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for providing me this opportunity as a doctoral candidate.

I owe my deepest gratitude to Prof. Michael Schäfer for the constant sup-
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Chapter 1

Introduction

1.1 Motivation

Fluid-structure interaction (FSI) problems involve one or more flexible struc-
tures interacting with a fluid flow either internal or by surrounding the struc-
ture. The structure exposed to the fluid flow is deformed and deflected under
the influence of fluid forces acting on it. The deformation of the structure
further influences the flow, resulting in a complex coupling process. These
phenomena are relevant in numerous scientific and engineering disciplines.
The analytical solution of model equations for most of the FSI problems are
impossible, while experimentation has its limitations associated with mea-
suring techniques, cost and design of experiments for real world applications.

Numerical techniques have gained significant popularity for the simulation
of coupled problems in recent years. This popularity is fueled by recent de-
velopments in computational technology that have made it possible to study
complex and sophisticated models to simulate coupled problems. The use
of numerical simulations is becoming important in understanding various
physical effects occurring in a coupled problem. For this purpose, different
commercial and in-house software packages are used in academia and indus-
try. The major concern with these simulations is the efficiency, stability and
accuracy of predictions for the coupled phenomena.

The use of FSI simulations is spreading across various disciplines of science
and engineering, ranging from bio-medicine to aerospace. In bio-medicine,
patient specific blood flow simulation through arteries has a growing interest,
where the data from simulations can help in diagnosis and treatment. The
flutter analysis of an aircraft or a turbine blade is an important application
from aerospace industry. The FSI analysis can be critical for long lasting and
efficient design of aircraft wings and turbine blades. Similarly, FSI simulations
can also be employed in civil engineering to study the dynamic response of
buildings and bridges under wind loading.

1



2 1 Introduction

The simulation of individual problems from fluid or structural dynam-
ics could be a computationally intensive task, depending upon the problem
size and numerical models. When the solution for a coupled FSI problem is
sought, the most obvious distinction is made between monolithic and par-
titioned coupling strategies. In monolithic approaches, the individual fluid
and structure subproblem are stated as one problem discretized on one sin-
gle grid covering both physical fields, while in a partitioned approach the
fluid and structure are treated as individual problems with coupling through
boundary conditions and data exchange at the fluid-structure interface. Par-
titioned approaches are preferred on the basis of software modularity and
re-useability. But these coupling algorithms often need multiple coupling it-
erations in a time step to achieve stability and convergence, which adds to
the computational cost. Also, the task to develop a coupling environment
between two solvers is not usually straightforward and requires a consider-
able amount of research effort for testing and validation. On the other hand,
dealing with flow simulations, turbulence poses a major challenge in achiev-
ing accurate flow predictions with economical computational cost. Significant
research has been done in the field of turbulence modeling, with an aim of
developing highly accurate and computationally economical turbulence mod-
els. The application of these methods needs to be verified in the FSI context.
Another important aspect is the computational time required for these sim-
ulations, which in turbulent FSI analysis depends a great deal on the turbu-
lence modeling approach and the coupling strategy. The ultimate goal is to
employ validated coupling environments to replace or minimize the expensive
experimentation for the analysis of FSI applications.

1.2 State of the Art

This section gives a literature review related to the current work. The focus is
on studies in the area of FSI, while a short discussion on turbulence modeling
relative to this study is also provided.

Fluid-Structure Interaction

Fluid-structure interaction studies and algorithms can be broadly classified
into categories based on the coupling strategy as described in the previ-
ous section and based on the treatment of meshes. The classification based
on the treatment of meshes is distinguished by whether the fluid mesh is
adapted/moved to conform to the structure or the mesh remains unchanged
i.e. non-conforming.
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Based on the coupling strategy, the numerical procedures to solve FSI
problems are mainly classified into monolithic and partitioned coupling ap-
proaches. The monolithic approaches treat the fluid and structural subprob-
lem in the same mathematical framework on a single grid to form a single
system of equations for the entire problem. The monolithic approach to FSI
simulation has been demonstrated in works of Heil [34], Walhorn et al. [119]
and Hron and Turek [38], a review of other studies has been provided in [40].
On the other hand, the partitioned approaches deal with the coupling ex-
plicitly by data exchange at the interface between two subproblems that are
solved in different computational frameworks on their respective meshes. Two
further classifications between partitioned coupling approaches are termed as
explicit (also known as loose or weak coupling) and implicit coupling (also
known as strong coupling) strategies. In explicit partitioned coupling strate-
gies [61, 22, 58] the data exchange and coupling between two solvers for
fluid and structural subproblems is performed only once per time step. This
kind of strategy is only suitable for weak fluid structure interaction and puts
a strict limitation on the time step size. The implicit partitioned coupling
technique enforces the equilibrium of traction and velocity/displacement at
the fluid structure interface by successive iterations of the coupling procedure
between two solvers, for each time step. The solvers can calculate the individ-
ual subproblems either in a Jacobi iteration scheme (parallel execution of the
fluid and the structural solver) or a Gauss-Seidel iteration scheme (sequen-
tial execution of the fluid and the structural solver). The implicit coupling
partitioned scheme has been employed in the works of Sternel et al. [102],
Schäfer et al. [91] and Vierendeels et al. [118]. However, the slow convergence
of these algorithms is a well known issue and significant research is being
done for the development of acceleration techniques, where Aitken [42] and
IQN-ILS [15] are frequently used. This work employs an implicit partitioned
coupling strategy to solve FSI problems, a detailed review of partitioned cou-
pling techniques and acceleration of these techniques has been provided by
Degroote in [14].

The next classification in FSI methods is based on the movement of the
fluid grid. The fluid subproblem is generally solved in Eulerian formulation,
i.e. on a fixed-grid. The Arbitrary Lagrangian Eulerian (ALE) formulation
of Navier-Stokes equations for moving grids was proposed by Hirt et al. [36],
where the grid can deform at an arbitrary velocity, independent of fluid mo-
tion. Donea et al. [17] adopted the ALE formulation to propose Finite Ele-
ment models for FSI analysis. In contrast to the ALE formulation, there has
been a number of fixed grid approaches that has been used for FSI studies.
In this regard, the Immersed Boundary (IB) method [67] was developed by
Peskin [76] to study the flow patterns around heart valves. In IB methods
the structure is represented by so called fibers, which consist of a chain of
solid nodes. A three-dimensional structure could be represented by weaving
a net of these fibers. Another fixed grid technique for fluid simulation with
immersed bodies is called distributed Lagrange multiplier fictitious domain
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(DLM/FD) method, proposed by Glowinski et al. [28, 27]. The method has
been used for the simulation of interaction between fluid and flexible struc-
tures in [3, 126]. In DLM/FD method, the fluid grid region occupied by the
structure is filled with the same fluid as the remainder of the fluid domain.
This fictitious fluid is constrained with Lagrange multipliers to move with the
same velocity as the structural domain. Wall et al. [120] proposed a combina-
tion of extended finite element method (XFEM) and the DLM/FD method.
The XFEM method originated for the simulation of cracks in finite element
analysis of structures. The advantage of such a method is the decoupling of
the fictitious fluid overlapped by the structure and the fluid around by the
use of the XFEM method. Wall et al. [120] also proposed a moving and fixed
fluid grid approach, where a local body-fitted grid around the structure is
employed to take advantage of the ALE formulation. Both the moving fluid
grid and the structure move on a fixed fluid grid, where the fixed fluid grid
overlapped by the structure is disabled. The fluid flow on the fixed grid and
moving grid are calculated with a Chimera technique [100]. The main advan-
tage of IB and FD methods is that the fixed fluid grid does not change, which
enables the use of simple and fast solvers. A main disadvantage is the loss of
accuracy near the fluid-structure interface, due to inaccurate representation
of the interface. Also, at high Reynolds numbers where a very fine grid is
required in the vicinity of solid boundaries, these methods might suffer from
unacceptable grid design.

Turbulence Modeling

Even though the advent of high performance computing technology has made
studies of many computationally intensive problems possible, turbulence still
posses a challenge owing to the multi-scale nature of the problem. The exact
simulation of turbulence for flows with practical relevance, where all scales
are resolved, might not be possible in a foreseeable future. This makes turbu-
lence modeling a key area of research with effort towards developing models
to accurately represent effects of turbulence in fluid motion, while keeping
the computational cost manageable. In this context, the statistical approach
to model turbulence, also known as the Reynolds Averaged Navier-Stokes
(RANS) modeling technique is favored in industry owing to lower compu-
tational cost than scale resolving simulation techniques. In RANS concepts,
the turbulent quantities are decomposed into mean flow and turbulent fluc-
tuations as introduced by Reynolds [85]. The decomposition when applied to
Navier-Stokes equations, results in RANS equations and the closure problem
with the emergence of Reynolds stress terms in RANS equations. The closure
problem necessarily means more unknowns than number of equations avail-
able for a determinate solution. Based on the mechanism to handle the closure
problem, the RANS modeling techniques are categorized in two broad groups;
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the Reynolds stress models (RSM) and eddy viscosity models (EVM). In the
RSM technique, a transport equation for each component of the Reynolds
stress tensor is sought, however some empiricism is involved to obtain solu-
tions for these equations, more details about RSM techniques can be found
in [53]. In contrast the EVM approach is based on the Boussinesq hypothe-
sis [4], where the Reynolds stresses are modeled with an eddy viscosity. The
eddy viscosity in RANS turbulence models is calculated based on the solu-
tion of some transported turbulent quantity. The two equation k − ε model
proposed by Launder and Sharma [55], models the eddy viscosity by means
of k and ε, which represent the turbulent kinetic energy and the dissipation
rate of turbulent kinetic energy, respectively. The model became a standard
tool for computing turbulent flows, despite some issues for predictions of wall
bounded flows. Chien [11] and Launder and Sharma [54], presented improve-
ments to the initial proposal of the k− ε model, which addressed some of the
issues. Spalart and Allmars [97] proposed a one equation model based on a
transport equation for the eddy viscosity, which is commonly known as the
S-A model. The S-A model has gained significant popularity specially for ap-
plications in the field of external aerodynamics. Another two equation model,
the k−ω model with ω being the specific dissipation rate of turbulence, was
presented by Wilcox [122]. The k − ω model was shown to perform better
than other two equation models in the presence of adverse pressure gradients.
The model also formed the basis for Shear Stress Transport (SST) model by
Menter [122], which aims to combine the advantages of the k − ε and the
k− ω model. A subclass of the EVM models is the non-linear eddy viscosity
models, in which the eddy viscosity is related to the mean flow in a non-
linear relationship. These models offer better predictions than linear EVM
models with a minor increase in the computational cost. The explicit alge-
braic Reynolds stress models (EARSM) [121], the elliptic relaxation models
of Durbin [19] and Hanjalić [32], are more generally known models belonging
to non-linear EVM class of models.

As stated earlier, a complete resolution of turbulence in a practical flow
application might not be feasible computationally. But a partial resolution
of turbulence, where modeled and resolved scales are separated based on a
filtering approach might still be possible. Such a simulation methodology is
known as the Large Eddy Simulation (LES) technique. The motivation be-
hind partial resolution of turbulence comes from Kolmogorov’s self-similarity
hypothesis. The Kolmogorov’s hypothesis considers large energy containing
turbulent motions to be anisotropic under the influence of geometric and
boundary conditions, while small scales have universal isotropic character.
This universal character of small scales makes them an excellent candidate
for modeling, also the resolution of large anisotropic and energy containing
motions improves the prediction of flow. Today, there are a number of LES
models available, but the approach was first demonstrated by Smagorinsky
[93] for atmospheric flows. Later Deardorff [13] demonstrated the applica-
tion of the same model for a three dimensional turbulent channel flow. The
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model today is available in many commercial CFD codes as a standard model
for performing LES. The Smagorinsky model suffers from some well known
issues; the model fails to predict transition to turbulence and requires damp-
ing of the modeled turbulent viscosity in wall vicinity to recover correct wall
behavior. Germano et al. [26] addressed these issues with a dynamic calcula-
tion procedure of the model constant. The Wall adapting local eddy viscos-
ity (WALE) model [18] offers a solution to the issues encountered with the
Smagorinsky model, without the dynamic calculation of the model coefficient.
The eddy viscosity for modeled scales in the WALE model depends on the
local strain as well as the rotation rates. For a deep insight into the LES and
modeling approaches associated with incompressible LES, the reader may
refer to the book from Sagaut [89].

Due to computational requirements, the use of LES techniques remain
limited to research and academia for a foreseeable future. While RANS com-
putations are affordable, the accuracy of predictions is still a concern. The
hybrid RANS-LES approach emerged as an alternative to RANS and LES,
with efforts to combine advantages of both techniques. In this regard, the
Detached Eddy Simulation [96] model was proposed by Spalart in 1997. In
the DES approach, a RANS model is modified to perform an LES in re-
gions where the grid is fine enough for an LES. The switch between two
approaches is based on a length scale. The original formulation of the DES
model proposed by Spalart modified the S-A RANS model to perform a DES.
A later proposal to modify Menter’s SST model to a DES was presented by
Strelets [104]. The DES model suffered from some problems associated with
the location of RANS-LES interfaces. The modification of the original formu-
lation was proposed in [95] to obtain the Delayed Detached Eddy Simulation
(DDES) model. In an effort to make the DDES approach applicable as wall
modeled LES the Improved-DDES (IDDES) model was proposed by Travin
[113]. Many other studies have been conducted with different RANS turbu-
lence models to work as a DES model, a detailed study of these approaches
can be found in [68]. Another widely used hybrid model is the Scale Adap-
tive Simulation (SAS) model proposed by Menter [65]. A review of hybrid
RANS-LES techniques has been provided by Fröhlich [25].

Turbulent FSI

This section highlights some important work in the field of the turbulent FSI.
Numerous studies about FSI of parachutes has been conducted by the group
of Tezduyar, including [107, 101, 106]. However in most of these studies the
focus has been on numerical methods for FSI and just in [101] the use of the
Smagorisnky model is mentioned. In [62], Lüdeke has performed FSI analy-
sis of the Ariane-5 nozzle in the start-up phase by employing a DES model
for the turbulent fluid simulation. Martinat et al. [63] has performed FSI
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analysis for dynamic stall on a NACA0012 airfoil with different turbulence
modeling approaches. The results from the study show a better agreement
with the experimental data for Menter’s SST model and it is argued that
for accurate simulations of the dynamic stall more sophisticated unsteady
RANS (URANS) models are required. Shinde et al. [92] employed URANS
and DDES models to study the vortex induced vibration in tube arrays. The
turbulent FSI of a NREL phase VI wind turbine has been studied in [39, 59].
In [59], an overset grid methodology is applied for the fluid simulation, while
turbulence is modeled with a k − ω SST and a DES model. The application
of LES models for turbulent fluid simulation has been studied by the group
of Breuer in [29, 70, 7, 73, 72]. The same group has also proposed two exper-
imental FSI test cases in [73, 72], for validation or benchmarking purposes.
These test cases are presented as simplifications to the proposal by Gomes
and Lienhart [30], for their proposal of a turbulent FSI test case. The test
case proposed in [30] has been studied by Reimann [83], in a 2-d URANS
flow configuration. In [115], a self adaptive airfoil designed for wind turbines
is studied with RANS and hybrid RANS-LES modeling techniques.

1.3 Goals and Outline

The application of three different turbulence modeling techniques in the con-
text of FSI simulations is studied with the help of benchmark FSI test cases.
A comparison based on the oscillation characteristics and flow visualizations,
between 2-d and 3-d URANS flow simulations for two different FSI test cases
[73, 72] is performed. The same test cases are also studied with the DDES
model for turbulence. Further a comparison between a DDES and a LES
simulation is drawn for the turbulent FSI test case proposed in [30]. A Pois-
son equation based wall distance calculation procedure is implemented in
FASTEST [2], for use in the DDES turbulence model. For computational
efficiency, an universal wall function approach is implemented in the flow
solver FASTEST. The implementation is first tested on static grids with a
channel flow test case and then a test on moving grids is performed with the
help of an FSI simulation on a coarse grid. Coupling acceleration techniques
are studied with a lid-driven cavity test case in laminar and turbulent flow
regimes. The turbulence modeling options in FASTEST are enhanced with
the implementation and validation of the WALE model for LES.

