving algorithm, when fed with a deviating or
exceeding ciphertext fragment, either outputs error symbols or an empty string (when buffering
the ciphertext and waiting for more ciphertext bits). Using the error predictability of Ch we
can now predict which one of these two cases actually occurs.

To this extent we define a variant of E1,b
A , denoted E2,b

A , that after processing deviating
or exceeding ciphertext fragments it also invokes the predictor Pred on non-genuine ciphertext
fragments. More precisely, we modify ORecv by additionally computing (i) ‘e← Pred(CS , CR, c)’
in case synchronization was lost before the adversary queries c, or (ii) ‘e′ ← Pred(CS , CR, c′)
with c′ = c% c̃ in case CR deviates or exceeds CS because of c. Then, in case (i) we compare e
with the actual output m of Recv on input c, and similarly for (ii) we compare e′ with the
string m′ accounting for the deviating or exceeding part of c. If the strings e and m, resp., e′

32

D(1λ)OLoR(·,·,·)

01 active← 0
02 CS , CR ← ε
03 b′ ←$ A(1λ)OLoR(·,·,·),O∗Recv(·)

04 Return b′

If A queries OLoR(m0,m1, f):
05 c← OLoR(m0,m1, f)
06 CS ← CS ‖c
07 Return c to A

If A queries O∗Recv(c)
08 If active = 1:
09 e← Pred(CS , CR, c)
10 CR ← CR ‖c
11 Return e to A
12 Else if CR ‖c 4 CS :
13 CR ← CR ‖c
14 Return ε to A
15 Else:
16 e← Pred(CS , CR, c)
17 If CS 64 CR ‖c or e 6= ε:
18 active← 1
19 CR ← CR ‖c
20 Return e to A

Figure 3.6: IND-CPFA adversary D simulates the experiment E2,b
A as in the proof of Theorem 1.

and m′ differ, we force termination of the game with output 0. Let badbE denote the event that
the outputs of Pred and Recv differ. Then E1,b

A and E2,b
A are exactly the same from A’s point

of view as long as badbE does not happen, hence their difference in probability is bounded by
Pr[badbE].

Analogously to the previous hop we define an adversary C against the ERR-PRE property
which runs A, chooses a bit d uniformly at random, and simulates game E2,b

A by relaying A’s
queries to its oracles. Observe that, as A obtains no advantage if it triggers the bad event
(badbI) defined for the earlier hop in either of games E1,b

A and E2,b
A , we can assume without loss

of generality that the output of Recv to be compared with the output of the predictor will
always be either an empty string or one consisting only of error symbols. Thus, any deviation
of the Pred’s output from the output of Recv constitutes a successful attack in the ERR-PRE
experiment.

Using a similar argument to the one from the previous hop we deduce Adverr-pre
Ch,C (λ) ≥

1
2 ·Pr[bad0

E]+ 1
2 ·Pr[bad1

E], which allows us to bound the advantage of A in the second experiment
as follows:∣∣∣Pr[E1,1

A]− Pr[E1,0
A]
∣∣∣ ≤ ∣∣∣Pr[E1,1

A]− Pr[E2,1
A]
∣∣∣+ ∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣+ ∣∣∣Pr[E2,0

A]− Pr[E1,0
A]
∣∣∣

≤ 2 ·Adverr-pre
Ch,C (λ) +

∣∣∣Pr[E2,1
A]− Pr[E2,0

A]
∣∣∣ .

We finally observe that the indistinguishability game E2,b
A can be safely emulated using an IND-

CPFA adversary D, as shown in Figure 3.6. Here D is granted oracle access to OLoR as in
the IND-CPFA experiment from Figure 3.2 (on page 25) and simulates oracles OLoR and O∗Recv
for A. Adversary D simply relays left-or-right queries to its oracle OLoR, while it answers queries
to O∗Recv on its own by invoking the predictor Pred and returning its output. This leads to the
following relation: ∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣ ≤ Advind-cpfa

Ch,D (λ) .

Combining the various bounds implied by the above sequence of game transitions yields the
stated security bound.

33

Error predictability vs. error simulatability. After the original publication of this work,
Barwell et al. [BPS15a, BPS15b] introduced the notion of error simulatability for subtle au-
thenticated encryption. Error simulatability is similar in spirit to, but weaker than, error
predictability. Essentially, it requires the existence of an efficient simulator that produces indis-
tinguishable output from the decryption algorithm when receiving as input invalid ciphertexts.8

3.5 Constructions

In this section we demonstrate the feasibility of our notions and propose a generic construction
of a stream-based channel from any authenticated encryption scheme with associated data. We
then prove that our construction meets strong security in terms of confidentiality and integrity.
While this construction is illustrative rather than definitive, we point out that it is close to the
TLS Record Protocol. Thus, our security analysis also provides a validation of the TLS channel
design.

For the construction we assume an AEAD scheme that supports encryption of variable-
length messages up to il bits and that generates ciphertexts of length at most ol = 2ν − 1 for a
fixed ν ∈ N. The latter allows us to encode the length of each AEAD ciphertext as a bitstring
of length ν. We also assume two encoding functions: int2str that maps integers to their bit
representation and str2int that, vice versa, maps bitstrings to the integers they represent.

Construction 1 (Stream-based channels from AEAD). Let il, ν ∈ N and ol = 2ν − 1, and
let Π = (KeyGen,Enc,Dec) be an authenticated encryption scheme with associated data with key
space K , associated data space N, message space {0, 1}≤il , ciphertext space {0, 1}≤ol , and distin-
guished error ⊥. The stream-based channel ChAEAD = (Init, Send,Recv) is defined in Figure 3.7.

Let us discuss the algorithms of ChAEAD in detail.

Init. The initialization algorithm generates an AEAD key K and initializes the sending and
receiving states as tuples containing key K, a sequence number seqno initially set to 0, and
initially empty message buffer and ciphertext buffer, respectively. The receiving state also
contains a failure flag fail, initially set to 0.

Send. This algorithm buffers its input until it has collected at least il input bits. If a sufficiently
long buffer is available, it invokes the AEAD encryption algorithm on input message chunksm′ of
length |m′| = il and a running sequence number seqno as associated data.9 The corresponding
AEAD ciphertext c′ is then prepended with the binary encoding of its size, i.e., with string
len = int2str(|c′|), and the resulting bitstring len‖ c′ is appended to the ciphertext fragment c
to be output. Later in our analysis we will refer to the concatenation of an AEAD ciphertext c′
prepended with its size encoding len as a ‘block’ B = len ‖ c′ (see line 14 in Figure 3.7). In
case the algorithm was called with the flush flag set to 1, in a final step it also AEAD encrypts
any remaining buffered message in the same way, in order to empty the message buffer (this
message will potentially contain less than il bits). Note that the size encoding len is a bitstring

8More precisely, a subtle AE scheme is an AE scheme augmented with a ‘leakage function’ describing how (a
specific implementation of) the decryption algorithm reacts when processing invalid ciphertexts. Thus, according
to [BPS15b], the simulator’s output need not be indistinguishable from the output of the decryption algorithm,
but rather from the output of the leakage function. It seems plausible that Theorem 1 also holds under the
weaker requirement of error simulatability.

9A more natural construction in the nonce-based setting would use seqno as the encryption nonce and have
empty associated data input. We have chosen the current construction because of its closeness to TLS, which
treats its sequence number as associated data.

34

Init(1λ):
01 K ←$ KeyGen(1λ)
02 stS,0 ← (K, 0, ε)
03 stR,0 ← (K, 0, ε, 0)
04 Return (stS,0, stR,0)

Send(stS ,m, f):
05 Parse stS as (K, seqno, buf)
06 buf ← buf ‖m
07 c← ε
08 While |buf | ≥ il:
09 m′ ← buf [1, . . . , il]
10 buf ← buf %m′

11 c′ ← EncK(seqno,m′)
12 seqno← seqno + 1
13 len← int2str(|c′|)
14 c← c‖ len‖c′
15 If f = 1 and buf 6= ε:
16 c′ ← EncK(seqno, buf)
17 seqno← seqno + 1
18 len← int2str(|c′|)
19 c← c‖ len‖c′
20 buf ← ε
21 stS ← (K, seqno, buf)
22 Return (stS , c)

Recv(stR, c):
23 Parse stR as (K, seqno, buf , fail)
24 If fail = 1: Return (stR,⊥)
25 buf ← buf ‖c
26 m← ε
27 While fail = 0 and |buf | ≥ ν:
28 `← str2int(buf [1, . . . , ν])
29 If |buf | ≥ ν + `:
30 len← buf [1, . . . , ν]
31 c′ ← buf [ν + 1, . . . , ν + `]
32 buf ← buf % (len‖c′)
33 m′ ← DecK(seqno, c′)
34 seqno← seqno + 1
35 m← m‖m′
36 If m′ = ⊥: fail← 1
37 stR ← (K, seqno, buf , fail)
38 Return (stR,m)

Figure 3.7: Generic construction of a stream-based channel ChAEAD = (Init, Send,Recv) from an au-
thenticated encryption scheme with associated data Π = (Enc,Dec) as specified in Construction 1. Notice
that Enc processes up to il bits per invocation and generates ciphertexts of length at most ol. In the
figure, |c′| is the integer indicating the bit-length of ciphertext c′ (we require |c′| ≤ ol), while len is a
bitstring that represents integer |c′| (in particular, len ∈ {0, 1}ν).

of length ν and it is not authenticated. The algorithm returns the obtained string c and an
updated state.

Recv. This algorithm outputs an error once a first error has emerged from the AEAD de-
cryption algorithm in some previous call (this is indicated by the failure flag set to fail = 1).
Otherwise, it appends the incoming ciphertext fragment to its buffer. In case enough bits to
parse the length field of ν bits were received, the algorithm computes the length ` of the ‘next’
AEAD ciphertext to be received; it then checks whether the buffer contains additional ` bits;
if so, it extracts the complete ciphertext c′ and, after incrementing the sequence number, it
invokes the AEAD decryption procedure with associated data the current sequence number and
ciphertext c′, obtaining an output m′: at this point the algorithm appends m′ to the message
fragment m to be output and, if decryption failed (i.e., m′ = ⊥), it sets fail to 1 and stops
parsing further input, otherwise it iterates this process until there is no full block B = len‖ c′
left in the buffer. Finally, it returns the obtained string m as well as an updated state.

35

Correctness. Observe that the sending algorithm generates a stream of blocks B1 ‖B2 ‖ · · · ,
Bi = leni ‖c′i where c′i is an AEAD ciphertext generated with associated data the i-th sequence
number. When processing an input fragment c the receiving algorithm first appends c to its
buffer and extracts from the updated buffer the next AEAD ciphertext c′i (the length of this
ciphertext is encoded in the ν-bit prefix len of the buffer); it then AEAD decrypts the identified
ciphertext c′ using an increased sequence number as associated data. Now, if one delivers to Recv
a prefix of the ciphertext stream that was output by Send, the receiving algorithm re-establishes
the same blocks Bi = leni ‖ c′i that have been processed by Send and, more importantly, it
increases the sequence number by one whenever a new block is isolated: this ensures that the
receiving algorithm invokes the AEAD decryption algorithm on each ciphertext c′ using the
same associated data that the sending algorithm had used for the AEAD encryption call that
produced c′. Thus, correctness follows by virtue of the AEAD correctness.

Security. The channel ChAEAD offers indistinguishability under chosen plaintext-fragment at-
tacks (IND-CPFA), integrity of ciphertext streams (INT-CST), and error predictability (ERR-
PRE), given that the underlying authenticated encryption scheme with associated data Π pro-
vides indistinguishability under chosen-plaintext attacks (IND-CPA) and ciphertext integrity
(INT-CTXT), as defined in Section 2.3 (on page 10). By Theorem 1 we can moreover infer that
ChAEAD also provides the stronger confidentiality property of indistinguishability under chosen
ciphertext-fragment attacks (IND-CCFA).

In the next three theorems we assume Π to be an authenticated encryption scheme with
associated data fulfilling the properties described in Construction 1.

Theorem 2 (Confidentiality of Construction 1). If Π offers indistinguishability under chosen-
plaintext attacks then ChAEAD is indistinguishable against chosen ciphertext-fragment attacks.
More precisely, for every efficient adversary A attacking the IND-CPFA property of Ch there
exists an efficient adversary B against the IND-CPA property of Π such that

Advind-cpfa
ChAEAD,A(λ) ≤ Advind-cpa

Π,B (λ) .

Proof. We reduce the IND-CPFA security of ChAEAD to the IND-CPA security of Π by con-
structing from an efficient adversary A against the former property an efficient adversary B
against the latter property. To simulate the left-or-right oracle OLoR for A we let B perform
the (public) buffering and bookkeeping operations for the input messages (two buffers instead
of one has to be kept for storing messages m0 and m1) and the sequence numbers, as defined
for Send in Figure 3.7. As the buffering behavior only depends on the length of the input
message to Send but not on its content, the message blocks to be AEAD encrypted are treated
identically in the ‘left’ case (b = 0) and in the ‘right’ case (b = 1). This allows B to replace the
encryption operations by encryption calls to its oracle OEnc provided by the IND-CPA game.
When A outputs its guess b′ we let B output the same bit and halt. Since B perfectly simulate
the sending oracle for A, the two adversaries have equal advantage.

Theorem 3 (Integrity of Construction 1). If Π offers ciphertext integrity then ChAEAD offers
ciphertext-stream integrity. More precisely, for every efficient adversary A attacking the INT-
CST property of ChAEAD there exists an efficient adversary B against the INT-CTXT property
of Π such that

Advint-cst
ChAEAD,A(λ) ≤ Advint-ctxt

Π,B (λ) .

Proof. Recall that the receiving algorithm Recv of our channel construction processes the cipher-
text stream by identifying blocks B1, B2, . . . with Bi = leni ‖c′i where c′i is an AEAD ciphertext
and leni is the (fixed-length) binary encoding of its length |c′i|. The message fragments output

36

by Recv are obtained by concatenating the AEAD decryptions m′i of the so identified cipher-
texts c′i. In particular, Recv produces some output only if it processes at least a full block Bi.
Relevant for this proof is that, in order to break the INT-CST property of ChAEAD, an adver-
sary must submit to ORecv a deviating or exceeding ciphertext stream whose non-genuine part
contains a full valid block B∗ = len∗ ‖c′∗. More precisely, the AEAD decryption of c′∗ with the
current sequence number seqno as associated data yields some valid message m∗. Now, since the
scheme increases the sequence number seqno before each AEAD encryption, no associated data
is ever repeated. Then, under the hypothesis that A forges a ciphertext fragment such that a
non-genuine portion of it leads to a non-empty output message, we deduce that (seqno, c′∗) is
an AEAD forgery (where seqno is the current sequence number).

We now formalize the above intuition. To this end we build an adversary B which runs A
internally as a black box and breaks the INT-CTXT property of Π as long as A is successful
against the INT-CST property of ChAEAD. Adversary B emulates the channel construction of
Figure 3.7 by forwarding AEAD encryptions to the encryption oracle OEnc(·, ·) provided by
the INT-CTXT security experiment and performing the buffering steps on its own. For this it
keeps buffer strings buf S , bufR and a sequence number seqno, initialized to the empty strings
and to zero respectively. It also keeps vectors m′ and c′ for bookkeeping sent AEAD messages
and ciphertexts respectively, as well as a string CR in which it registers the received stream of
ciphertext fragments. It answers A’s queries as follows.

When A poses a sending query (m, f), B appends m to the buffer buf S , initializes an empty
ciphertext c, and repeats the steps of instructions 08–14 from Figure 3.7 except for line 11 that
is replaced by a call to OEnc; within the loop, B also appends message blocks m′ and ciphertext
blocks c′ to the vectors m′ and c′ respectively. If A had asked to flush (i.e., f = 1), B executes
once more the preceding steps using as message block m′ the remaining buffer. Finally it
returns c to A.

When A asks to decrypt a ciphertext c, B updates the stream CR by appending c and checks
if c is out-of-sync by comparing the components of vector c′ (containing sent AEAD ciphertexts)
with the matching blocks B = len ‖ c′ occurring within CR. If c is genuine, B appends it to
the buffer bufR and then traverses the buffer to isolate the blocks Bi contained in it. If there
is none, it returns an empty output to A. Recall that for each block Bi = leni ‖ c′i the AEAD
ciphertext c′i is registered in the vector c′ and, similarly, its decryption m′ is registered in m′.
Thus, B can for each identified ciphertext c′i recover the decryptionm′i (as it knows the matching
associated data, i.e., the i-th sequence number). After this, B removes the identified blocks from
the buffer bufR and concatenates all corresponding messages m′i in the same order they appear
in m′, obtaining a string m; finally B gives m to A. In case c is deviating or exceeding, B first
performs the same procedure as above using instead of c its longest genuine prefix that contains
only full blocks Bi; note that after this step the buffer bufR will be empty (because it only
contained full blocks and these are all processed). From now on B tries to extract a forgery
either from the part of c that has not been yet processed or from A’s subsequent receiving
queries. To this end, B appends to bufR the rest of c and proceeds as follows: if the buffer
contains at least ν bits then it decodes buf [1, . . . , ν] as an integer ` and then checks whether
the remaining buffer contains ` more bits. If so, it outputs c′∗ = bufR[ν + 1, . . . , ν + `] together
with the current sequence number increased by one as forgery. Otherwise, it gives the message
fragment m obtained from the (potentially empty) in-sync part of c to A and waits for more
receiving queries until it gets enough ciphertext bits to extract a forgery.

It is clear that B performs a sound simulation of the INT-CST experiment. Indeed, for
answering sending queries it executes the same instructions of Send (only the AEAD encryption
is replaced with an oracle call to OEnc, however, the AEAD encryption takes place within the
internal computations of the oracle). Note that B does not use its decryption oracle but can

37

answer all in-sync queries by looking at the message fragments that A requested to send. It
can likewise recover the longest, genuine message-fragment underlying deviating or exceeding
ciphertext fragments whose non-genuine part contains no full block B = len ‖ c′. Finally, for
the non-genuine part of a deviating or exceeding ciphertext-fragment, B can either extract an
AEAD forgery or simply answer with an empty message and wait for more ciphertext bits.

It remains to show that if A breaks the INT-CST property of ChAEAD then B is successful
in the INT-CTXT game against Π. Let c denote A’s first out-of-sync query (i.e., either c is
deviating, or it causes CS to extend CS and the exceeding part of c produces output), let c̃ be
the longest in-sync prefix of c, and let m and m̃ be the message fragments that Recv would
output on input c and c̃ respectively in the real execution of the INT-CST experiment.

Assume first thatA is successful with her first out-of-sync query c: we thus havem%[m, m̃] /∈
E∗. Suppose that the (in-sync) ciphertext stream that Recv would process up to c̃ contains the
first i blocks B1, . . . , Bi that were sent. By construction m̃ = m′1 ‖· · ·‖m′i where each m′i is the
AEAD decryption of c′i with the i-th sequence number as associated data. Then the ciphertext
fragment c % B1 ‖ · · · ‖ Bi contains as a prefix a full block B∗ = len∗ ‖ c′∗ such that AEAD
decrypting c′∗ with associated data seqno∗ = i+ 1 yields m∗.

This argument easily extends to the general case in which A poses multiple (out-of-sync)
queries before breaking the INT-CST security of ChAEAD: B simply keeps buffering (and out-
putting an empty string as Recv would do) until it collects enough ciphertext bits to form a full
block B∗ = len∗ ‖c′∗ (here ‘enough’ means ν + `∗ for `∗ = str2int(len∗)).

In both cases, once B obtains sufficiently many ciphertext bits to isolate a block B∗, it stops
the simulation and returns as AEAD forgery the pair (seqno∗, c′∗).

Theorem 4 (Error predictability of Construction 1). If Π offers ciphertext integrity then
ChAEAD is error predictable. More precisely, there exists an efficient error predictor Pred (that
we construct in the proof) such that for every efficient adversary A attacking the ERR-PRE
property of ChAEAD w.r.t. Pred one can build an efficient adversary B against the INT-CTXT
property of Π where

Adverr-pre
ChAEAD,A(λ) ≤ Advint-ctxt

Π,B (λ) .

Proof. We provide an explicit error predictor Pred for ChAEAD. Recall that a genuine stream pro-
duced by Send boils down to the concatenation of AEAD ciphertexts c′1, c′2, . . . (prepended with
their length encoding leni, which is necessary for isolating the ciphertexts within the stream)
generated using a running sequence number as associated data. Given this (and assuming that
AEAD ciphertexts cannot be forged), if the stream CS of sent ciphertext fragments is known
it is easy to forecast whether a specific ciphertext fragment submitted to Recv leads to a valid
message output, to an empty output, or to an error. Indeed: (i) whenever Recv processes a full
genuine block B = len‖ c′ it will add a message component to its output; (ii) if the ciphertext
fragment contains an AEAD ciphertext c′ that does not match the stream CS then c′ is likely
rejected by the AEAD decryption, and hence Recv will add the distinguished AEAD error ⊥
to its output—this is true with overwhelming probability as long as Π offers integrity of cipher-
texts; finally, (iii) if only a portion of a genuine block B = len‖ c′ is available, Recv will buffer
the whole input and return an empty output. Thus, a good error predictor Pred simply returns
an empty string in case (i) and (iii), while it outputs ⊥ in case (ii).

Observe that, by design, the receiving algorithm of ChAEAD produces non-empty output only
if it processes at least a full block len‖c′; thus, in case (iii) the error predictor behaves precisely
as Recv. In both cases (i) and (ii), instead, a mismatch between the output of Recv and the
output of Pred can only occur if, on input a non-genuine pair of ciphertext c′∗ and associated
data the current sequence number seqno, the AEAD decryption returns a valid message. Now,
as the sequence number is increased after each AEAD encryption, no associated data is ever

38

repeated; then the pair (ad∗, c′∗) with ad∗ = seqno is fresh and would lead to a violation of the
INT-CTXT property, against the assumption.

3.6 A Note on the TLS Record Protocol
As discussed earlier, the Transport Layer Security (TLS) Record Protocol implements a stream-
based channel whose complete analysis as such lies outside of the scope of this work. However
we do pause to note that our construction of a stream-based channel based on authenticated
encryption with associated data from Section 3.5 is actually very close to the TLS Record
Protocol when using an AEAD scheme as specified for TLS version 1.2 [DR08, Section 6.2.3.3]
and in the current (as of August 17, 2016) draft for TLS version 1.3 [Res16, Section 5.2]: the
Record Protocol also incorporates a sequence number which is authenticated but not sent on
the wire and a length field which is sent and authenticated in TLS 1.2 (and which is sent but
not authenticated in the draft TLS 1.3). However, the TLS Record Protocol in version 1.2
additionally includes a 2-byte version number and a 1-byte content type; these are both sent
and authenticated in the associated data. Moreover, the AEAD schemes used are considered to
be nonce-based, with the TLS 1.3 draft specifying how the nonce is formed and TLS 1.2 leaving
the exact nonce generation to be specified by the particular cipher suite in use.

The content type field in particular allows TLS to multiplex data streams for different
purposes within a single connection stream, as TLS 1.2 does for the Handshake Protocol, the
Alert Protocol, the ChangeCipherSpec protocol, and the Application protocol. While our model
does not capture multiplexing several message streams into one ciphertext stream, it can be
augmented to do so. This brings additional complexity and is an avenue for future work.

39

Chapter 4
Broadcast Communication

The goals of the next three chapters is to extend existing models for cryptographic channels to
the bidirectional and the broadcast settings. For this we need an appropriate communication
model that enriches the traditional channel scenario, in which a sender transmits data to a
receiver, to allow for interactive communication among two or more participants. In the present
chapter we develop such a model.

4.1 Introduction

Security models for cryptographic channels usually assume that sender and receiver run a chan-
nel on top of a reliable network. As a consequence, in non-hostile conditions the network
ensures the delivery at the receiver of the messages transmitted by the sender, according to
the sending order. In this setting the communication is exclusively unidirectional, from the
sender to the receiver. Here we generalize the channel scenario and assume an asynchronous
network in which N participants interact with each other by exchanging messages. We focus on
specific types of network that provide different delivery guarantees. The most basic network is
broadcast, ensuring that all messages sent by any participant will, in principle, be delivered to
all other participants (we write ‘in principle’ because we make no assumption on the delivery
time). The second type of network, FIFO broadcast, augments plain broadcast by providing
extra guarantees in terms of the relative ordering of delivery from the perspective of each sender:
the FIFO ordering ensures for each pair of participants that messages sent by the one are re-
ceived by the other according to the sending order. In the third network type, called causal
broadcast, message delivery happens in a way that also preserves the causal relationships among
all sending and receiving events. More precisely, a given message is delivered to any specific
participant only after this participant received all messages that were sent before. Differently
from FIFO broadcast, in causal broadcast the term ‘before’ should be understood in a global
sense: it addresses not only the messages that a specific participant has sent but all messages
that all participants sent before.

Having in mind the guarantees provided by FIFO and causal broadcast networks in an ideal
world without adversaries, our goal in Chapters 5 and 6 is to enforce cryptographically that
these guaranteed are also given in the presence of adversaries that control the network.

We first set some notation that will appear in the formalism later.

Notions of ordering relations. Let (S,≤) be a partial order. To indicate the set of prede-
cessors and the set of successors of an element s ∈ S we use the notation ≤s = {s′ ∈ S | s′ ≤ s}
and s≤ = {s′ ∈ S | s ≤ s′}. Similarly we define the sets <s and s< of strict predecessors and

41

strict successors of s, respectively. For a subset S′ ⊆ S we denote with ≤S′, <S′, S′≤ and S′<
the sets of predecessors, strict predecessors, successors, and strict successors of all elements
in S′, respectively. An element in (S,≤) is a maximum if it has no strict successor, i.e., if it is
contained in max(S) = {s ∈ S | @s′ ∈ S : s < s′}. Every strict partial order (S,<) can be rep-
resented as a directed acyclic graph (DAG) with vertices in S and edges (u, v) such that u < v.
For a binary relation ≤ we denote by ≤∗ the reflexive transitive closure of ≤, i.e., the smallest
relation that contains ≤ and is reflexive and transitive. The reflexive transitive closure of a
DAG is the reachability relation of the graph. For example, if u and v are vertices of a DAG
and u < v, i.e., there is a directed edge from u to v, then u ≤∗ v indicates that either u = v
or there exists a directed path from u to v. It is a standard result that every (finite) partial
order (S,≤) has a linear extension, i.e., a bijective enumeration e : [1 .. |S|]→ S exists such that
e(i) ≤ e(j) =⇒ i ≤ j.

4.2 Communication Graphs
To describe how N participants interact in a broadcast fashion we introduce a combinatorial
object, the communication graph, which describes the sending and receiving actions that par-
ticipants perform and the relative order in which these actions occur.A communication graph
is essentially a partial order (V,≤) augmented with a labeling function χ. The set V consists of
actions performed by the participants. Intuitively, an action is an atomic sending or receiving
operation that corresponds to a transformation of a message into a ciphertext or a ciphertext
into a message. The relation ≤ indicates the order in which the actions of V occur, capturing a
notion of logical time (which is essentially the happened before relation introduced in [Lam78]).1
For any two actions u, v ∈ V we have that u < v if and only if action u happens before action v.
The labeling function χ associates to each action a type (sending or receiving) and the partic-
ipants that such action involves. More specifically, each sending action is associated with the
participant that performs it (and it is considered to target all other participants), and each re-
ceiving action is associated with both the participant that performs it and with the participant
the received ciphertext is assumed to originate from. We write χ(u) = (S, i) to indicate that u
is a sending action performed by participant i. Similarly, χ(v) = (R, i, j) means that in action v
participant i receives a ciphertext that is assumed to originate from participant j. Formally, if
N ∈ N denotes the (fixed) overall number of participants we define χ : V → X where X is the
universe of possible action characteristics:

X = XS ∪XR where XS = {S} × [1 .. N] and XR = {R} × J1 .. NK .

We call the labeling function χ the characteristic of the graph. Observe that this encoding
does not reflect the messages and ciphertexts that might be associated with the actions (these
will become relevant only in later sections of this thesis). Notice that our definitions do not
allow a participant to receive ciphertexts from itself. We thus obtain the following equivalent
definition of setX, where theXi components stand for precisely the operations actively involving
participant i ∈ [1 .. N]:

X =
⋃

i
Xi where Xi = {(S, i)} ∪ {(R, i, j) | j ∈ [1 .. N] \ {i}} .

It will prove helpful to define the following subsets of V , where we always assume (i, j) ∈ J1 .. NK:
V S
i is the subset of sending actions of participant i, V R

ij is the subset of receiving actions of
1The irreflexive variant < of the relation ≤ is well-known in distributed systems as happened before or causality

relation since its first appearance in the celebrated work by Lamport on (distributed) logical clocks. In this thesis
we refer to ≤ simply as the ordering relation between actions and, to avoid confusion, we use the term ‘causality’
only to address the specific ordering property that is provided, for instance, by causal broadcast networks.

42

participant i that are assumed to originate from participant j, V R
i is the subset of receiving

actions of participant i, Vi = χ−1(Xi) is the subset of actions of participant i, V S = χ−1(XS)
is the subset of all sending actions, and V R = χ−1(XR) is the subset of all receiving actions.
Formally,

V S
i =χ−1((S, i)) V R

ij =χ−1((R, i, j)) V R
i =

⋃
j 6=i

V R
ij

Vi =V S
i ∪ V R

i V S =
⋃

i
V S
i V R =

⋃
i
V R
i

Further, for any V ′ ⊆ V we write V ′ = V \ V ′ to denote the complement of V ′ in V .
To define formally how the relation ≤ looks like we first need to specify some additional

properties that we expect from broadcast communication. First of all, we assume that each
participant performs at most one action at a time. This implies that the order in which any
specific participant performs its actions is strictly sequential. We formalize this by requiring
that ≤ is locally a total order (i.e., with respect to the actions of each individual participant),
as we explain next. Let 2` (for ‘local’) denote the ordering relation that connects only actions
of the same participant; then the actions of each specific participant form a chain with respect
to 2`. We also assume that any receiving action happens after the associated sending action
(which must originate remotely, as we do not allow a participant to receive from itself), and
denote the relation among actions of different participants by ≺r (for ‘remote’). Finally, we
assume that transmitted messages are broadcast (i.e., eventually they will be received by all
participants other than the sender), and they are received at most once (messages might get lost
or be still on the wire, but duplications may not happen). The latter two assumptions imply
that for each receiving action v ∈ V R there exists a unique sending action u ∈ V S from which v
originates. Given this, we define ≤ to be the coarsest poset relation simultaneously subsuming
2` and ≺r. 2

We give examples of communication graphs for N = 3 participants in Figure 4.1.

Definition 12 (Communication graph). Let N ∈ N. A communication graph (with N parties)
G = (V,≤, χ) consists of a set of actions V (vertices), a partial order ≤ on V , and an assignment
χ : V → X such that there exist binary relations 2` and ≺r on V that meet the following axioms.

(CG1) For any participant i ∈ [1 .. N], set Vi is totally ordered by the relation 2`; further,
actions of distinct participants shall not be in relation, i.e., v ∈ Vi ∧ v2`w =⇒ w ∈ Vi.
We write ≺` for the irreflexive variant of 2`.

(CG2) The relation ≺r implements the characteristics of the actions and associates sending
and receiving actions of remote participants; it also enforces that sending actions have at
most one remote successor per other participant and that receiving actions have precisely
one remote predecessor. Formally, for all (i, j) ∈ J1 .. NK we require

v ∈ V S
j =⇒ |v≺r ∩ Vi| ≤ 1 and |≺rv| = 0

v ∈ V R
ij =⇒ |≺rv ∩ Vj | = 1 and |≺rv ∩ Vj | = 0 and |v≺r | = 0 .

Note that these conditions imply that all ≺r-successors of a sending action are receiving
actions (if v ∈ V S then v≺r ⊆ V R) and that the unique ≺r-predecessor of any receiving

2Similar abstractions of concurrent communication are common in the distributed computing literature (see
[CGR11, AW04]). We deviate from the established notation and present notions that are admittedly quite heavy
to grasp at a first glance. However, we believe that such a level of formalism is necessary to allow for a formal
treatment of broadcast channel security. As we will see in the next chapters, the complexity of our notation will
only appear in the formal proofs.

43

V1 V2 V3

(a) A communication graph

V1 V2 V3

(b) A FIFO graph

V1 V2 V3

(c) A causal graph

Figure 4.1: Illustration of 3-party communication graphs. The elements of V1, V2, V3 are vertically
aligned, ordered bottom-up (according to the ≺` relation) The vertical dashed lines symbolize per-party
timelines. Sending actions are marked with and receiving actions with . Non-vertical solid arrows
associate sending actions to their corresponding receiving actions (i.e., indicate the ≺r relation). The
graph from Figure 4.1a is neither FIFO nor causal; the graph from Figure 4.1b is FIFO but not causal,
and the graph from Figure 4.1c is causal.

action is a sending action (if v ∈ V R then ≺rv ⊆ V S). We correspondingly define the
origin indicator ω : V R → V S that maps each receiving action v ∈ V R to the corresponding
sending action ω(v) ∈ V S such that ω(v)≺rv.

