
Quantum Security of
Cryptographic Primitives

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

von

Tommaso Gagliardoni, M.Sc.
geboren in Perugia

Referenten: Prof. Dr. Marc Fischlin
Prof. Dr. Christian Schaffner

Tag der Einreichung: 15. Dezember 2016
Tag der mündlichen Prüfung: 13. Februar 2017

Darmstadt, 2017
D 17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/80587067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt.
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-60195
URI: http://tuprints.ulb.tu-darmstadt.de/6019

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Attribution – NonCommercial – NoDerivatives 4.0 International 4.0
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-60195
http://tuprints.ulb.tu-darmstadt.de/6019
http://creativecommons.org/licenses/by-nc-nd/4.0/




Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in
ihr ausdrücklich genannten Hilfen – selbständig verfasst habe.

Wissenschaftlicher Werdegang

September 2002 – November 2005

Laurea Triennale in Matematica per le Applicazioni (B.Sc. Mathematics
for Applications) an der Università degli Studi di Perugia, Italien

November 2005 – Mai 2011

Laurea Specialistica in Matematica (M.Sc. Mathematics) an der Uni-
versità degli Studi di Perugia, Italien

seit Dezember 2011

Wissenschaftlicher Mitarbeiter in der Forschungsgruppe „Kryptoplexi-
tät“ an der Technischen Universität Darmstadt.

iii





List of Publications

[ABF+16] Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso
Gagliardoni, Christian Schaffner, and Michael St. Jules. Compu-
tational security of quantum encryption. In Information Theoretic
Security - 9th International Conference, ICITS 2016, Tacoma,
WA, USA, August 9-12, 2016, Revised Selected Papers, pages 47–
71, 2016. [Part of this thesis].

[AGKP14] Frederik Armknecht, Tommaso Gagliardoni, Stefan Katzen-
beisser, and Andreas Peter. General impossibility of group homo-
morphic encryption in the quantum world. In Public-Key Cryp-
tography - PKC 2014 - 17th International Conference on Prac-
tice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, pages 556–573, 2014.

[DFG13a] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The
Fiat-Shamir transformation in a quantum world. In Advances in
Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Se-
curity, Bengaluru, India, December 1-5, 2013, Proceedings, Part
II, pages 62–81, 2013. [Part of this thesis].

[DFG+13b] Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Gior-
gia Azzurra Marson, Arno Mittelbach, and Cristina Onete. A
cryptographic analysis of OPACITY - (extended abstract). In
Computer Security - ESORICS 2013 - 18th European Symposium
on Research in Computer Security, Egham, UK, September 9-13,
2013. Proceedings, pages 345–362, 2013.

[DFF+14] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso
Gagliardoni, Felix Günther, Giorgia Azzurra Marson, Arno Mit-
telbach, and Kenneth G. Paterson. Unpicking PLAID - a cryp-
tographic analysis of an ISO-standards-track authentication pro-
tocol. In Security Standardisation Research - First International
Conference, SSR 2014, London, UK, December 16-17, 2014. Pro-
ceedings, pages 1–25, 2014.

v



vi List of Publications

[DFF+16] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso
Gagliardoni, Felix Günther, Giorgia Azzurra Marson, Arno Mit-
telbach, and Kenneth G. Paterson. Unpicking PLAID: a crypto-
graphic analysis of an ISO-standards-track authentication proto-
col. Int. J. Inf. Sec., 15(6):637–657, 2016.

[GHS16] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner.
Semantic security and indistinguishability in the quantum world.
In Advances in Cryptology - CRYPTO 2016 - 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2016, Proceedings, Part III, pages 60–89, 2016. [Part
of this thesis].

[GKK17] Tommaso Gagliardoni, Nikolaos P. Karvelas, and Stefan Katzen-
beisser. ORAMs in a quantum world. IACR Cryptology ePrint
Archive, 2017. [Preprint, Part of this thesis].



Acknowledgments

Being a PhD student is a strange experience. I am sure that everyone who
goes through this experience has their own personal stories, difficult moments
to remember, and funny anecdotes to tell. I, for one, can truly say that these
last five years have been exciting, funny, and productive. In short, they have
been intense, and I can really say at the end that I have grown up a lot, both
from an academic and from a personal perspective.

All of this I owe to my advisor, Marc Fischlin. If I could travel back
in time and I were given the choice of applying as a PhD student again, at
any one research group I possibly wished for, I would still spam ruthlessly
my application to Marc. He taught me a lot of things which go well beyond
academic matters, and I value his guidance immensely. When I was accepted
in Marc’s group in 2011, I was not aware at the time of how privileged I was.
Now I am, and for this I will owe forever a debt of gratitude to Marc.

Being part of the group was a great experience, and I really would like
to thank a lot my present and former colleagues for this. I am particularly
grateful to Andrea for being always there to help me with the bureaucracy,
to Giorgia for helping me to support the thesis that Hawaii Pizza is a mortal
sin, to Özgür for taking care of me during my first months in Darmstadt, and
to Paul for sharing with me a lot of good time, laugh, and hate for pigeons.
I am also very grateful to Arno, Chris, Christian, Cristina, Felix, Jacqueline,
Pooya, Sogol, and Victoria, for their friendship and support. Thank you all!

I would also like to thank all my coauthors for many successful collabora-
tions and for having helped me a lot into expanding my scientific knowledge.
Sometimes collaboration turned into sincere friendship as well, and therefore
I would like to thank in particular Gorjan Alagic, Andreas Hülsing, Nikolaos
Karvelas, and Christian Schaffner for the priceless time spent together.

Finally, I would like to thank my family for their endless love and support.
I will always look at you as an example and a guidance, and I strive to make
you proud of me every day of my life. Thanks.

Tommaso Gagliardoni
Darmstadt, December 2016

vii





Abstract

We call quantum security the area of IT security dealing with scenarios where
one or more parties have access to quantum hardware. This encompasses both
the fields of post-quantum cryptography (that is, traditional cryptography en-
gineered to be resistant against quantum adversaries), and quantum cryptog-
raphy (that is, security protocols designed to be natively run on a quantum
infrastructure, such as quantum key distribution). Moreover, there exist also
hybrid models, where traditional cryptographic schemes are somehow ‘mixed’
with quantum operations in certain scenarios. Even if a fully-fledged, scalable
quantum computer has yet to be built, recent results and the pace of research
in its realization call for attention, lest we suddenly find ourselves one day with
an obsolete security infrastructure. For this reason, in the last two decades re-
search in quantum security has experienced an exponential growth in interest
and investments.

In this work, we propose the first systematic classification of quantum
security scenarios, and for each of them we recall the main tools and results,
as well as presenting new ones. We achieve this goal by identifying four distinct
quantum security classes, or domains, each of them encompassing the security
notions and constructions related to a particular scenario. We start with
the class QS0, which is ‘classical cryptography’ (meaning that no quantum
scenario is considered), where we present some classical constructions and
results as a preliminary step.

Regarding post-quantum cryptography, we introduce the class QS1, where
we discuss in detail the problems arising when designing a classical crypto-
graphic object meant to be resistant against adversaries with local quantum
computing power, and we provide a classification of the possible quantum secu-
rity reductions in this scenario when considering provable security. Moreover,
we present results about the quantum security and insecurity of the Fiat-
Shamir transformation (a useful tool used to turn interactive identification
schemes into digital signatures), and ORAMs (protocols used to outsource a
database in a private way).

In respect to hybrid classical-quantum models, in the security class QS2
we discuss in detail the possible scenarios where these scenarios arise, and
what a correct formalization should be in terms of quantum oracle access. We
also provide a novel framework for the quantum security (both in terms of
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x Abstract

indistinguishability and semantic security) of secret-key encryption schemes,
and we give explicit secure constructions, as well as impossibility results.

Finally, in the class QS3 we consider all those cryptographic constructions
designed to run natively on quantum hardware. We give constructions for
quantum encryption schemes (both in the secret- and public-key scenario),
and we introduce transformations for obtaining such schemes by conceptually
simpler schemes from the class QS2. Moreover, we introduce a quantum
version of ORAM, called quantum ORAM (QORAM), aimed at outsourcing in
a private way a database composed of quantum data. In proposing a suitable
security model and an explicit construction for QORAMs, we also introduce a
technique of independent interest which models a quantum adversary able to
extract information from a quantum system without disturbing it ‘too much’.

We believe that the framework we introduce in this work will be a valuable
tool for the scientific community in addressing the challenges arising when
formalizing sound constructions and notions of security in the quantum world.



Zusammenfassung

In dieser Arbeit bezeichnen wir mit der Terminologie Quantensicherheit den
Bereich der IT-Sicherheit welcher sich mit dem Anwendungsfall beschäftigt,
in dem einer oder mehrere Teilnehmer Zugriff auf Quanten-Hardware haben.
Dies umfasst sowohl den Bereich der Post-Quanten Kryptographie (d.h. klas-
sische Kryptographie, welche resistent gegen Quantenangreifern ist), als auch
die Quantenkryptographie (dies sind Sicherheitsprotokolle, welche so gestal-
tet sind, dass sie nativ auf Quanteninfrastrukturen operieren, z.B. Quanten-
schlüsselverteilung). Weiterhin werden sogenannte Hybridmodelle erfasst, in
welchen traditionelle kryptographische Verfahren zu einem gewissen Grade mit
Quantenoperationen ‘gemischt’ sind. Obwohl ein voll ausgereifter, skalierbarer
Quantencomputer noch gebaut werden muss, zeigen aktuelle Resultate und
das rasante Bestreben nach dessen Realisierung, dass man auf den Ernstfall
vorbereitet sein sollte, um zu vermeiden sich eines Tages in einer überholten
Sicherheitsinfrastruktur wiederzufinden. Dies begründet auch das in den let-
zten zwei Jahrzehnten exponentiell gestiegene Interesse und Investment in
Forschung zum Thema Quantensicherheit.

In dieser Arbeit präsentieren wir die erste systematische Klassifikation
von Quantensicherheitsszenarien. Für jede Klasse werden die wichtigsten
Resultate und Techniken studiert und durch neue Resultate und Techniken
ergänzt. Die Klassifizierung erfolgt durch die Identifikation von vier unter-
schiedlichen Quantensicherheitsklassen oder Domänen, wobei sich jeder Klasse
eigene Sicherheitsmodelle und Konstruktionen für ein bestimmtes Szenario
zuordnen lassen. Die Klassifizierung beginnt mit der Klasse QS0, welcher
klassische kryptographische Szenarien zugeordnet werden und insbesondere
keine Quantenszenarien enthalten sind. Für diese Klasse werden einleitend
einige klassische Konstruktionen und Resultate präsentiert.

Für Post-Quanten Kryptographie werden natürliche Probleme betrachtet
die entstehen, wenn ein klassisches kryptographisches Objekt resistent gegen
einen Angreifer sein soll, welcher mit der Fähigkeit eines Quantencomput-
ers ausgestattet ist. Solche Probleme werden durch die Klasse QS1 klas-
sifiziert. Weiter klassifizieren wir an dieser Stelle mögliche Quantensicher-
heitsreduktionen im Kontext der Sicherheitsanalyse bei Problemen aus dieser
Klasse. Zudem werden auch die Quantensicherheit und -unsicherheit der Fiat-
Shamir Transformation (diese ist ein hilfreiches Verfahren um interaktive Iden-
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xii Zusammenfassung

tifikationsverfahren in digitale Signaturen zu transformieren) betrachtet, sowie
ORAMs (welches ein Protokoll ist um private Daten einer Datenbank auszu-
lagern).

Die Klasse QS2 beinhaltet Szenarien, welche dem Hybridmodel zuzuord-
nen sind. Wir diskutieren im Detail sowohl welche konkreten Szenarien diesem
Modell zugeordnet werden können, als auch deren Formalisierung bezüglich
eines Quanten-Orakel Zugriffs. Weiter wird ein neues Rahmenmodell für
Quantensicherheit von symmetrischen Verschlüsselungsverfahren (sowohl im
Sinne von semantischer Sicherheit als auch Ununterscheidbarkeit) eingeführt.
Es werden sowohl konkrete sichere Konstruktionen als auch Unmöglichkeits-
resultate präsentiert.

Letztlich benennen wir die Klasse QS3, welche kryptographische Kon-
struktionen umfasst, die in natürlicher Weise auf Quantenhardware laufen.
Einerseits werden Konstruktionen für Quantenverschlüsselungsverfahren (so-
wohl ein symmetrisches als auch asymmetrisches Verfahren) präsentiert, an-
dererseits auch Transformationen um solche Verfahren aus konzeptionell ein-
facheren Verfahren der Hybridklasse QS2 zu konstruieren. Des Weiteren wird
eine quantenbasierte Version von ORAM, genannt Quanten-ORAM (oder,
QORAM), eingeführt, welches es erlaubt private Datensätze einer Datenbank
bestehend aus Quantendaten auszulagern. Im Zuge der Formalisierung eines
geeigneten Sicherheitsmodells und einer expliziten Konstruktion für QORAMs
werden eigenständige Techniken entwickelt, die es erlauben einen Quantenan-
greifer zu formalisieren welcher Informationen aus dem Quantensystem ex-
trahieren kann ohne es ‘zu viel’ zu stören.

Wir glauben, dass die in dieser Arbeit eingeführten Formalisierungen und
Klassifikation wertvolle und brauchbare Werkzeuge für die Wissenschaftsge-
meinschaft bieten, um zukünftige Konstruktionen und Quantensicherheitsmo-
delle zu formalisieren.
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Chapter 1
Introduction

Cryptography is the subdiscipline of mathematics studying information secu-
rity, that is, the processing of information in presence of an adversary. This
includes goals such as communication secrecy, message authentication, iden-
tity verification, multiparty computation, and much more. In the modern era
of electronic information processing, cryptography is an area of crucial impor-
tance, and its applications are ubiquitous.

Modern cryptography is based on provable security. This is a method-
ological approach to assessing the security of a cryptosystem, where rigorous
mathematical models and proofs are required in order to show that the security
of the cryptosystem can be formally validated. Arguably the most important
branch of provable security, from a practical standpoint, is computational se-
curity, which aims at reducing the security of a cryptosystem to some basic
hardness assumptions in a mathematically sound way. Hardness assumptions
are inherent to the difficulty of solving certain mathematical problems (such
as integer factorization) which, for theoretical or historical reasons, are widely
considered to be very hard to solve even with the help of the most powerful
supercomputers known today. If a given cryptosystem is computationally se-
cure, this means that on one hand it is always theoretically possible for an
adversary with enough computational resources to break the security of that
cryptosystem. But on the other hand, doing so would reguire either an unrea-
sonable amount of time (modern standards of security often refers to many
times the age of the universe), or an unreasonable amount of computational
resources (storage, memory, power, etc.), or both.

The advantage of having a provably secure cryptosystem is that, as long
as the security model used is sound and the underlying hardness assumptions
hold, one can stay assured that the cryptosystem cannot be ‘broken’. This
is in stark contrast with the ‘heuristic’ approach to cryptography employed
until the ’70s, where cryptosystems were designed to be secure according to
the intuition of the authors, and the only guarantee of that security was given
by the ‘test of time’, in the sense that nobody would find a way to attack the
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2 Chapter 1. Introduction

cryptosystem for a long enough time. This approach has turned cryptography
from a mere engineering exercise to a logical-deductive discipline.

However, the effectiveness of provable security strongly relies on the hard-
ness assumptions used, which are not guaranteed. Good hardness assumptions
are based on the observation that algorithmical advances on solving the un-
derlying mathematical problem would imply (unlikely) breakthrough results
of scientific importance. However, all of these assumptions are also based on
the belief that the future computing technology will never be inherently dif-
ferent from today’s, save for a somewhat expected increase in performance,
due to engineering improvements.

1.1 Security in a Quantum World

This is where quantum computers come into play. Quantum computers [Fey82]
are machines, first theorized by Richard Feynmann in the early ’80s, which
are not based on the laws of classical physics like traditional computers are,
but on the laws of quantum mechanics instead. Quantum mechanics is a very
fundamental scientific theory, which has revolutionized physics since the early
20th century. Despite requiring a quite involved mathematical formalism and
leading often to very counterintuitive consequences, it has routinely succeeded
in predicting experimental results which classical physics could not explain.

From a formal point of view, a quantum computer is a mathematical model
where the laws of quantum mechanics are exploited to perform some kind of
computation, in a much more efficient way than traditional computers. Quan-
tum computers promise to revolutionize the Age of Information as we know
it. The ability to store, transmit, and process quantum data opens a world of
new possibilities in the area of information processing. Simplified [ARTL15]
or limited models [TCM+16] of quantum computers have already been built,
and everything from the experiments performed so far seems to confirm the
validity of the underlying theory and the viability of the technology. Al-
though a fully-fledged, scalable quantum computer has yet to be built, recent
results [OBK+16] and the pace of research in its realization seem to hint at
the fact that quantum computing might soon become a reality.

Post-Quantum Cryptography

It turns out that, due to the effects predicted by quantum mechanics, quan-
tum computers can perform tasks which are not possible with any classical
computing device, present or future. The breakthrough result in this direction
(which sparked a lot of interest for quantum computing in the area of cryptog-
raphy) is the 1994 work by Peter Shor [Sho94], who showed how for a quantum
computer it is possible to factor large integers efficiently, a mathematical task
considered to be unreasonably difficult until then, and at the base of many
modern cryptosystems such as RSA [RSA78]. Subsequent works have shown
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how to harness the power of quantum computing in order to speed up the
search of solutions to problems like the discrete logarithm [Wat01] on finite
fields and elliptic curves, search on unstructured database [Gro96], collision
finding [BHT98], and many others. Given that these are all hardness assump-
tions at the base of the security of cryptosystems [DH76, Gam84, JMV01]
widely adopted in the industrial, banking, and military sectors amongst oth-
ers, it is clear how the realization of a scalable quantum computer would pose
a threat to modern IT infrastructures.

A sound notion of security should be proactive, i.e., trying to take coun-
termeasures against a reasonable future threat before the threat manifests
itself. For this reason, cryptography has tried to address the looming danger
of quantum computing since the early ’90s. The idea is to find new mathemat-
ical problems which are supposed to be ‘hard’ even for quantum computers,
so that new, ‘quantum-immune’ cryptosystems can be constructed by relying
on such new quantum computational hardness assumptions. These are prob-
lems such as finding short vectors on lattices (which are geometric structures
of a certain form), inverting hash functions, decoding certain types of linear
codes, and a few others. The branch of cryptography dealing with the mathe-
matical analysis of these assumptions and the construction of new cryptosys-
tems based on such assumptions is called post-quantum cryptography [BBD09].
Post-quantum cryptography is today a thriving branch of information secu-
rity, and so far it has been quite successful at designing cryptosystems which
are at the same time reasonably efficient on today’s hardware, and based on
problems which are believed to be quantum-hard.

However, post-quantum cryptography has two fundamental issues.
The first problem is that security proof techniques that have been devel-

oped for traditional cryptosystems might fail when ‘translated’ to the quan-
tum scenario. A typical example is rewinding, a technique used in the security
proofs of many cryptosystems, which roughly consists in modeling a scenario
where the adversary is first run once, then rewound, partially reset, and then
re-run again, in order to extract two different but related ‘adversarial tran-
scripts’ that are then used somehow in the security proof. The problem is that
rewinding often does not work with quantum adversaries, because the nature
of quantum mechanics does not guarantee that a ‘partial reset’ of a quantum
computer is always possible.

Proof failures of this kind have often been ignored in the post-quantum
community in the past, and there are examples of attempts to ‘patching’ non–
post-quantum cryptosystems into post-quantum ones, by merely replacing the
underlying hardness assumption with a quantum-hard one, and ignoring the
fact that in so doing the security proof might become invalid.

The second problem of post-quantum cryptography is the often incomplete
understanding of sound security models in the quantum world. One thing is
to say that “the cryptosystem should be secure against a quantum adversary”,
another thing is to formalize mathematically what this exactly means. Models
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that are used for classically secure schemes are sometimes not adequate to
model quantum security, and this can lead to confusion.

A typical example is the case of the random oracle model (ROM), which is
a formal paradigm widely used in security proofs. A random oracle is a purely
mathematical construct which is completely independent from the type of
adversary considered, and there are hence no exotic technical difficulties in
adopting such paradigm in security proofs for post-quantum cryptosystems.
In fact, such approach has been taken before, and there exist in literature
cryptosystems advertised as ‘post-quantum’ just because they are based on
quantum-hard problems and provably secure in the ROM.

A random oracle, however, is just an abstraction describing an idealized
model of hash function, which is an algorithmic object eventually run on a
computing device. As the code for such a hash function is usually public, it is
reasonable to assume that an adversary equipped with a quantum computer
could run the code on his quantum machine, and therefore would be able to
access the hash function in a way which is not modeled anymore by the ROM.
For this reason, in a sound post-quantum security analysis, the random oracle
model should always be avoided, and replaced by a different, more involved
model called quantum random oracle model (QROM). It can happen that
schemes proven secure in the ROM become insecure in the QROM [BDF+11].

All the above considerations are not intended to mean that the whole
idea of post-quantum cryptography relies on a flawed model. In fact, there
are plenty of cryptographically sound security analyses, where such problems
are carefully taken care of. However, it is often the case that ‘secure against
quantum adversaries’ is confused with ‘relying on quantum-hard assumptions’.

Quantum Cryptography

On one hand, quantum computing poses new challenges for modern cryptog-
raphy, as many of the currently used cryptographic schemes and protocols
base their security on the hardness of certain mathematical problems which
are known to be easily solvable by a quantum machine. On the other hand,
quantum computers open up new possibilities in secure information process-
ing, as they can also be used ‘defensively’ in order to reach unprecedented
levels of privacy, integrity, and trusted authentication. Importantly, it is often
the case that such applications do not even require a fully-fledged scalable
quantum computer, but only quantum hardware of modest technological en-
gineering difficulty, which is already commercially available and deployed in
many applications worldwide.

A typical example is quantum key distribution (QKD) [BB14], where two
remote parties aim at establishing a secure communication channel by ex-
changing a secret key, employing the exchange of elementary quantum infor-
mation packets (qubits) through a quantum channel. This can be technologi-
cally done, for example, by transmitting polarized photons through an optic
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fiber channel. QKD is already largely developed [SLB+11], and it provides
levels of security that classical cryptography cannot reach.

Looking into the future, with the advent of more and more advanced quan-
tum hardware, it is easy to envision a world where a large part (if not most
or all) of our global IT infrastructure will rely on quantum information pro-
cessing. Under this scenario, it is important to think how to manage security
related to quantum data. Not only it is required to re-model in a quantum
way tasks usually performed by classical cryptography, for example encryp-
tion of quantum data [ABF+16] or quantum authentication [BCG+02a]. But
it also means to consider tasks which are inherently impossible without quan-
tum data, and which only make sense when considering a ‘fully quantum
infrastructure’, such as quantum money [Aar09] or delegated quantum compu-
tation [DFPR14].

In general, quantum computers promise to revolutionize the Age of Infor-
mation as we know it. The ability to store, transmit, and process quantum
data opens a world of new possibilities in the area of information process-
ing. Quantum cryptography is the branch of cryptography which deals with
designing secure cryptographic solutions which are natively meant to be run
on a quantum hardware - this includes QKD and all of the other examples
above, and still others. Quantum cryptography is a relatively recent area of
study of modern cryptography, and there is still much to be done in terms of
inventing new cryptosystems, creating correct security models, and figuring
out the relations between classical and quantum cryptographic constructions.

1.2 Contribution and Structure of this Work

We define ‘quantum security’ to be the discipline dealing with all the scenarios
where one or more parties have access to quantum hardware. This encom-
passes both the fields of post-quantum cryptography, quantum cryptography,
and also hybrid models, where traditional cryptographic schemes are somehow
‘mixed’ with quantum operations in certain scenarios. The term ‘quantum
security’, although having appeared in the scientific literature before, has
often been used used inconsistently from one work to another (see, for ex-
ample, [Zha12a, Unr13, KM12, BCD+16]), at times denoting ‘post-quantum’
notions of security, and at times denoting something else.

In this work, we provide the first systematic classification of quantum se-
curity scenarios, and a new framework for modeling quantum security notions
in a sound way. We achieve this by identifying four distinct quantum se-
curity classes, or domains, each of them encompassing the security notions
and constructions related to a particular scenario. We denote these classes
by QS (standing for ‘quantum security’), followed by a number identifying
the class. For each of these classes we recall known notions and results, as
well as providing some results which are new or appearing in one or more of
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the author’s publications. We start with a preliminary section in Chapter 2
where we recall some basic concepts and notation, and then we proceed by
presenting the four quantum security classes in the following chapters.

As it often happens in academic research, many of the results presented
in the various chapters of this thesis stem from collaborative projects, where
each individual achievements can be contributed by several, and most often all,
researchers participating in that project. This makes it hard, if not impossible
sometimes, to pinpoint who contributed to which specific part of the overall
work. At the beginning of chapters 3, 4, 5, and 6, we will give an account
of the results presented in that chapter which are novel or appearing in some
of the author’s publications, and we will give, when possible, an account of
which part of these results are the author’s specific contribution.

QS0

We start in Chapter 3 with the class QS0, which is ‘classical cryptography’
(meaning that no quantum scenario is considered), where we present some
results about traditional cryptography as a preliminary step. In this chapter
we introduce security models for different classical cryptographic primitives,
and we also introduce other building blocks and transformations from one
primitive to another. More in detail, first we define and analyze in Section 3.1
some of the building blocks used in modern cryptography: pseudorandom
number generators, functions, and permutations.

Then we look at the security models (and some example of constructions)
for secret-key and public-key encryption schemes, in sections 3.2 and 3.3 re-
spectively. We do it by looking at both the security models of semantic security
and indistinguishability of ciphertexts.

In Section 3.4, we discuss digital signature schemes, both in the standard
model and in the ROM, and we show how to obtain secure signature schemes
through the Fiat-Shamir transformation in Section 3.5.

Finally, in Section 3.6, we introduce oblivious random access machines
(ORAMs), which are interactive protocols used to privately outsource a large
database. We look at PathORAM, one of the most famous of such protocols,
by using the formalism introduced in [GKK17].

QS1

In Chapter 3, we look at post-quantum security, and we call QS1 the related
quantum security domain. We start in Section 4.1 with a detailed discussion
of all the issues arising when modeling quantum provable security for classical
cryptographic objects, including some examples of how classical proofs can fail
when ‘translated’ to the quantum world, and the meaning of quantum access
to classical oracles. We conclude this section with a classification of possible
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quantum security reductions which, to the best of the author’s knowledge,
does not explicitly appear in existing literature.

Then, in Section 4.2 we introduce the quantum random oracle model, and
we give some technical tools to deal with quantum random oracles.

In Section 4.3, we see how the security models for the building blocks de-
fined in Section 3.1 change when considering post-quantum scenarios. We also
have a look at cryptographic objects which are minimal post-quantum hard-
ness assumptions, such as post-quantum one-way functions and post-quantum
one-way trapdoor permutations.

In Section 4.4 we discuss post-quantum security notions for encryption
schemes, both in the secret-key and public-key scenario, and we show some
basic constructions. Then we discuss post-quantum digital signatures in Sec-
tion 4.5. We do this both for the standard post-quantum model and for the
quantum random oracle model.

We proceed in Section 4.6 to the analysis of the Fiat-Shamir transforma-
tion in the quantum random oracle model. We provide here both a positive
and a negative result: if the underlying identification scheme has certain prop-
erties, then the Fiat-Shamir transform of that scheme yields a secure signature
scheme in the quantum random oracle model. However, if the underlying iden-
tification scheme has different properties, it is possible to find an argument
(using the technique of meta-reduction) which shows that security proofs of a
certain form cannot be found at all. The surprising result here is that identi-
fication schemes having the latter type of properties are usually less desirable
(in terms of security) than the former ones. We exploit this fact by showing a
counterintuitive but efficient technique to ‘strengthen’ the quantum security
of a signature scheme obtained through the Fiat-Shamir transformation by
‘weakening’ the security of the underlying identification scheme.

Finally, in Section 4.7 we look at post-quantum ORAMs, and at sufficient
and necessary conditions to obtain a post-quantum version of PathORAM.

QS2

In Chapter 5, we look at superposition-based quantum security, and we call
QS2 the related quantum security domain. This security class deals with
special scenarios, where the cryptosystems studied are still classical (and can
hence be run on a classical computer), but extra security guarantees against
quantum adversaries are required in respect to the ‘post-quantum’ definition
of security. We model these new scenarios in terms of quantum oracle access
capabilities of the adversaries, explaining when such access is already implied
in QS1 and when instead it leads to new security scenarios covered by QS2.
Such scenarios arise in certain contexts, such as obfuscation and fault attacks,
as explained in Section 5.1. But very often they also stem from ambiguous
interpretations of the ‘post-quantum’ setting (as defined in QS1) sometimes
present in the literature. From this point of view, one of the most important
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contributions of this thesis is to formally clarify the distinction between these
two security classes.

In Section 5.2 we look at what happens when considering cryptographic
building blocks in the new scenarios. It turns out that, in respect to the
post-quantum scenarios, nothing changes for most of them, with two notable
exceptions: quantum secure pseudorandom functions and permutations.

Finally we discuss quantum-resistant encryption schemes in Section 5.3,
with a special emphasis on the secret-key case. For such schemes, we provide
new notions of indistinguishability and semantic security, as well as secure
constructions and impossibility results.

QS3

Finally, in Chapter 6, we leave the realm of classical cryptosystems, and we
look at quantum cryptosystems, that is, cryptosystems meant to be natively
run on quantum hardware.

First we look at quantum encryption (that is, quantum algorithms for the
encryption of quantum data) both in the secret-key (Section 6.1) and public-
key (Section 6.2) scenarios. For both cases we provide security notions, as well
as new constructions. We also show a novel technique for building encryption
schemes secure in the QS3 sense starting from encryption schemes secure in
the QS2 sense.

Finally, we introduce quantum ORAMs (QORAMs) in Section 6.3. This
is a new primitive (basically a quantum version of ORAM) which is aimed
at outsourcing in a private way a database composed of quantum data. In
proposing a new security model and an explicit construction for QORAMs,
we also introduce a novel technique of independent interest which models
a quantum adversary able to extract information from a quantum system
without disturbing its state ‘too much’.

1.3 Related Work

The idea of quantum security as defined in this work is to encompass different
types of scenarios which have in common the secure management of informa-
tion in presence of quantum devices. Therefore, the existing related literature
in this respect is vast, and we only cite a few key works here.

The term ‘post-quantum cryptography’, as meant in the QS1 sense, was
popularized by Bernstein, Buchmann, and Dahmen in [BBD09]. The QROM
was introduced in [BDF+11]. Regarding the problems inherent to quantum
rewinding, see Watrous [Wat06], Unruh [Unr12], and Ambainis et al. [ARU14].
Song [Son14] discussed relations between classical and quantum reductions,
and Hallgren et al. [HSS11] discussed classical cryptographic protocols in the
quantum world. Post-quantum building blocks and encryption schemes can be
constructed from mathematical problems on lattices [GGH97, Mic11, LPR13],
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linear codes [McE78], multivariate equations [KPG99], and supersingular iso-
genies [FJP14]. In addition to the problems just mentioned, post-quantum
signature schemes can be constructed from hash functions [BHH+15].

Superposition-based attacks have been first proposed in [DFNS13] in re-
spect to multiparty computation. Quantum-secure pseudorandom functions
and pseudorandom permutations have been investigated by Zhandry [Zha12a,
Zha16], Kuwakado and Morii [KM10, KM12], and Alagic and Russell [AR16],
while secret- and public-key encryption schemes falling in the QS2 cathegory
have been proposed by Boneh and Zhandry in [BZ13b], where superposition-
resistant signature schemes also appear. Signature schemes secure against su-
perposition attacks have also been studied in [ES15]. Anand et al. [ATTU16],
Kaplan et al. [KLLN16], and Santoli and Schaffner [SS17] extended some at-
tacks against pseudorandom permutations to other block ciphers, modes of
operation, and compression functions.

Quantum key distribution was introduced in the seminal works by Wies-
ner [Wie83], and Bennet and Brassard [BB14]. Quantum money was intro-
duced by Aaronson [Aar09]. Computationally secure quantum encryption was
formalized by Broadbent and Jeffery [BJ15], while [AM16, BCG+02b, GYZ16]
deal with authentication of quantum information. See [BS16] for an overview
of quantum cryptographic schemes belonging to the QS3 class, and Vidick
and Watrous [VW16] for an overview of quantum complexity theory and re-
ductions in the quantum world.





Chapter 2
Preliminaries

In this chapter we discuss the notation and provide basic definitions used in
the rest of this work.

2.1 Basic Notions

We start with a few basic concepts, mathematical notation and terminology.
In the rest of this work, ‘w.l.o.g.’ stands for ‘without loss of generality’, ‘iff’
stands for ‘if and only if’, and ‘classical’ means ‘non-quantum’.

Numbers, strings, and generic atomic objects are denoted by default as
lowercase letters, e.g., a, b, x, y. In particular, indices for sequences or families
will be often denoted by n,m, i, j, k. Sometimes inputs and outputs of an
algorithm will be denoted by lowercase Sans Serif script, e.g., com, state, sig.
The security parameter is n, or 1n when expressed in unary notation.

Special symbols are ⊥ (usually denoting ‘error’, or ‘lack of meaning’) and
the lowercase Roman i (denoting the imaginary unity,

√
−1). The symbol ‖

denotes concatenation of bit strings, and the symbol 0k (resp. 1k) denotes a
k-bit string of zeroes (resp., ones). For a bit string (or natural number) x
we denote its bit size (or bit length) as |x|. If x is a non-integer number, |x|
denotes its absolute value. If x is a complex number, |x| denotes its complex
modulus, and x its complex conjugate.

Families or collections of objects (sets, functions, probability distributions)
are of the form (An)n , (Xj,k)j,k, where individual elements of the family are
indexed, e.g., An,Xj,k. However, if there is no ambiguity in the choice of
the index (usually this is the security parameter), such families are labeled in
short just as A,X , etc.

Sets are usually denoted by uppercase letters, e.g., T,X, Y , except for
special sets such as ∅,N,R,C, and the set of all permutations on a set X,
denoted by S(X). The set of all finite bit strings or words is {0, 1}∗. However,
sets of bit strings will often be presented as families, where each member of
the family contains bit strings of the same length. In this case, sets will be

11
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denoted by T ,X ,Y instead, being understood that, e.g., X = (Xn)n, where Xn
only contains bit strings of length f(n) for some positive (usually polynomial)
function f. The cardinality (number of elements) of a set X is denoted by
|X|. Set operations are ∪ (union), ∩ (intersection), \ (set difference), and ×
(Cartesian product). If a tuple (x, y, z) ∈ X × Y × Z, then single entries of
the tuple are isolated by writing, e.g., (x, y, z)XYZ

∣∣∣
Y

= y.
Functions (from sets to sets) are denoted by lowercase calligraphic letters,

e.g., f, g, ` : X → Y . Borrowing a commonly used notation when defining
‘small’ quantities (relative to some parameter), exceptions to this notation
are special functions ε and δ.

However, when a function is actually a family (indexed, for example, in
terms of the bit size of the input) then it is denoted by uppercase calligraphic
letters, e.g., F ,G,L. Commonly, in this case, domain and target space of these
functions are also indexed as families, in relation to the bit size of the function’s
input. For example, F : X → Y represents a function F from set X to set Y,
which can be seen as a family of functions (Fn)n, where Fn : Xn → Yn.

A (real-valued) function f is polynomially bounded iff there exists a polyno-
mial function p and an element x̄ such that |f(x)| ≤ p(x), ∀x with |x| > |x̄|. In
this case we write f = poly. A (real-valued) function ε is negligible iff, for any
polynomial function p, there exists an element x̄ such that |ε(x)| < 1

p(x) , ∀ x
with |x| > |x̄|. In this case we write ε = negl.

Lowercase Greek letters denote quantum states, either pure ones when
written in bra-ket notation (e.g., |ϕ〉 , |ψ〉) or mixed ones when written without
(e.g., σ, ρ). Exceptions are the symbols δ and ε, as already discussed, and
λ (used for eigenvalues). Uppercase Greek letters (Σ,Γ,Θ) are reserved for
special purposes, usually to denote quantum channels.

Data structures (trees, blocks) are labeled with Typewriter script, e.g.,
tree, block, node.

Probability

Distributions are denoted by uppercase calligraphic letters, e.g., D,P,U . Dis-
tribution ensembles, or families, are denoted by (Dn)n , (Pn)n, etc. As usual,
if there is no ambiguity in the choice of the index (usually this is the security
parameter), such families are labeled in short just as D,P, etc., with individual
member distributions being Dn,Pn, etc.

If D is a distribution over a set X , then sampling an element x from the
distribution is written as x D←− X (or, a shorthand notation when the domain
is clear, just x ← D). Sampling an element uniformly at random from a set
R is written as r $←− R.

The support of a distribution D over a set X is the subset of elements
with non-zero probability, i.e., {x ∈ X : Pr[x← D] > 0}. The cardinality of a
distribution is the cardinality of its support.
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If D is a distribution over X × Y, then we denote the distribution on X
induced by D as DX := D

∣∣∣
X
, and the sampling as DX → x where x := (x, y)

∣∣∣
X
.

The total variation distance (or, statistical distance) of two distributions
D0,D1 is defined as:

|D0 −D1| :=
∑
x

|Pr[x← D0]− Pr[x← D1]| .

Linear Algebra

Vectors are denoted either as tuples (e.g., (x1, . . . , xn)) or as boldface char-
acters for the notation of the corresponding components (e.g., x). The zero
vector is denoted as 0. Matrices (linear operators between two vector spaces)
are denoted by uppercase letters, e.g., A,B,M . (unless families, in that case
A,B,M etc., as previously explained), except for the special symbols zero
matrix (or null operator) over n elements (denoted by On), and the identity
matrix (or identity operator) over n elements (denoted by In). If M is an
n×m matrix (which includes the case of vectors or scalars if n or m equals 1),
thenMT denotes its m×n transpose,M denotes its n×m complex conjugate,
and M † denotes its m× n Hermitian conjugate (or adjoint) MT = M

T . If M
is an n×n matrix with non-zero determinant, its unique inverse is denoted by
M−1. An n× n matrix (or linear operator) M is Hermitian if M = M †, and
unitary if M † = M−1. The trace of a square matrix M is denoted by tr(M),
and it is the sum of the elements on the diagonal.

A complex Hilbert space is a complex vector space H, together with an
inner product operation 〈., .〉 : H × H → C such that H (seen as a metric
space) is complete in respect to the metric ‖x‖ :=

√
|〈x, x〉| induced by the

inner product. Unless otherwise specified, the inner product adopted here is
always the scalar product:

〈x,y〉 := xy† = (x1, . . . , xn)

 y1
...
yn

 =
∑
i

xiyi

The norm induced by the above product is the Euclidean norm, and it is
denoted by ‖x‖2. The Euclidean distance between two vectors x and y is
hence ‖x − y‖2. The dimension of a Hilbert space is the cardinality of a
minimal set of orthonormal elements spanning the whole space. Such a set is
called a basis for the complex Hilbert space, and it is not unique. In this work
we only consider finite-dimensional complex Hilbert spaces.
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2.2 Classical Computation

In this section we recall the basic concepts and notation related to classical
computation and complexity theory. The topic is of course vast and here we
do not cover in depth every aspect of it. For a more complete treatment of
the aspects of computation and complexity theory we refer to [AB09].

Circuits and Algorithms

The fundamental objects of study of computation theory are algorithms, which
are sequences of elementary operations applied to some input data; the goal
is to perform some procedure on those input data to produce some output.
The complexity of an algorithm can refer to the number of elementary steps
performed, the running time, the memory consumption, or any other resource
used during its execution. Such complexity is expressed in relation to the
instance size of the computation, which is a positive integer expressing the
‘size’ of the computational problem which the algorithm has to solve in order
to perform the desired computation; this parameter is usually (related to) the
bit size of the input. The complexity of an algorithm is then expressed as a
function of the instance size: for example, if an algorithm A has complexity
at most O(n2) for instance size n, we say that A has ‘quadratic complexity’.
An algorithm is deterministic if it produces always the same output for the
same input, while it is probabilistic if it also takes an additional input (of size
at most polynomial in the instance size) drawn from uniform random bits; its
output is hence expressed as a distribution over these ‘internal random coins’.

In this work we only deal with time complexity, i.e., we count as complexity
the execution time of the algorithm. Time complexity is expressed in terms of
the number of elementary operations performed by the algorithm, regardless
of their nature, i.e., we assume for simplicity that any elementary operation
(be it an addition, logical AND, division, etc.) takes one unit of time to
execute. Moreover, as common in cryptography, we call the instance size the
security parameter, denoted by n. DPT stands for ‘(Boolean) deterministic
polynomial time’, while PPT stands for ‘(Boolean) probabilistic polynomial
time’, where ‘Boolean’ refers to the fact that the algorithm operates on bit
strings and performs elementary Boolean (bit) operations.

Traditionally, the two most commonly used models used to describe a
classical algorithm are Turing machines and Boolean circuits.

• A Turing machine is a mathematical model describing an abstract ma-
chine with an internal state, acting on a data tape and performing op-
erations according to a pre-specified set of rules.

• Boolean circuits are acyclic directed graphs where the nodes are either
input bits, output bits, or elementary (Boolean) operations. Complexity
in this case is given by the total number of gates in the circuit.
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In this work, by ‘algorithm’ we mean ‘a uniform family of circuits’, i.e., there
exists a Turing machine which, given the security parameter expressed in
unary 1n as input, runs in time at most polynomial in n, and outputs a
description of the n-th member of the circuit family. So, for example, a PPT
algorithm A is a family of Boolean circuits A := (An)n such that:

1. there exists a Turing machineM such that, on input 1n,M runs in time
O (poly(n)) and outputs a description of An; and

2. An is a Boolean circuit of size O (poly(n)), taking as input a poly(n)-
bit value and a poly(n) many uniformly random bits, and producing a
O (poly(n))-bit output.

Algorithms, being families of circuits, are denoted by, e.g., A := (An)n. When
studying an algorithm which is a subroutine of another algorithm, or where
we do not want to stress that it is a family, or anyway for clarity of notation,
we use math Sans Serif script (e.g., Access, KGen, Enc). Every algorithm
always gets as input at least the security parameter, so we will ignore it in
the notation, being understood that such input is always present. In order
to express that a deterministic algorithm A, on input a value x, produces an
output y, we write: y := A(x) or, equivalently, A(x) =: y. For a probabilistic
algorithm instead, the notation becomes y ← A(x) (or, equivalently, A(x)→
y). However, if the output of a probabilistic algorithm A is written as A(x) =
y, that is a shorthand notation for: Pr [A(x)→ y] = 1, where the probability
is taken over the internal randomness of A. If an algorithm’s only input is the
security parameter (which we omit from the notation, as said), we only write,
e.g., A =: y, or A → y if probabilistic.

The random coins of a probabilistic algorithm are almost always omit-
ted from its input, so we write simply, e.g., A(x) → y; however, if for some
reason it is necessary to ‘de-randomize’ the algorithm (that is, to consider
the deterministic algorithm obtained by fixing a particular choice of random-
ness r), we write this as A(x; r) =: y. If A is probabilistic, then the notation
Pr [A(x)→ y] is meant as ‘probability over the randomness of A, for that par-
ticular value x’, while Prx∈X [A(x)→ y] (or Prx←X [A(x)→ y]) means ‘over
the randomness of A, averaged over the uniform distribution on X ’. However,
if A is deterministic, then Prx∈X [A(x)→ y] (or Prx←X [A(x)→ y]) is given
by the fraction |{x∈X :A(x)=:y}|

|X | .
Abusing notation, we express sometimes algorithms as (families of) func-

tions from (families of) sets of inputs to (families of) sets of outputs. So, for
example, A := (An)n : X×Y → Z×{0, 1}∗ means that, for every n ∈ N,An is
a Boolean circuit taking as input one element of X and one element of Yn, and
outputting one element of Zn and one extra bit string of unspecified length. If
an algorithm only takes as input the security parameter and outputs elements
in X we write just: A :→ X .
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Algorithms can be interactive, and communicate with each other. A special
case is given by stateful algorithms, which have an internal state variable which
can be updated and stored across different executions of the same algorithm
(in this sense, the algorithm ‘communicates with his future self’). In order to
represent this communication, three different notations can be used.