The work is organized into six chapters. The first chapter gives an intro-
duction to this work and previous works relating to this study. In the second
chapter a short description of the physical governing principles of fluid and
structure are given, while the formulation of governing principles for fluid dy-
namics in an Arbitrary Lagrangian Eulerian frame is also described. The third
chapter deals with the numerical techniques for the solution of fluid and struc-
ture dynamics problem, also a short discussion of Finite Volume and Finite
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Element methods is provided. The fourth chapter specifically deals with the
issue of turbulence. The physical phenomena behind turbulence is discussed
briefly, while the focus is on modeling of turbulence. The implementation
of wall distance calculation, universal wall functions and the WALE model
for LES are discussed in a separate section in chapter four. The discussion
on results from FSI simulations is provided in the fifth chapter. This is pro-
vided by combining URANS and scale resolving simulations into respective
subsections, with further division based on the studied test cases.



Chapter 2

Physical Modeling

In this chapter the fundamental equations governing the conservation prin-
ciples of mass and momentum are described for fluid and solid subproblem,
which are further employed in a coupled fluid-structure interaction frame-
work. Concerning the simulation of the fluid subproblem in moving domains,
the governing equations are also formulated in Arbitrary Lagrangian Eulerian
(ALE) formulation. A detailed discussion about the topics in this chapter can
be found in standard textbooks, e.g. [90, 127, 23].

2.1 Governing Equations of Fluid Dynamics

This section introduces the governing equations of fluid dynamics. The mo-
tion of fluids is governed by the conservation principles of mass, momentum
and energy. The conservation principles are written here in differential form
using Einstein’s notation. The continuity equation, governing the conserva-
tion of mass is written as

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 , (2.1)

where ρ is the fluid density, t is the time, and ui are the velocity components
in spatial directions xi. The governing equation of momentum conservation
is given as

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=
∂τij
∂xj

+ ρfi , (2.2)

with τij representing the Cauchy stress tensor and fi representing the body
forces acting on the fluid such as gravity or buoyancy. For Newtonian fluids
the stress tensor τij is defined as

9
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τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− pδij , (2.3)

where p is the fluid pressure, µ is the dynamic viscosity of the fluid and δij
is the Kronecker delta.

Equations (2.1) and (2.2) are also known as the Navier-Stokes (NS) equa-
tions. The present work assumes the fluid to be incompressible, isothermal
and Newtonian, while the incompressibility assumption is valid for flows with
Mach number Ma < 0.3. With the assumption of an incompressible and
isothermal fluid, the time derivative of density in continuity equation (2.1)
vanishes transforming the equation to

∂ui
∂xi

= 0 . (2.4)

Further, using the continuity equation the divergence term in the definition
of shear stress tensor (equation (2.3)) vanishes, and the momentum equation
for an incompressible fluid is written as

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij

]
+ ρfi . (2.5)

Equations (2.4) and (2.5) define the conservation principles for an incompress-
ible, isothermal and Newtonian fluid motion. These equations define the fluid
subproblem of the coupled fluid-structure interaction study in this work. The
solution techniques employed to solve these equations are described in the
next chapter.

2.2 Arbitrary Lagrangian Eulerian Formulation

The incompressible Navier-Stokes equations in the previous section (equa-
tions (2.4) and (2.5)) are written for a Eulerian frame of reference. The Eu-
lerian formulation of flow field is a way of looking at the fluid motion while
focusing on a specific location in space, through which the fluid flows. The
formulation is not suitable for moving boundaries with body-fitted meshes.
In this work, the Arbitrary Lagrangian Eulerian formulation is used for the
solution of conservation equations of the fluid subproblem on moving grids.
The main idea of the ALE approach is that an observer is neither located
at a fixed position in space nor moves with the material point, but it can
move arbitrarily. To achieve this for the conservation laws already described,
a relative velocity is introduced in the convective term. Equations (2.4) and
(2.5) in ALE form reads as

∂ui
∂xi

= 0 , (2.6)
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∂(ρui)

∂t
+
∂(ρuj(ui − ugi ))

∂xj
=

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδij

]
+ ρfi , (2.7)

where ugi is the grid velocity in xi direction. It is evident that equations
(2.6) and (2.7) reduce to the incompressible NS equations (2.4) and (2.5) in
Eulerian formulation when the grid velocity ugi = 0 and turn into Lagrangian
formulation when the grid velocity is ugi = ui.

Space Conservation Law

The ALE formulation uses a relative velocity, i.e. ui − ugi for the calculation
of convective fluxes at cell faces. In moving meshes, the mass balance is not
necessarily ensured when the cell faces move. The conservation of mass for
equations (2.6) and (2.7) require an additional condition to be fulfilled, which
is called Space Conservation Law (SCL) [110, 16]. Consider a fluid domain
Ωf with control volumes V and surface S, then the space conservation law is
stated as

∂

∂t

∫
V

dV =

∫
S

ugi dS . (2.8)

The SCL can be thought of as a continuity equation in the limit of zero fluid
velocity, as it ensures that the sum of fluxes through control volume faces
due to grid movement are equal to the rate of change of the volume itself.

2.3 Governing Equations of Solid Mechanics

In structural dynamics simulation, the Lagrangian formulation of the gov-
erning equations of solid mechanics is preferred, as a deformed state is to
be determined from a known reference configuration, which can naturally be
done by tracking the corresponding material points [90]. For a structural sub-
domain Ωs the deformations of the structure ϑi are defined in terms of the
position in a reference configuration X = Xi and the position in the current
configuration x = xi as

ϑi = xi −Xi . (2.9)

The basic equation of momentum balance for the solid domain Ωs is then
written as

ρs
∂2ϑi
∂t2

=
∂(SjiFij)

∂Xj
+ ρsfi , (2.10)

where the deformation gradient Fij is defined as

Fij =
∂xi
∂Xj

. (2.11)
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In equation (2.10) Sij is the second Piola-Kirschhoff stress tensor, ρs is the
density of the solid material and fi represents the external forces acting on the
solid. In the present study a simple hyper-elastic material model, the Saint
Venant-Kirschhoff law, is employed. For the second Piola-Kirchhoff stress
tensor the model states

Sij = λsEkkδij + 2µsEij , (2.12)

where the Green-Lagrange strain tensor is represented as

Eij =
1

2
(Fkifkj − δij) , (2.13)

with λs and µs as Lamé constants. These constants are expressed in terms
of material properties Young’s modulus Es and Poisson’s ratio νs as

Es =
µs(3λs + 2µs)

λs + µs
and νs =

λs
2(λs + µs)

. (2.14)

The momentum equation (2.10) represents a system of differential equations,
which describe the deformation of the structure. These equations can be
solved with appropriate boundary conditions. For linear elasticity problems
either prescribed displacements or stresses on the boundary of the domain
Ωs can be employed as boundary conditions.



Chapter 3

Computational Methodology

The physical governing principles for fluid and structural dynamic subprob-
lems have been described in the previous chapter. This chapter concerns
the layout of the coupled FSI framework and numerical techniques to solve
the individual subproblems, used in this work. The Finite Volume Method
(FVM) is discussed for the fluid subproblem. The FVM methods described in
this chapter are incorporated in the in-house code FASTEST [2], which is a
multigrid solver for block-structured body fitted meshes. The parallelization
in FASTEST is achieved with domain decomposition and communication via
MPI. Further, the Finite Element Method (FEM) to solve the structural sub-
problem are also briefly discussed, where the FEM based code FEAP [108] is
employed to solve the structural subproblem.

3.1 Finite Volume Method

The Navier-Stokes equations (2.4) and (2.5) are a set of non-linear partial
differential equations. The set of equations can be solved with the help of
various numerical techniques such as, the Finite Difference Method, the Finite
Element Method (FEM), the Finite Volume Method (FVM) and the spectral
methods. The FVM has been more popular for the solution of NS equations
owing to the conservation property of the control volume formulation.

As a starting point the fluid domain Ωf is decomposed into a finite number
of Control Volumes (CVs). Equations (2.4) and (2.5) are then integrated over
an arbitrary CV with volume V and surface S. For convective and diffusive
terms of the incompressible Navier-Stokes equations, Gauß’ theorem is used
to convert volume integrals over V to surface integrals over S, to reach the
following form of the continuity and momentum equations∫

S

uinidS = 0, (3.1)

13
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∂

∂t

∫
V

ρuidV +

∫
S

ρui(uj − ugj )njdS =

∫
S

µ

(
∂uj
∂xi

+
∂ui
∂xj

)
njdS

−
∫
S

pδijnjdS +

∫
V

ρfidV.

(3.2)

The surface and volume integrals in the equations above are approximated
using numerical integration, while the derivatives are estimated at a CV sur-
face or faces via interpolation of cell center values. With these approximations
the set of non-linear partial differential equations is converted into an alge-
braic system of equations, which can then be solved with a suitable iterative
solution technique.

Fig. 3.1: A schematic representation of a control volume around a point P
with neighboring control volume around point N and a shared face f

between P and N .

We consider a hexahedral CV around a point P with coordinates (xP , yP ,
zP ), while N with coordinates (xN , yN , zN ) denotes the midpoint of the
neighboring CV, as shown in figure 3.1. Also, f denotes the midpoint of
the cell face between P and N , with coordinates (xf , yf , zf ). The task from
here on is the approximation of surface and volume integrals in equations
(3.1) and (3.2). The approximation of surface integrals will require the inter-
polation of quantities from cell centers to cell faces. The following sections
give details about the approximation of these integrals and the interpolation
practice to calculate cell face values.

Approximation of the convective term

The convective term in NS equations is a non-linear term and requires a spe-
cial treatment. It is approximated as a product of old and new velocity fields.
The mass flux required for the approximation of this term is assumed to be
known from the previous iteration of the solution procedure. The calculation
of the convective fluxes require the approximation of velocity at the CV faces.
Nevertheless the convective term for the ui velocity is calculated as
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Fc =

∫
S

ρuiujnjdS =
∑
f

ṁf (ui)f , (3.3)

where f represents a CV face, and in 3-d corresponds to six faces of the
hexahedral control volume. Now the ui velocity at cell face f is approximated
using a Central Differencing Scheme (CDS) between the point P and the
neighbor N as

(ui)f = γf (ui)N + (1− γf )(ui)P , (3.4)

where γf represent the factor for linear interpolation scheme CDS between
P and N and is calculated as

γf =
(xi)f − (xi)P
(xi)N − (xi)P

. (3.5)

For orthogonal grids the CDS is second order accurate. The scheme is con-
ditionally bounded and produces oscillation for rapid changes in the inter-
polated quantity across the cells. The boundedness criteria for the CDS is
defined using the cell Péclet number defined for a generic transport quantity
φ as

Pe =
ρφ∆x

Γφ
< 2 , (3.6)

where ∆x is the grid spacing and Γφ is the diffusion coefficient of φ. This
condition may require very small grid spacings when the diffusion coefficient
is very small. A solution to overcome this problem is to use the Upwind
Differencing Scheme (UDS), which is a first order unconditionally bounded
scheme, defined as

(ui)f =

{
(ui)P if ṁf > 0 ,

(ui)N if ṁf < 0 .
(3.7)

The UDS has better properties regarding robustness and boundedness, but
suffers from excessive numerical diffusion, which effects the accuracy of flow
prediction. A blending between UDS and CDS can be performed to combine
the bounded UDS scheme with the second order accurate CDS scheme as

(ui)f = (ui)
UDS
f + β

(
(ui)

CDS
f − (ui)

UDS
f

)
, (3.8)

where 0 ≤ β ≤ 1 is the flux blending factor. The above expression produces
CDS approximation for β = 1 and a UDS for β = 0, a value between 0 and
1 produces a blending between UDS and CDS.

The current flow solver FASTEST uses the deferred correction approach
with the flux blending technique to improve stability and accelerate the itera-
tive solution procedure. In the deferred correction approach the blended part
of the flux is treated explicitly and assumed to be know from the previous
solver iteration. This helps improve the convergence properties by maintain-
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ing the diagonal dominance of the coefficient matrix of linearized equation
system.

Approximation of the diffusive term

The approximation of the diffusive term requires the evaluation of the stress
τij at cell faces, which in turn requires the gradients of velocity at cell faces.
For equidistant cartesian grids a central differencing formula can be used to
evaluate the gradients at the cell face f as(

∂u

∂x

)
f

≈ uN − uP
xN − xP

. (3.9)

Here the variation in the gradient is assumed to be linear. For equidistant
cartesian grids, the expression leads to a second order accurate approxima-
tion. The accuracy drops to first order for non-equidistant grids. However,
the fluid solver FASTEST also has a Taylor based interpolation (TBI) [56]
method available, which produces an overall accuracy of second order even
on distorted grids.

Approximation of integrals

The integrals in equation (3.2) are approximated using the second order accu-
rate midpoint rule for numerical integration. The value at the control volume
center is used to evaluate the volume integrals as∫

V

ρfidV ≈ (ρfi)P δV ,
∂

∂t

∫
V

ρuidV ≈
(
∂ui
∂t

)
P

δV . (3.10)

Here the index P denotes a value at the midpoint, while δV denotes the
volume of the CV.

Temporal discretization

The time derivative in (3.10) can be approximated analogous to the approx-
imation of spatial derivatives. In general, the time integration methods are
classified into explicit and implicit time discretization schemes. In explicit
methods the solution at time step n + 1 involves the calculation of convec-
tive, diffusive and source terms from known solution at previous time steps,
whereas for implicit methods these terms have to be discretized at the un-
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known time level n + 1. The explicit methods suffer from a lack of stability
at large time steps and hence are conditionally stable. The most commonly
used time integration methods in computational fluid dynamic codes are ex-
plicit and implicit Euler methods, the Runge-Kutta methods and the Crank-
Nicolson method. The second order backward differencing scheme (BDF2) is
employed in this study, which reads as(

∂ui
∂t

)n+1

=
3un+1

i − 4uni + un−1i

2∆t
, (3.11)

where the superscripts n + 1, n, n − 1 denote the time levels and ∆t is the
time step size.

Assembly and solution of the equations

The discretization and interpolation practices described earlier result in a
system of algebraic equations, with terms depending only on cell centered
values of ui, p and the geometrical information of the grid. At this point the
system matrix can be assembled. To improve stability of the solution proce-
dure, the flow solver FASTEST employs the deferred correction approach as
mentioned earlier. This means that the source terms have contributions from
convective and diffusive fluxes calculated explicitly using the values from the
previous solution iteration. The implicit part of these terms end up on the
left hand side of the equation system and hence contributes to the system
matrix. Other source terms such as body forces or the ones arising from a
specified pressure gradient are added to the right hand side of the equation
system. The system can then be represented as

akPu
k+1
P −

∑
N

akNu
k+1
N = bkP , (3.12)

where N is the index of neighboring cells of P , and k , k + 1 represent the
iteration number. For incompressible flows, the system of equations lack a sep-
arate equation for pressure. The absence of a separate equation for pressure
means that the system is severely ill-conditioned and cannot be solved di-
rectly, and hence needs special treatment. In practical flow simulation codes,
these problems are overcome by employing pressure correction methods. The
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) [74] algo-
rithm is used in this study. The main idea in the SIMPLE algorithm is to use
the continuity equation to derive an equation for pressure correction. The
momentum equation is then used to calculate preliminary velocities using
a pressure field from the previous time step, or a guessed pressure field is
used as initial condition. The velocities and pressure are then corrected us-
ing the pressure correction equation, to satisfy the continuity equation. Also,
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the method of Rhie and Chow [86] is used to avoid pressure oscillations that
arise on collocated grids, when the continuity equation is discretized with the
central differencing scheme. The resulting system of equations is solved with
the Strongly Implicit Precedure (SIP) of Stone[103] .

3.2 Finite Element Method

The term Finite Element was first coined by Clough in 1960. In the early
1960s, engineers used the method to obtain approximate solution of problems
in stress analysis, fluid flow, heat transfer, and other areas. Today Finite
Element Methods are a standard tool used in the investigation of problems
related to solid mechanics [90].