(CG3) The partial order relation ≤ is the transitive and reflexive closure (≺` ∪ ≺r)∗ of the
combined relation ≺`∪≺r. That is, as ≺` and ≺r capture all considered aspects of evolving
time, ≤ essentially establishes the global ‘happened before’ relation on V . We write < for
the irreflexive variant of ≤. Effectively, this axiom demands that the relation ≺` ∪ ≺r be
‘cycle-free’.
Observe that relations 2`,≺`,≺r can be uniquely recovered from (V,≤, χ). In the course
of this thesis we may hence refer to these relations without further mention.

We denote with G the set of all (N -party) communication graphs.

In the rest of the thesis we denote communication graphs by G = (V,≤, χ) and illustrate
them as shown in Figure 4.1a. We write G = (∅, ∅, ∅) in case the set of actions is empty.

4.2.1 FIFO and Causal Graphs

In this section we define the graph classes describing FIFO and causal broadcast communication.
Recall that in FIFO broadcast the order of delivery is preserved with respect to all senders
independently, while in causal broadcast deliveries happen in accordance to the order of all
sending actions globally.

FIFO graphs. Many applications demand that the order of transmissions between any two
parties always be preserved and that no sent data be missed by a receiver (in the two-party
case for instance a remote shell application like SSH). We define FIFO graphs as the subclass of
communication graphs that possess the desired ‘first-in-first-out’ behavior. For an example of
a FIFO graph, see Figure 4.1b: here Party 2 performs two sending actions which are matched
with two corresponding receiving actions at Party 3. Note that the first sending action of
Party 2 is connected with the first receiving action of Party 3, as well as the second sending

44

is connected with the second receiving action. This is precisely due to the FIFO property. In
contrast, observe that in the lower part of Figure 4.1a the transmissions caused by the first two
sending actions of Party 2 ‘cross’ on their way to Party 1. In addition, Party 3 unnoticedly
misses a transmission from Party 2. While these situations are not admissible in a FIFO graph,
they can occur in a communication graph.

Definition 13 (FIFO graph). We say that a communication graph G = (V,≤, χ) is a FIFO
graph if the following condition holds.

(FIFO) If a sending action of one participant reaches a second participant, then all prior send-
ing actions of the first participant have reached the second participant before. Precisely,
for all v, w ∈ V S and w′ ∈ V R it holds that

v≺`w≺rw′ =⇒ ∃v′ ∈ V R : v≺rv′≺`w′

We denote with Gfifo the set of all (N -party) FIFO graphs.

Causal graphs. Going one step further, we define causal graphs as a subclass of FIFO graphs
for which (V,≤) enjoys the causal order property with respect to the participant assignment
established by χ. The causal order requirement captures the peculiarities of causal broadcast:
It ensures that each participant performs a specific receiving action v associated to a sending
action u only after having received all sending actions u′ that happened before u (according to
the ≤ relation). The upper part of Figure 4.1a is not causal in this sense as Party 3 notices
the (third) sending action of Party 2 before noticing the sending action of Party 1 although,
logically, these actions did occur in the reverse order (Party 2 might have sent as a reaction
to the transmission of Party 1). Such twists of the communication history must not appear in
causal graphs, as all parties at any point have a consistent view on the whole communication
history up to that point. A causal graph is illustrated in Figure 4.1c.

Definition 14 (Causal graph). We say that a communication graph G = (V,≤, χ) is a causal
graph if the following condition holds.

(CAUS) If a sending action of one participant reaches a second participant, then all prior
sending actions (this time ‘prior’ is meant in a global sense, i.e., taking into account
the full set of participants) have reached the second participant before. Precisely, for all
v, w ∈ V S and w′ ∈ V R it holds that

v < w≺rw′ =⇒ v≺`w′ ∨ ∃v′ ∈ V R : v≺rv′≺`w′ .

We denote with Gcaus the set of all (N -party) causal graphs.

Note that condition (CAUS) implies (FIFO) as the < relation subsumes the ≺` relation.
With other words, every causal graph is also a FIFO graph. Since FIFO and causal graphs are
special cases of communication graphs, we have Gcaus ⊆ Gfifo ⊆ G.

4.2.2 Communication History and Graph Prefixes

Generally, participants communicating over a broadcast network can never have a complete
view of the communication going on (for instance, how would they know whether another par-
ticipant just performed a sending operation?). However, causal broadcast networks assert that
participants, when receiving messages, can at least be sure not to have missed communication
operations which logically precede their current receiving action (with other words, there is no

45

hole in the causal past). Thus, a participant that performs an action v is, in principle, aware of
the whole ‘prefix’ of v in the graph, i.e., all actions ≤v that causally precede v and their relative
ordering. We formalize this prefix notion as follows and refer to Figure 4.2 for an illustration.

V1 V2 V3

(a) (1)-prefix of G

V1 V2 V3

(b) (2)-prefix of G

V1 V2 V3

(c) (3)-prefix of G

Figure 4.2: Prefixes of a causal graph. In all three examples the graph in the background is the causal
graph from Figure 4.1c, and the highlighted subgraphs are the prefixes of Party 1, Party 2, and Party 3
respectively, from left to right. Intuitively, each prefix contains all and only the actions that causally
affect a given participant (i.e., that the participant should be aware of).

Definition 15 (Prefix of a causal graph). Let G = (V,≤, χ) be a causal graph and let v ∈ V
be an action. The v-prefix of G is defined as G(v) = (V ′,≤′, χ′) where V ′ = ≤v, and ≤′ and χ′
denote the restrictions of ≤ and χ, respectively, to the domain V ′. Further, to define G(i) for
i ∈ [1 .. N], set G(i) = G(max Vi) if Vi 6= ∅ and set G(i) = (∅, ∅, ∅) otherwise.

Prefixes of causal graphs are causal graphs themselves. We prove this in Lemma 3 (on
page 48).

4.2.3 Modeling Dynamic Communication: Graph Addition

A communication graph represents a snapshot of some ongoing network interaction at a certain
point in time. However, intuitively speaking, such interaction is a dynamic process that is con-
tinuously extended by further actions. We introduce an addition operation on communication
graphs that allows to capture such modifications. For instance, we write G′ = G+(S, i)+(R, j, k)
to express that communication graph G′ emerges from communication graph G by first letting
participant i perform a send operation and then letting participant j receive from participant k
(see Figure 4.3 for an illustration). Observe that receiving operations are sometimes not per-
missible (in contrast to sending operations, which always are); for instance, if G = (∅, ∅, ∅)
and x = (R, j, k) then operation G + x is not possible, as no participant can receive if nobody
had sent before. In such cases we write G + x = ⊥. In fact, whether or not adding a receiv-
ing operation is admissible crucially depends on the type of communication graph considered
(plain, FIFO, causal). In this thesis we will need addition symbols for FIFO and causal graphs.
Correspondingly we define two dedicated operations

+: Gfifo ×X → Gfifo ∪ {⊥} and ⊕ : Gcaus ×X → Gcaus ∪ {⊥} ,

where the internal rules of + are made such that if G is a FIFO graph and x is an action, then
G+x 6= ⊥ if and only if extending G by x is possible according to the FIFO graph axioms, i.e.,
G + x is also a FIFO graph. Correspondingly, the rules of ⊕ are such that G ⊕ x 6= ⊥ if and
only if the causal graph axioms are fulfilled by the extended graph.

46

V1 V2

(a) G

V1 V2

(b) G+ (S, 2)

V1 V2

(c) G+ (R, 2, 1)

V1 V2

?

(d) G+ (R, 1, 2)

Figure 4.3: Illustration of the FIFO addition (+). We start with the communication graph G from
Figure 4.3a and add a sending action performed by Party 2 (Figure 4.3b), or a receiving action per-
formed by Party 2 (Figure 4.3c). As we are in the 2-party case, by Lemma 2 the same operations would
automatically be admissible if we would have used the causal addition (⊕) instead. Adding a receiving
action performed by Party 1 (Figure 4.3d) is not possible (Party 2 has no unmatched sendings).

The scope of this chapter is to clarify the structure of FIFO and causal broadcast com-
munication and introduce the communication graph framework. We will use these concepts
as tools to formalize security of FIFO and causal channels in the next chapters. An intuitive
understanding of the FIFO and causal properties, of the corresponding addition operations +
and ⊕, and of the concept of prefix is sufficient to move on with Chapters 5 and 6.

4.3 Technical Results
In this section we present further results concerning the structure of FIFO and causal graphs.
After setting some basic properties of communication, FIFO, and causal graphs, we make the
concept of graph addition formal and study how extending a graph by one action modifies
the user-specific prefixes of the graph. These results should be considered as technical lemmas
that will only become relevant later to prove statements regarding our channel constructions
from Chapters 5 and 6. The reader may want to skip the rest of this chapter for now, and
consult the specific lemmas when needed.

4.3.1 Basic Properties of Communication Graphs

The following results establish combinatorial properties of communication graphs, FIFO graphs,
and causal graphs. Lemma 1 provides a numerical characterization of the ≺r relation that
connects receiving actions to the sending actions they belong to. More specifically, it shows
that the (FIFO) property allows associating sending and receiving actions by counting: if u
is the n-th action in V S

j and v is the m-th action in V R
ij (where we count according to the

≺` relation), then u≺rv if and only if n = m. Further, if (CAUS) holds, we prove that precisely
the first |V R

ij |-many actions in V S
j have a successor in Vi (according to <, i.e., taking into

account all participants). Lemma 2 shows that in the two-party setting every FIFO graph is
also a causal graph.

Lemma 1 (Basic graph properties). In a communication graph G = (V,≤, χ), let (i, j) ∈
J1 .. NK and s = |V S

j | and r = |V R
ij |. Then the following hold:

(a) no participant receives more often from another participant than the latter performed send-
ing actions: r ≤ s.

47

(b) if (FIFO) holds, sending and associated receiving actions pair-up without gaps: if u is the
n-th action in V S

j (according to ≺`) and v is the m-th action in V R
ij , then u≺rv if and

only if n = m.

(c) if (CAUS) holds, precisely the first r actions u in V S
j have a successor in Vi, i.e., meet

condition u ∈ ≤Vi. In particular, if s > r then V S
j \ ≤Vi 6= ∅.

Proof. (a) by (CG2), every action in V R
ij has precisely one ≺r-predecessor in V S

j but every
action in V S

j has at most one ≺r-successor in V R
ij ; this implies r ≤ s.

(b) ‘=⇒’: Among all pairs u, v that fulfill the precondition but have n 6= m consider w.l.o.g.
the one with smallest n. If n > m, denote with u′ the m-th action in V S

j . By u′≺`u≺rv and
(FIFO) we know that u′ has a ≺r-successor in V R

ij ; by the minimality of u, this successor is v.
Thus, v has two distinct ≺r-predecessors in V S

j , a contradiction. If n < m, denote with v′ the
n-th action in V R

ij . By (CG2) there exists a unique u′ ∈ V S
j such that u′≺rv′. The case u′≺`u

would contradict the minimality of u; if u′ = u then u would have two distinct ≺r-successors
in V R

ij , a contradiction; and if u≺`u′ then u≺`u′≺rv′ and (FIFO) would imply the contradiction
v≺`v′≺`v. Hence n = m. ‘⇐=’: by (CG2) there exists a unique u′ ∈ V S

j such that u′≺rv. By
‘=⇒’, u′ is the m-th action of V S

j , i.e., u = u′≺rv.
(c) Let u ∈ V S

j . If u is among the first r actions of V S
j then u ∈ ≤Vi by (b). If u is not

among the first r actions then (b) shows that there is no v ∈ Vi such that u≺rv (otherwise
v would have two ≺r-predecessors, a contradiction); by (CAUS) we then have u /∈ ≤Vi.

The following results shows that, in the two-party setting, every FIFO graph is also a causal
graph. This is consistent with a well-known result from distributed computing asserting that,
for two communicating parties, if the FIFO property holds then so does the causal property.

Lemma 2 (Two-party case: (FIFO) = (CAUS)). In the case N = 2, the notions of FIFO graph
and causal graph are equivalent.

Proof. Given a communication graph G = (V,≤, χ) we need to show that (FIFO) implies
(CAUS). Let thus v, w ∈ V S and w′ ∈ V R such that v < w≺rw′. We either have v ∈ V1 or
v ∈ V2. In the first case we apply the (FIFO) axiom and are done. In the second case we
necessarily have v≺`w′ and the (CAUS) axiom is fulfilled directly.

The following lemma establishes that prefixes of a causal graph are causal graphs themselves,
that each participant is only aware of the other participants’ sending actions that match his
own receiving actions, and that in every prefix the maximum actions of remote participants are
always sending actions.

Lemma 3 (Prefix properties). Given a causal graph G = (V,≤, χ), let i ∈ [1 .. N] and v ∈ Vi.
Write G(v) = (W,≤, χ). Then the following hold:

(a) G(v) is a causal graph.

(b) G(v) is balanced with respect to the receiving actions of participant i: |WR
ij | = |WS

j | for all
j ∈ [1 .. N] \ {i}.

(c) the last actions participant i sees of other participants are sending actions: maxWj ∈WS

for all j ∈ [1 .. N] \ {i}.

Proof. (a) Observe that for any u ∈ W we have ≤u ⊆ W and for any u ∈ V \ W we have
u≤ ∩W = ∅. Given this, verifying axioms (CG1)–(CG3) and (CAUS) is immediate.

48

(b) Observe that by Lemma 1(c) precisely the first |WR
ij | sending actions of WS

j belong to
≤Wi = ≤v.

(c) Let u = maxWj . If u ∈ WS there is nothing to prove. If u ∈ WR then by (CG2) u has
no ≺r-successor at all, in particular not in Wi, which is a contradiction.

4.3.2 Details of the Graph Addition

We proceed with working out the details of the addition operations for FIFO and causal graphs.
Lemmas 4 and 5 provide a characterizations of FIFO and causal graphs that clarify under which
conditions these graph types may be extended via their respective addition operations.

Lemma 4 (FIFO connectivity). In a FIFO graph G = (V,≤, χ), let (i, j) ∈ J1 .. NK. Consider
a sending action u ∈ V S

j and a receiving action v ∈ V R
ij , and let V ′i = <v ∩ Vi = ≺`v denote the

‘past’ of v within Vi. Then u and v are in ≺r relation if and only if all sending predecessors of u
in Vj are ‘received’ in V ′i , but u itself is not. Formally, u≺rv if and only if ≺`u ∩ V S ⊆ ≺rV ′i
and u /∈ ≺rV ′i .

Proof. ‘=⇒’: For all w ∈ ≺`u∩V S we have w≺`u≺rv and hence w ∈ ≺rV ′i by (FIFO). Further,
if we had u ∈ ≺rV ′i , then u would have two distinct ≺r-successors in Vi, a contradiction. Hence
u /∈ ≺rV ′i . ‘⇐=’: By (CG2) there exists u′ ∈ V S

j with u′≺rv; we need to show u′ = u. Indeed, if
u′≺`u then by assumption we have u′ ∈ ≺rV ′i ; as we also assume u /∈ ≺rV ′i , this shows u′ 6= u.

On the other hand, if u≺`u′ then by (FIFO) there exists v′ ∈ Vi such that u≺rv′≺`v,
contradicting u /∈ ≺rV ′i . Thus u′ = u.

Lemma 5 (Causal connectivity). In a causal graph G = (V,≤, χ), let (i, j) ∈ J1 .. NK. Consider
a sending action u ∈ V S

j and a receiving action v ∈ V R
ij , and let V ′i = <v ∩ Vi = ≺`v denote the

‘past’ of v within Vi. Then u and v are in ≺r relation if and only if all sending predecessors
of u are ‘known’ in V ′i , but u itself is not. Formally, u≺rv if and only if <u ∩ V S ⊆ ≤V ′i and
u /∈ ≤V ′i .

Proof. ‘=⇒’: For all w ∈ <u∩V S we have w < u≺rv and hence w ∈ ≤V ′i by (CAUS). Further,
if we had u ∈ ≤V ′i , then by (CAUS) there would exist v′ ∈ Vi such that u≺rv′≺`v, i.e., u would
have two distinct ≺r-successors in Vi, a contradiction. Hence u /∈ ≤V ′i . ‘⇐=’: By (CG2) there
exists u′ ∈ V S

j with u′≺rv; we need to show u′ = u. Indeed, if u′≺`u then by assumption we
have u′ ∈ ≤V ′i and by (CAUS) there exists v′ ∈ V ′i such that u′≺rv′. As necessarily v′≺`v
holds, u′ would have two distinct ≺r-successors in Vi, a contradiction. On the other hand, if
u≺`u′ then by (CAUS) there exists v′ ∈ Vi such that u≺rv′≺`v, contradicting u /∈ ≤V ′i . Thus
u′ = u.

We are now able to fully define the addition operations on graphs and formalize the details
of the + and ⊕ operations, i.e., the mappings +: Gfifo×X → Gfifo ∪{⊥} and ⊕ : Gcaus×X →
Gcaus ∪ {⊥}. In summary, adding a sending operation is always possible, and the graph is
augmented by extending the local (≺`) relation to include the edges connecting all actions of
the participant performing the action with this newly added action (below, all actions in Vi are
connected with sending action v∗). Adding a receiving operation, instead, is only possible if
the (FIFO) axiom, respectively, the (CAUS) axiom, are fulfilled and, in this case, the graph is
augmented by extending the local (≺`) relation as above, as well as the remote (≺r) relation
by adding the edge connecting the newly added (receiving) action with its matching sending
action (below, sending action u is connected with receiving action v∗).

Definition 16 (The + operation, or FIFO addition). Let G = (V,≤, χ) be a FIFO graph and
let x ∈ X. Let either x = (S, i) with i ∈ [1 .. N] or x = (R, i, j) with (i, j) ∈ J1 .. NK. Let

49

V ∗ = V ·∪ {v∗} where v∗ /∈ V is an auxiliary action and let χ∗ : V ∗ → X be an assignment that
coincides with χ on V and additionally maps v∗ 7→ x. Let ≺`′ = ≺` ∪(Vi × {v∗}). To define
operations

G+ (S, i) and G+ (R, i, j)
we distinguish the following three cases:

• if x = (S, i) we set G+ x = (V ∗,≤∗, χ∗) where ≤∗= (≺`′ ∪ ≺r ′)∗ with ≺r ′ = ≺r;

• if x = (R, i, j) and there exists u ∈ V S
j \ ≺rVi such that ≺`u ∩ V S ⊆ ≺rVi we set G + x =

(V ∗,≤∗, χ∗) where ≺r ′ = ≺r ∪ {(u, v∗)};

• otherwise, we set G+ x = ⊥.

Definition 17 (The ⊕ operation, or causal addition). Let G = (V,≤, χ) be a causal graph and
let x ∈ X. Let either x = (S, i) with i ∈ [1 .. N] or x = (R, i, j) with (i, j) ∈ J1 .. NK. Let
V ∗ = V ·∪ {v∗} where v∗ /∈ V is an auxiliary action and let χ∗ : V ∗ → X be an assignment that
coincides with χ on V and additionally maps v∗ 7→ x. Let ≺`′ = ≺` ∪(Vi × {v∗}). To define
operations

G⊕ (S, i) and G⊕ (R, i, j)
we distinguish the following three cases:

• if x = (S, i) we set G⊕ x = (V ∗,≤∗, χ∗) where ≤∗ = (≺`′ ∪ ≺r ′)∗ and ≺r ′ = ≺r;

• if x = (R, i, j) and there exists u ∈ V S
j \ ≤Vi such that <u ∩ V S ⊆ ≤Vi we set G ⊕ x =

(V ∗,≤∗, χ∗) where ≤∗ = (≺`′ ∪ ≺r ′)∗ and ≺r ′ = ≺r ∪ {(u, v∗)};

• otherwise, we set G⊕ x = ⊥.

To establish the well-definedness of Definition 16 we need to show that if G ∈ Gfifo then
G′ = G + x 6= ⊥ implies G′ ∈ Gfifo. This clearly holds in the x = (S, i) case (performing a
sending can never violate the (FIFO) property). The x = (R, i, j) case is covered by Lemma 4
(where V ′i takes the role of Vi). Similarly, we need to show that if G ∈ Gcaus then G′ = G⊕x 6= ⊥
implies G′ ∈ Gcaus for Definition 17 to be well-defined. The x = (S, i) case is immediate (sending
cannot violate the (CAUS) property either), while the x = (R, i, j) case is covered by Lemma 5.

We proceed with studying important relations between the operations + and ⊕ that will be
needed in the next chapters. First of all, we show that among the two, ⊕ is the strictly stronger
operation, i.e., whenever adding an operation with ⊕ is admissible, then adding it with + is
also admissible.

Lemma 6 (⊕ implies +). Let G = (V,≤, χ) be a causal graph and let x ∈ X be an action such
that G⊕ x 6= ⊥. Then G+ x = G⊕ x.

Proof. We first prove that G+ x 6= ⊥ and, in a second step, we will show that G+ x = G⊕ x.
If x = (S, i) there is nothing to prove because as adding a sending action is always possible.
Let x = (R, i, j). By the hypothesis that G ⊕ (R, i, j) 6= ⊥ we know from Definition 17 that
there exists an action u ∈ V S

j \ ≤Vi such that <u ∩ V S ⊆ ≤Vi. By definition of the ≺r relation
it follows that ≺rVi is a subset of ≤Vi (this holds for communication graphs in general and for
FIFO and causal graphs in particular), and hence the action u belongs to the set V S

j \ ≺rVi.
Since G is a causal graph, it follows from Lemma 7 that ≤Vi ∩ V S ⊆ Vi ∪ ≺rVi. The latter
relation immediately implies that ≺`u ∩ V S ⊆ <u ∩ V S ⊆ ≺rVi and concludes the first part of
the proof. For proving that G + x and G ⊕ x are the same graph note that they are obtained
from the same graph G = (V,≤, χ) by adding, in both cases, a node v∗ to V and the same pairs
to the relation ≤ (this is evident by inspecting the details of Definitions 16 and 17).

50

The following Lemma (used in the proof of Lemma 6) establishes that, in a causal graph,
the sets of sending actions that ‘eventually reach’ a given participant (i.e., the set ≤Vi if i is the
participant in question) consists of the actions of that participant (i.e., Vi) and those that ‘di-
rectly reach’ that participant (i.e., ≺rVi). This basically means that if there is a sending action v
that causally precede (or ‘happens before’) some action in Vi, then Party i should be aware of
this sending: either Party i performed action v on its own, or it performed the corresponding
receiving actions w such that v≺rw. This is a direct consequence of Axiom (CAUS).

Lemma 7. Let G = (V,≤, χ) be an N -party causal graph. Then for all i ∈ [1 .. N] it holds
≤Vi ∩ V S ⊆ Vi ∪ ≺rVi.

Proof. Let v ∈ ≤Vi∩V S . If v ∈ Vi the statement is trivially fulfilled. Assume v /∈ Vi. Then there
exist actions w ∈ V S and w′ ∈ V R

i such that v ≤ w≺rw′. If v = w we are done. Otherwise, it
follows by Axiom (CAUS) that either v≺`w′ which contradicts the assumption v /∈ Vi, or there
exists v′ ∈ V R : v≺rv′≺`w′, which implies that v ∈ ≺rVi and concludes the proof.

4.3.3 Incrementing a graph’s prefix

In Lemma 8 we study how the augmentation of a causal graph using the ⊕ operation is perceived
by the individual participants (recall that the (i)-prefix of a causal graph G represents only the
part of G that Party i is aware of, so while some increments will be reflected in the updated G(i),
others will not). The latter result plays a key role in proving correctness and security of our
channel construction from Chapter 6.

We first introduce the following notion of ‘projected characteristic’, which describes the
actions performed (locally) by a specific participant. Concretely, the projected characteristic of
Party i is simply the string obtained by concatenating the characteristics of all actions in Vi,
according to the order in which these actions occur. Then, we use this notion directly in
Lemma 8.

Definition 18 (Projected characteristic). Let G = (V,≤, χ) be a communication graph, let i ∈
[1 .. N], and let Vi = {vi,1, . . . , vi,ni} such that vi,1≺` . . .≺`vi,ni and ni = |Vi|. The projection
χi : G → X∗ is defined such that χi(G) = χ(vi,1) . . . χ(vi,ni).

We have seen under which conditions it is possible to add an action to a causal graph and
how the resulting graph looks like. The following lemma describes how each prefix of the graph
is modified by this addition. With other words, it says which participants are affected by the
newly added action and how their view of the ongoing communication changes. Briefly, it
formalizes the following intuitive facts: (i) the added action is only visible to the participant
that performs it, (ii) a sending action increments the participant’s prefix by one action, namely
the action itself, and (iii) a receiving action always increments the participant’s prefix by two
actions, i.e., the action itself and the matching sending action of the alleged sender, and if the
alleged sender performed some receiving operations these are also added to the graph prefix.

Lemma 8 (Incrementing prefix). Let G be a causal graph. Let x ∈ X be an action such that
also G′ = G⊕ x is a causal graph. Then the following statements hold.

(a) If x = (R, i, j) for some (i, j) ∈ J1 .. NK, there exists a string Ij = ι1 ‖ . . . ‖ ιt ∈ [1 .. N]∗
such that

χj
(
G′(i)

)
= χj

(
G(i))‖(R, j, ι1)‖ . . .‖(R, j, ιt)‖(S, j) .

51

(b) For all i ∈ [1 .. N] we have

G′(i) =

G(i) if x /∈ Xi

G(i) ⊕ (S, i) if x = (S, i)
G(i) ⊕ (R, j, ι1)⊕ . . .⊕ (R, j, ιt)⊕ (S, j)⊕ (R, i, j) if x = (R, i, j) ,

where in the third line we use the assignment of ι1, . . . , ιt from (a).

Proof. Cases x /∈ Xi and x = (S, i) of (b) are clear by Definition 17. We hence assume x =
(R, i, j) and prove (a) and the remaining part of (b) together. Write G = (V,≤, χ) and G′ =
(V ′,≤, χ) and G(i) = (W,≤, χ) and G′(i) = (W ′,≤, χ). Let v = max V ′i be the action added by
the ⊕ operation, and let w = maxWj and w′ = maxW ′j . Consider set ∆ = (W ′ \ {v}) \W by
which G(i) is extended by the ⊕ operation, not counting v. From Lemma 3(b) we know that
precisely one action in ∆ is a sending action (otherwise, corresponding receiving actions would
be missing in V ′i); by Lemma 3(c), this action is w′. As all remaining actions of ∆ are in W ′R,
again using Lemma 3(c), we deduce ∆ ⊆W ′j . More precisely, we can write ∆ = {v1, . . . , vt, w

′}
such that w≺`v1≺` . . .≺`vt≺`w′. This shows (a).

It remains to show that the sequence of ⊕ operations in (b) is admissible. To see this, let
uk = ω(vk) for all k and observe that the admissibility condition from Lemma 5 is in fact a
characterization, and that it depends only on the predecessors of uk and vk. That is, observation
u1, . . . , ut ∈W and an inductive argument show that for 1 ≤ k ≤ t the corresponding ‘⊕(R, j, ιk)’
operation will not fail.

52

Chapter 5
FIFO Channels

In this chapter we develop functionality and security for FIFO channels. We then show how to
construct secure FIFO channels from simpler cryptographic building blocks.

5.1 Introduction

Cryptographic analyses of real-world channel protocols like the TLS record protocol [DR08] and
SSH Binary Packet Protocol [YL06] usually model secure channels as stateful authenticated
encryption primitives [BKN02, JKSS12, BSWW13]. We note, however, that although stateful
encryption was introduced for analyzing (and improving) the bidirectional SSH protocol, the
notion is rather an approximation of a unidirectional channel.

A bidirectional channel can be constructed by running two instances of a unidirectional
channel in reverse directions. That is, messages from Alice to Bob are sent through the one
channel, and messages from Bob to Alice through the other. We call this construction the
canonic composition of two unidirectional channels. Bidirectional channel protocols that follow
this paradigm include TLS and SSH. For instance, the TLS handshake establishes a total of
four keys to be used by the TLS record layer: two keys to protect against message tampering
and eavesdropping in the one direction, and two keys to protect the reverse direction. When
using this approach it might seem plausible that any desired level of confidentiality and integrity
of the composed channel could be achieved by choosing sufficiently confidential and integrous
unidirectional channels. For instance, for obtaining confidentiality against active adversaries
in the bidirectional case, it might seem that requiring IND-CCA security (Chapter 2) of the
unidirectional channels would suffice. This intuition turns out to be wrong in general, as the
following example illustrates.

Canonic composition of unidirectional channels and its (in)security. Consider an
instant messaging service that allows registered users, after authenticating with a password, to
chat with any other user of the service. Alice and Bob engage in a conversation. Since Alice cares
about privacy, she insists on running the service over a bidirectional cryptographic channel that
offers confidentiality against active attacks. If Alice and Bob follow the canonic composition
paradigm and communicate using two independent IND-CCA-secure unidirectional channels, do
they achieve the desired level of security? They do not. Indeed, assume the encryption system
is such that the adversary is able to inject ciphertexts that decrypt to messages of her choice.1
Under this condition, here is how the adversary proceeds (see Figure 5.1 for an illustration). It

1This assumption does not contradict a pure confidentiality notion: IND-CCA security only requires that the
outputs of the decryption algorithm in case of an active attack be independent of the encrypted messages.

53

delivers in the B → A direction a ciphertext that Alice decrypts to ‘please authenticate’; Alice
answers by sending her password over the A→ B channel; as Alice’s message comes unexpected
and Bob cannot make sense out of it, he puts the password on public display; the adversary
learns it from there.

A
auth!

pw
pw

Alice Bob

c̃

c

Figure 5.1: A confidentiality attack against the canonic composition of two IND-CCA-secure unidirec-
tional channels. In the figure time evolves bottom-up (dashed lines). Recall from Chapter 4 that nodes
marked as represent sending actions and nodes marked as represent receiving actions.

Intuitively, a bidirectional channel with confidentiality against active adversaries should
prevent this attack from working (more precisely: it does not have to identify and report the
attack but ensure that any information that Bob recovers under attack and potentially makes
public be independent of what Alice sent). Evidently, the canonic composition falls short in
providing this kind of protection. As the described attack involves tampering with ciphertexts,
one could come to the conclusion that requiring the unidirectional channels to provide integrity
in addition to confidentiality would solve the problem. Is this change sufficient? Is it necessary?
Does this approach resolve all possible issues arising in bidirectional communication? We do
not question that adding integrity protection to a symmetric channel is a good idea in general.
However, making integrity a necessary part of the model also obstructs the view on the core of
its security properties. We believe that rigorously answering the above questions is impossible
without first defining/understanding what security actually means in the bidirectional case.

Having in mind the goal of understanding secure communication between two interacting
participants, we go one step further and envision a multi-party scenario where an arbitrary
number of users interact with all the other users. For this we propose the notion of a broad-
cast channel, allowing a group of participants to exchange messages securely in a broadcast
fashion: all participants may transmit, and all transmissions target the whole group (as op-
posed to individuals). Such a setting is standard, for example, in Internet chat rooms, but also
automated communication systems, e.g., interconnected bank computers, rely on such infras-
tructure. Clearly, the notion of bidirectional channel is a special case of broadcast channel that
supports two participants.

In the next two chapters we exclusively consider broadcast channels, i.e., sending operations
always target all participants (except the sender itself).

5.2 Syntax and Functionality
A FIFO channel should allow two or more parties to communicate securely in a broadcast
fashion. As a natural generalization of channels that run on top of a reliable network like
TCP/IP, we expect the following delivery guarantee for the users of a FIFO channel: for any pair
of participants, the messages sent by one of the participants are received by the other participant
in the same order they were sent. Thus, we assume that FIFO channels run on top of a FIFO

54

broadcast network (Chapter 4). Going one step ahead, we require that FIFO channels preserve
the delivery guarantees of the underlying network as long as no active adversary tampers with
the transmission.

We introduce the syntactical model for FIFO channels in the next definition.

Definition 19 (Syntax of FIFO channels). A FIFO channel with associated data space AD,
message space M , ciphertext space C , and state space S is a tuple Ch = (Init, Send,Recv) of
efficient algorithms as follows:

• Init. The initialization algorithm takes a security parameter 1λ and an integer N , and
outputs initial states st1, . . . , stN ∈ S . We write (st1, . . . , stN)←$ Init(1λ, N).

• Send. The sending algorithm takes as input a state st ∈ S , associated data ad ∈ AD, and
a message m ∈ M , and outputs a state st ′ ∈ S and a ciphertext c ∈ C or c = ⊥. We write
(st ′, c)←$ Send(st, ad,m).

• Recv. The receiving algorithm takes a state st ∈ S , an origin indicator j ∈ [1 .. N],
associated data ad ∈ AD, and a ciphertext c ∈ C , and outputs a state st ′ ∈ S and a
message m ∈ M or m = ⊥. We write (st ′,m)←$ Recv(st, j, ad, c). In case m = ⊥ we say
that the algorithm rejects; otherwise, we say that it accepts.

We assume that upon returning a decryption error m = ⊥ the algorithm Recv enters an er-
ror state and sets st ′ = ⊥; we further require that, on input ‘state’ ⊥, both Send and Recv
output (⊥,⊥).

If required, both the send and the receive operations can also take associated data [Rog02]
that is assumed to match on both sides. Note that our syntax also allows Send to reject.
For simplicity, if an error occurs (this is notified by outputting the distinguished symbol ⊥)
we instruct the channel algorithms to reject all subsequent invocations by setting the state
variable to st = ⊥. This reflects the reasonable behavior of (cryptographic) applications which,
upon being notified of an error, erase all current state information and refuse to process all
further input.2 In principle, one could extend the model and allow Send and Recv to output
distinguishable errors from an error space E (such that |E | > 1 similarly to the syntax of
stream-based channels from Chapter 3).