1. Explicit state transport. For example, if A = (A1,A2) and one wants
the first stage algorithm A1 to communicate some information to the
second stage A2, we write something like:
1: A1(x)→ (y, state)
2: A2(z, state)→ w

where state, when left unspecified, is a bit string of size polynomial in
the security parameter, carrying the information to be transmitted.

2. Circuit self-output, used in particular for stateful algorithms. For exam-
ple, if A0 is the algorithm in the initial state, then A0 ‘outputs y and a
description of its own updated state’ as: A0(x)→ (y,A1). If using this
notation, from now on A0 cannot be invoked again anymore. Instead,
A1 is run on some other input a and updates itself as: A1(a)→ (w,A2).
From now on, A1 cannot be invoked anymore. Instead a fresh invocation
can be written as: A2(w, y, b)→ (u, r,A3), and so on.

3. Communication transcript. In this case, two or more algorithms com-
municate back and forth through a communication channel (which is
a shared register between the two circuits). The ‘history’ of the con-
tent of such register during the execution of two algorithms A and B
is called communication transcript com, and it is usually denoted as:
com← 〈A(x),B(y)〉.

If an algorithm A has oracle access to another algorithm (or family of
functions) O, this is written as AO. In this case, it is understood that A can
communicate with O through O’s input and output registers solely, while A
does not know anything else about O’s structure, code, or working details.
Such communication is called query: A queries O on input value x, then O
computes the answer y ← O(x) and finally y is sent back to A. In this case,
O’s running time is ignored: it is always assumed that one oracle invocation
takes one unit time to execute, regardless of O’s running time. Giving A
oracle access to another resource O models the case where A is given ‘extra
power’ in performing a certain task, without having to deal with the exact
way this task is performed.
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Computational Complexity Theory

Complexity classes are families of problems with related asymptotic difficulty.
Their definition is often given in terms of language verifiers: a language is a
subset of {0, 1}∗, and a verifier for a language is an algorithm which checks if a
given input bit string belongs to that language (outputs 1) or not (outputs 0).
In this work we only consider the following three classical complexity classes.

• P is the set of all languages L for which there exists a DPT algorithm
M such that:

1. ∀ x ∈ L =⇒ M(x) = 1; and
2. ∀ x /∈ L =⇒ M(x) = 0.

Informally, P is the set of all problems which are ‘easy to solve’, in the
sense that a solution for a given problem instance of size n can be found
deterministically in time at most polynomial in n.

• BPP is the set of all languages L for which there exists a PPT algorithm
M and a positive constant c such that:

1. ∀ x ∈ L =⇒ Pr[M(x)→ 1] ≥ 1
2 + c; and

2. ∀ x /∈ L =⇒ Pr[M(x)→ 0] ≥ 1
2 + c.

Informally, BPP is the set of all problems which are ‘easy to solve with
high probability’, in the sense that a solution for a given problem in-
stance of size n can be found with high probability in time at most poly-
nomial in n. It is currently unknown whether P 6= BPP or not [Gol11].

• NP is the set of all languages L for which there exists a DPT algorithm
M and a polynomial p such that:

1. ∀ x ∈ L ∃ y ∈ {0, 1}∗ with |y| ≤ p(n) such thatM(x, y) = 1; and
2. ∀ x /∈ L, ∀ y ∈ {0, 1}∗ with |y| ≤ p(n) =⇒ M(x, y) = 0.

Informally, NP is the set of all problems which admit a ‘solution easy to
check’. in the sense that a candidate solution for a given problem instance
of size n can be tested deterministically in time at most polynomial in
n. It is currently unknown whether P 6= NP or not [AB09].

Let L ∈ NP be a language with a (polynomially computable) relation R,
i.e., there exists a DPT algorithm Rel and a polynomial p such that x ∈ L iff
there exists some w ∈ W ⊂ {0, 1}∗ such that (x,w) ∈ R and |w| ≤ p(|x|)∀x,
where (x,w) ∈ R ⇔ Rel(x,w) = 1. We say that w is a witness for x ∈ L (and
x is called a theorem or statement). We sometimes use the notation Rn to
denote the set of pairs (x,w) in R of complexity measured in relation to the
security parameter, e.g., if |x| = n. In this case, with abuse of notation we
identify the relation R with the algorithm testing its membership Rel.
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2.3 Classical Cryptography

In this section we briefly recall the basic concepts and terminology used in
modern cryptography.

Provable Security

Traditionally, cryptography has been seen for a long time as a ‘cat-and-mouse’
game, in the sense that the only way to validate the quality of a proposed
cryptographic object was to perform some sort of cryptanalysis on it (i.e.,
‘trying to break it’), and then trying to fix the vulnerabilities potentially
found, until new flaws were found, and so on. Under this perspective, the
criterion to decide whether a cryptographic object should be trusted or not is
just ‘the test of time’, in the sense that no new vulnerabilities are being found
‘for a long time’.

However, this paradigm has shifted radically in the last ~30 years. The
modern approach to defining good practice in cryptography is provable secu-
rity, which is a paradigm involving a rigorous mathematical analysis of the
cryptographic object, adversarial model, and security assumptions. In prov-
able security, when analyzing a cryptographic scheme, one needs to provide
rigorous definitions and models for the following aspects:

1. the functionality of the cryptographic object, i.e., what exactly is the
goal that the object wants to achieve;

2. the adversary model, i.e., what does a ‘reasonable’ adversary against the
object look like? What does the adversary want to achieve? When can
we say that he is ‘successful’?

3. The security proof, i.e., a mathematical proof showing that, under the
specified model and some basic, commonly accepted assumptions, it is
possible to rule out any successful adversary against the cryptographic
object in exam.

It is important to distinguish between two different concepts of security.

• Information-theoretical (or, statistical) security. In this case, the proof
of security aims at showing that the behavior of the cryptographic object
is statistically equivalent (in the sense that it produces a distribution of
outputs at most negligibly different) to the behavior of an idealized ob-
ject, against which no successful attacker can exist by definition. For
example, an information-theoretical secure encryption scheme produces
a distribution of ciphertexts which is at most negligibly different from the
uniform distribution over all ciphertexts, regardless of the input plain-
text. Clearly, information-theoretical security is very strong, because
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it gives security guarantees regardless of the adversarial model. How-
ever, being so strong, it is also limited in use, as very few cryptographic
objects can be shown to be statistically secure.

• Computational security, on the other hand, aims at showing that a cryp-
tographic object is secure by relying on the intrinsic computational lim-
itations of a ‘reasonable’ adversary. For example, in a computationally
secure (but not statistically secure) encryption scheme, an adversary
might be able to break security by testing (‘brute-forcing’) all the pos-
sible encryption keys one after one. However if such an adversary, in so
doing, takes an amount of time which exceeds by many orders of magni-
tude the age of the universe, we would not consider him a threat for the
security of the cryptographic scheme. A commonly accepted definition
of ‘computationally bounded adversary’ is ‘polynomial-time bounded’
(in the security parameter).

In this work we only focus on computational security, but sometimes we
refer to statistical security when needed for comparison. The adversary model
we consider in classical security is thus some form of PPT algorithm, possibly
with oracle access to additional resources.

The ‘winning condition’ for a given adversary A is expressed in terms
of the outcome of an experiment (or game), which is a mathematical model
describing the intuitive behavior of an adversary trying to compromise the
security of a cryptographic scheme S. Formally, an experiment is an algorithm
(taking as input the security parameter n and, optionally, other parameters)
with oracle access to A and (the components of) S, and outputting some
value (typically a bit) telling whether the experiment was successful (i.e.,
A won) or not. The notation used is of the form GameLABEL

S,A , where LABEL
identifies the particular experiment. The advantage of an adversary A running
such experiment (denoted by AdvLABEL

S,A ) is the difference between A’s success
probability, and the success probability of a ‘naif’ adversary who just guesses
at random a possible solution to the problem of breaking S’s security. Then,
in order to define S secure, two possible approaches are considered:

1. game-based security. In this case, it is required that the advantage of
any (computationally bounded) adversary is ‘small’ (meaning, negligible
in the security parameter); or

2. simulation-based security. In this case, the success probability of an
arbitrary adversary A in the original experiment is compared to the
success probability of the sameA in a different experiment, describing an
idealized, or ‘simulated’ situation where there is basically no possibility
that A can break the security of the underlying scheme. In this case,
security requires that for any (computationally bounded) adversary, the
difference between the success probabilities in the ‘real’ and the ‘ideal’
world are roughly the same (meaning, at most negligibly distinct).
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Both approaches are widely used in provable security. Usually, simulation-
based security better captures the idea of transforming in a rigorous math-
ematical model what intuitively we want a cryptographic object to achieve;
game-based security, however, is often of more immediate formulation and
simpler use in security proofs. A common technique in provable security is
in fact to show equivalence between an intuitive, rigorous simulation-based
security definition, and a simpler, easier-to-use game-based one.

Regarding security proofs, it must be noticed that such proofs are intu-
itively very hard to come up with. In fact, it is in theory easy to show that a
particular, formally well-described adversary is unable to successfully attack a
certain cryptographical scheme. However, the security proofs we need require
to rule out every possible adversary, even those which we do not know yet,
or are unable to formalize. Therefore, directly showing security against one
adversary does not work, and different techniques are used instead.

A very common technique to show the security of a cryptographic scheme
S is the concept of reduction to another problem, or primitive P. Let us
assume that P is hard to solve, or anyway widely believed to be hard. Then
one could ‘show’ the security of S by proving that the problem of breaking
S’s security is ‘at least as hard’ as solving P. This is accomplished by proving
that, given an hypothetical, successful adversary A against S, such adversary
can be turned, constructively and in an efficient way, into an efficient solver
for P. In this case we say that the security of Sreduces to the hardness of P,
and the formal proof itself is called reduction. A typical example of reduction
is giving an explicit description of an efficient algorithm B which solves P, and
which has oracle access to A (in that case B is also said to be the reduction
itself). We say that a reduction is ‘black-box’ if such oracle access is the only
interaction between A and B, and B does not have any other clue about A,
such as insights about A’s code or access to oracles which, according to the
security model, should be only accessible by A. However, as it is common
practice in provable security, B is allowed to know a priori an upper bound on
A’s running time or number of queries to his oracles.

Finally, another common topic in provable security are impossibility results,
that is, general theorems stating that a certain class of cryptographic object
having certain properties cannot be secure. The most direct way to do it is
by providing an explicit attack, i.e., an efficient adversary working against
every member of that class. However, this can be hard sometimes, and there
are countless examples of cryptographic schemes where a direct attack is not
known, but at the same time no reduction can be found.

A possible technique to show impossibility results is that ofmeta-reductions.
Intuitively, a meta-reduction is ‘a reduction on reductions’: the idea is to show
that, if a scheme S admits an efficient reduction B to some problem P, then
another reductionM exists, which uses B to attack another, possibly different
hard problem P ′. This rules out the existence of B.

In the case of meta-reductions, since B needs an efficient adversary A
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against P in order to work, and reductions must always be constructive and
efficient, it should be M’s duty to provide such adversary A for B to work
with. However, since M cannot break P directly (or else this would be a
contradiction), the meta-reduction simulates a ‘fake’ adversary, in such a way
that the simulation cannot be used directly to break P, but at the same time
such simulation is undetectable from B’s perspective. So, a meta-reduction
technique works like this:

1. assume the existence of a reduction B from scheme S to problem P.

2. Give an explicit description of any adversary A against S. This adver-
sary does not necessarily need to exist, because B works regardless of A’s
nature. In practice though, it is usually required that B is a black-box
reduction.

3. Give an explicit description of an efficient algorithmM which can sim-
ulate A (from B’s point of view) and any other resource or oracle that
B needs to access.

4. Execute the reduction B, and use B’s output to break P ′.

Hardness Assumptions

Hardness assumptions relate to mathematical problems which are at the same
time easy to formalize (and it is clear what a solver for these problems should
accomplice), and such that to date no known general method for solving these
problems has been found (and there is evidence that finding such a method is
arguably very hard). These assumptions are important, because they identify
problems which are very attractive reduce to during security proofs.

Since we are dealing with computational security, a very minimal assump-
tion is that P 6= NP. This is widely believed to be the case [AB09]; however,
finding cryptographic reductions to such a minimal assumption is very hard.
In this section, we recall some commonly used hardness assumptions used in
cryptography. In what follows, we assume w.l.o.g. that the message space is
X = (Xn)n := ({0, 1}n)n.

One very well studied assumption that we will explicitly use later in this
work is the computational hardness of the discrete logarithm problem (DLP).

Definition 2.1 (Discrete Logarithm Problem). For a security parameter n,
let (G, ?) be a cyclic group of order exponential in n, with generator g, and
such that ? is efficiently computable. The discrete logarithm problem (DLP)
on G is, given h $←− G, to find x ∈ N such that h = gx.

The DLP hardness assumption (for a given group (G, ?)) states that no
PPT algorithm exists, which is able to solve the DLP problem with proba-
bility better than 1

2 + c for any positive constant c (i.e., the DLP problem is
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not in BPP for many known groups). There exist many different variants of
the DLP problem, such as the decisional Diffie-Hellman (DDH) problem and
many others, see [Bon98] for a survey. There exist also many other number-
theoretic hardness assumptions, both quantum-insecure (RSA [RSA78] and
factorization, elliptic-curve DLP [JMV01], etc.) and (presumably) quantum-
resistant (lattice problems [GGH97], code-based [McE78], isogenies [FJP14],
etc.) but we will not address them specifically in this work

Another very minimal hardness assumption that we make heavy use of is
the existence of one-way functions. Intuitively, these are (families of) functions
that are ‘easy’ to evaluate on any input, but ‘hard’ to invert on a random out-
put, meaning that no efficient algorithm can find a pre-image for a randomly
generated image.

Definition 2.2 (One-Way Functions (OWF) and Permutations (OWP)). Let
F = (Fn)n be a DPT algorithm, with Fn : Xn → {0, 1}∗. F is a (family of)
one-way functions (OWF) iff for any PPT algorithm A it holds:

Pr
x

$←− X

[
A(F(x))→ x′ : F(x) = F(x′)

]
≤ negl.

Moreover, in the special case where Fn : Xn → Xn are permutations on Xn for
every n, F is a (family of) one-way permutations (OWP).

The existence of one-way functions would imply P 6= NP, but the converse
is not believed to hold [AB09]. However, one-way functions are considered
to be a very minimal assumption for the existence of computationally secure
cryptography. In general, reducing the security of a cryptographic object to
the existence of one-way functions is a strong indicator of the scheme’s security.

Notice the following: Definition 2.2 does not say anything about individual
members of the family being pseudorandom. For example, there might be
one-way functions which always fixes certain bits of their output, which can
hence be trivially inverted. However, these ‘easily predictable’ bits cannot
be ‘too many’, otherwise an adversary A could invert the whole function
by guessing the other bits, against the assumption of one-wayness. Those
(Boolean functions of) bits which are not easily predictable are called hard-
core bits (or hard-core predicates).

Definition 2.3 (Hard-Core Predicate). Let F : X → Y be a OWF. A
polynomial-time computable function hcF : X → {0, 1} is a hard-core predi-
cate (or bit) of F iff, for any PPT algorithm A it holds:

Pr
x

$←− X
[A(F(x))→ hcF (x)] ≤ 1

2 + negl.

Whether every OWF admits hard-core predicates or not is an open prob-
lem [KL07]. But it can be shown that, given any OWF F , it is always possible
to construct another OWF H such that hcH exists. Moreover, if F is a OWP,
then also H is.
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Proposition 2.4 ([HILL99]). Let F be a OWF (resp., OWP). Then it is
possible to efficiently transform F into a OWF (resp., OWP) H such that at
least one hard-core predicate hcH exists.

Given the above, from now on we assume for simplicity that every OWF
admits hard-core predicates. In the case that F : X → X (in particular, if F is
a OWP), the construction of hard-core bits can be iterated to hcH2 , hcH3 , . . ..

Proposition 2.5 ([HILL99]). Let F : X → X be a OWF (resp., OWP) with
hard-core predicate hcF . Then F2 is a OWF (resp., OWP) with hard-core
predicate hcF2.

Another very important cryptographic assumption is the existence of one-
way trapdoor permutations (OWTP). A OWTP is a (family of) permutations
which are easy to evaluate but hard to invert, unless an extra piece of secret
information is known (the trapdoor) which is specific to a certain permutation.

For our scope, it is convenient to express a family of OWTPs as indexed
through an index family, which is efficiently sampleable together with the
related trapdoor. We will denote by I := (In)n and T := (Tn)n the index
and trapdoor spaces, respectively. W.l.o.g., we assume In ⊆ {0, 1}d(n), and
Tn ⊆ {0, 1}t(n) for security parameter n ∈ N, where d and t are polynomial
functions determined by the OWTP family.

Definition 2.6 (One-Way Trapdoor Permutation Family (OWTP)). A (fam-
ily of) one-way trapdoor permutations (OWTP) is a tuple of PPT algorithms
P := (Gen,Eval, Invert):

1. Gen :→ I × T ;

2. Eval : I × X → X ;

3. Invert : I × T × X → X ∪ {⊥},

and such that:

1. for any PPT algorithm A it holds:

Pr
x

$←−X
(i,t)←Gen

[A(i,Eval(i, x))→ x] ≤ negl; and

2. Invert(i, t, y) = Eval(i, x), ∀ x ∈ X , ∀ (i, t)← Gen, ∀ y ← Eval(i, x).

The existence of OWTP is an assumption, like in the case of OWF. It is
a stronger assumption, because the existence of OWTP in particular implies
the existence of OWF, but the converse is not believed to hold.
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Proposition 2.7 (OWTP =⇒ OWP =⇒ OWF). Let P := (Gen,Eval, Invert)
be a OWTP on X . Then, for all but a negligible fraction of possible sequences
(in, tn)n ← Gen(n)⇒ Eval(in, .) is a OWP (and thus a OWF) on X = (Xn)n.

Candidates OWTP can be constructed from some hard problems such as
factorization, DLP, and many others. As an example, it is well known that
if factoring large integers is hard, then one can build OWTP using, e.g., the
RSA cryptosystem [RSA78].

Theorem 2.8 (RSA =⇒ OWTP). If factorization of large integers is com-
putationally hard, then OWTPs exist.

The Random Oracle Model

In this section we briefly recall the random oracle model (ROM) methodology.
The subject is quite involved and here we do not discuss it in detail, see [Bel98]
for an overview. A random oracle (RO) is an abstract mathematical model
representing an idealized version of a publicly accessible source of randomness.
In practice, a RO is used in security proofs to replace pseudorandom objects,
such as hash functions, which would be otherwise too difficult to analyze.
The idea is that such objects approximate very well the mathematical model
described by the random oracle, so that a security proof given in the ROM
is ‘almost as good’ as a security proof given for the real-world implementa-
tion. However, it is important to keep in mind that there are cases of ROM
uninstantiability [CGH98, BFM15]. That is, there exist (artificial) examples
of cryptographic schemes which are provably secure in the ROM, but which
become insecure whenever the random oracle is replaced by any hash function.

Formally, a random oracle from a bit string set X to a bit string set
Y is a function O : X → Y drawn uniformly at random from the set YX .
The description of O is not explicitly given; instead, O can only be queried
in a black-box way. At the beginning of the security analysis, the oracle is
initialized by drawing a function uniformly at random from the set YX . The
function so chosen remains unknown to all the parties involved in the protocol,
but all those parties gain oracle access to it.

It is important to notice that, with high probability, a randomly chosen
function from X to Y does not have a compact representation, so that the
mere act of selecting a random function in YX is not algorithmically defined.
Because the security proofs we are interested in must be constructive and
efficient, different approaches should be taken when constructing a random
oracle. One possibility is lazy sampling: because the value distribution of a
completely random function on a certain point x is independent from the value
the function takes on any other point, then the following procedure defines
a random function, by adaptively filling a lookup table of values as soon as
they are queried for the first time. In terms of pseudocode, a lazy sampling
procedure would look as follows:
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1: set LookupTable = ∅
2: for all query received on element x do
3: if (x, y′) ∈ LookupTable for some element y′ then
4: Return: y′
5: else
6: sample y $←− Y
7: set LookupTable := LookupTable ∪ {(x, y)}
8: Return: y

Another possible method is to instantiate the RO with an efficiently com-
putable pseudorandom function family, which will be described in Section 3.1.

Finally, it is important to mention that a RO can be reprogrammed, that is,
the underlying function can be changed ‘on the fly’ during the security proof.
The intuition for this is that, since the RO replaces a hash function, the proof
should still hold if we use a certain hash function instead of another one, as
long as it does not have exploitable ‘structures’ which are not supposed to be
found (with high probability) on a completely random function.

2.4 Quantum Computation

In this section we recall the basic concepts of quantum information theory and
quantum computation. We only give here a brief overview, and refer to [NC00]
for a more detailed exposition.

Quantum Mechanics

In quantum mechanics, an isolated physical system (which we denote usually
by an uppercase letter, e.g., A) is represented by a complex Hilbert space,
denoted by HA (or just H when the physical system is implied), of dimension
suitable to represent all the independent possible physical states of A. Using
the bra-ket notation, a completely defined state ϕ of the system (also called
a pure state) is represented by (a class of) unitary vectors denoted by |ϕ〉. A
set of orthonormal generators for H is a basis for H; a computational basis for
H is a conventionally defined basis where elements are labeled as bit strings
(or integers) {|x〉 : x = 1, . . . , d}, where d := dimH. Every pure state |ϕ〉 can
thus be written as:

|ϕ〉 =
∑
x

ax |x〉 ,

with
∑
x |ax|2 = 1. The complex coefficients ax are the amplitudes of |x〉, and

we say that |ϕ〉 is a quantum superposition of states |x〉. Sometimes, if X is
a set, we use the notation HX to denote a complex Hilbert space for some
physical system such that the computational basis for that space is labeled
with elements of X . That is, HX is the space generated by {|x〉 : x ∈ X}. For
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two pure quantum states |ϕ〉 =
∑
x ax |x〉 and |ψ〉 =

∑
x bx |x〉 in superposition

in the basis states |x〉, the Euclidean distance is given by
(∑

x |ax − bx|
2 ) 1

2 .
We denote by 〈ψ| the dual of a state |ψ〉, i.e., 〈ψ| := |ψ〉†. By Riesz’s

Representation Theorem, for every linear functional a : H→ C there exists a
unique |α〉 such that a(|ϕ〉) = 〈α|ϕ〉 , ∀ ϕ ∈ H. Notice that, since pure states
are represented by classes of unitary vectors, then | 〈ψ|ϕ〉 |2 ∈ [0, 1], with
| 〈ψ|ϕ〉 |2 = 1 iff |ϕ〉 = |ψ〉, and | 〈ψ|ϕ〉 |2 = 0 iff |ψ〉 and |ϕ〉 are orthogonal. In
particular, 〈xi|xj〉 = 0∀ i 6= j.

According to the laws of quantum mechanics, two different types of phys-
ically valid transformations can be applied to pure states:

• reversible transformations, or evolutions, which are modeled by unitary
operators of the form U : H→ H; and

• measurements, which allow an observer to extract information from the
physical system.

In this work, for pure states we only consider measurement in the computa-
tional basis, which works in the following way: let |ϕ〉 =

∑
x ax |x〉. Then,

measuring such state yields a single real-valued outcome x with probability
|ax|2, and after such measurement the state collapses to the basis state |x〉.

The composition (joint system) of two physical systems A and B is repre-
sented by the tensor product of the respective Hilbert spaces, HAB := HA⊗HB.
So, for example, if {|x〉}x∈X is a basis for HA and {|y〉}y∈Y is a basis for HB
(for two sets X and Y), then {|x〉 ⊗ |y〉}(x,y)∈X×Y is a basis for HAB = HX×Y .
We write equivalently |x〉 ⊗ |y〉 = |x〉 |y〉 = |x, y〉.

Two fundamental theorems in quantum information theory, which we only
mention here informally, are the following.

Theorem 2.9 (No-Cloning Theorem). There does not exist any valid physical
process which, given as input an arbitrary state |ϕ〉, produces the state |ϕ〉⊗|ϕ〉.

Theorem 2.10 (No-Signaling Theorem). There does not exist any valid phys-
ical process which allows two parties to transmit information faster-than-light,
even though these parties are allowed to perform instantaneous physical action
on remote and possibly entangled quantum systems.

Entanglement

Notice that not all states of HAB are of the form |ϕ〉 ⊗ |ψ〉 for some |ϕ〉 ∈ HA
and |ψ〉 ∈ HB - actually, very few of them are. For example, for 2-dimensional
Hilbert spaces HA and HB, the following state:

|ρ〉AB =
√

1
2 |00〉+

√
1
2 |11〉 (2.1)
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cannot be expressed as a tensor product of two pure states, even if it is a
pure states itself. In fact, if we consider the state associated to the system
A alone (which we denote by |ρ〉A) we find that it is impossible to write this
state as a superposition of |x〉 elements, and the same applies to |ρ〉B. When
this happens we say that |ρ〉A and |ρ〉B are entangled states, otherwise we say
that |ρ〉AB is separable. It turns out that, in a composite system, the vast
majority of possible quantum states are entangled, and only a small subclass
of them are separable. Entangled states cannot be pure states, so a different
formalism is required to express them.

The density matrix formalism is used to represent all those states (includ-
ing entangled states) which cannot be represented as pure states. We call
such states mixed states, and we drop the bra-ket notation to represent them,
in order to highlight the fact that they are not vectors, but matrices. Mixed
states can be represented as probability distributions over sets of pure states.
If a mixed state ρ is defined as a distribution over elements |ϕi〉, each of them
occurring with probability pi, then we define:

ρ :=
∑
i

pi |ϕi〉〈ϕi| .

We call the resulting matrix representation of ρ the density matrix (or density
operator) representation of ρ. Formally, density matrices are operators ρ :
H→ H such that:

1. (trace condition) tr(ρ) = 1

2. (positivity condition) 〈ϕ|ρ|ϕ〉 ≥ 0 ∀ ϕ ∈ H.

As a consequence, every density operators has diagonal elements in [0, 1]. We
denote the set of all admissible quantum states on a system A (that is, the set
of all positive, unitary-trace linear operators on HA) as D (HA).

All the formalism defined for pure states can be reformulated in terms of
mixed states, because mixed states describe a statistics on pure states. If |ϕ〉
is a pure state, its density matrix is defined just as |ϕ〉〈ϕ|. If ρ ∈ D (HA)
and σ ∈ D (HB), then ρ ⊗ σ ∈ D (HAB) is the state of the joint system. A
unitary evolution U applied to a mixed state ρ produces another mixed state
UρU †. Measuring a state ρ in the computational basis yields outcome xi with
probability pi, where pi is the i-th diagonal element of ρ; in this case, the
system is left in the state |x〉〈x|.

If we have two (or more) physical systems A,B, and they are jointly in the
state ρAB, then the state describing the system A (resp., B) alone is denoted
by ρA (resp, ρB), which has density operator:

ρA := trB(ρAB),

where trB is the partial trace over B, defined by:

trB(|x1〉〈x2|A ⊗ |y1〉〈y2|B) := |x1〉〈x2|A · tr(|y1〉〈y2|B).
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The act of taking a state in a joint system and considering only the state
in one of its subsystems, ‘forgetting’ about the rest of the system is called
tracing out (or, reducing) to a certain subsystem. W.l.o.g this can be seen as:
first measuring the state in the computational basis only on the subsystem
to be ‘forgotten’ (thereby collapsing part of the state and hence obtaining a
separable state between the two systems), and then discarding the collapsed
state and only consider the state of the subsystem left.

Any physically allowable process in nature, according to quantum mechan-
ics, has to obey the constraints that density operators must be mapped to
other density operators. That is, the mathematical transformation describing
a physical process must preserve the unitarity of the trace, and the positiv-
ity of the operators. We call such ‘admissible transformations’ CPTP maps
(completely positive, trace-preserving maps), or quantum channels.

Quantum Circuits

The most widely used model for quantum computation is that of quantum
circuits. A quantum circuit is the analogue of a Boolean circuit, with a few
differences. For the purpose of this work, we consider the following:

• instead of acting on register of bits, a quantum circuits operates on
quantum registers, which are physical systems composed of subsystems
(called qubits) described by 2-dimensional complex Hilbert spaces.

• Instead of being composed of Boolean gates, quantum circuits are com-
posed of elementary quantum gates, which are either measurement op-
erators, or transformations on (some subsets of) qubits, described by
unitary operators.

A quantum circuit takes as input a quantum register in a certain state and
produces a quantum output, but we can always consider additional classical
inputs and outputs (which can be ‘embedded’ into quantum registers as ba-
sis states). The outcome of the quantum computation, however, is usually
recovered through a measurement. It turns out that, w.l.o.g., measurements
during a quantum computation can always be postponed to the very end of
the quantum circuit, without changing the distribution of outcomes.

The number of input and output qubits of a quantum circuit can be dif-
ferent from each other. In fact, even if unitary operators act on the same
subspace, a quantum circuit can have additional constant, ‘hidden input reg-
isters’ (called ancilla qubits, usually initialized to |0〉), and can ‘delete’ or
‘forget’ some register (by tracing them out). However, any CPTP map can be
modeled as a quantum circuit.

For the purpose of this work, we only consider measurement operators in
the computational basis. If we have a single qubit in a state |ϕ〉 and we apply
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Figure 2.1: Quantum measurement gate.

Figure 2.2: Single-qubit unitary gate.

a measurement on that qubit in order to obtain a single bit as outcome, we
denote this as in Figure 2.1 (the double line denotes a classical output).

If U is a single-qubit unitary acting on the i-th qubit of an n-qubit system,
it is denoted by Ui as shown in Figure 2.2.

The most basic single-qubit gate is the identity I:

I :=
(

1 0
0 1

)
.

A very important single-qubit gate is the Hadamard gate, denoted by H, and
defined by the unitary matrix:

H := 1√
2

(
1 1
1 −1

)
.

Other useful single-qubit operators are the Pauli matrices X,Y, Z defined by:

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)

Notice how the Pauli matrices are also Hermitian. Moreover they satisfy:
XZ = iY . We define the Pauli group on 1 qubitP1 as the matrix multiplicative
subgroup generated by {iI, X, Y, Z}. This extends to the Pauli group on n
qubits Pn as the subgroup generated by {iIi, Xi, Yi, Zi : i = 1, . . . , n}.

Finally, two very important 2-qubit gates are the controlled-NOT (CNOT)
and the SWAP gates:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


A quantum algorithm is a uniform family of quantum circuits, i.e., there ex-

ists a (classical) Turing machine which, given the security parameter expressed
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Figure 2.3: CNOT gate.

Figure 2.4: SWAP gate.

in unary 1n as input, runs in time at most polynomial in n, and outputs a
(classical) description of the n-th member of the quantum circuit family. QPT
stands for ‘quantum polynomial time’, so a QPT algorithm is a uniform family
of quantum circuits of size polynomial in the security parameter.

As quantum algorithms are probabilistic by nature, there is no quantum
analogue of the classical complexity security class P. However, there is an
analogue for BPP: the complexity BQP is the set of all languages L for which
there exists a QPT algorithmM and a positive constant c such that:

1. ∀ x ∈ L =⇒ Pr[M(x)→ 1] ≥ 1
2 + c; and

2. ∀ x /∈ L =⇒ Pr[M(x)→ 0] ≥ 1
2 + c.

Informally, BQP is the set of all problems which are ‘easy to solve with high
probability’ on a quantum computer.

‘Famous’ quantum algorithms include Shor’s algorithm [Sho94] for factor-
ing integers and solving DLP in polynomial time, Simon’s algorithm [Sim97]
for recognizing in polynomial time black-box functions of a certain form, and
Grover’s algorithm [Gro96] for polynomially speeding up search on unsorted
databases, inversion of functions, and general brute-force attacks.

Quantum Oracles

As in the classical case, the computational capabilities of a quantum algorithm
A can be expanded by giving to the algorithm access to an oracle O, which we
denote by AO. The oracle can be classical (with the same meaning as in the
classical case), or it can be quantum. In the latter case, we have to distinguish
between:

• (standard) quantum oracle access. In this case the oracle is a unitary
operation U which A can query on a quantum state ρ at unit time cost
in order to receive the response state UρU †. Whenever not specified, by
‘oracle access’ we always mean the standard one.
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• Quantum gate access. In this case the oracle is also a unitary oper-
ator, like in the standard oracle access, the only difference is that A
automatically gains access to the inverse operator U † as well.

• Quantum circuit access. In this case the oracle is not necessarily uni-
tary, but an arbitrary CPTP map. This means that the oracle could,
e.g., perform measurements, or tracing out qubits, or act on additional
quantum registers outside of A’s control.

We use the following technical tool in the proof of Theorem 4.39. Let A
be a quantum algorithm performing quantum queries to an oracle O, and let
qx(|ϕj〉) be the magnitude squared of basis element x in the j-th query, which
we call the query probability of x in query j. If we sum over all queries, we
get an upper bound on the total query probability of x.

Lemma 2.11 ([BBBV97, Theorem 3.3]). Let A be a quantum algorithm run-
ning in time t with quantum oracle access to O : X → Y. Let ε > 0 and let
S ⊆ {1, . . . , t}×X be a set of time-string pairs such that

∑
(j,x)∈S qx(|ϕj〉) ≤ ε.

If we modify O into an oracle O′ which answers each query x at time j by
providing the same string x̄ (which has been sampled independently from O)
whenever (j, x) ∈ S, then the Euclidean distance between the final states of A
when invoking O and O′ is at most

√
tε.

Distinguishing Quantum States

A crucial problem in quantum information theory is distinguishing quantum
states. Because quantum states form a continuum, and because the only way
we have to extract information from them is by performing measurements,
distinguishing different quantum states with certainty is not always possible.
In fact, for any practical purpose two quantum states are ‘the same state’
if there is no physically admissible process extracting measurement outcomes
with different distributions from those states. In other words, it is only possible
to distinguish different quantum states if we can perform operations on them
leading to measurement outcome distributions which are themselves distin-
guishable. Because in this work we only deal with computationally bounded
processes, it is clear that the minimal requirement for two states to be distin-
guishable is that they are (or can be efficiently transformed to) states which
yield computationally distinguishable outcome distributions when measured.

The following lemma from [BV97] upperbounds the statistical distance
between the distributions of measurements on two quantum states in terms of
their Euclidean distance.

Lemma 2.12 ([BV97, Lemma 3.6]). Let |ϕ〉 , |ψ〉 be pure quantum states with
Euclidean distance at most ε. Then, performing the same measurement on
|ϕ〉 , |ψ〉 yields distributions with statistical distance at most 4ε.
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For mixed states on isolated systems, the trace distance is a useful math-
ematical tool which gives directly an upper bound on the probability of dis-
tinguishing two states for any physical process.

Definition 2.13 (Trace Distance). Let ρ, σ ∈ D (H). The trace distance
between ρ and σ is defined by:

‖ρ− σ‖tr := 1
2
∑
i

|λi|,

where λi are the eigenvalues of ρ− σ.

We call the totally, or maximally mixed (or entangled) state over a physical
system A the mixed state τA := I

dimHA
; it has the property that a measurement

over any possible orthonormal basis on this state always yields the uniform
distribution of possible outcomes. This state represents somehow ‘a state of
maximal uncertainty’, and a common technique to show that no information
can be extracted from a quantum state is to show that such state has ‘low’
trace distance from the maximally mixed state.

However, when trying to distinguish between two CPTP maps, or two
possible states on a non-isolated system, the trace distance is not enough.
The reason is that, because of entanglement, two states which are different on
a joint system AB might yield the same reduced state on a subsystem A. In
that case, the trace distance on A would be 0, but a distinguisher with access
to B might still be able to tell them apart. In these cases, the diamond norm
is used, which induces a distance between CPTP maps.

Definition 2.14 (Diamond Norm). If Φ is a CPTP map (quantum channel)
from operator spaces D (HA) to D (HB), then its diamond norm is defined by:

‖Φ‖� := sup
ρ∈D(HAK)

‖(Φ⊗ IK) (ρ)‖tr ,

where HK is any Hilbert space such that dimHK ≥ dimHA.

It can be shown that an upper bound to the probability of distinguishing
two quantum channels Φ and Ψ is given by ‖Φ−Ψ‖�.



Chapter 3
QS0: Classical Security

The first class of cryptographic security notions that we are going to analyze
encompasses the weakest notions in the quantum world. Namely: no quantum
at all. In our new labeling system, the security class QS0 refers to all the
security notions and concepts which make no mention of quantum information
theory. That is, QS0 is just classical cryptography, in a sense ‘pre-(post-
quantum)’. Studying this security class is essential in order to understand
how the results change when we introduce quantum adversaries.

In this chapter we introduce security models for different classical cryp-
tographic primitives, starting from the very basic ones (such as secret-key
encryption schemes) to more elaborated ones. We also introduce other build-
ing blocks and transformations from one primitive to another.

A key feature of this part of our work is to perform all this analysis using a
formalism which sometimes deviates from the one conventionally used in the
existing literature, but which has the advantage of being easier to translate to
the quantum world.

My Scientific Contribution in this Chapter

Most of the material in this chapter can be found in the existing literature
(see for example [KL07, Gol01, Gol04], and is part of the preliminary techni-
cal results needed to understand the challenges arising when modeling security
scenarios in a quantum world. However, to the best my knowledge, the proof
of Theorem 3.32 has never been made explicit before. In fact, separation ex-
amples between CPA and CCA scenarios in the scientific literature usually
refer either to the public-key scenario (where one can exploit group homo-
morphic properties) or to the separation between CPA and CCA2. Moreover,
all the material from Section 3.6 first appeared in [GKK17], which is a joint
work with Nikolaos P. Karvelas and Stefan Katzenbeisser. In that work, I fo-
cused on the quantum and post-quantum results (corresponding to Section 6.3
and 4.7 of this thesis, respectively).

33
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3.1 Building Blocks

We start our analysis of classical cryptographic primitives by recalling some
basic building blocks which we will use throughout the rest of this work. In
what follows, X and Y are (sub)sets of binary strings. W.l.o.g., we assume
that X = (Xn)n := ({0, 1}n)n. The key space K instead, is identified with
(Kn)n ⊆ {0, 1}

s(n) for security parameter n ∈ N, where s is a polynomial
function determined by the scheme considered. W.l.o.g. we assume that, for
security parameter n, keys are of bit size n.

Pseudorandom Number Generators

A pseudorandom number generator (PRNG) is a DPT stateful algorithm which
outputs bit strings with a distribution computationally indistinguishable from
the uniform distribution over some set. There is no secret key involved, but a
secret internal state of the algorithm determines the value to be output next.
As the algorithm is deterministic, the same internal state produces the same
output value, so the state must be updated after every execution, according to
a procedure specified by the algorithm itself. The initial value of the PRNG’s
state is called the seed.

Formally, we give a slightly different definition.

Definition 3.1 (Pseudorandom Number Generator (PRNG)). Let p be a
polynomial such that p(n) ≥ n+1, ∀n ∈ N. A pseudorandom number generator
(PRNG) with expansion factor p is a DPT algorithm G such that:

1. given as input a bit string s ∈ {0, 1}n, (the seed), outputs a bit string
G(s) ∈ {0, 1}p(n); and

2. for any PPT algorithm D:

|Pr [D(r)→ 1]− Pr [D(G(s))→ 1]| ≤ negl,

where r $←− {0, 1}p(n) , s $←− {0, 1}n, and the probabilities are taken over
the choice of r and s, and the randomness of D.

However, it is possible to show that with the above definition one can
actually also define a procedure to output a stream of polynomially many
values of bit size polynomial in n. The idea is to define a bit stream, where
some of the p(n) output bits are used to form the stream, and the others are
used to generate a new, updated seed for the G. Therefore, one usually speaks
of PRNG with n-bit output. Analogously, it is easy to see that bits truncated
by G’s output are also pseudorandom.

Moreover, it is possible to prove that the condition of indistinguishability
from random is equivalent to the condition of non-predictability, that is, no
PPT algorithm can reliably guess the next bit output by G, even by observing
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polynomially many bits output in the past. Clearly, if one could predict
such bits then the pseudorandomness property would be violated. The other
direction of the equivalence is known as Yao’s Test [Yao82].

PRNGs have many useful applications. Given the existence of a PRNG, it
is always possible (see, e.g., [Gol01]) to build a OWF (by encoding the input
to the OWF as a seed for the PRNG), but it is also possible to show the
converse. Namely, given a OWF F , one can define a PRNG which outputs a
hard-core bit of F , computed on the seed. This construction can be iterated
producing a PRNG which we denote by GF , and which outputs polynomially
many hard-core bits of F ,F2,F3, . . ..

Construction 3.2 (Goldreich-Levin PRNG [GL89]). Let F : X → Y be a
OWF with hard-core predicate hcF . Define a stateful DPT algorithm GF :
X → X which, given as input an n-bit seed x ∈ X , outputs the n-bit string:

hcF (x)‖hcF2(x)‖ . . . ‖hcFn(x).

We call GF the Goldreich-Levin construction for OWF F .

Theorem 3.3 ([GL89]). Construction 3.2 is a PRNG.

It must be noticed that the proof for the above theorem does not make
any assumption on the adversary in terms of queries to the OWF. This fact
will be important in the next chapter. It follows from Proposition 2.4 that a
PRNG can be constructed by any OWF.

Corollary 3.4 (OWF ⇔ PRNG). OWFs exist iff PRNGs exist.

Pseudorandom Functions

A (family of) pseudorandom functions (PRF) from X to Y with key space
K is a family of efficiently computable functions F : K × X → Y which,
without knowledge of the secret key k ∈ K indexing the particular member
of the family, is computationally indistinguishable from the collection of all
functions from X to Y (denoted by YX ). We identify F as a DPT algorithm
computing F for a specific security parameter n. As a shorthand notation, we
write Fk : X → Y meaning the member of the family indexed by k ∈ K.

Definition 3.5 (Pseudorandom Function (PRF)). A (family of) pseudoran-
dom functions (PRF) from X to Y with key space K is a DPT algorithm
F : (k ∈ Kn, x ∈ Xn) 7→ y ∈ Yn such that for any PPT algorithm D it holds:∣∣∣∣∣ Pr

k
$←− K

[
DFk → 1

]
− Pr

h
$←− YX

[
DOh → 1

]∣∣∣∣∣ ≤ negl,

where Oh is an oracle computing h (i.e., a random oracle), and the probabilities
are over the choice of k and h, and the randomness of D.
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In security reductions, PRFs are usually modeled as random oracles. How-
ever, unlike PRNGs, their security depends on the secrecy of the key used,
because any party with knowledge of such key can trivially distinguish the
PRF from a completely random function.

PRFs, being indistinguishable from random functions, can be used as
PRNGs (for a vast majority of the possible keys).

Theorem 3.6 (PRF =⇒ PRNG). If a PRFs exist, then PRNGs exist.

Still, one can show that PRFs can be built by using PRNGs, and therefore
their existence is equivalent to the existence of OWFs.

Theorem 3.7 ([GGM84]). If a PRNGs exist, then PRFs exist.

However, unlike in the case of Theorem 3.3, the proof does make assump-
tions on the query capabilities of the adversary.

Corollary 3.8. OWF exist iff PRF exist.

Pseudorandom Permutations

Pseudorandom permutations (PRP) are just PRFs which also happen to be
(invertible) permutations on some space X , for any choice of key. That is, a
PRP P is a family of permutations (and their inverses) which is computation-
ally indistinguishable from the family S(X ) of all the permutations on X . As
in the PRF case, we identify a PRP P with the DPT algorithm evaluating it,
and as a shorthand notation, we write Pk : X → X meaning the member of
the (circuit or function) family indexed by k ∈ K.

We start by defining a weak PRP, that is, indistinguishable from random
to any adversary who does not have oracle access to the inverse permutation.