The first step towards solving a problem with FEM is to write the weak
or variational formulation of the partial differential equation. We consider
equation (2.10) for the solid domain Ωs with Dirichlet and Neumann con-
ditions at boundaries ΓD and ΓN , respectively. The momentum equation is
then multiplied by an arbitrary test function ηi. By partial integration and
with the condition (ηi)ΓD = 0, the following weak form of the problem is
derived∫

Ωs

δEijSijdV −
∫
Ωs

ηiρs
∂2ϑi
∂t2

dV −
∫
ΓN

ηitidS −
∫
Ωs

ηiρsfidV = 0 (3.13)

where δEij is the variation in Green-Lagrange strain tensor and ti represents
the surface forces on an element. The use of the weak formulation reduces
the continuity requirement on approximation functions, thereby allowing the
use of easy-to-construct polynomials. Another advantage is the natural and
easy incorporation of Neumann boundary condition in the weak formulation.

Spatial Discretization

Similar to the FVM, the structural domain is divided into a finite number
of discrete elements on which the geometrical and physical quantities are
approximated. For integrals in equation (3.13) to be well defined, the surface
integrals between adjacent cells must vanish. This occurs under the condition
that functions ηi and ϑi are continuous in Ωs, while the first derivatives
can be discontinuous. According to the Ritz method, any function can be
approximated as a linear combination of linearly independent functions and
coefficients. The exact solution in an element e can be approximated as
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(ϑi)
e =

Nel∑
I=1

Ne
I (x)(ϑi)

e
I , (3.14)

where Ne
I (x) represents the local shape function at node I with x being the

position vector, (ϑi)
e
I represents the unknown solution for displacements at

node I, while the local shape functions satisfies the following condition

Ne
I (xj) =

{
1 for j = I
0 for j 6= I

, (3.15)

which implies that Ne
I has a value of unity at node I and zero at all other

nodes in the element e. Also using the local shape functions to represent the
test functions ηi leads to the Galerkin Method. The choice of shape functions
is determined by the dimensionality of the element and the desired order of
the overall numerical method. In this study, 8-node hexahedera elements with
linear shape functions are employed.

After the numerical integration of each term in equation (3.13) for indi-
vidual elements, the resulting algebraic set of equations can be represented
in matrix form. These individual element matrices are used to formulate the
complete problem by superposition, which results in

MS
ij

∂2ϑi
∂t2

+KS
ijϑi = bSj , (3.16)

where MS
ij is the system mass matrix, KS

ij is the stiffness matrix and bSj rep-
resents the load vector. More details concerning the discretization practices
in FEM can be found in standard textbooks, for example [127, 90].

Temporal Discretization

Equation (3.16) still contains the 2nd time derivative, a suitable method for
time integration is required for the solution. The Newmark beta method
is a widely used time integration scheme for computational solid dynamics
problems. The Newmark beta method can be derived from a Taylor series
expansion of the velocity and displacement around a time step n + 1. The
resulting scheme states:

ϑn+1
i = ϑni + ∆tϑ̇ni +

∆t2

2
ϑ̈ni + β∆t2(ϑ̈n+1

i − ϑ̈ni ) (3.17)

and
ϑ̇n+1
i = ϑ̇ni + ∆tϑ̈ni + γ∆t2(ϑ̈n+1

i − ϑ̈ni ). (3.18)

Depending upon the choice of Newmark parameters β and γ different schemes

can be recovered. The method is unconditionally stable for β ≥ 1
4

(
γ + 1

2

)2
,
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whereas for γ < 1
2 the method produces numerical dissipation and is condi-

tionally stable.
An extension of the Newmark Method is the Hilber-Hughes-Taylor (HHT)

Method [35]. An additional parameter α is introduced in equation (3.16) as

MS
ij

∂2ϑn+1
i

∂t2
+ (1 + α)KS

ijϑ
n+1
i − αKS

ijϑ
n
i = bS,n+1

j , (3.19)

where the parameter α blends two time levels n and n+ 1 for the structural
distortions, and can be used to control numerical dissipation in the system.
In HHT method, to reduce the properties to a single parameter following
relations for β and γ are employed as

β =
(1− α)2

4
and γ =

1

2
− α. (3.20)

The method reduces to the Newmark method for α = 0. The HHT method
has been extensively analyzed with respect to stability and dissipative prop-
erties by Hughes [41].

Solution of the System of Equations

The resulting system of equations is a non-linear set of equations, which
needs to be linearized. The solution of the system is sought by employing the
Newton-Raphson method and the problem becomes a root finding problem
where the solution is progressed iteratively from iteration k to k + 1. For a
system of equations represented as Aφ = b the Newton-Raphson iteration
process is represented as

φk+1 = φk −
[
∂r(φk)

∂φ

]−1
r(φk) with r(φk) = Aφk − b (3.21)

where r(φk) represents the residual at the kth iteration. The resulting system
can be solved with a suitable algorithm for the linear equation system. This
work employs a direct solver based on the LU factorization for this purpose.

3.3 Solution of Coupled Fluid-Structure Problem

The solution methods to solve individual subproblems of a coupled FSI prob-
lem have already been defined. In this work the FSI simulations have been
performed employing an implicit partitioned coupling algorithm, which is
described in the following section.
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3.3.1 Implicit Partitioned Coupling Algorithm

Fig. 3.2: A schematic representation of the implicit partitioned coupling
algorithm

In a partitioned coupling strategy, the fluid-solid interface Σ = ΓS ∩ ΓF
is treated with the following coupling conditions

dfi = ϑsi (3.22)

ufi = ϑ̇si (3.23)

σsij = σfij (3.24)

where superscript f and s represent the fluid and the solid quantities, dfi
are displacements at the interface on the fluid subdomain, σij represents the

Cauchy stress tensor and ufi is the fluid velocity at the interface.
Let F : d 7→ f be the mapping of the interface displacements to forces by

the fluid solver F and S : f 7→ d be the mapping of forces to displacements by
the structural solver S, where d and f represent displacements and forces at
the interface, respectively. In an iterative coupling strategy, the two mappings
can be represented as

f̃k+1
i = F(dki ) and d̃k+1

i = S(fki ), (3.25)

where a tilde on d̃k+1 and f̃k+1 represents the intermediate result before
forces and displacements are used to perform the next iteration and k is the
iteration number of the coupling algorithm. The Implicit Coupling algorithm
used in this work is represented in figure 3.2. The coupling procedure starts
with the solution of the fluid subproblem with the flow solver FASTEST [2].
The calculated forces at the interface are then transferred to the coupling
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software MpCCI [1] or preCICE [9], which handles the data transfer and
interpolation between non-matching grid interfaces. The interpolated forces
are then passed to the structural solver FEAP [108], and the structural sub-
problem is solved. The resulting displacements from the structural solver are
tested for convergence. If the convergence criterion is not satisfied, displace-
ments are sent to the fluid solver through the coupling interface and another
iteration of the process starts with an updated fluid grid. The process con-
tinues until the convergence criterion is satisfied, after which either the next
time step of the coupled process is calculated or the simulation is finished.

The convergence criterion is based on the residual of the structural dis-
placements between two successive iterations of the coupling algorithm as

rk+1 = ||d̃k+1
i − dki || < ε (3.26)

where rk+1 defines the residual at iteration k+ 1, ||.|| defines a suitable norm
(e.g. L2 norm) and ε is the convergence criterion for the coupled process.

Under-relaxation and Coupling Acceleration Algorithms

Partitioned coupling algorithms are known to be unstable under certain phys-
ical and geometrical conditions. Among known issues to effect the convergence
of coupling scheme is the Artificial Added Mass effect [10] in FSI with in-
compressible flow simulation. The implicit coupling algorithm deals with the
instability by employing a relaxation technique for displacements from the
structural solver, and the iterative coupling technique ensures a balance of
energy at the interface. The under-relaxation factor ωFSI : 0 < ωFSI < 1 is
used for the structural displacements as

dk+1
i = ωFSI d̃k+1

i + (1− ωFSI)dki . (3.27)

However, where the under-relaxation helps to stabilize the coupling scheme,
it may also slow down the convergence. Another issue is finding an optimal
value for the relaxation parameter, which is problem dependent, and is not
known a priori. The dynamic under-relaxation methods like IQN-ILS [15] and
Aitken method [52, 42] can be more helpful in this regard, absolving the user
of finding an optimal value for maximum acceleration of the convergence. The
Aitken method uses the information from two previous iterations to calculate
the ωFSI dynamically in every coupling iteration as

ωFSI,k+1 = −ωFSI,k (∆dki )T (∆dk+1
i −∆dki )

(∆dk+1
i −∆dki )2

, (3.28)

where
∆dki = d̃ki − dk−1i and ∆dk+1

i = d̃k+1
i − dki .
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An estimation of forces or displacements at the start of a coupling iteration,
also helps accelerate the convergence. For this purpose, information about
forces or displacements from previously calculated time steps is used to pre-
dict forces or displacements at the interface, before start of the calculation
for a new time step, for details see [88].

3.3.2 Grid Movement

The fluid solver FASTEST employs an ALE formulation on block-structured
and body-fitted grids where the grid needs to be updated in every iteration
of the coupling algorithm. The grid movement and update in FASTEST is
performed block-wise, while the grid is only moved and updated but the grid
topology remains unchanged. The grid deformation is defined by the user
and works on a bottom to top strategy in three stages. First the edges are
updated either with a linear interpolation or a cubic spline approximation,
which preserves the angle between edge and the face it connects. In the second
stage, the block face mesh is regenerated with a linear, transfinite [31] or an
elliptic [99] grid generation method. Once the edge and block face mesh has
been updated, the volume grid of the block is updated, which can be done
with a linear, transfinite or an elliptic grid generation method. The input for
the grid update strategy must also resolve the inter block dependencies as
well. More details about implementation of these methods in the fluid solver
FASTEST can be found in [78].





Chapter 4

Turbulence and Turbulence Modeling

Turbulence is a behavior of fluid motion, which manifests itself by pseudo-
random fluctuations of the flow quantities. The turbulent behavior of fluids is
present in many naturally occurring and industrial flow applications, e.g. at-
mospheric flow, the flow in circulatory and respiratory systems of animals and
the flow through pipes and jet engines, to name a few. The analytical methods
to study the phenomenon are rendered inefficient due to the complexity of the
problem. On the other hand, experimental methods are becoming more and
more reliable. But even the measurement techniques might not be able to give
all important information about the turbulence in flow, specially in complex
geometries where placing an instrument might not be feasible or cost efficient.
Alternative to experimental methods, numerical techniques to simulate the
turbulent flow are becoming popular with the help of rapid advancements in
computational technology, while the role of experimental setups is becoming
important for generating data to validate turbulence modeling approaches.

This chapter gives a short description of the important physical aspects of
turbulence and techniques to model the turbulence in fluid flows. The chapter
has two main sections, the first section concerns the physics of turbulence,
while the second section is concerned with the description of models employed
in this work. The theory of turbulence described here is based on information
provided in the textbook by Pope [80].

4.1 Physical Background

It is often claimed that turbulence lacks a single comprehensive definition,
and researchers are inclined to define turbulent flow in terms of character-
istics of the flow. The turbulence in flow is characterized most notably by:
pseudo-random fluctuations of flow quantities, higher diffusion and dissipa-
tion rates and the presence of strong 3-dimensional vorticity. These random
fluctuations can be observed in smoke from a cigarette, where initially the

25
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smoke rising from the cigarette can exhibit a very smooth and laminar be-
havior, and after some distance the smoke can become turbulent and exhibit
randomness, before mixing completely into the surrounding air. The investi-
gation of this phenomenon of laminar to turbulent transition, was performed
by O. Reynolds [84] in 1883, by injecting a dye streak in a water channel with
smooth transparent walls. His observations led to the identification of a single
non-dimensional parameter now called the Reynolds number Re defined as

Re =
UL
ν

, (4.1)

where U and L are the velocity and length scale, and ν = µ/ρ is the kine-
matic viscosity of the fluid. The Reynolds number is the ratio of inertial to
viscous forces, which can help to identify whether a flow would be turbu-
lent or laminar. For example, based on the Reynolds Number many different
flow regimes can be identified for a flow over a circular cylinder [105]. The
flow in a cylinder wake starts becoming turbulent for Re > 200, while this
transition to turbulence for the boundary layer flow over a cylinder starts for
approximately Re > 300, 000. The flow regime 300 < Re < 300, 000 is called
sub-critical as the boundary layer flow over a cylinder is laminar while the
wake flow is fully turbulent.

Turbulence is also associated with enhanced transport and mixing proper-
ties of the flow. This phenomena of mixing is much desired in many industrial
applications, like mixing of different reactants in combustion devices. A tur-
bulent flow can also transport heat better than a laminar flow, which is a
design consideration for cooling devices that use fluids to transport heat.
Higher transport rates of momentum also cause friction drag to increase as a
result of higher wall shear compared to a laminar flow, which is an undesired
situation. An increase in drag causes a drop in the fuel economy in aircrafts,
for this reason a reduction of the friction drag is an active research topic in
aircraft industry.

Lewis F. Richardson in 1922 [87] proposed the idea of an energy cascade,
which tries to explain the transfer of energy from large scale turbulent mo-
tions to smaller and smaller scales, before these turbulent motions get dis-
sipated under the action of viscosity. Richardson summarized his idea in a
poetic way:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.

Andrei N. Kolmogorov in 1941 published three papers [49, 50, 51], which
are very important to the modern ideas and understanding of the turbulence.
Kolmogorv extended the ideas proposed by Richardson with identification of
the smallest scales possible, which are then named after him. These ideas
played an important role for the development of modeling approaches in the
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second half of the 20th century, and hence are briefly described in the next
section.

4.1.1 Turbulent Scales and Energy Cascade

Richardson viewed turbulence in fluids to be composed of eddies with dif-
ferent sizes, and proposed that smaller eddies are produced as a result of
instability and breakup of large eddies. The smaller eddies can undergo sim-
ilar breakup process and transfer their energy to even smaller eddies, until
the Reynolds number based on length and velocity scale is small enough for
a stable eddy motion and molecular viscosity can effectively dissipate these
small scale motions. The largest eddies have characteristic length scale lo
and velocity scale uo, comparable to the length and velocity scale of the flow
L and U respectively. Consequently the Reynolds number for these eddies is
also comparable to the Reynolds number of the flow, so the effect of viscosity
on these scales is negligible. The time scale of these motions τo associated
with the velocity and length scale is lo/uo. The rate at which the energy is
dissipated is also determined by the rate of energy transfer from these large
scale motions. The kinetic energy of these large scale motions is of the order
of u2o, hence the rate of energy transfer or dissipation ε can be considered
to scale as u2o/τo = u3o/lo. In accordance with the experimental observations,
this indicates that ε scales as u3o/lo, independent of ν.

Fig. 4.1: Schematic representation of turbulent energy spectrum.
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Richardson’s theory of energy cascade explains the energy transfer mech-
anism, but does not address the issue related to the size of turbulent scales.
Kolmogorov explored this matter and many more with his theory which he
stated in the form of three hypotheses. The first hypothesis concerns the lo-
cal isotropy of turbulent scales. Kolmogorov suggested that the large scale
motions are anisotropic and are influenced by the flow topology, while this
anisotropy is lost through the breakup process that results in smaller motion
scales. Not only does the directionality but also the geometric information of
the large scales is lost, as a consequence the smaller scales have a universal
state. The second similarity hypothesis of Kolmogorov states the dependence
of these small scale motions on the viscosity ν and the energy dissipation rate
ε. Consider lEI to be the size of smallest anisotropic eddies, then according to
Kolmogorov, l < lEI is referred to as universal equilibrium range, as shown
in the figure 4.1 for wave-number κ > κEI . Based on this hypothesis the
smallest possible length scale η, called the Kolmogorov length scale, and the
corresponding velocity and time scale, uη and τη respectively, can be uniquely
determined as

η =

(
ν3

ε

) 1
4

,

uη = (εν)
1
4 ,

τη =
(ν
ε

) 1
2

.

(4.2)

It can be readily observed that the Reynolds number for Kolmogorov scales
is unity i.e. ηuη/ν = 1, which is consistent with the notion that the breakup
of large scales to small scales results in a reduction of Reynolds number to an
extent where dissipation is effective. Another inference from the hypothesis
is that for a sufficiently high Reynolds number flows the small scales are
statistically identical when normalized with the Kolmogorov scales.