Correctness for FIFO channels mirrors the guarantees induced by the assumed underlying
network (FIFO broadcast, see Chapter 4). Intuitively, if participants schedule their sending and
receiving actions according to a FIFO order, then they can recover all messages transmitted
using Send by feeding the corresponding ciphertexts to Recv. We make this condition precise
in the following definition, which heavily relies on the formalism developed in Chapter 4. More
explicitly, we translate that ‘users schedule their sending and receiving actions according to a
FIFO order’ by modeling honest communication patterns as FIFO graphs. Given such a graph,
we run sequentially Send and Recv for each of its sending and receiving actions, respectively,
according to an arbitrary enumeration of the graph’s actions—this ensures that the scheduled
communication does satisfy the FIFO property— in a way that every ciphertext c[v] output
by Send for a given action v is processed by Recv on the matching receiving action w, i.e., such
that v≺rw (for the meaning of the symbol ≺r see Chapter 4). Then, we define correctness in
the natural way: messages input to Send and messages output by Recv on matching actions
coincide.

2We could also have opted for a more general syntax at the cost of introducing unnecessary complexity to the
integrity experiments. Instead, we opted for excluding syntactically from our treatment all channels that keep
processing their input after the first errors.

55

Definition 20 (Correctness of FIFO channels). Let Ch = (Init,Send,Recv) be a FIFO channel
with associated data space AD, message space M , ciphertext space C , and state space S . Let
G = (V,≤, χ) be an N -party communication graph and for n = |V | let e : [1 .. n] → V be an
enumeration of (V,≤). Consider arbitrary assignments α : V S → AD and µ : V S → M of
sending actions to associated data and messages. Denote by c[] and m[] associative arrays
that map V S → C and V R → M , respectively. Recall from Definition 12 (on page 43) that
ω : V R → V S denotes the originator mapping. Consider the following procedure:

01 Initialize states (st1, . . . , stN)←$ Init(1λ, N)
02 Process the actions v ∈ V in order v1 = e(1), . . . , vn = e(n) according to the rules:
03 – if χ(v) = (S, i) then set (sti, c[v])←$ Send(sti, α(v), µ(v))
04 – if χ(v) = (R, i, j) then set (sti,m[v])←$ Recv(sti, j, α(ω(v)), c[ω(v)])

We say that a FIFO channel Ch is correct if for every FIFO graph G ∈ Gfifo, for all e, α, µ, and
for all choices of the randomness for Init, Send, and Recv, the Recv algorithm in the procedure
above correctly recovers all sent messages, i.e., for all v ∈ V R we have m[v] = µ(ω(v)).

5.3 Defining Security for FIFO Channels
In this section we describe and formalize the expected security properties for FIFO channels.
Intuitively, a FIFO channel should add cryptographic protection to a FIFO broadcast network.
We model this by extending the security notions for stateful authenticated encryption (Chap-
ter 2) to a setting where multiple parties interact with each other. Throughout this section
we develop indistinguishability and integrity games in which an adversary A interacts with the
Send and Recv algorithms through oracles. Following the approach of Bellare et al. [BKN02],
in the indistinguishability game we let the adversary query a left-or-right and a receiving oracle
on arbitrary chosen message pairs and chosen ciphertexts respectively. Clearly, some of the
queries to the receiving oracle would lead to trivial wins, and we need to instruct the oracle
to suppress the output of Recv in this case. Thus, the challenge here is to determine which
receiving queries shall be considered ‘passive’ (a.k.a. ‘in-sync’). Similarly, in the integrity game
we need to translate what it means to violate plaintext integrity or ciphertext integrity in the
FIFO setting.

From stateful encryption (a.k.a. unidirectional channels) to FIFO channels. We
formalize security for FIFO channels by first identifying what an active attack is. Recall that
in the case of stateless encryption an adversary is active if it tampers with the sent ciphertexts.
In stateful encryption, an adversary is active also if it tampers with the order of the sent
ciphertexts; indeed, delivering ciphertexts in a different order than the sending order violates
the properties of the network underlying a stateful encryption scheme and, thus, represents an
active measure of the adversary. The same holds for FIFO channel: an adversary has to be
considered active not only if it modifies a ciphertext but also if it submits sending and receiving
queries that violate the FIFO ordering properties. This observation is the leading principle
behind our security notions for FIFO channels, as we explain next.

In Figure 5.2 we specify the experiments of indistinguishability under chosen-plaintext at-
tacks (F-IND-CPA) and under chosen-ciphertext attacks (F-IND-CCA) for FIFO channels.
Given the experiments, we define security as follows.

Definition 21 (Indistinguishability for FIFO channels). For atk ∈ {cpa,cca} we say that
a FIFO channel Ch offers atk-indistinguishability if for all efficient adversaries A and all

56

polynomials N = N(λ) the following advantage function is negligible,

Advf-ind-atk
Ch,N,A (λ) :=

∣∣∣Pr
[
Exptf-ind-atk,1

Ch,N,A (1λ) = 1
]
− Pr

[
Exptf-ind-atk,0

Ch,N,A (1λ) = 1
]∣∣∣ .

We abbreviate indistinguishability under chosen-plaintext attacks (cpa-indistinguishability) and
indistinguishability under a chosen-ciphertext attacks (cca-indistinguishability) for FIFO chan-
nels by writing F-IND-CPA and F-IND-CCA, respectively.

Exptf-ind-cpa,b
Ch,N,A (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (st1, . . . , stN)←$ Init(1λ, N)
04 b′ ←$ AOLoR,O∗Recv(1λ)
05 Terminate with b′

OLoR(i, ad,m0,m1):
06 Require |m0| = |m1|
07 (sti, c)←$ Send(sti, ad,mb)
08 G← G+ (S, i) with v
09 Q[v]← (ad, c)
10 Return c to A

O∗Recv(i, j, ad, c):
11 G← G+ (R, i, j) with v
12 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
13 Terminate with 0
14 Else:
15 (sti,m)←$ Recv(sti, j, ad, c)
16 Return � to A

Exptf-ind-cca,b
Ch,N,A (1λ):

17 G← (∅, ∅, ∅)
18 Q[]← ∅
19 active1 ← · · · ← activeN ← 0
20 (st1, . . . , stN)←$ Init(1λ, N)
21 b′ ←$ AOLoR,O∗Recv(1λ)
22 Terminate with b′

OLoR(i, ad,m0,m1):
23 Require |m0| = |m1|
24 (sti, c)←$ Send(sti, ad,mb)
25 If activei = 0:
26 G← G+ (S, i) with v
27 Q[v]← (ad, c)
28 Return c to A

O∗Recv(i, j, ad, c):
29 G′ ← G+ (R, i, j) with v
30 If G′ = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
31 activei ← 1
32 (sti,m)←$ Recv(sti, j, ad, c)
33 If activei = 1:
34 Return m to A
35 Else:
36 G← G′

37 Return � to A

Figure 5.2: Indistinguishability experiments for FIFO channels. We assume that once a query results
in state sti being set to ⊥, then no further queries for that participant are accepted; this is without loss
of generality, as the channel algorithms would always reject for that participant. We further assume
(i, j) ∈ J1 .. NK, ad ∈ AD, m0,m1 ∈ M , and c ∈ C for all such values provided by the adversary. When
writing ‘G+x with v’ we use v as a placeholder for the node that is newly added to the FIFO graph G in
case the operation G+ x does not fail. We use sending actions as indices for the associative array Q[].
A flag activei per participant is kept to register the participants that are affected by an active measure of
the adversary (in which case activei = 1).

In the following we give rationale about our experiments.

Chosen-plaintext adversaries. Consider first the F-IND-CPA game (Figure 5.2) which
models confidentiality against passive adversaries. For simplicity, ignore the associated data
for now. Our formalization loosely follows the left-or-right approach for stateful encryption of
Bellare et al. [BKN02]. In more detail, the oracle OLoR takes a participant identifier i and two
messages, m0 and m1, and returns the ciphertext c obtained by invoking the Send algorithm
for the participant indicated by i, on input mb, where b is a challenge bit the adversary has to
guess. Importantly, the participant’s state, sti, is maintained between queries. The oracle O∗Recv
gives access to the Recv algorithm. Note, however, that it does not respond with the recovered
message m, but instead with the special suppression symbol �. The reason why a receiving
oracle, although having no useful output, is still meaningful in the experiment is that it allows

57

the adversary to advance the state of participants (this is crucial in the considered setting where
participants are both senders and receivers).3

Observe that the F-IND-CPA notion shall protect against passive adversaries only, i.e.,
against attacks in which all ciphertexts presented to O∗Recv are faithfully forwarded from the
OLoR oracle. More precisely, a passive attack in a FIFO network requires that no bit of any
ciphertext be flipped, ciphertexts not be replayed, and ciphertexts not be reordered; the latter
particularly includes the FIFO order of actions. The task of lines 12–13 is to ensure that the
attack remains passive, and to otherwise abort the experiment without giving an advantage to
the adversary. To implement this, we record the actions carried out throughout the experiment
in a FIFO graph G (lines 01, 08 and 11); in line 09, for each sending action we further record the
corresponding ciphertexts in the associative array Q[]. Note that the condition for passiveness
(line 12) requires that the FIFO order of events not be violated (this is tested via G 6= ⊥) and
that the queried ciphertext c be identical to the ciphertext associated to the sending action
ω(v) that corresponds with the current receiving action v. The actual experiment includes an
associated data field ad that the adversary can choose. Note that in this case passive behavior
also requires that the ad strings remain consistent (lines 09 and 12).

Chosen-ciphertext adversaries. Let us next discuss the F-IND-CCA experiment (Fig-
ure 5.2) which extends F-IND-CPA to also handle active attacks on confidentiality. We introduce
a variable activei for each participant i ∈ [1 .. N] that indicates whether an active measure of the
adversary against participant i occurred (line 31, see also the discussion on F-IND-CPA above).
If the participant was not exposed to active behavior before, similarly to the F-IND-CPA game,
the message output is suppressed; this is indicated by returning � to A (line 37). Otherwise, the
message is given to the adversary (line 34).4 Observe that our game specification ensures that
in G only the passive part of an attack is recorded (indeed, here G records only the ‘passive
part’ of the communication schedule by the adversary and it is used as a mean to determine
when the output of Recv shall be suppressed).

In Figure 5.3 we specify the experiments of integrity of plaintexts (F-INT-PTXT) and of
ciphertexts (F-INT-CTXT) for FIFO channels.

Definition 22 (Integrity for FIFO channels). For atk ∈ {ptxt,ctxt} we say that a FIFO
channel Ch offers atk-integrity if for all efficient adversaries A and all polynomial N = N(λ)
the following advantage function is negligible,

Advf-int-atk
Ch,N,A (λ) :=

∣∣∣Pr
[
Exptf-int-atk

Ch,N,A (1λ) = 1
]∣∣∣ .

We abbreviate the notions of integrity of plaintexts (ptxt-integrity) and of integrity of cipher-
texts (ctxt-integrity) for FIFO channels by writing F-INT-PTXT and F-INT-CTXT, respec-
tively.

We move on to describing our experiments for integrity of ciphertexts and messages, F-
INT-PTXT and F-INT-CTXT (Figure 5.3). They are similar to the F-IND-CPA and F-IND-
CCA experiments described above, but without the mechanisms for left-or-right sending and

3In works like [BKN02] that focus on channels with either-sender-or-receiver functionality, in the definition
of confidentiality against passive adversaries a receiving oracle is redundant and thus not annotated in the
experiment. We give an example for why in our case it is necessary: Assume a channel in which the first Recv
invocation of a participant makes all later Send invocations of the same participant append vital key material to
its ciphertext output. Such a scheme is clearly not secure against passive adversaries but, in a model that lacks
a receiving oracle, the corresponding attack cannot be expressed.

4This is in line with notions of stateless encryption (where requesting the decryption of arbitrary ciphertexts
is allowed with the exception of challenge ciphertexts) and stateful encryption [BKN02] (where the decryption
oracle becomes functional once the sequence of received ciphertexts gets ‘out-of-sync’).

58

Exptf-int-ptxt
Ch,N,A (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (st1, . . . , stN)←$ Init(1λ, N)
04 AOSend,ORecv(1λ)
05 Terminate with 0

If A queries OSend(i, ad,m):
06 (sti, c)←$ Send(sti, ad,m)
07 G← G+ (S, i) with v
08 Q[v]← (ad,m)
09 Return c to A

If A queries ORecv(i, j, ad, c):
10 (sti,m)←$ Recv(sti, j, ad, c)
11 If m = ⊥: Return ⊥ to A
12 Else:
13 G← G+ (R, i, j) with v
14 If G = ⊥ ∨ (ad,m) 6= Q[ω(v)]:
15 Terminate with 1
16 Return m to A

Exptf-int-ctxt
Ch,N,A (1λ):

17 G← (∅, ∅, ∅)
18 Q[]← ∅
19 (st1, . . . , stN)←$ Init(1λ, N)
20 AOSend,ORecv(1λ)
21 Terminate with 0

If A queries OSend(i, ad,m):
22 (sti, c)←$ Send(sti, ad,m)
23 G← G+ (S, i) with v
24 Q[v]← (ad, c)
25 Return c to A

If A queries ORecv(i, j, ad, c):
26 (sti,m)←$ Recv(sti, j, ad, c)
27 If m = ⊥: Return ⊥ to A
28 Else:
29 G← G+ (R, i, j) with v
30 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
31 Terminate with 1
32 Return m to A

Figure 5.3: Integrity experiments for FIFO channels. We assume that once a query results in state sti
being set to ⊥, then no further queries for that participant are accepted. We further assume (i, j) ∈
J1 .. NK, ad ∈ AD, m ∈ M , and c ∈ C for all such values provided by the adversary. When writing ‘G+x
with v’ we use v as a placeholder for the node that is newly added to the FIFO graph G in case the
operation G+ x does not fail. We use sending actions as indices for the associative array Q[].

suppressed receiving. The adversary is deemed successful if it exhibits active behavior that is
not identified as such by the Recv algorithm. More precisely, an attack on plaintext integrity
(F-INT-PTXT) is successful if a pair of ciphertext and associated data processed by Recv
produces a valid message and either this message or the associated data is not genuine, or they
are delivered in the wrong order (lines 14–15). Our definition of ciphertext integrity (F-INT-
CTXT) is similar: here, beside the delivery in the right causal order, this time the combinations
of ciphertext and associated data accepted by the Recv algorithm need to be genuine. Note that
this is in line with established notions of stateful authenticated encryption [BKN02] where, to
capture replay and reordering attacks, ciphertexts need to be delivered to ORecv in precisely the
same order in which they are generated by the OSend oracle. Our integrity notions naturally
generalize reordering attacks to the setting of FIFO networks in which the notion of reordering
is broader.

Finally, as a technical note, observe that while generally in our integrity games the graph G
keeps track of the events occurring in the experiment, it does not record the deliveries which are
rejected by Recv. This means that G does not reflect the entire communication scheduled by
the adversary. In fact, the graph G here serves as tool to detect whether A violates the FIFO
property. This is in line with the confidentiality experiments: there, an action is recorded in G
only if the corresponding query is declared ‘passive’ (further, to ensure that the attack stays
passive, the F-IND-CPA game penalizes the adversary if an active query is ever posed).

5.4 Relations Among Notions

We study the relations among our security notions for FIFO channels. A close inspection of
the experiments from Figures 5.2 and 5.3 shows that confidentiality against active adversaries
implies confidentiality against passive adversaries, and that ciphertext integrity implies message

59

integrity. Intuitively, F-IND-CCA =⇒ F-IND-CPA and F-INT-CTXT =⇒ F-INT-PTXT. The
converse implications do not hold.5 This is in line with corresponding results for stateless
encryption [BDJR97] and stateful encryption [BKN02].

The F-INT-CTXT notions ensures that the accepting invocations of Send and Recv do
not involve manipulated ciphertexts or associated data and follow the corresponding order
relation. As a cryptographic tool they aim at restricting the adversary to passive behavior.
Thus, intuitively, if a channel offers ciphertext integrity then the active and passive notions of
confidentiality imply each other. Put differently, if a FIFO channel offers F-INT-CTXT and F-
IND-CPA security then it is also F-IND-CCA-secure. Theorem 5 captures this important result.
It is akin to findings in the contexts of stateless and stateful authenticated encryption [BN00,
BKN02].

Theorem 5 (F-IND-CPA ∧ F-INT-CTXT =⇒ F-IND-CCA). Let Ch be a FIFO channel that
offers integrity of ciphertexts and indistinguishability under chosen-message attacks. Then Ch
also offers indistinguishability under chosen-ciphertext attacks. More precisely, for every effi-
cient adversary A there exist efficient adversaries B and C such that

Advf-ind-cca
Ch,N,A (λ) ≤ 2 ·Advf-int-ctxt

Ch,N,B (λ) + Advf-ind-cpa
Ch,N,C (λ) .

BOSend,ORecv
b (1λ):

01 b′ ←$ AOLoR,O∗Recv(1λ)
02 Terminate with 0

OLoR(i, ad,m0,m1):
03 Require |m0| = |m1|
04 c←$ OSend(i, ad,mb)
05 Return c to A

O∗Recv(i, j, ad, c):
06 m←$ ORecv(i, j, ad, c)
07 If m = ⊥:
08 return ⊥ to A
09 Else:
10 Return � to A

COLoR,O∗Recv(1λ):
11 G← (∅, ∅, ∅), Q[]← ∅
12 active1 ← · · · ← activeN ← 0
13 b′ ←$ AOLoR,O∗Recv(1λ)
14 Terminate with b′

OLoR(i, ad,m0,m1):
15 Require |m0| = |m1|
16 c←$ OLoR(i, ad,m0,m1)
17 If activei = 0:
18 G← G+ (S, i) with v
19 Q[v]← (ad, c)
20 Return c to A

O∗Recv(i, j, ad, c):
21 G′ ← G+ (R, i, j) with v
22 If G′ = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
23 activei ← 1
24 If activei = 1:
25 Return ⊥ to A
26 Else:
27 � ← O∗Recv(i, j, ad, c)
28 G← G′

29 Return � to A

Figure 5.4: Security reductions Bb and C used in the proof for F-IND-CPA ∧ F-INT-CTXT =⇒
F-IND-CCA (see Theorem 5).

Proof. Let E0,b
A denote the F-IND-CCA experiment from Figure 5.2 against Ch, and let Pr[E0,b

A]
be a shortcut for the probability Pr[E0,b

A (1λ) = 1]. We proceed via game-hopping. Let us define
experiment E1,b

A from E0,b
A by replacing line 34 (on page 57) with the instruction ‘Terminate

with 0’. For b ∈ {0, 1} let badb denote the events that, during an execution of either game E0,b
A

or game E1,b
A , the adversary triggers the instruction of line 34 (on page 57). By construction we

have Pr[E0,b
A ∧¬badb] = Pr[E1,b

A ∧¬badb], and hence we can bound |Pr[E0,b
A]−Pr[E1,b

A]| ≤ Pr[badb].
5This is best seen by considering channels that are constructed from other channels by appending a redundant

zero-bit to each ciphertext; this transformation preserves the F-IND-CPA and the F-INT-CTXT notions but
allows easily breaking the corresponding F-IND-CCA and F-INT-CTXT notions.

60

Now we build two adversaries, B0 and B1, whose ctxt-advantage is related to the probability
that A triggers events bad0 and bad1 respectively. Adversary Bb emulates a left-or-right oracle
using its own sending oracle: if A queries OLoR on input (i, ad,m0,m1) then Bb asks (i, ad,mb)
to OSend and forwards the oracle answer to A; similarly, Bb uses oracle ORecv to answer queries
that A poses to O∗Recv. A full specification of Bb’s code is given in Figure 5.4. Observe that Bb
performs a perfect simulation of game E1,b

A as long as event badb does not occur; however, if
badb happens then Bb breaks ciphertext integrity. This implies Pr[badb] ≤ Advf-int-ctxt

Ch,N,Bb
(λ).

Consider now an adversary B which tosses a coin and then runs B0 or B1 according to the
outcome. By construction, B’s advantage is the average of B0 and B1’s advantages, hence
Advf-int-ctxt

Ch,B (λ) ≥ Pr[bad0 ∧ d = 0] + Pr[bad1 ∧ d = 1] = 1
2 · Pr[bad0] + 1

2 · Pr[bad1]. We can
now derive the following bound for A’s advantage in the original game:

Advf-ind-cca
Ch,N,A (λ) =

∣∣∣Pr
[
E0,1
A

]
− Pr

[
E0,0
A

]∣∣∣
≤
∣∣∣Pr

[
E0,1
A

]
− Pr

[
E1,1
A

]∣∣∣+ ∣∣∣Pr
[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣+ ∣∣∣Pr
[
E1,0
A

]
− Pr

[
E0,0
A

]∣∣∣
≤ Pr

[
bad1

]
+
∣∣∣Pr

[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣+ Pr
[
bad0

]
≤ 2 ·Advf-int-ctxt

Ch,N,B (λ) +
∣∣∣Pr

[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣ .
It remains to prove that chosen-message power suffices to perform a faithful simulation of
game E1,b

A . To this end we construct an adversary C (Figure 5.4) that emulates game E1,b
A using

the oracles provided by the F-IND-CPA game. Briefly, C maintains a communication graph G to
keep track of the adversarially scheduled communication, relays A’s sending queries to its left-
or-right oracle (OLoR executes the same instructions in the F-IND-CPA and F-IND-CCA games)
and registers pairs (ad, c) corresponding to each sending query. If A asks a receiving query then
C determines if this query is passive (a.k.a. in-sync) or active (a.k.a. out-of-sync): in the first
case C forwards the query to its receiving oracle (to advance the participant’s state) and returns
the suppression symbol ‘�’ to A; in the second case, it answers directly by returning the error
symbol ‘⊥’. To detect active queries, C keeps for each user i a flag activei ← 0 (as done in the
F-IND-CCA game) and sets it to activei ← 1 when the first receiving query (i, j, ad, c) is made
such that either G′+(R, i, j) = ⊥ or the current pair (ad, c) does not match the correspondingly
sent pair. We claim that C performs a perfect simulation of game E1,b

A . Indeed, an adversary A
that is not penalized in game E1,b

A will never cause premature termination of the game. The
reduction C is then left with two possibilities for answering any receiving query posed by A:
either the query is ‘active’ and should be rejected, or it is ‘passive’ and the algorithm’s answer
shall be suppressed. C precisely detects which one is the case and reacts accordingly. We finally
obtain the desired inequality:

Advf-ind-cca
Ch,N,A (λ) ≤ 2 ·Advf-int-ctxt

Ch,N,B (λ) + Advf-ind-cpa
Ch,N,C (λ) .

5.5 Unidirectional Channels
Later in this chapter we will see how to build FIFO channels from unidirectional channels.
For the sake of completeness we specify here syntax, correctness and security for unidirectional
channels. Let us first formalize the intuitive concept of unidirectional communication (between
two participants) using the graph terminology developed in Chapter 4. Throughout this section
we assume without further notice that all communication graphs involve two participants, Alice
and Bob. Intuitively speaking, a left-to-right communication graph represents a conversation

61

where Alice speaks (and doesn’t listen) while Bob only listens (and never speaks); in a right-
to-left communication graph the roles are exchanged.

Definition 23 (Unidirected communication graphs). Let G = (V,≤, χ) be a communication
graph, let V1 and V2 be the sets of actions performed by Party 1, respectively, by Party 2, and
let V S and V R be the sets of sending actions, respectively, receiving actions in V . We say
that G is left-to-right if V S = V1 and V R = V2. Analogously, G is right-to-left if V1 = V R

and V2 = V S. We say that G is unidirected if it is either left-to-right or right-to-left.

A unidirectional channel is a restricted two-party FIFO channel that lets one participant,
Alice, only invoke algorithm Send and the other participant, Bob, only invoke Recv.

In the rest of this section we provide functional specifications and security requirements for
unidirectional channels. We stress that a unidirectional channel is a special case of a FIFO
channel; thus, the corresponding notions are neither novel nor surprising. However, the reduced
complexity of the unidirected setting leads to a simplified notation which may help the reader
to bridge the stateful authenticated encryption notions, which are restricted to one direction of
communication, and our notions for FIFO channels. Moreover, defining unidirectional channels
as a special case of FIFO channels provides some validation for our notions of broadcast channels.

Definition 24 (Syntax and correctness of unidirectional channels). A unidirectional channel
Ch = (Init, Send,Recv) with associated data space AD, message space M , ciphertext space C , and
state space S , consists of efficient probabilistic algorithms as follows:

• Init. This algorithm takes as input a security parameter 1λ and outputs initial sending
state and receiving state stS , stR ∈ S . We write (stS , stR)←$ Init(1λ).

• Send. This algorithm takes as input a state stS ∈ S , associated data ad ∈ AD, and
a message m ∈ M , and outputs a state st ′S ∈ S and a ciphertext c ∈ C . We write
(st ′S , c)←$ Send(stS , ad,m).

• Recv. This algorithm takes as input a state stR ∈ S , associated data ad ∈ AD, and a
ciphertext c ∈ C , and outputs a state st ′R ∈ S and a message m ∈ M or m = ⊥. We write
(st ′R,m)←$ Recv(stR, ad, c).

Let G = (V,≤, χ) be a left-to-right graph and for n = |V | assume an enumeration e : [1 .. n]→ V
of (V,≤). Let α : V S → AD and µ : V S → M denote arbitrary assignments. Denote by d[] and
m[] associative arrays that map V S → C and V R → M , respectively. Consider the following
procedure:

01 Initialize states (stS,0, stR,0)←$ Init(1λ)
02 Process the actions v ∈ V in order v1 = e(1), . . . , vn = e(n) according to the rules:
03 – if χ(vi) = (S, ∗) then (stS,i, c[v])←$ Send(stS,i−1, α(v), µ(v))
04 – if χ(vi) = (R, ∗, ∗) then (stR,i,m[v])←$ Recv(stR,i−1, α(ω(v)), c[ω(v)])

We say that channel Ch is correct if for all left-to-right FIFO graph G ∈ Gfifo, all choices of
e, α, µ, and for all randomnesses of the Init, Send, and Recv algorithms, the Recv algorithm
correctly recovers all sent messages, i.e., m[v] = µ(ω(v))∀v ∈ V R.

Remark 4 (Alternative correctness condition à la BKN [BKN02]). Observe that the correctness
condition for unidirectional channels is equivalent to the corresponding condition for stateful
encryption [BKN02], as long as one ignores the associated data. To see why, note that for every

62

unidirected FIFO graph G = (V,≤, χ) the visit of V that first walks along the actions in V S

and then the actions in V R, according to the local order ≺`, is a valid enumeration of (V,≤).
Given this, we can rephrase the correctness condition for unidirected channels as follows: for
every choice of the randomness for the Init, Send, and Recv algorithms, every initial state
pair (stS,0, stR,0) ←$ Init(1λ), every associated data tuple (ad1, . . . , ads) ∈ AD∗, every message
tuple (m1, . . . ,ms) ∈ M ∗, and every ciphertext tuple (c1, . . . , cs) ∈ C∗ generated by invoking
sequentially (stS,1, c1)←$ Send(stS,0, ad1,m1),. . . , (stS,s, cs)←$ Send(stS,s−1, ads,ms), we have
that every received message sequence (m′1, . . . ,m′r) ∈ M ∗ for r ≤ s generated by invoking
sequentially (stR,1,m′1) ←$ Recv(stR,0, ad1, c1),. . . , (stR,r,m′r) ←$ Recv(stR,r−1, adr, cr), is a
prefix of the originally sent message tuple, i.e., (m′1, . . . ,m′r) = (m1, . . . ,mr).

Exptind-cca
Ch,A (1λ):

01 s← r ← 0
02 active← 0
03 (stS , stR)←$ Init(1λ)
04 b′ ←$ AOLoR,O∗Recv(1λ)
05 Terminate with b′

OLoR(ad,m0,m1):
06 Require |m0| = |m1|
07 s← s+ 1
08 (stS , c)←$ Send(stS , ad,mb)
09 ads ← ad, cs ← c
10 Return c to A

O∗Recv(ad, c):
11 r ← r + 1
12 If r > s ∨ (ad, c) 6= (adr, cr):
13 active← 1
14 (stR,m)←$ Recv(stR, ad, c)
15 If active = 1:
16 Return m to A
17 Else:
18 Return � to A

Exptint-ctxt
Ch,A (1λ):

19 s← r ← 0
20 (stS , stR)←$ Init(1λ)
21 AOSend,ORecv(1λ)
22 Terminate with 0

OSend(ad,m):
23 (stS , c)←$ Send(stS , ad,m)
24 s← s+ 1
25 ads ← ad, cs ← c
26 Return c to A

ORecv(ad, c):
27 (stR,m)← Recv(stR, ad, c)
28 r ← r + 1
29 If m = ⊥:
30 Return ⊥ to A
31 Else:
32 If r > s ∨ (ad, c) 6= (adr, cr) :
33 Terminate with 1
34 Return m to A

Figure 5.5: Confidentiality and integrity experiments for unidirectional channels. We can derive the
IND-CPA game from the IND-CCA game by ignoring the receiving oracle. Similarly, we can obtain
the INT-PTXT game from the INT-CTXT game by replacing the boxed text in lines 25 and 32 with
‘ms ← m’ and ‘(ad,m) 6= (ad,mr)’.

We specify confidentiality and integrity experiments for unidirectional channels in Figure 5.5.
Note that we deviate from the FIFO experiments (Figures 5.2 and 5.3) by simplifying the
mechanism to detect if the attacker exhibits active behavior. More precisely, instead of keeping
an auxiliary communication graph G and checking for all receiving query if the corresponding
addition is admissible in a FIFO sense, here we simply compare two counters s and r (for sent
and received messages). As a consequence of Lemma 1(a) and Definition 16 (which jointly imply
that adding a receiving action (R, i, j) to a FIFO graph is possible if and only Party j has sent at
least as often as Party i has received from Party j) the two approaches are equivalent. Indeed,
recall that for a unidirected FIFO graph a receiving action is admissible if and only if sufficiently
many sending actions were already performed (r ≤ s in the notation of the experiments from
Figure 5.5). We opted for this change to make the experiments for unidirectional FIFO channels
closer to the ones from [BKN02] and ease the comparison between their model and ours.

63

As a validation for our FIFO security notions, observe indeed that the security games from
Figure 5.5 are equivalent to the IND-CPA, IND-CCA, INT-PTXT and INT-CTXT experiments
for stateful authenticated encryption (Figure 2.2 on page 14, or [BKN02]). Except for the ad
field, any difference is purely syntactical. With other words, our security notions for FIFO
channels if restricted to the unidirectional case collapse to stateful AE(AD).

5.6 Constructions
FIFO channels are easy to construct from standard cryptographic primitives. In this section
we propose two design strategies to realize FIFO channels from simpler, symmetric building
blocks. The first is based on AEAD. The second relies on unidirectional channels (‘essentially’
stateful AEAD) and realizes a bidirectional channel, i.e., it only supports two participants. In
fact, the latter formalizes the bidirectional channel design underlying (the cryptographic core
of) the TLS Record Protocol and the SSH Binary Packet Protocol. Finally, we establish under
which conditions the proposed constructions provably achieve the strongest security guarantees
for FIFO channels, namely F-IND-CCA and F-INT-CTXT security.

5.6.1 FIFO Channels from AEAD

We describe how to build a FIFO channel from any AEAD scheme. The setup is that all par-
ticipants share the same symmetric AEAD key K and manage N counters each, ctr1, . . . , ctrN .
Participant i ∈ [1 .. N] registers in ctri the number of messages it has sent so far and, in the
remaining counters ctrj for j 6= i it stores how many messages it has received from user j so
far. Now, when participant i ∈ [1 .. N] wants to send a message m with associated data field ad,
it increments its counter ctri and invokes the encryption routine on input key K, message m,
and associated data string i‖ctri ‖ad, obtains an AEAD ciphertext c, and then broadcasts the
ciphertext c. For an incoming ciphertext c with alleged originator j 6= i, participant i incre-
ments ctrj and AEAD-decrypts ciphertext c with associated data string j ‖ctrj ‖ad, obtaining
a message m which it then outputs, or ⊥ indicating that an error occurred.

A concise specification of the scheme is given in Figure 5.6.

Construction 2 (FIFO Channels from AEAD). Let AD be an associated data space and let Π =
(KeyGen,Enc,Dec) be an AEAD scheme with associated data space [1 .. N] × N × AD. Define
the channel Ch = (Init, Send,Recv) as described in Figure 5.6.

It is immediate to see that Construction 2 fulfills the correctness requirements of a FIFO
channel (as in Definition 20). Moreover, as we prove next, AEAD security (see Section 2.3.4 on
page 12) of the underlying scheme tightly implies both F-INT-CTXT and F-IND-CPA, thus,
by Theorem 5, also F-IND-CCA.

Theorem 6 (Confidentiality of Construction 2). Let Π be an AEAD scheme and let Ch be the
FIFO channel obtained from Π by applying the transformation described in Construction 2. If
Π offers indistinguishability under chosen-plaintext attacks, so does Ch is a FIFO sense. More
precisely, for every efficient adversary A attacking the F-IND-CPA property of Ch there exists
an efficient adversary B against the IND-CPA property of Π such that

Advf-ind-cpa
Ch,N,A (λ) ≤ Advind-cpa

Π,B (λ) .