Definition 3.9 (Weak Pseudorandom Permutation (WPRP)). A (family of)
weak pseudorandom permutations (WPRP) on X with key space K is a pair
of DPT algorithm (P,P−1) : (k ∈ K, x ∈ X ) 7→ x′ ∈ X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any PPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
DPk → 1

]
− Pr

p
$←− S(X )

[
DOp → 1

]∣∣∣∣∣∣ ≤ negl,

where Op is an oracle for p, and the probabilities are over the choice of
k and p, and the randomness of D.
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In many applications though, we also need the possibility of inverting the
permutations, hence we we also require the existence of another DPT algorithm
P−1 computing the inverse permutation. A PRP is called strong if it maintains
pseudorandomness also in this setting.

Definition 3.10 (Strong Pseudorandom Permutation (SPRP)). A (family
of) strong pseudorandom permutations (SPRP) on X with key space K is a
pair of DPT algorithms (P,P−1) : (k ∈ K, x ∈ X ) 7→ x′ ∈ X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any PPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
DPk,P

−1
k → 1

]
− Pr

p
$←− S(X )

[
DOp,Op−1 → 1

]∣∣∣∣∣∣ ≤ negl,

where Op is an oracle for p, Op−1 is an oracle for p−1, and the proba-
bilities are over the choice of k and p, and the randomness of D.

When left unspecified, by ‘PRP’ we mean the strong version. A PRP
is clearly also a PRF, but not necessarily the other way around. However,
there exist constructions of PRPs from PRFs, such as the Feistel construction.
Therefore, the existence of PRPs is also equivalent to the existence of OWFs.

Theorem 3.11 (PRF ⇔ PRP). PRFs exist iff PRPs exist.

3.2 Secret-Key Encryption Schemes

A very fundamental object in cryptography is secret-key (or, symmetric-key)
encryption schemes (SKES). In what follows, X and Y represent the plaintext
and ciphertext message spaces respectively, while K is the key space.

Definition 3.12 (Secret-Key Encryption Scheme (SKES)). A secret-key en-
cryption scheme (SKES) with plaintext space X , ciphertext space Y, and key
space K is a tuple of PPT algorithms E := EK,X ,Y := (KGen,Enc,Dec):

1. KGen :→ K;

2. Enc : K ×X → Y;

3. Dec : K × Y → X ∪ {⊥};

such that ∀ n ∈ N, x ∈ X , k ← KGen =⇒ Dec(k,Enc(k, x)) = x.

Notice the following:
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• KGen only gets as input a security parameter, but Enc,Dec also need
as input the correct security parameter related to the second input (the
secret key) they receive. In order to lighten notation and w.l.o.g. we
just assume that n is also appended to every k ← KGen, so that every
key also implicitly contains the security parameter.

• Strictly speaking, it is not necessary to define ⊥ as a possible output for
Dec. However, this is useful when defining schemes which can also reject
certain ciphertexts (such as CCA2 secure encryption schemes).

• As a shorthand notation, we will write Enck meaning the Enc algorithm
with k ∈ K fixed as a first input; analogously for Deck.

• KGen is always assumed to be a nondeterministic algorithm, otherwise
the encryption scheme would be trivial.

• Enc can be a probabilistic algorithm, so it is certainly possible that
two different executions of Enck(x) for fixed k and x yield two different
ciphertexts. However, those ciphertexts would still decrypt to the same
x through Deck.

• As an immediate consequence of the previous point, it is clear that, for
a given k ∈ K, the image sets of different plaintexts are disjoint. That
is: x 6= x′ =⇒ Supp (Enck(x)) ∩ Supp (Enck(x′)) = ∅.

• The behavior of Deck is unspecified (and dependent on the SKES consid-
ered) if given as input an element of Y which is not a valid encryption,
i.e., of the form Enck(x) for some x ∈ X .

• If Enck is nondeterministic for all k ∈ K, then we say that E is random-
ized, otherwise we say that E is deterministic.

Finally, notice that Definition 3.12 does not say anything about the security
of a SKES. We will study this aspect in the next section. In particular,
for a SKES to be considered ‘secure’, the size of Supp (KGen(n)) must be
superpolynomial in n. One of the most basic examples of SKES is the well
known one-time pad (OTP).

Construction 3.13 (One-Time Pad (OTP)). Let X = K = Y = {0, 1}n.
Define the one-time pad (OTP) on n bits E = EK,X ,Y := (KGen,Enc,Dec) as
the SKES with key space K, plaintext space X , and ciphertext space Y, defined
as follows:

1. KGen→ k, with k $←− K;

2. Enck(x) := x⊕ k;

3. Deck(y) := y ⊕ k.
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It is well known [Sha01] that the OTP is information-theoretically secure,
as long as the key is completely random and only used once.

Semantic Security

In order to analyze the security of a SKES, we first have to define what it
means for a SKES to be ‘secure’. That is, we have to define a ‘meaning’, i.e.,
a semantics of the term ‘security’. Intuitively, we want to formalize the fact
that no reasonable adversary should be able, given a ciphertext, to find out
any ‘interesting’ information about the underlying plaintext. There are three
aspects to consider here.

First of all, we should define what a ‘reasonable’ adversary is. In our case
we will consider computationally bounded adversaries, that is, adversaries
as PPT algorithms, because we consider computational security. However,
adversaries could be given additional power in the form of oracles. We will
see a few examples in the next sections, while in this part we will start with
the basic scenario (without oracles).

Secondly, we should define what constitutes ‘interesting information’ about
the underlying plaintext. We do not consider ‘interesting’ all that information
which is already publicly available, leaked, or manifest. For example, the
length (bit size) of the plaintext is usually identifiable by only looking at the
length of the ciphertext. Moreover, if some information about the plaintext
is known a priori, e.g.: ‘the message starts with a vowel’, we do not consider
an adversary succesful if he is only able to tell that the message starts with
a vowel, because that fact is already known. We want security to protect the
encryption scheme only against those adversaries who can extract ‘interesting’
information from the ciphertexts.

Finally, we should define the ‘winning conditions’ for our adversaries, so
that we can define our schemes ‘secure’ if they prevent the adversaries from
reaching those conditions. In theory, we could define a scheme to be ‘secure’ if
every adversary fails consistently in his goals, regardless of the choice of keys
and plaintexts he intends to attack. However, this is not reasonable to expect,
for three reasons:

• the choice of some particular key might influence the adversary’s winning
probability. For example, what if the message is encrypted with a key
that the adversary happens to know as well?

• The choice of the plaintexts is important as well. On one hand, we need
the scheme to be secure even in the worst case scenario (that is, the best
case scenario from the adversary’s perspective.) On the other hand we
cannot leave arbitrary freedom to the adversary in choosing the underly-
ing plaintext - otherwise he could just break the encryption of a message
he already knows, but that would not be ‘interesting’ information.
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• The adversary might just get lucky. For example, when trying to decrypt
a single bit of the message, he might just guess randomly, and still be
succesful 50% of the times.

In literature, semantic security is the well-established golden standard
in defining the security of an encryption scheme. Semantic security is a
simulation-based security notion, where the success probability of an adver-
sary trying to guess meaningful information about a ciphertext is compared
to that of a simulator, which has the same goal as the adversary but is not
allowed to see the ciphertext at all. The probability is taken over the internal
randomness of the algorithms (and, hence, over all the keys), and ‘interesting’
and ‘non-interesting’ information is defined in terms of a target function f

and an auxiliary information function h, respectively (these are functions of
the possible plaintexts.) The goal of the adversary/simulator is to guess f(x)
when having access to h(x), for a certain plaintext x drawn from a chosen dis-
tribution. The scheme is considered secure if the adversary and the simulator
have roughly the same probability of guessing f(x).

There are many, different but equivalent ways to define semantic security
for SKES. In this work, we follow the approach from [Gol04].

Definition 3.14 (SEM Adversary, SEM Simulator). Let E := EK,X ,Y be a
SKES, and f, h : {0, 1}∗ → {0, 1}∗ two functions efficiently computable and
polynomially bounded in the input bit size. A SEM adversary A for E is a
PPT algorithm A : Y × Supp (h) → Supp (f). A SEM simulator S for E is a
PPT algorithm S : Supp (h)→ Supp (f).

Notice that, w.l.o.g., we can assume that h(x) always includes the bit size
of the plaintext x. We assume that h and f are efficiently computable, but
actually, as shown in [Gol04], this is redundant.

Experiment 3.15 (GameSEM
E,A ). Let E be a SKES, and A a SEM adversary.

The SEM experiment proceeds as follows:
1: Input: n ∈ N, f, h : {0, 1}∗ → {0, 1}∗ efficiently computable and poly-

nomially bounded in the input bit size, M := (Mn)n, where Mn are
probability distributions over Xn with |Mn| = poly(n)

2: k ← KGen
3: m←Mn

4: c← Enck(m) . this is called ‘SEM challenge query’
5: f ← A(c, h(m))
6: if f = f(m) then
7: Output: 1
8: else
9: Output: 0
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Experiment 3.16 (GameSEM∗
E,S ). Let E be a SKES, and S a SEM simulator.

The simulated SEM experiment proceeds as follows:
1: Input: n ∈ N, f, h : {0, 1}∗ → {0, 1}∗ efficiently computable and poly-

nomially bounded in the input bit size, M := (Mn)n, where Mn are
probability distributions over X n1 with |Mn| = poly(n)

2: k ← KGen
3: m←Mn

4: f ← S(h(m))
5: if f = f(m) then
6: Output: 1
7: else
8: Output: 0

Definition 3.17 (Semantic Security (SEM)). A SKES E is semantically se-
cure (SEM) iff, for any SEM adversary A there exists a SEM simulator S
such that, for every efficiently computable f, h : {0, 1}∗ → {0, 1}∗ polynomi-
ally bounded in the input bit size, for every probability ensembleM := (Mn)n,
whereMn are probability distributions over Xn with |Mn| = poly(n), it holds:∣∣∣Pr

[
GameSEM

E,A (M, f, h)→ 1
]
− Pr

[
GameSEM∗

E,S (M, f, h)→ 1
]∣∣∣ ≤ negl,

where the probabilities are taken over the randomness of A, E ,M,S.

Intuitively, the notion of SEM tells us the following: any information about
the plaintext the adversary could guess from the ciphertext, could also be
guessed by only looking at publicly available information. That means, the
ciphertext does not leak any meaningful information about the plaintext. This
security notion captures in a very complete way what we want from an en-
cryption scheme, but it has the drawback of being quite involved formally,
and cumbersome to use in security proofs. Because of this, different notions
of security are often used, which are equivalent to SEM but easier to formalize.

Ciphertext Indistinguishability

Another notion of security for encryption schemes is indistinguishability of ci-
phertexts (IND). Unlike SEM, this notion is game-based instead of simulation-
based: there is no simulator at all, and security requires that no reasonable
adversary can win a certain security game with probability substantially better
than merely guessing. The IND security game consists in distinguishing the
encryption of two different plaintexts (chosen by the adversary). Although,
unlike in the case of SEM, it is unclear at a first glance that IND captures in
a complete way exactly what we require from a ‘secure’ encryption scheme,
we will see that the two notions are actually equivalent.

As in SEM, we model IND adversaries as PPT algorithms, as we are in-
terested in computational security. However, in the IND game it is usually
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convenient to separate the adversary in two stages, each one with a specific
function. The first stage, the message generator M, chooses two messages
from the plaintext space – the idea being that, in order to achieve the strongest
security notion, the adversary is allowed to choose the most favourable sce-
nario when playing this game. Then, one of these two messages is selected
at random and encrypted with a key unknown to the adversary. Finally,
the second stage of the adversary, the distinguisher D, receives the resulting
ciphertext, and his goal is to guess which one of the two plaintexts was en-
crypted. Formally, the adversary outputs a bit, and he wins the game if that
bit is equal to the secret bit used to select one of the two plaintexts.

More formally, we define an IND adversary as follows.

Definition 3.18 (IND Adversary). Let E be a SKES. An IND adversary A
for E is a pair of PPT algorithms A := (M,D), where:

1. M :→ X ×X × {0, 1}∗ is the IND message generator;

2. D : Y × {0, 1}∗ → {0, 1} is the IND distinguisher

The security experiment related to the IND notion is as follows.

Experiment 3.19 (GameIND
E,A). Let E be a SKES, and A := (M,D) an IND

adversary. The IND experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, state)←M
4: b $←− {0, 1}
5: c← Enck(mb) . this is called ‘IND challenge query’
6: b′ ← D(c, state)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

AdvIND
E,A := Pr

[
GameIND

E,A → 1
]
− 1

2 .

Notice the following:

• D andM are part of the same ‘entity’ (the IND adversary A), so that
they should be allowed to exchange information. In particular, D should
know which are the two original messages generated by M. In the
security game, this is modeled by exchanging a state string state from
M to D (obviously this string has bit size at most polynomial in the
security parameter sinceM is PPT.)
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• There is no need to impose the condition that the two plaintexts gen-
erated by M must be distinct, as the security notion requires that all
adversaries (including those who choose distinct messages) fail at win-
ning the game.

• Since there are only two messages to choose from, the adversary can
always win with 50% probability by guessing randomly. Therefore, the
advantage of the adversary is measured in terms of doing better than
merely guessing.

• The probability is over b and the internal randomness of A and KGen.

Definition 3.20 (Indistinguishability of Ciphertexts (IND)). A SKES E has
indistinguishable encryptions (or, it is IND secure) iff, for any IND adversary
A it holds that: AdvIND

E,A ≤ negl.

The advantage of the IND notion is that, being game-based, it is easier to
use in cryptographic reductions. At the same time, one can show that it is
equivalent to IND.

Theorem 3.21 ([Gol04]). A SKES is IND secure iff it is SEM secure.

Moreover, it has to be mentioned that the choice of defining the IND game
in terms of two different messages is not compulsory: there are alternative
definitions of the game where M only generates a message, and the other is
either chosen randomly or set to 0, or whereM generates polynomially many
messages, and one of them is selected for the encryption. All these notions
turn out to be equivalent, with small modifications.

An example of (unconditionally) IND secure SKES is the OTP.
The notions of IND can be augmented, i.e., made stronger, by granting

extra power to the IND adversary in the form of oracles. Since the adversary
acquires additional computational power in so doing, it might be the case that
IND secure schemes now become insecure because of this extra power. There-
fore, the resulting security notions are (potentially) stronger, and encryption
schemes which are resistant against the new, augmented adversaries are auto-
matically resistant to the weaker adversaries as well. The more power is given
to the adversaries, the potentially stronger the security notion.

Traditionally, oracles have been used to model attack scenarios not covered
by the IND notion alone. Of course, one could simply give the adversary
unlimited access to a decryption oracle and make him super powerful. But
that would make the security notion so strong to be unachievable – after all,
SKES are not meant to protect by adversaries in possession of the secret key.
Instead, other scenarios are considered.
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Chosen Plaintext Attacks

In the chosen plaintext attack (CPA) scenario, the adversary is able to see
encryptions of additional messages, in addition to the ones used in the IND
game. He is allowed to choose the plaintexts to be encrypted by querying the
encryption oracle Enck during the execution of the IND game. Moreover, he
can perform the oracle queries in an adaptive way, i.e., reacting adaptively
to the oracle’s answers, for a polynomial number of queries, both before and
after the IND challenge query. The resulting security game is as follows.

Experiment 3.22 (GameIND−CPA
E,A ). Let E be a SKES, and A := (M,D) an

IND adversary. The IND-CPA experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, state)←MEnck

4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← DEnck(c, state)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

AdvIND−CPA
E,A := Pr

[
GameIND−CPA

E,A → 1
]
− 1

2 .

Definition 3.23 (Indistinguishability of Ciphertexts under Chosen Plaintext
Attack (IND-CPA)). A SKES E has indistinguishable encryptions under cho-
sen plaintext attack (or, it is IND-CPA secure) iff, for any IND adversary A
it holds that: AdvIND−CPA

E,A ≤ negl.

As discussed above, IND-CPA is clearly at least as strong as IND.

Theorem 3.24 (IND-CPA =⇒ IND). If a SKES is IND-CPA secure, then
it is also IND secure.

But the converse is not true. In particular, all the encryption schemes that
are not randomized cannot be IND-CPA secure, because then the adversary
could always win the security game by first encrypting two messages of his
choice, then performing the IND challenge, and then compare the resulting
ciphertext with the encryption previously obtained. As an example, the OTP
is not IND-CPA secure, despite being IND secure.

Theorem 3.25 (IND 6=⇒ IND-CPA). There exist SKES which are IND
secure, but not IND-CPA secure.
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IND-CPA secure SKES can be constructed in a block-box way using PRFs.

Construction 3.26 ([Gol04, Construction 5.3.9]). Let F : X → Y be a PRF
with key space K. Define E = EK,Y,Y×X := (KGen,Enc,Dec) as a SKES with
key space K, plaintext space Y, and ciphertext space Y × X , as follows:

1. KGen→ k, with k $←− K;

2. Enck(x)→ (y, r), with y := x⊕Fk(r), where r $←− X ;

3. Decsk(y, r) := y ⊕Fk(r).

Theorem 3.27. Construction 3.26 is an IND-CPA SKES.

Proof (sketch). The one-time pad is perfectly (statistically) secure if used with
random, independent keys. This means that the only way to break the security
of E is to break the security of F . Since a fresh randomness r is chosen for
every encryption, and since the image Fk(r) can be recovered by the related
plaintext/ciphertext pairs, giving oracle access to Enck for the adversary is
equivalent to giving oracle access to Fk. However, by Definition 3.5, this is
indistinguishable from a random oracle for any PPT adversary, so that the
security of the one-time pad carries over, although only computationally.

Then, recalling Corollary 3.4 and Theorem 3.7, we can state the following.

Corollary 3.28 (IND-CPA SKES from OWF). If OWFs exist, then IND-
CPA SKES exist.

Non-Adaptive Chosen Ciphertext Attacks

In the non-adaptive chosen ciphertext attack (CCA1) scenario, in addition
to the IND-CPA capabilities, the adversary is able to also see decryptions of
certain ciphertexts. As in the CPA case, he is allowed to choose the ciphertexts
to be decrypted by querying the decryption oracle Deck during the execution
of the IND game. However, unlike in the CPA case, he is only able to interact
with this oracle before the IND challenge query, and not afterward. The
adversary is allowed to perform the decryption oracle queries in an adaptive
way, for a polynomial number of queries, but only before the IND challenge
query, hence the term ‘non-adaptive’1. Notice, in fact, that if the adversary
were able to perform arbitrary decryption queries after the challenge query as
well, this would allow him to decrypt the challenge ciphertext, and therefore
it would render the security notion unachievable.

The resulting security game for the CCA1 scenario is as follows.
1Admittedly, this well-established term in the scientific literature is somewhat mislead-

ing, because this ‘non-adaptivity’ refers to ‘in respect to the challenge ciphertext’, while the
queries to the decryption oracle can actually be performed adaptively.
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Experiment 3.29 (GameIND−CCA1
E,A ). Let E be a SKES, and A := (M,D) an

IND adversary. The IND-CCA1 experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, state)←MEnck,Deck

4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← DEnck(c, state)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

AdvIND−CCA1
E,A := Pr

[
GameIND−CCA1

E,A → 1
]
− 1

2 .

Definition 3.30 (Indistinguishability of Ciphertexts under Non-Adaptive
Chosen Ciphertext Attack (IND-CCA1)). A SKES E has indistinguishable
encryptions under non-adaptive chosen ciphertext attack (or, it is IND-CCA1
secure) iff, for any IND adversary A it holds that: AdvIND−CCA1

E,A ≤ negl.

IND-CCA1 is clearly at least as strong as IND-CPA.

Theorem 3.31 (IND-CCA1 =⇒ IND-CPA). If a SKES is IND-CCA1
secure, then it is also IND-CPA secure.

But the converse is not true. There are IND-CPA secure SKES where,
being able to decrypt different but related ciphertexts, can leak information
about the secret key used.

Theorem 3.32 (IND-CPA 6=⇒ IND-CCA1). There exists a SKES which is
IND-CPA secure, but not IND-CCA1 secure.

Proof (sketch). Consider a SKES E ′ = (KGen′,Enc′,Dec′) obtained by modi-
fying another, IND-CPA secure SKES E = (KGen,Enc,Dec) as follows:

1. KGen′ → (k,m),
where k ← KGen, andm is a special message, unknown to the adversary;

2. Enc′k(m)→
{

(Enck(m),Enck(m)) if m 6= m,

(Enck(m), k) otherwise;

3. Dec′k(y, z) = Deck(y).
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The new SKES E ′ is still IND-CPA secure, because the probability for any
adversary of guessing the plaintext m is negligible. However, in the CCA1
scenario it is trivial to break such modified scheme, by first performing a CPA
query to obtain a valid ciphertext, then performing a CCA1 decryption query
on the ciphertext obtained by swapping the two ciphertext halves, therefore
recoveringm, and then performing another CPA query onm, hence recovering
the secret key.

However, Construction 3.26 is also IND-CCA1.

Theorem 3.33. Let E be the SKES from Construction 3.26. Then E is an
IND-CCA1 SKES.

Proof (sketch). Being able to perform decryption queries (before the challenge
phase) gives to the adversary the possibility to forge new ciphertexts different
(but related in a known way) to some other ciphertext of his choice. However,
before the challenge phase, this does not provide any extra power, except the
possibility of performing (polynomially many) extra queries to the PRF.

Then, recalling Corollary 3.4 and Theorem 3.7, we can state the following.

Corollary 3.34 (IND-CCA1 SKES from OWF). If OWFs exist, then IND-
CCA1 SKES exist.

Adaptive Chosen Ciphertext Attacks

Finally, in the adaptive chosen ciphertext attack scenario, in addition to the
IND-CCA1 capabilities, the adversary is able to query the decryption oracle
also after the challenge query, with an important exception: he is not allowed
to query Deck on the challenge ciphertext received. This restriction is neces-
sary, as we have already discussed in the CCA1 case, otherwise the adversary
could simply decrypt the challenge ciphertext and trivially win the game, and
this would make the security notion unachievable. Formally, we have therefore
to define a ‘modified’ decryption oracle, which is able to reject certain ‘forbid-
den’ decryption queries (those trying to decrypt the challenge ciphertext), by
replying with a special symbol ⊥ to those queries.

Definition 3.35 (CCA2 Oracle). Let E := (KGen,Enc,Dec) be a SKES, and
c ∈ Supp (Enc). The CCA2 decryption oracle rejecting c is defined by:

Decck(c′) −→
{

Deck(c′) if c′ 6= c,

⊥ otherwise.

The new security game is defined as follows.

Experiment 3.36 (GameIND−CCA2
E,A ). Let E be a SKES, and A := (M,D) an

IND adversary. The IND-CCA2 experiment proceeds as follows:
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1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, state)←MEnck,Deck

4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← DEnck,Decck(c, state)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

AdvIND−CCA2
E,A := Pr

[
GameIND−CCA2

E,A → 1
]
− 1

2 .

Definition 3.37 (Indistinguishability of Ciphertexts under Adaptive Chosen
Ciphertext Attack (IND-CCA2)). A SKES E has indistinguishable encryp-
tions under adaptive chosen ciphertext attack (or, it is IND-CCA2 secure) iff,
for any IND adversary A it holds that: AdvIND−CCA2

E,A ≤ negl.

IND-CCA2 is clearly at least as strong as IND-CCA1.

Theorem 3.38 (IND-CCA2 =⇒ IND-CCA1). If a SKES is IND-CCA2
secure, then it is also IND-CCA1 secure.

But the converse is not true. There exist IND-CCA1 secure SKESs where
an adversary able to decrypt ciphertexts which are different, but related, to the
challenge ciphertext, can find out information about the underlying plaintext.

Theorem 3.39 (IND-CCA1 6=⇒ IND-CCA2). There exist SKES which are
IND-CCA1 secure, but not IND-CCA2 secure.

Proof (sketch). The counterexample is given by Construction 3.26, as already
hinted in the proof of Theorem 3.33. Being able to forge a valid ciphertext
related in a controlled way to a target challenge ciphertext c allows the ad-
versary to ask for decryptions of such ciphertexts without violating the CCA2
limitation that the ciphertext must be different from the challenge one. For
example, the adversary might be able to ask for a decryption of c ⊕ 1 . . . 1,
therefore recovering m⊕ 1 . . . 1, where m was the original plaintext.

Finally, although we are not going to write it down formally, it is possible
to extend the SEM security notion to CPA, CCA1, and CCA2 scenarios as
well, obtaining the security notions SEM-CPA, SEM-CCA1, and SEM-CCA2
respectively. Each of them can be shown to be equivalent to their IND coun-
terpart. The situation is summarized in Figure 3.1.
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Figure 3.1: Relations for SKES security notions in QS0.

3.3 Public-Key Encryption Schemes

Another important cryptographic primitive are public-key encryption schemes
(PKES). Analogously to SKES, PKES work by encrypting messages from a
plaintext space X to a ciphertext space Y, and decrypting ciphertexts the other
way around. The difference this time is that the key generation algorithm
generates pairs of keys: a public-key pk which is only used to encrypt, and
a secret key sk which is only used to decrypt. W.l.o.g. we assume that, for
security parameter n, public keys are of bit size p(n), while secret keys are of
bit size s(n), where p,s are polynomial functions determined by the scheme
considered. Under this notation, we identify the (public, private) keyspace K
as (Kn)n = (Kp

n)n × (Ks
n)n =: Kp ×Ks ⊂ {0, 1}p(n) × {0, 1}s(n).

Definition 3.40 (Public-Key Encryption Scheme (PKES)). A public-key en-
cryption scheme (PKES) with plaintext space X , ciphertext space Y, and key
space K :=Kp×Ks is a tuple of PPT algorithms E :=EK,X ,Y :=(KGen,Enc,Dec):

1. KGen :→ K;

2. Enc : Kp ×X → Y;

3. Dec : Ks × Y → X ∪ {⊥};

such that ∀ n ∈ N, ∀ x ∈ X , ∀ (pk, sk)← KGen =⇒ Dec(sk,Enc(pk, x)) = x.

As in the case of SKES, the following hold:

• we assume w.l.o.g. that n is also appended to every pk and every sk
such that (pk, sk)← KGen, so that every key also implicitly contains the
security parameter.

• As a shorthand notation, we will write Encpk meaning the Enc algorithm
with pk ∈ Kp fixed as a first input; analogously for Decsk.

• If Encpk is probabilistic for all pk ∈ Kp, then we say that E is randomized,
otherwise we say that E is deterministic.
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The notions of security for PKES are basically the same as the ones for
SKES, with two important differences:

1. because the public keys are, in fact, public, all the parties (including
every stage of any adversary) can perform encryptions in polynomial
time. Therefore, all parties have oracle access to Encpk. In particular,
givingM and D the public key pk as input also implies access to Encpk.

2. As an immediate consequence, notice that for PKES, IND-CPA is the
minimal meaningful security notion. In fact, if E is a PKES and A an
IND adversary for E , notice that GameIND−CPA

E,A = GameIND
E,AEncpk .

Finally, as in the SKES case, it is clear that for a PKES to be IND-
CPA secure, Supp (KGen(n)) must be superpolynomial in n – actually, both∣∣{pk ∈ Kp

n
}∣∣ and |{sk ∈ Ks

n}| must be superpolynomial in n.
IND-CPA secure PKES can be built from OWTPs. Assume for simplicity

that X = {0, 1}n. Then we define the following.

Construction 3.41 (PKES from OWTP). Let P := (Gen,Eval, Invert) be
a OWTP on X , with index and trapdoor spaces I and T respectively, and
let GP : X → X be the Goldreich-Levin PRNG for P (seen as a OWF with
hard-core predicates). Define E = EK,X ,X 2 := (KGen,Enc,Dec) as a PKES
with (public,private) key space K = Kp × Ks (where Kp := I and Ks := T ,
plaintext space X , and ciphertext space X 2, in the following way:

1. KGen→ (pk, sk), with (pk, sk) := (i, t)← Gen;

2. Encpk(x)→ (y, z),
with y := x⊕ GP(r) and z ← Eval(pk, r), where r $←− X ;

3. Decsk(y, z) := y ⊕ GP(s), where s← Invert(pk, sk, z).

Theorem 3.42 (IND-CPA PKES from OWTP). Construction 3.41 is an
IND-CPA secure PKES.

Proof (sketch). If we omit the second half z of the ciphertext, then the indis-
tinguishability of the encryptions immediately follows from the information-
theoretical security of the OTP, as the key r of the OTP is always sampled
indipendently and uniformly at random, and the output from the PRNG is
computationally indistinguishable from random. So the only way to attack
the scheme would be to extract information about the seed r of the PRNG,
by looking at the OWTP image z obtained through Eval. However, since GP
only outputs a sequence built from hard-core bits of P, this would violate the
one-wayness of the OWTP.
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3.4 Digital Signature Schemes

Digital signature schemes (DSS) are another fundamental cryptographic build-
ing block for many other advanced constructions. In a DSS, each user has a
unique private/public key pair, as in PKES. However, the goal is not to pro-
tect the secrecy of the message, but its authenticity, intended as assurance
about the identity of the originator of the message, and integrity, intended
as a guarantee that the original message sent by the originator has not been
altered prior to being received. This is achieved by computing a piece of in-
formation (the signature) to attach to a message, in such a way that everyone
can verify that such signature could not be computed without possession of
a specific secret key. More in detail, the signature is computed by the sender
of a message using the sender’s private key, and it is attached to the message.
The verifier, upon receiving the message, checks the validity of the signature
by using the sender’s public-key. The signature is a (short) message– and
secret-key– specific bit string, with the following properties:

1. for any message and any secret-key, it is efficiently computable; and

2. for any message, it is hard to generate a valid signature for any public-
key without having the corresponding secret-key.

More formally, and borrowing the notation used in Section 3.3, we define
a DSS as follows.

Definition 3.43 (Digital Signature Scheme (DSS)). A digital signature scheme
(DSS) with message space X , signature space T , and key space K := Kp ×Ks

is a tuple of PPT algorithms Sig := SigK,X ,T := (KGen, Sign, SigVerify):

1. KGen :→ K;

2. Sign : Ks ×X → T ;

3. SigVerify : Kp ×X × T → {0, 1};

such that the following correctness condition holds:

∀ n ∈ N, ∀ x ∈ X , ∀ (pk, sk)← KGen, ∀ sig← Sign(sk, x)

=⇒ SigVerify(pk, x, sig) = 1.

As in the case of SKES, the following hold:

• we assume w.l.o.g. that n is also appended to every pk and every sk
such that (pk, sk)← KGen, so that every key also implicitly contains the
security parameter.

• As a shorthand notation, we will write Signsk meaning the Sign algorithm
with sk ∈ Ks fixed as a first input; analogously for SigVerifypk.
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Existential Unforgeability

The notions of security for DSS is given in terms of (strong) existential unforge-
ability under chosen message attack (there are also weaker notions, but we will
not use them here). An adversary is successful if he manages to create a valid
signature for a message and public-key without having the corresponding se-
cret key, even after observing a polynomial number of valid message/signature
pairs.

Experiment 3.44 (GameEUF−CMA
Sig,A ). Let Sig be a DSS, and A a PPT algo-

rithm. The EUF-CMA experiment proceeds as follows:
1: Input: n, qs ∈ N
2: (pk, sk)← KGen
3: (x, sig) ← ASignsk(pk) after making at most qs queries to Signsk, receiving

signatures (x1, sig1), . . . (xqs , sigqs)
4: if SigVerify(pk, x, sig) = 1 and x 6= xi ∀ i = 1, . . . , qs then
5: Output: 1
6: else
7: Output: 0

The advantage of A is defined as:

AdvEUF−CMA
Sig,A (n, qs) := Pr

[
GameEUF−CMA

Sig,A (n, qs)→ 1
]
.

Sometimes we also consider a slightly different version of Experiment 3.44,
where the public/private key pair is given as an input to the game instead of
being generated randomly. This is useful if we want to target a specific public
key during some security reduction.

Definition 3.45 (Existential Unforgeability under Chosen Message Attack
(EUF-CMA)). A DSS Sig is existentially unforgeable under chosen message
attack (or, it is EUF-CMA secure) iff, for any PPT algorithm A it holds that:

AdvEUF−CMA
Sig,A ≤ negl.

Signatures in the Random Oracle Model

For certain applications it makes sense to investigate the security proper-
ties of signature schemes in the random oracle model. Recall that, in the
ROM, all the parties involved gain access to an oracle Oh, where h is a
function chosen uniformly at random from the set of all functions on certain
spaces. This also means, in particular, that Definition 3.43 changes by al-
lowing KGen, Sign, SigVerify oracle access to Oh. The resulting security model
changes as follows.

Experiment 3.46 (GameEUF−CMA−RO
Sig,A ). Let Sig be a DSS, Oh a random

oracle (computing a function h selected uniformly at random), and A a PPT
algorithm. The EUF-CMA-RO experiment proceeds as follows:



3.5. The Fiat-Shamir Transformation 53

1: Input: n, qs, qh ∈ N
2: (pk, sk)← KGenOh

3: (x, sig) ← ASignsk,Oh(pk) after making at most qh queries to Oh, and qs
queries to Signsk receiving signatures (x1, sig1), . . . (xqs , sigqs)

4: if SigVerify(pk, x, sig) = 1 and x 6= xi ∀ i = 1, . . . , qs then
5: Output: 1
6: else
7: Output: 0

The advantage of A is defined as:

AdvEUF−CMA−RO
Sig,A (n, qs, qh) := Pr

[
GameEUF−CMA−RO

Sig,A (n, qs, qh)→ 1
]
.

Definition 3.47 (Existential Unforgeability under Chosen Message Attack
in the Random Oracle Model (EUF-CMA-RO)). A DSS Sig is existentially
unforgeable under chosen message attack in the random oracle model (or, it
is EUF-CMA-RO secure) iff, for any PPT algorithm A it holds that:

AdvEUF−CMA−RO
Sig,A ≤ negl.

3.5 The Fiat-Shamir Transformation

The Fiat-Shamir (FS) transformation [FS86] is a well known method to remove
interaction in three-move identification schemes between a prover and verifier
(also called Σ-protocol), by letting the verifier’s challenge ch be determined
via a hash function h applied to the prover’s first message com. Currently, the
only generic, provably secure instantiation is by modeling the hash function
h as a random oracle [BR93, PS00]. In this section, we will investigate the
security of the FS transformation when applied to a Σ-protocol (P,V) in order
to obtain a DSS Sig, which we call the FS transform of (P,V).

Hard Languages

Let L ∈ NP be a language with a (polynomially computable) relation R, i.e.,
∀ x : x ∈ L ⇔ ∃ w ∈ W ⊂ {0, 1}poly(|x|) : (x,w) ∈ R. In this case we also
write that x ∈ Ln and (x,w) ∈ Rn, for n = |x|. For using L in cryptographic
applications, we need to discuss the following two issues:

1. given a statement x ∈ L, how hard is to find a valid witness for x? And,

2. is it possible at all to find valid pairs (x,w) ∈ R in an efficient way?

For an interesting security notion, finding a witness from x alone should
be infeasible for computationally bounded adversaries. On the other hand, it
is useful to have a way to efficiently sample elements from the relation.
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To this end we assume the existence of an efficient hard instance generator
Inst, which on input the security parameter n outputs a pair (x,w) ∈ Rn such
that no PPT algorithm can find valid witnesses for the overwhelming majority
of statements contained in any of Inst’s output. If L admits a hard instance
generator, we say that L is a hard language.

Definition 3.48 (Hard Language and Instance Generator). Let R be an NP
relation between language L and witness space W. A PPT algorithm Inst is a
hard instance generator for R iff the following hold:

1. (x,w) ∈ Rn, for any (x,w)← Inst; and

2. for any PPT algorithm A it holds:

Pr
(x,w)←Inst

[(x,A(x)) ∈ R] ≤ negl.

If L admits a hard instance generator, we say that L is a hard language,
and we denote it by LW,R,Inst.

Notice that the existence of a hard instance generator does not mean that
it is hard to find a valid witness for any statement in L. But this certainly
holds for the vast majority of those statements in the subclass output by
Inst. Moreover, the cardinality of this subclass is at least superpolynomial
in n (otherwise PPT algorithms with oracle access to Inst could find valid
witnesses by exhaustive search). This fact is used in the following paragraphs
about the Fiat-Shamir transformation in order to show that large enough
commitment spaces can be built from hard languages. Candidates for hard
languages are at the base of many cryptographic constructions, and stem from
NP problems such as graph isomorphism [GMW86], decisional Diffie-Hellman
for finite groups [Bon98], and many others.

Identification Schemes

An identification scheme (IS) between a prover P and a verifier V is an inter-
active protocol which allows P to prove his identity to V. By ‘proving identity’
we mean ‘proving a statement about one’s identity’. This is usually done with
the help of a hard language LW,R,Inst where every user identity is bound to
a certain statement; in practice, identities are usually linked to some public
key, and for the prover to succeed he must prove ownership of the correspond-
ing private key. We write d ← (P(x,w),V(x)) for the final outcome of the
protocol, where d ∈ {0, 1} is a bit denoting the final decision (acceptance or
rejection) of the verifier.

ISs are related to a class of cryptographic objects known as interactive
proofs of knowledge. Traditionally, the security notion for an IS is based
on impersonation security, which intuitively states that no efficient adversary
should be able to make V accept a statement x without knowing a valid witness
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w. However, for the scope of this work, a weaker notion of security (which
we call weak impersonation security) suffices. In this notion, additional effort
is required for an adversary to be successful. Namely, given a statement x,
the adversary should be able, after interacting with (P,V), to output a valid
witness for x, breaking the security of the hard language. This, in particular,
would allow the adversary to make V accept the execution of the scheme (but
the converse is not necessarily true, that is why this notion is called ‘weak’).
Moreover, weak security comes in two variants, depending on the level of
interaction that the adversary is allowed to have with (P,V). For passive
adversaries, the only allowed interaction is given by observing and recording
the executions of (at most polynomially many) sequential instances of the IS
for a given statement. Therefore, passive weak security only relies on the
hardness of the language LW,R,Inst.

Definition 3.49 (Passively and Weakly Secure Identification Scheme (PW-
SIS)). A passively and weakly secure identification scheme (PWSIS), (P,V)
for a hard language LW,R,Inst is an interactive protocol between two PPT al-
gorithms P and V satisfying:

∀ n, ∀ (x,w)← Inst =⇒ (P(x,w),V(x))→ 1.

An active adversary, instead, is also allowed to interact directly with
P(x,w) by impersonating V, and its goal is to output a valid witness for
x given this interaction. That is, an active adversary A := (A1,A2) is a pas-
sive adversary who has also access to P(x,w) (seen as oracles). However, in
order to avoid trivial breaks of the identification scheme (e.g., by man-in-the-
middle attacks), during the security game the adversary can only be active
before actually seeing x, and becomes passive afterwards. We express this as
AP(x,w)

1 (x). Obviously, if an IS is weakly secure against active attacks, it is
also secure against passive attacks, but the converse does not necessarily hold.
More formally, we define the following.

Definition 3.50 (Actively Weakly Secure Identification Scheme (AWSIS)).
An actively and weakly secure identification scheme (AWSIS), (P,V) for a
hard language LW,R,Inst is a PWSIS (according to Definition 3.49) such that,
for every PPT algorithms A1,A2, the following holds:

Pr
(x,w)←Inst

[
(x,A2(x,AP(x,w)

1 (x))) ∈ R
]
≤ negl.

Σ-Protocols
A Σ-protocol for a hard language LW,R,Inst between a prover P and a veri-
fier V is a 3-step interactive protocol which allows P to convince V that he
knows a witness w for a public theorem x ∈ L, without giving to V non-
trivial information beyond this fact. Informally, a Σ-protocol (P,V) consists
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of an interactive exchange of three messages (com, ch, resp) where the first
message com (the commitment) is sent by P, the second message ch (the
challenge) is sampled uniformly from a challenge space by V, and the last
message resp (the response) is computed by P by using the witness. We write
(com, ch, resp) ← (P(x,w),V(x)) for the randomized output (the communi-
cation transcript) of an interaction between P and V. We denote individual
messages of the (stateful) prover in such an execution by com← P(x,w) and
resp ← P(x,w, com, ch), respectively. Analogously, we denote the verifier’s
steps by ch ← V(x, com) for the challenge step, and d ← V(x, com, ch, resp)
for the final decision, where d ∈ {0, 1} is a bit denoting acceptance or rejection.

More formally, we define the following.

Definition 3.51 (Σ-Protocol). A Σ-protocol (‘sigma-protocol’) (P,V) for a
hard language LW,R,Inst is a 3-move interactive protocol with exchange of mes-
sages com, ch, resp between two PPT algorithms P and V satisfying the follow-
ing properties:

1. Completeness: ∀n ∈ N, (x,w) ∈ Rn, (com, ch, resp) ← (P(x,w),V(x))
it holds that: V(x, com, ch, resp) = 1.

2. Public-Coin: ∀n ∈ N, (x,w) ∈ Rn, com ← P(x,w), the challenge dis-
tribution ch← V(x, com) is uniform on {0, 1}poly(n).

3. Special Soundness: there exists a PPT algorithm J (the extractor)
such that, given two valid transcripts (com, ch, resp) and (com, ch′, resp′)
for x∈L (with ch 6=ch′) and V(x, com, ch, resp)=V(x, com, ch′, resp′)=1,
the extractor outputs a witness w ← J (x, com, ch, resp, ch′, resp′) for x,
satisfying (x,w) ∈ R.

4. Honest-Verifier Zero-Knowledge (HVZK): there exists a PPT al-
gorithm S (the zero-knowledge simulator) which, on input x ∈ L, out-
puts a transcript (com, ch, resp) that is computationally indistinguishable
from a valid transcript derived in a (P,V) interaction. That is, for any
PPT algorithm V = (V1,V2), the following two distributions are statisti-
cally indistinguishable:

1: Input: n ∈ N
2: (x,w, state)← V∗1
3: if (x,w) ∈ R then
4: (com,ch,resp)←(P(x,w),V(x))
5: else
6: (com, ch, resp) := (⊥,⊥,⊥)
7: b← V∗2 (com, ch, resp, state)
8: Output: b

1: Input: n ∈ N
2: (x,w, state)← V∗1
3: if (x,w) ∈ R then
4: (com, ch, resp)← S(x)
5: else
6: (com, ch, resp) := (⊥,⊥,⊥)
7: b← V∗2 (com, ch, resp, state)
8: Output: b
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It turns out that Σ-protocols are also (passively, weakly-secure) identifica-
tion schemes.

Theorem 3.52 (Σ-Protocols as IS). Let (P,V) be a Σ-protocol. Then (P,V)
is a PWSIS.

It is important to notice two things in the above theorem:

• HVZK is not necessary for Theorem 3.52 to hold; and

• a Σ-protocol may or may not be also an AWSIS.

The FS Transformation applied to Σ-Protocols

The Fiat-Shamir transformation of a Σ-protocol (P,V) is a modification of
the protocol where the computation of ch is done as ch ← h(x, com) instead
of ← V(x, com). Here, h is a public hash function which is usually modeled
as a random oracle Oh; in this case we speak of the Fiat-Shamir (FS) trans-
formation of (P,V) in the random-oracle model. Note that we include x in
the hash computation, but all of our results remain valid if x is omitted from
the input. If applying the FS transformation to a Σ-protocol, one obtains a
signature scheme, if the hash computation also includes the message m to be
signed. We call the resulting signature scheme FS transform of (P,V) in the
ROM, and we denote it by Sig

Oh

FS (P,V).

Definition 3.53 (FS Transform of a Σ-Protocol). Let (P,V) be a Σ-protocol
for a hard language LW,R,Inst, with commitment space X , challenge space Y,
and response space Z. Let Oh be a random oracle for a random function
h : L × X ×M→ Y. The FS transform of (P,V) in the ROM, SigOh

FS (P,V),
is a DSS with message space M, signature space T := X × Y × Z, and key
space K := L ×W, defined as follows:

1. KGen→ (pk, sk), where (pk, sk) := (x,w)← Inst

2. SignOh(sk,m)→ sig := (com, ch, resp),
where com← P(pk, sk), ch := h(pk, com,m),
and resp← P(pk, sk, com, ch)

3. SigVerifyOh(pk,m, sig)→ b,
where sig := (com, ch, resp), b← V(pk, com, h(pk, com,m), resp)

Notice that in the above signature the challenge ch can always be omitted
(and it is infact ignored in the verification step), because it is recovered by
computing h on the message, the commitment, and the public key. In this
case we define the signature space of the DSS as T := X × Z. The following
theorem states that the above construction yields secure DSSs in the ROM.
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Theorem 3.54 (Security of a Fiat-Shamir Transform [PS00]). Let (P,V) be
a Σ-protocol. Then Sig

Oh

FS (P,V) is an EUF-CMA-RO secure DSS.