Using the definition of Kolmogorov scales and ε ∼ u3o/lo, the ratio of
smallest to largest scales can be determined as

η

lo
∼ Re−3/4,

uη
uo
∼ Re−1/4,

τη
τo
∼ Re−1/2.

(4.3)

It is evident from the relations above that the ratio η/lo decreases with in-
creasing Reynolds number. This means a wide range of scales can be identified
between η and lo, with increasing Re. The third hypothesis from Kolmogorov
states that for a sufficiently high Reynolds number turbulent flow, the motion
of scales with length l : lo � l� η has a universal form that is determined by
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ε, independent of ν. This further divides the universal equilibrium range into
the inertial subrange and the dissipation range, with a demarcation wave-
number κDI as shown in figure 4.1. The energy spectrum in the inertial
subrange follows a power law, (as represented in figure 4.1) which is written
as

E(κ) = CKκ
−5/3ε2/3, (4.4)

also referred to as Kolmogorov’s 5/3 law.
This picture of turbulence has important consequences for the turbulence

modeling and the understanding of influences from assumptions made to
develop these models.

4.1.2 Wall Vicinity

Solid impermeable boundaries are part of many flow devices known to us,
both external and internal, e.g. flow through channels, pipes and jets. The
discussion above pertaining to the energy cascade and turbulent scales does
not consider the presence of solid boundaries. The principal effect of wall
vicinity on turbulence is the damping of fluctuations in velocity normal to
the wall. The energy of these fluctuations gets redistributed to the tangential
velocity components. As a result, the turbulence close to the wall is highly
anisotropic, and the isotropy is recovered with an increasing distance from
the wall. Also the viscosity effects are more dominant very close to walls.

Apart from the instantaneous turbulent characteristics of the flow in a wall
vicinity, the mean flow shows a universal character in the turbulent boundary
layer flow. This universality of the mean flow is also referred to as the law of
wall. The universal character is defined with normalized quantities in terms
of wall shear stress τw, defined as

τw = µ

(
∂u

∂y

)
w

, (4.5)

where the subscript w indicates a velocity gradient at the wall, y is assumed
to be the wall normal direction and u is a velocity in wall tangential direction.
Further using the wall shear stress, the friction velocity is defined as

uτ =

√
τw
ρ
. (4.6)

The friction velocity is used to normalize the velocity and wall normal dis-
tance as

y+ =
uτy

ν
, u+ =

u

uτ
, (4.7)
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where such a scaling is also called the wall normal units. The wall friction
Reynolds number Reτ is defined as

Reτ =
uτδ

ν
, (4.8)

where δ represents the boundary layer thickness. A description of different
regions in boundary layer flow, identified by y+ and y/δ is given by Pope
[80], a short summary is given in the following:

Inner Layer (y/δ < 0.1): The mean velocity profile is determined by uτ and
y+, independent of the bulk inflow velocity and the boundary layer thickness
δ.

Viscous wall region (y+ < 50): The viscous contribution to shear stress is
significant.

Viscous sublayer (y+ < 5): The Reynolds shear stress is negligible com-
pared to the viscous stress. The velocity profile is linear, given as

u+ = y+. (4.9)

Outer layer (y+ > 50): The effect of molecular viscosity on the mean ve-
locity profile is negligible.

Overlap region (y+ > 50 and y/δ < 0.1): The region where inner (y/δ <
0.1) and outer y+ > 50 boundary layers overlap, which occurs only for high
Re flows.

Log-law region (y+ > 30 and y/δ < 0.3): The normalized velocity profile
shows a universal character described by the log law as

u+ =
1

κ
ln(y+) +B, (4.10)

where κ = 0.41 is known as the von Kármán constant and B = 5.2. The
mean velocity profile with a DNS data from a channel flow at Reτ = 590 is
plotted along with results from equation (4.9) and (4.10) in figure 4.2.

Buffer Layer (5 < y+ < 30): The region between viscous sublayer and the
log-law region.
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Fig. 4.2: Velocity profile for channel flow at Reτ = 590, Direct Numerical
Simulation (DNS) data from Moser et al. [69], solid line from equations

(4.9) and (4.10).

4.2 Turbulence Modeling

Simulation of the turbulent fluid motion poses a challenging task, mainly due
to the wide range of scales present in a turbulent flow. The effects of turbulent
flow can be represented in a simulation with a wide variety of methods, de-
pending upon the information required and the purpose of simulation. These
methods have their own advantages and shortcomings, in terms of the com-
putational cost and the simulation quality. In principle, resolving turbulent
scales to the smallest extent is possible to achieve a perfect accuracy and
the highest level of details about a flow, in practice such simulations would
require unreasonable computational resources.

4.2.1 Direct Numerical Simulation (DNS)

Though DNS can not be classified as a modeling approach as it resolves
the turbulence in the flow rather than modeling the effect of turbulence,
it is still included here for completeness. The properties of the turbulent
flow discussed in previous sections can shed some light on why a DNS is
computationally the most expensive technique. It has been discussed that the
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smallest known length scales i.e. the Kolmogorov scales, decrease in length
with an increasing Reynolds number, which means that the computational
cost of a DNS increases with an increase in Reynolds number. For isotropic
turbulence, the computational cost based on a required number of grid points
and time steps has been found to be proportional to 160Re3lo or 0.55Reλ,
by Pope [80]. For non-isotropic flows, this required number of grid points
increases even more quickly.

Apart from stringent demands on resolution in space and time, adequate
numerical schemes and appropriate boundary conditions are required for an
accurate DNS. The DNS is definitely not an appropriate technique to be
employed in the design process, but the use of DNS is important for the
fundamental turbulence research. An important use of the DNS method is to
generate data for validation and calibration of methods to model turbulence.

4.2.2 Reynolds Averaged Navie-Stokes (RANS)
Modeling

The information about instantaneous turbulent flow is often not necessary
and a mean flow information is what is desired in many industrial appli-
cations. The RANS equations form the basis for a statistical modeling of
the turbulence. These equations are derived from Navier-Stokes equations by
using the Reynolds decomposition, where a fluctuation quantity φ(xi, t) is
divided into an ensemble or a time averaged part φ̄ and a fluctuation part φ′

as
φ(xi, t) = φ̄(xi) + φ′(xi, t). (4.11)

The Reynolds decomposition in this sense is an assumption that the turbulent
flow has a statistical steady state and all fluctuations are about a mean quan-
tity. The application of such a process to Navier-Stokes equations results in
the so called Reynolds averaged Navier-Stokes equations. The Reynolds aver-
aging process applied to NS equations (2.4) and (2.5), leads to the Reynolds
averaged continuity and momentum equation, given as

∂ūi
∂xi

= 0 , (4.12)

∂ρūi
∂t

+
∂ρūiūj
∂xj

=
∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− p̄δij

]
−
∂u′iu

′
j

∂xj
+ ρfi . (4.13)

These equations are similar in form to Navier-Stokes equations except the fact
that these equations are written for the time averaged quantities and ρu′iu

′
j

has emerged as an extra term in these equations. This term is called the
Reynolds stress tensor and describes the influence of turbulent fluctuations
on mean quantities. The emergence of the Reynolds stress tensor gives rise
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to the so called closure problem, i.e. there are more unknowns than number
of equations. Even though the equations can be derived for six components
of the Reynolds stress tensor, but solving such a system adds significant
additional costs and numerical difficulties.

In a RANS modeling approach Reynolds stresses are approximated based
on the Boussinesq hypothesis [4]. According to the hypothesis, the momen-
tum transfer caused by turbulent eddies can be modeled with an eddy vis-
cosity. This is analogous to the quantification of momentum transfer caused
by molecular motion, based on the molecular viscosity in a gaseous fluid. The
Boussinesq relationship for the Reynolds stress tensor is written as

ρu′iu
′
j = −2µt(Sij) +

2

3
ρδijk, (4.14)

where the turbulent kinetic energy k and the strain rate tensor Sij are defined
as

k =
1

2
(u′iu

′
i) and Sij =

1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
respectively,

and µt is the turbulent eddy viscosity assumed as an isotropic scalar quantity.
It has been mentioned in the previous section that turbulence at large scales
is anisotropic under the influence of geometric and boundary constraints.
This contradicts with isotropic assumption of the eddy viscosity. However,
despite this contradiction with a physical observation, the hypothesis has
been widely used to approximate Reynolds stresses in many widely used tur-
bulence models. The turbulence models that provide the eddy viscosity as
a scalar to close RANS equations are also known as eddy viscosity models
(EVM). There is a significant number of turbulence models used for approx-
imation of the turbulent eddy viscosity, which can be characterized based on
different levels of physical approximation and mathematical complexity. The
most widely used models are the one equation S-A model [97] and the two
equation k − ε model [11], to name a few.

FASTEST has several two-equation models available and a four equation
turbulence model k − ε − ζ − f model [32]. The k − ε − ζ − f model is
employed to conduct FSI simulations in this study and is discussed in the
following section.

4.2.2.1 k − ε− ζ − f model for RANS

The k− ε− ζ − f model [32] is based on Durbin’s elliptic relaxation concept
[21], which makes use of the wall normal velocity scale ζ = v2/k sensitized by
an elliptic relaxation parameter to model wall blocking effects, with v being
the wall normal velocity fluctuation. The turbulent viscosity is calculated as

νt = Cµζkτ, (4.15)
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where τ defines a time scale of turbulence and Cµ is a model constant .
The calculation of turbulent viscosity requires the turbulent kinetic energy
k, dissipation rate ε and the wall normal velocity scale ζ. The three transport
equations for k, ε and ζ together with an equation for the elliptic relaxation
function f are given as

Dk

Dt
= P − ε+

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
, (4.16)

Dε

Dt
=
Cε1P − Cε2ε

τ
+

∂

∂xi

[(
ν +

νt
σε

)
∂ε

∂xi

]
, (4.17)

Dζ

Dt
= f︸︷︷︸
fsource

− ζ

k
P +

∂

∂xi

[(
ν +

νt
σζ

)
∂ζ

∂xi

]
, (4.18)

L2∇2f − f =
1

τ

(
c1 + C2

′ P
ε

)(
ζ − 2

3

)
, (4.19)

where P is the production of turbulent kinetic energy, while L and τ are the
length and time scales limited by the Kolmogorov scales as a lower bound
and by Durbin’s realizability constraints [20] as an upper bound, defined as

τ = max

[
min

(
k

ε
,

a√
6Cµ|S|ζ

)
, Cτ

(
ν3

ε

)1/2
]
, (4.20)

L = CL max

[
min

(
k3/2

ε
,

k1/2√
6Cµ|S|ζ

)
, Cη

(
ν3

ε

)1/4
]
. (4.21)

The model coefficients are:

Cµ = 0.22, Cε1 = 1.4(1 + 0.012/ζ), Cε2 = 1.9, c1 = 0.4,

C ′2 = 0.65, σk = 1, σε = 1.3, σζ = 1.2,

Cτ = 6.0, , CL = 0.36, Cη = 85, , a = 0.6 .

(4.22)

A major advantage of the k − ε − ζ − f model is the ability to account for
the near wall anisotropic behavior of turbulence without the use of damping
functions, contrary to the use of empirical damping functions for a calculation
of the viscosity in the low-Re model of Chien [11]. The use of Durbin’s real-
izability for the time scale τ also solves the problem of the stagnation point
anomaly [20], which is known to cause excessive production of the turbulent
kinetic energy after a stagnation point in bluff body flows.
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4.2.3 Large-Eddy Simulation (LES)

DNS and RANS lie at the extreme ends of the turbulence simulation spec-
trum. On the other hand, aim of the large-eddy simulation is a partial resolu-
tion of turbulent scales of motion. The physical justification behind a partial
resolution of turbulent scales comes from Kolmogorov’s self similarity hypoth-
esis, which states that at large scales the turbulence exhibits an anisotropic
character, while the small scales have a more universal isotropic character.
This makes a compelling argument for the modeling of small scales, based on
their universal character. Also as the large scale motions carry most of the
energy and their effect on the transport phenomena and mixing is much more
prominent than the small scales, resolving them is more important for accu-
rate predictions of the flow. The idea was initially proposed by Smagorinsky
[93] for an atmospheric flow simulation.

A spatial filtering approach is used to separate large scale motions also
called the grid scale, from small scales also called the sub-grid scales (SGS).
The filtering operation results in the following decomposition of a general
flow variable

φ(xi, t) = φ̄(xi, t) + φ′(xi, t), (4.23)

where φ̄ represents a large scale filtered or a resolved part of the quantity,
while φ′ represents the small scale fluctuations from the filtered value. The fil-
tering operation when applied to Navier-Stokes equations leads to the filtered
equations written as

∂ūi
∂xi

= 0 , (4.24)

∂ρūi
∂t

+
∂ρūiūj
∂xj

=
∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− p̄δij

]
− ∂τij
∂xj

+ ρfi , (4.25)

where τij is the sub-grid scale stress and is given as

τij = uiuj − ūiūj . (4.26)

The filtered Navier-Stokes equations look similar in form to the RANS equa-
tions given in the previous section, except the fact that Reynolds stress tensor
ρu′iu

′
j has been replaced by the SGS stress term τij . Regardless of the sim-

ilarity in form, the averaging process and the filtering process are different.
In the filtered Navier-Stokes equations, the fields involved i.e. ūi, p̄ and τij
are random, three dimensional and unsteady, even if the flow is statistically
stationary or homogeneous.

The filtered equations, as the RANS equations, have a closure problem
arising with the emergence of SGS stress τij . This term is approximated us-
ing the Boussinesq hypothesis to relate SGS stresses to the strain rate tensor,
as with the RANS modeling approach. The sub-grid scale eddy viscosity is
then approximated by a LES model. As mentioned earlier the idea was first
proposed by Smagorinsky in 1963 for the simulation of an atmospheric flows,
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but the first application to a three dimensional wall bounded turbulent flow
in a channel was presented by Deardorff in 1970 [13]. The model proposed
is still the most popular model for performing a LES and is named after
Smagorinsky. The Smagorinsky model estimates the sub-grid scale eddy vis-
cosity as

νSGS = (Cs∆)2S∗, (4.27)

where S∗ =
√

2SijSij , Cs is the model constant with a value between
0.065 and 0.2 depending on the flow. The filter-width ∆ for LES has been
calculated differently by various researchers. However, in this work the filter-
width is calculated as a cube root of the product of individual grid spacings,
as suggested by Deardorff [13]

∆ = 3
√

∆x∆y∆z. (4.28)

The model has a number of inherent deficiencies, one of which has already
been mentioned, i.e. a model constant should really be a constant and not flow
dependent. The model does not recover the correct behavior close to walls,
normally this problem is circumvented by introducing the van Driest damping
[117] for the expression for SGS viscosity. These problems were addressed by
a dynamic calculation of the Smagorinsky constant Cs by Germano et al. [26].
The method calculates appropriate values of Cs = Cs(xi, t) locally in space
and time using a test-filter. In this work the dynamic Smagorinsky constant
is estimated by a least squares method as suggested by Lilly [60]. For further
details about LES modeling the reader can refer to [89],[77].

LES puts stringent requirements on grid resolution and time step sizes.
According to Piomelli [77] in a wall resolved LES the grid needs to fulfill y+ <
2 in the wall normal direction and in stream-wise and span-wise directions the
grid must be of the order of ∆x+ ' 50− 150 and ∆z+ ' 15− 40, assuming
a bulk flow in x-direction. Even though the aim of an LES is to model small
scale isotropic turbulence, the wall resolved LES still remain very expensive.
The situation can be improved with a wall modeled LES, where the use of
wall functions can relax the grid requirements in a near wall region.

4.2.4 Hybrid RANS-LES approach

The RANS predictions lack the accuracy required for flows dominated by
large scale anisotropic flow structures such as the wake flow behind a bluff
body. While the LES approach is a good candidate to handle these kind
of flows, but a wall resolved LES can be very expensive for wall bounded
flows due to grid requirements to resolve a boundary layer flow. In a hybrid
RANS-LES approach the LES model is coupled with a RANS model to reduce
the computational costs drastically. Many different approaches have been
suggested and used for different flow configurations, which can be categorized
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into zonal and non-zonal approaches. In a zonal approach, the application
region for RANS or LES is defined by the user before the start of a simulation.
While in a non-zonal approache, region for a RANS or a LES application is
identified by the model itself depending upon the flow. A detailed overview
of hybrid RANS-LES methods is provided in [25].