Proof. Recall that in the F-IND-CPA game the adversary has access to both a left-or-right or-
acle OLoR and a receiving oracle O∗Recv, where the latter is needed to let the adversary advance
the state of participants through receiving actions (without learning the underlying message).

64

Init(1λ, N):
01 K ←$ KeyGen(1λ)
02 For i← 1 to N :
03 ctr1 ← · · · ← ctrN ← 0
04 sti ← (K, ctr1, . . . , ctrN)
05 Return (st1, . . . , stN)

Send(sti, ad,m):
06 If sti = ⊥:
07 Return ⊥
08 Parse sti as (K, ctr1, . . . , ctrN)
09 ctri ← ctri + 1
10 ad ′ ← i‖ctri ‖ad
11 c←$ EncK(ad ′,m)
12 Return (sti, c)

Recv(sti, j, ad, c):
13 If sti = ⊥:
14 Return ⊥
15 Parse sti as (K, ctr1, . . . , ctrN)
16 ctrj ← ctrj + 1
17 ad ′ ← j ‖ctrj ‖ad
18 m← DecK(ad ′, c)
19 If m = ⊥:
20 sti ← ⊥
21 Return (sti,m)

Figure 5.6: Generic construction of a FIFO channel Ch = (Init, Send,Recv) with associated data
space AD from any AEAD scheme Π = (KeyGen,Enc,Dec) with associated data space [1 .. N]× N× AD.

The reduction B, thus, while being granted by the IND-CPA experiment only chosen-plaintext
capabilities, has to process receiving queries and, in particular, update the states of the par-
ticipants accordingly. This is not a problem. First of all, notice that B only has to deal with
in-sync receiving queries as A is expected in the F-IND-CPA game to maintain passive behav-
ior. Moreover, the state update performed by Recv when processing an incoming ciphertext c
with alleged originator j simply consists in incrementing the counter ctrj , i.e., it does not re-
quire knowledge of any secret. Hence, to perform a sound simulation of the F-IND-CPA game
all what B has to do is: to check that A poses only in-sync queries; to advance the states of
the participants; and to answer left-or-right queries. Intuitively, the reduction can do so by
counting for each participant the number of left-or-right and receiving queries that A requests,
by incrementing participants’ counters accordingly, and by relaying all receiving queries to the
left-or-right oracle provided by the IND-CPA game.

In greater detail, let B keep counters ctrij and listsQi[] for i, j ∈ [1 .. N], initialized as ctrij ←
0 and Qi[] ← ∅ for all values of i and j. For every left-or-right query (i, ad,m0,m1) that A
poses, B increments counter ctrii, invokes the left-or-right oracle OLoR on associated data ad ′ =
i‖ ctrii ‖ad and message pair (m0,m1), gets back an AEAD ciphertext c, registers (ad, c) into
Qi[ctrii], and finally returns ciphertext c to A. For every receiving query of the form (i, j, ad, c),
the reduction increments counter ctrij and, to ensures that A sticks to passive behavior, verifies
that ctrij ≤ ctrjj , i.e., that participant i receives from j at most as often as j performed sending
actions6 and that (ad, c) = Qj [ctrij], i.e., that the received pair of associated data and ciphertext
matches the correspondingly sent pair. If not, B stops the simulation and halts; otherwise, it
returns the suppression symbol ‘�’ to A. Eventually A returns a bit b′ as a prediction of the
hidden bit b: B outputs b′ and halts. We conclude that A and B have the same distinguishing
advantage.

6By Lemma 1 (a)–(b) and by definition of the FIFO addition ‘+’ (Chapter 4) we know that the only way
for A to violate the FIFO property is to cause for two participants (i, j) ∈ J1 .. NK that i receives from j more
often than j sent.

65

Theorem 7 (Integrity of Construction 2). Let Π be an AEAD scheme and let Ch be the FIFO
channel obtained from Π by applying the transformation described in Construction 2. If Π
offers integrity of ciphertexts, so does Ch in a FIFO sense. More precisely, for every efficient
adversary A attacking the F-INT-CTXT property of Ch there exists an efficient adversary C
against the INT-CTXT property of Π such that

Advf-int-ctxt
Ch,N,A (λ) ≤ Advint-ctxt

Π,C (λ) .

Proof. The reduction C can easily emulate sending and receiving oracles OSend and ORecv for A
using the encryption and decryption oracles OEnc and ODec provided by the INT-CTXT game.
As the reduction B described in the proof of Theorem 6 (on page 64), the reduction C keeps
counters ctrij for i, j ∈ [1 .. N]. When A poses a sending query (i, ad,m), C queries OEnc on
associated data i ‖ ctrii ‖ ad and message m, hence returns the oracle answer to A. Similarly,
when A poses a receiving query (i, j, ad, c), C asks ODec to decrypt c with associated data i ‖
ctrij ‖ ad and then gives A the ciphertext returned by the oracle. It is immediate to see that
C, using its oracles, executes the same instructions of the F-INT-CTXT game. To see that any
valid forgery produced by A in the simulated F-INT-CTXT game corresponds to a valid forgery
in the INT-CTXT game, first observe that algorithm Recv accepts only if the AEAD decryption
performed internally does (line 18 in Figure 5.6). It remains to prove that a forgery (i, j, ad∗, c∗)
for the F-INT-CTXT game corresponds to a forgery (ad ′∗, c∗) in the INT-CTXT game. The
latter follows from the fact that C never submits to OEnc the same associated data twice:
indeed, for every sending query (i, ad,m) posed by A, the reduction asks OEnc to encrypt m
using associated data ad ′ = i ‖ ctrii ‖ ad, where ctrii is a counter that increases with every
encryption query and, thus, makes the combination i‖ctrii unique.

5.6.2 FIFO Channels from Unidirectional Channels

The design principle of many widely deployed channel protocols (including TLS and SSH) builds
a bidirectional channel using two independent unidirectional channels in opposite directions,
letting one user send messages through the one channel and receive from the other channel, and
vice versa for the second user. We call this paradigm the canonic composition of unidirectional
channels, and specify its details in Construction 5.7. The bidirectional channel established by the
TLS record protocol [DR08] represents a concrete instantiation of the canonic composition where
the unidirectional channels use independent keys to secure each direction of communication.

Construction 3 (Canonic Composition). d Consider two unidirectional channels Ch1 = (Init1,
Send1,Recv1) and Ch2 = (Init2, Send2,Recv2) with associated data space AD, message space M ,
ciphertext space C , and state spaces S1 and S2 respectively. Set S = (S1 × S2) ∪ (S2 × S1) and
let Ch = (Init, Send,Recv) be the bidirectional channel with state space S depicted in Figure 5.7.

It is easy to see that if Ch1 and Ch2 are correct in a unidirectional sense then Ch is a correct
FIFO channel. Indeed, the FIFO ordering property particularly implies that ciphertexts are
delivered according to the sending order, for each sender; thus, the correctness condition is
fulfilled for the two unidirectional channels Ch1 and Ch2 independently.

We now turn to analyzing the security of the canonic composition. As we show next,
Construction 3 generically inherits some of the security properties of its building blocks, but
not all of them.

Confidentiality against passive adversaries and integrity are preserved. We claim
that if both unidirectional channels Ch1 and Ch2 are confidential against passive attacks, i.e.,
chosen-plaintext attacks (IND-CPA), then their canonic composition Ch is confidential against

66

Init(1λ):
01 (stS,1, stR,1)←$ Init1(1λ)
02 (stS,2, stR,2)←$ Init2(1λ)
03 st1 ← (stS,1, stR,2)
04 st2 ← (stS,2, stR,1)
05 Return (st1, st2)

Send(st, ad,m):
06 If st = ⊥: Return ⊥
07 Parse st as (stS,i, stR)
08 (st ′S,i, c)←$ Sendi(stS,i, ad,m)
09 st ← (st ′S,i, stR)
10 Return (st, c)

Recv(st, ad, c):
11 If st = ⊥: Return ⊥
12 Parse st as (stS , stR,i)
13 (st ′R,i,m)←$ Recvi(stR,i, ad, c)
14 If m = ⊥: st ← ⊥
15 Else: st ← (stS , st ′R,i)
16 Return (st,m)

Figure 5.7: Generic construction of a bidirectional channel Ch = (Init, Send,Recv) from unidirectional
channels Ch1 = (Init1,Send1,Recv1) and Ch2 = (Init2, Send2,Recv2). We often refer to this construction
as the ‘canonic composition’ of unidirectional channels.

passive attacks on FIFO channels (F-IND-CPA). With other words, confidentiality against
passive adversaries can be lifted from the unidirectional channels to the composed protocol,
as stated in Theorem 8. Similarly, if both Ch1 and Ch2 offer plaintext integrity (INT-PTXT),
respectively, ciphertext integrity (INT-CTXT), then the composed channel Ch provides the
corresponding FIFO flavors of integrity (F-INT-PTXT and F-INT-CTXT, respectively); this is
stated in Theorem 9.

Theorem 8 (Confidentiality Against Passive Adversaries). Let Ch1 and Ch2 be unidirectional
channels and let Ch be the bidirectional channel obtained by composing them as described in
Construction 3. If both Ch1 and Ch2 offer indistinguishability under chosen-plaintext attack, so
does Ch as a FIFO channel. More precisely, for every adversary A attacking the F-IND-CPA
property of Ch there exist adversaries B1 and B2 against the IND-CPA property of Ch1 and Ch2
respectively, such that

Advf-ind-cpa
Ch,2,A (λ) ≤ Advind-cpa

Ch1,B1 (λ) + Advind-cpa
Ch2,B2 (λ) .

Proof. The idea is to define an intermediate game parametrized by two independent bits b and d
(if b = d we have exactly the original indistinguishability game). Now for each fixed value of d
we can simulate the intermediate game using an IND-CPA adversary against one of the unidi-
rectional channels. Formally, for b ∈ {0, 1} let EbA denote the F-IND-CPA game from Figure 5.2
involving an adversary A against Ch, and denote by Pr[EbA] the probability Pr[EbA(1λ) = 1]. We
proceed by game hopping. The first game, that we denote by E0,0

A , is the same as E0
A. Define

E0,1
A from E0,0

A by modifying the left-or-right oracle as follows: when a query (i, ad,m0,m1) is
posed, invoke Send on message m0 (as in the original game) if i = 1 and on message m1 if i = 2.
In other words, E0,1

A selects the ‘left’ message if the sender is Alice and the ‘right’ message if the
sender is Bob. In the next hop, define E1,1

A from game E0,1
A by making the left-or-right oracle

invoke Send always on message m1. Note that E1,1
A = E1

A. We can bound A’s advantage in the
original game as follows:

Advf-ind-cpa
Ch,2,A (λ) ≤

∣∣∣Pr[E1,1
A]− Pr[E0,1

A]
∣∣∣+ ∣∣∣Pr[E0,1

A]− Pr[E0,0
A]
∣∣∣ .

67

We show next that the difference in probability between games E1,1
A and E0,1

A , and between
games E0,1

A and E0,0
A , can be upper bounded by the IND-CPA advantage of efficient adversaries B1

and B2 against the unidirectional channels Ch1 and Ch2 respectively. Note that either of the
above combinations of games fixes one of the two selection bits. For instance, both games E1,1

A
and E0,1

A make Bob send the ‘left’ message. This combination of games implicitly defines a
new indistinguishability game Eb,1A —where A has to tell apart E1,1

A and E0,1
A —for which we can

predict OLoR’s answers to queries (i = 2, ad,m0,m1) by invoking Send2 on message m1. In fact,
the latter observation is the basic working principle of the reduction B1 which runs A internally
and answers A’s queries using algorithm Send2 and Recv2 and the oracles provided by the IND-
CPA game (defined in Figure 5.5) against channel Ch1. A full description of the reduction B1 is
given in Figure 5.8. It is immediate to see that B1 provides a perfect simulation of game Eb,1A .
To bound A’s distinguishing advantage in game Eb,1A with B1’s advantage it suffices to show

BOLoR,O∗Recv
1 (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (stS , stR)←$ Init2(1λ)
04 b′ ←$ AOLoR,O∗Recv(1λ)
05 Terminate with b′

If A queries OLoR(i, ad,m0,m1):
06 If i = 1:
07 d← OLoR(ad,m0,m1)
08 Else:
09 (stS , c)←$ Send2(stS , ad,m1)
10 G← G+ (S, i) with v
11 Q[v]← (ad, c)
12 Return c to A

If A queries O∗Recv(i, j, ad, c):
13 G← G+ (R, i, j) with v
14 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
15 Terminate with 1
16 If i = 1:
17 � ←$ O∗Recv(ad, c)
18 Else:
19 (stR,m)←$ Recv1(stR, ad, c)
20 Return � to A

Figure 5.8: Reduction B1 described in the proof for IND-CPA of Construction 3. B1 simulates the
F-IND-CPA oracles in the right-to-left direction using Ch2 and attacks the left-to-right direction (channel
Ch1). Similarly we can construct a specular reduction B2 which emulates the left-to-right direction and
attacks the opposite.

that if all of A’s queries are passive, i.e., do not cause premature termination of game Eb,1A , then
the corresponding queries that B1 poses in the outer IND-CPA game are passive as well. Let
q = (i, j, ad, d) be any of A’s receiving queries and suppose that q does not trigger the execution
of instruction 13 (in Figure 5.2). If i = 2 (and j = 1) there is nothing to show: B1 answers the
query on its own by invoking algorithm Recv1 on input the current state stR, associated data ad
and ciphertext c. In the opposite case, i.e., i = 1 (and j = 2), B1 must ask query q′ = (ad, c)
to O∗Recv, which may force termination. As we show next, the IND-CPA game will not abort
when B1 poses query q′. Let ri and sj denote the numbers of receiving actions performed by
user i and sending actions performed by user j respectively. By the assumption of passiveness
of A we know that operation ‘G + (R, 1, 2) with v’ does not fail and Q[ω(v)] = (ad, c). This
means that, when query (ad, c) is posed, Alice (i = 1) can receive from Bob (j = 2). With
other words: r1 ≤ s2 and the pair (ad, c) corresponds with the pair that Bob sent with his
r1-th invocation of Recv. The (negation of the) condition above can be immediately recognized
in line 12 of the IND-CPA experiment (from Figure 5.5), hence B1 can safely ask query q′ to
O∗Recv. We conclude that for each passive query q posed by A in the F-IND-CPA game the
corresponding query q′ that B1 poses in the IND-CPA game is passive as well. This allows us
to bound |Pr[E1,1

A] − Pr[E0,1
A]| ≤ Advind-cpa

Ch,B1 (λ). Using a similar strategy we can construct a
reduction B2 which, symmetrically to B1, attacks the unidirectional channel Ch2 and emulates
game E0,b

A using the IND-CPA oracles and algorithms Send1 and Recv1. After deriving the
second inequality |Pr[E0,1

A] − Pr[E0,0
A]| ≤ Advind-cpa

Ch,B2 (λ) we obtain the desired bound for A’s

68

advantage in the original game:

Advf-ind-cpa
Ch,2,A (λ) ≤ Advind-cpa

Ch1,B1 (λ) + Advind-cpa
Ch2,B2 (λ) .

Theorem 9 (Integrity). Let Ch1 and Ch2 be two unidirectional channels, and let Ch be their
canonic composition. If both Ch1 and Ch2 offer ciphertext integrity, then so does Ch. More
precisely, for every efficient adversary A attacking the F-INT-CTXT property of Ch there exist
efficient adversaries B1 and B2 against the INT-CTXT property of Ch1 and Ch2 respectively,
such that

Advf-ind-cpa
Ch,2,A (λ) ≤ Advind-cpa

Ch1,B1 (λ) + Advind-cpa
Ch2,B2 (λ) .

A similar statement holds for plaintext integrity, i.e., INT-PTXT of the unidirectional channels
implies F-INT-PTXT of their canonic composition.

BOSend,ORecv
1 (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (stS , stR)←$ Init2(1λ)
04 AOSend,ORecv(1λ)
05 Terminate with 0

If A queries OSend(i, ad,m):
06 If i = 1:
07 d← OSend(ad,m)
08 Else:
09 (stS , c)←$ Send2(stS , ad,m)
10 G← G+ (S, i) with v
11 Q[v]← (ad, c)
12 Return c to A

If A queries ORecv(i, j, ad, c):
13 If i = 2:
14 m← ORecv(ad, c)
15 If m = ⊥:
16 Return ⊥ to A
17 Else:
18 (stR,m)←$ Recv2(stR, ad, c)
19 If m = ⊥:
20 Return ⊥ to A
21 G← G+ (R, i, j) with v
22 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
23 Terminate with 1
24 Else:
25 Return m to A

Figure 5.9: Reduction B1 described in the proof for INT-CTXT of Construction 3. B1 simulates the
right-to-left direction using Ch2 and attacks the left-to-right direction (channel Ch1). A similar reduc-
tion B2 which emulates the left-to-right direction and attacks the opposite direction is easy to construct.

Proof. For the proof we fix atk = ctxt and refer to the F-INT-CTXT experiment from
Figure 5.3 (on page 59), involving an adversary A against Ch, with the shortcut E0

A. It is
immediate to adapt the proof to the F-INT-PTXT case. Write Pr[E0

A] to indicate the prob-
ability Pr[E0

A(1λ) = 1]. Let badLR be the event that A breaks the F-INT-CTXT of Ch for
i = 2 with a query (ad, d) to ORecv. i.e., successful termination of the experiment is caused
by a receiving query to Bob. Intuitively, in this case A breaks integrity when attacking the
left-to-right direction (i.e., Alice sends and Bob receives). Analogously, denote by badRL the
event that A breaks integrity when attacking the right-to-left direction, i.e., with a receiving
query to Alice. We proceed by game-hopping: let us add the instruction ‘if i = 2: Terminate
with 0’ after line 30 of game E0

A (defined in Figure 5.3), and denote the resulting game by E1
A.

The new game prevents A from attacking the left-to-right channel. Thus, games E0
A and E1

A
execute the same instructions as long as event badLR does not occur. Similarly, define game E2

A
as a modification of game E1

A by adding the instruction ‘if i = 1: Terminate with 0’ after the
newly inserted line. In other words, game E2

A also prevents A from attacking the right-to-
left direction. Since E1

A and E2
A differ only if event badRL occurs, we derive the inequalities

69

|Pr[E0
A] − Pr[E1

A]| ≤ Pr[badLR] and |Pr[E1
A] − Pr[E2

A]| ≤ Pr[badRL]. Finally, since Pr[E2
A] = 0

we obtain the following bound for A’s advantage in the original game:

Advf-int-ctxt
Ch,2,A ≤

∣∣∣Pr[E0
A]− Pr[E1

A]
∣∣∣+ ∣∣∣Pr[E1

A]− Pr[E2
A]
∣∣∣+ ∣∣∣Pr[E2

A]
∣∣∣ ≤ Pr[badLR] + Pr[badRL] .

It remains to bound the probabilities of events badLR and badRL. To this end, we construct
an adversary B1, which runs A internally, and show that B1 breaks integrity of Ch1 as soon
as A provokes event badLR. Briefly, B1 answers A’s queries in the right-to-left direction using
algorithms Init2, Send2 and Recv2, while it forwards to its own oracles (provided by the INT-
CTXT experiment against Ch1) all queries affecting the opposite direction. A full specification
of B1’s code is given in Figure 5.9. Note that badLR occurs during an execution of B1 if, for i = 2,
A asks a query (ad, d) to ORecv which triggers the execution of instruction 23 (Figure 5.9). We
claim that, in this case case, A’s query also causes successful termination of the outer INT-CTXT
game that B1 plays against Ch1. Indeed, A triggers badLR if either the operation G + (R, 2, 1)
is not admissible or the corresponding value of Q[v] does not match the value of Q[ω(v)]. By
definition of the FIFO addition ‘+’ we have that G + (R, 2, 1) = ⊥ if and only if Bob receives
more often than Alice had send. The latter condition is precisely encoded as ‘r > s’ (see line 32
of Figure 5.5) in the unidirectional INT-CTXT experiment. Similarly, having a mismatch
between Q[v] and Q[ω(v)] can be translated, in the unidirectional case, as ‘ad 6= adr ∨ c 6= cr’
(see line 32 of Figure 5.5). Hence, causing event badLR directly implies an integrity breach
of channel Ch1, from which we derive the inequality Pr[badLR] ≤ Advint-ctxt

Ch1,B1 (λ). Using a
similar argument in the opposite direction we obtain a reduction B2 against Ch2 that wins the
INT-CTXT game as soon as event badRL is triggered, and derive the final bound:

Advf-int-ctxt
Ch,2,A (λ) ≤ Advint-ctxt

Ch1,B1 (λ) + Advint-ctxt
Ch2,B2 (λ) .

We learned from Theorems 8 and 9 that the canonic composition of unidirectional channels
preserves integrity of its unidirectional components as well as confidentiality against passive
adversaries. However, as highlighted by the attack from Figure 5.1, confidentiality against
active adversaries is not preserved. In the following we discuss why this is the case by revisiting
the attack from a formal perspective.

Confidentiality against active adversaries is not preserved. We anticipated earlier in
this chapter that indistinguishability against a chosen-ciphertext attack cannot be lifted from
the unidirectional building blocks to their canonic composition generically. Here we revisit the
attack from Figure 5.1 in light of our formalisms, showing a successful chosen-ciphertext attack
(F-IND-CCA) against the canonic composition of two unidirectional channels which are both
indistinguishable against chosen-ciphertext attacks (IND-CCA). Let Ch = (Init,Send,Recv) be
the canonic composition of two unidirectional channels Ch1 and Ch2: The communication from
Alice to Bob is protected by Ch1 and the communication from Bob to Alice is protected by Ch2.
The claim is that if both Ch1 and Ch2 guarantee confidentiality against active attacks (more
precisely: provide IND-CCA security), their canonic composition Ch in general does not. We
prove the claim by restating the attack from Figure 5.1 in the language of Section 5.2. Let’s
recall the attack strategy: the adversary delivers a ciphertext to Alice that decrypts to ‘please
authenticate’, obtains an encryption of Alice’s password (which is so far protected because
the unidirectional channels in use are confidential), and forwards this ciphertext to Bob who,
upon receiving an unexpected string of random-looking characters, reacts by making this string
(which, by correctness of the left-to-right channel, is precisely Alice’s password) public.

70

Observe that the assumptions on Ch1 and Ch2 are exclusively on confidentiality and not on
integrity, so we are free to assume that the corresponding Recv algorithms never reject.7 In the
following, we refer to Alice and Bob as participants 1 and 2, respectively, and ignore associated
data for clarity.

Let A be an adversary that interacts in the F-IND-CCA game against Ch as follows. The ad-
versary starts with choosing a ciphertext c̃ and two messages m0 6= m1, submits a query (1, 2, c̃)
to ORecv where she obtains a message m̃ (from Alice), a query (1,m0,m1) to OLoR that produces
a ciphertext c (from Alice), and a query (2, 1, c) to ORecv where she obtains a message m′ or �
(from Bob), as we see next. By the rules of the F-IND-CCA experiment (Figure 5.2) the first
query is identified as active (Alice receives although nothing has been sent by Bob; formally,
G = (∅, ∅, ∅) and hence the graph operation G + (R, 1, 2) is invalid) and, thus, active1 ← 1 is
set in line 31. The third query is also identified as active (because G = ⊥, see line 12) and the
oracle returns c’s decryption m′ = mb to A. The adversary outputs 1 iff m′ = m1. It is easy to
check that its advantage is 1.

Note that the attack crucially involves two directions of communication and thus cannot
be expressed within the security models of Bellare et al. [BKN02] and its numerous refine-
ments [Nam02, KPB03, BDPS12, JKSS12, BDPS14, KPW13, BSWW13, FGMP15], as all these
models restrict the attention to the case of one direction of communication. While the attack
confirms our approach to model bidirectional channels as a whole—in contrast to only assess-
ing the security of their unidirectional components—we point out that it does not apply to
many real-world protocols (including TLS) that, besides confidentiality, also provide integrity
protection. The reason is simple: Any meaningful integrity notion would make Alice reject
ciphertext c̃, thus her sending operation would never take place.

Security of the canonic composition. While highlighting the importance of analyzing
the exact security guarantees that a combined cryptographic scheme inherits from its building
blocks, we stress that the attack from Figure 5.1 does not directly translate to actual weaknesses
of real-world bidirectional channels, like TLS and SSH, that follow the canonic composition
design. In fact, these protocols combine two unidirectional channels that offer, beyond confi-
dentiality, also strong integrity guarantees. Established results in [BKN02] prove some variants
of the SSH channel to be secure the stateful AE sense; [PRS11] show that the CBC-based TLS
record protocol, version 1.1 and 1.2, provably meets (a stronger variant of) stateful AEAD
security. In our terminology: the unidirectional components of both channel protocols offer
INT-CTXT and IND-CPA security. Using the result of Theorem 5 we conclude that SSH and
TLS provably achieve FIFO confidentiality against active adversaries (F-IND-CCA) as well as
integrity of ciphertexts (F-INT-CTXT), validating the soundness of their design as bidirectional
channels.

Corollary 1 (Security of the canonic composition). Let Ch1 and Ch2 be two unidirectional
channels, and let Ch be their canonic composition. If both Ch1 and Ch2 offer ciphertext integrity
and indistinguishability under chosen-message attacks, then Ch offers the strongest notions of
integrity and confidentiality for FIFO channels. More precisely, if Ch1 and Ch2 are INT-CTXT
and IND-CPA-secure then Ch is F-INT-CTXT- and F-IND-CCA-secure.

7Any confidential channel where Recv potentially rejects can be turned into a channel where Recv never
rejects by modifying it such that instead of rejecting it restricts itself to outputting some fixed message m0. This
modification does not affect the confidentiality properties of the channel. (Its integrity properties might very well
be affected, but this does not matter in the current context.)

71

Chapter 6
Causal Channels

In this chapter we introduce causal channels, which essentially provide a secure version of causal
broadcast protocols. Beyond preserving causality, these channels offer an extended functionality
which lets users obtain the current communication history upon sending and receiving.

6.1 Introduction
Consider a chatroom situation like the one illustrated in Figure 6.1. Alice starts a conversation
by asking around what the other participants would never do in their life. Bob would never
withdraw his current submission to HESSECRYPT and answers by writing ‘withdraw the sub-
mission!’. Charlie, a co-author of Bob, missed Alice’s initial question (possibly by arrangement
of the adversary), by consequence misunderstands Bob, and ultimately withdraws their joint
paper against Bob’s will.

Alice Bob Charlie

A|

what would you

never do?

withdraw our

submission!

Figure 6.1: A misunderstanding caused by a violation of the causal property (CAUS). Vertical dashed
lines symbolize per-party timelines, that sending actions are marked with and receiving actions with .

A standard result in the domain of distributed computing is that the technical solution
to misunderstandings of this type is to deploy a specialized broadcast protocol that preserves
causality, i.e., that always delivers messages according to the logical order of their corresponding
sending events: no participant shall receive a message if it did not also receive all messages that
were sent before (here, ‘before’ is meant in a global sense, in contrast to FIFO ordering that
specifies how messages sent by each specific sender should be delivered).1 In the context of
Figure 6.1, a causal broadcast protocol would ensure that Charlie would see Alice’s message
before seeing the one from Bob.

1The notion of time considered in causality is abstract and defined independently of physical time.

73

Protocols that efficiently realize a causal broadcast infrastructure are well-known in the
distributed computing literature (some examples can be found in [AW04, CGR11]). However,
such protocols typically do not give guarantees on the causal delivery of messages in the face of
active adversaries tampering with the message deliveries. To cure this situation we extend our
study to cryptographic broadcast channels and propose a new integrity notion, causal integrity,
that considers the causal relationship between sending and receiving events. Beyond providing
standard protection against message manipulation, this notion ensures that no adversary can
tamper with the causal ordering of messages without being detected. If the chatroom from Fig-
ure 6.1 was implemented using a corresponding causal channel, the described misunderstanding
would not have happened.

Conversation history. Consider next the situation suggested in Figure 6.2a. Alice, a stock-
holder, and Bob, her financial adviser, use an online chat to discuss Alice’s investment strategy.
She asks: ‘Shall I sell my shares?’, but Bob remains silent. Alice understands he is currently not
available. A bit later she poses a different question: ‘Shall I increase my investment?’ This time,
she gets an answer from Bob: ‘Definitely, the sooner the better!’ Alice follows Bob’s advice and
purchases stocks. By mistake: In reality, as illustrated in Figure 6.2b, the adversary created
a misunderstanding by delaying the network transmission from Bob to Alice. Alice buys, but
Bob actually proposed to sell.

Alice Bob

sell stocks?

buy stocks?

yes!

(a) Alice’s view

buy stocks?

Alice Bob

sell stocks?

yes!

yes!

(b) The reality

Figure 6.2: An attack exploiting that Alice does not see the communication history. Vertical dashed
lines symbolize per-party timelines, that sending actions are marked with and receiving actions with .

Observe that the described problem does not stem from an alteration of the causality of
events: all messages are indeed delivered consistently following the causal order in which they
were sent. Rather, the misunderstanding arises because Alice learns from her channel only
the content of the received messages, but not how these messages are causally related to the
messages she sent. In particular, she does not get explicit information about which incoming
message is a response to which outgoing message (for instance, that Bob’s answer was ‘caused’
by Alice’s first message, not by her second message). This is different if the causal channel is
history-reporting, i.e., if it informs the participants on every send and receive invocation about
the past communication history.

In the present chapter we introduce this augmented type of channel, that we call a causal
channel, and study the security that we expect from it. In particular, beyond confidentiality
and integrity, we introduce the new security notion of history integrity, demanding that the
communication history is always reported correctly. If Alice and Bob had deployed a causal
channel that provides history integrity they wouldn’t have had the misunderstanding described

74

above. Rather, Alice would have learned from the incoming message that the latter is an answer
to her first question, not to the second.

6.2 Syntax and Functionality

Syntactically, a causal channel differs from a FIFO channel in that Send and Recv algorithms
return an auxiliary output h, called history. We denote this also by saying that the channel is
history reporting. Intuitively, the history gives an overview of the sending and receiving actions
that are ‘acknowledgeable’ by the user. With other words, the history obtained when executing
a sending or receiving action shall inform the user that performed that action of all actions that
causally precede her/his last action.

Definition 25 (Syntax of causal channels). A causal channel with associated data space AD,
message space M , ciphertext space C , and state space S is a tuple Ch = (Init, Send,Recv) of
efficient algorithms as follows:

• Init. The initialization algorithm takes as input a security parameter 1λ and an integer N ,
and outputs initial states st1, . . . , stN ∈ S . We write (st1, . . . , stN)←$ Init(1λ, N).

• Send. The sending algorithm takes as input a state st ∈ S , associated data ad ∈ AD,
and a message m ∈ M , and outputs a state st ′ ∈ S , a ciphertext c ∈ C or c = ⊥, and a
history h ∈ G. We write (st ′, c, h)←$ Send(st, ad,m).

• Recv. The receiving algorithm takes as input a state st ∈ S , an origin indicator j ∈
[1 .. N], associated data ad ∈ AD, and a ciphertext c ∈ C , and outputs a state st ′ ∈ S ,
a message m ∈ M , and a history h ∈ G, or it outputs st ′ = m = h = ⊥. We write
(st ′,m, h)←$ Recv(st, j, ad, c), correspondingly.

For causal channels, beyond the standard correct message recovery we also require that
the history be reported correctly, as the next definition specifies. Formally, given a causal
graph G = (V,≤, χ) the history of a given action v ∈ V is represented by G(v), the v-prefix of G
(see Definition 15 on page 46), which is also a causal graph by Lemma 3 (on page 48).

Definition 26 (Correctness of causal channels). Let Ch = (Init,Send,Recv) be a causal channel
with associated data space AD, message space M , ciphertext space C , and state space S . Let
G = (V,≤, χ) be an N -party communication graph and for n = |V | assume an enumeration
e : [1 .. n] → V of (V,≤). Let α : V S → AD and µ : V S → M denote arbitrary assignments.
Denote by c[], m[] and h[] associative arrays that map V S → C , V R → M , and V → G
respectively. Consider the following procedure:

01 Initialize states (st1, . . . , stN)←$ Init(1λ, N)
02 Process the actions v ∈ V in order v1 = e(1), . . . , vn = e(n) according to the rules:
03 – if χ(v) = (S, i) then (sti, c[v], h[v])←$ Send(sti, α(v), µ(v))
04 – if χ(v) = (R, i, j) then (sti,m[v], h[v])←$ Recv(sti, j, α(ω(v)), c[ω(v)])

We say that a causal channel Ch is correct if for every causal graph G ∈ Gcaus, for all e, α, µ,
and for all choices of the randomness of the Init, Send, and Recv algorithms, the Recv algorithm
in the procedure correctly recovers all sent messages, i.e., if m[v] = µ(ω(v)) ∀v ∈ V R and, in
addition, the history output is accurate, i.e., if h[v] = G(v) for all v ∈ V .

75

6.3 Security and Relations Among Notions

Similarly to the case of FIFO channels (Chapter 5), we model confidentiality and integrity of
causal channels via experiments in which an adversary A interacts with the Send and Recv
algorithms through oracles. In Figures 6.3 and 6.4 we specify the indistinguishability experi-
ments C-IND-CPA and C-IND-CCA, respectively, the integrity experiments C-INT-PTXT and
C-INT-CTXT for causal channels. Security is defined analogously to the FIFO setting. The
main difference in the causal setting is concentrated in the condition that declares adversarial
queries as ‘active’. Here, this condition is triggered if a ciphertext manipulation occurs or if
the communication scheduled by the adversary violates the causal ordering property. In the
experiments, the latter is tested by letting the challenger maintain a causal graph G to record
(parts of) the actions scheduled by the adversary.