Sketch. The proof of this theorem uses rewinding. Intuitively, given a state-
ment x and an adversary forging a signature for the DSS, this is used to
extract a transcript (com, ch, resp) for the underlying Σ-protocol. After that,
the adversary is rewound, and the random oracle reprogrammed, in such a
way that letting the adversary run again with the new oracle yields a related
transcript (com, ch′, resp′) for the same com but ch′ 6= ch. This, in turn, al-
lows to use the special soundness property to extract a valid witness for x,
therefore breaking the weak security of the underlying Σ-protocol, in contrast
to Theorem 3.52.

3.6 ORAMs

In this chapter we have presented many different cryptographic objects, in
order of growing technical complexity. As a last example, we conclude with
the concept of Oblivious Random Access Machine (ORAM), and we define
and analyze security models against classical adversaries.

Defining ORAMs in a fully formal way is a long, delicate, and strenuous
task [GO96]. Therefore, in the following we will use a simplified model (in-
troduced in [GKK17]) which covers most of the existing ORAM constructions
without delving too much into the fine print - but still retaining a reasonable
level of formalism - and which has the advantage of being much easier to treat.

Informally, an ORAM is an interactive protocol between two parties: a
client C and a server S, which we model as two PPT Turing machines (or, in
our case, uniform families of circuits) sharing a communication tape (circuit
register) Ξ to exchange data. In this scenario, a computationally limited C
wants to outsource a database (DB) to the more powerful S. Moreover, C
wants to perform operations on the DB (by interactively communicating with
S) in such a way that S, or any other honest-but-curious adversary A having
read-only access to Ξ and S’s internal memory, cannot determine the nature
of such operations. The security notion for ORAM schemes is therefore a
particular notion of privacy.

More formally: we define blocks, the basic storage units used in an ORAM
construction. A block is an area of memory (circuit register) storing a nblk-bit
value, for a fixed parameter nblk ∈ N which depends on C’s and S’s architec-
tures. A database (DB) of size ndb ∈ N is an area of S’s memory which stores
an array (block1, . . . , blockndb) of such blocks. As we assume this database
to reside on the server’s side, we will denote it as S.DB. Notice that the pre-
cise way this array of blocks is represented in the database is unspecified, and
left to the exact implementation of the ORAM scheme taken into account.
For example, in the ORAM construction we are going to analyze in detail,
the server’s database S.DB stores blocks in a binary tree structure. We will
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abuse notation and write that S.DB(i) = block if block is the i-th component
of S.DB, and that block ∈ S.DB if block is stored at some position in the
database S.DB.

Next we define data units as the basic units of data that the client wants
to access, read, or write. Formally, a data unit is an ndat-bit value for a fixed
parameter ndat ≤ nblk which depends on C’s and S’s architectures. Every
block encodes (usually in an encrypted form) a data unit, plus possibly aux-
iliary information such as a block identifier, checksum, or hash value. Since
every block can encode a single data unit, at any given time t it is defined
a function Datat : S.DB → {0, 1}ndat . With abuse of notation, we will denote
by Data(block) the data unit encoded in the block block at a certain time t.
The client C can operate on the database through data requests.

Definition 3.55 (Data Request). A data request to a database S.DB of size
ndb is a tuple dr = (op, i, data), where op ∈ {read,write}, i ∈ {1, . . . , ndb}, and
data ∈ {0, 1}ndat is a data unit (data can also be ⊥ if op = read).

Finally, we define the meaning of a communication transcript during an
execution of an ORAM protocol. Since this also depends on the exact imple-
mentation of the ORAM scheme, we will use the following definition.

Definition 3.56 (Communication Transcript). A communication transcript
comt at time t is the content of the communication channel Ξ at time t of the
protocol’s execution.

Notice that the above defines the communication transcript as a function
of time, but since an ORAM is a multi-round interactive protocol we will just
consider com as a discrete function of the round 1, 2, . . . of the protocol.

We are now ready to give a definition of ORAM. We assume that a server’s
database is always initialized empty (usually with randomized encryptions of
0 elements as blocks), and it is left up to the client the task of ‘populating’
the database with appropriate write operations.

Definition 3.57 (ORAM). Let nMax ∈ N, nmsg ≥ ndat ∈ N be fixed param-
eters, and E = (KGen,Enc,Dec) be a SKES mapping nmsg-bit plaintexts to
nblk-bit ciphertexts. An ORAM ORAME with parameters (nMax, ndat, E) is a
pair of two-party interactive randomized algorithms, (Init,Access), such that:

• Init(n, ndb)→ (C,S) in the following way:

1. n is the security parameter, ndb ≤ nMax;
2. k ← KGen(n) is generated by C;
3. S includes a database S.DB = (block1, . . . , blockndb),

where ∀ i =⇒ blocki ← Enck(0);
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• Access(C,S, dr)→ (C′,S ′, com) in the following way:

1. C issues a data request dr;

2. C and S communicate through Ξ and produce the communication’s
transcript com;

One might wonder why it is necessary to explicitly condition the defini-
tion of an ORAM in respect to a symmetric-key encryption scheme E . It
is actually possible to use different primitives, such as PKES, but most of
the known ORAM constructions work well with just a simple primitive such
as SKES. One might also wonder why the definition does not depend on
other cryptographic primitives, such as PRNGs or PRFs. The reason is that
not all ORAM constructions use such primitives, for example the ‘trivial’
ORAM scheme [GO96] (which consists in just transferring the whole encrypted
database from S to C and back at every data request) does not use anything
else than a SKES E as a building block. On the other hand, notice that en-
cryption of the database is a minimal requirement for security, as we will see,
therefore it makes sense to explicitly specify the scheme E in the notation.

An ORAM must satisfy soundness and security. We are going to define
security in Section 4.7. Regarding soundness, the exact specification depends
on the particular ORAM construction considered. A simplified, game-based
definition of soundness (‘correctness’) can be found in [GMP16], but it is
difficult to adapt to the model from [GKK17] which we consider here, and
which is more aimed at studying ORAM security, while a general definition
(that can be found in [GO96]) is rather involved, and goes outside the scope of
this work. The meaning of the soundness property is that the ORAM protocol
‘should work’, i.e., after any execution of Init or Access the two parties C and
S must be left in such a state that allows them to continue the protocol in the
next round. Despite the generality of this statement, in the model we consider
here minimal soundness conditions can be identified, which must hold for any
ORAM construction.

Definition 3.58 (Minimal ORAM Soundness Conditions). An ORAM con-
struction ORAME has minimal soundness if the following hold:

1. for any (n, ndb), if (C,S) ← Init(n, ndb), then C stores the secret key k
from Def. 3.57;

2. for any dr = (op, i, data), if (C′,S ′, com)← Access(C,S, dr), then:

a) if C stores the secret key k, then also C′ stores k;

b) if op = read and S.DB(i) = block, then C′ stores Data(block);

c) if op = write and S ′.DB(i) = block, then Data(block) = data.
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Notice that conditions 1 and 2a do not say anything about S having access
to the key k or not: This is a property of security, not soundness, as we will
see in Section 4.7. An ORAM scheme ORAM can have additional soundness
conditions, depending on the particular construction. We assume that when-
ever C (resp., S) is modified during the execution of the protocol to C’ (resp.,
S’) after Access calls, all these soundness conditions (the minimal ones above
as well as the special ones) are always satisfied. In this case, we also say that
C’ is a sound evolution of C and that S’ is a sound evolution of S.

Classical Security of ORAMs

We now look at the security model for ORAMs against classical adversaries
introduced in [GKK17]. Traditionally, the threat model in this case is defined
by an honest-but-curious adversary A. This means that A is some entity
who wants to compromise C’s privacy by having access to the communication
channel Ξ and S’s internal memory, but who is not allowed to modify the
content of the channel or the database against the protocol, i.e., soundness
must be preserved. In general, one does not lose generality by assuming that S
itself is the adversary: S must behave ‘honestly’ (in the sense that he follows
the protocol, in particular related to the protocol’s soundness), but at the
same time he will use all the information he can get through the interaction
with C in order to compromise C’s privacy. In particular, this also implies that
S cannot know the key k generated during ORAM.Init, as noted above.

Formally, this model is defined in terms of access patterns, which are the
adversarial views during an execution of data requests in ORAM.Access. Se-
curity requires that the adversary’s view over a certain run of the protocol
does not leak any information about the data requests executed by C, except
the sequences’ length. This formulation reminds of the definition of semantic
security for encryption schemes. As in that case, equivalent but easier-to-
deal-with formulations can be given in terms of computational indistinguisha-
bility of access patterns. Following the security model introduced in [GKK17],
we will consider an adaptive, game-based indistinguishability notion stating
that for any two data requests, no computationally bounded adversary with
knowledge of the access pattern of the client executing one of the two can
distinguish which one was executed. This definition is equivalent [GKK17] to
the simulation-based notion given in [GMP16], which states that no compu-
tationally bounded adversary can distinguish between the interaction with a
real client or with a simulator that produces bogus transcripts.

More formally: when a data request is executed, we assume that the
honest-but-curious adversary A records all the communication between C and
S, plus the changes in S’s internal status. Without loss of generality, as we
assume that A and S coincide, we assume that the only meaningful changes
in the database area S.DB only happen between the beginning and the end
of an Access execution. The communications are polynomially bounded and,
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for simplicity, we assume that the channel Ξ does not erase symbols, i.e., it
is write-once. Hence, the adversarial view is composed of the communication
transcript, and the server’s database before and after the execution of the data
request. We call this adversarial view, the access pattern of the execution.

Definition 3.59 (Access Pattern). Given ORAM client and server C and S,
and a data request dr, the access pattern ap(dr) is the tuple (S.DB, com,S ′.DB),
where (C′,S ′, com)← Access(C,S, dr).

Next, we define formally a classical ORAM adversary.

Definition 3.60 (Classical ORAM Adversary). A classical ORAM adversary
A is a PPT algorithm which is computationally indistinguishable from an hon-
est server S for every ORAM client C (in particular, soundness is preserved).

Notice the following fact: this definition of adversary can generally be
stronger than in the usual ‘honest-but-curious’ meaning. In fact, such adver-
sary could still manipulate the channel and the database in a malicious way,
as long as the client C cannot detect such manipulation – in particular, the
soundness of the protocol must be preserved. We define the security of an
ORAM through the following indistinguishability game.

Experiment 3.61 (GameAP−IND−CQA
ORAM,A ). Let ORAM = (Init,Access) be an

ORAM construction with parameters (nMax, ndat, E), n a security parameter
and A a classical ORAM adverary. The computational indistinguishability of
access patterns game under adaptive chosen query attack GameAP−IND−CQA

ORAM,A
proceeds as follows:

1: Input: n ∈ N
2: A → (A0, dr1, ndb ≤ nMax)
3: (C0,S0)← Init(n, ndb)
4: loop for i = 1, . . . , q1 ∈ N: . first CQA learning phase
5: Access(Ci−1,Si−1, dri)→ (Ci,Si, api)
6: Ai−1(api,Si)→ (Ai, dri+1)
7: Aq1(drq1+1)→ (A′, dr0, dr1)
8: b $←− {0, 1}
9: Access(Cq1 ,Sq1 , drb)→ (Cq1+1,Sq1+1, apq1+1) . AP-IND challenge query

10: A′(apq1+1,Sq1+1)→ (Aq1+1, drq1+2)
11: loop for i = q1 + 2, . . . , q2 ≥ q1 + 2: . second CQA learning phase
12: Access(Ci−1,Si−1, dri)→ (Ci,Si, api)
13: Ai−1(api,Si)→ (Ai, dri+1)
14: Aq2(drq2+1)→ b′ ∈ {0, 1}
15: if b = b′ then
16: Output: 1
17: else
18: Output: 0
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The advantage of A is defined as:

AdvAP−IND−CQA
ORAM,A := Pr

[
GameAP−IND−CQA

ORAM,A → 1
]
− 1

2 .

In this game the adversary, after selecting suitable ORAM parameters of
his choice, is first allowed to see the access patterns originated by executions
of Access for data requests of his choice, chosen adaptively one after the other
(this is called ‘first CQA learning phase’.) At some point, the adversary issues
a challenge query composed of two (w.l.o.g. different) data requests. One of
the two is selected at random and executed through Access, and the adversary,
after being allowed a second CQA learning phase, must guess which one of
the two was executed. Notice that, since A is polynomially bounded, q1 and
q2 are at most polynomials in n. We are now ready to define the classical
security notion for ORAMs.

Definition 3.62 (Access Pattern Indistinguishability Under Adaptive Cho-
sen Query Attack). An ORAM construction ORAM has computationally in-
distinguishable access patterns under adaptive chosen query attack (or, it is
AP-IND-CQA-secure) iff for any classical ORAM adversary A it holds that
AdvAP−IND−CQA

ORAM,A ≤ negl.

PathORAM

As an example of ORAM construction, we recall here PathORAM, one of the
most efficient ORAM constructions proposed to date, introduced by Stefanov
et al. in [SvDS+13]. We only give a high-level explanation of PathORAM,
and for a thorough description of the construction, as well as a detailed proof
of its functionality, we refer to [SvDS+13].

In PathORAM a client stores ndb blocks of bit size nblk on a server, in a
binary tree structure of height ntree = dlog2 ndbe. Each node of the tree can
store a constant amount nbkt of blocks. Every block encodes (in an encrypted
form, using an IND-CPA SKES) a data unit of bit size ndat, and optionally
additional information which is used to label the block for efficient retrieval.
There are many different ways one can implement this labeling of the blocks.
In our case we will use the simple approach of concatenating to the data
unit data an ntag-bit string encoding the block identifier i ∈ {1, . . . , ndb},
that is, blocks are of the form blocki ← Enck(i‖datai). This system is very
general, and as we will see it has the advantage that it easily translates to the
quantum setting, unlike other approaches such as identifying blocks by using
a hash table. At the beginning, all the blocks in the tree are initialized in an
‘empty’ state, which is defined by setting to 0 the identifying label – recall
in fact that valid block identifiers are 1, . . . , ndb only. Every block is mapped
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to a leaf of the tree, and this mapping is recorded in a correspondence table,
called position map, by the client2.

A read (or write) operation for a block blocki is performed by the client,
by downloading the path (tree branch) from the root of the tree to the leaf
indicated in the client’s position map, and randomly remapping blocki to
another leaf in the position map. Then the client decrypts and re-encrypts
(re-randomizing) all the blocks in the downloaded path, and for every valid
(non-empty) block blockj found, the client checks its corresponding leaf in
the position map, and moves blockj (if there is enough available space) to
the node in the path which is closest to the leaf level and that belongs both to
the downloaded path and the path to the leaf of blockj given by the position
map. If a block does not fit anywhere in the downloaded path, then an extra
storage, called ‘stash’ is used by the client to store this overflowing block
locally. The blocks found in the stash are also examined during every read (or
write) operation and checked if they can be evicted from the stash and placed
in the tree. Since the stash must be stored locally by the client, the stash’s
size should be reasonably small; in fact, in [SvDS+13], the authors show that
the probability that the stash exceeds a size of O(logndb) is negligible in the
number of queries. The intuition is to notice that the stash is only used if the
tree root is full, but the average action of a data request is to push only blocki
toward the tree root, and push many other blocks blockj toward the leaf level.
In the following we will mostly ignore the use of the stash for simplicity.

More concretely, we give here a full description of PathORAM (which we
denote as PathORAM) according to the formalism introduced.

Construction 3.63 (PathORAM [GKK17, Definition 18]). For fixed parameters
ndat, nMax ∈ N, let ntag = dlog2 nMaxe, nbkt ∈ N, nmsg = ndat+ntag, nblk ≥ nmsg.
Let G be a PRNG outputting ntag-bit values, and E = (KGen,Enc,Dec) be a
SKES with nmsg-bit plaintexts and nblk-bit ciphertexts. We define an ORAM
construction called PathORAM = PathORAME,G as follows:

• Init(n, ndb)→ (C,S) in the following way:
1: C generates a secret key k ← KGen
2: set ntree := dlog2 ndbe . notice ntree ≤ ntag
3: C initializes a position map of the form ((1, r1), . . . , (ndb, rndb)), where
ri are ntree-bit values generated by truncating bits from G’s output

4: S.DB is stored in a binary tree of height ntree, with root Root and
leaves Leaf0, . . . , Leaf2ntree−1, and such that:
1. each node of the tree stores up to nbkt blocks;
2. every block of every node is initialized to Enck(0ntag‖0ndat).

2Note that the size of the position map is linear in the number of blocks that the client
has, and thus cannot be stored locally by the client. The authors of [SvDS+13] propose
storing the position map recursively to smaller PathORAMs following an idea from [SSS12].
For ease of exposition however, we will assume here that the position map is stored locally.
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• If dr = (op, i, data), then Access(C,S, dr)→ (C′,S ′, com) as follows:
1: C reads ri from his position map and sends it to S
2: S sends to C the path Branch from Root to Leafri
3: remap (i, ri) to (i, r′i) in the position map of C, where r′i is a fresh

pseudorandom ntree-bit value (generated by truncating the first ntag−
ntree bits of G’s output), obtaining C′

4: for all block contained in Branch do
5: C′ decrypts Deck(block)→ (j‖dataj) ∈ {0, 1}nmsg ,

where j ∈ {0, 1}ntag , dataj ∈ {0, 1}ndat

6: if j = i then
7: if op = ‘read’ then
8: C′ reads dataj . C′ now has access to dataj
9: else if op = ‘write’ then

10: C′ sets dataj = data . block is updated
11: C′ re-encrypts (re-randomizing) block
12: find in Branch the common parent node Node between Leafri

and Leafrj , closer to the leaf level
13: set bswap := ‘false’
14: for all block′ in Node do
15: C′ decrypts Deck(block′)→ (j′‖data′j) ∈ {0, 1}

nmsg

16: C′ re-encrypts (re-randomizing) block′′ ← Enck(j′‖data′j)
17: if j′ = 0 . . . 0 then . block′′ is empty, can be used
18: swap block and block′′

19: set bswap := ‘true’
20: if bswap = ‘false’ then . no empty blocks in current Node
21: if Node 6= Root then
22: set Node to be one level up in the tree (i.e., Node’s parent)
23: go to step 14
24: else
25: store block in the Stash . no empty blocks found
26: C′ sends back the updated tree branch, NewBranch, to S
27: update S.DB with NewBranch, obtaining S ′
28: produce com, which contains ri, Branch, NewBranch

In the above, we recap the meaning of the parameters as follows:

• n is the security parameter, used by the encryption scheme E .

• nMax is the maximum number of blocks that the server’s architechture
can support (an upper bound to S’s tree storage).

• ndb is the maximum number of ‘real’ blocks that the client C wants to
store (so, ndb ≤ nMax). Unlike nMax thus, ndb can be chosen by the
adversary in the security game.
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• ntag is the minimum number of bits that are needed to index all the
‘real’ blocks in the limit scenario where ndb = nMax. Hence, ntag is also
architecture-dependant, and not chosen by A.

• nbkt is the maximum number of blocks that can be stored in every tree
node. Lower values reduce the amount of memory used by S to store
the tree (for a fixed ndb), but increase the risk of using large amounts of
memory by the client for the stash. This is a parameter of the particular
PathORAM implementation: as we do not care about performance analysis
here, we will leave nbkt undefined, as any nonzero value works for us.

• ntree is the minimum number of bits that are needed to index all the
‘real’ ndb blocks (hence, ntree ≤ ntag). ntree also represents the minimum
height of the tree necessary to store all blocks in the limit case nbkt = 1.

• ndat is the bit size of the data units used in the PathORAM implementa-
tion, and it is hence architecture-dependant.

• nmsg is the total bit size of a data unit, plus the number of bits necessary
to address the block where this data unit is encoded, so also this value is
architecture-dependant. The encryption scheme E must be able to work
with nmsg-bit plaintexts.

• nblk is the size of a ciphertext produced by the encryption scheme E , and
hence the total size of a block. The size of S’s tree storage memory is
thus at most nblknMax bits.

We now show the (classical) security of PathORAM.

Theorem 3.64 (AP-IND-CQA Security of PathORAM). Let E=(KGen,Enc,Dec)
be an IND-CPA SKES, and let G be a PRNG. Then, PathORAM instantiated
using E and G is an AP-IND-CPA secure ORAM.

Proof. By assumption, the outputs of G are indistinguishable from random.
Therefore, in the following analysis, we can w.l.o.g. replace G with a real
source of randomness.

Suppose that there exists an adversary A and a non-negligible `, such that:

Pr
[
GameAP−IND−CQA

PathORAM,A = 1
]

= 1
2 + `.

We will use A in a black-box way to construct a PPT algorithm able to
break the IND-CPA security of E , against the assumption. The idea is to build
an algorithm D which simulates a PathORAM client C, playing the AP-IND-
CQA game against A (w.l.o.g., we assume that A itself simulates the server
S, otherwise S can be also simulated by D). Throughout the game, D also
stores a copy of the server’s database S.DB, in plaintext. This is allowed, as
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S.DB is of size linear in ndb, and D is only simulating C, so he is not limited
by the storage constraints usually assumed in a normal ORAM client. Then
D will use the interaction with A to win the IND-CPA game for scheme E .

More in detail: first, D executes A. Then A starts GameAP−IND−CQA
PathORAM,A by

choosing n and ndb, andD simulates a PathORAM client C created during Init, by
initializing his own position map (populated with random values), but without
generating a secret encryption key. Furthermore, D creates a tree memory
structure of height ntree, with leaves indexed 0, . . . , 2ntree−1, where every node
stores nbkt plaintexts of bit size nmsg, which are initialized to (0ntag‖0ndat) (the
parameters are the same as in Construction 3.63). This structure will be used
by D to ‘mirror’ S.DB in cleartext throughout the execution of PathORAM.
D now starts GameIND−CPA

E,D , obtaining oracle access to Enck for an unknown
secret key k, and choosing as security parameter the same n chosen by A. At
this point, notice that D is able to perfectly simulate a valid client C having
access to the key k, in the following way:

• whenever C downloads a branch of S.DB identified by leaf r by calling
Access, D does the same (although the blocks in such downloaded branch
will be ignored, as we will see);

• whenever C decrypts a certain block in a downloaded branch, D simulates
the decryption oracle Deck by fetching the plaintext (i‖data) found at
the corresponding position in the ‘mirrored’ tree;

• whenever C swaps two blocks in a downloaded branch, D swaps the two
plaintexts found at the corresponding positions in the ‘mirrored’ tree;

• whenever C encrypts a plaintext (i‖data) to obtain a new encrypted
block, D does so by using the encryption oracle Enck obtained from the
IND-CPA game;

• whenever C updates his position map, or uploads an updated branch to
S.DB, D does the same.

Given the above, it is clear that now whenever A asks for the execution of
a data request dr, D is able to simulate the correct communication transcript
com and a correctly formed updated branch NewBranch. Therefore, for every
data request performed during the first CQA phase, A always receives the
correct access pattern.

Eventually, at the challenge stepA produces two data requests dr0, dr1, and
requests the execution of one of them. For a ∈ {0, 1}, let dra = (opa, ia, dataa)
be the two data requests and let ma ∈ {0, 1}nmsg be formed as follows:

• if opa = ‘write’, then set ma = (ia‖dataa);

• else, set ma = (ia‖dataia), where dataia is retrieved by looking for iden-
tifier ia in the mirrored tree.
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Now, it could happen thatm0 = m1. For example, it might be that the two
data requests are of the form (‘write’, i, data) and (‘read’, i, data′) respectively,
but blocki already encodes data. If this happens we say that the challenge
query is non-meaningful. It is easy to see that two data requests from a non-
meaningful challenge query will produce the same statistical distributions of
communication transcripts3 and updated paths, because their effect on the
database is equivalent. Therefore, since A distinguishes the two resulting
access patterns with non-negligible probability by assumption, it is clear that
the challenge query must be meaningful, i.e., m0 6= m1.

At this point D executes the challenge IND query using m0,m1 as plain-
texts, and receiving back an encryption c ← Enck(mb) for a secret bit b. D
will also generate a random bit b∗ $←− {0, 1} (a ‘guess’), and will answer A’s
challenge query by simulating the execution of drb∗ as in the CQA phase, but
injecting c as an updated block with identifier ib∗ during the execution of drb∗ .
Then D keeps simulating C during the second CQA phase as before, and waits
until A outputs a bit b̂. Finally: if b̂ = b∗, then D outputs b∗ in the IND-CPA
game, otherwise D outputs a new random bit.

Now, notice the following. In the case that D’s guess was correct, i.e.,
b = b∗, it means that c was the right ciphertext at the right place, so that A
has received a correctly formed access pattern. This means that A correctly
guesses b̂ = b∗ with probability at least 1

2 + `, by assumption. In that case,
also D wins, so:

Pr
[
GameIND−CPA

E,D = 1
∣∣∣b = b∗

]
≥ 1

2 + `. (3.1)

On the other hand, if b 6= b∗ we cannot say anything on A’s success probability,
because now A has a malformed access pattern. But we can say that, even if
A fails, D still succeeds with probability 1

2 .

Pr
[
GameIND−CPA

E,D = 1
∣∣∣b 6= b∗

]
≥ 1

2 . (3.2)

Thus, combining 3.1 and 3.2, the reduction’s overall success probability is:

Pr
[
GameIND−CPA

E,D = 1
]
≥ 1

2 + `

2 ,

which concludes the proof.

3Notice how this is not true anymore if the values in the position map are not totally
random. Therefore, this step fails if the PRNG used is not secure.



Chapter 4
QS1: Post-Quantum Security

The next step in our analysis of quantum security notions is to consider what
happens to classical encryption primitives when the adversaries have access
to a quantum computing device. In this scenario, the cryptographic objects
we are studying are still classical, as in the security class QS0. However,
since many constructions in QS0 rely on computational hardness assump-
tions which do not hold anymore against quantum computers, new security
models and constructions have to be considered in order to retain security in
the new scenario. The branch of cryptography which aims at this goal has
traditionally been called post-quantum cryptography. That is, post-quantum
cryptography is about the security of classical primitives after (hence ‘post-’)
quantum computing becomes available1. The security class which we denote
by QS1 in our new labeling system covers this scenario.

But how do we model post-quantum security exactly? In the scientific
community there has not always been mutual agreement on this. For example,
one of the questions which most often cryptographers ask is: “When should
one consider classical access to a function for a quantum adversary, and when
should one consider quantum access instead?”. As we will see, the answer
to this question is: “Whenever the security model implies that the adversary
computes the function on his local device, then quantum access should be used.”
We call this principle the QS1 principle.

In this chapter we will discuss in detail the QS1 principle and all the issues
arising toward properly defining post-quantum security. Next, we introduce
security models and definitions for post-quantum cryptographic primitives,
starting from the very basic ones to more elaborated ones. We also discuss
post-quantum assumptions, building blocks, and transformations from one
primitive to another.

1Admittedly, this naming is a bit misleading, because it might be meant as ‘cryptography
resistant against the more advanced model of computation which will conceivably come after
quantum computing’. We do not want to argue here about the term ‘post-quantum’, which
has become commonly accepted in the literature.

69
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My Scientific Contribution in this Chapter

Theorem 4.10 is commonly considered folklore, but to the best of my knowl-
edge the first fully formal proof (which I developed together with Gorjan
Alagic and Bill Fefferman) appears in [ABF+16].

All the material from Section 4.6 appeared first in [DFG13], which is a
joint work with Özgür Dagdelen and Marc Fischlin. In that work, Özgür
focused on the patching transformation for Σ-protocols using trapdoor com-
mitments, and gave an explicit instantiation of such transformation applied
to the lattice-based signature scheme by Lyubashevsky [Lyu12], which does
not appear in this work. Marc focused on formalizing some necessary tools
(Definition 4.33 and 4.34) and assessing the properties of our meta-reduction,
while Theorem 4.36 is joint work of all of the authors. My contribution there
is instead the positive result, i.e., Section 4.6. Moreover, the definition of Λ-
protocol first appears in this work as a useful tool to bridge some formalization
issues when defining the FS transform of oblivious-commitment Σ-protocols.

Regarding post-quantum ORAMs, all of Section 4.7 is my work. These
results first appeared in [GKK17], where Nikolaos took care of the classical
(QS0) ORAM scenario, while I developed the post-quantum (QS1) and fully
quantum (QS3) scenarios.

Finally, to best of my knowledge, the classification of quantum security
reductions appearing in Section 4.1 has never been made explicit before, and
it appears in this work for the first time, although single examples of any of
those kind of reductions have appeared in the literature before.

4.1 Issues in Post-Quantum Security

Post-quantum security constructions are usually obtained by replacing some
underlying hardness assumption with a different, quantum-hard assumption,
and then repeating the construction process (i.e., the security proof) leading
to the realization of a secure primitive as in QS0. For example, when design-
ing a post-quantum signature scheme, a natural option would be to consider a
signature scheme in QS0 based on, e.g., the DLP problem, and see if it is pos-
sible to obtain a new scheme by replacing the DLP problem with some other
quantum hardness assumption, e.g., learning with errors (LWE) or shortest
vector problem (SVP). Alternatively, one could simply try to design a sig-
nature scheme from scratch by relying on a new security proof reducing the
security of the scheme to the quantum hardness of one of the aforementioned
mathematical problems. Traditionally, schemes produced by such approaches
are labeled ‘post-quantum’. However, this labeling is sometimes inappropriate.
The goal of this section is to give an overview of the many things that could go
wrong when adopting too blindly the procedure described above, and to ex-
plain why one should take a more careful approach when defining meaningful
notions of post-quantum security.
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Proof Failures

The general issue when designing post-quantum primitives is that the classical
security proofs might fail quantumly, even when only relying on quantum-hard
assumptions. Common reasons for this are (but not limited to) the following.

• No-Cloning: when the security proof works by using the same value or
element for two different purposes, care must be taken in making sure
that this does not contradict the No-Cloning Theorem. If the element in
question is a classical element, there is no problem. However, for quan-
tum states, it is usually not possible to re-use the state for computing
more than a single operation. Sometimes this can be solved by defining
the operation in such a way that it does not destroy the input state.

• Memory Snapshots: as a consequence of the previous point, problems
may arise when the security proof requires recording a ‘snapshot’ of an
algorithm, or adversary, in order to execute it on different instances, or
to analyze some internal area of memory. As the adversary is now a
quantum machine, this cannot usually be done.

• Rewinding: analogously, proofs that use rewinding are notoriously
hard to translate to the quantum setting. Limited positive results have
been achieved in this respect in the existing literature [ARU14, Wat06].

• Quantum Queries: if the security proof requires ‘counting the number
of queries’ to a certain oracle, it will probably fail when the oracle is
replaced by a quantum oracle. The reason is that a quantum oracle can,
in some sense, be queried over all the domain elements at once.

• Lookup Tables: analogously, if the proof requires storing a transcript
of a protocol execution, including the query calls to some oracle, and if
the oracle is quantum, problems may arise.

• Measurements: conditional procedures such as “if the value of x is
y, then do...” are often an issue in the context of analyzing quantum
states, because the information in the state is usually destroyed in the
measurement process. This is particularly problematic when analyzing
the values of queries to quantum oracles, or when comparing those values
to those contained in some set.

Unfortunately, there is no general recipe to solve all of the above prob-
lems, and much of the existing literature erroneously advertises cryptographic
constructions as ‘post-quantum’ just because they are based on quantum-hard
problems, without addressing the previous issues. We strongly argue against
the use of the term ‘post-quantum’ when describing the security of such con-
structions. Regardless, over the last few years many important tools have
been developed in order to deal with these problems.



72 Chapter 4. QS1: Post-Quantum Security

Quantum-Classical Oracles

The first important concept to define is what happens when an oracle Of

computing a classical function f : X → Y is invoked by a quantum algorithm.
Two possible scenarios arise, depending on the interaction, or access mode, of
the algorithm to the oracle:

1. the interaction is classical; in this case, the oracle is still a classical object
which can be queried on classical inputs x ∈ X and returning outputs
y ∈ Y; or

2. the interaction is quantum; in this case the classical oracle Of must be
replaced by a quantum-classical oracle (which we denote by |Of〉).

A quantum-classical oracle can be queried on a quantum superposition of
classical input values, usually of the form:∑

x∈X ,y∈Y
ax,y |x, y〉 , where

∑
x,y

|ax,y|2 = 1,

and it returns a quantum state encoding somehow the evaluation of f on the
inputs in the superposition query. The exact form of the input and output
states can vary, and it depends on the type of quantum access considered, as
mentioned in Section 2.4. However, for most applications, and unless differ-
ently specified, we will denote by |Of〉 the unitary operator acting as follows.

Definition 4.1 (Canonical Quantum-Classical Oracle). Let X ,Y be sets, and
f : X → Y. The (canonical) quantum-classical oracle for f, denoted by |Of〉,
is a unitary operator on HX⊗Y , defined by:

|Of〉 : |x, y〉 7→ |x, y ⊕ f(x)〉 .

When not necessary to specify otherwise, in order to simplify notation we
assume the ancilla register to be initialized with |0〉, so that:

|Of〉 :
∑
x∈X

ax |x, 0〉 7→
∑
x∈X

ax |x, f(x)〉 , where
∑
x

|ax|2 = 1.

One important question regards quantum-classical oracles for randomized
functions. For instance, if f is a randomized function, we can explicit the
dependence from the randomness r (sampled from some appropriate distribu-
tion R) by writing: y := f(x; r). Then the question is: when considering |Of〉,
should we consider superpositions of evaluations using the same, fixed ran-
domness r, or should we consider evaluations where a fresh new randomness
r is sampled for every element in the superposition? In other words, should
we consider:

|Of〉 :
∑
x∈X

ax |x, 0〉 7→
∑
x∈X

ax |x, f(x; r)〉 , where r ← R,
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or should we consider the following instead?

|Of〉 :
∑

x∈X ,r←R
ax,r |x, 0〉 7→

∑
x∈X ,r←R

ax,r |x, f(x; r)〉 .

As observed in [BZ13b], it turns out that the two cases are equivalent. The
reason is that, using the first case, we can simulate the second case by first
sampling a single r from R, and then applying a quantum-secure PRF (de-
scribed in Section 5.2) to generate independent pseudorandom values for every
component of the superposition query. Because of the security properties of
such PRF, the result would look the same to any QPT adversary.

Quantum Reductions

Another thing to discuss is the meaning of quantum reductions. As in the
classical case, a quantum reduction B from (the security of) a scheme Σ to
(the security of) a primitive, or (the hardness of) a problem Π, is an efficient
algorithmic procedure which uses an hypothetical adversary A against Σ to
attack Π. The existence of a reduction shows that: if an efficient adversary
against Σ exists, then an efficient algorithm breaking Π’s security must also
exist. In this work we only consider black-box reductions, that is, reductions
which do not have access to A’s or Σ’s internal code/circuit, but are only
allowed to use the interactions between these components to attack Π.

Let us consider different possible scenarios in the quantum world. The
following is a classification of possible (post-)quantum security reductions.

1. A is classical but B is quantum. In this case, B is a QPT algorithm
using A as a (classical) subroutine. These kind of reductions offer the
weakest form of security guarantees because they basically say: “if a
classical adversary against Σ exists, then a quantum algorithm breaking
Π’s security exists”. They do not say anything about the possibility that
a quantum adversary against Σ might exist, so they are not really useful
in our QS1 setting. We call these weak quantum reductions.

2. A is quantum and B is quantum. This is the most common scenario.
These reductions say: “if a quantum adversary against Σ exists, then
a quantum algorithm breaking Π’s security exists”. In particular, this
rules out classical adversaries against Σ, but the existence of any of these
adversaries would not necessarily imply a classical algorithm against Π,
only a quantum one. We call these (standard) quantum reductions.

3. A is quantum but B is classical. These reductions offer the strongest
security guarantees, because they say: “if a quantum adversary against Σ
exists, then a classical algorithm breaking Π’s security exists, with only
black-box access to the adversary”. Not only this rules out quantum
and classical adversaries alike, but it also implies that the post-quantum
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security of Σ can rely just on the post-quantum security of Π, so that in
particular one does need to worry about oracle access modes. We call
these semi-classical reductions.

Finally, it should be discussed what ‘black-box’ in the quantum setting
means. Classically, this means that B is allowed to interact with A without
accessing A’s internal code or state. In other words, B can only act on A’s
inputs, outputs, and oracle queries. Furthermore, in cryptographic reductions,
one usually has to make sure that B’s action is computationally undetectable
for A, which means that the probability that A’s output is affected by this
action is negligible. This is important, for example, in the case that B injects
or reads values inside A’s queries to an oracle.

In the quantum setting, we adopt the same principle: B can tamper with
A’s inputs, outputs, and queries, as long as A’s behaviour is only negligibly
affected. So, for example, B could measure (fully or partially) A’s queries to
some quantum oracle, and even modify the queries and reprogram the oracle,
as long as it can be proven that this action does not disturb A’s working
behaviour too much.

However, one could also take a stricter approach. Since measuring un-
known quantum states might destroy the information therein, we could also
consider quantum reductions that do not measure external quantum states at
all, and only rely on the classical interactions with A (or other oracles) in-
stead. For example, in the case of quantum oracle queries, such reductions
would ignore those queries, and only interact classically with the (quantum)
adversary. Clearly, these ‘careful’ reductions are quite powerful, because they
work even when ignoring some potential source of information (the quantum
queries). They basically say: “if a quantum adversary against Σ exists, then a
quantum algorithm breaking Π’s security exists, by using only classical access
to some external quantum resources”. These kind of reductions are placed
somewhere between points 2 and 3 of the above hierarchy, and we call them
strong quantum reductions.

4.2 The Quantum Random Oracle Model

One archetypical example of where the QS1 principle comes into play is the
Quantum Random Oracle Model (QROM). Recall that, in QS0, the Random
Oracle Model (ROM) is a computation model where all parties have access to
an oracle Oh computing a function h picked uniformly at random from the set
of all functions from some domain X to some range Y. This model is useful
when analyzing the security of schemes employing PRFs or hash functions. In
other words, the (truly) random function h is just an abstraction, or a model,
for a real-world function g which we assume behaving like a random function.

But this also means that the random oracle Oh itself is an abstract model
for the computation of the real-world, algorithmic function g, performed on
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some computer. And since the code for g is public, and can be run by any-
one (after all, in the ROM the access to Oh is given to every participant in
the scheme because of this reason), it is necessary to assume that a quantum
adversary could implement the circuit computing g on his quantum com-
puter, therefore being able to query g quantumly. Therefore, in the Quantum
Random Oracle Model (QROM), the random oracle Oh must be replaced by a
quantum random oracle |Oh〉. It is important to stress the fact that there exist
models where security is proven in the random oracle model against quantum
adversaries. We strongly argue against the use of the term ‘post-quantum’
when referring to those models.

So, in other words, in QS1 the ROM must be replaced by the QROM,
where every QPT algorithm has access to a quantum oracle:

|Oh〉 : |x, y〉 7→ |x, y ⊕ h(x)〉 .

and where h is chosen uniformly at random from the set of all functions from
X to Y, as in the random oracle model.

QROM Emulation

Notice the following difficulty when defining the QROM operationally. Classi-
cally, as explained in Section 2.3, during a cryptographic reduction a random
oracle is emulated by a PPT algorithm, for example through lazy sampling.
But lazy sampling cannot work for quantum random oracles, for two reasons.

First of all, a single quantum query to |Oh〉 could require the emulator to
lazy-sample too many elements. E.g., a query of the form:∑

x∈{0,1}n

1√
2n
|x, 0〉

would query all the exponentially-many input values at once, and so it would
‘force’ the emulator to ‘fix’ all those values at the same time. This is not
compatible with what we require from an efficient cryptographic reduction.

The second problem is that the concept of lookup table, used in the clas-
sical ROM to answer consistently with the previous queries, becomes mean-
ingless. Firstly because such table could quickly reach exponential size, as
the previous query example shows; and secondly because, as discussed in Sec-
tion 4.1, there might be no way to check whether the values of some query are
in the table or not without destroying the query.

Luckily, there exist a few other techniques to solve the above issues and
to make the QROM a meaningful tool in QS1. If the number of queries
performed by the adversary to the QRO is known a priori, then the QRO
can be efficiently emulated by d-wise independent functions. These are fami-
lies of functions that are statistically indistinguishable from random functions
if queried (classically) no more than d times. An example are polynomial
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functions of degree d − 1. It is known [Zha12b] that no quantum algorithm
performing at most q queries can distinguish between random oracles and
distributions of 2q-wise independent functions.

Another common technique is to emulate a RO with a PRF, which is useful
if one does not know a priori an upper bound to the number of adversarial
queries. In the QROM we need something analogous, but classical PRFs
alone cannot work. One idea might be to use post-quantum PRFs (we will
define them in the next section), but actually for emulating a QRO, classical
access to the PRF is not enough, so we need something more: quantum-secure
(superposition-secure) PRFs will be defined in the next chapter.

QROM Reprogramming

It is important to analyze what happens when reprogramming a quantun
random oracle |Oh〉. In particular, a useful technique often consists in injecting
some fixed value y for a subset S ⊂ X of possible input query values, so that
h(x) := y for all x ∈ S. Intuitively, if the set S is ‘very small’, it is going to
be very hard for a quantum algorithm to distinguish the modified oracle from
a true QRO. However, some proofs might rely explicitly on the probability
of the adversary querying one of those values, so it is important to have a
detailed quantitative analysis for these probabilities.

We start by recalling [Zha12a] a tool known as semi-constant distributions.

Definition 4.2 (Semi-Constant Distributions). Let H := {h : X → Y} be the
family of functions between sets X and Y, and let δ ∈ [0, 1]. We define the
δ-fraction semi-constant distribution Uδ as the distribution over H resulting
from the following procedure:

1: sample y $←− Y
2: for all x ∈ X do
3: p $←− [0, 1]
4: if p ≤ δ then
5: define h(x) := y
6: else
7: sample y′ $←− Y
8: define h(x) := y′

9: Return: h

Notice that U0 is the uniform distribution, while U1 is a constant distribu-
tion. Also note that the distribution, when used within an oracle, is consistent
in the sense that the settings are chosen once at the outset. We will use this
definition to describe a QRO which has been ‘reprogrammed’ on a fraction δ
of its possible inputs. The following lemma [Zha12b] gives an upper bound on
the probability that a quantum algorithm’s behavior changes when switching
from a truly QRO to a quantum oracle for a function drawn from Uδ in terms
of statistical distance.
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Lemma 4.3 ([Zha12b, Corollary 4.3]). Let A|Oh〉 be a QPT algorithm making
at most qh queries to the quantum random oracle |Oh〉. Let δ ∈ (0, 1) and
let |Oδh〉 be the classical-quantum oracle obtained by reprogramming Oh on a
fraction δ of its possible inputs, i.e., |Oδh〉 is described by the semi-constant
distribution Uδ. Then, the following holds:∣∣∣A|Oh〉 −A|Oδh 〉

∣∣∣ ≤ 8
3 · q

4
h · δ2.

The above lemma is quite general, because it does not take into account the
specific values where the reprogramming happens, but just a generic fraction
δ of all possible values. Therefore, it is especially useful in those cases where
the quantum random oracle is reprogrammed randomly, i.e., by just replacing
some of its values with a certain probability δ. However, in all those cases
where it is possible to track the specific amplitudes (across the oracle queries)
of the elements to be reprogrammed, then one can usually find better bounds,
for example by using Lemma 2.11.

4.3 Post-Quantum Assumptions, Building Blocks

In this section we redefine the basic assumptions and building blocks for the
post-quantum setting.