The most popular hybrid RANS-LES method is the detached-eddy sim-
ulation (DES) model proposed by Spalart in 1997 [96]. The DES method
until now has been used with many different RANS turbulence models. The
DES model is a non-zonal approach, where a RANS model is modified so
that an LES is performed in regions where grid is fine enough to support it.
The model performs a RANS calculation near solid boundaries, and switches
to the LES mode away from walls, where the grid can support a LES. The
switching between two modes is actuated by introducing a length scale into
the RANS model equations, which is defined as

lDES = min(lRANS , CDES∆), (4.29)

where lRANS = k3/2/ε is the integral length scale from a RANS turbulence
model, ∆ defines the length scale for the LES mode, and CDES is the model
constant. The model switches between a RANS or a LES mode based on
the two length scales used to define lDES . The original DES formulation
exhibited some short-comings, which were later circumvented by a proposal of
the delayed detached-eddy simulation model (DDES) [95]. This work employs
the DDES model based on the k − ε − ζ − f RANS model [32] for FSI
simulations, which is discussed in the following section.

4.2.4.1 k − ε− ζ − f based DDES

In this work the delayed detached-eddy simulation (DDES) model with the
k − ε − ζ − f as a baseline RANS model is used to perform hybrid RANS-
LES simulations. The k − ε − ζ − f model has been adapted to work as a
DDES in [83, 116]. An expression for the RANS length scale is used to replace
the dissipation term (ε) in k equation (4.16) to involve the length scale as
ε = k3/2/lRANS . The k equation after the modification can be written as

Dk

Dt
= P − k3/2

lRANS︸ ︷︷ ︸
dissipation

+
∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
. (4.30)

The length scale in the above equation is replaced with the DDES length
scale lDDES defined as

lDDES = lRANS − fd max(0, lRANS − lLES), (4.31)
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where lLES represents the LES length scale defined as: lLES = CDES∆ψ,
with CDES being the model constant and ψ is the low Reynolds correction
term which is derived and tested in [83] and is given as

ψ2 = min

(
100,

(
Cε1

Cε1Cµζ

))
. (4.32)

A calibration study of the model constant CDES in [83] suggests a value of
0.2 for the model constant. The term fd in (4.31) represents the shielding
function given as

fd = 1− tanh([8r3d]), rd =
νt + ν

κ2d2w max
(

10−10,
√

∂ui
∂xj

∂ui
∂xj

) , (4.33)

where dw represents the normal wall distance. For a detailed description and
model validation the reader can refer to [83].

4.3 Extensions to Turbulence Modeling

The following sections discuss extensions to the turbulence modeling in
FASTEST, during this work.

4.3.1 Modification to k − ε− ζ − f model

Modifications were proposed by Davidson [12] for original formulation of the
v2 − f model to limit v2 < 2k/3. The modified model produced a better
agreement for the wall normal stress v2 in channel flows, specially in the
equilibrium logarithmic layer, where ζ ≈ 0.4. Following same arguments,
modifications are made to the ζ equation in the k − ε− ζ − f model.

The elliptic relaxation parameter f in the ζ equation (4.18) models the
pressure strain term. The normal wall stress modeled by ζ should be smaller
than other two normal stresses due to the wall blocking effect and also ζ
should be less than 2/3. In a homogeneous flow away from walls, the Laplace
term in equation (4.19) is expected to be negligible, i.e. ∇2f → 0 so the
equation reduces to

fhom = −1

τ

(
c1 + C2

′ P
ε

)(
ζ − 2

3

)
. (4.34)

As it turns out the Laplace term does not go to zero far away from walls
as a consequence ζ gets too large away from walls. A simple modification
suggested in [12] is to limit the f source term in the ζ equation by fhom as
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fsource = min (f, fhom) (4.35)

Further it is argued that in regions, where ζ ≈ 2/3, the turbulent viscosity
from the current model gets considerably large than the standard value of
the k− ε model. So, a modification to the turbulent viscosity is made to limit
the value by the standar k − ε value of viscosity as

νt = min

(
Cµζkτ, 0.09

k2

ε

)
, (4.36)

where 0.09k2/ε is the tubulent viscosity from the k − ε model.

(a)

(b) (c)

Fig. 4.3: Comparison between original and modified k− ε− ζ − f model for:
(a) v2/uτ , (b) u+ and (c) νt/ν. DNS data for Reτ = 590 [69].

The modified model is tested against the original model for a 2-d channel
flow test case at Reτ = 590. The channel half width is discretized with 64
cells in the wall normal direction with 1st cell y+ ≈ 0.5. Figure 4.3 shows the
comparison between original and modified models, with the DNS data from
[69]. The velocity profile u+ for both models does not show any significant
difference. However, prediction of the wall normal Reynold stress v2 has sig-
nificantly improved with the modification, specially away from the wall near
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the channel half width as shown in figure 4.3a. Both models predict similar
values of the turbulent viscosity in the near wall region, while differences
occur away from the wall.

4.3.2 WALE model for LES

The wall adapting local-eddy viscosity model (WALE) proposed by Ducros
& Nicoud [18] in 1998 is implemented in the flow solver FASTEST to extend
the range of LES models. The WALE model offers significant improvements
over the Smagorinsky model without a dynamic calculation procedure for
the model constant. In contrast to the Smagorinsky model, the WALE model
takes into account the local strain as well as the rotation rates to calculate
the turbulent eddy viscosity. The model recovers a correct scaling of the
eddy viscosity in the near wall region without the use of damping functions.
Furthermore the eddy viscosity vanishes in laminar flow, thereby enabling the
model to predict transitional flow regimes. The model calculates the sub-grid
scale viscosity as

νSGS = (Cw∆)2
(SdijS

d
ij)

3/2

(S̄ijS̄ij)5/2 + (SdijS
d
ij)

5/4
, (4.37)

where Sdij is the traceless symmetric part of a square of the velocity gradient

tensor ḡij = ∂ui
∂xj

, given by

Sdij =
1

2
(ḡ2ij + ḡ2ji)−

1

3
δij ḡ

2
kk,

where Cw represents the WALE model constant and ∆ represents the filter-
width.

Even though there has been reported values of Cw in literature, it is al-
ways a good idea to calibrate the model constant in a new code as the model
constant is influenced by the discretization practices employed in the code.
Calibration of the WALE modal constant Cw is performed by simulating de-
caying homogeneous isotropic turbulence (DIT) to adjust the model constant
against the energy spectrum from a DNS by Wray [124]. The geometry of
the test case is a cube of normalized dimension 2π in each direction. Simu-
lations are performed with two different grids containing 643 and 1283 grid
points, with periodicity in all three directions. The flow is initialized with a
DNS data from [44]. Furthermore, the 2nd order CDS is applied for spatial
discretization and the 2nd order BDF for temporal discretization.

Figure 4.4 shows the variation of Cw for the two grids. The effect of varying
Cw appears to be stronger for the coarse grid, which is in accordance with
the general properties of a LES as a course grid increases the influence of
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(a) (b)

Fig. 4.4: Energy spectra for DIT testcase with the WALE model for LES at
t = 0.2, 0.45, 1.45 and 3.0 (a) variation of Cw for 643 grid (b) variation of

Cw for 1283 grid.

a sub-grid scale model. From figure 4.4a, a value of Cw = 0.45 seems to be
appropriate, but a value of Cw = 0.39 is chosen in this study. The choice is
made by comparing energy spectra for both grids and considering the fact
that dense grids are more likely to be encountered for a LES, hence a value
agreeing well with 1283 grid is chosen.

4.3.3 Wall Distance Calculation

The normal wall distance dw appears in equation (4.33). A calculation of the
normal wall distance is necessary for some turbulence modeling approaches,
e.g. the Spalart-Allmaras model [97], Menter’s k − ω SST model [66] and
the DDES model. Search procedures or a differential equation based method
can be employed to estimate dw, however search procedures could be very
expensive in terms of the computational time. For a fluid-structure interaction
scenario the distance would need to be evaluated many times in each time
step for every iteration of the coupling algorithm.

A review of different differential equation based wall distance calculation
methods has been reported in [114]. In this work, a Poisson equation based
wall distance calculation, first proposed by Spalding [98] and reported by
Tucker [114], is implemented in the flow solver FASTEST. A Poisson equation
for the distance function φ is given as

∆φ = −1, (4.38)
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(a)

(b)

Fig. 4.5: dw calculation for channel flow test case (a) comparison between
measured and calculated values (b) contour plot of dw.

with Dirichlet boundary condition at walls

φ = 0,

and Neumann type boundary conditions at all other boundaries

∂φ

∂n
= 0. (4.39)

The wall distance is calculated from a solution of the Poisson equation for
the distance function φ as

dw =
√
∇φ · ∇φ+ 2φ−

√
∇φ · ∇φ, (4.40)

where “·” represents a dot product between two vectors. The calculation
of dw assumes infinite coordinates in the non-normal wall direction, which
implies that dw would have better accuracies close to walls [114]. This effect is
demonstrated by simulating two different test cases. However, the accuracy
of the wall distance predictions is important for turbulence modeling only
close to walls.

A calculation of the wall distance has been demonstrated for a channel flow
test case in figure 4.5. Figure 4.5a shows a comparison between measured and
computed values of dw. The figure demonstrates a very accurate prediction,
which is owing to the geometry of the channel i.e. the absence of any solid
boundaries in the x-direction. Another calculation of the wall distance dw is
performed in a 2-d square, with all four sides of the square defined as wall.
The purpose is to demonstrate the effect of multiple solid boundaries and
corners on the calculation of dw. The calculation of dw in a square duct is
shown in figure 4.6. A comparison between measured and calculated values
of dw at x = 1 shows a good agreement near the wall as can be seen in
figure 4.6a, however away from walls the prediction is deteriorated. Figure
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(a) (b)

(c)

Fig. 4.6: dw calculation for 2-d square test case (a) comparison between
measured and calculated values at x = 1 (b) contour plot of dw (c) isolines

of dw in bottom right corner of 2-d square.

4.6c shows isolines of dw in a corner of the 2-d square, the shape of isolines
becomes less sharp going away from the corner, which is also an indication
of a decreasing accuracy away from walls.

4.3.4 Compound Wall Treatment (CWT)

The treatment of wall boundary conditions in a computation of the turbulent
flow requires a grid with a wall y+ value in a specific range, depending on the
turbulence model. In the integration to wall (ITW) approach (also termed as
low-Re model), the first grid node adjacent to the wall needs to be inside the
viscous sublayer and the wall sheer stress τw can be evaluated from equation
(4.5). Resolving the boundary layer up to the viscous sublayer requires a
grid with wall y+ ≈ 1, resulting in dense grids and higher computational
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Fig. 4.7: Channel flow Reτ = 590: On different grids, with y+ from
0.5 to 30, normalized velocity vs. normalized wall distance.

cost. However, in the wall functions (WF) approach (also termed as high-Re
model), the wall shear stress is estimated by employing the log law (4.10),
and first cell on the wall has a y+ > 30.

Even when a finer grid for the ITW approach is computationally feasible,
meeting a strict wall y+ criteria in a complex geometry might not be possible.
Instead, the first grid point might often lie in the buffer region (5 < y+ < 30),
making neither the ITW nor the WF approach applicable. This situation
might also arise as a result of a systematic grid refinement/coarsening or
in moving grids as encountered in a FSI scenario. The CWT approach pro-
posed by Popovac and Hanjalić [81] automatically applies the ITW or the
WF approach, depending upon the position of the first grid cell on the wall.
When the first grid cell lies in the buffer region, appropriate wall boundary
conditions are recovered by the use of exponential blending functions be-
tween viscous and fully turbulent expressions of boundary conditions. These
exponential blending functions provided by Popovac are a generalization of
expressions proposed by Kader [46] for the approximation of mean velocity
and temperature profiles of a boundary layer. The CWT has been employed
in this work in conjunction with the k− ε− ζ − f model, while the approach
can work with other turbulence models as well that permit an ITW approach.

The primary variables for which boundary conditions need to be modified
by a blending approach are: the wall shear stress τw and its relation to the
mean velocity, the production of turbulent kinetic energy P and its dissipation
ε, and the elliptic function f . Following the expression used by Kader, a
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blending between viscous and fully turbulent values of a general variable φ
is defined as

φ = φνe
−Γ + φte

−1/Γ , (4.41)

where ν denotes a viscous (i.e. wall limiting) and t denotes a fully turbulent
value of the variable, and Γ is a function y+ = uτy/ν given as

Γ =
0.01y+4

1 + 5y+
. (4.42)

The above expression can be used to blend normalized wall velocity expres-
sions from the viscous sublayer (equation (4.9)) and the log-law (equation
(4.10)) to generate a unified expression as

u+ = y+e−Γ +
1

κ
ln(Ey+)e−1/Γ . (4.43)

Blending expressions for the wall shear stress τw, the turbulent kinetic
energy production P and the dissipation rate ε for the k−ε−ζ−f model are
given in [81]. The blending formulation described earlier can not be applied
to the elliptic relaxation function f , as f changes sign from a negative value
at the boundary to a positive value in the homogeneous region. However, an
unchanged boundary condition for f still gives an acceptable approximate
solution for f . The CWT implemented in the fluid solver FASTEST is tested
for a channel flow test case with Reτ = 590. For this purpose, the channel
flow is simulated on different grid densities with a varying wall y+ value. The
velocity profile obtained on different grids with a varying wall y+ value is
shown in figure 4.7.

Figure 4.8 shows a profile for the normalized turbulent kinetic energy (k+)
and its dissipation rate (ε+), the wall normal velocity scale (ζ) and the elliptic
relaxation function (f+). The results show a good agreement with the DNS
data, except for f+ with coarse meshes, and some minor differences in the
buffer region for k+ and ε+.

The wall function approach used here does not account for non-equilibrium
effects (e.g. pressure gradients, separation and others). The CWT with wall
functions that does not account for non-equilibrium effects would suffer inac-
curacies in flows with boundary layer separation or pressure gradients. How-
ever, the non-equilibrium effects can be included in a wall function approach,
as described in [81].

Application of CWT with LES

The compound wall treatment can also be applied for a LES simulation.
However, a major difference between the application of CWT in a RANS
turbulence modeling approach and a LES is the calculation of the wall friction
velocity uτ . It can be calculated by using equation (4.6) but in practical CFD
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(b) (c)

(d) (e)

Fig. 4.8: Channel flow Reτ = 590: On different grids, with y+ from
0.5 to 30,(a) turbulent kinetic energy k+ (b) dissipation rate ε+ (c) wall
normal velocity scale ζ (d) elliptic relaxation function f+. DNS data for

Reτ = 590 from [69].

codes, to avoid singularity when uτ tends to zero, the wall friction velocity
is calculated as

uk = C1/4
µ k1/2, (4.44)

where Cµ is a constant from the turbulence model and k is the turbulent
kinetic energy. In a LES calculation, the turbulence kinetic energy k is not
available directly. A solution is to employ an indirect approach for calculation
of the wall friction velocity using the CWT expression (4.43). Since, equa-
tion (4.43) requires y+ which again depends on uτ , an iterative procedure
can be employed to solve the equation for uτ . The procedure has also been
demonstrated in [45]. Newton’s method can be used to iteratively solve for
uτ as

un+1
τ = unτ −

f(uτ )

f ′(uτ )
, (4.45)
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where the function f(uτ ) can be formed by rearranging CWT expression for
u+ as

f(uτ ) = −upar
uτ

+ y+e−Γ +
1

κ
ln(Ey+)e−1/Γ ,

and the derivative of f(uτ ) is given as

f ′(uτ ) =
upar
u2τ

+Ae−Γ + y+
(
−4Γ

uτ
+

AΓ

1 + 5y+

)
e−Γ

+
1

uτκ
e−1/Γ +

1

k
ln(Ey+)

(
− 5

0.01uτy+
3 +

4

uτΓ

)
e−1/Γ ,

where A = y
ν with y representing the wall distance and upar is the velocity

parallel/tangential to the wall. The uτ obtained in such a manner can be
used to calculate the wall shear stress as τw = u2τρ, for application in the
boundary condition for the velocity.