Syntactically, the security experiments for causal channels differ from the corresponding
FIFO experiments from Section 5.3 (on page 56) ‘only’ in that (i) Send and Recv produce an
auxiliary output h, and (ii) the communication graph G which registers the scheduled commu-
nication shall be a causal graph rather than a FIFO graph; the latter is ensured by adding new
actions to the graph via the ⊕ operation (if possible according to the addition rules), rather
than the + operation. We stress that, although (ii) optically results in a marginal change of the
FIFO experiments, it has in fact a major effect on the winning conditions. Indeed, according
to the causal experiments, an adversary that interferes with the deliveries such that the FIFO
ordering holds but the causal ordering does not is also deemed as active. With other words,
an attack (on confidentiality or on integrity) may be discarded in the FIFO setting while be-
ing considered successful in the causal setting, meaning that causal security provides strictly
stronger guarantees than FIFO security.

History integrity. Exclusively for causal channels we also introduce a third integrity notion,
history integrity (C-INT-HIST), demanding that no adversary be able to make any participant
output a history h that is not in agreement with the actual communication history. That is, for
an arbitrary sequence of OSend and ORecv operations the notion ensures that every participant
after each query has the correct view on the communication structure that occurred up to that
point. Technically this is expressed by the h = G(i) conditions in lines 37 and 43.

We illustrate the indistinguishability in Figure 6.3 and the integrity experiments in Fig-
ure 6.4. Security is defined in the usual way.

Definition 27 (Indistinguishability for causal channels). For atk ∈ {cpa,cca} we say that
a causal channel Ch offers atk-indistinguishability if for all efficient adversaries A and all
polynomial N = N(λ) the following advantage function is negligible,

Advc-ind-atk
Ch,N,A (λ) =

∣∣∣Pr
[
Exptc-ind-atk,1

Ch,N,A (1λ) = 1
]
− Pr

[
Exptc-ind-atk,0

Ch,N,A (1λ) = 1
]∣∣∣ .

We abbreviate indistinguishability under chosen-plaintext attacks (cpa-indistinguishability) and
indistinguishability under a chosen-ciphertext attacks (cca-indistinguishability) for causal chan-
nels by writing C-IND-CPA and C-IND-CCA, respectively.

Definition 28 (Integrity for causal channels). For atk ∈ {ptxt,ctxt,hist} we say that
a causal channel Ch offers atk-integrity if for all efficient adversaries A and all polynomial
N = N(λ) the following advantage function is negligible,

Advc-int-atk
Ch,N,A (λ) =

∣∣∣Pr
[
Exptc-int-atk

Ch,N,A (1λ) = 1
]∣∣∣ .

76

Exptc-ind-cpa,b
Ch,N,A (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (st1, . . . , stN)←$ Init(1λ, N)
04 b′ ←$ AOLoR,O∗Recv(1λ)
05 Terminate with b′

OLoR(i, ad,m0,m1):
06 Require |m0| = |m1|
07 (sti, c, h)←$ Send(sti, ad,mb)
08 G← G⊕ (S, i) with v
09 Q[v]← (ad, c)
10 Return (c, h) to A

O∗Recv(i, j, ad, c):
11 G← G⊕ (R, i, j) with v
12 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
13 Terminate with 0
14 Else:
15 (sti,m, h)←$ Recv(sti, j, ad, c)
16 Return (�, h) to A

Exptc-ind-cca,b
Ch,N,A (1λ):

17 G← (∅, ∅, ∅)
18 Q[]← ∅
19 active1 ← · · · ← activeN ← 0
20 (st1, . . . , stN)←$ Init(1λ, N)
21 b′ ←$ AOLoR,O∗Recv(1λ)
22 Terminate with b′

OLoR(i, ad,m0,m1):
23 Require |m0| = |m1|
24 (sti, c, h)←$ Send(sti, ad,mb)
25 If activei = 0:
26 G← G⊕ (S, i) with v
27 Q[v]← (ad, c)
28 Return (c, h) to A

O∗Recv(i, j, ad, c):
29 G′ ← G⊕ (R, i, j) with v
30 If G′ = ⊥ ∨ (ad, d) 6= Q[ω(v)]:
31 activei ← 1
32 (sti,m, h)←$ Recv(sti, j, ad, c)
33 If activei = 1:
34 Return m to A
35 Else:
36 G← G′

37 Return � to A

Figure 6.3: Indistinguishability experiments for causal channels. We assume that once a query results
in state sti being set to ⊥, then no further queries for that participant are accepted; this is without loss
of generality, as the channel algorithms would always reject for that participant. We further assume
(i, j) ∈ J1 .. NK, ad ∈ AD, m0,m1 ∈ M , and c ∈ C for all such values provided by the adversary. When
writing ‘G⊕x with v’ we use v as a placeholder for the node that is newly added to the causal graph G in
case the operation G⊕ x does not fail. We use sending actions as indices for the associative array Q[].
A flag activei per participant is kept to register the participants that are affected by an active measure of
the adversary (in which case activei = 1).

We abbreviate the notions of integrity of plaintexts (ptxt-integrity), integrity of ciphertexts
(ctxt-integrity), and integrity of history (hist-integrity) for causal channels by writing C-
INT-PTXT, C-INT-CTXT, and C-INT-HIST, respectively.

Relations among notions. Similar implications to those discussed in the context of FIFO
channels also hold for causal channels, namely, C-IND-CCA =⇒ C-IND-CPA and C-INT-CTXT
=⇒ C-INT-PTXT. This is in line with corresponding results for stateless encryption [BDJR97]
and stateful encryption [BKN02]. Further, we have that ciphertext integrity implies history
integrity, i.e., C-INT-CTXT =⇒ C-INT-HIST. To see why the latter relation holds, observe
that C-INT-CTXT guarantees that all ciphertexts accepted by Recv were genuinely produced
by OSend and are submitted for decryption according to the causal property, and thus they obey
the correctness regime. Now, as the integrity experiments only record in G the actions that
accepted by the channel algorithms (to ensure that G is a causal graph), it directly follows by
correctness (Definition 26) that, for these actions, the history is accurate. In contrast, message
integrity does not suffice: C-INT-PTXT 6=⇒ C-INT-HIST.2 Thus, ciphertext integrity is the
strongest of the integrity notions, both in the FIFO and in the causal case.

2Starting from a causal channel that is C-INT-HIST, construct a second causal channel from it by appending
a redundant zero-bit to each ciphertext. Let Recv output an arbitrary history when being presented a ciphertext
where this bit has value one.

77

Exptc-int-ptxt
Ch,N,A (1λ):

01 G← (∅, ∅, ∅)
02 Q[]← ∅
03 (st1, . . . , stN)←$ Init(1λ, N)
04 AOSend,ORecv(1λ)
05 Terminate with 0

OSend(i, ad,m):
06 (sti, c, h)←$ Send(sti, ad,m)
07 G← G⊕ (S, i) with v
08 Q[v]← (ad,m)
09 Return (c, h) to A

ORecv(i, j, ad, c):
10 (sti,m, h)←$ Recv(sti, j, ad, c)
11 If sti = ⊥: Return ⊥ to A
12 G← G⊕ (R, i, j) with v
13 If G = ⊥ ∨ (ad,m) 6= Q[ω(v)]:
14 Terminate with 1
15 Return (m,h) to A

Exptc-int-ctxt
Ch,N,A (1λ):

16 G← (∅, ∅, ∅)
17 Q[]← ∅
18 (st1, . . . , stN)←$ Init(1λ, N)
19 AOSend,ORecv(1λ)
20 Terminate with 0

OSend(i, ad,m):
21 (sti, c, h)←$ Send(sti, ad,m)
22 G← G⊕ (S, i) with v
23 Q[v]← (ad, c)
24 Return (c, h) to A

ORecv(i, j, ad, c):
25 (sti,m, h)←$ Recv(sti, j, ad, c)
26 If sti = ⊥: Return ⊥ to A
27 G← G⊕ (R, i, j) with v
28 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
29 Terminate with 1
30 Return (m,h) to A

Exptc-int-hist
Ch,N,A (1λ):

31 G← (∅, ∅, ∅)
32 (st1, . . . , stN)←$ Init(1λ, N)
33 AOSend,ORecv(1λ)
34 Terminate with 0

OSend(i, ad,m):
35 (sti, c, h)←$ Send(sti, ad,m)
36 G← G⊕ (S, i)
37 If G = ⊥ ∨ h 6= G(i):
38 Terminate with 1
39 Return (c, h) to A

ORecv(i, j, ad, c):
40 (sti,m, h)←$ Recv(sti, j, ad, c)
41 If sti = ⊥: Return ⊥ to A
42 G← G⊕ (R, i, j)
43 If G = ⊥ ∨ h 6= G(i):
44 Terminate with 1
45 Return (c, h) to A

Figure 6.4: Integrity experiments for causal channels. We assume that once a query results in state sti
being set to ⊥, then no further queries for that participant are accepted. We further assume (i, j) ∈
J1 .. NK, ad ∈ AD, m ∈ M , and c ∈ C for all such values provided by the adversary. When writing
‘G⊕ x with v’ we use v as a placeholder for the node that is newly added to the causal graph G in case
the operation G ⊕ x does not fail. We use sending actions as indices for the associative array Q[]. A
flag activei per participant is kept to register the participants that are affected by an active measure of
the adversary (in which case activei = 1).

6.4 Constructions

Network infrastructures that add causality guarantees to the communication of many partici-
pants play an important role in distributed computing. Standard constructions are known that
achieve such properties, but without giving any cryptographic guarantees. In Section 6.2 we in-
troduced the corresponding cryptographic primitive, the causal channel, and proposed suitable
security notions. Here we answer the remaining question on how to securely construct such a
channel from simpler (cryptographic) building blocks.

We propose a construction of a secure causal channel that supports an arbitrary number of
participants. It runs on top of a causal network infrastructure and uses a secure FIFO channel
as a building block. We give rationale on our construction and formal security statements below.
In a nutshell: if the FIFO channel provides corresponding security properties, the constructed
causal channel meets all properties of integrity and confidentiality defined in the earlier sections
of this thesis.

Construction 4 (Causal channels from FIFO channels). For an associated data space AD,
let Ch = (Init,Send,Recv) be a FIFO channel with associated data space AD × N∗, message
space M , ciphertext space C , and state space S . The causal channel Chc = (Initc,Sendc,Recvc)

78

Initc(1λ, N):
01 (ŝt1, . . . , ŝtN)←$ Init(1λ, N)
02 For i← 1 to N :
03 Ii ← ε
04 hi ← (∅, ∅, ∅)
05 sti ← (ŝti, Ii, hi)
06 Return (st1, . . . , stN)

Sendc(sti, ad,m):
07 If sti = ⊥: Return (⊥,⊥,⊥)
08 Parse sti as (ŝti, Ii, hi)
09 ad ′ ← (ad, Ii)
10 (ŝti, c′)←$ Send(ŝti, ad ′,m)
11 c← (Ii, c′)
12 Ii ← ε
13 hi ← hi ⊕ (S, i)
14 sti ← (ŝti, Ii, hi)
15 Return (sti, c, hi)

Recvc(sti, j, ad, c):
16 Parse sti as (ŝti, Ii, hi)
17 If sti = ⊥: Return (⊥,⊥,⊥)
18 Parse c as (ι1 ‖ . . .‖ ιt, c′)
19 If parsing fails:
20 sti ← ⊥
21 Return (⊥,⊥,⊥)
22 ad ′ ← (ad, ι1 ‖ . . .‖ ιt)
23 (ŝti,m)←$ Recv(ŝti, j, ad ′, c′)
24 If ŝti = ⊥:
25 sti ← ⊥
26 Return (⊥,⊥,⊥)
27 Ii ← Ii ‖j
28 For k ← 1 to t:
29 hi ← hi ⊕ (R, j, ιk)
30 hi ← hi ⊕ (S, j)⊕ (R, i, j)
31 If hi = ⊥:
32 sti ← ⊥
33 Return (⊥,⊥,⊥)
34 sti ← (ŝti, Ii, hi)
35 Return (sti,m, hi)

Figure 6.5: Construction of causal channel Chc from a FIFO channel Ch.

with associated data space AD, message space M , ciphertext space N∗ × C , and state space S ×
N∗ × G is specified in Figure 6.5.

The working principle of our construction Chc is as follows. For the communication between
peers it relies on a causal network and, on top of it, a FIFO channel Ch. The state variables st
of the constructed Chc consist of the state ŝt of the Ch instance, a string I which records
the origin of received ciphertexts (line 27 of Recvc) and is reset at each sending operation
(line 12 of Sendc), and an internal communication graph h. As the communication proceeds,
h is gradually extended by new actions such that it always reflects the participant’s prefix of
the ongoing conversation. Consequently, for sending operations only the current action needs
to be recorded (line 13 of Sendc). For receiving actions the situation is more involved, as an
excerpt of the communication history of the remote party has to be incorporated in the local
representation (lines 28–30 of Recvc). To do so we let participants include partial information
about their communication history in transmitted ciphertexts (line 11 of Sendc) and authenticate
it using the associated data field of Ch (line 09).
Remark 5 (Optimization in the two-party case). We point out that Construction 4 can be
slightly optimized when employed in the two-party setting.3 The crucial observation is that in
this case the I component of the state variable effectively just counts the number of received
ciphertexts. It could thus be replaced by a simpler variable to save memory and bandwidth.

We prove next that Construction 4 is correct (as a causal channel), if the underlying FIFO
channel Ch is. This result is not as easy to show as it might first seem: for causal channels

3In the two-party setting FIFO security notions and causal security notions coincide (Lemma 2 on page 48),
so the reason to use our construction would be to obtain the history output.

79

the correctness requirement goes beyond the standard message recovery but also demands the
history output h to be consistent with the causal order of the sending and receiving events.

In the following three theorems and their corollary we denote with Chc the causal channel
obtained by applying Construction 4 to a FIFO channel Ch.

Theorem 10 (Correctness of Construction 4). If Ch is a correct FIFO channel then Chc is a
correct causal channel.

Proof. Let G = (V,≤, χ) be a causal graph and let n = |V |. Fix an enumeration e : [1 .. n]→ V
of (V,≤) and write v1 = e(1), . . . , vn = e(n). Finally, let α : V S → AD and µ : V S → M be
arbitrary assignments. Proceed with performing the actions of V as specified in Definition 26 (on
page 75), and denote with G0, . . . , Gn the implicitly defined sequence of causal graphs such that
G0 = (∅, ∅, ∅) and Gk = Gk−1⊕χ(vk) for 1 ≤ k ≤ n. Note that for every k we have G(vk) = G

(i)
k ,

where i indicates the participants that performs vk, i.e., vk ∈ Vi. We prove by induction that
vk ∈ V R =⇒ m[vk] = µ(ω(vk)) and vk ∈ V =⇒ h[vk] = G

(i)
k , for the corresponding i. Let hence

k be arbitrary and assume that the statement holds for all k′ < k. Let (i, j) ∈ J1 .. NK be such
that either vk ∈ V S

i or vk ∈ V R
ij .

Consider first the case vk ∈ V S
i , i.e., χ(vk) = (S, i). If vk is the smallest (i.e., first) action

in Vi, then h[vk] = (∅, ∅, ∅) ⊕ (S, i) = G
(i)
k is clear. Otherwise let vl be the (unique) direct

predecessor of vk in Vi. Then l < k and for all l < r < k we have vr /∈ Vi. By the inductive
assumption we have h[vl] = G

(i)
l . By applying Lemma 8(b) sufficiently often we obtain

h[vk] = h[vl]⊕ (S, i) = G
(i)
l ⊕ (S, i) = G

(i)
l+1 ⊕ (S, i) = . . . = G

(i)
k−1 ⊕ (S, i) = G

(i)
k .

Consider next the case vk ∈ V R
ij and let vm = ω(vk); then χ(vk) = (R, i, j) and χ(vm) = (S, j).

As we follow the scheduling scheme of Definition 26, the pairs (ad, c′) of vm and vk coincide.
Correspondingly the abort condition in line 19 of Recvc does not trigger, the pairs (ad ′, c) of vm
and vk match, and so do the strings Ij of vm (before being overwritten in line 12 of Sendc) and
ι1 ‖ . . . ‖ ιt of vk. Lemma 1(b) and the correctness of Ch now imply that also the messages m
considered in vm and vk are equal, and that the abort condition in line 24 of Recvc is not met.
We show h[vk] 6= ⊥ below (i.e., the abort condition in line 31 of Recvc is not triggered), and
hence this establishes m[vk] = µ(ω(vk)).

It remains to show that h[vk] = G
(i)
k . Concerning participant j, observe that the strings Ij

compiled in line 12 of Sendc and line 27 of Recvc are slices of the projected characteristic χj(G)
(see Definition 18 on page 51) and correspond precisely with those considered in Lemma 8(a) (on
page 51). Now, if vk is the smallest (i.e., first) action in Vi then the incoming string ι1 ‖ . . .‖ ιt =
Ij is empty (i.e., t = 0), by (CAUS); in particular we have h[vk] = (∅, ∅, ∅)⊕(S, j)⊕(R, i, j) = G

(i)
k .

Let otherwise vl be the (unique) direct predecessor of vk in Vi. Then l < k and for all l < r < k

we have vr /∈ Vi. By the inductive assumption we have h[vl] = G
(i)
l . Further, if we write S as

shortcut for (R, j, ι1)⊕ . . .⊕ (R, j, ιt)⊕ (S, j)⊕ (R, i, j) and apply Lemma 8(b) sufficiently often,
we finally obtain

h[vk] = h[vl]⊕ S = G
(i)
l ⊕ S = G

(i)
l+1 ⊕ S = . . . = G

(i)
k−1 ⊕ S = G

(i)
k .

We proceed with proving that message and ciphertext integrity are lifted from Ch to Chc,
and that message integrity of the former suffices to obtain history integrity of the latter. These
results are stated in Theorem 11. We then show that confidentiality against passive adversaries
is lifted from Ch to Chc, as stated in Theorem 12. The results above together with Theorem 5

80

(on page 60) culminate in Corollary 2, which identifies sufficient security requirements on the
FIFO channel Ch for obtaining a causal channel Chc that offers the strongest security properties
defined in this thesis.

Theorem 11 (Integrity of Construction 4). If Ch offers (FIFO) integrity of ciphertexts, respec-
tively, of messages, then Chc offers (causal) integrity of ciphertexts, resp., of messages. More
precisely, for all efficient adversaries A and A′ against Chc there exist efficient adversaries B
and B′ against Ch such that

Advc-int-ptxt
Chc,N,A (λ) ≤ Advf-int-ptxt

Ch,N,B (λ) and Advc-int-ctxt
Chc,N,A′ (λ) ≤ Advf-int-ctxt

Ch,N,B′ (λ) .

In addition, if Ch offers message integrity then Chc provides history integrity. Precisely, for
every efficient adversary A′′ against Chc there exists an efficient B′′ such that

Advc-int-hist
Chc,N,A′′ (λ) ≤ Advf-int-ptxt

Ch,N,B′′ (λ) .

Proof. We prove the three statements left-to-right. A copy of the C-INT-PTXT experiment
from Figure 6.4, with the algorithms of our construction from Figure 6.5 plugged in, is given as
E0 in Figure 6.6 (ignore the commented out lines 21–22, 32–33, and 43-44 for now). We added
some variable assignments in lines 02, 07, 10, 13–14, 19, 23, 25, 31, 40, and 45 that do not affect
the outcome of the experiment but help in the analysis below.

Let E1
A be the modification of E0

A with lines 32–33 activated, as indicated in the figure.
Observe that the setup of the Send operation of line 12 and the Recv operation of line 29 (these
are of the FIFO channel Ch) together with the accompanying code in lines 02, 13–14 and 30–33
precisely corresponds with the arrangement of the F-INT-PTXT experiment from Figure 5.3.
This means that line 33 will only be executed if adversary A (implicitly) breaks the message
integrity of Ch. Thus a standard reductionist argument shows that Pr[E0

A = 1] ≤ Advf-int-ptxt
Ch,N,B ,

for an efficient adversary B.
In an execution of experiment E1 with adversary A, consider the sequence G0, G1, . . . of

intermediate snapshots of graph G as they occur throughout the experiment (lines 07, 19, 40).
Observe that after any execution of lines 19 and 40 the then current graph Gn is a prefix of
the then current graph Ḡ from lines 13 and 31 (prefix in the sense of that sequence χi(Gn) is a
prefix of sequence χi(Ḡ), for all i ∈ [1 .. N]). Indeed, every ⊕ operation in line 18 is preceded
by a corresponding + operation in line 13 and every ⊕ operation in line 39 is a preceded by a
corresponding + operation in line 31, and if in any oracle invocation the + operation succeeds
but the corresponding ⊕ operation fails then no further action of the affected participant is ever
executed. By consequence, the nodes v and v̄ of lines 18 and 13 naturally correspond, and so
do the nodes from lines 39 and 31; concerning the latter, in particular also nodes ω(v̄) and ω(v)
correspond.

Let us now define a function ψ such that ψ : ((ad, I),m) 7→ (ad,m). Then concerning line 41
we have (ad,m) = ψ(ad ′,m) = ψ(Q̄[ω(v̄)]) = Q[ω(v)], where we used lines 28, 32, 14, 11, and
then 20. That is, to complete the proof of the C-INT-PTXT property it remains to show that
in line 41 always Gn 6= ⊥. We prove this condition below, as part of the C-INT-HIST proof.

Concerning the second statement, which is on the C-INT-CTXT security of Chc, observe
that the new F-INT-CTXT assumption on Ch is taken into account by changing lines 14 and 32
of experiments E0

A,E1
A to consider (ad ′, c′) instead of (ad ′,m). The remaining steps are identical

to the ones given above, but with function ψ replaced by (almost) the identity function. Indeed,
for the (updated) line 41 we would then have (ad, c) = (ad, (I, c′)) = ((ad, I), c′) = (ad ′, c′) =
(Q̄[ω(v̄)]) = Q[ω(v)].

We move on to the third statement, i.e., the claim that Chc offers C-INT-HIST security if
Ch is F-INT-PTXT-secure. Consider the corresponding experiment E2 as defined in Figure 6.6

81

E0
A,E1

A,E2
A(1λ)

01 G← (∅, ∅, ∅), Q[]← ∅
02 Ḡ← (∅, ∅, ∅), Q̄[]← ∅
03 (ŝt1, . . . , ŝtN)←$ Init(1λ, N)
04 For i← 1 to N :
05 Ii ← ε
06 hi ← (∅, ∅, ∅)
07 G0 ← G, H0 ← G, n← 1
08 AOSend,ORecv(1λ)
09 Terminate with 0

If A queries OSend(i, ad,m):
10 xn ← (S, i)
11 ad ′ ← (ad, Ii)
12 (ŝti, c′)←$ Send(ŝti, ad ′,m)
13 Ḡ← Ḡ+ (S, i) with v̄
14 Q[v̄]← (ad ′,m)
15 c← (Ii, c′)
16 Ii ← ε
17 hi ← hi ⊕ (S, i)
18 G← G⊕ (S, i) with v
19 Gn ← G, Hn ← hi
20 Q[v]← (ad,m)
21 // If G = ⊥ ∨ hi 6= G(i): (E2)
22 // Terminate with 1 (E2)
23 n← n+ 1
24 Return (c, hi) to A

If A queries ORecv(i, j, ad, c):
25 xn ← (R, i, j)
26 Parse c as (ι1 ‖ . . .‖ ιt, c′)
27 If parsing fails: Return ⊥ to A
28 ad ′ ← (ad, ι1 ‖ . . .‖ ιt)
29 (ŝti,m)←$ Recv(ŝti, j, ad ′, c′)
30 If m = ⊥: Return ⊥ to A
31 Ḡ← Ḡ+ (R, i, j) with v̄
32 // If Ḡ = ⊥∨ (ad ′,m) 6= Q̄[ω(v̄)]: (E1,E2)
33 // Terminate with 0 (E1,E2)
34 Ii ← Ii ‖j
35 For k ← 1 to t:
36 hi ← hi ⊕ (R, j, ιk)
37 hi ← hi ⊕ (S, j)⊕ (R, i, j)
38 If hi = ⊥: Return ⊥ to A
39 G← G⊕ (R, i, j) with v
40 Gn ← G, Hn ← hi
41 If G = ⊥ ∨ (ad,m) 6= Q[ω(v)]: (E0,E1)
42 Terminate with 1 (E0,E1)
43 // If G = ⊥ ∨ hi 6= G(i): (E2)
44 // Terminate with 1 (E2)
45 n← n+ 1
46 Return (m,hi) to A

Figure 6.6: Experiments E0,E1,E2 used in the proofs for C-INT-CTXT, C-INT-PTXT, and C-INT-
HIST of Construction 4.

(here, lines 21–22, 32–33, and 43–44 are activated, but lines 41–42 are deactivated. As above,
the difference between E2 and the original C-INT-HIST game from Figure 6.4 is bounded by
Advf-int-ptxt

Ch,N,B′′ (λ), for an efficient adversary B′′.
Consider an execution of adversary A in E2 and the corresponding sequence of graphs Gn

and Hn throughout the game. We show by induction on n that the conditions of lines 21 and 43
are never met. For some n let thus (i, j) ∈ J1 .. NK be such that xn = (S, i) or xn = (R, i, j)
(lines 10 and 25) and Gm 6= ⊥ and Gn−1 6= ⊥ and Hm = G

(i)
m , where m is minimal such that

0 ≤ m < n and xm+1, . . . , xn−1 /∈ Xi, i.e., either m = 0 or xm is the action of participant i that
directly precedes xn. We need to prove Gn 6= ⊥ and Hn = G

(i)
n (in lines 21 and 43).

Consider first the case xn = (S, i). We haveGn = Gn−1⊕xn 6= ⊥ by line 18 and Definition 17.
Further, from line 17 and sufficiently many applications of Lemma 8(b) we derive

Hn = Hm ⊕ (S, i) = G(i)
m ⊕ (S, i) = G

(i)
m+1 ⊕ (S, i) = . . . = G

(i)
n−1 ⊕ (S, i) = G(i)

n .

Consider next the case xn = (R, i, j). Write Gn−1 = (V,≤, χ). To establish Gn 6= ⊥, by
Definition 17 it suffices to show that there exists u ∈ V S

j \ ≤Vi such that <u ∩ V S ⊆ ≤Vi. Let
s = |V S

j | and r = |V R
ij |. By the observations above we know that Gn−1 is a prefix of Ḡ and thus

s ≥ r + 1 by Lemma 1(b), where the ‘+1’ is due to the fact that action xn is not considered
in Gn−1. Let u ∈ V S

j be the (r + 1)-th sending action in Vj . Then u /∈ ≤Vi by Lemma 1(c). We

82

next show that for all w ∈ <u∩V S we have w ∈ ≤Vi. If w ∈ V S
i the statement is clear. Further,

if w ∈ V S
j then w is at most the r-th sending action in Vj and hence w ∈ ≤Vi by Lemma 1(c).

It remains to analyze the case w ∈ V S
l with l ∈ [1 .. N] \ {i, j}.

Let I = ι1 ‖ . . . ‖ ιt be the string from line 26 of the O∗Recv invocation corresponding to xn
and let v1≺` . . .≺`vt′≺`u be the longest subchain of Vj such that vk ∈ V R for all 1 ≤ k ≤ t′. As
I is transported in the associated data field of Ch (line 28), and as u and xn are the (r + 1)-th
actions with characteristics (S, j) and (R, i, j), respectively, that appear in Ḡ, by lines 32–33, 16
and 34 we have t = t′ and χ(vk) = (R, j, ιk) for all k.

Now, towards proving that for w ∈ V S
l we have w ∈ ≤Vi, note that by w < u there exists a

minimal w∗ ∈ V R
j such that w < w∗≺`u; by (CAUS) we even have w≺rw∗≺`u. If w∗≺`v1 then

by the definition of v1 there exists ŵ ∈ V S
j with w∗≺`ŵ≺`v1. As ŵ is at most the r-th sending

action in Vj we have ŵ ∈ ≤Vi by Lemma 1(c), and hence also w ∈ ≤Vi.
Only one case is remaining: w∗ = vk with 1 ≤ k ≤ t′, i.e., ιk = l. Write Hm = (W,≤, χ).

As Hn = Hm ⊕ (R, j, ι1) ⊕ . . . ⊕ (R, j, ιt) ⊕ (S, j) ⊕ (R, i, j) 6= ⊥ by lines 35–38, also for H̄m =
Hm ⊕ (R, j, ι1) ⊕ . . . ⊕ (R, j, ιk) we have H̄m 6= ⊥. Write H̄m = (W̄ ,≤, χ) and let r′ = |W̄R

jl |.
By Lemma 1(b) we have that w is the r′-th action in W̄S

l = WS
l . We apply Lemma 3(b) to

Hm = G
(i)
m and deduce |WR

il | = |WS
l | ≥ r′. That is, by Lemma 1(b) there exists w′ ∈ WR

il

such that w≺rw′. Thus w ∈ ≤WR
il ⊆ ≤Vi. This completes the proof of Gn = Gn−1 ⊕ xn 6= ⊥.

Observe that Hn = G
(i)
n now follows immediately from Lemma 8(b).

All in all, the conditions from lines 21 and 43 never hold and lines 22 and 44 will not be
executed. This shows that Chc offers C-INT-HIST security.

Theorem 12 (Confidentiality against passive adversaries). If Ch offers indistinguishability
under chosen-plaintext attacks (F-IND-CPA) then Chc offers causal indistinguishability un-
der chosen-plaintext attacks (C-IND-CPA). More precisely, for every efficient adversary A
against Chc there exists an efficient adversary B against Ch such that

Advc-ind-cpa
Chc,N,A (λ) ≤ Advf-ind-cpa

Ch,N,B (λ) .

Proof. Let A be an adversary that plays the C-IND-CPA game against channel Chc and let B
be the reduction specified in Figure 6.7. To facilitate the comparison between the C-IND-
CPA experiment that B simulates for A and the F-IND-CPA experiment that B plays against,
in Figure 6.7 we reproduce, along with B’s code, the instructions executed within OLoR and
O∗Recv. We marked these additional instructions with the comment symbol ‘// ’ to make a clear
distinction between what happens in the ‘outer’ F-IND-CPA game and what B actually does.
Notice that for each of A’s left-or-right and receiving queries, B poses a corresponding query
to the oracles OLoR and O∗Recv provided by the F-IND-CPA experiment. Precisely, if A asks to
send (i, ad,m0,m1) then B queries OLoR with (i, ad ′,m0,m1) where ad ′ = (ad, Ii); let c′ be the
oracle answer; then B returns the pair (h, c), where c′ = (Ii, c), to A. Similarly, if A poses a
receiving query (i, j, ad, c) then B queries O∗Recv on tuple (i, j, ad ′, c′) where c = (ι1 ‖ . . .‖ ιt, c′)
and ad ′ = (ad, ι1 ‖ . . .‖ ιt). Let ϕ be the bijection that maps (ad, (I, c′)) 7→ ((ad, I), c′). Using ϕ
we can make the relation between A’s and B’s receiving queries explicit: any query (i, j, ad, c)
posed by A corresponds to a query (i, j, ϕ(ad, c)) posed by B.

Let G, respectively, Ḡ be causal graph and the FIFO graph recorded by B while emulating
the C-IND-CPA game and considered within the execution of the F-IND-CPA experiment that
B plays, respectively. During the experiment execution, G and Ḡ are expanded according
to the communication scheduled by A: each left-or-right query causes the addition (via ⊕,
respectively, +) of a sending node to G and to Ḡ, respectively, while each (passive) receiving
query adds a receiving node to G and to Ḡ, respectively. Observe that, although Ḡ is expanded
using the FIFO addition + while for G we use the causal addition ⊕, the two graphs evolve

83

BOLoR,O∗Recv(1λ):
01 G← (∅, ∅, ∅), Q[]← ∅
02 // Ḡ← (∅, ∅, ∅), Q̄[]← ∅
03 For i← 1 to N :
04 Ii ← ε
05 hi ← (∅, ∅, ∅)
06 b′ ←$ AOLoR,O∗Recv(1λ)
07 Terminate with b′

If A queries OLoR(i, ad,m0,m1):
08 Require |m0| = |m1|
09 ad ′ ← (ad, Ii)
10 c′ ← OLoR(i, ad ′,m0,m1)
11 // Require |m0| = |m1|
12 // (ŝti, c′)← Send(ŝti, ad ′,mb)
13 // Ḡ← Ḡ+ (S, i) with v̄
14 // Q̄[v̄]← (ad ′, c′)
15 c← (Ii, c′)
16 Ii ← ε
17 hi ← hi ⊕ (S, i)
18 G← G⊕ (S, i) with v
19 Q[v]← (ad, c)
20 Return (c, hi) to A

If A queries O∗Recv(i, j, ad, c):
21 G← G⊕ (R, i, j) with v
22 If G = ⊥ ∨ (ad, c) 6= Q[ω(v)]:
23 Terminate with 0
24 Parse c as (ι1 ‖ . . .‖ ιt, c′)
25 If parsing fails: Terminate with 0
26 ad ′ ← (ad, ι1 ‖ . . .‖ ιt)
27 � ← O∗Recv(i, j, ad ′, c′)
28 // Ḡ← Ḡ+ (R, i, j) with v̄
29 // If Ḡ = ⊥ ∨ (ad ′, c′) 6= Q̄[ω(v̄)]:
30 // Terminate with 0
31 // (ŝti,m)← Recv(ŝti, j, ad ′, c′)
32 Ii ← Ii ‖j
33 For k ← 1 to t:
34 hi ← hi ⊕ (R, j, ιk)
35 hi ← hi ⊕ (S, j)⊕ (R, i, j)
36 If hi = ⊥: Terminate with 0
37 Return (�, hi) to A

Figure 6.7: Security reduction B used in the proof for C-IND-CPA of Construction 4.

simultaneously, action by action. Hence, at any point in time when a query is processed and the
next query is not yet asked, the graphsG and Ḡ are isomorphic. More precisely, letG = (V,≤, χ)
and Ḡ = (V̄ , ≤̄, χ̄) denote the graphs obtained after processing any of A’s query. Then, there
exists a bijection

φ : V̄ → V ; v̄ 7→ v such that χ(φ(v̄)) = χ(v̄) and φ(ω(v̄)) = ω(φ(v̄)) .