Post-Quantum OWFs

As in the QS0 case, the existence of post-quantum one-way functions (pqOWF)
is a basic security assumptions. Because a OWF’s code is public, and recalling
the QS1 principle, we expect quantum adversaries to be able to query a OWF
on a superposition of values. However, for the same reason, since in the defi-
nition of OWF the quantifier is ‘for all’ PPT algorithms, without mentioning
oracle access, it is enough to define post-quantum OWFs by just replacing
PPT adversaries with QPT adversaries.

Definition 4.4 (Post-Quantum One-Way Functions (pqOWF) and Permuta-
tions (pqOWP)). Let F = (Fn)n be a DPT algorithm, with Fn : Xn → {0, 1}∗.
F is a (family of) post-quantum one-way functions (pqOWF) iff for any QPT
algorithm A it holds:

Pr
x

$←− X

[
A(F(x))→ x′ : F(x) = F(x′)

]
≤ negl.

Moreover, in the special case where Fn : Xn → Xn are permutations on Xn for
every n, F is a (family of) post-quantum one-way permutations (OWP).

The definition of post-quantum hard-core predicates is as in the QS0 case.
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Definition 4.5 (Post-Quantum Hard-Core Predicate). Let F : X → Y be a
OWF. A polynomial-time computable function hcF : X → {0, 1} is a post-
quantum hard-core predicate of F iff, for any QPT algorithm A it holds:

Pr
x

$←− X
[A(F(x))→ hcF (x)] ≤ 1

2 + negl.

Proposition 4.6. Let F be a pqOWF (resp., pqOWP). Then it is possible to
efficiently transform F into a pqOWF (resp., pqOWP) H such that at least
one post-quantum hard-core predicate hcH exists.

Given the above, from now on for simplicity we assume that every pqOWF
admits post-quantum hard-core predicates. In the case that F : X → X (in
particular, if F is a pqOWP), the construction of hard-core bits can be iterated
as in Proposition 2.5.

Post-Quantum OWTPs

The same discussion in the case of post-quantum OWFs applies for the as-
sumption of the existence of post-quantum one-way trapdoor permutations
(pqOWTP). As usual, we express a family of pqOWTPs as indexed through
efficiently sampleable index family I and associated trapdoor space T .

Definition 4.7 (Post-Quantum One-Way Trapdoor Permutation (pqOWTP)).
A (family of) post-quantum one-way trapdoor permutations (pqOWTP) is a
tuple (Gen,Eval, Invert) of PPT algorithms:

1. Gen :→ I × T ;

2. Eval : I × X → X ;

3. Invert : I × T × X → X ∪ {⊥},

and such that:

1. for any QPT algorithm A it holds:

Pr
x

$←−X
(i,t)←Gen

[A(i,Eval(i, x))→ x] ≤ negl; and

2. Invert(i, t, y) = Eval(i, x), ∀x ∈ X , ∀ (i, t)← Gen, ∀ y ← Eval(i, x).

As in the QS0 case, the existence of pqOWTP implies the existence of
pqOWP and pqOWF.

Proposition 4.8 (pqOWTP =⇒ pqOWP =⇒ pqOWF). Let P :=
(Gen,Eval, Invert) be a pqOWTP on X . Then, for all but a negligible frac-
tion of possible sequences ((in, tn))n of outputs of Gen(n) =⇒ Eval(in, .) is a
pqOWP (and hence a pqOWF) on X .
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Post-Quantum PRNGs

Again, the same principle from OWF and OWTP applies when translating
PRNGs to the post-quantum setting. Remember that the security property
for PRNGs does not mention any kind of oracle access or code emulation, but
it just says that no efficient adversaries, by looking at the stream of (classical)
values output by the PRNG, can distinguish such stream from a random
stream. So, the interaction is still classical, and the only change is that the
adversary is now a quantum algorithm.

Definition 4.9 (Post-Quantum PRNG (pqPRNG)). Let p be a polynomial
such that p(n) ≥ n + 1, ∀n ∈ N. A post-quantum pseudorandom number
generator (pqPRNG) with expansion factor p is a DPT algorithm G such that:

1. given as input a bit string s ∈ {0, 1}n, (the seed), outputs a bit string
G(s) ∈ p(n); and

2. for any QPT algorithm D:

|Pr [D(r)→ 1]− Pr [D(G(s))→ 1]| ≤ negl,

where r $←− {0, 1}p(n) , s $←− {0, 1}n, and the probabilities are taken over
the choice of r and s, and the randomness of D.

Moreover, as noticed in Section 3.1, the proof of Theorem 3.3 still goes
through in the post-quantum scenario, because it does not make any assump-
tion on the query capabilities of the adversary.

Theorem 4.10 ([ABF+16, Lemma 19]). If F is a pqOWF, then GF (defined
as in Construction 3.2) is a pqPRNG.

Corollary 4.11 (pqOWF ⇔ pqPRNG). pqOWFs exist iff pqPRNGs exist.

Clearly, a pqPRNG it is also a PRNG. However, the opposite is not be-
lieved to hold, as the following example shows.

Lemma 4.12. Under the DLP hardness assumption, there exists a PRNG
GBM which is quantumly predictable. I.e., there exists a non-negligible func-
tion δ and a QPT algorithm D which, on input n sequential values output by
GBM on any random seed, predicts the (n + 1)-th value output by GBM with
probability at least δ(n).

Proof. A counterexample GBM is the modular exponentiation Blum-Micali
generator [KL07], but many other similar variants work as well [GdAJ13].
This construction is based on exponentiation of a public generator g modulo a
public large prime p, and it is a classically secure PRNG under the assumption
that computing discrete logarithms is computationally hard. More specifically,
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if si is the current state of the generator, one output bit is computed as a hard-
core predicate of the value si+1 = gsi mod p (where si+1 becomes the next
state of the generator). Thus, starting from a secret seed s0, a pseudorandom
bit string can be generated by applying iteratively the procedure.

However, there exists a quantum attack [GdAJ13] (based on variants
of both Shor’s and Grover’s algorithms) which, given p, g and a sequence
(r1, . . . , rn) of values output by GBM , can recover the initial state s0 with
probability δ non-negligible in n. This, in turns, allows to predict the whole
sequence of GBM .

Post-Quantum PRFs

The case of pseudorandom functions, instead, is a bit different. Definition 3.5
specifically conditions the existence of (classical) PRFs to the query capa-
bilities of the adversary, so we should make a distinction whether, in the
post-quantum case, these queries should still be classical or not.

The QS1 principle comes handy here. In a reasonable security model,
should the adversary be able to implement the code of the PRF on his local
computing device? The answer is: “normally, no, because he does not know
the secret key”. After all, the whole point of a PRF is that the adversary
should not be able to distinguish the output of the PRF from the output of an
(abstractly defined) completely random function, which in particular means
that the adversary should not be able to see the PRF’s code, because there
might be no code at all. This is in striking contrast with the QROM, and
the reason is that a QRO models a public hash function, which everybody can
compute, while a PRF exists as long as the key remains secret.

In other words, post-quantum pseudorandom functions (pqPRFs) are de-
fined by merely replacing the PPT adversary with a QPT adversary, and
keeping the oracle access classical. Quantum-secure PRFs instead, as defined
in [BDF+11, Zha12a], are a different object, and they will be presented in the
next chapter in the context of the domain QS2.

Definition 4.13 (Post-Quantum Pseudorandom Function (pqPRF)). A (fam-
ily of) post-quantum pseudorandom functions (pqPRF) from X to Y with key
space K is a DPT algorithm F : (k ∈ K, x ∈ X ) 7→ y ∈ Y such that for any
QPT algorithm D it holds:∣∣∣∣∣ Pr

k
$←− K

[
DFk → 1

]
− Pr

h
$←− YX

[
DOh → 1

]∣∣∣∣∣ ≤ negl,

where Oh is an oracle for h (i.e., a random oracle), and the probabilities are
over the choice of k and h, and the randomness of D.

Moreover, the same proofs for Theorems 3.6 and 3.7 go through unchanged,
because we are not modifying the oracle access mode, but just the adversary
computation model. As a consequence, we can state the following.
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Theorem 4.14 (pqPRF ⇔ pqPRNG). pqPRFs exist iff pqPRNGs exist.

Corollary 4.15. pqOWF exist iff pqPRF exist.

Post-Quantum PRPs

The case of post-quantum PRPs is analogous to the one for pqPRFs.

Definition 4.16 (Post-QuantumWeak PRP (pqWPRP)). A (family of) post-
quantum weak pseudorandom permutations (pqWPRP) on X with key space
K is a pair of DPT algorithms (P,P−1) : (k ∈ K, x ∈ X ) 7→ x′ ∈ X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any QPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
DPk → 1

]
− Pr

p
$←− S(X )

[
DOp → 1

]∣∣∣∣∣∣ ≤ negl,

where Op is an oracle for p, and the probabilities are over the choice of
k and p, and the randomness of D.

Definition 4.17 (Post-Quantum Strong PRP (pqSPRP)). A (family of) post-
quantum strong pseudorandom permutations (pqSPRP) on X with key space
K is a pair of DPT algorithms (P,P−1) : (k ∈ K, x ∈ X ) 7→ x′ ∈ X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any QPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
DPk,P

−1
k → 1

]
− Pr

p
$←− S(X )

[
DOp,Op−1 → 1

]∣∣∣∣∣∣ ≤ negl,

where Op is an oracle for p, Op−1 is an oracle for p−1, and the proba-
bilities are over the choice of k and p, and the randomness of D.

When left unspecified, by ‘pqPRP’ we mean the strong version. A pqPRP
is clearly also a pqPRF, but the converse does not necessarily hold. Again,
as we are not modifying the oracle access mode, the classical constructions of
PRPs from PRFs go through unchanged in the post-quantum setting. There-
fore, the existence of pqPRPs is also equivalent to the existence of pqOWFs.

Theorem 4.18 (pqPRF ⇔ pqPRP). pqPRFs exist iff pqPRPs exist.
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4.4 Post-Quantum Encryption

Post-quantum encryption schemes are classical encryption schemes meant to
retain their security also against quantum adversaries. It is common for this
scenario to just assume the same definitions and security notions we saw in
Chapter 3, and just replacing PPT adversaries with QPT ones. However, in
the case of public-key encryption, one must be a bit careful in doing so.

Post-Quantum Secret-Key Encryption

Following the QS1 principle, in post-quantum secret-key encryption one can
just ‘blindly’ replace classical adversaries with quantum ones, because the
adversary itself is never supposed to run encryption or decryption procedures
locally (after all, he does not have the secret key). So we discuss here the
modified security definitions as follows (we do it just for the IND and IND-
CPA notions, but the same procedures yields equivalent post-quantum security
notions for SEM, IND-CCA1, and IND-CCA2). As usual, E := EK,X ,Y :=
(KGen,Enc,Dec) denotes a SKES with plaintext space X , ciphertext space Y,
and key space K.

Definition 4.19 (Post-Quantum IND Adversary). Let E be a SKES. A post-
quantum IND (pq-IND) adversary A for E is a pair of QPT algorithms A :=
(M,D), where:

1. M :→ X ×X × H is the pq-IND message generator;

2. D : Y × H→ {0, 1} is the pq-IND distinguisher,

where H is a Hilbert space of appropriate dimension, modeling the state com-
munication register betweenM and D.

Experiment 4.20 (Gamepq−IND
E,A ). Let E be a SKES, and A := (M,D) a

pq-IND adversary. The pq-IND experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, |state〉)←M
4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← D(c, |state〉)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

Advpq−IND
E,A := Pr

[
Gamepq−IND

E,A → 1
]
− 1

2 .
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Definition 4.21 (Post-Quantum Indistinguishability (pq-IND)). A SKES E
has post-quantum indistinguishable encryptions (or, it is pq-IND secure) iff,
for any pq-IND adversary A it holds that: Advpq−IND

E,A ≤ negl.

Experiment 4.22 (Gamepq−IND−CPA
E,A ). Let E be a SKES, and A := (M,D) a

pq-IND adversary. The pq-IND-CPA experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, |state〉)←MEnck

4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← DEnck(c, |state〉)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

Advpq−IND−CPA
E,A := Pr

[
Gamepq−IND−CPA

E,A → 1
]
− 1

2 .

Definition 4.23 (Post-Quantum Indistinguishability of Ciphertexts under
Chosen Plaintext Attack (pq-IND-CPA)). A SKES E has post-quantum indis-
tinguishable encryptions under chosen plaintext attack (or, it is pq-IND-CPA
secure) iff, for any pq-IND adversary A it holds that: Advpq−IND−CPA

E,A ≤ negl.

Clearly, pq-IND-CPA is at least as strong as IND-CPA.

Theorem 4.24 (pq-IND-CPA =⇒ IND-CPA). If a SKES is pq-IND-CPA
secure, then it is also IND-CPA secure.

It is common folklore that, unlike some PKES, the most widely used con-
structions for SKES are actually also post-quantum secure. However, the
converse of Theorem 4.24 does not hold, and it is important to remember
that post-quantum notions for SKES are actually strictly stronger than the
classical ones in QS0.

Theorem 4.25 (IND-CPA SKES 6=⇒ pq-IND-CPA SKES). Under standard
hardness assumptions, there exist SKES which are IND-CPA secure, but not
pq-IND-CPA secure.

Proof (sketch). It is sufficient to consider an IND-CPA SKES which appends
to every ciphertext the secret key used, encrypted with another, IND-CPA
but non–post-quantum secure PKES (e.g., some RSA variant) under a fixed,
known public key. With the knowledge of the public key, a quantum adversary
can emulate a quantum oracle for the encryption of the PKES, which can then
be broken by, e.g., Shor’s algorithm, thus revealing the SKES’s secret key.
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Figure 4.1: Relations for SKES security notions in QS0 and QS1.

The Goldreich scheme from Construction 3.26 is pq-IND-CPA when in-
stantiated with a pqPRF, because the same arguments used in Theorem 3.27
go through as long as the adversary is unable to distinguish the PRF from a
real source of randomness.

Theorem 4.26. Let EF be the SKES from Construction 3.26 implemented
through a pqPRF F . Then EF in a pq-IND-CPA SKES.

The same relations and separations examples between pq-IND, pq-IND-
CPA, pq-IND-CCA1, and pq-IND-CCA2, hold as from Section 3.2, and with
analogous separation examples from their classical counterparts as in Theo-
rem 4.25. Therefore, the relations between security notions for SKES in QS0
and QS1 are as summarized in Figure 4.1.

Post-Quantum Public-Key Encryption

In post-quantum public-key encryption schemes the situation is quite different.
The reason is that, in this case, the presence of a public-key allows the ad-
versary to compute encryptions autonomously. In this scenario, following the
QS1 principle, the encryption oracle Encpk should be replaced by the quan-
tum counterpart |Encpk〉. However, this is only true for the learning phases
during the security game (recall that, for PKES, IND security alone does not
constitute a meaningful notion). The IND phase, on the other hand, models
the attack of the adversary against the encryption of some unknown message,
encryption that, therefore, is performed by some classical third party (the
IND challenger). Moreover, as M and D are QPT algorithms, giving them
the public key pk as input automatically implies access to |Encpk〉.

The resulting post-quantum IND-CPA security game is modified as follows.

Experiment 4.27 (Gamepq−IND−CPA
E,A for PKES). Let E be a PKES, and

A := (M,D) a pq-IND adversary. The pq-IND-CPA experiment (in the post-
quantum public-key setting) proceeds as follows:

1: Input: n ∈ N
2: (pk, sk)← KGen
3: (m0,m1, |state〉)←M(pk)
4: b $←− {0, 1}
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5: c← Encpk(mb)
6: b′ ← D(c, |state〉 , pk)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

Advpq−IND−CPA
E,A := Pr

[
Gamepq−IND−CPA

E,A → 1
]
− 1

2 .

Notice how only the encryption oracle during the learning phases is re-
placed by a quantum oracle, but it is still classical during the IND phase. This
notion was introduced in [BZ13b], but we will discuss more the implications of
this important difference in Section 5.3. Also notice how Gamepq−IND−CPA

E,A =
Gamepq−IND

E,A|Encpk〉
only holds for the public-key setting.

The security notions pq-IND-CCA1 and pq-IND-CCA2 in the public-key
setting are a straightforward modification of the ones for the SKES case, by
giving to the adversary quantum oracle access to |Encpk〉 – but the oracle Decsk
remains classical. It is well-known that certain PKES which are IND-CPA
secure under standard assumptions are not pq-IND-CPA secure (examples are
RSA, ElGamal EC-based schemes, etc.) Instead, pq-IND-CPA (or stronger)
PKESs can be constructed under other quantum-hardness assumptions, as
discussed in Section 2.3.

4.5 Post-Quantum Signatures

In the case of post-quantum signature schemes, as the oracle access to Signsk
is kept classical according to the QS1 principle, the definition of existential
unforgeability is modified in the standard post-quantum way, e.g., by merely
replacing PPT adversaries with QPT ones.

Experiment 4.28 (Gamepq−EUF−CMA
Sig,A ). Let Sig be a DSS, and A a QPT

algorithm. The pq-EUF-CMA experiment proceeds as follows:
1: Input: n, qs ∈ N
2: (pk, sk)← KGen
3: (x, sig) ← ASignsk(pk) after making at most qs queries to Signsk, receiving

signatures (x1, sig1), . . . (xqs , sigqs)
4: if SigVerify(pk, x, sig) = 1 and x 6= xi ∀ i = 1, . . . , qs then
5: Output: 1
6: else
7: Output: 0

The advantage of A is defined as:

Advpq−EUF−CMA
Sig,A (n, qs) := Pr

[
Gamepq−EUF−CMA

Sig,A (n, qs)→ 1
]
.
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Definition 4.29 (Post-Quantum Existential Unforgeability under Chosen
Message Attack (pq-EUF-CMA)). A DSS Sig is post-quantum existentially
unforgeable under chosen message attack (or, it is pq-EUF-CMA secure) iff,
for any QPT algorithm A it holds that:

Advpq−EUF−CMA
Sig,A ≤ negl.

However, the situation changes in the case of signatures in the random
oracle model: in this case, it would not make sense to define a notion of post-
quantum security without switching to the quantum random oracle model.
The resulting security notion should be called, for consistency with our naming
conventions, pq-EUF-CMA-QRO. However, it is clear that the presence of
QRO automatically implies QPT adversaries, which in turn implies a post-
quantum security notion at least. Therefore, for simplicity, we will call this
new security notion just EUF-CMA-QRO.

Experiment 4.30 (GameEUF−CMA−QRO
Sig,A ). Let Sig be a DSS, Oh a random or-

acle with corresponding quantum random oracle |Oh〉, and A a QPT algorithm.
The EUF-CMA-QRO experiment proceeds as follows:

1: Input: n, qs, qh ∈ N
2: (pk, sk)← KGenOh

3: (x, sig)← ASignsk,|Oh〉(pk) after making at most qh queries to |Oh〉, and qs
queries to Signsk receiving signatures (x1, sig1), . . . (xqs , sigqs)

4: if SigVerify(pk, x, sig) = 1 and x 6= xi ∀ i = 1, . . . , qs then
5: Output: 1
6: else
7: Output: 0

The advantage of A is defined as:

AdvEUF−CMA−QRO
Sig,A (n, qs, qh) := Pr

[
GameEUF−CMA−QRO

Sig,A (n, qs, qh)→ 1
]
.

Notice how, in the above experiment, only the adversary has access to
|Oh〉, while honest parties have only access to Oh.

Definition 4.31 ((Post-Quantum) Existential Unforgeability under Chosen
Message Attack in the Quantum Random Oracle Model (EUF-CMA-QRO)).
A DSS Sig is (post-quantum) existentially unforgeable under chosen message
attack in the quantum random oracle model (or, it is EUF-CMA-QRO secure)
iff, for any QPT algorithm A it holds that:

AdvEUF−CMA−QRO
Sig,A ≤ negl.
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4.6 Fiat-Shamir in the QROM

The Fiat-Shamir transformation is a fascinating example of how things can go
wrong when blindly switching to QPT adversaries in defining post-quantum
security notions. The presence of a random oracle and, especially, of rewinding
in the security proof makes this a case to be treated carefully.

In the last few years, a few works have been presented dealing with the FS
transformation in a quantum world. Here, we only discuss the results from
Dagdelen et al. [DFG13], which was hystorically the first work in the direction
of assessing the security of FS in the quantum world.

Preliminaries

We start by defining quantum-hard languages as the ‘post-quantum analogue’
of hard languages.

Definition 4.32 (Quantum-Hard Language). A hard language LW,R,Inst is a
quantum-hard language iff for any QPT algorithm A it holds:

Pr
(x,w)←Inst

[(x,A(x)) ∈ R] ≤ negl.

Next, we identify a special class of Σ-protocols, where the prover’s com-
mitment com does not depend on the witness w.

Definition 4.33 (Σ-Protocol with Witness-Independent Commitments). A
Σ-protocol (P,V) for a hard language LW,R,Inst has witness-independent com-
mitments iff there exists a PPT algorithm Com which, on input a statement
x ∈ L, produces the same distribution as the prover’s first message com(x,w)
for input (x,w) ← Inst. In this case, we also write the first message as
com← Com(x).

Many Σ-protocols are actually of this type. Examples are the well known
graph-isomorphism proof [GMW86], the Schnorr proof of knowledge [Sch91],
or the protocol for lattices used in an anonymous credential system [CNR12].
A typical example of non–witness-independent commitment Σ-protocol is the
graph 3-coloring ZKPoK scheme [GMW86], where the prover commits to a
random permutation of the coloring.

Finally, we define a class of Σ-protocols, where the prover’s commitment
com can be actually generated obliviously by the verifier instead.

Definition 4.34 (Σ-Protocol with Oblivious Commitments). A Σ-protocol
(P,V) for a hard language LW,R,Inst has oblivious commitments iff there exist
PPT algorithms Com and SmplRnd such that the following distributions are
statistically indistinguishable:
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1: Input: n ∈ N, (x,w) ∈ R
2: r $←− {0, 1}poly(n)

3: com← Com(x; r)
4: ch← V(x, com)
5: resp← P(x,w, com, ch)
6: Output: (x,w, r, com, ch, resp)

1: Input: n ∈ N, (x,w) ∈ R
2: (com, ch, resp)← (P(x,w),V(x))
3: r ← SmplRnd(x, com)
4: Output: (x,w, r, com, ch, resp)

Notice that a Σ-protocol with oblivious commitments has, in particular,
witness-independent commitments. With oblivious commitments, the prover
is able to compute a response from the given commitment com without know-
ing the randomness used to compute the commitment. This is usually achieved
by placing some extra trapdoor into the witness w. For example, for the
Guillou-Quisquater RSA based proof of knowledge [GQ88] where the prover
shows knowledge of w ∈ Z∗n with we = y mod n for x = (e, n, y), the prover
would need to compute an e-th root for a given commitment r ∈ Z∗n. If the
witness would contain the prime factorization of n, instead of the e-th root of
y, this would indeed be possible.

Σ-protocols with oblivious commitments allow to move the generation of
the commitment from the prover to the honest verifier. For most schemes this
infringes on active security, because a malicious verifier could generate the
commitment ‘non-obliviously’. However, the scheme remains honest-verifier
zero-knowledge, and this suffices for deriving secure signature schemes through
the FS transformation. We call such modified scheme a Λ-protocol2.

Definition 4.35 (Λ-Protocol). Let (P,V) be a Σ-protocol for a hard lan-
guage LW,R,Inst with oblivious commitments. The Λ-protocol (PΛ,VΛ) asso-
ciated to (P,V) is a 3-move interactive protocol with exchange of messages
r, (com, ch), resp between two PPT algorithms PΛ and VΛ such that:

1. PΛ(x,w)→ r, where r $←− {0, 1}poly(n)

2. VΛ(x)→ (com, ch), where com← Com(x; r), and ch← V(x, com)

3. PΛ(x,w, com, ch)→ resp, where resp← P(x,w, com, ch; r′), and
r′ ← SmplRnd(x, com)

4. VΛ(x, com, ch, resp) := V(x, com, ch, resp)

The generation of the initial randomness r can be performed by VΛ himself,
so that a Λ-protocol can generally be seen as a 2-move interactive protocol.

2The choice of the symbol ‘Λ’, in analogy to the choice of ‘Σ’ in ‘Σ-protocol’, is meant
as a mnemonic graphical representation of the protocol flow. For Σ-protocols, in fact, the Σ
recalls a stylization of the left-to-right (and viceversa) arrows denoting exchange of messages
between one ‘prover side’ to the left and one ‘verifier side’ to the right when representing
the protocol as a workflow, with the direction of time going down. Analogously, Λ-protocols
can be seen as Σ-protocols where part of the interaction (i.e., some ‘arrows’) are removed.
This is stylized by rotating the Λ by 90 degrees.
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Impossibility Result for Post-Quantum Fiat-Shamir

In this section, we use a meta-reduction technique to rule out the existence of
strongly black-box reductions for the Fiat-Shamir transformation of actively
secure Σ-protocols under certain conditions. That is: it is not possible to find
reductions with strong security guarantees for the Fiat-Shamir transformation
in the QRO, by only relying on the active security of certain Σ-protocols.
Before assessing more in detail the strength of this result, we outline here the
proof. Recall that, classically, if (P,V) is a Σ-protocol, then its FS transform
in the ROM, SigOh

FS (P,V), is an EUF-CMA-RO secure digital signature scheme
(Theorem 3.54).

1. First we describe a hypothetical, all-powerful adversaryA|Oh〉 with quan-
tum access to the random oracle (and no oracle access to the signing al-
gorithm Sign at all), able to break the EUF-CMA-RO security (generate
forgeries) for SigOh

FS (P,V) for any input public key. This adversary does
not need to exist in practice – it is sufficient for our meta-reduction to
successfully emulate it. The adversary A|Oh〉 uses his unbounded power
to find a secret key sk to its input pk, and then uses a (single) query
to the random oracle to generate a forgery. Moreover, such adversary
uses the quantum access to the random oracle to ‘hide’ his query in a
superposition (this prevents any strong quantum reduction to apply the
rewinding techniques of Pointcheval and Stern [PS00] as in the classical
setting). Finally, this hypothetical adversary uses the secret key and the
random oracle query to output a valid forgery.

2. Then we describe the behavior of a strongly black-box reduction B reduc-
ing the EUF-CMA-RO security of SigOh

FS (P,V) to the weak security of
an identification scheme (P,V). We show how this is equivalent to find-
ing valid witnesses for statements in a quantum-hard language LW,R,Inst
by having only classical access to an efficient adversary for SigOh

FS (P,V).
We call these very powerful reductions strong quantum extractors (or, in
short, just ‘extractors’).

3. Then we build a reductionM which breaks the active security of (P,V)
by having classical access to an extractor B.

4. Finally, we show how M can successfully emulate the all-powerful ad-
versary A for B by interacting with the honest prover P and with the
same random oracle Oh generated by B. That is,M is actually a meta-
reduction which breaks the active security of (P,V) by using B.

We give such impossibility result in respect to the subclass of witness-
independent Σ-protocols, while leaving open the other cases. Moreover, we
assume that the strong quantum extractor is input-preserving (i.e., it forwards
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x faithfully to the adversary). In this case we can easily derandomize the
adversary (with respect to classical randomness) by ‘hardwiring’ a key of a
random function into it, which he initially applies to its input x to recover
the same classical randomness for each run. Since the strong extractor has to
work for all adversaries, it in particular needs to succeed for those where we
pick the function randomly but fix it from thereon.

Theorem 4.36 (Impossibility Result for Fiat-Shamir). If (P,V) is an actively
and weakly secure Σ-protocol with witness-independent commitments, then it
does not admit any input-preserving strong quantum extractor.

Proof. We follow the proof sketch above by giving explicit descriptions of the
adversary A, the extractor B, and the meta-reduction M. At the beginning
of the game, the honest prover P generates a public/secret key pair (pk, sk)←
KGen for the DSS Sig

Oh

FS (P,V) (which is actually a valid statement/witness
pair (x,w) ← Inst for the quantum hard language LW,R,Inst). The public key
pk is also given to the honest verifier V.

The Adversary. Our hypothetical, all-powerful adversary A works as
follows (see Figure 4.2). He receives as input the public key pk = x and first
uses its unbounded computational power to compute a random witness w′
(according to uniform distributions of coin tosses D subject to Inst(n;D) →
(x,w′), but where D is a random function of x). Then A prepares all possible
random strings r ∈ {0, 1}r(n) (for some appropriate polynomial function r) for
the prover’s algorithm in superposition, i.e., A prepares the state:

2r−1∑
r=0

1√
2r
|r〉

(this can be done efficiently by using Hadamard gates). In the next step,
A evaluates (a unitary version of) the classical witness-independent algo-
rithm Com for (deterministically) computing the prover’s commitment com
on this superposition (and on x) in order to obtain a superposition of all
|r, com := Com(x; r)〉 plus an extra |0〉 ancilla register, i.e., the state:

|ϕ〉 :=
2r−1∑
r=0

1√
2r
|r, com, 0〉 .

At this point, A evaluates the QRO |Oh〉 in superposition on the com com-
ponent of the above state (and using the public-key pk and a chosen message
m), thereby obtaining the state:

|ψ〉 :=
2r−1∑
r=0

1√
2r
|r, com, ch := h(pk, com,m)〉 .
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Figure 4.2: the all-powerful adversary.

Then A computes, in superposition, responses resp ← P(x,w′, com, ch, r) for
all values in the superposition, by using w′ to emulate a valid prover, obtaining
the state:

2r−1∑
r=0

1√
2r
|r, com, ch, resp〉 ,

Finally, A measures such state, obtaining a valid transcript (com, ch, resp),
and hence a valid forgery sig for SigOh

FS (P,V).

The Extractor. An extractor B for (P,V) is a strong (black-box) quan-
tum reduction which uses an adversary against SigOh

FS (P,V) in order to break
the weak security of (P,V). Therefore, it has the following characteristics.

• B is a QPT algorithm, taking as input a public-key pk for SigOh

FS (P,V)
(i.e., a statement x in LW,R,Inst).

• Because he wants to break the weak security of (P,V), the goal of B is
eventually to output a valid witness w′′ for x.

• B is a black-box reduction, so it works by interacting with any successful
adversary against the EUF-CMA-RO security of SigOh

FS (P,V), but with-
out having any information about the internal workings of the adversary.
In particular, it must work for the all-powerful adversary A.

• Because A eventually wants to interact with a quantum random oracle,
B must also emulate a valid |Oh〉 for A. In particular, B must be a
quantum reduction.

• However, since B is a strong extractor, he is not allowed to tamper with
A’s queries to |Oh〉. That is, B cannot perform measurements or other
quantum operations on those queries, except the evaluation through |Oh〉
(but B could, for example, reprogram the oracle, or rewind A).
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For example, such extractors might work by running A twice, obtaining
two distinct signature forgeries for the same messages, and then applying the
special soundness property of (P,V) to extract a valid witness w′′. These
extractors can be passive or active (i.e., interacting with P), there is no re-
striction on that as long as they output a valid w′′.

On the other hand, we restrict our impossibility result to extractors with
the two following additional properties:

1. they are input-preserving, that is, the same statement x (public-key pk)
input to B is relayed as input to the black-box adversary; and

2. they are RO-broadcasting, that is, they provide a public interface for
evaluating Oh to be used by other external parties, not only exclusively
by the black-box adversary.

It is important to notice that this last condition is perfectly natural: recall
that the ROM idealizes a publicly known hash function, so that it is reasonable
to postulate that, once B has set up the emulated |Oh〉, everyone can have
access to it. Actually, for this reason, one could also assume that the extractor
is QRO-broadcasting (i.e., providing a public quantum interface for evaluating
|Oh〉), but for our result it is sufficient for the meta-reduction to query Oh

classically, and a single query is enough.

The Meta-Reduction. We illustrate the meta-reduction M in Fig-
ure 4.3. Assume that there exists an extractor B with black-box access to
an underlying quantum adversary A, and which on input a statement (public-
key) x sampled according to Inst, is able to extract a witness w′′ to x by running
several resetting executions of A, each time answering A’s QRO queries |ϕ〉
by emulating a QRO |Oh〉 for a classical, possibly probabilistic function h for
which B also provides a public interface to be (at least classically) accessed
by M. Then M can use w′′ to break the (weak and strong) security of the
underlying Σ-protocol (P,V) by impersonating a valid prover for x against V,
against the assumption, and thereby concluding the proof.

It is left to show how M can succesfully simulate a quantum adversary
for B. In particular, we describe here how M can simulate the all-powerful
adversary A. Clearly, M can produce the same query |ϕ〉 that A produces,
because of the witness-independence of (P,V). However, upon receiving back
the reply |ψ〉 from |Oh〉, this state is discarded and ignored, and a valid forgery
is instead generated in a different way. Namely,M initiates a (P,V) execution
with the valid prover P for x, receiving a commitment com. M can now
compute a valid challenge ch := h(com) by using the public interface provided
by B for evaluating h, that is,M is simulating a valid verifier V for P. At this
point, a valid response resp is computed by P, andM can use the transcript
(com, ch, resp) to output a valid forgery for B.
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Figure 4.3: An overview of our meta-reduction

The above theorem is a special case of [DFG13, Theorem 3.3] with DSS in
mind, but the Fiat-Shamir transform can also be cast in the scenario of non-
interactive zero-knowledge proofs. It is important to notice that the above
impossibility result has the following limitations:

• it only holds for witness-independent commitment Σ-protocols.

• It only holds for strong black-box quantum extractors. I.e., the extractor
is not allowed to tamper with the adversary’s queries to the QRO.

• The extractors must be input-preserving, i.e., they use their underlying
black-box adversary by giving as input the same public-key used to break
the Σ-protocol.

• It only holds for extractors breaking weak security, that is, witness-
extracting – they are stronger than extractors who just win the imper-
sonation game in the Σ-protocol.

• It is necessary that the extractor allows the meta-reduction to evaluate
Oh at least once.

Before discussing more in detail some of the above limitations, it is impor-
tant to put this result in hystorical perspective: this was the first impossibility
result for Fiat-Shamir in the quantum world, and following works [ARU14,
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Unr15] rely on more advanced tools. As already discussed, the witness-
independence of the commitments is not a strong limitation, as most Σ-
protocols have this property. Finally, notice that the existence of strong black-
box extractors is not an unreasonable assumption – and therefore the above
impossibility result is not unreasonably weak. In fact, Theorem 4.39 in the
next section shows that certain Σ-protocols do indeed admit such extractors.

As we have already noticed, the extractor has to choose and provide
public classical access to a classical function h for answering random ora-
cle queries. While this may be considered a ‘gray-box’ restriction in general
interactive quantum proofs, it seems to be inevitable in the QROM; it is
rather a consequence of the approach where a quantum adversary mounts
attacks in a classical setting. After all, both the honest parties as well as
the adversary expect a classical hash function. The adversary is able to
check this property easily, even if it treats the hash function otherwise as
a black box (and may thus not be able to spot that the hash function uses
(pseudo)randomness). We remark that this approach also complies with pre-
vious efforts [BDF+11, BZ13a, Zha12b, Zha12a] and the positive result in the
next section to answer such hash queries. Moreover, notice that in the above
proof technicallyM only needs to evaluate honce, i.e., it must not necessarily
require unlimited access to Oh. For these reasons, the meta-reduction still
qualifies as black-box.

Furthermore, the extractor can rewind the quantum adversary to any point
before the final measurement. Recall that for this impossibility result it is as-
sumed, to the advantage of the extractor, that the adversary does not perform
any measurement until the very end. Since the extractor can re-run the ad-
versary from scratch for the same classical randomness, and the ‘no-cloning
restriction’ does not apply to our adversary with classical input, the extrac-
tor can therefore easily put the adversary in the same (quantum) state as
in a previous execution, up to the final measurement. However, because we
consider strong black-box extractors, the extractor can only influence the ad-
versary’s behavior via the answers it provides to A’s external communication.
In this sense, the extractor may always rewind the adversary to such commu-
nication points. The extractor is also allowed to measure and abort at such
communication points.

The extraction strategy by Pointcheval and Stern [PS00] in the purely
classical case can be cast in the strong black-box extractor framework. For
this the extractor would run the adversary for the same classical randomness
twice, providing a lazy-sampling–based hash function description, with differ-
ent replies in the i-th answers in the two runs. The extractor then extracts
the witness from two valid signatures. This shows that a different approach
than in the classical setting is necessary for extractors in the QROM.

One might ask why the meta-reduction does not apply to the Fiat-Shamir
transform when adversaries have only classical access to the random oracle.
The reason is the following: if the adversary made a classical query about a
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single commitment (and so would the meta-reduction), then one could apply
the rewinding technique of Pointcheval and Stern changing the random oracle
answers, and extract the underlying witness via special soundness of the iden-
tification scheme. The quantum adversary here, however, queries the random
oracle in a superposition. In this scenario, as we explained above, the extrac-
tor is not allowed to ‘read’ the query of the adversary unless it makes the
adversary stop. In other words, the extractor cannot measure the query and
then keep running the adversary until a valid witness is output. This intrin-
sic property of strong black-box quantum extractors, hence, makes ‘quantum’
rewinding impossible. Note that rewinding in the classical sense – as described
by Pointcheval and Stern – is still possible, as this essentially means to start
the adversary with the same random coins. This does not cover the case where
B measures (at least partially) the query state without disturbing A’s behav-
ior significantly (i.e., non-strong extractors), but subsequent works [Unr15]
have also ruled out this possibility.

Finally, we briefly discuss that active security is basically necessary for
an impossibility result as above. That is, we outline a three-move protocol
for any quantum-hard language which, when applying the FS transforma-
tion, supports a straight-line extractor, and is honest-verifier zero-knowledge,
but not actively secure. This holds as long as there are post-quantum dense
encryption schemes, and post-quantum non-interactive zero-knowledge proofs.
The latter are classical non-interactive zero-knowledge proofs (in the com-
mon random string model) for which simulated and genuine proofs are in-
distinguishable, even for quantum distinguishers. The former are pq-IND-
CPA encryption schemes where honestly generated public keys are quantum-
indistinguishable from random strings. The construction is based on the (clas-
sical) non-interactive zero-knowledge proofs of knowledge of De Santis and
Persiano [SP92] and works as follows. The first message is irrelevant, e.g., we
let the prover simply send the constant 0 (potentially padded with redundant
randomness). In the second message the verifier sends a random string which
the prover interprets as a public key pk of the dense encryption scheme and
a common random string crs for the NIZK. The prover encrypts the witness
under pk and gives a NIZK that the encrypted value forms a valid witness for
the public value x. The verifier only checks the NIZK proof. The protocol is
clearly not secure against active (classical) adversaries because such an adver-
sary can create a public key pk via the key generation algorithm, thus, knowing
the secret key and allowing the adversary to recover the witness from a proof
by the prover. It is, however, honest-verifier zero-knowledge against quantum
distinguishers, because of the pq-IND-CPA security and the simulatability of
the NIZK hide the witness and allow for a simulation.
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Security Result for Post-Quantum Fiat-Shamir

In this section, we show how it is possible to actually resurrect the security of
the FS transformation for a certain class of Σ-protocols able to overcome the
previous impossibility result. The intuition is the following: as such impos-
sibility result works by exploiting the active security of the Σ-protocol, and
since such property is not needed for the FS transformation to yield secure
signature schemes, we can ‘patch’ the Σ-protocol by removing its active secu-
rity. That is, by weakening the security guarantees of a Σ-protocol (seen as
an identification scheme) we work toward strengthening the properties of its
FS transform (seen as a DSS).

We achieve this goal by considering the FS transform of Λ-protocols ob-
tained by Σ-protocols with oblivious commitments. In particular, using ran-
dom oracles one can hash directly into pairs (com, ch) by first computing the
output of the hash function obtaining a (public-coin) challenge ch and some
randomness r′, and then running Com(x; r′) to sample a commitment com
obliviously. The existence of SmplRnd guarantees that we could ‘bend’ this
value back to an actual pre-image r for com. In the sequel we therefore often
identify r′ with Com(x; r′) in the sense that we assume that the hash func-
tion maps to Com(x; r′) directly, and for a (randomized) hash function h and
message m we write (com, ch)← h(x,m, r). The modified FS transformation
then looks as follows.

Definition 4.37 (FS Transform of a Λ-Protocol). Let (PΛ,VΛ) be a Λ-protocol
for a hard language LW,R,Inst, with commitment space X (with associated ran-
domness space X−1 = {r : r ← SmplRnd} := {0, 1}poly(n)), challenge space
Y, and response space Z. Let Oh be a random oracle for a random func-
tion h : L ×M × X−1 → Y. The FS transform of (PΛ,VΛ) in the ROM,
Sig

Oh

FS (PΛ,VΛ), is a DSS with message spaceM, signature space T := Y×Z,
and key space K := L ×W, defined as follows:

1. KGen→ (pk, sk), where (pk, sk) := (x,w)← Inst

2. SignOh(sk,m)→ sig := (r, resp),
where r $←− X−1, (com, ch)← h(pk,m, r),
and resp← PΛ(pk, sk, com, ch, r)

3. SigVerifyOh(pk,m, sig)→ b,
where sig := (r, resp), b← V(pk, h(pk,m; r), resp)

As we have already discussed, this modified FS transformation eludes the
impossibility result from the previous section. In order to show its security, we
exploit the special soundness of the Λ-protocol: by reprogramming the QRO
|Oh〉 for a forgery-generating adversary A, eventually we obtain two related
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transcripts (com?, ch?, resp?) and (com?, ch′, resp′) for ch? 6= ch′, and thus ex-
tracting a valid witness for x and breaking the weak security of (PΛ,VΛ). The
idea of the proof is as follows.

1. First, we run the HVZK simulator S of the Λ-protocol to obtain a valid
transcript (com?, ch?, resp?).

2. We reprogram the QRO |Oh〉 by ‘injecting’ the value (com?, ch′) (for
ch? 6= ch′) on a fraction δ of the possible oracle answers. That is, we
replace Oh with a semi-constant distribution Uδ.

3. Then, we run the adversary A against the modified quantum oracle,
obtaining a forgery for Sig

Oh

FS (PΛ,VΛ) for some message m, and hence
a valid transcript (com, ch, resp) for (PΛ,VΛ).

4. Finally, if it happens that com = com? and ch 6= ch?, we can use the spe-
cial soundness extractor J to obtain a valid witness for x and breaking
the weak security of (PΛ,VΛ), concluding the proof.

In order for this proof strategy to work, the following two (seemingly con-
tradictory) conditions have to be fulfilled:

• we need to ensure that A eventually outputs a valid signature yielding a
transcript for the commitment com? of our choice (the one we obtained
from the zero-knowledge simulator of the underlying Σ-protocol). This
requires that com? appears with sufficiently large probability in the re-
sponses for oracle queries.

• On the other hand, we still require that A has a small probability of
distinguishing a true QRO |Oh〉 from the reprogrammed one. Otherwise,
the adversary may refuse to give a valid signature at all.

The following technical lemma shows that both conditions can be satisfied
simultaneously by choosing δ carefully.

Lemma 4.38. Let (PΛ,VΛ) be a Λ-protocol for a quantum-hard language
LW,R,Inst, and let O′ be the oracle obtained by reprogramming Oh on a frac-
tion δ of its possible inputs (pk,m, r) such that O′(pk,m, r) = (com?, ch′) with
probability δ ∈ (0, 1) for fixed values com? and ch′. Let A be a QPT algorithm
such that A|Oh〉(pk) outputs a valid forgery for Sig

Oh

FS (PΛ,VΛ) for a public
key pk with probability at least ε after performing qh queries to |Oh〉, and
let (com, ch, resp) the transcript obtained by the output of the same algorithm
A|O′〉(pk) running against the reprogrammed quantum oracle. Then:

Pr
[
VO′Λ (x, com, ch, resp)→ 1 ∧ (com, ch) = (com?, ch′)

]
≥ δ · ε− 8

3 · q
4
hδ

2.
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Proof. Consider the probability that we first run A on the original oracle |Oh〉
and check if it successfully forges a signature (r, resp) for pk and some message
m (leading to a transcript (com, ch, resp)), and then, independently, we also
verify that (pk,m, r) is mapped to (com?, ch′) under O′. Then:

Pr
[
A|Oh〉(pk) succeeds ∧ O′(pk,m, r) = (com?, ch′)

]
≥ δ · ε.