Chapter 5

Turbulent Flow and FSI test cases

This chapter provides a discussion on results of the turbulent and FSI simu-
lations conducted in this work. The WALE model for LES is validated with
the help of a 2-d periodic hill flow test case at a Re = 10600. The lid driven
cavity flow with a flexible bottom wall is used to perform the coupling ac-
celeration tests, in laminar and turbulent flow regimes. The compound wall
treatment is tested for a FSI simulation of a benchmark test case. Further FSI
simulations of three turbulent FSI test cases are studied with three different
turbulence modeling approaches.

5.1 Periodic Hill Flow with WALE Model

The 2-d periodic hill flow test case is simulated to validate the implemen-
tation of the WALE model in the flow solver FASTEST. The results of the
simulation are compared against a reference LES study conducted by Tem-
merman et al. [109]. A detailed analysis of the reference LES study is also

Fig. 5.1: Computational mesh of the 2-d hill test case

49
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Fig. 5.2: Averaged streamwise velocity in 2-d hill flow

provided by Frölich et al. [24]. The results from the reference LES conducted
in [24] have also agreed well with experiments in [8]. The test case has been
widely used as a standard benchmark for validation of turbulence modeling
approaches. It is well suited to access the capabilities of turbulence resolv-
ing approaches like LES and hybrid RANS-LES, since it constitutes various
physical flow features like separation, reattachment and depending upon the
Reynolds number, turbulent transition and relaminarization. The accurate
predictions of separation and reattachment locations in the channel is a chal-
lenging task as the locations are not clearly determinable by the geometry.
For such a flow scenario, RANS modeling approaches are known to perform
inadequately, as some calculations reported in [115] show.

The computational domain consists of a channel with a length Lx = 9h and
a height Ly = 3.035h, whereas in spanwise direction the domain has a size of
Lz = 4.5h, with h being the hill height. Figure 5.1 shows the computational
mesh used for this study. The flow Reynolds number based on the bulk inflow
velocity Ub and the hill height h is Re = 10600. The flow boundaries normal
to the streamwise and spanwise directions are treated with periodic boundary
conditions, while a no-slip boundary condition is applied at the upper and
lower walls of the domain. The mesh consists of 192×96×128 control volumes
in x, y and z directions, respectively. It is designed to have the first cell
y+ < 1 on the lower wall, while on the upper wall the first cell height is
designed to have a y+ ≈ 15. The compound wall treatment is employed on
the top wall of the computational domain. In the spanwise direction, the mesh
spacing in wall normal units is ∆z+ < 25, while in the streamwise direction
∆x+ ≈ 20− 40, with higher grid densities on and around the hill slopes. The
grid stretching ratio near the lower wall is 1.05 in the wall normal direction,
while in the streamwise direction a stretching ratio of 1.1 is used. The mesh
is considerably coarser than the one used in the reference LES study [109],
but still fulfills requirements described in [77]. A dimensionless time-step size
of ∆tUb/h = 5.98× 10−3 is chosen to have CFL ≈ 1.

For spatial discretization, the 2nd order central differencing scheme is ap-
plied and the 2nd order implicit backward differencing scheme is used for time
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Fig. 5.3: Skin friction coefficient along lower wall of the 2-d hill channel

discretization. The simulation is performed for 23 flow through cycles to allow
the flow to develop in the channel. After the initial 23 flow through times,
the averaging is turned on for the next 55 flow through times, as suggested in
[24]. The flow averaging is also performed in the spanwise direction. Figure
5.2 shows contours of the averaged streamwise velocity.

LES[109] LES-WALE

xs/h 0.22 0.22

xr/h 4.72 4.47

Table 5.1: Separation and re-attachment points for 2-d hill flow

Figure 5.3 show a plot of the skin friction coefficient (Cf = τw
0.5ρU2

b
) at the

lower wall with Cf from the reference LES study. The prediction of the skin
friction coefficient agree very well with prediction from the reference. Ta-
ble 5.1 draws a comparison between separation and reattachment locations
predicted by the current simulation and the reference LES study. Both loca-
tions are predicted with a reasonable accuracy. The reattachment location is
under-predicted by 5.5% compared to the reference LES study.

Figure 5.4 shows the velocity profile at different locations along the channel
length. A very good agreement with the reference velocity profiles can be
observed, apart from minor differences near the upper wall where the grid is
coarse and the CWT is applied.
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(a)

(b)

Fig. 5.4: Averaged velocity profile for 2-d hill at different locations along
channel length, with reference LES data from [109] (a) Comparison of

averaged u-velocity profile (b) Comparison of averaged v-velocity profile

The averaged Reynolds stresses are compared with the reference LES data
in figure 5.5. In general, a good agreement with the reference LES profiles
can be observed, apart from minor differences near the separation location.
Overall agreement with the reference LES for separation and reattachment
locations, and velocity profiles is satisfactory, specially considering the reso-
lution of the mesh. Also the agreement of velocity profiles with the reference
data close to the upper wall demonstrates a correct application of the com-
pound wall treatment in an LES flow simulation.

5.2 Coupling acceleration tests

The coupling acceleration tests have been performed employing the lid driven
cavity with a flexible bottom wall as a test case. A 2-d study of the test case
has been conducted by Küttler and Wall [52] and Kassiotis et al. [48], while
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(a)

(b)

(c)

Fig. 5.5: Averaged Reynolds stress for 2-d hill at different locations along
channel length, with reference LES data from [109] (a) u′u′ (b) v′v′ (c) u′v′
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Fig. 5.6: Lid driven cavity with flexible bottom configuration

3-d studies have been performed by Sternel et al. [102] and Heck et al. [33].
The setup consists of a driven cavity flow with a flexible bottom wall, while
the top wall moves with a prescribed oscillating velocity, as shown in figure
5.6. The velocity of the top wall is defined as a function of time t, given as

ulid = u0 − uosc cos
2πt

T0
, (5.1)

where T0 is the time period of the oscillating velocity uosc. The velocity at
the inlet is equal to the oscillating velocity of the moving lid. The test case is

Fluid Laminar Turbulent

u0 [m/s] 1 150
uosc [m/s] 1 30
T0 [s] 5 1/5

νf [m2/s] 0.01 0.01
ρf [kg/m3] 1 1

Structure Laminar Turbulent
E [N/m2] 2500 250000

Poisson ratio νs 0.0 0.0
Thickness [m] 0.002 0.1254
ρs [kg/m3] 1000 500

Table 5.2: Parameters for turbulent and laminar lid driven cavity with a
flexible bottom

studied in laminar and turbulent flow regimes. Fluid and structural proper-
ties of both configurations are described in table 5.2. The coupling between
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the fluid and the structural solver for coupling acceleration tests is performed
with the open-source multi-physics coupling tool preCICE [9]. The coupling
acceleration techniques studied are built into preCICE. Apart from the built-
in coupling acceleration and different coupling strategies, preCICE also offers
the capability to couple more than two codes. This could be useful for per-
forming multi-physics simulations with more than two physical phenomena
that require separate simulation environments.

Laminar Driven Cavity FSI

(a)
(b)

Fig. 5.7: Laminar driven cavity flow with a flexible bottom wall (a)
y-displacement of midpoint of the flexible bottom wall (b) contours of

pressure at t = 32.5s

The FSI tests with a laminar flow in the driven cavity are performed with
the fixed under-relaxation and the dynamic under-relaxation methods Aitken
and IQN-ILS. The flow Reynolds number based on the oscillating lid velocity
and cavity length varies between 0 and 200. The mesh used for this study
consists of 40 × 46 control volumes in x and y direction for the flow solver,
while for the structural solver a mesh of 32 × 1 8-node brick elements with
enhanced strain formulation is employed. Both the fluid and the structural
solver use a second order accurate time discretization scheme. A time step
size of ∆t = 0.05s is used for all simulations. The fluid solver employs a first
order upwind scheme for discretization of the convective fluxes. Figure 5.7
shows the y-displacement of midpoint of the flexible bottom wall and pressure
contours at t = 32.5s.
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Fig. 5.8: Laminar driven cavity with a flexible bottom wall: average
iterations required for convergence per time-step with a variation of the

under-relaxation parameter ωFSI

Figure 5.8 shows the average number of coupling iterations required for
convergence per time-step with a variation of the fixed under-relaxation pa-
rameter ωFSI . A convergence criterion of εFSI < 1 × 10−9 is used for dis-
placements of the bottom wall. The lowest number of required iterations are
for ωFSI = 0.3, while increasing the under-relaxation further resulted in di-
vergence of the coupling algorithm. The structural material for the laminar
driven cavity is very flexible and the main source of resistance to the fluid
pressure is the mass of the structure [52], therefore the structure oscillates
close to the time period T0 of the oscillating lid velocity. The average number
of iterations required per time step for each method are shown in table 5.3.
The IQN-ILS(4) method which reuses information from four previous time-
steps can be observed to perform better than all other methods tested. The
dynamic under-relaxation methods show a significant performance gain over
the fixed under-relaxation technique.

Acceleration method ωFSI = 0.3 Aitken IQN-ILS(2) IQN-ILS(4)

Avg. iterations required 56.6 14.7 16.5 11.9

Table 5.3: Average iterations required for convergence per time-step for
different coupling acceleration methods with a laminar driven cavity flow
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Turbulent Driven Cavity FSI

(a)
(b)

Fig. 5.9: Turbulent driven cavity flow with a flexible bottom wall (a)
y-displacement of midpoint of the flexible bottom wall (b) contours of

pressure at t = 0.6s

For the turbulent flow in driven cavity the Reynolds number varies between
1200 and 1800 based on the oscillating lid velocity and the cavity length.
The material chosen for these tests is more stiff than the laminar driven
cavity, to limit the structural deflections. The thickness of the structure and
the material are chosen to have a natural frequency close to the oscillation
frequency of the lid velocity. The y-displacement of midpoint of the flexible
bottom and contours of pressure at t = 0.6s are shown in figure 5.9.

The fluid mesh for the problem consists of 208 × 76 control volumes in
x and y direction. The first order upwind scheme is used for discretization
of convective fluxes in the fluid solver. The k − ε − ζ − f model is used to
simulated turbulence in the flow. The structural mesh consists of 32 × 1 8-
node brick elements with enhanced strain formulation. A time-step size of
∆t = 0.0003s is employed with second order accurate time discretizations
applied for both solver. A convergence criterion of εFSI < 1 × 10−9 is used
for displacements at the FSI interface.

Figure 5.10 shows the average number coupling iterations required for con-
vergence per time-step with a variation of the under-relaxation parameter
ωFSI . The stiffness of the structure allows for higher values of the under-
relaxation, compared to the laminar case. From figure 5.10 a minimum num-
ber of iterations required is for ωFSI = 0.9, while increasing the value further
results in an increase in the number of iterations required for convergence.
The average number of coupling iterations required for different acceleration
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Fig. 5.10: Turbulent driven cavity with a flexible bottom wall: average
iterations required for convergence per time-step with a variation of the

under-relaxation parameter ωFSI

techniques is shown in table 5.4. IQN-ILS requires the minimum number of
average coupling iterations, where IQN-ILS(2) with two reused time-steps
performs the same as IQN-ILS(4). The gain in performance with dynamic
under-relaxation techniques is very little, contrary to the laminar driven cav-
ity case.

Acceleration method ωFSI = 0.9 Aitken IQN-ILS(2) IQN-ILS(4)

Avg. iterations required 9.5 8.2 7.1 7.1

Table 5.4: Average iterations required for convergence per time-step for
different coupling acceleration methods with a turbulent driven cavity flow.

5.3 Description of FSI test cases

Three different turbulent FSI test cases are studied in this work. A description
of these test cases along with the material and geometric details is provided
in the following.
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TL1

The TL1 test case has been proposed by Gomes and Lienhart [30]. The test
case consists of a thin flexible stainless steel sheet attached to a revolvable
cylinder with a rectangular mass attached to the other end of the sheet as
shown in figure 5.11. Table 5.5 gives densities of materials and the modulus

Fig. 5.11: TL1: Structural model dimensions in mm.

of elasticity of the flexible structure.

Cylinder density ρcylinder = 2828 kg/m3

Flexible sheet density ρflexible sheet = 7855 kg/m3

End mass density ρend mass = 7800 kg/m3

Young’s modulus of flexible sheet Eflexible sheet = 2× 1011 N/m2

Table 5.5: TL1: Material properties of the structure.

The structure is placed inside a vertical tunnel with a test section cross-
sectional area of 180 × 240 mm2 and a length of 338 mm. The fluid in-
side the test section is water at 25◦C, with a kinematic fluid viscosity
νfluid = 0.97×10−6 m2/s and a density of ρfluid = 998 kg/m3. The bulk fluid
velocity measured in experiments at the inlet is u∞ = 0.68 m/s. The flow
Reynolds number based on the bulk fluid velocity and the cylinder diameter
is Re = 15400. The cylinder flow is considered to be in sub-critical regime.
This flow configuration is considered challenging for turbulence models, since
the boundary layer is laminar and the transition to turbulence occurs in sep-
arated shear layers and the wake. The structure rotates and the thin flexible
sheet deflects in the first bending mode. The instability mechanism is char-
acterized as the Instability Induced Excitation (IIE)[71], and the structure
oscillates in the first mode. The time phase-averaged displacement of the
end mass and the rotation angle of the revolvable cylinder against the phase
angle are provided from the experimental observations for the purpose of
validation.
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FSI-PfS-1a

The FSI-PfS-1a test case has been proposed by De Nayer et al. [73]. The
test case offers a simpler geometry than the TL1 test case, consisting of a
circular cylinder with a flexible rubber sheet attached to it, as shown in
figure 5.12. Unlike the TL1 test case, the cylinder is not allowed to rotate

Fig. 5.12: FSI-PfS-1a: Structural model dimensions in mm.

and there is no end mass attached to the end of the flexible structure. The
FSI excitation process is similar to the TL1 case, where the structure bends
in the 1st mode close to its natural frequency. Apart from a simple geometry,
another advantage is the availability of a parametric study on the influence of
material and geometric properties of the structure in FSI simulations. Table
5.6 details the properties of the fluid and the structure. The structure is placed

Structure

Density ρrubber plate = 1360 kg/m3

Young’s Modulus Erubber plate = 16× 106 N/m2

Fluid

Inflow velocity uinflow = 1.385 m/s
Density ρf = 1000 kg/m3

Dynamic viscosity µf = 1.0× 10−3 N.s/m2

Table 5.6: TL1: Material properties of the structure.

inside a wind-tunnel test section, where the flexible rubber plate oscillates
under the influence of flow disturbances caused by the cylinder in front. The
flow Reynolds number Re = 30470 is higher than in the TL1 setup, but still
in the sub-critical flow regime for a cylinder. The averaged deflections of a
monitoring point M on the structure (as shown in figure 5.12), the averaged
oscillation frequency and the velocity field around the oscillating structure
are available from the experiments for validation purposes.
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FSI-PfS-2a

The test case has been proposed by Kalmbach and Breuer [47] as a comple-
ment of the FSI-PfS-1a by providing a different excitation mechanism of the
FSI phenomenon. The structural geometry and the flow properties are simi-
lar to the FSI-PfS-1a, except that the rubber plate is less stiff with a Young’s
modulus of Erubber plate = 4.1 × 106N/m2 and a steel end mass is attached
at the end of the rubber plate to limit the structural deflection in 2-d. The
geometry of the structure and dimensions are shown in figure 5.13. A more

Fig. 5.13: FSI-PfS-2a: Structural model dimensions in mm.

flexible rubber material with the same flow configuration as in FSI-PfS-1a,
gives rise to a different excitation phenomenon. It is termed as the Movement
Induced Excitation (MIE), where forces on an accelerating body in a fluid
are modified by the unsteady flow induced due to the movement of the body
[71]. The data for comparison is provided for a monitoring point M on the
structure, shown in figure 5.13. The averaged characteristics of oscillation
and the phase-averaged velocity fields from the experiment are provided for
comparison.