In order to bound A’s advantage with B’s advantage it remains to show that, if A does not
cause the C-IND-CPA game to terminate abruptly, neither does B in the F-IND-CPA game. In
this regard, things can go wrong only when the receiving oracle is invoked. Thus, we only analyze
the latter case. Assume that all of A’s queries are passive (in a causal sense), i.e., they do not
trigger the execution of instructions 23, 25 and 30. We show next that the corresponding queries
posed by B are passive (in a FIFO sense) as well. Let G and Ḡ be the ‘current’ (isomorphic)
causal and FIFO graphs and suppose that A asks a query q = (i, j, ad, c) to O∗Recv. By the
assumption of passiveness of A we know that q makes the operation G ⊕ (R, i, j) admissible
and, if v denotes the node newly added to G, we have (ad, c) = Q[ω(v)]. Our assumption also
guarantees that the parsing operation of line 24 does not fail. Write c = (ι1 ‖ . . . ‖ ιt, c′) and
ad ′ = (ad, ι1 ‖ . . . ‖ ιt). We now prove that query q′ = (i, j, ad ′, c′), which B asks to O∗Recv, is
passive in a FIFO sense. As Ḡ and G are isomorphic, if follows from lemma 6 (Chapter 4)
that G⊕ (R, i, j) 6= ⊥ =⇒ Ḡ+ (R, i, j) 6= ⊥. Let v̄ be the node added to Ḡ. We have

(ad ′, c′) (1)= ϕ(ad, c) (2)= ϕ
(
Q[ω(v)]

) (3)= ϕ
(
Q[φ(ω(v̄))]

) (4)= Q̄[ω(v̄)] ,

84

where the first equality holds by definition of ϕ, the second is implied by the previously
established relation (ad, c) = Q[ω(v)], the third follows from the relations v = φ(v̄) and
ω(φ(v̄)) = φ(ω(v̄)), and the fourth is implied by the following observation: for all sending
actions w̄ ∈ V̄ and w ∈ V such that w = φ(w̄), the C-IND-CPA experiment stores pair
Q[w] = (x, y) if and only if the F-IND-CPA experiment stores pair Q̄[w̄] = ϕ(x, y). This proves
that instruction 30 is not executed. Hence, if the C-IND-CPA game does not penalize A then
the F-IND-CPA does not penalize B either.

Corollary 2 (Security of Construction 6.5). If Ch offers integrity of ciphertexts and indis-
tinguishability under chosen-plaintext attacks (i.e., F-INT-CTXT and F-IND-CPA) then Chc
offers the strongest security guarantees for causal channels: causal ciphertext integrity, history
integrity, and causal indistinguishability under chosen-ciphertext attacks (i.e., C-INT-CTXT,
C-INT-HIST, and C-IND-CCA).

85

Chapter 7
Sequential Key Generators

In the present and the next chapter we leave the domain of channels and focus on schemes that
deterministically expand a random seed into a sequence of random-looking keys. Such schemes,
that we name sequential key generators, have been shown to be a powerful tool for building
forward-secure symmetric primitives. In this chapter we propose an improved security model
for sequential key generators and discuss how it compares with existing models.

7.1 Introduction

A cryptosystem provides forward security (FS) if it continues to give meaningful security guar-
antees after the adversary got a copy of the used keys. A standard example is key exchange:
here, all recent security models require established session keys to remain safe when the adver-
sary obtains access to the involved long-term private keys [Sho99, CK01]. The notion of forward
security also extends to non-interactive primitives. For instance, in forward-secure public key
encryption [CHK07] messages are encrypted in respect to a combination (pk, t), where pk is
a public key and t ∈ N identifies one out of a set of consecutive time epochs; for each such
epoch t, knowledge of a specific decryption key skt is necessary for decrypting corresponding ci-
phertexts. In addition, while by design it is efficiently possible to perform updates skt 7→ skt+1,
forward security requires that the reverse mapping be inefficient, i.e., it shall be infeasible to ‘go
backwards in time’. More precisely, forward security guarantees that plaintexts encrypted for
‘expired’ epochs remain confidential even if the decryption keys of all later epochs are revealed.
Analogously to the described setting, signatures produced using the forward-secure variants
of signature schemes remain unforgeable for past epochs if only current and future keys are
disclosed to the adversary [BM99].

In the symmetric-key setting, forward security for encryption and authentication primitives
is defined similarly (clearly, here there is no public key). For instance, Bellare and Yee [BY03]
show that one way to obtain a forward-secure encryption scheme is to combine a (forward-
secure) sequential key generator (SKG) with a regular encryption scheme, where the former can
be seen as a PRG that maintains state and, once initialized with a random seed, deterministically
outputs a pseudorandom sequence of random-looking keys. These keys are then used, one per
epoch, together with the encryption scheme to ensure indistinguishability of ciphertexts within
each time epochs. It seems plausible that forward-secure channels can be boot-strapped using
the same modular approach, by combining a ‘regular’ channel protocol with a forward-secure
sequential key generator. Note that for symmetric-key primitives two or more parties (e.g.,
the users of a FIFO channel, Chapter 5) need to maintain a copy of the same secret key. To
achieve forward security, the communicating parties may run in synchrony the same instance

87

of a sequential key generator and use matching keys for encryption and decryption. From the
perspective of an attacker, this scenario opens the possibility to obtain encryption keys of the
generated sequence from either of the participants, potentially in an adaptive way if the key
updates are not performed at the same time.1

In the present chapter we propose a new security model for SKGs that reflects the scenario
described above where an attacker may have adaptive access to the key sequence. Sequential
key generators also find applications in computer forensic, particularly in the context of secured
local logging.

7.2 Syntax and Functionality
Informally speaking, a sequential key generator (SKG) is a stateful primitive that determinis-
tically expands an initial seed, chosen uniformly at random, into a sequence of fix-length keys.
These keys are supposed to be used in higher level protocols, for example as keys for sym-
metric encryption or message authentication schemes. More specifically, an SKG consists of
a parameter generation algorithm Gen that selects public parameters suitable for any security
level specified by the user, an initialization algorithm Init that takes as input the public param-
eters and generates an initial state, a key derivation algorithm GetKey that, given as input the
current epoch’s state, derives the corresponding key, and a state update algorithm Evolve that
also takes as input the current epoch’s state and outputs the state for the next epoch.

Definition 29 (Syntax of SKGs). Let ` : N → N be a polynomial. A sequential key generator
with key length ` is a tuple of efficient algorithms SKG = (Gen, Init,Evolve,GetKey) as follows:

• Gen. This randomized algorithm takes as input a security parameter 1λ and the number
of supported epochs T ∈ N∪{∞}, and outputs public parameters par and optionally some
auxiliary information aux. We write this as (par , aux)←$ Gen(1λ, T).

• Init. This randomized algorithm takes as input the public parameters par and returns an
initial state st0. We denote this by st0 ←$ Init(par).

• Evolve. This algorithm takes as input the current state sti and outputs the next state sti+1.
To indicate this we write sti+1 ← Evolve(sti) and use the shortcut Evolvek to denote the
k-fold composition of Evolve, i.e., sti+k ← Evolvek(sti), for every k ∈ N.

• GetKey. This algorithm extracts from any state sti the key Ki ∈ {0, 1}`(λ). We write this
as Ki ← GetKey(sti). We use the shortcut GetKeyk(sti) to denote GetKey(Evolvek(sti)).

Note that our syntax allows algorithm Gen to receive as input T =∞. In fact, some schemes do
not require the maximum number of epochs to be specified in advance as they may support, in
principle, an unlimited number of iterations (this is indeed the case for the generic construction
that we present in Section 8.4.1). For these schemes we omit the input value T from the
signature of Gen (i.e., when the number of epochs is not specified we assume T =∞). In fact,
we anticipate that all schemes presented in this thesis offer security only if T is not ‘too large’
(precisely: it must be polynomial in the security parameter).

In some practical scenarios, SKG instances are not run as a single copy. When used to secure
local logging services, for instance, after clones of an initial state st0 are distributed to a given set
of parties, several copies of the same SKG instance may be run concurrently and independently,
potentially on different host systems not necessarily in synchronization. As Evolve and GetKey

1Another application that inherently requires at least two parties to use the same instance of an SKG is local
logging, as we will see later.

88

Gen Init

Evolve Evolve Evolve Evolve

Evolve Evolve Evolve Evolve

par

st0 st1 st2 st3 st4

st0 st1 st2 st3 st4

Figure 7.1: Interplay of the SKG algorithms Gen, Init, and Evolve. The figure shows two copies of the
same SKG instance running in parallel. GetKey algorithm can be applied to each intermediate state sti
to derive key Ki.

are deterministic, respective state and key sequences of the same SKG instance are identical for
all copies. This setting is illustrated in Figure 7.1.

7.3 Security

Similarly to PRGs, we require indistinguishability of generated keys from random strings of the
same length as basic security property of SKGs. Our security model considers an experiment
involving an adversary A who first gets adaptive access to a set of real keys Ki of her choosing
(with ‘real’ keys we mean keys generated by running an instance of the SKG algorithms) and is
then challenged with a string Kb

n that is either the real key Kn or a random string of the same
length; the adversary has to distinguish these two cases. This shall model the intuition that
key Kn ‘looks random’ even if the adversary is given all other keys Ki, for i 6= n. We formalize
indistinguishability in the following definition.

Definition 30 (IND security for SKGs). A sequential key generator SKG provides indistin-
guishability against adaptive adversaries (IND) if for all efficient adversaries A = (A1,A2)
that interact in the experiment Exptind,b

SKG,A from Figure 7.2 the following advantage function

Advind
SKG,A(λ) :=

∣∣∣Pr
[
Exptind,1

SKG,A(1λ) = 1
]
− Pr

[
Exptind,0

SKG,A(1λ) = 1
]∣∣∣ ,

is negligible, where the probabilities are taken over the random coins of the experiment, including
A’s randomness.

Several applications of SKGs have to cope with the possibility that an adversary eventually
gets the state of the system (e.g., by means of computer break-in) and hence is able to compute
all subsequent keys. While nothing can be done in such settings to protect the keys generated
after corruption took place, we can still hope that previously generated keys remain secure.
For these applications we demand a stronger security guarantee than indistinguishability that
also incorporates forward security. We model break-in by additionally letting the adversary
corrupt any state of the generator. More precisely, starting from the IND security experiment
we incorporate forward security by allowing A to specify together with the challenge epoch n
also a corruption epochm and obtain the generator state for that epoch stm. Clearly, knowledge
of stm gives the ability to compute all subsequent keys Km,Km+1, . . . , thus, to exclude trivial
wins we must require that the challenge epoch precedes the corruption epoch. We formalize
indistinguishability with forward security in the following definition.

89

Exptind,b
SKG,T,A(1λ):

01 (par , aux)←$ Gen(1λ, T)
02 st0 ←$ Init(par)
03 Skeyid ← ∅
04 (hist, n)←$ A

OGetKey(·)
1 (1λ, T)

05 Require 0 ≤ n < T
06 K0

n ←$ {0, 1}`(λ)

07 K1
n ← GetKeyn(st0)

08 b′ ←$ A
OGetKey(·)
2 (hist,Kb

n)
09 Require n /∈ Skeyid
10 Return b′

If A queries OGetKey(i):
11 Require 0 ≤ i < T
12 Skeyid ← Skeyid ∪ {i}
13 Ki ← GetKeyi(st0)
14 Return Ki to A

Figure 7.2: Security experiments of indistinguishability (IND) for sequential key generators. The
auxiliary output aux does not play any role in the security game and can be ignored for now. Set Skeyid
is used to register the epochs for which the adversary requests the SKG key. The adversary A = (A1,A2)
operates in two stages and maintains a state variable hist that allows A1 to pass information to A2.

Definition 31 (IND-FS security for SKGs). A sequential key generator SKG is indistinguishable
with forward security against adaptive adversaries (IND-FS) if for all efficient adversaries
A = (A1,A2) that interact in the experiment Exptind-fs,b

SKG,A from Figure 7.3 the following advantage
function

Advind-fs
SKG,A(λ) :=

∣∣∣Pr
[
Exptind-fs,1

SKG,A (1λ) = 1
]
− Pr

[
Exptind-fs,0

SKG,A (1λ) = 1
]∣∣∣ ,

is negligible, where the probabilities are taken over the random choices of the experiment, in-
cluding A’s randomness.

We pose the informal requirement on Evolve algorithm that it securely erase state sti after
deriving state sti+1 from it. Note that secure erasure is generally considered difficult to achieve
and requires special care [Gut96].

It is immediate to see that the IND-FS notion is strictly stronger than the IND notion.

7.4 Comparison with Stateful Generators

Stateful generators, first described by Bellare and Yee (BY) [BY03, Section 2.2], aim at similar
applications as SKGs. The two primitives are essentially identical (where ‘essentially’ indicates
a purely syntactical difference in the algorithm specifications). This is true for what is concerned
with the functionality of SKGs. Regarding security, the BY model and ours present significant
differences that we highlight next.

In the security experiment for stateful generators (a.k.a. forward-secure pseudorandom gen-
erators, or FS-PRG for short), after having incremental access to a sequence K0,K1, . . . of keys
that are either all real (i.e., Ki ← GetKey(sti)∀i) or all random (i.e., Ki ←$ {0, 1}`(λ) ∀i), the
adversary eventually requests to see the ‘current’ state stm and, based upon the result, outputs a
guess on whether keys K0, . . . ,Km−1 were actually real or random. For reference, we reproduce
in Figure 7.4 the model from [BY03], adjusted to our notation and syntax.

An important difference between the BY model and ours is that for FS-PRGs an adversary
that corrupts state stm cannot request access to keys Ki, i ≥ m, before corruption takes place

90

Exptind-fs,b
SKG,T,A(1λ):

01 (par , aux)←$ Gen(1λ, T)
02 st0 ←$ Init(par)
03 Skeyid ← ∅
04 (hist, n,m)←$ A

OGetKey(·)
1 (1λ, T)

05 Require 0 ≤ n < m < T
06 K0

n ←$ {0, 1}`(λ)

07 K1
n ← GetKeyn(st0)

08 stm ← Evolvem(st0)
09 b′ ←$ A

OGetKey(·)
2 (hist, stm,Kb

n)
10 Require n /∈ Skeyid
11 Terminate with b′

If A queries OGetKey(i):
12 Require 0 ≤ i < T
13 Skeyid ← Skeyid ∪ {i}
14 Ki ← GetKeyi(st0)
15 Return Ki to A

Figure 7.3: Security experiments of indistinguishability with forward security (IND-FS) for sequential
key generators. The auxiliary output aux does not play any role in the security game and can be ignored
for now. Set Skeyid is used to register the epochs for which the adversary requests the SKG key. The
adversary A = (A1,A2) operates in two stages and maintains a state variable hist for allowing A1 to
pass information to A2.

(in contrast to our model). This difference may be limiting in contexts where multiple parties
evolve states of the same SKG instance independently of each other and in an asynchronous
manner. For instance, in the secure logging scenario, the adversary might first observe the log
auditor verifying MAC tags on ‘current’ time epochs and then decide to corrupt a monitored host
that is out of synchronization, e.g., because it is powered down and hence didn’t evolve its state.
As such concurrent and asynchronous conditions are not considered in the model by Bellare and
Yee, in some practically relevant settings the security of the constructions from [BY03] should
not be assumed.

We note, however, that denying the adversary access to keys Ki, i ≥ m in the BY model is
necessary to avoid trivial attacks: by seeing Km and then obtaining stm, an attacker may simply
compare Km with GetKey(stm) and, in case the two keys coincide, infer that the observed keys
were real, otherwise that they were random. It seems that our model, instead, excludes such
trivial attack by letting the adversary obtain all real keys except for the one challenge key Kb

n.
Here, seeing first key Km and then corrupting state stm is perfectly fine. This observation raises
a natural question: is IND-FS security strictly stronger than FS-PRG security?

As we prove in the following, it turns out that, surprisingly, the two security notions are
equivalent. We prove first that our model is at least as strong as BY’s model, i.e., IND-FS =⇒
FS-PRG. Intuitively, the BY security experiment can be seen as a restriction of ours in which
the adversary in the first phase of the experiment requests to see keys K1, . . . ,Kn−1 and then
declares challenge epoch n and corruption epoch m = n+ 1. Recall that in the BY experiment
the challenger gives the adversary either the real keys K1, . . . ,Kn or randomly chosen strings
of the same length, depending on the value of the hidden bit b. In contrast, the challenger of
the IND-FS experiment always provides the adversary with real keys K1, . . . ,Kn−1 and only
lets the challenge key Kb

n to be real, if b = 1, or random, otherwise. Shortly: in the BY
experiment keys K1, . . . ,Kn−1,Kn are distributed as Re/$, . . . ,Re/$,Re/$ while in our model
we have Re, . . . ,Re,Re/$.

Theorem 13 (IND-FS =⇒ FS-PRG). Let SKG be a stateful key generator supporting T iter-

91

Exptfs-prg,b
SKG,A (1λ):

01 (par , aux)←$ Gen(1λ, T)
02 i← 0, hist ← ε
03 st0 ←$ Init(par)
04 Do:
05 K0

i ←$ {0, 1}`(λ)

06 K1
i ←$ GetKey(sti)

07 (d, hist)←$ A(find,Kb
i , hist)

08 sti+1 ← Evolve(sti)
09 i← i+ 1
10 While d = find and i < T − 1
11 b′ ←$ A(guess, sti, hist)
12 Terminate with b′

Figure 7.4: Security experiment of forward security for stateful generators (FS-PRG) introduced by
Bellare and Yee [BY03], adapted to our syntax. We denote by hist a history variable, initially empty,
maintained by the adversary between different invocations. Flags find and guess indicates two ‘modes’
of the adversary, referring to the phase in which A observes keys (before corruption) and the phase in
which A expresses its verdict on the nature of the seen keys (after corruption). Note that we count
time-epochs from 0 to T − 1.

ations. If SKG offers IND-FS security then it also provides FS-PRG security. Moreover, for
every efficient adversary A against the FS-PRG property there exists an efficient adversary B
against the IND-FS property such that

Advfs-prg
SKG,A(λ) ≤ (T − 1) ·Advind-fs

SKG,B(λ) .

Proof. Let E0,b
A denote the FS-PRG security experiment involving adversary A against SKG

with the hidden bit is set to b: Our goal is to bound the following advantage:

Advfs-prg
SKG,A(λ) =

∣∣∣Pr
[
E0,1
A (1λ) = 1

]
− Pr

[
E0,0
A (1λ) = 1

]∣∣∣ ,
with the IND-FS-advantage of some efficient algorithm B.

Let n denote the number of keys that the adversary sees before corruption takes place (i.e.,
n = i when the loop of lines 04–10 terminates). We proceed by defining a sequence of hybrids Hj,b

A
for j ∈ [0 .. n] where H0,b

A := E1,b
A and Hj+1,b

A is derived from Hj,b
A by turning K0

j into a ‘real’
key, i.e., K0

j ← GetKey(stj) (in particular, this implies that K0
j = K1

j). Throughout the proof
let Pr[Ej,bA] and Pr[Hj,b

A] be shortcuts for the probabilities Pr[Ej,bA (1λ) = 1] and Pr[Hj,b
A (1λ) = 1],

for j ∈ N and b ∈ {0, 1}.
It follows directly by construction that Pr[Hj,1

A] = Pr[E0,1
A] for all j ∈ [0 .. n] (for b = 1 the

adversary sees only the ‘left’ keys, which are not affected by the changes between hybrids).
Regarding the b = 0 case, we claim that for every j ∈ [0 .. n− 1] there exists an efficient
IND-FS-adversary Bj such that:∣∣∣Pr

[
Hj,0
A

]
− Pr

[
Hj+1,0
A

]∣∣∣ ≤ Advind-fs
SKG,Bj

(λ) .

Algorithm Bj emulates the game for A by computing the keys and the corrupt state as follows.
It gets keys K1, . . . ,Kj−1 from oracle OGetKey, requests the j-th key as challenge key Kb

j , chooses

92

the remaining keys Kj+1, . . . ,Kn uniformly at random from {0, 1}`(λ), and requests as corrupt
state stm = stn+1. Eventually Bj returns the same output as A.

Next, we show that also for the last hybrid Hn,b
A there exists an efficient IND-FS adversary Bn

such that: ∣∣∣Pr
[
Hn,1
A

]
− Pr

[
Hn,0
A

]∣∣∣ ≤ Advind-fs
SKG,Bn

(λ) .

Similarly to previous algorithms Bj , Bn obtains keys K1, . . . ,Kn−1 from the oracle OGetKey,
requests challenge epoch n and corruption epoch n + 1 and gets back challenge key Kb

n and
state stn+1, hence provides A with keys K1, . . . ,Kn−1,K

b
n and state stn+1. Finally, it outputs

the same bit b′ that A returns.
Now let B be the algorithm that first chooses j uniformly at random from [0 .. T − 2] (recall

that we can assume n < m and m ∈ [0 .. T − 1] wlog in the IND-FS experiment) and then
emulates the FS-PRG game for A by running Bj with the only exception that if i 6= j when A
outputs d = guess (recall that i = n when the loop of lines 04–10 terminates) then B terminates
the simulation with output 0; otherwise, it proceeds as Bj does. Since j is randomly chosen, we
have that Advind-fs

SKG,B(λ) = 1
T−1 ·

∑T−2
j=0 Advind-fs

SKG,Bj
(λ).

Putting all together we obtain the final bound:

Advfs-prg
SKG,A(λ) ≤ (T − 1) ·Advind-fs

SKG,B(λ) .

The opposite implication, FS-PRG =⇒ IND-FS, can be proven using a similar strategy as in
the proof of Theorem 13. We give only a proof idea, the details are easy to infer from the previ-
ous proof. If n denotes the epoch that an IND-FS adversary A requests as ‘challenge’, we first
proceed via a hybrid argument that progressively turns all keys K1, . . . ,Kn−1 into ‘challenge
keys’, i.e., as for key Kn they are computed using the SKG algorithms if b = 1, while they are
chosen uniformly at random in {0, 1}`(λ) in case b = 0. Shortly, this step changes the distribu-
tions of the keys (up to the challenge key) from Re, . . . ,Re,Re/$ to Re/$, . . . ,Re/$,Re/$. It is
then easy to simulate the resulting game using an FS-PRG adversary that guesses the challenge
epoch, requests (in advance) keys K1, . . . ,Kn and corrupt state stn+1 from the FS-PRG exper-
iment, hence answers A’s queries i, i < n to OGetKey by returning the obtained keys if i < n
and by computing Ki = GetKey(sti) for i > n, returns Kn as challenge key, and computes the
corrupt state as stm = Evolve(stn)m−n.

This leads us to the following result which, together with the statement of Theorem 13,
establishes the equivalence between the IND-FS and the FS-PRG security notions.

Theorem 14 (FS-PRG =⇒ IND-FS). Let SKG be a stateful key generator supporting T iter-
ations. If SKG offers FS-PRG security then it also provides IND-FS security. Moreover, for
every efficient adversary A against the FS-PRG property there exists an efficient adversary B
against the IND-FS property such that

Advind-fs
SKG,A(λ) ≤ (T − 1) ·Advfs-prg

SKG,A(λ) .

7.5 Constructions
Sequential key generators can be easily built from standard cryptographic primitives. Bellare
and Yee (BY) propose some constructions from PRGs and PRFs, and prove their forward
security (FS-PRG) in [BY03]. For concreteness, we reproduce a simple design of an SKG
based on PRGs; its FS-PRG security is analyzed in [BY03, Theorem 1]. The IND-FS security
of PRG-SKG is a direct corollary of Theorem 14 (on page 93). Briefly, the generator expands an

93

initial seed via a PRG invocation and then splits the output into two parts, the next epoch’s
seed (this is indeed the running state of the generator) and the current epoch’s key.

Construction 5 (SKGs from PRGs, [BY03]). Let ` : N→ N be a positive polynomial and let G
be a PRG such that |G(x)| = |x|+`(|x|) for all x. Write G(x) as GL(x)‖GR(x) with |GL(x)| = λ
and |GR(x)| = `(λ) and define PRG-SKG = (Gen, Init,Evolve,GetKey) by letting Gen output the
empty string, Init sample st0 ←$ {0, 1}λ, Evolve(sti) output GL(sti), and GetKey(sti) output
GR(sti).

Theorem 15 ([BY03]). Let T : N→ N be a polynomial and let G be a PRG as in Construction 5.
The stateful generator PRG-SKG supporting T (λ) epochs offers FS-PRG security.

We will see more constructions of sequential key generators in the next chapter.

7.6 A Digression on Secured Local Logging
Computer log files can be configured to record a large variety of system events that occur on
network hosts and communication systems, including users logging on or off, memory resources
reaching their capacity, malfunctioning of disk drives, etc. Therefore, log files represent an
essential source of information that support system administrators in understanding the activity
of systems and keeping them fully functional. Unfortunately, as log files are often recorded
locally (i.e., on the monitored machine itself), in many practical cases intruders can a posteriori
manipulate the log entries related to their attacks. In a network environment, one obvious
strategy to prevent adversarial tampering of audit logs is to forward log messages immediately
after their creation to a remote log sink—in the hope that the attacker cannot also corrupt
the latter. Necessary in such a setting is that the log sink is continuously available, as every
otherwise required local buffering of log records would increase the risk that their delivery
is suppressed by the adversary. However, in many cases the reachability of the log sink can
be artificially restrained by the intruder, e.g., by confusing routing protocols with false ARP
messages, by sabotaging TCP connections with injected reset packets, by jamming wireless
connections, or by directing application-level denial-of-service attacks against the log sink.

A solution for tamper-resistant log-entry storage that does not require a remote log sink
but offers integrity protection via cryptographic means is secured local logging. Here, each log
entry is stored together with a specific authentication tag that is generated and verified using a
secret key. Note that regular message authentication codes (MACs) by themselves seem not to
constitute a secure solution, as corresponding tags will be forgeable by intruders that succeed
in extracting the secret key from the attacked device. Rather, the forward-secure variant of a
MAC is required. The latter can be realized by combining a regular MAC with a sequential
key generator. An early approach towards secured local logging originates from Bellare and
Yee [BY97]; they study the role of forward security in authentication, develop the security
notion of forward integrity, and realize a corresponding primitive via a PRF chain. Shortly
after [BY97], an independent cryptographic scheme specifically targeted at protecting log files
was described by Kelsey and Schneier [KS98, KS99, SK99]. Their scheme draws its (forward)
security from frequent key updates via iterated hashing, but is unfortunately not supported by
a formal security analysis. Kelsey, Callas, and Clemm [KCC10] introduced secured logging into
the standardization process at IETF. However, their proposal of signed syslog messages focuses
on remote logging instead of on local logging. Precisely, their extension to the standard UNIX
syslog facility authenticates log entries via signatures before sending them to a log sink over the
network. While this proposal naturally offers seekability, it is bound to the full-time availability
of an online log sink. Indeed, periods where the latter is not reachable are not securely covered,
as the scheme is not forward-secure.

94

Chapter 8
Seekable Sequential Key Generators

In this chapter we augment the notion of a sequential key generator by adding a fast-forward
functionality to compute any key of the output sequence from the generator’s initial state. This
property finds a natural application in the context of secured local logging.

8.1 Introduction

We have seen in the previous chapter that forward-secure SKGs are not difficult to construct.
For instance, the scheme of Bellare and Yee from Construction 5 is an efficient one. Indeed, if
it is instantiated with a hash function-based PRG, invocations of Evolve and GetKey algorithms
take only a small (constant) number of hash function evaluations. However, this assessment
of efficiency is adequate only if the derived keys Ki are used (and computed) in sequential
order. We argue that in many potential fields of application such access structures are not
given; instead, random access to the keys may be required, implying a considerable efficiency
penalty if keys need to be computed iteratively via Ki ← GetKeyi(st0). The following examples
illustrate that random access patterns do not intrinsically contradict the envisioned sequential
nature of SKGs.

Consider a host that uses SKG’s keysKi to authenticate continuously incurring log messages.
A second copy of the same SKG instance would be run by the log auditor. From time to time
the latter might want to check the integrity of an arbitrary selection of these messages. Observe
that this scenario does not really correspond to the setting from Figure 7.1: While the upper
SKG copy might represent the host that evolves keys in the expected linear order Ki → Ki+1,
the auditor (running the second copy) would actually need non-sequential access to SKG’s keys.

For a second example in secure logging, assume SKG’s epochs are coupled to absolute time
intervals (e.g., one epoch per second). If a host is powered up after a long down-time, in order to
resynchronize its SKG state, it is required to do a ‘fast-forward’ over a large number of epochs.
Ideally, an SKG would support the option to skip an arbitrary number of Evolve steps. Clearly,
a (fast-)forward algorithm with execution time linear in the number k of skipped epochs is
trivially achievable. The question is: can we do better than O(k)? We next introduce a variant
of SKG that explicitly offers random access capabilities.

8.2 Seekability

Recall that a sequential key generator (as well as a stateful PRG) can be seen as a stateful
primitive that outputs a sequence of random-looking keys—one per invocation. The distin-
guished property of seekability ensures that it is possible to jump directly to any position in

95

the output sequence. Observe that knowledge of the initial state of a (regular) SKG instance
does permit to derive every key of the output sequence. However, deriving the ith key from
state st0 requires to iterate i times the update procedure Evolve, passing through all interme-
diate states st1, . . . , sti and then invoking GetKey on state sti to derive key Ki. Instead, a
seekable SKG (shortly: SSKG) provides a fast-forward procedure Seek that allows a designated
party who owns a so-called seeking key to derive from the initial state any subsequent state
without, and more efficiently than, repeatedly invoking the update procedure Evolve through
all the intermediate states.

Definition 32 (Seekable SKGs). Let SKG = (Gen, Init,Evolve,GetKey) be a sequential key gen-
erator. We say that SKG is seekable if the parameter generation algorithm Gen outputs as
auxiliary information a so-called seeking key sk and there exists an efficient deterministic al-
gorithm Seek that given as inputs the seeking key sk, an initial state st0, and an integer k ∈ N,
returns an updated state stk, that we write as stk ← Seek(sk, st0, k), with the following prop-
erty: for all λ ∈ N, all T ∈ N, all (par , sk) ←$ Gen(1λ, T), all st0 ←$ Init(par), and all
integers 0 ≤ k ≤ ∞ it holds Seek(sk, st0, k) = Evolvek(st0). In this case we say that the tuple
SSKG = (Gen, Init,Evolve,GetKey, Seek) is a seekable sequential key generator (SSKG).

GetKey GetKey GetKey GetKey

Init Evolve Evolve Evolve

Seek

st0 st1 stk−1 stk stk+1

K0 K1 Kk Kk+1

k

Figure 8.1: Interplay of the different SSKG algorithms. Given the seeking key sk and the initial
state st0, one can seek directly to any arbitrary state stk.

Many practical applications can widely benefit from the extended functionality. Observe that
the advantage of seekable SKGs over (regular) SKGs is purely efficiency-wise; in particular, the
definition of SSKG security is almost identical to the one for SKGs (with ‘almost’ we mean
‘modulo syntactical changes’).
Remark 6 (Epochs outside of supported range). Note that the correctness requirement leaves
unspecified the effect of Evolve when invoked from st0 for more than T times and of Seek for
an unsupported epoch number k ≥ T . Clearly, if the application demands it, an SSKG can
always be implemented such that Evolve, Seek, and GetKey output an error symbol for such
epochs, simply by including an epoch counter in the state. We abstain from formally requiring
such a behavior as our construction in Section 8.4.2 in many cases does guarantee security for a
larger number of epochs than requested and there seems to be no reason to generally disregard
systems that offer this extra service.
Remark 7 (On the necessity of seeking trapdoors). Observe that for standard SKGs the secret
material managed by users in each time-epoch i is restricted to the one current state sti. In
contrast, for SSKGs we introduced additional secret information, namely the seeking key sk,
required to perform the Seek operation. One might ask whether this step was really necessary.
We fixed the syntax of SSKGs as given in Definition 32 for a technical reason: the SSKG

96

constructions that we present in Section 8.4.1 are factoring-based, respectively, RSA-based, and
the corresponding Seek algorithms require knowledge of the modulus factorization n = pq (the
shortcut is ϕ = (p − 1)(q − 1)). However, as knowledge of p and q thwarts the one-wayness
of designated Evolve operation, we had to formally separate the entities that can and cannot
perform the Seek operation. While this property slightly narrows the applicability of SSKGs,
it is irrelevant for the intended secure logging scenario that we aim at, described below.