This follows from the independence of the events: the oracle O′ reprograms the
output with probability δ, independently of A’s behavior, but at the same time
we know that A|Oh〉 succeeds with probability at least ε by assumption. Next,
we replace |Oh〉 with |O′〉 for A, and we consider the new output (m, r, resp),
arguing that:

Pr
[
A|O′〉(pk) succeeds ∧ O′(pk,m; r) = (com?, ch′)

]
≥ δ · ε− 8

3 · q
4
hδ

2.

This follows from Lemma 4.3: switching to the new oracle can change the
distance of the output distribution of A by at most 8

3 · q
4
hδ

2, and adding
the verification step VO′Λ (x, com, ch, resp) → 1 cannot increase this distance.
Therefore, we conclude that the probability for the event

VO′Λ (x, com, ch, resp)→ 1 ∧ (com, ch) = (com?, ch′)

cannot be smaller than the claimed bound, because (com, ch) := O′(pk,m, r)
by construction.

The previous lemma informally tell us that, in order to succeed, we have to
balance between a large δ to increase the chances of the adversary outputting
a signature containing our desired com?, and a small δ to avoid that the
adversary detects the reprogrammed oracle. We are now ready to prove the
main theorem.

Theorem 4.39 (Security of a Fiat-Shamir Transform for Λ-Protocols). Let
(PΛ,VΛ) be a Λ-protocol for a quantum-hard language. Then Sig

Oh

FS (PΛ,VΛ)
is an EUF-CMA-QRO secure DSS.

Proof. We assume towards contradiction the existence of an efficient quan-
tum adversary A which, on input a public key pk, outputs a valid forgery
(m, sig) under pk with non-negligible probability ε, hence breaking the existen-
tial unforgeability of SigOh

FS (PΛ,VΛ). This adversary has access to a quantum-
accessible random oracle |Oh〉 with h(pk,mi, rj) = (comi,j , chi,j), and to a sign-
ing oracle Signsk for the secret key sk (where (pk, sk) := (x,w) ∈ R) producing,
on input a message m, a (classical) signature sig = (r, resp)← SignOh(sk,m).

The adversary A gets pk as an input, and is then allowed to perform up
to qh = poly(n) quantum queries to |Oh〉, and up to qs = poly(n) classical
queries to Signsk. Then, after running for poly(n) time, A produces (with
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non-negligible probability ε) a forgery (m, sig) such that m has never been
asked to the signing oracle Signsk throughout A’s execution (i.e., m is a fresh
message). We assume that qh also covers a classical query of the verifier to
check the signature.

Under these assumptions we show how to build a strong black-box quan-
tum extractor B, with access to A as a subroutine, and which is able to break
the hardness of LW,R,Inst with non-negligible probability. That is, B on in-
put x ∈ L generated according to Inst, is able to output a valid witness w′
such that (x,w′) ∈ R by only interacting classically with A. The quantum
extractor B works as follows:

• on input statement x, it first runs the simulator S of the underlying Λ-
protocol to obtain a valid transcript (com?, ch?, resp?). This is possible
because of the honest-verifier zero-knowledge property. Note also that
this does not require access to the random oracle. As already explained,
we assume for simplicity that the oblivious commitment is a random
string; else we would need to run SmplRnd on (pk, com?) to derive a
preimage randomness r, and then use r in the hash reply (and argue
that this is indistinguishable).

• Then, B simulates a quantum-classical oracle |O0〉 := |Oδh〉 which is
obtained by reprogramming a (simulated) quantum random oracle |Oh〉
over a fraction δ of its possible inputs (pk,m, r) with the value (com?, ch′).
Here, δ is some non-negligible probability in the security parameter
(whose optimal value will be computed later), and ch′ is an arbitrarily
chosen challenge different from ch?. That is, O0(pk,m, r) = (com?, ch′)
with probability δ, and random elsewhere.

• Next, B invokes A on input pk = x.

• Whenever A performs the i-th (classical) query to Signsk for signing a
message mi, B does the following:

– choose a random value ri $←− X−1;
– execute the honest-verifier zero-knowledge simulator S of the Λ-

protocol, obtaining a valid (simulated) transcript(comi, chi, respi);
– reprogram Oi−1 with value (comi, chi) for the input (pk,mi, ri). We

denote by Oi the reprogrammed oracle after the i-th query to the
signing oracle;

– then output sigi := (ri, comi, chi, respi) as Signsk’s reply to A.

• Finally, when A outputs a (hopefully valid) fresh forgery (m, sig), where
sig = (r, resp) and Oqs(pk,m; r) = (com, ch), the extractor B aborts
if com 6= com? or ch = ch?. Otherwise, it uses the special soundness
extractor J of the underlying Λ-protocol on input (com?, ch?, resp?) and
(com, ch, resp) to obtain a valid witness w′ for x, concluding the attack.
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Note that we can formally let B implement the dynamic reprogramming
of the quantum-classical oracle, basically hardwiring all changes due to repro-
gramming into the code of the underlying classical algorithm. In a second
step we can emulate the quantum oracle as explained in Section 4.2.

We next show that the success probability of our extraction procedure B
is non-negligible given a successful A. The proof follows the common game-
hopping technique where we gradually deprive the adversary of (a negligible
amount of) its success probability.

Game1 : this is GameEUF−CMA−QRO
Sig
Oh
FS (PΛ,VΛ),A

describing A’s original attack against

Sig
Oh

FS (PΛ,VΛ) constructed according to Definition 4.37, played against a pub-
lic key pk. By assumption we have:

Pr [A wins Game1] ≥ ε

for some non-negligible value ε.

Game2 : this game is identical to Game1, except that we abort ifA outputs
a valid fresh forgery (m, sig) where sig does not contain a randomness leading
to the pre-selected commitment com? and challenge ch′. Furthermore, we
replace the random oracle Oh with the oracle O0. Recall that O0 is obtained
by reprogramming Oh on a fraction δ of its entries with the value (com?, ch′).
By Lemma 4.38 we have:

Pr [A wins Game2] ≥ δε− 8
3q

4
hδ

2.

Game3 is actually a sub-sequence of qs different experiments denoted by
Game(i)

3 for i = 1, . . . , qs.

Game(1)
3 : this is as Game2, but this time O0 is reprogrammed to O1 (i.e.,

O1(pk,m1, r1) := (com1, ch1)) as soon as A performs its 1st classical query
m1 to Signsk. From then on, the oracle O1 always answers consistently with
this value. We need to show that this switching does not change the winning
probability significantly. For this we basically need to show that, so far, the
amplitudes of this value (pk,m1, r1) in the queries to the quantum oracle are
small, or else the adversary may be able to spot some inconsistency.

Let X−1 the randomness space from SmplRnd as from Definition 4.37, and
let

∣∣X−1∣∣ = 2r for some function r polynomial in the security parameter. We
define the value (pk,m′i, r′j) to have high amplitude if there exists at least one
of the quantum queries |ϕ1〉 , |ϕ2〉 , . . . to the quantum oracle |O0〉 before the
current (1st) signing query, where the amplitude ai,j associated to the corre-
sponding basis element of (pk,m′i, r′j) is such that |ai,j |2 ≥ 2

−r
2 . Otherwise,

the tuple is said to have low amplitude. Note that each query to the quantum
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oracle can have at most 2
r
2 tuples with high amplitude, because the (square

of the) amplitudes need to sum up to 1.
When O0 is reprogrammed to O1, the choice ofm1 is fixed (i.e., determined

by the 1st query of A to Signsk), but r1 is still chosen uniformly at random in
X−1. Since A performs at most qh queries to |O0〉 before the signing query,
we have thus at most qh · 2

r
2 tuples with high amplitude before this query.

The probability of hitting such a tuple is then given by:

Pr [(pk,m1, r1) has high amplitude] ≤ qh · 2
−r
2 . (4.1)

Moreover, provided (pk,m1, r1) has low amplitude, and since there are at most
qh + qs query steps, using Lemma 2.12 and Lemma 2.11 we obtain:∣∣∣A|O0〉 −A|O1〉

∣∣∣ ≤ 4
√

(qh + qh) · 2
−r
2 . (4.2)

Let us assume, on behalf of the adversary, that A fails whenever (pk,m1, r1)
has high amplitude. Still, from equations (4.1) and (4.2), we have:

Pr
[
A wins Game(1)

3

]
≥ Pr [A wins Game2]− 4

√
(qh + qs) · 2

−r
2 − qH · 2

−r
2

= δε− 8
3q

4
hδ

2 − negl.

Here, we use the fact that reprogramming the oracle for (pk,m1, r1) does not
change the adversary’s success probability for a forgery for a fresh message m.
That is, since the adversary’s forgery is for m 6= m1,m2, . . . it cannot simply
copy a signature query as a forgery, but must still forge on the original oracle
O0. So the argument about the winning probability applies as it did for O0.

We now repeat at most qs times the game hopping, from Game(1)
3 to

Game(qs)
3 , every time repeating the previous game but switching from Oi−1

to Oi during the ith query to Signsk, each time losing at most a negligible
factor in the winning probability. Note that the probability of hitting a high
amplitude with the signature generation in each hop increases to at most
qh · 2

−r
2 + qs · 2−r when taking into account the at most qs hash queries in the

previous signature requests, but this remains negligible.

After qs steps we reach the following game.
Game(qs)

3 : as Game2, but now O0 is dynamically reprogrammed as a
sequence O1, . . . ,Oqs throughout all of the A’s queries to Signsk. We have:

Pr
[
A wins Game(qs)

3

]
≥ δε− 8

3q
4
hδ

2 − negl.

Game4 : as before, but now Signsk is just simulated through the zero-
knowledge simulator S of the underlying Λ-protocol. If, by contradiction, A’s
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winning probability is affected by more than a negligible amount in so do-
ing, then we could use A to build an efficient distinguisher between ‘real’ and
‘simulated’ transcripts of the Λ-protocol. This would require a distinguisher
with access to a random oracle, in order to simulate the game. According
to [Zha12b, Theorem 6.1], however, we can simulate the oracle via q-wise
independent functions (which exists without requiring cryptographic assump-
tions). Furthermore, a hybrid argument can be used to reduce the case of qs
proofs to a single proof. Therefore:

Pr [A wins Game4] ≥ δε− 8
3q

4
hδ

2 − negl.

Game5 : finally, in this game the special soundness extractor J is run on
the transcript obtained from A’s output from the previous game. Change the
winning condition of A such that the adversary wins if this extraction yields
a valid witness w′ for x. If the winning probability in this game is more than
negligibly far from the winning probability of A in the previous game then this
can only be due to the fact that the simulated proof with (com?, ch?, resp?)
cannot be accepted by the verifier; else the extractor would be guaranteed
to work for this proof and the (accepted) signature. But this would allow an
easy distinguisher against the zero-knowledge property, similar to the previous
games. Hence:

Pr [A wins Game5] ≥ δε− 8
3q

4
hδ

2 − negl.

Note that A’s winning condition in the final game corresponds exactly to the
probability of B successfully deriving a witness w′ for its input x. This winning
probability can be maximized (by zeroing the first derivative in δ) by choosing:

δ := 3ε
16q4

h

.

This yields:

Pr [A wins Game5] ≥ 3ε2

16q4
H

− negl,

which is non-negligible. This concludes the proof of the theorem.

The results from this section regarding the security and impossibility re-
sults for the Fiat-Shamir transform of witness-independent commitments in
the QROM is summarized in Figure 4.4: a security proof can be found for
Σ-protocols with oblivious commitments (that is, Λ-protocols), while strong
extractors can be ruled out whenever the FS transformation is applied to
Σ-protocols which are actively secure (seen as identification schemes). How-
ever, some of these schemes can be ‘patched’ by using commitment trap-
doors in order to make them oblivious commitment and remove their active
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Figure 4.4: Security results for the Fiat-Shamir transformation in the QROM.

security, yielding signature schemes in a way similar to the hash-and-sign
paradigm [GPV08]. This is for example the situation in the lattice-based
signature scheme by Lyubashevsky [Lyu12], which can be patched in such a
way to be rendered EUF-CMA-QRO secure according to Theorem 4.39, as
explained in [DFG13].

4.7 Post-Quantum ORAMs

In this section we look at the post-quantum security of ORAMs. First of
all, we define a suitable security model. Then we show that the extension
of a classically secure ORAM to its post-quantum secure counterpart is not
necessarily trivial. To this end, we examine PathORAM and we show that
merely substituting the underlying encryption scheme with a post-quantum
one does not generally yield a post-quantum ORAM. The idea is to exploit the
weakness of other components of the ORAM construction under examination
(in this case, the PRNG used). This is not surprising, because it has to
be somewhat expected that post-quantum security can only be achieved by
hardening all the underlying components of a cryptographic scheme, not only
the encryption. However, it is important to keep this possibility in mind.

Then, we show that building post-quantum secure ORAMs is possible.
We do it by showing that PathORAM, instantiated with a post-quantum secure
SKES and a post-quantum PRNG, achieves post-quantum security. This is
important from an application perspective, because it shows that efficient and
post-quantum secure ORAMs can indeed be obtained in a straightforward
way. Moreover, the proof of this fact is a straightforward adaptation from
Theorem 3.64, and the resulting security reduction is semi-classical, therefore
offering very strong security guarantees, as discussed in Section 4.1.
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Post-Quantum Security of ORAMs

Since the security model for ORAM only involves a classical communication
channel and there is no oracle access involved, we can simply switch to a post-
quantum model of security for ORAMs in the usual way: we keep the AP-
IND-CQA game as from Experiment 3.61, but we switch to QPT adversaries.

Definition 4.40 (Quantum ORAM Adversary). A quantum ORAM adver-
sary A is a QPT algorithm which is computationally indistinguishable from
an honest server S for every ORAM client C. In particular, the ORAM’s
soundness is preserved.

Definition 4.41 (Post-Quantum Access Pattern Indistinguishability Under
Adaptive Chosen Query Attack). An ORAM construction ORAM has post-
quantum computationally indistinguishable access patterns under adaptive
chosen query attack (or, it is pq-AP-IND-CQA-secure) iff for any quantum
ORAM adversary A it holds that AdvAP−IND−CQA

ORAM,A ≤ negl.

Clearly, if an ORAM is pq-AP-IND-CQA-secure, then it is also AP-IND-
CQA-secure. The converse does not hold (under standard hardness assump-
tions) as we will see.

The Impossibility Result

In order to show that one cannot in general obtain post-quantum ORAMs by
just using a post-quantum SKES in a black-box way, we provide the following
counterexample.

Theorem 4.42. Let E = (KGen,Enc,Dec) be a pq-IND-CPA SKES according
to Definition 4.23, and let GBM be the Blum-Micali PRNG from Lemma 4.12.
Let PathORAMBM be the ORAM obtained by instantiating the PathORAM con-
struction from Definition 3.63 using E and GBM . Then, under the DLP hard-
ness assumption, PathORAMBM is an AP-IND-CQA secure ORAM, but not
pq-AP-IND-CQA secure.

At the light of Theorem 3.64 and Definition 4.41, in order to prove Theo-
rem 4.42 we only need to show the following lemma.

Lemma 4.43. There exists a QPT algorithm A winning GameAP-IND-CQA
A,PathORAMBM

with non-negligible advantage over guessing.

Proof. We start by making a key observation concerning the access patterns
produced in PathORAM. Let dr = (op, i, data) be a data request sent by C. By
only examining the communication transcript com resulting from the execu-
tion of this data request, one can see which path (branch of the tree) S sent to
C, thus learning the leaf ri to which i was mapped to, even without knowing i
itself. In normal circumstances, this is of no use to an adversary, because this
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value ri becomes immediately obsolete, being replaced by a new fresh value
output by the PRNG in the position map. But it will be important in our
attack as we will see.

Let D be the BQP algorithm (the ‘PRNG predictor’) of Lemma 4.12.
We build the adversary A with oracle access to D. First of all A chooses
n, ndb ≤ nMax and starts the AP-IND-CQA game by calling Init(n, ndb). For
his attack, A fixes an arbitrary identifier i ∈ {1, . . . , ndb}, and an arbitrary
data unit data ∈ {0, 1}ndat .

During the first CQA learning phase, A asks C to execute k = poly(n)
consecutive data requests of the form (‘write’, i, data). A records the resulting
access patterns from all these queries, ap1, . . . , apk, which include the commu-
nication transcripts com1, . . . , comk and then, by the observation made before,
a ‘history’ (r(0)

i , . . . , r
(k−1)
i ) of the past mappings of block i at the beginning

of the execution of every data request from 1 to k. These mappings, in turn,
are k outputs of GBM , and they are given as input to the algorithm D, which
then outputs a candidate prediction r∗ for the current secret leaf value r(k)

i .
Then A executes his challenge query by using data requests (dr0, dr1) with

dr0 = (‘write’, i, data), and dr1 = (‘write’, j, data) for j 6= i, and records
the resulting access pattern apk+1 = ap(drb) (where b is the secret bit to be
guessed). At this point, the adversary looks at this last communication tran-
script comk+1 and, by the observation made at the beginning of the proof,
checks the leaf index r related to the tree branch exchanged during the exe-
cution of the challenge query. If r = r∗, then A sets b′ = 0 (where b′ is A’s
current ‘guess’ at b), otherwise A sets b′ = 1.

However, before outputting his guess b′ in order to win the AP-IND-CQA
game, A has to perform an additional check (during the second CQA challenge
phase) in order to verify whether D had correctly guessed the right value r(k)

i

or not. The problem here is that, if D is unsuccessful (which happens with
probability as high as 1 − δ), we cannot say anything about the predicted
value r∗. In fact, in that case D could potentially act maliciously against A,
and output a value r∗ which maximizes the probability of b′ being wrong in
the above strategy: for example, r∗ = r

(0)
j . For this reason A performs the

following ‘sanity check’ after the challenge query:

• if b′ = 1, then A demands the execution of an additional query of the
form (‘write’, i, data), and verifies that the resulting path leads to leaf r∗.
This guarantees that r∗ was actually correct, and it was not observed
during the challenge query just because dr1 was chosen, as guessed.

• Otherwise, if b′ = 0, then A demands the execution of an additional
query of the form (‘write’, j, data), and verifies that the resulting tree
branch does not lead to leaf r∗. This guarantees with high probability
that D did not maliciously output the secret leaf state for element j
instead of i.
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It is easy to see that in the case of misbehavior of D, both of the above tests
fail with high probability. In fact, in the case b′ = 1, the current mapping
of element i leads to leaf r(k)

i , which was not correctly predicted by D by
assumption. In the latter case instead, recall that A had guessed b′ = 0
because during the execution of the challenge query he observed the leaf r∗;
this could only lead to a fail in the case that r(0)

j = r
(k)
i , which only happens

with negligible probability at most ε, or if r(0)
j = r∗, which is detected by the

sanity check.
Finally, if the above sanity check is passed, A outputs b′, otherwise he

outputs a random bit.
Notice that (provided D was successful) this strategy is always correct,

except in the case that: dr1 was chosen (probability 1
2) and the initial mapping

of blockj (which is r(0)
j ), coincides with r(k)

i . As already mentioned, the latter
event can only happen at most with probability ε negligible in the bit size of
GBM ’s output, and hence in the security parameter n (it is easy to see that
this is a minimum requirement for any classically secure PRNG, as GBM is).
Thus:

Pr
[
GameAP-IND-CQA

A,PathORAMBM → 1
∣∣∣D succeeds

]
≥ 1− ε

2 . (4.3)

On the other hand, if D fails (which happens with probability (1 − δ) at
most) and predicts a wrong value r∗ 6= r

(k)
i , the above strategy still succeeds

with probability at least 1
2 −

ε
2 (again, because of the remote possibility that

r
(0)
j = r

(k)
i ). Hence:

Pr
[
GameAP-IND-CQA

A,PathORAMBM → 0
∣∣∣D fails

]
≤ 1

2 (1 + ε) . (4.4)

Thus, combining 4.3 and 4.4, the adversary’s overall success probability is:

Pr
[
GameAP-IND-CQA

A,PathORAMBM → 1
]

= Pr [A wins] · Pr [D succeeds] + (1− Pr [A loses] · Pr [D fails])

≥ δ
(

1− ε

2

)
+
(

1− (1− δ) 1
2 (1 + ε)

)
≥ 1

2 + 1
2δ −

1
2ε,

which concludes the proof, because ε is negligible, while δ is not.

Construction of a Post-Quantum ORAM

A careful examination of PathORAM’s construction details reveals that an im-
portant role in the security is played by the pseudorandom number generator
used to map a block to a leaf during every access. As we have just shown, a
PRNG which is not post-quantum secure is enough to break PathORAM’s secu-
rity in a quantum setting. It is natural then to wonder whether the attack on
PathORAM can be avoided by using a post-quantum PRNG, in addition to a
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post-quantum secure encryption scheme, when instantiating PathORAM. Here,
we give a positive answer to such question.

Theorem 4.44. Let E be a pq-IND-CPA SKE according to Definition 4.23,
and let G be a pq-PRNG as from Definition 4.9. Then, PathORAM instantiated
using E and G is a pq-AP-IND-CPA secure ORAM.

Proof. The proof follows step-by-step the proof of Theorem 3.64. In fact this
time, since G is a pq-PRNG by assumption, the new output values used to
update the position map in PathORAM are indistinguishable from random (and
therefore, in particular, unpredictable) even for QPT adversaries. As G has an
internal state which is completely unrelated to E ’s internal randomness, and
because there is no quantum oracle access involved, the security arguments
at every step in the proof of Theorem 3.64 remain unchanged. Therefore,
any QPT adversary who can distinguish the execution of two data request
sequences with probability non-negligibly better than guessing, can be turned
into a successful adversary against the pq-IND-CPA security of E , or against
the pqPRNG, against the security assumptions.





Chapter 5
QS2: Quantum

(Superposition-Based) Security

In this chapter we conclude our study of quantum security notions for classical
cryptographic objects by presenting the quantum security class QS2. In this
domain, the schemes are classical and the adversaries are quantum, as in QS1.
However, unlike in QS1, the adversaries are always given quantum access to
classical oracles, not only when the ‘realistic’ model requires it. So, for ex-
ample, encryption schemes in QS2 must provide security against adversaries
with quantum access to the encryption oracle, even in the secret-key case, and
digital signature schemes must be unforgeable toward adversaries with quan-
tum access to the signing oracle, even if such schemes are still classical. What
we call here the QS2 principle states: “Whenever an adversary has access to
a classical oracle, then such oracle should be accessible by the adversary in a
quantum way.”

As we will see, the resulting security notions can be strictly stronger than
‘post-quantum’ notions as defined in the previous chapter. Constructions
which are secure in QS2 retain in particular their security in QS1, but the
converse does not always hold. QS2 is, in a sense, quantum security beyond
post-quantum security. When a cryptographic construction is secure in the
QS2 sense, we will just call it quantum-secure.

In the following sections first we discuss the motivations for considering this
scenario, and then we introduce security models and definitions for quantum-
secure cryptographic building blocks and secret-key encryption schemes.

My Scientific Contribution in this Chapter

Most of the new contributions in this chapter first appeared in [GHS16], which
is a joint work with Andreas Hülsing and Christian Schaffner. The impossi-
bility result in Section 5.3 is my contribution, but Andreas formalized the
helpful tool of core function. The idea of superposition-based quantum indis-

109
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tinguishability, including the type-(2) oracles, the ‘security tree’ mentioned in
Section 5.3, as well as the definitions of qIND and qIND-qCPA, and their re-
lations to other notions, are my contribution. The idea of Constructions 5.18
and 5.19 and the intuition behind their security came from discussions be-
tween Andreas and me. However, Christian developed Lemma 5.20, and An-
dreas helped me with the proof of Theorem 5.22. Andreas also had the idea of
extending quantum indistinguishability to the weak case, i.e., classical repre-
sentations of quantum states. The resulting semantic security notion wqSEM
is a joint work of all of the authors, as well as Theorem 5.36. However, the
intermediate notions qaSEM and iqSEM are my contribution.

Quantum-secure PRPs (Definitions 5.3 and 5.4) were first formally defined
in [GHS16]. Finally, Theorem 5.9 is considered folklore but, to the best of my
knowledge, the first formal proof appears in this thesis.

5.1 Why Superposition Access?

The obvious question one might ask is: “why considering quantum access to
classical primitives, in the case where the adversary does not implement the
primitive’s code himself? Doesn’t this clash with the QS1 principle?” Actually,
it does not: the QS1 principle only states that whenever a quantum adversary
can implement some code locally, this should be modeled as a quantum access,
but it does not say anything about the converse. In fact, classical access to an
oracle can be seen just as a special case of quantum access, where the adversary
is limited to queries in the form of basis states. So, the first ‘trivial’ reason
why one should consider quantum access is the following.

Reason #1: it is a more general model. Nothing is lost, in terms of
security, by considering adversaries able to execute superposition queries. The
resulting security notions will be at least as strong as the corresponding post-
quantum security notions, and sometimes strictly so, as we will see. Of course
this does not make post-quantum notions obsolete: for example it might be
impossible (or much harder, or worse in performance) to achieve certain QS2
notions in contrast with the analogous QS1 notions. It will be the model
and the circumstances to dictate whether post-quantum security is enough,
or something more should be requested. But for sure, all other factors being
equal, one does not lose anything by requesting security in the more challeng-
ing scenario considered in QS2.

There are, of course, less ‘trivial’ reasons. We have already met one in Sec-
tion 4.2 about the emulation of a quantum random oracle: since the QROM
describes an object with quantum superposition access by definition, emulat-
ing it using post-quantum PRFs would not be enough, because post-quantum
PRFs are only accessed classically, and their security model says nothing about
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what happens when the access is quantum. For this reason, if we want to em-
ulate a quantum oracle with PRFs, we need a security model which covers
the quantum superposition access, even if we are using the quantum random
oracle ‘only’ in a post-quantum security proof.

Another example is the case of post-quantum obfuscation, in particular in-
distinguishability obfuscation (iO). This is a relatively recent branch of crypto-
graphic techniques which, roughly speaking, achieves certain functionalities by
‘obfuscating’ the code of some algorithm in a secure way. One typical example
(which has also received interest [CEJvO02] from an application perspective)
is how to build PKES from SKES. The idea is to hardcode the secret key of
the SKES in the code of the encryption routine, and then obfuscate the code
and distribute it as a public key. In the standard model, it is known [IR88]
that it is impossible to achieve key-exchange and public-key encryption in a
black-box way just from one-way functions. However, Corollary 4.15 and The-
orem 4.26 tell us that, using iO, it might be possible to build post-quantum
PKES from pqOWF. Regardless whether iO is a reasonable assumption or not,
it is clear that for this to work, the post-quantum security of the underlying
SKES would not be enough because, as discussed in Section 4.4, post-quantum
PKES can be queried in superposition. Therefore, for this application we also
need a superposition-based security notion for SKES.

Summing up, we can say the following.

Reason #2: it is useful for post-quantum security proofs. If a secu-
rity reduction for an object in QS0 fails when ‘translating’ it to QS1, one of
the reasons (in addition to the ones described in Section 4.1) might be that
the security of some of the underlying building blocks should be ‘lifted’ to
QS2, not just QS1.

A less obvious reason regards the physical interaction between the adver-
sary and the device where the cryptographic code is running. An adversary
able to ‘trick’ a classical computation device into quantum behavior might
exploit such behavior to gain superposition access to the function computed
by the device. In order to fix the ideas on what this actually means we
give a motivating example. In this mind experiment, we consider a not-so-
distant future where the target of an attack is a tiny encryption chip, e.g.,
integrated into an RFID tag or smart-card. It is reasonable to assume that
it will include elements of technology currently researched but undeployed
(i.e., extreme miniaturization, optical electronics, etc.) Regardless, the chip
we consider is a purely classical device, performing classical encryption (e.g.,
AES) on classical inputs, and outputting classical outputs. Consider an ad-
versary equipped with some future technology which subjects the device to
a fault-injection environment, by varying the physical parameters (temper-
ature, power, speed, etc.) under which the device usually operates. As a



112 Chapter 5. QS2: Quantum (Superposition-Based) Security

figurative example, our ‘quantum hacker’ could place the chip into an isola-
tion pod, which keeps the device at a very low temperature and shields it from
any external electromagnetic or thermal interference. This situation would be
analogous to what happens when security researchers perform side channel
analysis on cryptographic hardware in nowaday’s labs, using techniques such
as thermal or electromagnetic manipulation which were previously considered
futuristic. There is no guarantee that, under these conditions, the chip does
not start to show full or partial quantum behaviour. At this point, the ad-
versary could query the device on a superposition of plaintexts by using, e.g.,
a laser and an array of beam splitters when feeding signals into the chip via
optic fiber. It is unclear today what a future attacker might be able to achieve
using such an attack. As traditionally done in cryptography, we assume the
worst-case scenario where the attacker can actually query the target device in
superposition. Classical and post-quantum security notions such as IND-CPA
do not cover this scenario. This setting is an example of what we mean by
‘tricking classical parties into quantum behaviour’.

Another example of a sort of ‘quantum fault attack’ occurs in a situation
where one party using a quantum computer encrypts messages for another
party that uses a classical computer, and the adversary is able to observe the
outcome of the quantum computation before measurement.

Reason #3: it covers quantum fault attack scenarios. Also notice
that the threat deriving from these kind of attacks is potentially high con-
sidering that, unlike for the post-quantum scenario, they do not necessarily
require the adversary to build a fully-fledged quantum computer.

Finally, it is important to consider superposition-based quantum security
in all those cases where a classical cryptographic object is used as a building
block for more complex quantum protocols (meant to run natively on quantum
computing devices). Post-quantum guarantees alone are usually not enough
to ensure secure composition in these scenarios.

Reason #4: it might be necessary for securely composing fully quan-
tum constructions. For instance, we will see an example in the next chap-
ter where schemes for securely encrypting quantum data can be built by adapt-
ing classical encryption schemes, but only if such schemes are (superposition-
based) quantum-secure.
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5.2 Quantum-Secure Building Blocks

We look first at the basic (superposition-based) quantum-secure building blocks.
As already discussed in Section 4.3, there is nothing to say about quantum-
secure OWF, OWTP, and PRNG. In the first two cases, the superposition
access is already implied by the post-quantum definition, so that the post-
quantum and the superposition-based quantum security notions coincide. We
will use the two terms interchangeabily, as the meaning is the same. In the
latter case instead, a superposition-based security notion for PRNG makes no
sense, because PRNG security, by definition, is based on a stream of classical
data, and there is no oracle access involved. As we mentioned already, the
situation is instead quite different in the case of PRF and PRP.

Quantum-Secure PRF

In the case of pseudorandom functions, an adversary might be able to dis-
tinguish the PRF F from a random function by gaining quantum access to
the oracle for F , which we denote by |F〉. Since a PRF is a keyed family of
functions, we write sometimes |Fk〉 to denote the quantum-classical oracle for
F keyed by k.

Definition 5.1 (Quantum-Secure Pseudorandom Function (qPRF)). A (fam-
ily of) quantum-secure pseudorandom functions (qPRF) from X to Y with key
space K is a DPT algorithm F : (k ∈ K, x ∈ X ) 7→ y ∈ Y such that for any
QPT algorithm D it holds:∣∣∣∣∣ Pr

k
$←− K

[
D|Fk〉 → 1

]
− Pr

h
$←− YX

[
D|Oh〉 → 1

]∣∣∣∣∣ ≤ negl,

where |Oh〉 is a quantum-classical oracle for h (i.e., a quantum random oracle),
and the probabilities are over the choice of k and h, and the randomness of D.

Obviously, a qPRF is also a pqPRF and, in particular, a PRF. As discussed
in Section 3.1, and unlike in the case of pqPRFs in Section 4.3, the security
proof of Theorem 3.7 does not go through, because of the impossibility of
dealing with the quantum oracle access in the standard way required for such
proof. However, [Zha12a] shows that qPRFs can indeed be built from post-
quantum OWF using standard constructions, so the analogue of Corollary 4.15
still holds. The following is a corollary of [Zha12a, Theorem 4.5].

Theorem 5.2. pqOWF exist iff qPRF exist.

Quantum-Secure PRP

Quantum-secure PRPs are defined in a similar way as qPRFs, denoting by
|Pk〉 the quantum-classical oracle evaluating P with secret key k.
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Definition 5.3 (Quantum-Secure Weak PRP (qWPRP)). A (family of)
quantum-secure weak pseudorandom permutations (qWPRP) on X with key
space K is a pair of DPT algorithms (P,P−1) : (k∈K, x∈X ) 7→x′∈X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any QPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
D|Pk〉 → 1

]
− Pr

p
$←− S(X )

[
D|Op〉 → 1

]∣∣∣∣∣∣ ≤ negl,

where |Op〉 is a quantum-classical oracle for p, and the probabilities are
over the choice of k and p, and the randomness of D.

Definition 5.4 (Quantum-Secure Strong PRP (qSPRP)). A (family of) quan-
tum-secure strong pseudorandom permutations (qSPRP) on X with key space
K is a pair of DPT algorithms (P,P−1) : (k ∈ K, x ∈ X ) 7→ x′ ∈ X such that:

1. ∀k ∈ K =⇒ Pk,P−1
k are permutations on X ;

2. ∀k ∈ K =⇒ (Pk)−1 = P−1
k ; and

3. for any QPT algorithm D it holds:∣∣∣∣∣∣ Pr
k

$←− K

[
D|Pk〉,|P

−1
k
〉 → 1

]
− Pr

p
$←− S(X )

[
D|Op〉,|Op−1 〉 → 1

]∣∣∣∣∣∣ ≤ negl,

where |Op〉 is a quantum-classical oracle for p, |Op−1〉 is a quantum
oracle for p−1, and the probabilities are over the choice of k and p, and
the randomness of D.

It is important to notice that building provably secure qPRPs is not trivial.
Kuwakado and Morii showed [KM10, KM12] that the two most commonly used
constructions for building PRPs are actually quantum-insecure, in the sense
that there exist specific quantum attacks (using a modified version of Simon’s
algorithm) able to distinguish such constructions from random. Their attacks
are limited to the (3-round) Feistel construction (for building WPRPs from
PRFs) and the (1-round) Even-Mansour construction (for building SPRPs
from public random permutations). However, Zhandry [Zha16] shows that
qSPRPs can indeed be built from qPRFs (and hence by post-quantum OWF)
using constructions based on format-preserving encryption, so the analogue of
the result from Theorem 4.18 still holds.

Theorem 5.5 (qPRF ⇔ qPRP). qPRFs exist iff qPRPs exist.
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5.3 Quantum-Secure Secret-Key Encryption

In Section 4.4, we have seen how security notions for public-key encryption
in the post-quantum setting should allow for an adversary to query the en-
cryption oracle in superposition. Following the QS2 principle, in this section
we extend such a possibility to the secret-key scenario (we limit our analysis
here to the CPA case). We start by considering indistinguishability notions
for SKESs where the IND phase is still classical, but the adversary has oracle
access to the encryption oracle (this would be the analogue, for SKESs, of the
pq-IND-CPA notion for PKESs).

Then we look at what happens when also the IND query becomes quan-
tum. We also discuss a modification of such scenario, which can be useful in
certain situations, where the adversary is restricted to working with quantum
messages having efficient classical representations.

We conclude with a brief discussion on the extension of the above models
to the CCA1 and CCA2 scenarios.

Classical IND, Quantum CPA

The first indistinguishability notion with quantum CPA query phase, called
IND-qCPA, was proposed in [BZ13b]. Formally, the base adversarial model is
the same pq-IND adversary from Definition 4.19.

Experiment 5.6 (GameIND−qCPA
E,A ). Let E be a SKES, and A := (M,D) a

pq-IND adversary. The IND-qCPA experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (m0,m1, |state〉)←M|Enck〉

4: b $←− {0, 1}
5: c← Enck(mb)
6: b′ ← D|Enck〉(c, state)
7: if b = b′ then
8: Output: 1
9: else

10: Output: 0
The advantage of A is defined as:

AdvIND−qCPA
E,A := Pr

[
GameIND−qCPA

E,A → 1
]
− 1

2 .

Notice how, as in the QS0 case, we have: GameIND−qCPA
E,A = GameIND

E,A|Enck〉 .

Definition 5.7 (Indistinguishability of Ciphertexts under Quantum Chosen
Plaintext Attack (IND-qCPA)). A SKES E has indistinguishable encryptions
under quantum chosen plaintext attack (or, it is IND-qCPA secure) iff, for
any pq-IND adversary A it holds that: AdvIND−qCPA

E,A ≤ negl.
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Clearly, IND-qCPA is at least as strong as pq-IND-CPA (and it is actually
equivalent for PKES). But the converse is not true.

Theorem 5.8 (IND-qCPA =⇒ pq-IND-CPA). If a SKES is IND-qCPA
secure, then it is also pq-IND-CPA secure.

Theorem 5.9 (pq-IND-CPA SKES 6=⇒ IND-qCPA SKES). Under standard
hardness assumptions, there exist SKES which are pq-IND-CPA secure, but
not IND-qCPA secure.

Proof (sketch). Consider the same counterexample described in the proof of
Theorem 4.25, but where this time the public key used for the (IND-CPA
but non–post-quantum secure) PKES is generated by KGen and kept secret.
This way, in the post-quantum setting the adversary would lose access to the
quantum encryption oracle for the PKES, and hence the pq-IND-CPA secu-
rity notion coincides with the IND-CPA notion, which the resulting scheme
achieves by construction. However, an adversary for the IND-qCPA security
notion would still have access to such encryption oracle, thereby being able to
break the security of the PKES, and thus recovering the SKES key.

A simple modification from [BZ13b, Theorem 4.10] shows that Construc-
tion 3.26 is IND-qCPA when instantiated with a quantum-secure PRF.

Theorem 5.10. Let EF be the SKES from Construction 3.26 implemented
through a qPRF F . Then EF in an IND-qCPA SKES.

Type-(2) Oracles

Before discussing other quantum security notions, we must provide a techni-
cal tool arising from the following consideration. In quantum computing, the
‘canonical’ way of evaluating an oracle for a classical function f in superpo-
sition is, as discussed in Section 4.1, by using an auxiliary register and then
the canonical quantum-classical oracle:

|Of〉 :
∑
x,y

ax,y |x, y〉 7→
∑
x,y

ax,y |x, y ⊕ f(x)〉 .

This way ensures that the resulting operator is invertible, even if f itself is
not. We call these type-(1) transformations, and we denote them by |Of〉(1)
when necessary to specify (by default, we assume |Of〉 = |Of〉(1)). For SKES,
if Enck is an encryption mapping m-bit plaintexts to c-bit ciphertexts, the
resulting operator in this case will act on m+ c qubits in the following way:

|Enck〉(1) :
∑
x,y

ax,y |x, y〉 7→
∑
x,y

ax,y |x, y ⊕ Enck(x)〉 ,

where the y’s are ancillary values.
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In our case, though, we do not consider arbitrary functions, but encryp-
tions, which act as bijections on some bit-string spaces (assuming that the
randomness, if in presence of a randomized SKES, is treated as an input,
although never chosen by the adversary.) Therefore, provided that the en-
cryption does not change the size of a message, the following transformation
is also invertible: ∑

x

ax |x〉 7→
∑
x

ax |Enck(x)〉 . (5.1)

For the more general case of arbitrary message expansion factors, we will
consider transformations of the form:∑

x,y

ax,y |x, y〉 7→
∑
x,y

ax,y |ϕx,y〉 ,

where the length of the ancilla register is |y|= |Enck(x)|−|x| and ϕx,0 = Enck(x)
for every x – i.e., initializing the ancilla register in the |0〉 state produces a
correct encryption, which is what we expect from an honest execution of the
encryption. As in the SKES case we always assume that encryption and de-
cryption oracles are actually provided by an honest third party (usually the
challenger), we will not consider cases where y 6= 0. We call the resulting oper-
ator type-(2) transformations1, and we denote them by |Of〉(2) when necessary
to specify), that is:

|Enck〉(2) :
∑
x

ax |x, 0〉 7→
∑
x

ax |Enck(x)〉 ,

where the ancillary |0〉 is of the necessary qubit-size.
Notice that, in general, type-(1) and type-(2) transformations are very

different: having quantum gate access to a type-(2) unitary encryption oracle
(that is, quantum oracle access to |Enck〉(2) and its adjoint |Enck〉†(2)) also gives
access to the related type-(2) decryption oracle |Deck〉(2) :

∑
x ax |Enck(x)〉 7→∑

x ax |x〉. In fact, notice that |Enck〉†(2) = |Deck〉(2), while the adjoint of a
type-(1) encryption operator, |Enck〉†(1), is generally not a type-(1) decryption
operator. In particular, type-(2) operators are ‘more powerful’ in the sense
that knowledge of the secret key is required in order to build any efficient
quantum circuit implementing them. However, we stress the fact that when-
ever access to a decryption oracle is allowed, the two models are completely
equivalent, because then we can simulate a type-(2) operator by using ancilla
qubits and ‘uncomputing’ the resulting garbage lines (see Figure 5.1). This
is in fact the case in our security model for SKES, as it is not the adversary
himself who computes the encryptions, but they are instead provided by a
challenger who, in particular, already knows the secret key.

1These are called minimal quantum oracles in [KKVB02].
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Figure 5.1: Equivalence between type-(1) and type-(2) in the case of 1-qubit messages.
Left: building a type-(1) encryption oracle by using a type-(2) encryption oracle (and
its inverse) as a black-box. Right: building a type-(2) encryption oracle by using
type-(1) encryption and decryption oracles as black-boxes.

Quantum Indistinguishability

When trying to apply the QS2 principle at its fullest in the context of security
notions for SKESs, the main difficulty is how to properly define a quantum
version of the IND notion. As shown in [BZ13b], trying to define a new no-
tion where all the communication and interaction of IND is blindly moved
into quantum registers does not work, because the resulting notion would
be trivially unachievable. The work [GHS16] presents an in-depth discussion
about other possible strategies spanning a ‘security tree’ of definitions. Most
of these strategies lead to quantum indistinguishability notions that are ei-
ther unachievable, or equivalent to IND-qCPA. However, some of them lead
to more meaningful notions for the QS2 setting. These notions, in [GHS16],
are called quantum indistinguishability (qIND) and general quantum indistin-
guishability (gqIND). However, for the purpose of this work, we rename them
as weak quantum indistinguishability (wqIND) and quantum indistinguishabil-
ity (qIND) respectively, because the latter is of more direct interest to our
framework. That is, what we call ‘qIND’ in this work was originally called
‘gqIND’ in [GHS16], and what we call ‘wqIND’ was originally called ‘qIND’
in [GHS16]. We will use such denomination from now on, and we will discuss
qIND in this section, while presenting wqIND at a later point.

We give the qIND model for the most general case of adversaries able to
query oracles on mixed states. This can happen if, for example, the adversary
queries the oracle on a state which is entangled with another state kept by the
adversary. Basically, what happens in the qIND experiment is the following:

1. first, the adversary outputs two quantum states ϕ0, ϕ1 representing the
challenge plaintexts of his choice. These states can be thought as su-
perpositions of classical plaintexts, but in general can also be mixed
states, possibly entangled together or with some other state kept by the
adversary.

2. Then, these two states are sent over a quantum channel to some abstract
challenger algorithm. This challenger selects at random one of the two
states and traces out the other one. The selected state is encrypted
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according to |Enck〉(2) with a secret key k generated by the challenger,
and sent back to the adversary.

3. Finally the adversary, upon receiving such encrypted state, has to guess
which of the two states was selected.

More formally, we define the following.

Definition 5.11 (Quantum IND Adversary). Let E be a SKES with plaintext
space X and ciphertext space Y. A quantum IND (qIND, or QIND) adversary
A for E is a pair of QPT algorithms A := (M,D), where:

1. M :→ D (HX ) × D (HX ) × D (HEnv) is the qIND (or QIND) message
generator;

2. D : D (HY)×D (HEnv)→ {0, 1} is the qIND (or QIND) distinguisher,

where Hcom is a Hilbert space of appropriate dimension, modeling the state
communication register (or, environment) betweenM and D.