5.4 CWT tests with FSI

In a turbulent fluid simulation with a moving grid, ensuring a desired wall
y+ value1 (equation 4.7) might not be possible. A grid not satisfying the wall
y+ criterion according to the turbulence modeling approach would deterio-
rate the predictions of the near wall turbulent behavior (i.e. law of the wall,
equations 4.9 and 4.10). Incorrect predictions of the wall behavior would lead
to a wrong estimation of the shear stress at the wall which can introduce an
error in predicted structural deflections. The application of the compound
wall treatment (CWT) [81] on stationary grids is demonstrated in chapter
4, by simulating a channel flow on grids with varying wall y+ values. The

1 Ensuring a specific wall y+ value would require fixed distance of the first cell center
control volume on the wall
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purpose here is to demonstrate an advantage in a situation where the CWT
could be useful in a moving grid scenario.

Fig. 5.14: Grid for FSI-PfS-1a with wall y+ ≈ 15.

The CWT is tested in a FSI scenario by studying 2-d FSI-PfS-1a simula-
tions. To demonstrate the advantage of CWT in moving grid scenarios, a grid
with a wall y+ ≈ 15 is designed 2, having a total of 39352 control volumes.
The FSI simulations are conducted with the k − ε − ζ − f model, with and
without the application of CWT. A snapshot of the grid around the structure
is shown in figure 5.14. The structural code FEAP employs the linear 8-node
brick elements with enhanced strain formulation and the Newmark method
for time discretization. The grid used for the structure has 32 × 1 elements.
The fluid solver FASTEST employs a blending between the UDS and the
CDS for convective fluxes with a blending factor of 0.5, and the second order
implicit backward differencing scheme for time discretization. A time step
size of ∆t = 7× 10−5s is chosen.

Figure 5.15 shows the averaged y-displacement of the monitoring point
on the structure. The results are time phase-averaged as explained in [73],
with averaging performed for 23 oscillation cycles of the structure for both
simulations. Table 5.7 shows a comparison between the maximum and the

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [73] 7.10 - 0.418 - -0.420 -

CWT 7.15 0.7 0.383 -8.4 -0.381 -9.3
w/o CWT 7.33 3.2 0.358 -14.4 -0.347 -17.4

Table 5.7: FSI-PfS-1a: Comparison of the y-displacement and the oscillation
frequency with and without the application of CWT.

2 The grid is prepared by modifying the grid used by Prof. Breuer’s group for their
LES studies on FSI-PfS-1a [73] and FSI-PfS-2a [72]. The grid used here has the same
block structure.
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Fig. 5.15: FSI-PfS-1a: Averaged y-displacement for two FSI simulations
with and without the CWT application (Exp. from [73]).

minimum y-displacement of the monitoring point, the oscillation frequency
and the corresponding percentage differences with the experimental data. The
application of CWT improves the accuracy of predictions for the oscillation
frequency and the averaged maximum and minimum y-displacement of the
structural deflection. A slight asymmetry in the prediction of y-displacement
can also be observed for both simulations. However, results from the simula-
tion without the application of CWT show more asymmetry. This asymmetry
is expected to reduce if averaging is performed for more oscillation cycles, but
the averaged maximum and minimum y-displacement would still be under-
predicted compared to the simulation with CWT.

5.5 Simulation of the FSI test cases

The FSI test cases that has already been discussed in a previous section, are
simulated with a RANS and scale-resolving simulation models. A comparison
between a linear and a higher order element in the structural solver is also
performed with two simulations of the FSI-PfS-1a test case. The two test
cases, FSI-PfS-1a and FSI-PfS-2a are studied in 2-d and 3-d RANS simulation
setups with the k − ε − ζ − f turbulence model. Both test cases are also
simulated with the k − ε − ζ − f based DDES model. The TL1 test case is
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studied in the DDES fluid simulation as well as an LES with the dynamic
Smagorinsky model.

5.5.1 Comparison between linear and higher order
Elements in FEAP

The effect of employing higher order elements in a FSI simulation is studied
with two simulations of FSI-PfS-1a with a higher order 20-node node brick
element and a 8-node linear element for the structural subproblem. The 8-
node linear brick elements a in FEM analysis are known to cause the shear
locking [82] phenomena. The locking phenomena causes the material to be-
have more stiff than the actual stiffness of the material. For 8-node brick
elements, the enhanced strain formulation in the structural code FEAP is
employed to prevent the shear locking.

Fig. 5.16: FSI-PfS-1a: Averaged y-displacement for two FSI simulations with
the 8-node linear and the 20-node higher order element (Exp. from [73]).

The fluid domain for two simulations is discretized with a coarse grid con-
taining 19676 control volumes, and a blending between UDS and CDS with
a blending factor of 0.5 is used for convective fluxes. The fluid solver employs
the 2nd order implicit backward differencing scheme for time discretization.
The structure for both simulations is discretized with 32 × 1 elements. The
2nd order implicit Newmark method is used for time discretization in FEAP.
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From figure 5.16 a good agreement for the averaged y-displacements of the
structural deflection can be observed for two simulations.

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [73] 7.10 - 0.418 - -0.420 -

8-node Elem. 7.57 6.6 0.437 4.5 -0.442 5.2
20-node Elem. 7.42 4.5 0.436 4.3 -0.435 3.6

Table 5.8: FSI-PfS-1a: Comparison of the y-displacement and the oscillation
frequency with the 8-node linear and the 20-node higher order element.

Table 5.8 shows the maximum and minimum averaged y-displacements and
the oscillation frequencies with the corresponding errors. The two elements
produce very similar structural deflection and the oscillation frequencies. The
advantage of the 20-node element in comparison to the 8-node element with
enhanced strain formulation is not very clear. However, in the FSI context
both simulations showed different convergence characteristics. The FSI sim-
ulation with 20-node elements required approximately 50% more iterations
to converge on average than with the 8-node brick elements.

5.5.2 FSI tests with URANS

Even though the advancements in computing technology has been tremen-
dous in the last two decades, but still the fluid simulations with an LES
model or a DNS of turbulence might not be feasible in a near future for
practical applications. The use of hybrid RANS-LES technique and the wall
modeled LES technique is going to become more frequent. The performance
of these hybrid methods is influenced by accuracy of the underlying RANS
model. For these reasons, the application of RANS turbulence modeling ap-
proach for flows with practical relevance is going to remain significant for a
foreseeable future.

The two test cases FSI-PfS-1a and FSI-PfS-2a are simulated with 2-d and
3-d URANS simulation, employing the k − ε− ζ − f turbulence model. The
following sections provide a discussion on results of these simulations.

FSI-PfS-1a: URANS computations

The mesh employed for the two simulations, i.e. 2-d and 3-d URANS is similar
in the x-y plane. The mesh contains 54676 control volumes in the x-y plane
for 2-d URANS. Figure 5.17 shows a snapshot of the mesh in x-y plane.
The mesh extends 3.5D from the center of the cylinder to the inlet of the
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Fig. 5.17: 2-d and 3-d URANS mesh for FSI-PfS-1a in the x-y plane, every
2nd grid line is visible.

computational domain, where D represents the cylinder diameter. In the
downstream direction, the mesh extends approximately 14D from the center
of the cylinder to the outlet of the domain. The 3-d mesh extends equal to the
length of the rubber plate in spanwise direction with 32 equidistant control
volumes and having a total of 32× 54676 control volumes in the mesh. The
multi-block structured mesh contains 30 blocks, and is created by modifying
the mesh used in [73].

For the discretization of convective fluxes, the fluid solver FASTEST em-
ploys the UDS and the GAMMA scheme [43], for the 2-d and the 3-d URANS,
respectively. The second order implicit backward differencing scheme is used
for time discretization. A time step size of ∆t = 7× 10−5s is used, resulting
in a CFL number between 1.5 and 3.0. However an inspection of the CFL in
the whole domain revealed that around the cylinder and in separated shear
layers the CFL remains below unity. The upper and lower boundaries in the
simulation are treated as slip walls, to avoid unnecessary refinement of the
mesh near these boundaries. In 3-d simulation, the two side planes are also
treated with a symmetry boundary condition. While the cylinder and the
rubber plate are treated with a no-slip wall boundary condition. The inlet of
the computational domain is specified with a fixed velocity, while the outlet
is treated with a zero gradient boundary condition.

For the structural subproblem, the structural solver FEAP employs 30×1
8-node linear brick elements with enhanced strain formulation. The second
order implicit Newmark method is used for time discretization. The structural
material is modeled utilizing the Saint Venant-Kirchoff law. The rubber plate
is fixed at one end, while displacements in spanwise direction are constrained
to limit the deflection in the x-y plane only.

The implicit coupling algorithm, to solve the FSI problem has been de-
scribed in section 3.3.1. The data exchange and interpolation between the
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(a) (b)

Fig. 5.18: FSI-PfS-1a: Dimensionless y-displacement of the structural
deflection vs. dimensionless time (a) 2-d URANS (b) 3-d URANS.

structural and the flow solver is handled with the coupling code MpCCI. A
fixed under-relaxation of structural displacements with a factor of ωFSI = 0.3
is used to insure stability of the coupling iterations. For acceleration of the
coupling algorithm a 0th order force extrapolation is employed. The coupling
algorithm required approximately 12 iterations to meet a convergence crite-
rion of εFSI < 1× 10−9 for both simulations. Simulations are initialized with
structure initially at rest in a undeformed state. As the flow develops, the
rubber plate starts to oscillate under the influence of alternating loads pro-
duced by the vortex shedding from the cylinder. The amplitude of deflection
increases with every cycle and a quasi periodic state of oscillations is reached.

Variation of
U∗y |max U∗y |min fFSI [hz]

max. min. max. min. max. min.

2-d URANS 0.499 0.347 -0.316 -0.493 7.97 6.50
3-d URANS 0.476 0.266 -0.195 -0.518 7.61 6.43

Table 5.9: FSI-PfS-1a: Variation of maxima and minima of dimensionless
y-displacement from 2-d URANS and 3-d URANS.

Figure 5.18 shows the dimensionless y-displacement U∗y = Uy/D of a point
9mm from the free end of the plate against the dimensionless time t∗ =
tuinflow/D. A quasi periodic behavior of the structural deflections can be
observed. Table 5.9 shows the variation of maxima and minima of U∗y and
fFSI from individual oscillation cycles. The maxima of U∗y are observed to
vary between 0.499 and 0.347 for the 2-d simulation and 0.476 and 0.266
for the 3-d simulation. The minima of U∗y also show a variation of a similar
magnitude between −0.316 and −0.493 for the 2-d simulation and between
−0.195 and −0.518 for the 3-d simulation. The standard deviations of the
displacement signal for the 3-d simulation (±0.09) is significantly higher than
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(a) (b) (c)

Fig. 5.19: FSI-PfS-1a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI/4.

the experimental standard deviation (±0.05), while for the 2-d simulation the
standard deviation (±0.06) of the signal shows a better agreement with the
experimental result. The frequency of oscillation fFSI shows a similar trend,
where for the 2-d simulation the oscillation frequency varied between 7.97
and 6.50, and for the 3-d simulation a variation between 7.61 and 6.43 is
observed. Both simulations are averaged for 23 cycles of the oscillation, after
the oscillation behavior exhibits a quasi periodic state.

The flow field for FSI-PfS-1a is also compared with the phase-averaged LES
flow field, that complements the experimental data available in [73], where
the two flow fields show a good agreement. The phase-averaging process, as
explained in [73], is necessary to have a comparison between highly chaotic
turbulent flow from the experiment and the LES simulation. However, for a
URANS simulation the flow field does not exhibit an instantaneous turbu-
lent character and a comparison with phase-averaged LES data is performed
without phase-averaging for two URANS simulations. Only the 3-d URANS
simulation is averaged in spanwise direction. The comparison is performed
for four critical phases in the oscillation cycle, which also visualizes the cou-
pling process between structural and fluid motions that results in a periodic
oscillation behavior of the structure. Figure 5.19 shows a comparison of the
two simulations with the phase-averaged LES flow field for t = TFSI/4. At
this phase of the oscillation, the structure has reached its maximum deflec-
tion in the upward direction. Similarities between main flow features, such as
the length of shear layers, recirculation regions near the plate surface and the
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(a) (b) (c)

Fig. 5.20: FSI-PfS-1a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI/2.

flow structures in the wake, are easily recognizable. For 2-d URANS the low
and high velocity regions can be seen to be weaker, specially for v-velocity.

(a) (b) (c)

Fig. 5.21: FSI-PfS-1a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = 3TFSI/4.
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Figure 5.20 shows the u and v velocity contours for t = TFSI/2. At this
phase, the structure is in its un-deformed state, and is moving downward.
The flow features from the 2-d URANS and the 3-d URANS show similarities
with the LES simulation. A similarity between the location of high and low
velocity regions from the two simulations and the phase-averaged LES can
be observed, however as previously noted the strength of these regions can
be observed to be weaker for the 2-d URANS than for the 3-d URANS .

(a) (b) (c)

Fig. 5.22: FSI-PfS-1a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI .

Figure 5.21 shows the u and v velocity contours for t = 3TFSI/4. The
structure at this phase has reached its maximum deflection in the downward
direction. The flow features for streamwise velocity u at this phase are ex-
pected to be symmetric with t = TFSI/4. This can be observed by comparing
figures 5.21 and 5.19, where a symmetric behavior from the reference LES
is much more prominent. The 3-D URANS shows a better estimation of the
main flow features predicted by the phase-averaged LES.

Figure 5.22 shows the contour of two velocities for t = TFSI . At this phase,
the structural oscillation has completed one cycle of motion and the structure
is again traveling upwards. The flow features are again symmetric with the
phase t = TFSI/2. Again the strength of low and high velocity regions for
the transverse velocity is weaker for the 2-d URANS in comparison to the
3-d URANS and the reference LES flow field.

Figure 5.23 shows a comparison of the averaged y-displacement of the mon-
itoring point on the structure against the averaged phase angle. A good agree-
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Fig. 5.23: FSI-PfS-1a: Averaged y-displacement comparison for 2-d and 3-d
URANS (Exp. from [73]).

ment with the experimental y-displacement can be observed for both simula-
tions. Table 5.10 shows the averaged maxima and minima of y-displacements,

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [73] 7.10 - 0.418 - -0.420 -

2-d URANS 7.35 3.5 0.417 -2.1 -0.410 -1.2
3-d URANS 6.96 -2.0 0.387 -7.4 -0.388 -7.6

Table 5.10: FSI-PfS-1a: Comparison between 2-d and 3-d URANS for
averaged y-displacement of structural deflections and oscillation frequency.

the averaged frequencies and the corresponding error with respect to the ex-
perimental observations. Though the 3-d URANS shows a better agreement
with the reference LES in terms of the flow field, the deflections are still
under-predicted in comparison to the 2-d URANS. The errors from both
simulations are in an acceptable range.

An interesting observation here is the over-prediction of the averaged os-
cillation frequency by the 2-d URANS flow simulation. From flow simula-
tion studies conducted over a circular cylinder in 2-d URANS configurations
[125, 75] the shedding frequency is noted to be over-estimated. The same
over-estimation of the vortex shedding frequency is responsible for an over-
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estimation of the oscillation frequency here. This has also been observed for
the 2-d URANS simulation of the TL1 test case in [83].

FSI-PfS-2a: URANS computations

The FSI-PfS-2a is also studied in 2-d and 3-d URANS fluid simulations. The
geometry of this test case is similar to the FSI-PfS-1a. The fluid mesh and
the simulation setup remains the same as used for FSI-PfS-1a 2-d and 3-d
URANS simulations. The rubber plate and the end mass are discretized with
30 × 1 and 7 × 1 8-node linear elements with enhanced strain formulation.
An under-relaxation factor of ωFSI = 0.25 is employed and a convergence
criterion εFSI < 1 × 10−9 is satisfied in approximately 15 iterations of the
coupling algorithm for both simulations. In the following results of the two
simulations i.e. 2-d and 3-d URANS are presented.

(a) (b)

Fig. 5.24: FSI-PfS-2a: Dimensionless y-displacement of structural deflection
vs. dimensionless time (a) Fluid simulations with 2-d URANS (b) Fluid

simulation with 3-d URANS.

Variation of
U∗y |max U∗y |min fFSI [hz]

max. min. max. min. max. min.