Application of SSKGs: secured local logging. We describe a practical setting of secured
local logging with multiple monitored hosts. The system administrator first runs Gen algorithm
to establish system-wide parameters; each host then runs Init algorithm to create its individual
initial state st0, serving as a basis for specific sequences (sti)i∈N and (Ki)i∈N. The log auditor,
having access to seeking key sk and to initial states st0 of all hosts, can reproduce all corre-
sponding keys Ki without restriction. Observe that, as the SSKG instances on different hosts
are independent of each other (i.e., each host creates its own initial state and, thus, derives
a key chain that is independent of chains created by other hosts), authenticated log messages
from one host cannot be ‘replayed’ on other hosts.

In practice, it might be difficult to find ‘the right’ frequency with which keys should be
evolved to the next epoch. Recall that, even if forward-secure log authentication is in place, an
intruder cannot be prevented from manipulating the log entries of the epoch in which he got
access to a system. This suggests that keys should be updated at least every few seconds—and
even more often to obtain protection against fully-automated attack tools.

8.3 Shortcut One-Way Permutations
We introduce a novel primitive, called shortcut (one-way) permutation (ScP), that will serve
as a building block for our generic SSKG construction presented in Section 8.4.1. Consider a
finite set D together with an efficiently computable permutation π : D → D. Clearly, for any
x ∈ D and m ∈ N one can compute the m-fold composition πm(x) = π ◦ · · · ◦π(x) by evaluating
m-times the permutation π; the latter can be done in linear time O(m). We define shortcut
permutations by requiring the efficiency feature that the value πm(x) can be computed more
efficiently than that, using a dedicated algorithm. In addition we demand one-wayness of π:
given the image y = π(x) ∈ D of a uniformly chosen element x ∈ D it should be computationally
hard to compute x.

While we will rigorously specify the one-wayness requirement of ScPs, we do not give a
precise definition of what ‘more efficiently’ means for the computation of πm. The reason is
that we aim at practicality of our construction, and, in general, practical efficiency strongly
depends on the concrete parameter sizes and computing platforms in use.

We formalize next the syntax and functionality of ScPs. For technical reasons, the definition
slightly deviates from the above intuition in that the algorithm which efficiently computes πm
also requires an auxiliary input, that we call the shortcut information; moreover, it defines
shortcut one-way permutations as families of functions (Chapter 2 on page 9).

Definition 33 (Shortcut Permutations). A shortcut permutation is a tuple ScP = (ScPGen,
Eval,Express) of efficient algorithms as follows:

• The parameter generation algorithm ScPGen takes as input a security parameter 1λ and
outputs a set of public parameters P together with a shortcut information sc. We write
this as (P, sc) ←$ ScPGen(1λ). We assume that each specific value P implicitly defines
a finite domain DP , and that elements from DP can be efficiently sampled with uniform
distribution.

97

• The evaluation algorithm Eval takes as input the public parameters P, an element x ∈ DP ,
and returns an element y ∈ DP . We write this as y ← Eval(P, x).

• The shortcut algorithm Express takes as input the shortcut information sc, an element x ∈
DP , an integer m ∈ N, and returns an element y ∈ DP . We write y ← Express(sc, x,m).

We require that for all λ ∈ N and all (P, sc)←$ ScPGen(1λ) the algorithm Eval(P, ·) implements
a bijection π : DP → DP and that Express(sc, x,m) = πm(x) for all x ∈ DP and m ∈ N.
Additionally we demand that for all x ∈ DP and all m > 1 computing Express(sc, x,m) be
‘significantly faster’ than Eval(P, x)m.

As the shortcut property is solely an efficiency feature, it does not appear in our specification
of one-way security. In fact, the one-wayness requirement of ScPs and of regular one-way
permutations (as defined in Chapter 2) are essentially the same. Importantly, we do not grant
the adversary access to the shortcut.

Definition 34 (One-wayness of ScP). Let ScP = (ScPGen,Eval,Express) be a shortcut permu-
tation. We say that ScP is one way if for all efficient adversaries A the following advantage
function is negligible:

Advowp
ScP,A(λ) := Pr

[
Eval(P, x) = y : (P, sc)←$ ScPGen(1λ); y ←$ DP ; x←$ A(P, y)

]
where the probabilities are taken over the random choices of the experiment and A’s randomness.

Remark 8 (Shortcut vs Trapdoor One-Way Permutations). The syntax of ScPs is, to some
extent, close to that of trapdoor permutations (TDPs, see [KL15]). However, observe the
significant difference between the notions of trapdoor and shortcut. While a TDP’s trapdoor
allows efficient inversion of the permutation (i.e., computation of π−1), a shortcut allows efficient
computation of the composition πm, for arbitrary m. In particular for some ScPs it may be the
case that, even when the shortcut information is available, there is no way to efficiently invert π.
We admit, though, that in our constructions described from the next section, one-wayness does
not hold for adversaries that obtain the shortcut information: in fact, any party knowing the
shortcut can also efficiently invert the permutation.

We propose two efficient constructions of ScPs, FACT-ScP and RSA-ScP, that are one-way
based on the RSA problem and on the SQRT problem (Definitions 1–2 on page 8).

Construction 6 (FACT-ScP). Let SQRTGen be an SQRT generation algorithm and define
the shortcut permutation FACT-ScP = (ScPGen,Eval,Express) as follows. Let ScPGen(1λ) run
(N, p, q, ϕ)←$ SQRTGen(1λ) and output P = N and sc = ϕ. For every x ∈ QRN let Eval(N, x)
output x2 mod N , and for every m ∈ N let Express(ϕ, x,m) output x(2m mod ϕ) mod N .

Remark 9 (FACT-ScP is a shortcut one-way permutation). For every security parameter λ and
every tuple (N, p, q, ϕ) generated by SQRTGen(1λ) let DP := QRN and let π : DP → DP be
the mapping x 7→ x2 mod N . Observe that the specified domain DP is efficiently samplable:
it suffices to take x ←$ Z∗N uniformly at random and then square it. By definition, Eval(P, ·)
implements the bijection π : DP → DP . It follows from standard number-theoretic results (in
particular [MvV97, Fact 2.160] and [MvV97, Fact 2.126]) that for every x ∈ DP and everym ∈ N
it holds Express(ϕ, x,m) = Evalm(N, x). Every Express operation takes about one exponentiation
modulo N . Further, comparing the experiments in Definition 34 (on page 98) and Definition 1
(on page 8) makes it evident that FACT-ScP is one way if the SQRT problem is hard for
SQRTGen, i.e., if integer factorization is hard [MvV97, Fact 3.46].

98

Construction 7 (RSA-ScP). Let RSAGen be an RSA generation algorithm and define the short-
cut permutation RSA-ScP = (ScPGen,Eval,Express) as follows. Let ScPGen(1λ) run (N,ϕ, e)←$
RSAGen(1λ) and output P = (N, e) and sc = ϕ. For every x ∈ ZN let Eval(N, e, x) output
xe mod N , and for every m ∈ N let Express(ϕ, x,m) output x(em mod ϕ) mod N .

Remark 10 (RSA-ScP is a shortcut one-way permutation). For any (N,ϕ, e) ←$ RSAGen(1λ)
let DP := ZN and let π : DP → DP be the mapping x 7→ xe mod N . Using a similar argument
as in Remark 9 we conclude that the domain DP is efficiently samplable, that correctness of
the ScP follows from standard number-theoretic results, and that every Express operation takes
about one exponentiation modulo N . Further, RSA-ScP is one way as long as the RSA problem
is hard for RSAGen.

Factoring- vs RSA-based shortcut permutations. Observe that both constructions rely
on different, though related, number-theoretic assumptions. In fact, while the security of
FACT-ScP can be shown to be equivalent to the hardness of integer factorization, RSA-ScP
can be reduced ‘only’ to the RSA assumption. Hence, in some sense, SQRT-based schemes
are at least as secure as RSA-based schemes. In addition to that, our SQRT-based scheme
has a (slight) performance advantage over our RSA-based scheme (squaring is more efficient
than raising to the power of e). The only situation we are aware of in which RSA-ScP might
have an advantage over FACT-ScP is when the most often executed operation is Express, and
deployment of multiprime RSA is acceptable (e.g., N = pqr). Briefly, in the multiprime RSA
setting [JK03, HLT03], private key operations can be implemented particularly efficiently, based
on the Chinese Remainder Theorem.

8.4 Constructions

In this section we construct sequential key generators that offer a seekability feature. Our
first construction is based on shortcut one-way permutations and enjoys a proof of security in
the random oracle model. Since shortcut one-way permutation can be based on the hardness
of factoring and of RSA, this scheme can be concretely instantiated using number-theoretic
building blocks. We also propose a construction that relies on symmetric building blocks and
prove its security (in the standard model) down to the assumption that PRGs exist.

8.4.1 Seekable Sequential Key Generators From Shortcut Permutations

We propose a generic construction of an SSKG from a shortcut one-way permutation and
a cryptographic hash function, and prove that it achieves indistinguishability with forward
security (IND-FS) in the random oracle model. We know from the previous section that ScPs
exist and, in the case of our two instantiations, that are provably one way down to the hardness
of the RSA and the SQRT problems. Thus, we obtain provably secure instantiations of SSKGs
from random oracles and standard cryptographic assumptions.

Our construction, that we name permute-then-hash, essentially works as follows: the initial
state is chosen by picking uniformly at random an element of the domain of the permutation;
the next state is computed as the image of the current state under the permutation in use;
each epoch’s key is generated by applying the hash function to the state corresponding to that
epoch; finally, the seeking procedure makes use of the permutation’s Express algorithm. We
validate the soundness of the permute-then-hash design by reducing its IND-FS security to the
one-wayness of the ScP, in the random oracle model.

99

Gen(1λ)
01 (P, sc)←$ ScPGen(1λ)
02 (par , sk)← (P, sc)
03 Return (par , sk)

Init(par)
04 P ← par
05 x0 ←$ DP
06 st0 ← (P, 0, x0)
07 Return st0

Evolve(sti)
08 Parse sti as (P, i, xi)
09 xi+1 ← Eval(P, xi)
10 sti+1 ← (P, i+ 1, xi+1)
11 Return sti+1

GetKey(sti)
12 Parse sti as (P, i, xi)
13 Ki ← H(P, i, xi)
14 Return Ki

Seek(sk, st0,m)
15 sc ← sk
16 Parse st0 as (P, 0, x0)
17 xm ← Express(sc, x0,m)
18 stm ← (P,m, xm)
19 Return stm

Figure 8.2: Specification of the ScP-SSKG’s algorithms (Construction 8).

Construction 8 (ScP-SSKG). Let ScP = (ScPGen,Eval,Express) be a shortcut permutation,
and let H : {0, 1}∗ → {0, 1}`(λ) be a hash function for some polynomial `. Then the algorithms
of our seekable sequential key generator ScP-SSKG are specified in Figure 8.2.

Correctness of Construction 8 follows by inspection, while its security is stated in the next
theorem. Note that ScP-SSKG supports, in principle, an unlimited number of epochs. However,
as the theorem’s bound shows, the higher T is, the larger the security loss. Thus, in practice it
is reasonable to fix an upper bound for T which does not degrade the scheme’s security.

Theorem 16 (Security of ScP-SSKG). Construction 8 offers IND-FS security in the random
oracle model as long as ScP is a shortcut one-way permutation. More precisely, for every
efficient adversary A against ScP-SSKG there exists an efficient adversary B against ScP such
that

Advind-fs
ScP-SSKG,A(λ) ≤ 2T ·Advowp

ScP,B(λ) .

Proof. Let A be an adversary that plays the IND-FS game against the scheme. Recall that
we are in the random oracle model, hence the adversary is given oracle access to the hash
function H. Our security argument formalizes the intuition that A could tell apart a real
key Kn from a random one only by querying state stn to the random oracle (clearly, obtaining
the valueH(stn) discloses the nature, real or random, of the challenge keyKb

n with overwhelming
probability). We show, however, that A asks such a hash query only with negligible probability.
In what follows we formalize this intuition.

Let E0,b
A denote the experiment Exptind-fs,b

ScP-SSKG,A. Consider an arbitrary execution of E0,b
A .

Let P be the public parameter generated for the shortcut permutation and denote the domain
and associated bijection by DP and π : DP → DP , respectively. For the sake of legibility,
throughout the proof we omit all occurrences of the parameter P. Accordingly, we denote the
scheme’s initial state by st0 = (0, x0), further states by stt = (t, xt) for t ∈ N and xt = π(xt−1) =
πt(x0), and keys by Kt = H(t, xt). We also ignore the maximum number of epochs T for now.

100

We proceed by defining a sequence of games that starts with E0,b
A and terminates with a

game in which A has no advantage. In the first hop we define game E1,b
A from E0,b

A by forcing
termination of the game with output 0 if A ever poses query (n, xn) to H. Let badb be the event
that A asks query (n, xn) to the random oracle when the hidden bit is set to b. By definition,
E0,b
A and E1,b

A are identical as long as badb does not occur. We can thus bound A’s advantage in
the IND-FS experiment as follows:

Advind-fs
ScP-SSKG,A(λ) =

∣∣∣Pr
[
E0,1
A

]
− Pr

[
E0,0
A

]∣∣∣
≤
∣∣∣Pr

[
E0,1
A

]
− Pr

[
E1,1
A

]∣∣∣+ ∣∣∣Pr
[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣+ ∣∣∣Pr
[
E1,0
A

]
− Pr

[
E0,0
A

]∣∣∣
≤ Pr

[
bad1

]
+ Pr

[
bad0

]
+
∣∣∣Pr

[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣ .
We will show later that both Pr

[
bad0

]
and Pr

[
bad1

]
can be upper bounded by the advantage

of an efficient inverter against the underlying shortcut permutation ScP. Going on, we define
the next game E2,b

A from E1,b
A by letting not only K0

n but also K1
n be randomly chosen. Observe

that this transition is fictitious: deriving K1
n ← H(n, xn) from the random oracle or choosing

it uniformly at random looks the same to the adversary as long as A does not ask the hash
query (n, xn). In fact, both E1,b

A and E2,b
A penalize the adversary in case it poses such query.

Thus, A’s advantage in game E1,b
A is the same as in game E2,b

A . Observe finally that E2,0
A and

E2,1
A are the very same game (K0

n and K1
n are both uniformly chosen), and hence in game E2

A
the adversary has exactly zero advantage. The two observations above imply:∣∣∣Pr

[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣ =
∣∣∣Pr

[
E2,1
A

]
− Pr

[
E2,0
A

]∣∣∣ = 0 ,

and lead us to the bound:

Advind-fs
ScP-SSKG,A(λ) ≤ Pr

[
bad0

]
+ Pr

[
bad1

]
. (8.1)

It remains to show that A poses the hash query (n, xn) only with negligible probability, i.e.,
Pr[badb] is negligible for b ∈ {0, 1}. We prove a stronger statement, namely that all hash queries
(t, xt) with 0 ≤ t < m occur with negligible probability. In the rest of the proof we refer to
hash queries of the form (t, z) with 0 ≤ t < m and z = xt as lucky queries, and we denote by
luckyb the event that A poses a lucky query during an execution of experiment E0,b

A . Clearly
Pr[badb] ≤ Pr[luckyb]. We proceed with giving an explicit reduction B that uses A as a black
box and succeeds in inverting the permutation ScP whenever A makes a lucky query to H, as
stated in the following lemma.

Lemma 9. Let b ∈ {0, 1} and let luckyb denote the event that A poses a lucky query during the
execution of experiment E0,b

A . There exists an efficient algorithm B such that:

Advowp
ScP,B(λ) ≥ 1

T
· Pr

[
luckyb

]
. (8.2)

Since Pr[badb] ≤ Pr[luckyb], the inequalities (8.1) and (8.2) allow us to derive the final bound
for A’s IND-FS advantage:

Advind-fs
ScP-SSKG,A(λ) ≤ 2T ·Advowp

ScP,B(λ) .

It remains to prove Lemma 9. We want to build an inverter B for π whose strategy relies on
A’s ability of making lucky queries. Assume that B receives a challenge y ∈ DP for the OWP
game. Intuitively, the idea is to embed B’s challenge into the state stm = (m,xm), where m

101

B(1λ,P, y):
01 Skeys ← ∅, Shash ← ∅
02 m∗ ←$ [2 .. T − 1]
03 (hist, n,m)←$ A

OGetKey(·),H(·)
1 (1λ)

04 Require 0 < n < m < T ∧ m∗ = m
05 Kb

n ←$ {0, 1}`(λ)

06 stm ← (m, y)
07 b′ ←$ A

OGetKey(·),H(·)
2 (hist, stm,Kb

n)
08 Return ⊥

If A queries OGetKey(t):
09 Require 0 ≤ t < T
10 If ∃(t,Kt) ∈ Skeys:
11 Return Kt to A
12 Else:
13 Kt ←$ {0, 1}`(λ)

14 Skeys ← Skeys ∪ {(t,Kt)}
15 If t ≥ m∗:
16 xt ← πt−m

∗(y)
17 Shash ← Shash ∪ {((t, xt),Kt)}
18 Return Kt to A

If A queries H(t, z):
19 If ∃((t, z), h) ∈ Shash:
20 Return h to A
21 Else:
22 h←$ {0, 1}`(λ)

23 Shash ← Shash ∪ {((t, z), h)}
24 If t < m∗:
25 If πm∗−t(z) = y: // lucky query?
26 x← πm

∗−t−1(z)
27 Return x
28 Else if πt−m∗(y) = z // in-line query?
29 Skeys ← Skeys ∪ {(t, h)}
30 Return h to A

Figure 8.3: Security reduction B described in the proof of Lemma 9. B receives an ScP chal-
lenge (P, y) = (N, y) and embeds it into state stm = (N,m, xm). It maintains sets Skeys and Shash
for recording the the values (t,Kt) and ((t, xt),Kt) given to the adversary as OGetKey and H responses,
respectively.

is the corruption epoch that A requests, by setting xm ← y and hope that A poses a lucky
query (t, xt); if she does we have t ≤ n < m and hence πm−t(xt) = y; then B outputs πm−t−1(xt)
as candidate preimage and, if luckyb occurred, it wins the owp game. The most challenging part
of the proof is to guarantee that B provides a sound simulation of the IND-FS experiment for A.
Indeed, in the simulation, when processing queries to OGetKey and H we have to make sure that
the two oracles answer consistently, i.e., that OGetKey(t) = H(qt) for all queries qt = (t, xt) that
correspond to a valid state.

Consider an execution of the IND-FS game; we can assume without loss of generality that A
makes only ‘clever’ queries to H, i.e., she tries to hit lucky queries by guessing pairs (t, z) with
t ∈ N and z ∈ DP . For any given initial state st0 = (0, x0) we say that a hash query (t, z) is
in-line if t ∈ N and z = πt(x0); in this case we denote the value (t, z) by qt = (t, xt). According
to this notion, consistency between oracles H and OGetKey means that for every in-line query
qt it must be H(qt) = OGetKey(t). Also note that a hash query (t, z) is lucky if it is in-line
and t < m.

Importantly, B cannot check whether A’s queries are in-line, i.e., whether they hit any valid
state, until A declares the epoch m to be corrupted. In fact, from B’s perspective the value x0
is implicitly defined by the equality y = πm(x0) and, in particular, it is determined only when
both y and m are specified. So, how can B ensure consistency of OGetKey and H’s answers if it
cannot detect which queries are in-line? We overcome the issue by letting B guess the value ofm
and then define in-line queries with respect to its guess and the challenge value y it receives.

102

In more detail, B starts by choosing m∗ uniformly at random from [2 .. T − 1]. It then simu-
lates the oracle OGetKey by returning randomly chosen `-bit strings; in case A1 requests a key Kt

for t ≥ m∗, B must also assure consistency with the hash value H(qt) for the corresponding
in-line (but not lucky) query qt = (t, xt); it does so by programming the oracle H. Similarly, B
replies to hash queries with randomly chosen `-bit strings. However, this time it has to iden-
tify in-line queries to ensure consistency with the answers of OGetKey. To this end, it deems a
query (t, z) as a candidate in-line query by checking value z against y as follows. Assuming
that B correctly guessed m∗ = m, for t ≥ m∗ we have that query (t, z) is in-line if and only
if z = πt−m

∗(y). Similarly, for t < m∗, query (t, z) is in-line if and only if y = πm
∗−t(z); note

that in this case (t, z) is, in particular, a lucky query. Given this, B’s strategy is as follows: it
assigns a fresh hash value h to every candidate in-line query (t, z) and register key Kt := h;
moreover, if t < m∗ then B detected a candidate lucky query and extracts from it the candi-
date preimage x := πm

∗−t−1(z) of y. Eventually A1 declares challenge epoch n and corruption
epoch m: now B can check whether its guess on m was correct and, if not, it terminates the
simulation; otherwise it returns a randomly chosen `-bit string Kb

n together with a ‘state’ (m, y)
to A2, hence it proceeds by answering further queries as before until either a lucky query is
posed—in this case B will for sure invert y successfully—or A2 stops. We give an explicit
description of the reduction B in Figure 8.3.

Observe that in the first phase of the simulation, before A declares the corruption epoch m,
B provides a perfect simulation of the oracles OGetKey and H and, once m has been announced,
the simulation proceeds only if m = m∗. In case B goes on with the second phase, its simulation
of the oracles is perfect as long as A does not ask a lucky query. However, if A does ask a lucky
query then B successfully extracts a preimage of y. We can finally relate B’s inverting advantage
with the probability that event luckyb happens:

Advowp
B,ScP(λ) = Pr

[
m∗ = m ∧ luckyb

]
= 1
T − 2 · Pr

[
luckyb

]
from which the claimed bound immediately follows.

8.4.2 Seekable Sequential Key Generators From Pseudorandom Generators

We have seen in the previous sections how to generically construct seekable sequential key gen-
erators from any shortcut one-way permutation. The concrete ScPs considered in Section 8.4.1
are given by the squaring operation modulo a Blum integer N , respectively, the exponentiation
to the eth power modulo N in an RSA setting, while applying the shortcut algorithm corre-
sponds to reducing a certain exponent modulo ϕ(N). Under the assumption that the hash
function in use is a random oracle, the forward security of the resulting SSKG is implied by the
one-wayness of its underlying ScP, and its seekability is based on the ScP’s shortcut property.
A notable technical artifact of the squaring-based ScP is that seekability requires knowledge
of ϕ(N) while forward security requires this value to be unknown. This dilemma is side-stepped
by giving only the owners of a seeking key (e.g., a log auditor in the logging scenario) the ability
to fast-forward through the SSKG output sequence while denying this functionality to the users.
However, the necessity of this extra key should be considered an artifact of the number-theory-
based constructions FACT-ScP and RSA-ScP from Section 8.3: there, the seeking key contains
the factorization of the modulus N underlying the schemes: as the proposed Evolve algorithm
is one way only if this factorization is not known, the Seek algorithm is available exclusively to
those who know the seeking key as a ‘trapdoor’.

A natural question arises: Do shortcut permutations exist that need no additional infor-
mation other than x ∈ DP and k ∈ N to compute πk(x) in sublinear time? Here we take a
different approach and ask ourselves a more general question: Do SSKGs exist that require

103

no seeking key to perform the Seek operation? We provide a positive answer by providing an
explicit construction of what we call a seeking-key-free SSKG. Formally, we say that an SSKG
is seeking-key-free if the seeking algorithm needs no seeking key sk and, by consequence, we
also require that for every security parameter λ ∈ N, every number of supported epochs T ∈ N,
and every pair (par , sk)←$ Gen(1λ, T) it holds sk = ε.

In this section we show how to build seeking-key-free seekable sequential key generators.
The scheme that we propose here relies only on symmetric building blocks, and can thus be
instantiated using PRGs, block ciphers, or hash functions. Moreover, the scheme enjoys a
security proof in the standard model. Before giving the details of our construction we recall,
and set the notation for, stacks and binary trees (these are the non-cryptographic building
blocks of our scheme).

Stacks and their operations. A stack is a standard data structure for the storage of objects.
Stacks follow the last-in first-out principle: the last element stored in a stack is the first element
to be read back (and removed). The following procedures can be used to operate on stacks for
storing, reading, and deleting elements. By Init(S) we denote the initialization of a fresh and
empty stack S. To add an element x ‘on top of’ stack S we use the operation Push(S, x). We
write x← Pop(S) for reading and removing the top element of S. Finally, with x← Peekk(S)
the k-th element of S can be read without deleting it; here, elements are counted from the top,
i.e., Peek1(S) reads the top-most element. When using these notation, the operations Init, Push,
and Pop are understood to modify their argument S in place, while Peekk leaves it unchanged.

Binary and d-ary trees. A tree is a simple, undirected, connected graph without cycles. We
particularly consider rooted trees, i.e., trees with a distinguished root node. The nodes adjacent
to the root node are called its children; each child can be considered, in turn, the root of a
subtree. The level L of a node indicates its distance (in nodes) to the root, where we assign
level L = 1 to the latter. Children of the same node are siblings of each other. We will assume
that the children of each node are ordered, i.e., can be identified by a number 1 ≤ i ≤ d, where
d is the number of children. For two siblings with indices i and j, respectively, in case i < j we
say that node i is left of node j and that node j is right of node i. In binary trees we may also
refer to the children as left and right directly. Nodes that have no children are called leaves, all
other nodes are called internal. A tree is d-regular (or d-ary, or binary in case d = 2) if every
internal node has exactly d children. We focus on d-ary trees of constant height h, i.e., where
all leaves have the same level L = h. If µd(L) denotes the number of nodes at level L, then for
such trees we have µd(1) = 1 and µd(L) = d · µd(L − 1) = dL−1 for all L > 1. For the total
number of nodes νd(H) we hence obtain

νd(h) =
h∑

L=1
µd(L) =

h∑
L=1

dL−1 = (dh − 1)/(d− 1) ,

by the geometric summation formula. As a special case, for binary trees the total number of
nodes is ν2(h) = 2h − 1. We finally define the notion of co-path of a node. Let v denote an
arbitrary node of a tree. Intuitively speaking, the (right) co-path of v is the vector of the right
siblings of the nodes on the (unique) path connecting the root node with v; if for individual
nodes on this path there are multiple right siblings, all of them appear in the co-path. For a
formal definition, let L denote the level of v = vL and let (v1, . . . , vL) denote the path that
connects the root (denoted here with v1) with vL. For each 1 ≤ i ≤ L let Vr(vi) be the vector
of right siblings of node vi, in left-to-right order (some of these vectors might be empty, and
particularly Vr(v1) always is). We define the co-path of vL to be the vector Vr(vL)‖· · ·‖Vr(v1)
obtained by combining these vectors into a single one using concatenation.

104

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

Figure 8.4: A binary tree with height H = 4 and N = 24 − 1 = 15 nodes. The latter are numbered
according to a pre-order depth-first search, as partially indicated by the arrow from the root node w0 to
node w6.

In our SSKG we identify time epochs with the nodes of a binary tree. More precisely,
let h ∈ N denote the height of a binary tree and let N = 2h − 1 denote the number of nodes
of this tree. Given the pre-order depth-first enumeration w0, . . . , wN−1 of the nodes (first visit
the root, then recursively the left subtree, then recursively the right subtree, as illustrated in
Figure 8.4), we let time epoch i and node wi correspond.

The idea is to assign to each node wi a (secret) seed si ∈ {0, 1}λ from which the epoch’s
key Ki and the seeds of all subordinate nodes can be deterministically derived via PRG invo-
cations. Here, exclusively the secret of the root node is assigned at random. Intuitively, the
pseudorandomness of the PRG ensures that all keys and seeds look random to the adversary.

We proceed with specifying which information the states associated with the epochs shall
record. Recall that from each state sti, 0 ≤ i < N , two pieces of information have to be
derivable: the epoch-specific key Ki and the successor state sti+1 (and, by induction, also all
following states and keys). Clearly, in this construction, the notions of ‘seed’ and ‘state’ do not
coincide; for instance, in the tree of Figure 8.4, key K9 cannot be computed from just seed s4.
However, if state st4 contained (s4, s5, s8), then for all 4 ≤ i < N the keys Ki could be computed
from this state. Inspired by this observation, we let our SSKG store in each state sti a collection
of seeds, namely the seeds of the roots of the ‘remaining subtrees’. The latter set of nodes is
precisely the co-path of node wi. Intuitively speaking, this construction is forward-secure as
each state stores only the minimal information required to compute all succeeding states. In
particular, as each node precedes all vertices on its co-path (in the sense of a pre-order visit of
the tree), the key associated to that node remains secure even if any subsequent epoch’s seed
is leaked to the adversary.

We present next the algorithms of our SSKG construction. Particularly interesting, we
believe, are the details on how the required pre-order depth-first search is implicitly performed
by help of a stack data structure.

Construction 9 (TreeSSKG). Let ` : N → N be a positive polynomial and let G be a pseudo-
random generator with |G(x)| = 2|x|+ `(|x|) for all x ∈ {0, 1}∗. For s ∈ {0, 1}λ write

G(s) = GL(s)‖GR(s)‖GK(s) where GL(s), GR(s) ∈ {0, 1}λ and GK(s) ∈ {0, 1}`(λ) .

The algorithms of TreeSSKG = (Gen, Init,Evolve,GetKey,Seek) are defined in Figure 8.5.

Let us discuss the algorithms of TreeSSKG in greater detail.

Gen. Given the security parameter 1λ and the desired number of epochs T , this algorithm
computes the minimum number H ∈ N such that the binary tree of constant height H consists
of at least T nodes. Observe that this tree may have more than T nodes, i.e., more epochs are

105

Gen(1λ, T)
01 H ← dlog(T + 1)e
02 N ← 2H − 1
03 par ← (λ,N,H)
04 Return par

Init(par)
05 parse par as (λ,N,H)
06 s←$ {0, 1}λ
07 Init(S)
08 Push(S, (s,H))
09 st0 ← S
10 Return st0

Evolve(sti)
11 S ← sti
12 (s, h)← Pop(S)
13 If h > 1:
14 Push(S, (GR(s), h− 1))
15 Push(S, (GL(s), h− 1))
16 sti+1 ← S
17 Return sti+1

GetKey(sti)
18 S ← sti
19 (s, h)← Peek1(S)
20 Ki ← GK(s)
21 Return Ki

Seek(st0, k)
22 S ← st0
23 δ ← k
24 (s, h)← Pop(S)
25 While δ > 0:
26 h← h− 1
27 If δ < 2h:
28 Push(S, (GR(s), h))
29 s← GL(s)
30 δ ← δ − 1
31 Else:
32 s← GR(s)
33 δ ← δ − 2h
34 Push(S, (s, h))
35 stk ← S
36 Return stk

Figure 8.5: Specification of the TreeSSKG’s algorithms for binary trees (Construction 9). We assume G
to be a PRG and use the symbols GL, GR, GK to denote the output parts of G, as specified in Con-
struction 9. Here H and N denote the height and the number of nodes, respectively, of the binary tree
associated to the SSKG instance. Observe that the number of actually supported epochs is potentially
larger than the number of requested epochs, i.e., N ≥ T , due to the rounding operation in line 01 of Gen.
The variable δ used within Seek represents the number of nodes that still have to be skipped.

supported than required. Note that in contrast to the algorithm Gen from Construction 6, here
the parameter generation algorithm is deterministic.

Init. After extracting from the public parameters the height h = H of the underlying tree, this
algorithm picks a random seed s = s0 for the root node and stores in state st0 a stack S that
contains only a single element: the pair (s, h). Here and in the following, such pairs should be
understood as ‘seed s shall generate a subtree of height h’.

Evolve. The stack S stored in state sti generally contains two types of information: the top
element is a pair (s, h) associated with the current node wi, and the remaining elements are
associated with the corresponding pairs of the nodes on wi’s co-path. After taking the current
entry (s, h) off the stack, in order to implement the depth-first search idea illustrated above, this
algorithm distinguishes two cases: if node wi is an internal node (i.e., h > 1), the update step
computes the seeds of its two child nodes by invoking the underlying PRG, starting with the
right seed as it needs to be prepended to the current co-path. The new seeds GL(s) and GR(s)
can be considered roots of subtrees of one level less than wi; they are hence pushed onto the

106

stack with decreased h-value. In the second case, if the current node wi is a leaf (i.e., h = 1), no
further action has to be taken: the next required seed is the ‘left-most’ node on wi’s co-path,
which resides on the stack’s top position already.

GetKey. Deriving the current key is particularly simple as it only requires to read the top-most
element (s, h) of the stack S = sti and evaluate GK(s). Observe that the Peek1 operation leaves
its argument unchanged.

Seek. Deriving state stk from the initial state st0 via iteratively evoking k times the Evolve
procedure is equivalent to visiting all nodes of the tree according to a pre-order traversal until
reaching node wk. However, there is an appealing way to obtain seed sk more directly, without
passing through all the intermediate vertices. The idea is to just walk down the path connecting
the root node with wk. Taking this shortcut decreases the seeking cost to only O(logN), as
opposed to O(N). This is the intuition behind the design of our algorithm Seek from Figure 8.5.