Experiment 5.12 (GameqIND
E,A ). Let E be a SKES, and A := (M,D) a qIND

adversary. The qIND experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (ϕ0, ϕ1, σ)←M
4: b $←− {0, 1}
5: ψ ← |Enck〉(2)(ϕb)
6: trace out ϕ1−b

7: b′ ← D(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvqIND
E,A := Pr

[
GameqIND

E,A → 1
]
− 1

2 .

Definition 5.13 (Quantum Indistinguishability of Ciphertexts (qIND)). A
SKES E has quantum indistinguishable encryptions (or, it is qIND secure) iff,
for any qIND adversary A it holds that: AdvqIND

E,A ≤ negl.

We can strengthen this security notion by adding quantum CPA capabili-
ties to the adversary.

Experiment 5.14 (GameqIND−qCPA
E,A ). Let E be a SKES, and A := (M,D) a

qIND adversary. The qIND-qCPA experiment proceeds as follows:
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1: Input: n ∈ N
2: k ← KGen
3: (ϕ0, ϕ1, σ)←M|Enck〉(2)

4: b $←− {0, 1}
5: ψ ← |Enck〉(2)(ϕb)
6: trace out ϕ1−b

7: b′ ← D|Enck〉(2)(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvqIND−qCPA
E,A := Pr

[
GameqIND−qCPA

E,A → 1
]
− 1

2 .

Definition 5.15 (Quantum Indistinguishability of Ciphertexts Under Quan-
tum Chosen Plaintext Attack (qIND-qCPA)). A SKES E has quantum in-
distinguishable encryptions under quantum chosen plaintext attack (or, it is
qIND-qCPA secure) iff, for any qIND adversary A ⇒ AdvqIND−qCPA

E,A ≤ negl.

Clearly, qIND-qCPA is at least as strong as IND-qCPA, because a classical
IND query is a special case of a quantum IND query.

Theorem 5.16 (qIND-qCPA =⇒ IND-qCPA). If a SKES is qIND-qCPA
secure, then it is also IND-qCPA secure.

However, as we will show later, the converse is not necessarily true.

Corollary 5.17 (of Theorem 5.39 and Corollary 5.28). There exist SKES
which are IND-qCPA secure, but not qIND-qCPA secure.

In particular, Construction 3.26 (which is IND-qCPA secure according to
Theorem 5.10) is not qIND-qCPA secure, because it is covered in the im-
possibility result from Section 5.3. However, [GHS16] shows how to build
qIND-qCPA secure SKES from qPRPs.

Construction 5.18 ([GHS16, Construction 6.4]). Let (P,P−1) be a qPRP
over X ×R with key space K, where X and R are both of size superpolynomial
in n. Define E = EK,X ,X×R := (KGen,Enc,Dec) as a SKES with key space K,
plaintext space X , and ciphertext space X ×R, in the following way:

1. KGen→ k, with k $←− K;

2. Enck(x)→ Pk(x‖r), where r $←− R;

3. Deck(y) := P−1(y)
∣∣∣
X
.
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Instead of proving the qIND-qCPA security of this construction directly,
we prove it instead for another construction which generalizes it. Construc-
tion 5.18 has the drawback that the message length is upper bounded by the
input length of the qPRP (minus the bit length of the randomness). How-
ever, like in the case of block ciphers, we can overcome this issue with a mode
of operation. More specifically, we can handle arbitrary message lengths by
splitting the message into blocks of a fixed length and applying the encryption
algorithm of Construction 5.18 independently to each message block (using the
same key but new randomness for each block). This procedure is akin to a
‘randomized ECB mode’, in the sense that each message block is processed
separately, like in the ECB (Electronic Code Book) mode, but in our case
the underlying cipher is inherently randomized (since we use fresh random-
ness for each block), so we can still achieve qCPA security. For simplicity
we consider only message lengths which are multiples of the chosen blocksize.
The construction can be generalized to arbitrary message lengths using stan-
dard padding techniques. Moreover, the randomness for every block can be
generated efficiently using a single random seed and a pqPRNG.

Construction 5.19 ([GHS16, Construction 6.6]). Let (P,P−1) be a qPRP
over X ×R with key space K, where X and R are both of size superpolynomial
in n. For a polynomial function `, let M := X ` and C := (X × R)`. Define
E = EK,M,C := (KGen,Enc,Dec) as a SKES with key space K, plaintext space
M, and ciphertext space C, in the following way:

1. KGen→ k, with k $←− K;

2. Enck(x1‖ . . . ‖x`)→ Pk(x1‖r1)‖ . . . ‖Pk(x`‖r`),
where ri $←− R, ∀ i = 1, . . . , `;

3. Deck(y1‖ . . . y`) := P−1(y1)
∣∣∣
X
‖ . . . ‖P−1(y`)

∣∣∣
X
.

Before proving the security of Construction 5.19, we need a technical
lemma. Let us assume w.l.o.g. that X = {0, 1}m(n) ,R = {0, 1}r(n) for poly-
nomial functions m and r, so that C = {0, 1}`·(m+r).

Lemma 5.20 ([GHS16, Lemma 6.7]). Let Φ be the quantum channel that takes
as input an arbitrary m-qubit state, attaches other r qubits in state |0〉, and
then applies a permutation picked uniformly at random from S({0, 1}m+r) to
the computational basis space. Let Ψ be the constant quantum channel which
maps any m-qubit state to the totally mixed state τ := I

2m+r on m + r qubits.
Then, ‖Φ−Ψ‖� ≤ 2−r+2.

Proof. In order to consider the fact that the m-qubit input state might be
entangled with something else, we have to start with a purification of such
a state. This is a bipartite pure 2m-qubit state |ϕ〉XY =

∑
x,y ax,y |x〉X |y〉Y
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whose m-qubit Y register is input into the channel and gets transformed into
IX ⊗ Φ(|ϕ〉〈ϕ|) = trZ |ψ〉〈ψ|, where:

|ψ〉 :=
∑

x∈{0,1}m,y∈{0,1}m,p∈S({0,1}m+r)

ax,y |x〉X |p(y‖0 . . . 0)〉C |π〉Z .

By definition of the diamond norm, we have to show that for any 2m-qubit
state ρ, we have that ‖(I⊗Φ)(ρ)−(I⊗Ψ)(ρ)‖tr ≤ 2−r+2. Due to the convexity
of the trace distance, we may assume that ρ = |ϕ〉〈ϕ| is pure with |ϕ〉XY =∑
x,y ax,y |x〉X |y〉Y . Hence, we obtain:

(IX ⊗ Φ)(|ϕ〉〈ϕ|) = trZ |ψ〉〈ψ|

= 1
2m+r!

∑
x,x′,y,y′,p

ax,yax′,y′ |x〉〈x|x′X ⊗ |p(y‖0 . . . 0)〉 〈p(y′‖0 . . . 0)|C

= 1
2m+r!

∑
x,x′,y

ax,yax′,y |x〉〈x|x′X ⊗
∑
p

|p(y‖0 . . . 0)〉 〈p(y‖0 . . . 0)|C

+ 1
2m+r!

∑
x,x′,y 6=y′

ax,yax′,y′ |x〉〈x|x′X ⊗
∑
p

|p(y‖0 . . . 0)〉 〈p(y′‖0 . . . 0)|C

=
∑
x,x′,y

ax,yax′,y |x〉〈x|x′X ⊗
1

2m+r

∑
z

|z〉〈z| zC

+
∑

x,x′,y 6=y′
ax,yax′,y′ |x〉〈x|x′X ⊗

1
2m+r(2m+r − 1)

∑
z 6=z′
|z〉〈z| z′C

= trY |ϕ〉〈ϕ| ⊗ τC + χXC

= (IX ⊗Ψ)(|ϕ〉〈ϕ|) + χXC ,

where we defined the ‘difference state’:

χXC :=
∑

x,x′,y 6=y′
ax,yax′,y′ |x〉〈x′|X ⊗

1
2m+r(2m+r − 1)

∑
z 6=z′
|z〉〈z′|C .

In order to conclude, it remains to show that ‖χXC‖tr ≤ 2−r+2. For the C-
register χC = 1

2m+r(2m+r−1)
∑
z 6=z′ |z〉〈z′|C , one can verify that the 2m+r eigen-

values are (λ · (2m+r − 1),−λ,−λ, . . . ,−λ) where λ := 1
2m+r(2m+r−1) . Hence,

the trace norm (which is the sum of the absolute eigenvalues) is exactly
λ · 2(2m+r − 1) = 2−m−r+1.

For the X-register, we split χX into two parts χX = ξX − ξ′X where:

ξX :=
∑
x,x′

|x〉〈x′|
∑
y,y′

ax,yax′,y′ ;

ξ′X :=
∑
x,x′

|x〉〈x′|
∑
y

ax,yax′,y,

and use the triangle inequality for the trace norm ‖χX‖tr = ‖ξX − ξ′X‖tr ≤
‖ξX‖tr + ‖ξ′X‖tr. Observe that ‖ξX‖tr = ‖

∑
x,y ax,y |x〉

∑
x′,y′ ax′,y′ 〈x′| ‖tr =
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‖ |s〉〈s| ‖tr for the (non-normalized) vector |s〉 :=
∑
x,y ax,y |x〉. Hence, the

trace norm ‖ξX‖tr = | 〈s|s〉 | =
∑
x |
∑
y ax,y|2 ≤

∑
x

∑
y |ax,y|2 ·2m = 2m by the

Cauchy-Schwarz inequality and the normalization of the ax,y’s. Furthermore,
we note that ξ′X is exactly the reduced density matrix of |ϕ〉XY after tracing
out the Y register. Hence, ξ′X is positive semi-definite and its trace norm is
equal to its trace which is 1. In summary, we have shown that:

‖χXC‖tr = ‖χX‖tr · ‖χC‖tr ≤ (‖ξX − ξ′X‖tr) · 2−m−r+1

≤ (‖ξX‖tr + ‖ξ′X‖tr) · 2−m−r+1 ≤ (2m + 1) · 2−m−r+1 ≤ 2−r+2.

If we consider a slightly different encryption channel ΦT which still maps
m qubits to m + r qubits but where the permutation p is not picked uni-
formly from the whole set S({0, 1}m+r), but instead we are guaranteed that a
certain subset T ⊂ {0, 1}m+r of outputs never occurs in these permutations,
we can see such permutations as picked uniformly at random from a smaller
set S({0, 1}m+r \ T ). In this setting, we are interested in the distance of the
channel (modeling the encryption operation) ΦT from the slightly different
constant channel ΨT which maps all inputs to the (m + r)-qubit state τT
which is completely mixed on the smaller set {0, 1}m+r \ T of basis elements.
The set T represents ‘forbidden’ values that the encryption algorithm does
never produce if we assume certain conditions on the randomness used. This
technique will be used in the proof of the next theorem. By modifying slightly
the proof of Lemma 5.20 we get the following.

Corollary 5.21 ([GHS16, Corollary 6.8]). Let ΦT ,ΨT be quantum channels
described as above. Then:

‖ΦT −ΨT ‖� ≤
4

2r − |T |/2m . (5.2)

We can now prove the qIND-qCPA security of Construction 5.19.

Theorem 5.22 ([GHS16, Theorem 6.9]). Let E be the SKES from Construc-
tion 5.19 implemented through a (weak) qPRP family (P,P−1). Then E in a
qIND-qCPA SKES.

Proof. We want to show that no QPT adversary can win the qIND-qCPA game
with probability substantially better than guessing. We first transform the
game through a short game-hopping sequence into a computationally equiv-
alent game for which we can bound the success probability of the quantum
distinguisher D.

Game0 : this is the original qIND-qCPA game.



124 Chapter 5. QS2: Quantum (Superposition-Based) Security

Game1 : this is like Game0, but instead of using a permutation drawn
from the qPRP family P, a random permutation p ∈ S({0, 1}m+r) is chosen
from the set of all permutations over {0, 1}m+r. The difference in the success
probability of D winning one or the other of these two games is negligible,
otherwise, we could use D to distinguish a random permutation drawn from
P from one drawn from S({0, 1}m+r). This would contradict the assumption
that P is a qPRP.

Game2 : this is like Game1, but D is guaranteed that the randomness used
for each encryption query are ` new random r-bit strings that were not used
before. In other words, the challenger keeps track of all random values used
so far and excludes those when sampling a new randomness. Since in Game1
the same randomness is sampled twice only with negligible probability, the
probabilities of winning these two games differ at most negligibly.

Game3 : this is like Game2, except that the answer to each query asked
by D also contains the randomness r1, . . . , r` used by the challenger for an-
swering that query. Clearly, D’s probability of winning this game is at least
the probability of winning Game2.

When Game3 starts, the qIND message generatorM (where A = (M,D)
is the qIND adversary as in Definition 5.11) chooses two different plaintext
states. One of them is chosen at random and sent back encrypted with fresh
randomness values r̂1, . . . , r̂`. Let Q denote the set of q · ` = poly(n) query
values used during the previous q queries to |Enck〉 in the first learning qCPA-
phase. We have to consider that from this phase, D knows a set T ⊂ {0, 1}m+r

of ‘taken’ outputs (ciphertexts), i.e., he knows that any p(x‖r̂i) will not take
one of these values, as r̂i has not been used before. So, from the adversary’s
point of view, p is a permutation randomly chosen from S′, the set of those
permutations over {0, 1}m+r that fix these |T | values. In order to simplify the
proof, we will consider a very conservative bound where |T | = q ·` ·2m, and the
size of S′ is |S′| = (2m+r − |T |)!. Notice that this bound is very conservative
because it assumes that the adversary learns 2m different (classical) ciphertexts
for each one of the q · ` ‘taken’ randomness values but, as we will see, this
knowledge is still insufficient to win the game.

By construction, the encryption of an (` ·m)-qubit (possibly mixed) state
ρ is performed in ` separate blocks of m qubits each. We are guaranteed that
fresh randomness is used in each block, hence it follows from Corollary 5.21
that Enck(ρ) is negligibly close to the ciphertext state where the first m + r

qubits are replaced with the completely mixed state (by noting that |T |2m =
m · q is polynomial in n in our case, and hence the right-hand side of (5.2)
is negligible). Another application of Corollary 5.21 gives negligible distance
to the ciphertext state where the first 2(m + r) qubits are replaced with the
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completely mixed state, etc. After ` applications of Corollary 5.21, we have
shown that Enck(ρ) is negligibly close to the totally mixed state on `(m + r)
qubits. As this argument can be made for any plaintext state ρ, we have shown
that, from D’s point of view, all encrypted states have negligible distance from
the totally mixed state, and therefore cannot be distinguished. This holds
regardless of any additional query during the second qCPA phase, because a
polynomial number of such queries cannot change this distance by more than
a negligible amount.

Corollary 5.23 ([GHS16, Theorem 6.9]). Let E be the SKES from Construc-
tion 5.18 implemented through a (weak) qPRP family (P,P−1). Then E in a
qIND-qCPA SKES.

Notice how the security of Constructios 5.18 and 5.19 does not require
strong qPRPs. The reason is that, even if we are considering type-(2) trans-
formations (which could be used to compute p−1), these transformations are
never implemented directly by the adversary, but only evaluated as oracles.
And since we only consider CPA quantum oracles here, and not CCA, the
adversary is never granted access to the decryption oracle. Hence, p−1 is
not needed by the reduction. However, extending the constructions to CCA1
security would require strong qPRPs.

Weak Quantum Indistinguishability

Before providing further results related to the qIND notion, we introduce here
a slight relaxation of qIND which might be of use in certain contexts which
we explain in this section. The idea is to restrict the power of the adversary
in the qIND notion, by only allowing quantum states of a certain form for the
qIND challenge phase. This notion was originally introduced in [GHS16] as
‘qIND’ but, as already mentioned at the beginning of this section, we relabel it
as ‘wqIND’ (where ‘w’ stands for ‘weak’) for consistency with our framework.

We start by defining the ‘restricted’ quantum states which can be used by
the adversary in the new security notion.

Definition 5.24 (Classical Description of Quantum States). A classical de-
scription of a quantum state ρ is a (classical) bit string Dsc(ρ) describing a
quantum circuit which (takes no input but starts from a fixed initial state |0〉
and) outputs ρ.

We deviate here from the traditional meaning of ‘classical description’
referring to individual numerical entries of the density matrix. The reason is
that Definition 5.24 also covers the cases where those numerical entries are not
easily computable, as long as we can give an explicit constructive procedure
for that state. Clearly, every pure quantum state |ϕ〉 has a classical description
given by a description of the quantum circuit which implements the unitary
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that maps |0〉 to |ϕ〉. The classical description of a mixed state ρA is given by
the circuit which first creates a purification |ϕ〉AR of ρA and then only outputs
the A register. Note that a state admitting a classical description cannot be
entangled with any other system. We say that a state has an efficient classical
representation if it has a classical representation, and such representation has
a bit size at most polynomial in some security parameter n. In this case,
we assume the existence of a (fixed, public, canonical) QPT algorithm Qbuild
which, given as input a classical description of a quantum state, outputs that
state, i.e., Qbuild(Dsc(ρ)) → ρ (the notation for the output is probabilistic,
because ρ could be a mixed state, i.e., a distribution on pure states).

In classical models, there is no difference between sending a description of a
message or the message itself. In the quantum world, there is a big difference
between these two cases, as the latter allows the adversary A to establish
entanglement of the message(s) with other registers. This is not possible
when using classical descriptions. It might intuitively appear that the more
general model considered for the qIND notion is more natural. However, the
above scenario models the case where A is well aware of the message that
is encrypted, but the message is not constructed by A himself. Giving A
the ability to choose the challenge messages for the qIND game models the
worst case that might happen: A knows that the ciphertext he receives is the
encryption of one out of the two messages that he can distinguish best. This
closely reflects the intuition behind the classical IND notion: in that game, the
adversary is allowed to send the two messages not because in the real world he
would be allowed to do so, but because we want to achieve security even for
the best possible choice of messages from the adversary’s perspective. Hence,
the model using classical descriptions of quantum states is a valid alternative.

Experiment 5.25 (GamewqIND−qCPA
E,A ). Let E be a SKES, and A := (M,D) a

qIND adversary. The wqIND-qCPA experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (Dsc(ϕ0),Dsc(ϕ1), σ)←M|Enck〉(2)

4: b $←− {0, 1}
5: ϕb ← Qbuild(Dsc(ϕb))
6: ψ ← |Enck〉(2)(ϕb)
7: b′ ← D|Enck〉(2)(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvwqIND−qCPA
E,A := Pr

[
GamewqIND−qCPA

E,A → 1
]
− 1

2 .
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Definition 5.26 (Weak Quantum Indistinguishability of Ciphertexts Under
Quantum Chosen Plaintext Attack (wqIND-qCPA)). A SKES E has weakly
quantum indistinguishable encryptions under quantum chosen plaintext at-
tack (or, it is wqIND-qCPA secure) iff, for any qIND adversary A it holds:
AdvwqIND−qCPA

E,A ≤ negl.

Clearly, qIND-qCPA is at least as strong as wqIND-qCPA, because quan-
tum states admitting an efficient classical description (used in wqIND) are
just a special case of arbitrary quantum plaintext states (used in qIND).

Theorem 5.27 ([GHS16, Theorem 3.3]). If a SKES is qIND-qCPA secure,
then it is also wqIND-qCPA secure.

Corollary 5.28 (qIND =⇒ wqIND). If a SKES is qIND secure, then it is
also wqIND secure.

Finding a separation between wqIND and qIND is an open problem, as
explained in [GHS16]. Morally, the notion wqIND-qCPA should lie somewhere
between IND-qCPA and qIND-qCPA, because it covers indistinguishability for
messages which are not necessarily classical, but not arbitrarily quantum. The
reason for considering the seemingly artificial wqIND is that in the context of
classical encryption schemes resistant to superposition quantum access, it is
important to not lose focus of what the capabilities of a ‘reasonable’ adversary
should be. Namely, recall the following classical IND argument: ‘allowing
the adversary to send plaintexts to the challenger is equivalent to the fact
that indistinguishability must hold even for the most favorable case from the
adversary’s perspective’. Such an argument does not hold anymore quantumly.
In fact, the qIND model presents the following issues:

1. it allows entanglement between the adversary and the IND challenger:
A could prepare a state of the form ρAB = 1√

2 |00〉+ 1√
2 |11〉, sending ρA

as a plaintext but keeping ρB; and

2. it allows the adversary to create certain non-reproduceable states. For
example, consider the state |ψ〉 =

∑
x∈X

1√
|X |
|x, h(x)〉, where h is a

collision-resistant hash function. A could measure the second register,
obtaining a random outcome y, and knowing therefore that the remain-
ing state is the superposition of the preimages of y, i.e.:

|ψy〉 =
∑

x∈X :h(x)=y

1√
| {x ∈ X : h(x) = y} |

|x〉 .

A could then use |ψy〉 as a plaintext in the challenge phase, but note
that A cannot reproduce |ψy〉 for a given value y.
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Both of the above examples highlight adversary capabilities which might be
considered unreasonably strong in certain scenarios. Entanglement between
A and the IND challenger C represents a sort of ‘quantum watermarking’ of
messages, which goes beyond what a meaningful notion of indistinguishability
should achieve. Knowledge of intermediate, unpredictable measurements also
renders A too powerful, because it gives A access to information not available
to C itself; e.g., in the example above C would not even know the value of
y. As it is C who prepares the state to be encrypted by running Qbuild, it is
reasonable to assume that it is C who should know these intermediate mea-
surements, not A. In the example above, what A could see instead (provided
he knows the circuit generating the state, as we assume in wqIND) is that the
plaintext is a mixture Ψ =

∑
y ψy for all possible values of y.

The possibility offered by qIND of allowing the adversary to play the IND
game with arbitrary states is certainly elegant from a theoretical point of view,
but from the perspective of the quantum security of the kind of schemes we are
considering, it is sometimes useful to consider the restricted notion wqIND,
because it inherently provides guidelines and reasonable limitations on what
a quantum adversary can or cannot do. Also, wqIND is often easier to deal
with: notice that in such a model, unlike in the qIND model, A always receives
back an unentangled state from a challenge query. In security reductions, this
means that we can more easily simulate the challenger, and that we do not
have to take care of measures of entanglement when analyzing the properties
of quantum states - for example, indistinguishability of states can be shown
by only resorting to the trace norm instead of the more general diamond norm
as in the proof of Theorem 5.23.

Finally, it is important to notice that it is actually unclear whether a sep-
aration between qIND and wqIND can be found at all in the realm of classical
encryption schemes. In fact, all the positive results present in [GHS16] hold
for the more general qIND notion, while the impossibility result we present in
Section 5.3 holds for both qIND and wqIND.

Quantum Semantic Security

In this section, we discuss notions of semantic security in QS2. All of them
have been presented before in [GHS16]. We start by defining a semantic
security equivalent of IND-qCPA, called SEM-qCPA. This is just the usual
notion of SEM, augmented by giving to the adversary qCPA capabilities. In
order to not overload notation, we refer to ‘adversary’ and ‘simulator’ simply
as QPT versions of the PPT algorithms from Definition 3.14.

Definition 5.29 ([GHS16, Definition 4.1]). A SKES E is semantically secure
under quantum chosen plaintext attack (or, it is SEM-qCPA secure) iff, for
any QPT adversary A there exists a QPT simulator S such that, for every
efficiently computable f, h : {0, 1}∗ → {0, 1}∗ polynomially bounded in the
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input bit size, for every probability ensemble M := (Mn)n, where Mn are
probability distributions over Xn with |Mn| = poly(n), such that:∣∣∣Pr

[
GameSEM

E,A|Enck〉(M, f, h)→ 1
]
− Pr

[
GameSEM∗

E,S|Enck〉(M, f, h)→ 1
]∣∣∣ ≤ negl,

where k ← KGen is the secret key generated during the experiments, and the
probabilities are taken over the randomness of A, E ,M,S.

Unsurprisingly, the above notion is equivalent to IND-qCPA. The proof
is a straightforward modification of Theorem 3.21 by also accounting for the
quantum CPA queries.

Theorem 5.30 ([GHS16, Theorem 5.1]). A SKES is IND-qCPA secure iff it
is SEM-qCPA secure.

We might ask what happens if the above definition is strenghtened by
providing the adversary (and the simulator) quantum advice, instead of a
classical advice h(x) for some plaintext x. The following two cases appear.

• We might replace the classical function h with a unitary operator U
which, acting on a basis element |x〉 for a (classical) plaintext x, pro-
duces a quantum advice state |ξ〉. The resulting security notion is called
quantum advice semantic security under quantum chosen plaintext at-
tack (qaSEM-qCPA) [GHS16, Definition D.1], and it turns out to be
meaningless, because trivially achievable by any SKES. The reason is
that a unitary U can always be inverted as U † by both adversary and
simulator. Both of them are then able to recover the plaintext given the
quantum advice.

• To fix the above problem, we might allow more general quantum circuits
U that can somehow provide non-reversible information, for example
by applying some partial measurement at the end, or by providing A
(resp. S) only with some output qubits, while tracing out the others.
Towards this end let U be an arbitrary quantum circuit (the advice
circuit) that takes as input a basis element |x〉 and a quantum state
ρ provided by A (resp. S) (that includes possibly needed auxiliary
registers), and computes a (possibly mixed) quantum advice state ξ.
The resulting security notion is called ideal quantum advice semantic
security under quantum chosen plaintext attack (iqSEM-qCPA) [GHS16,
Definition D.2], and it turns out to be equivalent to IND-qCPA. The
reason is that the proof in Theorem 5.30 only uses the advice function
to transmit classical information, and therefore iqSEM-qCPA can be
reduced to IND-qCPA.

It seems therefore that introducing quantum advice states is not mean-
ingful as long as the messages are still classical. We proceed now instead
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to present a quantum security notion equivalent to the wqIND-qCPA notion.
First of all, we redefine the meaning of quantum SEM adversary and simulator.

Definition 5.31 (Quantum SEM Adversary, Quantum SEM Simulator). Let
E := EK,X ,Y be a SKES, and Hf,Hh two Hilbert spaces of appropriate dimen-
sion (exponential in the security parameter). A quantum SEM adversary A
for E is a QPT algorithm A : D (HY) × D (Hh) → D (Hf). A quantum SEM
simulator S for E is a QPT algorithm S : D (Hh)→ D (Hf).

The wqSEM notion is given by replacing classical functions f and h with
quantum CPTP maps Σ,Ξ, which are quantum circuits taking as input m-
qubit quantum states (where m is the bit size of plaintexts, polynomial in n)
and outputting poly(m)-qubit quantum states. The idea is that, since we are
using quantum states with efficient classical representations, we can sample
some classical randomness once, and reuse it with Qbuild to create many copies
of the same plaintext state.

Experiment 5.32 (GamewqSEM
E,A ). Let E be a SKES, and A a quantum SEM

adversary. The wqSEM experiment proceeds as follows:
1: Input: n ∈ N, CPTP maps Σ,Ξ with m-qubit input and poly(m)-qubit

output,M := (Mn)n, whereMn are probability distributions over a fam-
ily of randomness spaces (Rn)n ,with |Mn| = poly(n)

2: k ← KGen
3: r ←Mn

4: ϕ← Qbuild(r) . Qbuild is invoked with randomness r
5: ψ ← |Enck〉(2)(ϕ)
6: ϕ← Qbuild(r) . a second copy of ϕ is generated, using the same r
7: ξ ← Ξ(ϕ) . this is the quantum advice state
8: σ ← A(ψ, ξ)
9: if σ is computationally indistinguishable from Σ(ϕ) then

10: Output: 1
11: else
12: Output: 0

We use ‘computationally indistinguishable’ as a shorthand for: ‘for every
QPT algorithm D with outputs in {0, 1}(a quantum distinguisher), the prob-
ability that the output differs on the two states given as input is negligible’.
As usual, a third copy of ϕ (to be processed by Σ) can be generated using the
same randomness r and the Qbuild algorithm.

Experiment 5.33 (GamewqSEM∗
E,S ). Let E be a SKES, and S a quantum SEM

simulator. The simulated wqSEM experiment proceeds as follows:
1: Input: n ∈ N, CPTP maps Σ,Ξ with m-qubit input and poly(m)-qubit

output,M := (Mn)n, whereMn are probability distributions over a fam-
ily of randomness spaces (Rn)n ,with |Mn| = poly(n)
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2: k ← KGen
3: r ←Mn

4: ϕ← Qbuild(r)
5: ξ ← Ξ(ϕ)
6: σ ← S(ξ) . S only gets the quantum advice, not the ciphertext
7: if σ is computationally indistinguishable from Σ(ϕ) then
8: Output: 1
9: else

10: Output: 0

Definition 5.34 (Weak Quantum Semantic Security (wqSEM)). A SKES
E is weakly quantumly semantically secure (wqSEM) iff, for any quantum
SEM adversary A there exists a quantum SEM simulator S such that, for
every CPTP maps Σ,Ξ with m-qubit input and poly(m)-qubit output, for every
probability ensemble M := (Mn)n with polynomial-size support over some
randomness space, it holds:∣∣∣Pr

[
GamewqSEM

E,A (M,Σ,Ξ)→ 1
]
− Pr

[
GamewqSEM∗

E,S (M,Σ,Ξ)→ 1
]∣∣∣ ≤ negl,

where the probabilities are taken over the randomness of A, E ,M,S.

Definition 5.35 (Weak Quantum Semantic Security Under Quantum Chosen
Plaintext Attack (wqSEM-qCPA)). A SKES E is weakly quantumly seman-
tically secure under quantum chosen plaintext attack (wqSEM-qCPA) iff, for
any quantum SEM adversary A there exists a quantum SEM simulator S such
that, for every CPTP maps Σ,Ξ with m-qubit input and poly(m)-qubit output,
for every probability ensembleM := (Mn)n with polynomial-size support over
some randomness space, it holds:∣∣∣∣Pr

[
GamewqSEM

E,A|Enck〉(2)
(M,Σ,Ξ)→1

]
−Pr

[
GamewqSEM∗

E,S|Enck〉(2)
(M,Σ,Ξ)→1

]∣∣∣∣≤negl,

where the probabilities are taken over the randomness of A, E ,M,S.

The resulting wqSEM-qCPA notion is equivalent to wqIND-qCPA.

Theorem 5.36 ([GHS16, Theorem 5.4]). A SKES is wqIND-qCPA secure iff
it is wqSEM-qCPA secure.

Proof. The proof closely follows the one for Theorem 3.21, with some careful
modifications. We prove the theorem by splitting it in two parts.

wqIND− qCPA =⇒ wqSEM− qCPA. Let A be an efficient quantum
SEM adversary. We want to show that a quantum SEM simulator S exists,
with roughly the same success probability as A, by exploiting the wqIND-
qCPA security of the encryption scheme. The idea of the proof is to hand A’s
circuit as non-uniform advice to the simulator S. This is allowed, because A
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is a QPT adversary against the wqSEM-qCPA game, and hence A’s circuit
has a short classical representation. S can then build and run A’s circuit,
and simulate a qSEM-qCPA experiment for A by generating a new key and
answering all of A’s queries using this key. When S performs his ‘real’ wqSEM
challenge query (using the challenge query generated by A), he does not re-
ceive back a valid ciphertext. However, S can generate a bogus ciphertext by
encrypting (with his own key) the |1 . . . 1〉 basis element of the same size as
the original plaintext state. It follows from the indistinguishability of encryp-
tions that A’s success probability in this game must be negligibly close to its
success probability with a real ciphertext, otherwise A would be an efficient
distinguisher for the scheme E .

wqSEM− qCPA =⇒ wqIND− qCPA. Assume there exists an effi-
cient wqIND-qCPA distinguisher D for the scheme E . Then we show how
to construct a QPT algorithm A that has oracle access to D and breaks the
wqSEM-qCPA security of the scheme, in the sense that no simulator S can do
better than A. The construction works as follows: A starts the GamewqSEM

E,A
game, and then he runs D, emulating the quantum encryption oracle by simply
forwarding all the qCPA queries performed byD to its own oracle (the |Enck〉(2)
oracle of the wqSEM-qCPA game). When D executes the wqIND challenge
query by sending classical descriptions of two states ϕ0 and ϕ1, A produces
the wqSEM template (M,Ξ,Σ), with M such that Qbuild(r) outputs ϕ0 for
half of the possible values r ←M and ϕ1 for the other half, Ξ is the constant
map outputting |1 . . . 1〉, and Σ is the identity map Σ(ρ) = ρ. Then A per-
forms a qSEM challenge query with this template. Given challenge ciphertext
state |Enck〉(2)(ϕb) (for b ∈ {0, 1}), A forwards it as an answer to D’s wqIND
challenge query. As D distinguishes |Enck〉(2)(ϕ0) from |Enck〉(2)(ϕ1) with non-
negligible success probability by assumption, D returns the correct value of b
with non-negligible advantage over guessing. Then A, having recorded a copy
of the classical descriptions of ϕ0 and ϕ1, is able to create another copy of ϕb
through Qbuild and compute the state Σ(ϕb) exactly, and consequently win
the wqSEM-qCPA game with non-negligible advantage. However, as Ξ gen-
erates the same (constant, useless) advice state |1 . . . 1〉 independently of the
encrypted message, no simulator can do better than guessing the plaintext.
This concludes the proof.

In this work, we will not explicitly define a notion of quantum seman-
tic security related to qIND. However, we will show in the next chapter how
the qIND notion is equivalent to the quantum indistinguishability notion Q-
IND (introduced in [BJ15]) for quantum encryption schemes, when these
are obtained by implementing a classical SKES in unitary type-(2) mode.
In [ABF+16], on the other hand, notions of quantum semantic security are
presented, which are proven to be equivalent to Q-IND, and therefore easily
adaptable to the case of quantumly-accessible SKES that we consider here.
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Impossibility Result

In this section we show how the qIND security notion cannot be achieved by
a large class of SKESs: namely, all those schemes which do not substantially
expand the message during encryption. First we formally define what it means
for a cipher to expand or keep constant the message size by defining the core
function of a SKES. Intuitively, the definition splits the ciphertext into the
randomness and a part carrying the message-dependent information. This
definition covers most encryption schemes in the literature.

Definition 5.37 (Core Function [GHS16, Definition 6.1]). Let E = EK,X ,Y be
a SKES, and let R be the randomness space of Enc. Let f : K ×R× X → Y
be a function such that:

• for all k ∈ K and for all x ∈ X , Enck(x) can be written as (r, f(k, r, x)),
where r ∈ R is independent of the message; and

• there exists a function g such that for all k ∈ K, r ∈ R, x ∈ X it holds:
g(k, r, f(k, x, r)) = x.

Then, we call f the core function of the encryption scheme.

For example, in case of Construction 3.26 (where Enck(x) is defined as
(r,Fk(r)⊕x) for a PRF F) the core function would be f(k, r, x) := Fk(r)⊕x,
with associated g(k, r, z) := z ⊕Fk(r).

Definition 5.38 (Quasi–Length-Preserving Encryption [GHS16, Definition
6.2]). We call a SKES with core function f quasi–length-preserving iff:

∀ x ∈ X , ∀ r ∈ R, ∀ k ∈ K =⇒ |f(k, x, r)| = |x|,

i.e., the output of the core function has the same bit length as the plaintext.

For example, Construction 3.26 is quasi–length-preserving.
The crucial observation for our impossibility result is the following: for

a quasi–length-preserving encryption scheme, the space of possible input and
(core function) output bit strings (with respect to plaintext and ciphertext)
coincide, therefore these ciphers act as permutations on these spaces. This
means that, if we start with an input state which is a superposition of all
the possible basis states, all of them with the same amplitude, this state
will be left unmodified by the unitary type-(2) encryption operation (because
such operator will just ‘shuffle’ in the space of computational basis-states
amplitudes which are exactly the same).

Theorem 5.39 ([GHS16, Theorem 6.3]). If a SKES is quasi–length-preserving,
then it is not wqIND secure.
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Proof. Let (Gen,Enc,Dec) be a quasi–length-preserving scheme. We give an
explicit, efficient distinguisher attack.

1. For m-bit message strings, the distinguisher D sets the two plaintext
states for the qIND- game to be: |ϕ0〉 = H |0m〉 , |ϕ1〉 = H |1m〉, where
H is the m-fold tensor Hadamard transformation. Notice that both these
states admit efficient classical representations, and are thus allowed in
the wqIND game.

2. A random bit b is flipped, and the challenge ciphertext state |ψ〉 =
|Enck〉(2) |ϕb〉 is returned to D.

3. D applies H to the core-function part of the ciphertext |ψ〉 and measures
it in the computational basis. D outputs 0 iff the outcome is 0m, and
outputs 1 otherwise.

Notice that applying |Enck〉(2) to H |0m〉 leaves the state untouched: since
the encryption oracle merely performs a permutation in the basis space, and
since |ϕ0〉 is a superposition of every basis element with the same amplitude,
it follows that whenever b is equal to 0, the ciphertext state will be left un-
changed. In this case, after applying the self-inverse transformation H again,
D obtains measurement outcome 0m with probability 1.

On the other hand, if b = 1, then |ϕ1〉 = 1
2m/2

∑
y(−1)y·1m |y〉 where a · b

denotes the bitwise inner product between a and b. Hence, |ϕ1〉 is a superpo-
sition of every basis element where (depending on the parity of y) half of the
elements have a positive amplitude and the other half have a negative one,
but all of them will be equal in absolute value. Applying |Enck〉(2) to this state
results in 1

2m/2
∑
y(−1)y·1m |Enc(y)〉. After re-applying H, the amplitude of the

basis state |0m〉 becomes
∑
y(−1)y·1m+Enc(y)·0m =

∑
y(−1)‖y‖ (where ‖y‖ is the

Hamming weight of y) which is 0. Hence, the probability for D of observing
0m after the measurement is 0. This gives D a way of distinguishing between
encryptions of the two plaintext states.

Notice that the above attack works also against qIND, because of Theo-
rem 5.27. In particular, Theorem 5.39 shows that Construction 3.26, which is
IND-qCPA secure if the used PRF is quantum secure, does not fulfill qIND,
nor wqIND. This attack is a consequence of the well-known fact [AMTdW00,
BR03] that, in order to perfectly (information-theoretically) encrypt a single
quantum bit, two bits of classical information are needed: one to hide the ba-
sis bit, and one to hide the phase (i.e., the signs of the amplitudes). The fact
that we are restricted to quantum operations of the form |Enck〉(2) (that is,
quantum instantiations of classical encryptions) means that we cannot afford
to hide the phase as well, and this restriction allows for an easy distinguishing
procedure in the case of a quasi–length-preserving SKES.

Summing up up, all the semantic security notions presented in this section
are summarized in Figure 5.2.
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Figure 5.2: Relations for semantic security notions in QS2.

Quantum CCA

Finally, here we give a brief discussion about the possibility of extending the
QS2 framework of security notions for SKES to the quantum chosen cipher-
text attack (qCCA) case. The resulting notions, when applicable, are always
stronger than the related qCPA notions, with counterexamples closely match-
ing the classical ones. However, a few issues arise.

The case of quantum CCA1 is straightforward for the classical IND case.
The resulting IND-qCCA1 notion is just as the IND-qCPA notion, augmented
by a quantum CCA query before the classical IND query. This is modeled in
the security game by giving to the first stage IND adversary oracle access to
the quantum decryption oracle |Deck〉.

The case of wqIND-qCCA1 and qIND-qCCA1 are also straightforward, as
the decryption queries only happen before the qIND query. It is just necessary
to define the type-(2) decryption oracle |Deck〉(2), but this is trivial considered
that |Deck〉(2) = |Enck〉†(2). However, Construction 5.19 will require strong
qPRPs in order to be secure under the new notion, as already discussed.

The case of qCCA2, instead, is much more delicate. For the classical IND
case, [BZ13b] shows how to correctly define IND-qCCA2 (and how to achieve
it), by carefully defining the decryption oracle after the IND query. For the
‘fully quantum case’ qIND-qCCA2, however, it is unclear whether such a no-
tion is even possible to define. The problem is that in the CCA2 game it
is necessary to ensure that the adversary does not ask for a decryption of
the challenge ciphertext, leading to a trivial break. While this is easily de-
manded in the classical world, it raises several issues in the quantum world.
What does it mean for a quantum ciphertext state to be different from the
challenge ciphertext? And, more importantly: how can the challenger check?
There might be several reasonable ways to solve the first issue but, as long
as the queries are not classical, it is not known how to solve the second issue
without disturbing the challenge ciphertext and the query states. Defining
CCA2 security notions in the quantum world is an outstanding open prob-
lem [GHS16, ABF+16].
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Figure 5.3: Relations for SKES security notions in the quantum world.

All the indistinguishability notions for classical SKES in the quantum
world are summarized in Figure 5.3.



Chapter 6
QS3: Fully Quantum Security

In the previous chapters, we studied the security of classical cryptographic
primitives in different quantum scenarios. In this chapter, instead, we focus
on the security of quantum cryptographic primitives, that is, cryptographic
primitives which are meant to be natively run on a quantum computing device.
The quantum security class QS3 encompasses all those cryptographic objects
which deal mainly with the manipulation and protection of quantum data. As
such, one can see QS3 as a natural extension of QS0 to a ‘fully quantum
computing world’, that is, a world where quantum computing has become
ubiquitous, and honest users have access to quantum devices.

One could consider QS3 to be somehow ‘the last step’, from a chronological
point of view, in the study of computer security, in the sense that the models
therein only concern possible future scenarios, somehow far away from the
contemporary era of classical devices. However, such interpretation has not to
be taken too literally. QS3 is about security of cryptographic primitives which
natively deal with quantum information, and this does not necessarily involve
computation performed on some futuristic, fully-fledged quantum computer.
As an example, quantum key distribution (QKD) [BB14] is a well-studied
area in modern cryptography, where honest parties want to establish a shared
secret by using quantum communication channels1. As such, QKD perfectly
fits in the QS3 domain; however it is far from being futuristic: commercial
implemementations of large-scale QKD systems have been available for a few
years already [SLB+11], and have been deployed in many real-world scenarios.

Despite this, in the rest of this chapter we will focus on the study of the
quantum security of cryptographic primitives natively designed to run on a
fully-fledged quantum computer. We will first introduce the concept of quan-
tum encryption (that is, cryptographic schemes meant to protect quantum
data), and then we will see an application by extending ORAMs to the case
where the database to be protected is composed of quantum data.

1Remarkably, most often than not, the term ‘quantum cryptography’ is (incorrectly)
used a synonym for ‘QKD’ in scientific literature.
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My Scientific Contributions in this Chapter

Regarding quantum encryption, most of the material from sections 6.1 and 6.2
first appears in [ABF+16], which is a joint work with Gorjan Alagic, Anne
Broadbent, Bill Fefferman, Christian Schaffner, and Michael St. Jules. In
particular, Anne, Gorjan and I devised the idea of Construction 6.13 and
Construction 6.18, while I developed Theorem 6.14 and Theorem 6.19 with
the help of Bill and Gorjan. Theorem 6.16 is my contribution, while Anne,
Christian and Michael focused on the notion of quantum semantic security in
the QS3 sense [Jul17], which is a topic not covered in this thesis.

The part about QORAMs in Section 6.3 is my contribution, including the
safe extractor technique.

6.1 Secret-Key Quantum Encryption

In this section, we study the computational security of quantum encryption
schemes, that is, schemes which are meant to protect quantum data. In this
sense, plaintexts and ciphertexts are pure quantum states from Hilbert spaces
of appropriate dimension, or mixed states of such. In fact, the schemes de-
scribed in this section are meant to work on arbitrary quantum states, even
those who might be entangled with external systems, therefore it is crucial to
use the density matrix formalism. Accordingly, (families of) classical plaintext
and ciphertext spaces X and Y are replaced with quantum operator spaces
D (HX ) and D (HY) respectively, where HX and HY are (families of) complex
Hilbert spaces of dimension |X | = 2m and |Y| = 2c respectively, for functions
m and c polynomial in the security parameter n.

However, the encryption keys used will still be classical. This is actually a
feature, as these schemes require for honest parties to be able to encrypt and
decrypt several times with the same keys, and classical keys can be stored and
managed more easily.