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

target

Figure 8.6: A visualization of the procedure Seek when computing state st6. As indicated by the
arrows, the algorithm walks down the path from the root node w0 to the target node w6 (thick nodes);
simultaneously, it records the nodes of w6’s co-path, i.e., (w7, w8) (dashed nodes).

Recall that Seek is required to output the whole state stk, and not just seed sk. In other
words, the execution of the algorithm needs to comprehend the construction of the co-path of
node wk. We provide details on how Seek fulfills this task. Our strategy, illustrated in Figure 8.6,
is to walk down the path from the root to node wk, recording the right siblings of the visited
nodes on a stack. During this process, with a variable δ we keep track of the remaining number
of epochs that needs to be skipped. This counter is particularly helpful for deciding whether,
in the path towards wk, the left or the right child node have to be taken. Indeed, the number
of nodes covered by the left and right subtrees is 2h − 1 each; if δ ≤ 2h − 1 then the left child
is the next to consider, but the right child has to be recorded for the co-path. On the other
hand, if δ ≥ 2h, then the left child can be ignored, the co-path doesn’t have to be extended, and
the walk towards wk is continued via the right child. The procedure terminates when for the
number of remaining epochs we have δ = 0, which means that we reached the target node wk.

We now formally assess the security of Construction 9.

Theorem 17 (Security of Construction 9). Fix a number of epochs T . Let N ∈ N and let G be
a PRG as indicated in Construction 9. For every efficient adversary A against TreeSSKG there
exists an efficient adversary B against G such that

Advind-fs
TreeSSKG,A(λ) ≤ 2 log(N + 1) ·Advprg

G,B(λ) .

Proof. The security argument for our scheme reflects the intuition that every key Ki, for being
(part of) the output of a PRG invocation, looks like a random string to any efficient adversary

107

as long as the seed used to compute it remains hidden. In the IND-FS experiment, in addition
to state stm, the adversary gets a challenge Kb

n, which is either the real key Kn in case b = 1, or
it is a randomly chosen string of length `(λ) otherwise; here, n and m are adversarially chosen
conditioned on n < m < N . The state stm reveals seed sm and possibly some subsequent seeds.
However, by construction, from these seeds none of the preceding states can be computed.
Thus, corrupting state stm should be of no help to the adversary in distinguishing keys prior to
epoch m. In particular, key Kn can be expected to stay secure. We formalize this intuition in
the following.

We make use of game hops which progressively transform the IND-FS experiment, denoted
here by E0,b

A , into one for which all adversaries have advantage exactly zero. In the following
we use the shortcut Pr[Ei,bA] to indicate the probability Pr[Ei,bA (1λ) = 1]. Observe that in
game E0,b

A key K1
n is not just computed as the output of a PRG on input a random seed;

rather, it is computed by iterating a PRG up to log(N + 1) times, where only the first input
(seed s0) is truly random. We hence proceed via a hybrid argument, by considering intermediate
experiments H0,b

A ,H
1,b
A , . . . ,H

L,b
A , where we set H0,b

A = E0,b
A where L denote the level of challenge

node wn (i.e., the node associated with the challenge epoch) in the tree. The idea is to let each
transition from hybrid Hi−1,b

A to hybrid Hi,b
A replace the output of the PRG associated with the

i-th node wi on the path from the root node w0 to node wn with a value chosen uniformly at
random. Then, in HL,b

A the challenge key Kb
n will be random independently of bit b: in case

b = 1 due to the argument just given, and in case b = 0 by the definition of experiment HL,0
A .

In particular, every adversary A playing in HL,b
A will have zero advantage.

More precisely, let L be the level of node wn and let (v1, . . . , vL) denote the path from the
root v1 = w0 to node vL = wn. For every i = 1, . . . , L, derive Hi,b

A from Hi−1,b
A by replacing the

output of G(sk) with a random string in {0, 1}2λ+`, where k is the epoch number corresponding
to node vi.

Observe that, except for H0,b, as we follow the path top-to-bottom, seed sk was replaced by
a random value in the hybrid before, i.e., in Hi−1,b

A . By consequence, for every A there exists
a distinguisher Bi whose advantage is at least the difference in probability between Hi−1,b

A and
Hi,b
A as follows: ∣∣∣Pr

[
Hi−1,b
A

]
− Pr

[
Hi,b
A

]∣∣∣ ≤ Advprg
G,Bi

(λ) . (8.3)

As already stated, the challenge key Kb
n in hybrid HL,b

A is uniformly random, independently
of bit b. In other words, HL,0

A and HL,1
A are the very same experiment, and we have, even for

unbounded distinguishers, ∣∣∣Pr
[
HL,1
A

]
− Pr

[
HL,0
A

]∣∣∣ = 0 . (8.4)

Using an induction argument and the triangle inequality, we can combine (8.3) and (8.4) into

∣∣∣Pr
[
E1,1
A

]
− Pr

[
E1,0
A

]∣∣∣ ≤ 2
L∑
i=1

Advprg
G,Bi

(λ) . (8.5)

Finally, let B be the algorithm that chooses i ∈ [1 .. L] uniformly at random and run exe-
cutes Bi: then Advprg

G,B(λ) = 1
L

∑L
i=1 Advprg

G,Bi
(λ). By plugging B’s advantage in equation (8.5)

and observing that L ≤ log(N + 1) we obtain the final bound.

Extending TreeSSKG Towards d-ary Trees. We discuss how to extend our binary-tree-
based construction towards the general case of d-ary trees, for arbitrary d ≥ 2. Recall that a
d-ary tree of constant height H has νd(H) = (dH − 1)/(d− 1) nodes. The intuition behind our
design is mainly the same as in the binary case: we consider an enumeration w0, . . . , wN−1 of

108

the tree’s nodes according to a pre-order depth-first search (first visit the root, then, from left
to right, recursively the subtrees) and associate with every node wi a seed si from which epoch’s
key Ki and, where applicable, the seeds of its children are derived using a PRG. It is clear that
this PRG must have a larger expansion than that of Construction 9: every PRG invocation has
to yield one (sub)string of length `(λ) for the key, and d-many (sub)strings of length λ for the
subordinate seeds. We specify the algorithms below.

Construction 10 (TreeSSKG for d-ary trees). Let ` : N → N be a positive polynomial, let d ∈
N≥2, and let G be a PRG such that |G(x)| = d · |x|+ `(|x|) for all x ∈ {0, 1}∗. For s ∈ {0, 1}λ
write

G(s) = G1(s)‖· · ·‖Gd(s)‖GK(s) where Gj(s) ∈ {0, 1}λ ∀j ∈ [1 .. d] and GK(s) ∈ {0, 1}`(λ) .

Our SSKG based on d-ary trees TreeSSKGd = (Gend, Initd,Evolved,GetKeyd, Seekd) is defined by
the algorithms in Figure 8.7.

Gend(1λ, T)
01 H ← dlogd(T + 1)e
02 N ← (dH − 1)/(d− 1)
03 par ← (λ,N,H)
04 Return par

Initd(par)
05 Parse par as (λ,N,H)
06 s←$ {0, 1}λ
07 Init(S)
08 Push(S, (s,H))
09 st0 ← S
10 Return st0

Evolved(sti)
11 S ← sti
12 (s, h)← Pop(S)
13 If h > 1:
14 For j = d down to 1:
15 Push(S, (Gj(s), h− 1))
16 sti+1 ← S
17 Return sti+1

GetKeyd(sti)
18 S ← sti
19 (s, h)← Peek1(S)
20 Ki ← GK(s)
21 Return Ki

Seekd(st0, k)
22 S ← st0
23 δ ← k
24 (s, h)← Pop(S)
25 While δ > 0:
26 h← h− 1
27 ν ← (dh − 1)/(d− 1)
28 c← b(δ − 1)/νc+ 1
29 For j = d down to c+ 1:
30 Push(S, (Gj(s), h))
31 s← Gc(s)
32 δ ← δ − (1 + (c− 1)ν)
33 Push(S, (s, h))
34 stk ← S
35 Return stk

Figure 8.7: Algorithms of TreeSSKGd (for d-ary trees). We assume G to be a PRG and use the
symbols Gj, j ∈ [1 .. d] and GK to denote the output parts of G, as specified in Construction 10. The
integers H and N denote the height, respectively, the number of nodes, of the binary tree associated
to the SSKG instance. Observe that the number of actually supported epochs is potentially larger than
the number of requested epochs, i.e., N ≥ T , due to the rounding operation in line 01 of Gend. The
variable δ used within Seekd represents the number of nodes that still have to be skipped.

Observe that the proposed Initd and GetKeyd algorithms are identical with the ones from the
binary case, and that the only modification in Gend is the basis to which the logarithm is taken
for computing H. More interesting is the new Evolved algorithm. Here, whenever an internal

109

node needs to be expanded, all seeds of the d direct successors are computed; the left-most seed
will be associated with the next state (i.e., sti+1), and its right siblings become part of the new
co-path, i.e., are pushed in the correct order onto the stack. We point out two differences in the
Seekd algorithm. Firstly, in line 28, with c we calculate the number 1 ≤ c ≤ d of current node’s
child that is on the path from the root to target node wk (consequently, only the siblings with
numbers c + 1, . . . , d need to be recorded for the co-path). Secondly, in line 32, the number δ
of epochs that still need to be skipped is decreased by (c − 1)ν in one shot, where ν indicates
the number of nodes of the subtree generated by the respectively considered seed s.

We give the following security statement for our generalized construction. The proof is
essentially the same to the one for Theorem 17 (it suffices to replace the underlying binary tree
with a d-ary tree).

Theorem 18 (Security of TreeSSKGd). Fix a number of epochs T . Let N ∈ N and let G be a
PRG as indicated in Construction 10. For every efficient adversary A against TreeSSKGd there
exists an efficient adversary B against G such that

Advind-fs
TreeSSKGd,A(λ) ≤ 2 logd(N + 1) ·Advprg

G,B(λ) .

Remark 11 (Degenerate trees). In the above definitions we insisted on fixing d such that d ≥ 2.
This choice guarantees that the time it takes to seek to an arbitrary target node is O(logdN).
Observe however, that also for d = 1 our scheme is correct and secure, but falls back to linear
seeking time. It is interesting to observe that this degenerate case corresponds exactly with the
hash chain approach of early (not seekable) SKGs constructions (e.g., from [KS98, SK99, BY03]).

8.4.3 Enhancing the Seeking Functionality

As required by the notion of seekability the Seek algorithm allows computing any state stk given
the initial state st0. Observe, however, that for some applications this initial state might not be
accessible; indeed, forward security can be attained only if states of expired epochs are securely
erased. From a practical perspective it is hence appealing to generalize the functionality of Seek
to allow efficient computation of sti+k from any state sti, and not just from st0, thus realizing
the Evolvek functionality for arbitrary starting points.

Note that for SSKGs based on shortcut permutations, such a flexible functionality is always
available: if one wishes to compute state stj = (P, j, xj) from state sti = (P, i, xi), i < j, it
suffices to invoke the ScP algorithm Express on input the shortcut sc, starting point xi, and
number of epochs to be skipped k = j − i. Enhancing the seeking procedure of our PRG-based
construction requires, instead, a little tweak that we discuss next.

Assume that a TreeSSKG instance is in state sti and an application requests it to seek to
position sti+k, for arbitrary 0 ≤ i ≤ i+ k < N . Recall from the discussion in Section 8.4.2 that
state sti encodes both the seed si and the co-path of node wi. Recall also that, as a property
of the employed pre-order visit of the tree, for each state stj with j > i, the co-path of node wi
contains an ancestor w of wj . Following these observations, our tweaked Seek construction
consists of two consecutive phases. For seeking to state sti+k, in the first phase the algorithm
considers all nodes on the co-path of wi until it finds the ancestor w of wi+k. The second phase
is then a descent from that node to node wi+k, similarly to what we had in the regular Seek
algorithms. In both phases care has to be taken that the co-path of the target node wi+k is
correctly assembled as part of sti+k. The working principle of our new seeking method is also
illustrated in Figure 8.8.

110

0

1 8

2 5 9 12

3 4 6 7 10 11 13 14

start target

Figure 8.8: A visualization of the enhanced seeking procedure of TreeSSKG, jumping from epoch 3 to
epoch 11. As indicated by the arrows, the algorithm first finds the intersection, here w8, between the
co-path of the start node w3 (dashed nodes) and the path that connects the root with the target node w11
(thick nodes); from there it proceeds downwards until it reaches target node w11.

8.5 Practical aspects and deployment

The SSKG algorithms from Constructions 8 and 9, with minor changes for optimization pur-
poses, have been implemented. An experimental analysis of the performance of the relative
implementations can be found in [MP14]. Here we summarize the main results.

8.5.1 Sequential key generators based on shortcut permutations

An implementation of the SSKG from Construction 8 that uses FACT-ScP as underlying per-
mutation (named FACT-SSKG in the present section) is available [Poe] and was contributed by
the authors of [MP13]. In fact, the code became part of the journald logging component of the
systemd system and service manager, a core piece of virtually all current Linux-based distri-
bution [sys]. The resulting SSKG is used in combination with a cryptographic MAC in order
to implement secured local logging, called Forward-Secure Sealing in journald. Generation of
initial state st0 takes place on the system whose logs are to be protected. Each time the SSKG
state is evolved, a MAC tag protecting the data written since the previous MAC operation
is appended to the log file. Forward-Secure Sealing provides an offline verification tool that
checks the MAC tag sequence of log files. If a log file is manipulated, the verification tool will
determine the time range where the integrity of the log file is intact. When the SSKG state
is evolved, particular care is taken to ensure that the previous state is securely deleted from
the file system and underlying physical storage. In order to optimize the storage size of the
initial generator’s state as well as the seeking time, the implementation slightly deviates from
the construction presented in this thesis. Recall that in a logging scenario the initial state st0
is first created by the log auditor using Gen and then distributed to all hosts to be monitored.
When FACT-ScP is used, between 1024 to 4096 bits would have to be copied, depending on the
desired level of security [BCC+12], just counting the size of x0 ∈ QRN . For the journald im-
plementation, the Gen algorithm is provided with an explicit random seed of short length (e.g.,
80–128 bits), and it generates the initial state using a PRG. Using this tweak, only 128 bits
(or less) have to be shared among the hosts. The second modification improves the efficiency
of the Express operation by using a standard trick [JK03, BS02] to speed up private opera-
tions in factoring-based schemes via the Chinese Remainder Theorem (CRT). For instance, if
an exponentiation y ← xk mod N is to be computed and the factorization N = pq is known,
then y can be obtained by CRT-decomposing x into xp ← x mod p and xq ← x mod q, by
computing yp ← x

k mod ϕ(p)
p mod p and yq ← x

k mod ϕ(q)
q mod q independently of each other, and

by mapping (yp, yq) back to ZN (by applying the CRT a second time). The described method

111

to compute xk is approximately four times faster than evaluating the term directly, without the
CRT [MvV97, Note 14.75].

8.5.2 Sequential key generators from pseudorandom generators

In practice, PRGs can be instantiated using blockciphers, stream ciphers, or hash functions. For
instance, a blockcipher operated in counter mode can be seen as a PRG where the block cipher’s
key acts as the PRG’s seed. Similar counter-based constructions derived from hash functions
or PRFs (e.g., HMAC) are possible. Our scheme TreeSSKG was implemented by the authors
of [MP14], both in the setting of binary trees and of d-ary trees, considering four different PRG
instantiations that rely on the AES128 and AES256 block ciphers and the MD5 and SHA256
hash functions. That is, we have two instantiations at the λ = 128 security level, and two
at the λ = 256 level. The performance of such implementation was experimentally evaluated
in [MP14] using the following setup. After generating TreeSSKG instances with parameters
d = 2 and H = 20 (i.e., supporting N = 220 − 1 ≈ 106 epochs), the Evolve algorithm was
iterated through all epochs in linear order to determine both the the average and the worst-
case time. Similar measures were performed for Gen and GetKey (here, average and worst-case
coincide), and for the average and worst-case time it takes for the Seek algorithm to recover
states stk, ranging over all values k ∈ [0, N − 1].

The results of the performance analysis from [MP14] are summarized in Table 8.1. We
point out that for FACT-SSKG, the analogue of Gen in [MP13] in fact consists of two separate
algorithms: one that produces public parameters and an associated seeking key, and one that
generates the actual initial SSKG state. As any fixed combination of public parameters and
corresponding seeking key can be used for many SSKG instances without security compromises,
for fairness the comparison does not count the generation costs of the former when indicating
the Gen performance in Table 8.1.

It is instructive to also study the required state sizes for both TreeSSKG and FACT-SSKG. In
the TreeSSKG implementation, for fixed parameter d, the (maximum) state size scales roughly
linearly in both H and the seed length of the used PRG. Concretely, for (d,H) = (2, 20) and
128 bit keys (e.g., for AES128- and MD5-based PRGs) the state requires 350 bytes, while for
256 bit security a total of 670 bytes of storage are necessary. In the FACT-SSKG scheme the
space in the state variable is taken by a modulus N , a value x ∈ Z∗N , a 64 bit epoch counter,
and a small header. Precisely, for 2048 and 3072 bit moduli this results in 522 and 778 bytes of
state, respectively.

8.5.3 Results and discussion

We discuss the results from Table 8.1, beginning with those of TreeSSKG (i.e., columns AES128,
MD5, AES256, and SHA256). Our first observation is that the Gen time is independent of
the respectively used PRG. This is not surprising as the former algorithm never invokes the
latter, but spends its time with memory allocation and requesting the random starting seed
from OpenSSL’s core routines. The timings for Evolve indicate that, as expected, 128-bit
cryptographic primitives are faster than 256-bit primitives, and that for a fixed security level
the hash-function-based constructions are (slightly) preferable. The hypothesis that the time
spent by the individual algorithms is dominated by the internal PRG executions is supported
by the observation that the running time of Evolve (on average) and GetKey coincide, and
that the worst-case running time of Evolve is twice that value; to see this, recall that Evolve
executions perform either two internal PRG invocations or none, and that the average number
of invocations is one.

112

AES128 MD5 SQRT/2048 bit
[average] [max] [average] [max]

Gen 22µs 22µs 27µs
Evolve 0.2µs 0.5µs 0.2µs 0.4µs 8µs
GetKey 0.2µs 0.2µs 12µs
Seek 7µs 9µs 6µs 7µs 4.9ms

AES256 SHA256 SQRT/3072 bit
[average] [max] [average] [max]

Gen 22µs 22µs 38µs
Evolve 0.5µs 1µs 0.4µs 0.8µs 13µs
GetKey 0.4µs 0.4µs 13µs
Seek 14µs 18µs 11µs 15µs 12.6ms

Table 8.1: Efficiency measurements for the TreeSSKG algorithms (instantiated with differ-
ent PRGs) and for the FACT-SSKG algorithms. All experiments were performed on an Intel
Core i7-3517U CPU clocked at 1.90GHz. The implementations rely on OpenSSL version 0.9.8
for TreeSSKG and on the gcrypt library in version 1.5.0 for FACT-SSKG.

The routines of FACT-SSKG are clearly outperformed by the ones of TreeSSKG. Firstly,
for the tree-based Evolve algorithm the timing values are about 30 times better than those for
the factoring-based algorithm (recall that the latter’s state update involves a modular squaring
operation). Similar results show the tree-based GetKey algorithm to be faster, by a factor
between 30 and 60, depending on the considered security level. This might be surprising at first
sight, as the factoring-based GetKey consists of just hashing the corresponding state variable, but
presumably the explication for this difference is in the considerably larger state sizes. Finally,
the superiority of the TreeSSKG construction in terms of efficiency is made even more evident
by studying the performance of the seeking algorithms, which show the tree-based seeking
procedure being 700–1000 times faster than the corresponding factoring-based procedure, again
depending on the security level.

113

Chapter 9
Conclusion and Open Problems

In this thesis we reconsider the common approach of modeling secure channels as (stateful) au-
thenticated encryption (AE) primitives. Essentially such models assume that a sender transmits
encrypted plaintexts to a receiver, and that an attacker controlling the network may observe and
actively tamper with the sent ciphertexts, replay or reorder them, or inject its own. Concerning
this approach we identify three aspects that we consider extremely important for real-world
channel protocols but were not addressed in the literature so far.

In particular, cryptographic models, with the exception of [BDPS12], assume that messages
and ciphertexts transmitted from the sender to the receiver are atomic units and, thus, are
processed as such by the channel algorithms. Inspired by [BDPS12], which introduces the
notion of symmetric encryption supporting ciphertext fragmentation at the receiver, we note
that transport layer security protocols such as TLS and SSH also allow for fragmentation at
the sender and, moreover, seem to be specifically designed for transporting a stream of data
rather than atomic messages. To narrow the gap between these real-world channel protocols
and our theoretical understanding of them we initiate the study of stream-based channels. For
these protocols we propose novel syntax and functionality that captures a stream-oriented API,
formalize the security properties that we expect from a stream-based channel, and demonstrate
their feasibility by providing a natural construction that is close in spirit to a recent design of
the TLS Record Protocol.

Because of this enriched functionality of stream-based channels, our confidentiality experi-
ments employ a rather complex suppression mechanism in the definition of the receiving oracle.
One may wonder if this level of complexity is really necessary. When formalizing functionality
and security, we followed the rationale of capturing a wide range of stream-oriented behavior
with a single channel notion. It is plausible that by restricting the stream-based channel func-
tionality one may obtain a simplified model that is easier to understand and work with, yet
remains relevant and expressive. Defining a restricted functionality that is still rich enough to
describe real-world channel protocols remains an open issue. We also leave open how to modify
the confidentiality experiment against active attacks in a way that the scheme presented in
Section 3.3.3, which is intuitively confidential but declared insecure within our model, would
be indeed considered secure. The fact that this scheme, which does not provide integrity, is
deemed insecure in our model highlights that our confidentiality notion is conservative and, to
some extent, has some form of integrity built in.

Looking at secure channels from a different perspective, we note that while cryptographic
models account for unidirectional communication, from one sender to one receiver, in practice
channel protocols are typically employed for bidirectional communication. Further, some ap-
plications like multi-party chat protocols involving more than two communicating parties need
interaction in multiple directions. The inherent interactiveness of a multi-directed, multi-user

115

setting adds a new dimension of complexity to the communication, and leaves space for at-
tacks exploiting falsified causal dependencies between exchanged messages that do not apply
to the simplified unidirected setting. To understand what security means in such a setting we
introduce new channel notions that extend the stateful AE abstraction to allow for multiple
participants and for interactive communication. These channels provide extended functionality
and strictly stronger security properties than unidirectional channels. Nevertheless, they can
be constructed from standard, symmetric cryptographic building blocks, as we show.

Our model for broadcast communication assumes that the set of participants is fixed in
advance. An interesting open problem is to generalize our notions to allow for dynamic groups,
i.e., letting participants join and leave the group at any point in time. Here we see as a main
challenge here to define the concept of causal past (or history), given that the causal property,
as it is, cannot be fulfilled any longer.

We finally note that in the theoretical analysis of secure channel protocols forward security
does not seem to be an explicit objective while it generally is for authenticated key exchange
protocols. Modern secure channels like TLS 1.3 and instant messaging protocols, however,
list (not always explicitly) forward security as one of their goals. It is considered folklore
that the forward-secure variant of an AE scheme can be bootstrapped from a traditional AE
scheme by refreshing its key using a forward-secure key generation mechanism. Aiming at
modular constructions of forward-secure channel protocols we focus on building schemes that
generate a sequence of keys with forward security. For such schemes we introduce the novel
functionality of seekability, which essentially gives random access to the keys of the sequence,
and propose constructions of seekable key generators that enjoy (forward) security from standard
cryptographic building blocks.

116

Bibliography

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery
attacks against SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–
26, Oakland, CA, USA, May 17–20, 2009. IEEE Computer Society Press.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[BCC+12] Steve Babbage, Dario Catalano, Carlos Cid, Benne de Weger, Orr Dunkelman,
Christian Gehrmann, Louis Granboulan, Tim Güneysu, Jens Hermans, Tanja
Lange, Arjen Lenstra, Chris Mitchell, Mats Näslund, Phong Nguyen, Christof Paar,
Kenny Paterson, Jan Pelzl, Thomas Pornin, Bart Preneel, Christian Rechberger,
Vincent Rijmen, Matt Robshaw, Andy Rupp, Martin Schläffer, Serge Vaudenay, Fré
Vercauteren, and Michael Ward. ECRYPT Yearly Report on Algorithms and Key-
sizes, September 2012. http://www.ecrypt.eu.org/documents/D.SPA.20.pdf.

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and Björn
Tackmann. Augmented secure channels and the goal of the TLS 1.3 record layer. In
Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015: 9th International Conference
on Provable Security, volume 9451 of Lecture Notes in Computer Science, pages 85–
104, Kanazawa, Japan, November 24–26, 2015. Springer, Heidelberg, Germany.

[BPS15a] Guy Barwell, Dan Page, and Martijn Stam. Rogue decryption failures: Reconciling
AE robustness notions. Cryptology ePrint Archive, Report 2015/895, 2015. http:
//eprint.iacr.org/2015/895.

[BPS15b] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Recon-
ciling AE robustness notions. In Jens Groth, editor, 15th IMA International Con-
ference on Cryptography and Coding, volume 9496 of Lecture Notes in Computer
Science, pages 94–111, Oxford, UK, December 15–17, 2015. Springer, Heidelberg,
Germany.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science, pages 394–403, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press.

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated en-
cryption in SSH: Provably fixing the SSH binary packet protocol. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications
Security, pages 1–11, Washington D.C., USA, November 18–22, 2002. ACM Press.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666

117

http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://eprint.iacr.org/2015/895
http://eprint.iacr.org/2015/895

of Lecture Notes in Computer Science, pages 431–448, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 531–545, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

[BY97] Mihir Bellare and Bennet S. Yee. Forward integrity for secure audit logs. Technical
report, Department of Computer Science and Engineering, University of California
at San Diego, 1997.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 1–18, San Francisco, CA, USA, April 13–17,
2003. Springer, Heidelberg, Germany.

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. Security of symmetric encryption in the presence of ciphertext fragmentation.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
682–699, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. On symmetric encryption with distinguishable decryption failures. In Shiho
Moriai, editor, Fast Software Encryption – FSE 2013, volume 8424 of Lecture Notes
in Computer Science, pages 367–390, Singapore, March 11–13, 2014. Springer, Hei-
delberg, Germany.

[BS02] Dan Boneh and Hovav Shacham. Fast variants of RSA. RSA Cryptobytes, 5(1):1–9,
Winter/Spring 2002.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An
analysis of the EMV channel establishment protocol. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on Computer
and Communications Security, pages 373–386, Berlin, Germany, November 4–8,
2013. ACM Press.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryp-
tology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
524–541, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Ger-
many.

118

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryp-
tion scheme. Journal of Cryptology, 20(3):265–294, July 2007.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453–474, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351,
Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Ger-
many.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext
security. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 565–582, Santa Barbara, CA,
USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[CHVV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password
interception in a SSL/TLS channel. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–599,
Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec in
MAC-then-encrypt configurations. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Computer and Com-
munications Security, pages 493–504, Chicago, Illinois, USA, October 4–8, 2010.
ACM Press.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176.

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson.
Data is a stream: Security of stream-based channels. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II,
volume 9216 of Lecture Notes in Computer Science, pages 545–564, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[GUVC09] Ian Goldberg, Berkant Ustaoglu, Matthew Van Gundy, and Hao Chen. Multi-
party off-the-record messaging. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, ACM CCS 09: 16th Conference on Computer and Commu-
nications Security, pages 358–368, Chicago, Illinois, USA, November 9–13, 2009.
ACM Press.

[Gut96] Peter Gutmann. Secure deletion of data from magnetic and solid-state memory. In
Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, volume 14,
1996.

[HLT03] M. Jason Hinek, Mo King Low, and Edlyn Teske. On some attacks on multi-prime
RSA. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002: 9th Annual
International Workshop on Selected Areas in Cryptography, volume 2595 of Lecture

119

Notes in Computer Science, pages 385–404, St. John’s, Newfoundland, Canada,
August 15–16, 2003. Springer, Heidelberg, Germany.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security
of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 273–293, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Heidelberg, Germany.

[JK03] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447 (Informational), February 2003.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Cryp-
tography and Network Security Series. Chapman and Hall/CRC Press, 2015.

[KCC10] J. Kelsey, J. Callas, and A. Clemm. Signed Syslog Messages. RFC 5848 (Proposed
Standard), May 2010.

[KS98] John Kelsey and Bruce Schneier. Cryptographic support for secure logs on un-
trusted machines. In Proceedings of the 7th USENIX Security Symposium, 1998.

[KS99] John Kelsey and Bruce Schneier. Minimizing bandwidth for remote access to cryp-
tographically protected audit logs. In Recent Advances in Intrusion Detection,
1999.

[KPB03] Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure crypto-
graphic transforms, or how to encrypt and mac. Cryptology ePrint Archive, Report
2003/177, 2003.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 310–331,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 429–448, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, July 1978.

[MP13] Giorgia Azzurra Marson and Bertram Poettering. Practical secure logging: Seek-
able sequential key generators. In Jason Crampton, Sushil Jajodia, and Keith
Mayes, editors, ESORICS 2013: 18th European Symposium on Research in Com-
puter Security, volume 8134 of Lecture Notes in Computer Science, pages 111–128,
Egham, UK, September 9–13, 2013. Springer, Heidelberg, Germany.

[MP14] Giorgia Azzurra Marson and Bertram Poettering. Even more practical secure log-
ging: Tree-based seekable sequential key generators. In Miroslaw Kutylowski and
Jaideep Vaidya, editors, ESORICS 2014: 19th European Symposium on Research
in Computer Security, Part II, volume 8713 of Lecture Notes in Computer Sci-
ence, pages 37–54, Wroclaw, Poland, September 7–11, 2014. Springer, Heidelberg,
Germany.

120

[MP17] Giorgia Azzurra Marson and Bertram Poettering. Security notions for bidirectional
channels. IACR Transactions on Symmetric Cryptology, 2017. (To appear).

[MRT12] Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann. Confidentiality and in-
tegrity: A constructive perspective. In Ronald Cramer, editor, TCC 2012: 9th
Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer
Science, pages 209–229, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Hei-
delberg, Germany.

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. The CRC Press series on discrete mathematics and its ap-
plications. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868,
USA, 1997.

[Nam02] Chanathip Namprempre. Secure channels based on authenticated encryption
schemes: A simple characterization. In Yuliang Zheng, editor, Advances in Cryp-
tology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 515–532, Queenstown, New Zealand, December 1–5, 2002. Springer, Heidel-
berg, Germany.

[OTR16] Off-the-Record Messaging. http://otr.cypherpunks.ca, 2016.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073
of Lecture Notes in Computer Science, pages 372–389, Seoul, South Korea, Decem-
ber 4–8, 2011. Springer, Heidelberg, Germany.

[PW10] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption: A
formal security treatment of SSH-CTR. In Henri Gilbert, editor, Advances in Cryp-
tology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 345–361, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Ger-
many.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In 2001 IEEE Symposium
on Security and Privacy, pages 184–200, Oakland, CA, USA, May 2001. IEEE
Computer Society Press.

[Poe] Bertram Poettering. fsprg – seekable forward-secure pseudorandom generator.
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD),
September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[RB94] Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM
Transactions on Programming Languages and Systems, 16(3):986–1009, 1994.

[RG95] Michael K. Reiter and Li Gong. Securing causal relationships in distributed systems.
Comput. J., 38(8):633–642, 1995.

[Res16] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-15. http://tools.ietf.org/html/draft-ietf-tls-tls13-15, August
2016.

121

http://otr.cypherpunks.ca
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c
http://tools.ietf.org/html/draft-ietf-tls-tls13-15

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications
Security, pages 98–107, Washington D.C., USA, November 18–22, 2002. ACM Press.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Trans. Inf. Syst. Secur., 2(2):159–176, 1999.

[SM94] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing, 7(3):149–
174, 1994.

[Sho99] Victor Shoup. On formal models for secure key exchange. Technical Report RZ
3120, IBM, 1999.

[sys] systemd: System and service manager. http://www.freedesktop.org/wiki/
Software/systemd/.

[Tex14] TextSecure. http://whispersystems.org, 2014.

[YL06] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC
4251 (Proposed Standard), January 2006.

122

http://www.freedesktop.org/wiki/Software/systemd/
http://www.freedesktop.org/wiki/Software/systemd/
http://whispersystems.org

	Introduction
	Notation and Definitions
	General Notation
	Cryptographic Assumptions and Primitives
	Cryptographic Models for Secure Channels

	Stream-Based Channels
	Introduction
	Syntax and Functionality
	Defining Security for Stream-Based Channels
	Relations Among Notions
	Constructions
	A Note on the TLS Record Protocol

	Broadcast Communication
	Introduction
	Communication Graphs
	Technical Results

	FIFO Channels
	Introduction
	Syntax and Functionality
	Defining Security for FIFO Channels
	Relations Among Notions
	Unidirectional Channels
	Constructions

	Causal Channels
	Introduction
	Syntax and Functionality
	Security and Relations Among Notions
	Constructions

	Sequential Key Generators
	Introduction
	Syntax and Functionality
	Security
	Comparison with Stateful Generators
	Constructions
	A Digression on Secured Local Logging

	Seekable Sequential Key Generators
	Introduction
	Seekability
	Shortcut One-Way Permutations
	Constructions
	Practical aspects and deployment

	Conclusion and Open Problems
	Bibliography