Definitions, and the Quantum One-Time Pad

We start by defining secret-key quantum encryption schemes (SKQES), as
introduced in [ABF+16]. We assume that the secret-key space is defined as
K = (Kn)n := {0, 1}n, so that the key-length is n bits. Later, we will define
an additional Hilbert space HEnv (the environment space) in order to model
auxiliary information used by some adversary. Encryption accepts a classical
key and a quantum plaintext, and outputs a quantum ciphertext; decryption
accepts a classical key and a quantum ciphertext, and outputs a quantum
plaintext. The correctness guarantee is that plaintexts are preserved (up to
negligible error) under encryption followed by decryption under the same key.

Definition 6.1 (Secret-Key Quantum Encryption Scheme (SKQES)). A se-
cret-key quantum encryption scheme (SKQES) with plaintext space D (HX ),
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ciphertext space D (HY), and (classical) key space K is a tuple of QPT algo-
rithms E := EK,D(HX ),D(HY ) := (KGen,QEnc,QDec):

1. KGen :→ K;

2. QEnc : K ×D (HX )→ D (HY);

3. QDec : K ×D (HY)→ D (HX );

such that |QDeck ◦ QEnck − IHX |� ≤ negl for all k ← KGen.

As usual, we denote by QEnck the action of QEnc on a specific, fixed key
k ← KGen, and analogously for QDeck. However, unlike in the case of Defini-
tion 3.12, for simplicity we will omit the possibility that the decryption algo-
rithm answers (a quantum analogue of) ⊥ to some decryption queries. One
of the most basic examples of SKQES is the quantum one-time pad (QOTP).
The QOTP takes as input an n-qubit plaintext spaces and a 2n-bit secret
key. Every pair of bits from the key selects one over four possible single-qubit
Pauli operators I, X, Y, Z as X(first bit)Z(second bit). Thus, the secret key defines
a sequence of n independent single-qubit Pauli operators, each of them to be
applied separately to each of the n qubits of the plaintext (that is, the key de-
fines an element of the n-qubit Pauli group), resulting in the ciphertext. Since
Pauli operators are self-adjoint, decryption just applies the same procedure to
the ciphertext state.

Construction 6.2 (Quantum One-Time Pad (QOTP)[AMTdW00, BR03]).
Let HX = HY of dimension {0, 1}n, and let K = {0, 1}2n. Define the quan-
tum one-time pad (QOTP) on n qubits QOTPk := (KGen,QEnc,QDec) as
the SKQES with key space K, plaintext space D (HX ), and ciphertext space
D (HY), defined as:

1. KGen→ k, with k $←− K;

2. QEnck(ϕ) := P (k)ϕP (k)†;

3. QDeck(ρ) := P (k)ψP (k)†,

where P (k) :=
∏n
j=1X

k2j−1
j Z

k2j
j ∈ Pn, and kj is the j-th bit of k.

Notice how two bits of key are needed for every qubit of plaintext. The
QOTP is known [AMTdW00, BR03] to be quantum information-theoretically
secure, as long as the key is completely random and only used once.
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Quantum Indistinguishability

We use a definition of computational quantum indistinguishability introduced
in [BJ15], which we relabel here as QIND for our purposes (notice the capital
‘Q’, unlike Definition 5.13), and which is the analogue of the classical IND
notion, by keeping in mind that a quantum adversary for a SKQES could try
to distinguish states that he has previously entangled with the environment.
Intuitively, the adversary produces a tripartite system, composed of two plain-
text states and an environment state. The environment state is passed to the
second stage adversary, who also receives an encryption of one of the two other
states, selected at random, while the other one is traced out. As usual, the
goal of the adversary is to guess which one of the two plaintext system was
selcted for encryption. Formally, we define the following.

Experiment 6.3 (GameQIND
E,A ). Let E be a SKQES, and A := (M,D) a QIND

adversary as from Definition 5.11. The QIND experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (ϕ0, ϕ1, σ)←M
4: b $←− {0, 1}
5: ψ ← QEnc(ϕb)
6: trace out ϕ1−b

7: b′ ← D(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvQIND
E,A := Pr

[
GameQIND

E,A → 1
]
− 1

2 .

Definition 6.4 (Indistinguishability of Quantum Ciphertexts (QIND)). A
SKQES E has indistinguishable quantum encryptions (or, it is QIND secure)
iff, for any QIND adversary A it holds that: AdvQIND

E,A ≤ negl.

Notice how this definition and the related experiment are exactly the same
as Experiment 5.12 and Definition 5.13, even the adversarial model is the
same as in the qIND case from Chapter 5. This is not incidental: historically,
notions of computational indistinguishability for encrypted quantum states
have been introduced in [BJ15] and [GHS16] as concurrent and independent
works (although [BJ15] was published earlier), but for different purposes and
with slightly different flavors. What we call here QIND was originally called
q-IND-CPA-2 in [BJ15] (minus the CPA part), while qIND was originally
called (CQn2e)-IND in [GHS16]. However, the former notion was given in
the context of fully homomorphic quantum encryption (which, according to
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our framework, belongs to the QS3 setting), while the latter was given in
the context of superposition-resistant quantum encryption (as we mean it in
the QS2 sense). Further developments on the topic appeared in [ABF+16]
and in the proceedings version of [GHS16], which led to the conclusion that
this indistinguishability model for quantum encryption is virtually the same,
which can be used both in the setting of classical encryption resistant to
quantum queries (QS2) or ‘fully’ quantum encryption (QS3). In this work, in
the attempt of providing a unified notation to work with, we use respectively
‘qIND’ and ‘QIND’ (with different capitalization of the first letter) in order
to highlight the specific domain we are talking about, but making clear that,
technically, it is the same model.

As usual, we can extend the QIND notion to CPA and non-adaptive CCA
attacks. Since we are in the QS3 domain, it is not ambiguous to write (e.g.)
QIND-CPA instead of QIND-QCPA, because the plaintexts we are considering
are inherently quantum, so a CPA notion in this scenario must be quantum.
Hence, without need of specifying further, we call the resulting notions QIND-
CPA and QIND-CCA1. This is also useful in order to understand ‘at first
glance’ that we are talking about a QS3 notion.

Experiment 6.5 (GameQIND−CPA
E,A ). Let E be a SKQES, and A := (M,D) a

QIND adversary. The QIND-CPA experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (ϕ0, ϕ1, σ)←MQEnc

4: b $←− {0, 1}
5: ψ ← QEnc(ϕb)
6: trace out ϕ1−b

7: b′ ← DQEnc(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvQIND−CPA
E,A := Pr

[
GameQIND−CPA

E,A → 1
]
− 1

2 .

Definition 6.6 (Indistinguishability of Quantum Ciphertexts Under Chosen
Plaintext Attack (QIND-CPA)). A SKQES E has indistinguishable quantum
encryptions under chosen plaintext attack (or, it is QIND-CPA secure) iff, for
any QIND adversary A it holds: AdvQIND−CPA

E,A ≤ negl.

Clearly, QIND-CPA is at least as strong as QIND.

Theorem 6.7 (QIND-CPA =⇒ QIND). If a SKQES is QIND-CPA secure,
then it is also QIND secure.
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However, the converse is not necessarily true. For example, the QOTP
(Construction 6.2) is information-theoretically secure for random, unrelated
keys, and thus it is also QIND. However, as in the classical OTP analogue,
security is compromised if the same key is used more than once.

Theorem 6.8 (QIND 6=⇒ QIND-CPA). There exist SKQES which are QIND
secure, but not QIND-QCPA secure.

As usual, extending the above security notion to the QCCA1 case is
straightforward.

Experiment 6.9 (GameQIND−CCA1
E,A ). Let E be a SKQES, and A := (M,D) a

QIND adversary. The QIND-CCA1 experiment proceeds as follows:
1: Input: n ∈ N
2: k ← KGen
3: (ϕ0, ϕ1, σ)←MQEnc,QDec

4: b $←− {0, 1}
5: ψ ← QEnc(ϕb)
6: trace out ϕ1−b

7: b′ ← DQEnc(ψ, σ)
8: if b = b′ then
9: Output: 1

10: else
11: Output: 0
The advantage of A is defined as:

AdvQIND−CCA1
E,A := Pr

[
GameQIND−CCA1

E,A → 1
]
− 1

2 .

Definition 6.10 (Indistinguishability of Quantum Ciphertexts Under Non-
Adaptive Chosen Ciphertext Attack (QIND-CCA1)). A SKQES E has in-
distinguishable quantum encryptions under non-adaptive chosen ciphertext
attack (or, it is QIND-CCA1 secure) iff, for any QIND adversary A it holds:

AdvQIND−CCA1
E,A ≤ negl.

As in the classical case, in a completely specular way to Theorems 3.31
and 3.32, one can show that QIND-CCA1 is strictly stronger than QIND-CPA.

Theorem 6.11 (QIND-CCA1 =⇒ QIND-CPA). If a SKQES is QIND-
CCA1 secure, then it is also QIND-CPA secure.

Theorem 6.12 (QIND-CPA 6=⇒ QIND-CCA1). There exists a SKQES
which is QIND-CPA secure, but not QIND-CCA1 secure.
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Secure Construction

QIND-CCA1 secure SKQES can be constructed given the existence of pqPRF
(and hence from pqOWF, as from Corollary 4.15), as shown in [ABF+16].
The idea of the construction is analogous to the one for Construction 3.26: a
(classical) randomness is processed by the keyed pqPRF, and the output is
used as a key for the QOTP; the ciphertext is composed by the output of the
QOTP, plus the classical randomness.

Construction 6.13 ([ABF+16, Scheme 1]). Let F : K × {0, 1}2n → {0, 1}2n
be a pqPRF as from Definition 4.13, and let HX be a complex Hilbert space
of dimension 2n. Define E = EK,D(HX ),D(HX ) := (KGen,QEnc,QDec) as the
SKQES with key space K, plaintext and ciphertext space D (HX ), as follows:

1. KGen→ k, with k $←− K;

2. QEnck(ϕ)→ ψ ⊗ |r〉〈r|, with ψ := QOTPFk(r)(ϕ), where r $←− {0, 1}2n;

3. QDeck(ρ) → QOTPFk(s)(σ), where s is obtained by measuring the last
2n qubits of ρ, while σ is the reduced state left after such a measurement.

The above construction is QIND-CCA1 secure.

Theorem 6.14 ([ABF+16, Lemma 14]). Let E be the SKQES from Construc-
tion 6.13 built using a pqPRF F . Then E is QIND-CCA1 secure.

Proof. First, we analyze the security of the scheme in an idealized scenario
where F is replaced by a function f : {0, 1}2n → {0, 1}2n selected truly at
random. We show that, in this case, A correctly guesses the challenge state in
the QIND-CCA1 game with probability at most 1

2 + negl. In fact, this bound
holds for a stronger adversary A∗, who has access to a classical oracle for f

prior to the challenge, and access to polynomially-many pairs (ri, f(ri)) where
ri

$←− {0, 1}2n for 1 = 1, . . . , q = poly(n), after the challenge. This adversary is
stronger than A since it can simulate A by implementing the oracles Encf and
Decf using its f oracles. Since the input r into f in the challenge ciphertext is
uniformly random, the probability that any of the polynomially-many oracle
calls of A∗ uses the same r is negligible. In the case that no oracle calls use r,
the mixtures of the inputs to A∗ (including the pairs (ri, f(ri))) are the same
for any of the two original challenge states. This fact can be verified by first
averaging over the values of f(r): since f is uniformly random, f(r) is also
uniformly random as well as independent of the other values of f. In both
cases, applying the quantum one-time pad results in the state:

1
2n I⊗ |r〉〈r| ⊗ σ ⊗ |r1〉〈r1| ⊗ |f(r1)〉〈f(r1)| ⊗ · · · ⊗ |rq〉〈rq| ⊗ |f(rq)〉〈f(rq)| ,

where σ is the state in the ‘environment register’ of A∗ (communication chan-
nel in Experiment 6.9), and hence indistinguishability follows.
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Next, we consider the case that f is replaced by a post-quantum pseudoran-
dom function Fk for a random key k. We show that a successful QIND-CCA1
adversary A (i.e., one that distinguishes challenges with probability at least
1
2 +ε for non-negligible ε) can be used to construct a successful adversary B for
the pqPRF, i.e., one that distinguishes Fk from random with non-negligible
advantage over guessing. The adversary B is a QPT algorithm with classical
oracle access to a function h : {0, 1}2n → {0, 1}2n, and his goal is to output 0
if h is selected perfectly at random, and 1 if h = Fk for some k. Define the
simulated oracles:

QEnch : ϕ 7→ QOTPh(r)(ϕ)⊗ |r〉〈r| for r $←− {0, 1}2n ; and
QDech : ψ ⊗ |r′〉〈r′| 7→ QOTPh(r′)(ψ),

where, as before, we assume that QDech measures the second register before
decrypting the first one. Note that if h = Fk then these are exactly the
encryption and decryption oracles (with key k) of the real SKQES scheme.

The algorithm B proceeds as follows. First, it executes A, and replies to
A’s encryption queries with QEnch and to A’s decryption queries with QDech.
When A performs the QIND challenge query with plaintext states ϕ0 and
ϕ1, B replies with the encryption of either of the two, each with probability
1
2 , and traces out the other one. Then B keeps answering A’s encryption
queries as before with his simulated oracle. If eventually A correctly guesses
the plaintext selcted by B, then B outputs 1; otherwise it outputs a random
bit. If h = Fk then we have exactly simulated the QIND-CCA1 game with
adversary A; otherwise, B still correctly distinguishes the PRF from random
with probability 1

2 . So, the overall success probability of B is 1
2 + ε

2 , which is
non-negligible over guessing. This concludes the proof.

Notice how the security of Construction 6.13 only relies on the post-
quantum security of the PRF, in the QS1 sense. In particular, from Corol-
lary 4.15, this gives a construction of QIND-CCA1 secure SKQES from the
existence of pqOWF.

Corollary 6.15 (of Theorem 6.14 and Corollary 4.15). If pqOWF exist, then
QIND-CCA1 SKQES exist.

Another way to build secure SKQES is to rely on the security of some
(classical) SKES in QS2, and ‘lift’ the SKES construction to the QS3 sce-
nario through the use of type-(2) operators. The following theorem is not
found in the literature, but is a direct consequence of [GHS16, Theorem 3.4]
and the observation made after Definition 6.4, i.e., the adversarial model (and
corresponding security notions) for (QS2) qIND and (QS3) QIND are basi-
cally the same.

Theorem 6.16. Let E = EK,X ,Y := (KGen,Enc,Dec) be a SKES, and let E ′ =
E ′K,D(HX ),D(HY ) := (KGen′,QEnc,QDec) be a SKQES constructed as follows:
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1. KGen′ → k, with k ← KGen;

2. QEnck(ϕ)→ |Enck〉(2)ϕ〈Enck|†(2);

3. QDeck(ψ)→ |Deck〉(2)ϕ〈Deck|†(2),

where |Enck〉(2), |Deck〉(2) are type-(2) unitary operators associated to Enc,Dec.
If E is qIND(-qCPA/qCCA1), then E ′ is QIND(-CPA/CCA1).

Proof (sketch). The proof follows from [GHS16, Appendix C], but it basically
boils down to what already discussed after Definition 6.4. Namely, the exper-
iments for qIND-qCCA1 and QIND-CCA1 are fundamentally the same, the
only difference is that in the qIND- version, encryption and decryption oracles
are specifically type-(2) operators derived from classical SKES. So the only
thing left to show is that the scheme defined by such encryption/decryption
operators as in the statement of the theorem is actually a SKQES. This is
trivially shown by observing that:

(QDeck ◦ QEnck) (ϕ) = |Deck〉(2)|Enck〉(2)ϕ〈Enck|†(2)〈Deck|†(2) = ϕ

so that QEnc and QDec respect Definition 6.1.

The above is a typical example of what discussed in Reason #4 of Sec-
tion 5.1, about the necessity of superposition-based quantum security for com-
position results in fully quantum scenarios. Notice in fact that in the above
theorem it is crucial that E is a scheme secure in the QS2 sense: a ‘sim-
ply’ post-quantum E (in the QS1 sense) would not work, because the same
impossibility result described in Section 5.3 would apply.

6.2 Public-Key Quantum Encryption

When we move to the public-key scenario for quantum encryption schemes,
intuitively we want the same kind of functionality offered by classical PKES,
but with the possibility of encrypting arbitrary quantum states. As usual, we
assume classical public/private key pairs (pk, sk), where w.l.o.g. we assume
that, for security parameter n, public keys are of bit size p(n), while secret
keys are of bit size s(n), for polynomial functions p,s. Under this notation, we
identify the keyspace K as (Kn)n = (Kp

n)n× (Ks
n)n =: Kp×Ks ⊂ {0, 1}p(n)×

{0, 1}s(n). We define a quantum public-key encryption scheme (PKQES) as
in [ABF+16], in the following way.

Definition 6.17 (Public-Key Quantum Encryption Scheme (PKQES)). A
public-key quantum encryption scheme (PKQES) with plaintext space D (HX ),
ciphertext space D (HY), and key space K := Kp × Ks is a tuple of QPT
algorithms E := EK,D(HX ),D(HY ) := (KGen,QEnc,QDec):
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1. KGen :→ K;

2. QEnc : Kp ×D (HX )→ D (HY);

3. QDec : Ks ×D (HY)→ D (HX );

such that
∣∣QDecsk ◦ QEncpk − IHX

∣∣
� ≤ negl for all (pk, sk)← KGen.

For the security model, as usual, we use the same QIND indistinguisha-
bility notion for SKQES, but recalling that (as explained in Section 3.3 for
classical SKES) in the public-key scenario the minimum meaningful security
notion is QIND-CPA as from Definition 6.6.

Secure Construction

QIND-CPA secure PKQES can be constructed given the existence of pqOWTP,
as shown in [ABF+16]. The idea of the construction is analogous to the one
for Construction 3.41: a (classical) randomness is sampled, and used as an
input to the Goldreich-Levin PRNG to generate a key for the QOTP on the
plaintext state; then the pqOWTP is applied to that randomness, and the
result appended to the output of the QOTP. For the decryption, the trapdoor
of the pqOWTP is used to recover the randomness, and hence the key for
the QOTP, inverting the encryption. Assume for simplicity that X = {0, 1}n.
Then we define the following.

Construction 6.18 (PKQES from pqOWTP). Let P := (Gen,Eval, Invert) be
a pqOWTP on X 2, with index and trapdoor spaces I and T respectively, and
let GP : X 2 → X 2 be the Goldreich-Levin PRNG for P (seen as a OWF with
hard-core predicates). Define E = EK,D(HX ),D(HX⊗3) := (KGen,QEnc,QDec)
as a PKQES with (public,private) key space K = Kp × Ks (where Kp := I
and Ks := T , plaintext space D (HX ), and ciphertext space D

(
HX
⊗3
)
, in the

following way:

1. KGen→ (pk, sk), with (pk, sk) := (i, t)← Gen;

2. QEncpk(ϕ)→ ψ ⊗ |z〉〈z|,
with ψ := QOTPGP (r)(ϕ) and z ← Eval(pk, r), where r $←− X 2;

3. QDecsk(ρ)→ QOTPGP (s)(σ),
with s ← Invert(pk, sk, z), where z is obtained by measuring the last 2n
qubits of ρ, while σ is the reduced state left after such a measurement.

The above construction is a simplified version of [ABF+16, Scheme 2], and
it can be shown to be QIND-CPA secure.

Theorem 6.19 ([ABF+16, Lemma 14]). Construction 3.41 is a QIND-CPA
secure PKQES.
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Proof (sketch). The proof is as in Theorem 3.42: recall that the QOTP is
information-theoretically secure for independent keys sampled uniformly at
random, and hence computationally secure for keys output by the pqPRNG
in the construction here. Then, the only way for an adversary to attack
the scheme would be to extract information about r by looking at the OWTP
image z obtained through Eval, but this is impossible because P is a pqOWTP
family, and GP only outputs (post-quantum) hard-core bits.

6.3 Quantum ORAM

In this section we study quantum ORAMs (QORAM), that is, ORAM con-
structions operating on quantum data. This new cryptographic primitive de-
fined in [GKK17] considers the same scenario as in the ORAM case, but where
all the parties have quantum computing and communication capabilities. As
we will see, many difficulties arise in modeling this scenario.

In the QORAM model, the client C and the server S are both QPT al-
gorithms, sharing a quantum communication channel (quantum register) Ψ.
Since such a quantum channel can also be used to share classical informa-
tion, we assume without loss of generality that A and S also share a classical
channel Ξ. In the following, if not otherwise stated, we will always assume
that all the classical communication between A and S happens through Ξ,
and all the quantum communication happens through Ψ. In this scenario, a
computationally limited C wants to outsource a quantum database (QDB) to
the more powerful S, and perform operations on the QDB in a secure way, as
in the ORAM case.

We have first to define what it means to have a ‘quantum database’. In
our case, this will be a structure of quantum blocks. A quantum block is a
nblk-qubit quantum state ψ ∈ D (Hnblk) for a fixed parameter nblk ∈ N which
depends on C’s and S’s architectures. A quantum database (QDB) of size
ndb ∈ N is a quantum register of S which stores ndb quantum blocks. It is
important to notice that we impose no restriction on the nature of the states
stored in the quantum blocks, i.e., these states could be mixed or entangled,
amongst them or with states stored in other, external registers. As explained
in the preliminaries, in the following, for simplicity, we abuse notation and
denote such multipartite system with a tuple of quantum blocks (ψ1, . . . , ψndb).
Since we assume this quantum register to reside on the server’s side, we will
denote it as S.|QDB〉. As in the ORAM case, the precise way this system of
quantum blocks is represented in the quantum database is unspecified, and
left to the exact implementation of the QORAM scheme taken into account.
As usual, we will abuse notation and write that S.|QDB〉(i) = ψ if ψ is the
state obtained by tracing out all but the i-th subsystem of S.|QDB〉, and that
ψ ∈ S.|QDB〉 if S.|QDB〉(i) = ψ for some i ∈ N.

A quantum block encodes (usually in an encrypted form) a quantum data
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unit, which is another quantum state representing the information that the
client actually wants to access or modify, and possibly additional (quantum or
classical) auxiliary information. Formally, a quantum data unit is a quantum
state ϕ ∈ D (Hndat) of ndat qubits, where ndat ≤ nblk depends on C’s and
S’s architecture. As before, no assumption is made about the nature of these
quantum states. Every quantum block can encode a single quantum data unit,
therefore at any given time t it is defined a CPTP map |QData〉t : S.|QDB〉 →
D (Hndat). With abuse of notation, we will denote by |QData〉 (ψ) the quantum
data unit encoded in the block ψ at a certain time. The client C can operate
on the quantum database through quantum data requests.

Definition 6.20 (Quantum Data Request). A quantum data request to a
database S.|QDB〉 of size ndb is a tuple of the form |qdr〉 = (op, i, ϕ), where
op ∈ {read,write}, i ∈ {1, . . . , ndb}, and ϕ ∈ D (Hndat) is a quantum data unit
(ϕ can also be |⊥〉 if op = read).

Finally, we define the meaning of a quantum communication transcript
during an execution of a QORAM protocol. As in the ORAM case, we will
use the following definition.

Definition 6.21 (Quantum Communication Transcript). A quantum com-
munication transcript |qcom〉 at time t is the content of the communication
registers (Ξ,Ψ) at time t of the protocol’s execution.

As in the ORAM case, in the following we will consider |qcom〉 as a discrete
function of the round 1, 2, . . . of the protocol. Notice the following difference
from the classical case: as this time C and S are also allowed to exchange
quantum data through Ψ, it might not be possible for an adversary to obtain
a full transcript of |qcom〉 without disturbing the protocol. We will address
this issue in the next section about security.

From now on, nblk and ndat will be fixed constants (the quantum block size,
and quantum data unit size, resp.) As in the classical case, we assume that a
server’s QDB is always initialized empty (that is, with randomized encryptions
of |0 . . . 0〉 as data), and it is left up to the client the task of ‘populating’ the
database. We are now ready to define a QORAM as follows.

Definition 6.22 (QORAM). Let nMax ∈ N, nmsg ≥ ndat ∈ N, and E =
(KGen,QEnc,QDec) be a SKQES scheme mapping nmsg-qubit plaintext states
to nblk-qubit ciphertext states. A QORAM (quantum oblivious random ac-
cess machine) QORAME with parameters (nMax, ndat, E) is a pair of two-party
interactive QPT algorithms (QInit,QAccess), such that:

• QInit(n, ndb)→ (C,S) in the following way:

1. n is the security parameter, ndb ≤ nMax;
2. k ← KGen(n) is generated by C;
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3. S includes a QDB S.|QDB〉 = (ψ1, . . . , ψndb),
where ∀i =⇒ ψi ← QEnck(|0〉〈0|);

• QAccess(C,S, |qdr〉)→ (C′,S ′, |qcom〉) in the following way:

1. C issues a quantum data request |qdr〉;
2. C and S communicate via (Ξ,Ψ) and produce the quantum commu-

nication transcript |qcom〉.

The same considerations about soundness hold as in the classical case.

QORAM Security

We now look at the security model for QORAMs. As in the classical model,
security will be given in terms of adaptive access pattern indistinguishability.

Our threat model considers a quantum adversary A, which we identify
as S himself, and who wants to compromise C’s privacy by having access to
the communication channel (Ξ,Ψ) and S’s internal memory, but who is not
allowed to modify the content of the channel against the soundness of the
protocol. Without loss of generality, we assume that the only meaningful
changes in the database area S.|QDB〉 only happen between the beginning and
the end of a QAccess execution.

As it often happens in the quantum world, there is a caveat here: it
is unclear what a ‘honest-but-curious’ quantum adversary is. In fact, the
problem is even more general: we do not have a notion of ‘read-only’ for
quantum channels, as the mere act of observing the data in transit through
Ψ can destroy such data. For example, suppose that a quantum state ϕ is
sent through Ψ. Because of the No-Cloning Theorem, S cannot store a local
copy of ϕ; at the same time, measuring ϕ in transit through Ψ without any
knowledge of such state, would disturb it with high probability. Therefore, it
seems hard to justify the inclusion of the state ϕ in the adversarial view (the
quantum access pattern) of a honest-but-curious quantum adversary.

Nevertheless, it is important to allow the adversary A to know some infor-
mation about the quantum state ϕ. There are many reasons for this choice.
First of all, remember that we are defining QORAMs in a very abstract and
general way, and the exact details of how the communication and storage of
quantum information works is left to the particular QORAM construction.
For example, there might be constructions which only use quantum states
from a finite, fixed set of orthogonal states, or which only use subsets of quan-
tum states admitting efficient classical representations (and encoding them in
a classical way during the communication). Moreover, it might be possible
that the adversary A at some point obtains access to some side-information
which allows him to know something about the content of the database or the
data transferred in a sound way, e.g., by applying some quantum operation or
partial measurement which does not disturb the state too much. As we need



150 Chapter 6. QS3: Fully Quantum Security

to cover all these possibilities, the option of not including at all the quantum
data in the access pattern would be too restrictive. On the other hand, the
adversary A should not be able to modify too much (from C’s point of view)
any quantum state, as this would go beyond the notion of honest-but-curious
adversary usually considered in the ORAM scenario.

We solve this issue by introducing a safe extractor. The intuition behind
this technique is to allow our adversary to extract any kind of (quantum)
information he wants from a certain physical system, as long as such extraction
is hardly noticeable by any other party. In this case we say that the action of
the adversary on the physical system is computationally undetectable, meaning
that no QPT algorithm can reliably distinguish whether a quantum operation
takes place or not by just looking at the processed quantum state, even in
presence of auxiliary information such as, e.g., additional entangled registers.
More formally we define the following.

Definition 6.23 (Computational Undetectability of Quantum Action). Let
HΛ,HΣ,HEnv be Hilbert spaces of dimension polynomial in 2n associated to
quantum register Λ,Σ,Env respectively, and let ϕΣ be an arbitrary quantum
state on register Σ. A quantum algorithm B : D (HΛ ⊗ HΣ) → D (HΛ ⊗ HΣ)
acting on registers Λ and Σ has computationally undetectable action on ϕΣ
iff for any bipartite state ϕΣEnv such that (ϕΣEnv)Σ = ϕΣ, and for any QPT
algorithm D acting on registers Σ and Env and outputting 0 or 1, it holds:∣∣Pr [D (ϕΣEnv)→ 1]− Pr

[
D
(
(B ⊗ IHEnv) (|0〉〈0|Λ ⊗ ϕΣEnv)ΣEnv

)
→ 1

]∣∣ ≤ negl.

Definition 6.24 (Safe Extractor). Let ϕΣ ∈ D (HΣ) be the quantum state
contained in a quantum register Σ. A safe extractor for Σ in the state ϕΣ is
a QPT algorithm B with additional classical input x of size polynomial in n,
acting on Σ and outputting a quantum state ψ of qubit size polynomial in n,
and such that the action of B on ϕΣ is computationally undetectable.

Notice that Definition 6.24 depends on the state contained in the quantum
register considered. That is, B might be a safe extractor for a given quantum
register if that register is in a certain state, but not in a different one. Of
course one could define B to be a safe extractor for a register ‘tout-court’ if it
is a safe extractor for any state of that register according to Definition 6.24,
but this would considerably reduce the power of the adversary. Instead, this
definition allows the adversary to use B adaptively, only at certain points of
his execution, when he knows that the action of B on the current state of the
QORAM will be computationally undetectable. The additional classic input
to B serves a useful purpose here, as it can be seen as a way for the adversary
to communicate instructions to B about how to perform the extraction in a
safe way (for example, A might encode a certain measurement basis through
this classical input.) With abuse of notation, and without loss of generality,
we will write ψ ← B(|qcom〉,S.|QDB〉) to denote that B performs the following:
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• as a classical input, B gets the classical part of a quantum communication
transcript |qcom〉 (that is, the content of the classical channel Ξ) and
additional classical information by the adversary A;

• B acts on the quantum registers Ψ and S.|QDB〉;

• finally, B produces a quantum output ψ.

The intuition of a safe extractor is that we need a way to formalize the
(quantum or classical) information that an adversary is able to extract by
observing the changes in the quantum database and communication channel.
However, we still require that such extraction does not lead to a meaningful de-
viation from the ‘regular’ execution of the QORAM protocol. Computational
undetectability of quantum action is a strong guarantee, because if such ac-
tion is undetectable, in particular it means that such action cannot modify the
QORAM soundness. The converse does not hold: it might be the case that an
adversary manipulates the quantum channel or database in such a way that
it is theoretically possible to detect this manipulation (for some distinguisher
D), but not for any QORAM client, and therefore the QORAM soundness
would be still preserved. However, for our purposes the above restriction on
the power of the QORAM adversary is sufficient to define meaningful notions
of security, and it is analogous to the (classical) restriction of a honest-but-
curious adversary in the ORAM case commonly used in the literature.

More formally, we define a QORAM adversary as follows.

Definition 6.25 (QORAM Adversary). Let H|QDB〉,HΨ,HΛ be complex Hilbert
spaces associated to quantum registers |QDB〉 (the quantum database), Ψ (the
quantum communication channel) and Λ (the quantum access pattern regis-
ter). A QORAM adversary is a QPT algorithm AB with quantum oracle access
to a CPTP map B : Ξ×D

(
H|QDB〉 ⊗ HΨ

)
→ D (HΛ), such that:

1. B is a safe extractor for the joint register (|QDB〉,Ψ) for any of its states
during any invocation of B by A;

2. AB is computationally indistinguishable from an honest server S for
every QORAM client C.

As already discussed notice that, in the definition above, conditions 1 and 2
are independent: if B is not a safe extractor during the execution, it means
that there exists some quantum distinguisher D able to detect B’s action on
the joint register (|QDB〉,Ψ), but AB might still remain indistinguishable from
an honest server for any honest quantum client. On the other hand, A might
be a misbehaving adversary which deviates ‘too much’ from the execution of
an honest server (and therefore might compromise the QORAM’s soundness),
even if B behaves always as a safe extractor. For a meaningful notion of
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security akin to the QS0 case, we require that a QORAM adversary respects
both conditions.

We are now able to define quantum access patterns, as the outputs of the
safe extractor before and after the execution of a quantum data request.

Definition 6.26 (Quantum Access Pattern). Given QORAM client and server
C and S, a quantum data request |qdr〉, and a QORAM adversary A = AB,
the quantum access pattern observed by A, denoted by |qap〉A(|qdr〉), is the
pair of quantum states (ψ,ψ′), where:

• ψ ← B(|qcom〉,S.|QDB〉);

• (C′,S ′, |qcom〉′)← QAccess(C,S, |qdr〉)

• ψ′ ← B(|qcom〉′,S ′.|QDB〉).

Notice that, since the action of the safe extractor is computationally unde-
tectable, running it on two consecutive quantum data requests does not allow,
in any case, to clone arbitrary quantum states. We define the new security
game as follows.

Experiment 6.27 (GameQAP−IND−CQA
QORAM,AB ). Let QORAM = (QInit,QAccess) be

a QORAM construction with parameters (nMax, ndat, E), n a security param-
eter and A = AB a QORAM adversary. The computational indistinguisha-
bility of quantum access patterns under adaptive chosen query attack game
GameQAP−IND−CQA

QORAM,AB proceeds as follows:
1: Input: n ∈ N
2: A → (A0, |qdr〉1 , ndb ≤ nMax)
3: (C0,S0)← QInit(n, ndb)
4: loop for i = 1, . . . , q1 ∈ N: . first quantum CQA phase
5: QAccess(Ci−1,Si−1, |qdr〉i)→ (Ci,Si, |qap〉i)
6: Ai−1(|qap〉i,Si)→ (Ai, |qdr〉i+1)
7: Aq1(|qdr〉q1+1)→ (A′, |qdr〉0 , |qdr〉1)
8: b $←− {0, 1}
9: Access(Cq1 ,Sq1 , |qdr〉b)→ (Cq1+1,Sq1+1, |qap〉q1+1) . QAP-IND challenge

10: trace out the quantum data contained in |qdr〉1−b
11: A′(apq1+1,Sq1+1)→ (Aq1+1, |qdr〉q1+2)
12: loop for i = q1 + 2, . . . , q2 ≥ q1 + 2: . second quantum CQA phase
13: Access(Ci−1,Si−1, |qdr〉i)→ (Ci,Si, |qap〉i)
14: Ai−1(|qap〉i,Si)→ (Ai, |qdr〉i+1)
15: Aq2(|qdr〉q2+1)→ b′ ∈ {0, 1}
16: if b = b′ then
17: Output: 1
18: else
19: Output: 0
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The advantage of A is defined as:

AdvQAP−IND−CQA
QORAM,AB := Pr

[
GameQAP−IND−CQA

QORAM,AB → 1
]
− 1

2 .

The idea of the above game follows specularly the classical intuition: the
adversary is first allowed to enforce (adaptively) the execution of quantum
data requests of his choice, and to observe the related access patterns. Then he
issues the challenge query, composed of two different quantum data requests,
one of which is executed, and the other discarded. After that, the adversary
is allowed another adaptive learning phase, and finally he has to output a bit
indicating the challenge data request which was executed. We are now ready
to define the security notion for QORAMs.

Definition 6.28 (Quantum Access Pattern Indistinguishability Under Adap-
tive Chosen Query Attack). A QORAM construction QORAM has compu-
tationally indistinguishable quantum access patterns under adaptive chosen
query attack (or, it is QAP-IND-CQA-secure) iff for any QORAM adversary
AB it holds: AdvQAP−IND−CQA

QORAM,AB ≤ negl.

PathQORAM

In this section we describe the construction for a novel QAP-IND-CQA-secure
QORAM scheme, which we call PathQORAM, and which has the interesting
property that read and write operations are inherently equivalent. The idea
is to modify PathORAM with the SKQES from Construction 6.13, but we need
some additional care for ensuring soundness. In fact, we have the following
problem. Suppose the client issues a quantum data request for block i. This
will be translated to a leaf in S’s quantum database, and the resulting tree
branch |QBranch〉 will be sent to C. Now C knows that the data he is look-
ing for is encoded in one of |QBranch〉’s nodes, but he does not know which
one. Classically, C would proceed by decrypting and inspecting every node in
|QBranch〉 until he finds what he is looking for, then he would perform some
operation on that element, before re-encrypting it again, and then complete
the re-randomization of |QBranch〉 before re-sending the whole branch to S.
This operation might be problematic in the quantum world though: inspect-
ing an unknown quantum state will destroy it with high probability. We have
therefore to find a way to signal C when he reaches the right node in the path
without disturbing the quantum data unit itself.

The solution is to notice that, in our formalization of PathORAM, the
client stores the classical identifier i together with the data unit in the block.
In the quantum version PathQORAM, this identifier is still classical, and of a
fixed length ntag. Once a node in |QBranch〉 is decrypted, it will be transformed
to |i〉 〈i| ⊗ ϕ. The first register can then be measured in the computational
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basis without being disturbed, and without disturbing the state ϕ (which is
not entangled with |i〉). So the trick for C is to find out when he is decrypting
the right element by only measuring the first ntag qubits of the decrypted
block, and then only act on the quantum data unit when the right identifier
is found. Notice how other different approaches used classically to instantiate
PathORAM, such as identifying blocks by storing a local table with the hash
values of the data units, might not work so smoothly when translated to the
quantum world.

More concretely, we give here a full description of PathQORAM (which
from now on we denote as PathQORAM) according to our new formalism. The
meaning of the parameters is as in Definition 3.63.

Construction 6.29 (PathQORAM [GKK17, Definition 36]). For fixed param-
eters ndat, nMax ∈ N, let ntag = dlog2 nMaxe, nbkt ∈ N, nmsg = ndat + ntag,
and nblk ≥ nmsg. Let G be a pqPRNG outputting ntag-bit pseudorandom val-
ues, and let E = (KGen,QEnc,QDec) be a QIND-CPA SKQES with nmsg-qubit
plaintexts and nblk-qubit ciphertexts. We define a QORAM construction called
PathQORAM = PathQORAME,G as follows:

• QInit(n, ndb)→ (C,S) in the following way:
1: C generates a secret key k ← KGen
2: set ntree := dlog2 ndbe
3: C initializes a lookup table (the position map) of the form

((1, r1), . . . , (ndb, rndb)), where ri are ntree-bit values generated by
truncating the first ntag − ntree bits of G’s output

4: S.|QDB〉 is stored in a binary tree of height ntree, with root |QRoot〉
and leaves |QLeaf〉0 , . . . , |QLeaf〉2ntree−1, and such that:
1. each node of the tree stores up to nbkt quantum blocks;
2. every quantum block of every node is initialized

to QEnck(|0nmsg〉〈0nmsg |).

• If |qdr〉 = (op, i, ϕ), then QAccess(C,S, |qdr〉) → (C′,S ′, |qcom〉) in the
following way:

1: C reads ri from his position map and sends it to S
2: S sends to C the quantum system containing the path |QBranch〉 from
|QRoot〉 to |QLeaf〉ri

3: remap (i, ri) to (i, r′i) in the position map of C, where r′i is a fresh
pseudorandom ntree-bit value (generated by truncating the first
ntag − ntree bits of G’s output), obtaining C′

4: for all quantum block ψ contained in |QBranch〉 do
5: C′ decrypts QDeck(ψ)→ (|j〉〈j| ⊗ σ),

where |j〉 ∈ Hntag , and σ ∈ D (Hndat)
6: C′ measures the first ntag qubits of the decrypted state in the

computational basis, obtaining j
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7: if j = i then
8: swap σ with ϕ
9: C′ re-encrypts (re-randomizing) the current quantum block,

obtaining ψ′
10: find in |QBranch〉 the common parent node |QNode〉 between

|QLeaf〉ri and |QLeaf〉rj , closer to the leaf level
11: set bswap := ‘false’
12: for all ρ in |QNode〉 do
13: C′ decrypts QDeck(ρ)→ (|j′〉〈j′| ⊗ σ′)
14: C′ re-encrypts (re-randomizing) ρ′ ← QEnck(|j′〉〈j′| ⊗ σ′)
15: if j′ = 0 . . . 0 then . ρ′ is empty, can be used
16: swap ψ′ and ρ′
17: set bswap := ‘true’
18: if bswap = ‘false’ then . no empty blocks in current |QNode〉
19: if |QNode〉 6= |QRoot〉 then
20: set |QNode〉 to be one level up in the tree
21: go to step 12
22: else
23: store the current quantum block in the |QStash〉
24: C′ sends back the updated tree branch, |NewQBranch〉, to S
25: update S.|QDB〉 with |NewQBranch〉, obtaining S ′
26: produce |qcom〉, which contains ri, |QBranch〉 , |NewQBranch〉

Notice that the following interesting property holds: the operations of
‘write’ and ‘read’ have the same effect. Namely: since qubits from the server’s
database cannot be copied, and cannot be removed or added (otherwise this
would compromise indistinguishability), the action of a read or write operation
is simply to swap a state in the database with a state in C’s memory. In
fact, QAccess swaps ϕ known by C with σ stored in S. Also notice how
|qcom〉 containing |QBranch〉 , |NewQBranch〉 would imply a cloning of quantum
states. This is just a formal artifice, because in the case of QORAMs as we
defined them, |qcom〉 is only used in respect to a safe extractor B, which
processes |NewQBranch〉 only after C has processed |QBranch〉, so information
is never copied. For the soundness of the PathQORAM construction we have left
unexplained the use of a quantum stash |QStash〉. This is an area of quantum
memory basically used as the classical stash of PathORAM, but every time an
element is ‘written’ in the stash, it is actually ‘swapped’ with an empty block
in the tree. The security of the construction follows from the QIND-CPA
security of the SKQES E , and from the security of the pqPRNG G.

Theorem 6.30 ([GKK17, Theorem 34]). Let E be a QIND-CPA SKQES,
and let G be a pqPRNG. Then, PathQORAM instantiated using E and G is a
QAP-IND-CQA secure QORAM.
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Proof. The proof follows step-by-step the proof of Theorem 3.64 with some
important differences. First of all, D cannot store a local mirrored tree of
plaintexts of the form (|i〉 〈i| ⊗ σ) because of the No-Cloning Theorem, so he
cannot simulate C perfectly. But he can store a mirrored tree which contains
only the classical identifiers i, at the right positions of every block throughout
the execution of the protocol.

At this point, D can simulate a decryption oracle for a certain block ψ in
a downloaded branch by fetching the cleartext identifier i found at the corre-
sponding position in the ‘mirrored’ tree, and creating a ‘simulated’ plaintext
of the form (|i〉 〈i| ⊗ |0ndat〉 〈0ndat |), i.e., replacing the ‘real’ quantum data unit
σ with a zero state. Since A never ‘sees’ a decrypted block, this substitution
is not immediately apparent to him. Moreover, whenever C would create a
block by encrypting ψ ← QEnck(|i〉 〈i| ⊗ σ), D can simulate this by doing
ψ ← QEnck(|i〉 〈i| ⊗ |0ndat〉 〈0ndat |). By the QIND-CPA security of E , A cannot
detect this substitution with more than negligible advantage over guessing.
Therefore, D can still simulate C (with overwhelming, albeit not 100%, prob-
ability) at any data request.

Another issue appears during the challenge phase, as this time the concept
of non-meaningful challenge must be redefined. For the same argument as
above, from A’s perspective it does not matter whether two data requests
lead to two ‘different’ quantum data units σ0, σ1 (the analogue of data units
data0, data1 in the classical proof) or not. Therefore, D can ignore the quantum
data units at all. Moreover, as discussed above, in PathQORAM there is no
difference between ‘read’ and ‘write’ operations. It follows, from the same
argument as in the proof of Theorem 3.64, that the two challenge quantum
data requests |qdr〉0 , |qdr〉1 must differ on the identifiers i0, i1. Then, D plays
the QIND-CPA game with challenge plaintexts ϕa = |ia〉 〈ia| ⊗ |0ndat〉 〈0ndat |
for a ∈ {0, 1}, following the same strategy as in the classical case (by guessing
a bit, injecting the challenge ciphertext, and observing A’s output), with
only a negligible loss in the success probability because he is simulating fake
plaintexts. This concludes the proof.
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