2-d URANS 0.689 0.551 -0.566 -0.680 12.16 11.33
3-d URANS 0.745 0.640 -0.584 -0.721 12.12 10.95

Table 5.11: FSI-PfS-2a: Variation of maxima and minima of dimensionless
y-displacement from 2-d URANS and 3-d URANS.

The dimensionless y-displacement U∗y against the dimensionless time t∗,
for the two simulations is shown in figure 5.24. Table 5.11 shows the variation
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of maxima and minima of the y-displacement signal and the frequency from
individual oscillation cycles. The maxima of y-displacements from the 2-d
and the 3-d URANS are between 0.551 and 0.689, and 0.640 and 0.745,
respectively. The minima of displacements lie between -0.566 and -0.680, and
-0.584 and -0.721 for the 2-d and the 3-d URANS, respectively. 3-d URANS
in this case is producing higher deflections of the structure. The variation of
the oscillation frequencies is between 12.16 and 11.33, and 12.12 and 10.95
for the 2-d and the 3-d URANS, respectively. The predicted values of the
oscillation frequency for the 2-d URANS is higher than the 3-d URANS. The
same was observed for the 2-d URANS simulation of FSI-PfS-1a, as discussed
in the previous section.

(a) (b) (c)

Fig. 5.25: FSI-PfS-2a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [72], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI/24.

The velocity fields from the two simulations are also compared with the
phase-averaged LES velocity field, for three phases in one half of the oscil-
lation cycle. Since the FSI phenomenon is anti-symmetric, it is sufficient to
observe the flow features in one half of the oscillation cycle. Figure 5.25 shows
a comparison for the streamwise and the transverse velocity at t = TFSI/24.
The structure at this phase is traveling upwards. From observation, the flow
structures from 3-d URANS show a better agreement with the reference flow
field in comparison to the 2-d URANS.

Figure 5.26 shows a comparison of the velocity fields at t = 5TFSI/24. The
structure at this stage has reached its maximum deflection in the upward di-
rection and starts to move in the downward direction. Again from observation
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(a) (b) (c)

Fig. 5.26: FSI-PfS-2a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [72], for normalized u (top row) and v (bottom row)

velocity at time t = 5TFSI/24.

the flow structures from 3-d URANS tend to show a better agreement with
the phase-averaged LES flow field.

(a) (b) (c)

Fig. 5.27: FSI-PfS-2a: Comparison between (a) 2-d URANS, (b) 3-d
URANS and (c) LES [72], for normalized u (top row) and v (bottom row)

velocity at time t = 9TFSI/24.
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Figure 5.27 shows a comparison for the velocity fields at t = 9TFSI/24.
The structure is traveling downward and bends in a concave form. The flow
features from 3-d URANS can be observed to have a better agreement with
phase-averaged LES in comparison to the 2-d URANS.

Fig. 5.28: FSI-PfS-2a: Averaged y-displacement comparison for 2-d and 3-d
URANS (Exp. from [72]).

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [72] 11.25 - 0.667 - -0.629 -

2-d URANS 11.79 4.8 0.603 -9.6 -0.596 -5.2
3-d URANS 11.45 1.8 0.682 2.2 -0.658 4.6

Table 5.12: FSI-PfS-2a: Comparison between 2-d and 3-d URANS for
averaged y-displacement of structural deflections and oscillation frequency.

Figure 5.28 shows the averaged y-displacement of the monitoring point
on the structure against the averaged phase angle of the oscillation. The 3-d
URANS produces a very good prediction of the averaged structural deflection,
while for the 2-d URANS the difference with experimental result is higher
than for 3-d URANS. Table 5.12 shows the averaged maximum and minimum
y-displacements and the averaged oscillation frequencies from the two simu-
lations in comparison to the experimental results. From the 2-d URANS, the
averaged deflections predicted are lower than the experimental observations,
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also the oscillation frequency is over-predicted. The 3-d URANS simulation
show a better agreement with the experimental data. The observation about
over-prediction of the oscillation frequency from the 2-d URANS has been
discussed in the previous section for the 2-d URANS simulation of FSI-PfS-
1a.

5.5.3 FSI tests with Scale Resolving Models

The three turbulent FSI cases are also studied in a DDES simulation with
k−ε−ζ−f as the baseline RANS model. An LES with dynamic Smagorinsky
model is also studied for the TL1 test case. A simulation for FSI-PfS-1a with
material damping model is also performed. The results and discussion is
divided based on the test cases in the following sections.

TL1: DDES and LES

Fig. 5.29: TL1: Fluid grid around the structure, every 4th grid line is visible.

Figure 5.29 shows the grid3 employed for the TL1 simulation with the
DDES turbulence model. The grid used for the LES has similar block struc-
turing but more control volumes. The grid extends 300mm in the upstream
direction and 800mm in the downstream direction from the center of the
cylinder. While in the y and z direction the grid is 240mm and 180mm re-

3 The grid for both simulations is provided by a study previously conducted at FNB,
TU Darmstadt by Reimann [83]
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spectively, matching the dimension of the test section in the experimental
setup. Table 5.13 gives the number of control volumes for both grids and the

No. of CVs ∆t No. of processors

DDES 12.5× 106 1.5× 10−4s 48
LES 39.8× 106 1.5× 10−4s 196

Table 5.13: TL1: Number of control volumes and time-step sizes.

time-step sizes used to perform the simulation. The number of processors4

employed for the parallel fluid simulation are also shown in the table.

(a) (b)

Fig. 5.30: TL1: DDES (a) DES length scale to RANS length scale ratio
lDES/lRANS (b) Normalized velocity magnitude umag/u∞.

The structural subproblem for both simulations is discretized with 1840
8-node linear brick elements with enhanced strain formulation. The second
order implicit Newmark method is used to advance the solution in time for
the structural subproblem. For discretization of convective fluxes in the fluid
solver a hybrid blending approach between CDS and GAMMA [43] schemes is
employed. This approach employed for the DDES is described in [112], while
the FASTEST implementation has been studied in [83]. In the LES simulation
with the dynamic Smagorinsky model, the non-dissipative 2nd order CDS is
employed. For both simulations time discretization is performed with the 2nd

order implicit backward differencing scheme.
Interpolation and data transfer between two codes has been handled via

MpCCI. Both simulations required a very low value of the under-relaxation

4 Both simulations are performed on the high performance computing machines at
HHLR TU Darmstadt.
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Fig. 5.31: TL1: LES with Smagorinsky model, instantaneous normalized
velocity magnitude umag/u∞.

parameter ωFSI = 0.04 for the structural displacements. For coupling ac-
celeration 0th order force extrapolation is employed. The convergence crite-
rion of εFSI < 5 × 10−9 is satisfied in approximately 30 coupling iterations
for both simulations. Figure 5.30 shows the normalized instantaneous veloc-
ity magnitude and the DES to RANS length scale ratio. The contours of
lDES/lRANS in figure 5.30 are plotted to identify the RANS and the LES
regions in the hybrid simulation, where lDES/lRANS < 1 signifies an LES re-
gion and lDES/lRANS≥1 indicates a RANS region. The solid line in the plot
of lDES/lRANS indicate a lDES/lRANS=1. From the figure it can be seen
that the shear and the boundary layers are in a RANS region, as expected of
a DDES simulation. Instantaneous velocity magnitude contours in the same
figure show the presence of small scale motions in the wake of the cylinder,
indicating a resolution of small scale motions in an LES region. Figure 5.31
shows the contours of instantaneous velocity magnitude for the LES. The
contours indicate the presence of small scale fluid motions resolved by the
LES model.

fFSI [hz] Err.% φshift[deg] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [30] 4.45 - 95 - 1.12 - -1.11 -

DDES 4.37 -1.8 84 -11.6 1.24 10.7 -1.25 12.6
LES 4.37 -1.8 83 -12.6 1.25 11.6 -1.26 13.5

Table 5.14: TL1: Comparison between DDES and LES for averaged
y-displacement of structural deflections and oscillation frequency.

Table 5.14 draws a quantitative comparison for the oscillation frequency of
the structure fFSI , the end mass phase delay φshift i.e. phase shift between
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y = 0 crossing of the rotating cylinder and the end mass, and y extrema
of the end mass normalized by the cylinder diameter. The corresponding
differences with the experimental data are also shown. The prediction of the
averaged frequency from the two simulations show a very good agreement
with the experimental data. While higher differences are observed for the
maximum and minimum y-displacement of the end mass excursions. The
difference between phase delay from the simulation and the experiment is
also higher.

(a) (b)

Fig. 5.32: TL1: (a) Averaged cylinder rotation angle plotted against time
phase angle (b) Trailing edge trajectory, Exp. data from [30].

Figure 5.32 plots the phase-averaged rotation angle of the cylinder against
the averaged phase angle, and the averaged trailing edge trajectory. The
averaging for the DDES simulation has been performed for 13 oscillation
cycles, while for the LES averaging has been performed for just 7 oscillation
cycles. The rotation angle of the cylinder and the end mass trajectory show
a good agreement with the experimental trajectories, except at the extrema,
where the differences are maximal. However, both simulations agree very well
with each other and the differences between extrema predicted from the two
simulations are within 2% of each-other.

FSI-PfS-1a: DDES

This section discusses the results of FSI-PfS-1a with a DDES simulation.
The material damping is known to effect the oscillation characteristics of
the structure, specially in the first bending mode. Therefore an FSI simula-
tion accounting for the material damping is also performed. A calibration of
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the Rayleigh damping parameters performed in [73] is used for the material
damping model.

(a) (b)

Fig. 5.33: FSI-PfS-1a: DDES a) DES length scale to RANS length scale
ratio lDES/lRANS (b) Normalized velocity magnitude umag/u∞.

The fluid mesh for the study is the same that has been discussed earlier for
the 3-d URANS simulations of FSI-PfS-1a test case, and contains 1.7 million
control volumes approximately. The structural mesh also remains unchanged
and contains 30 × 1 8-node linear brick elements with enhanced strain for-
mulation. The hybrid blending approach is employed for discretization of
convective fluxes. The fluid solver employs the 2nd order implicit backward
differencing scheme for time discretization and the structural solver employs
the Newmark method to advance the solution in time. A time-step size of
∆t = 7×10−5s is used to perform the simulation, where the CFL number var-
ied between 1.2 and 2.6. However, the CFL number remains less than unity
around the cylinder and in the separated shear layers. The coupling acceler-
ation is performed with a 0th order force extrapolation. An under-relaxation
factor of ωFSI = 0.3 is applied for structural displacements, which resulted
in approximately 8 coupling iterations to satisfy a convergence criterion of
εFSI < 1 × 10−9. For the simulation with material damping the Rayleigh
damping parameters are set as α = 0 and β = 0.017, as calibrated in [73].
The mass proportional damping parameter α is assumed to be zero, with the
reason that it models the decay of damping effects in higher modes of the
oscillation.

Figure 5.33 shows the DES to RANS length scale ratio and normalized
instantaneous velocity magnitude contours around the structure. From figure
5.33 it can be seen, that the flow in the wake of the cylinder and around the
rubber plate is in the RANS modeling region, where lDES/lRANS≥1. It is
expected that with a dense mesh some part of the flow in the cylinder wake
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(a) (b)

Fig. 5.34: FSI-PfS-1a: Dimensionless y-displacement of structural deflection
vs. dimensionless time (a) without material damping (b) with material

damping.

and around the plate can be resolved with an LES in a hybrid RANS/LES
approach, as it was observed for the TL1 simulation in figure 5.30.

(a) (b)

Fig. 5.35: FSI-PfS-1a: Comparison between (a) DDES without material
damping, (b) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI/4.

Figure 5.34 shows a variation of the dimensionless y-displacement of the
monitoring point with respect to the dimensionless time. A quasi-periodic
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Variation of
U∗y |max U∗y |min fFSI [hz]

max. min. max. min. max. min.

DDES 0.505 0.254 -0.250 -0.451 7.40 6.43
DDES with Damping 0.452 0.178 -0.169 -0.472 7.59 5.92

Table 5.15: FSI-PfS-1a: Variation of maxima and minima of dimensionless
y-displacement from DDES simulations with and without material damping.

behavior of the structural deflections, with minor cycle to cycle variations
can be observed. Table 5.15 shows the variation of maxima and minima of the
y-displacement signal and frequency from individual oscillation cycles. The
maxima of U∗y from the two simulations are observed to vary between 0.505
and 0.254 for the simulation without damping and between 0.452 and 0.178
for the simulation with damping. The minima of U∗y for the two simulations
also show a variation between -0.250 and -0.451 for the simulation without
damping and between -0.169 and -0.472 for the simulation with damping.
The oscillation frequency of the structure varied between 7.40 and 6.43 for
the simulation without damping and between 7.59 and 5.92 for the simulation
with damping. The standard deviation of the extrema from both simulations
is less than ±0.07. The observations presented here and the averaged results
presented later are based on 37 oscillation cycles for both simulations.

Figure 5.35 shows a comparison of normalized u and v velocities from
the DDES without material damping against the reference LES study for t =
TFSI/4. The contour plots are time phase-averaged for 10 oscillation cycles of
the structure, as well as averaged in spanwise direction. The structure at this
phase is at its maximum displacement in upward direction. The similarities
in flow instabilities is very clear and a good agreement with the flow field
from the reference LES can be observed.

Figure 5.36 shows the normalized velocity contours comparison with LES
at t = TFSI/2. The structure at this phase is at its undeformed position and it
is going in the downward direction. The comparison between flow instabilities
and length of shear layers can be observed. The magnitude of instabilities for
the transverse flow velocity are weaker than predicted by the reference LES.

Figure 5.37 shows a comparison between the current simulation and the
reference LES for t = 3TFSI/4. The structure is at its maximum displace-
ment in the downward direction. The similarities between flow features from
the DDES and the reference LES is very obvious. However, the strength of
instabilities in the transverse flow velocity is under-predicted. Also the an-
tisymmetry in the transverse flow velocity features with t = TFSI/4 (figure
5.35) can be observed.

Figure 5.38 shows a comparison of the normalized velocity contours at
t = TFSI . Again the similarities in the flow features can be observed very
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(a) (b)

Fig. 5.36: FSI-PfS-1a: Comparison between (a) DDES without material
damping, (b) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = TFSI/2.

clearly. The same antisymmetry of the flow features can be observed for
t = TFSI in figure 5.38 and t = TFSI/2 in figure 5.36.

Figure 5.39 shows the percentage differences between the velocity magni-
tude from the DDES and the reference LES. The differences are calculated
between the averaged flow field variables, and by interpolating LES flow field
onto the DDES grid. The minimum differences are observed away from the
structure in the wake flow while highest differences are immediately after the
cylinder and in shear layers.

A comparison of the averaged y-displacement of the monitoring point on
the structure from the two simulations and the experiment is compared in
figure 5.40. The difference between simulation with damping and without
damping can also be observed for the averaged y-displacement of the struc-
ture, where the effect of damping is seen as a reduction in the averaged
extrema of the structure.

Table 5.16 shows a comparison for the averaged y extrema of structural
deflections, the oscillation frequency and the corresponding errors. The per-
centage errors for the simulation with damping are clearly higher than with-
out damping. The LES study of this test case [73] with and without damping
revealed a better agreement with the experimental results for a simulation
taking into account the material damping. In the same study, the structural
deflections without damping are significantly higher than the experimental
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(a) (b)

Fig. 5.37: FSI-PfS-1a: Comparison between (a) DDES without material
damping, (b) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = 3TFSI/4.

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [73] 7.10 - 0.418 - 0.420 -

DDES 6.97 -1.8 0.381 -8.8 -0.382 -9.0
DDES with Damping 6.85 -3.5 0.345 -17.5 -0.354 -15.7

Table 5.16: FSI-PfS-1a: Comparison between DDES with and without
damping for averaged y-displacement of structural deflections and

oscillation frequency.

results and damping reduced the y-displacement by approximately 10% with
respect to the reference data. However, in this study the structural deflec-
tions are already under-predicted without the material damping, where the
damping further reduces the deflections by 8-9%. It is noteworthy, that the
the FSI simulations in [73] by De Nayer, not only differ in terms of the turbu-
lence model, but also in terms of the structural model. The study conducted
by De Nayer uses shell elements and the material damping is calibrated by
simulating the oscillating structure alone with a variation of the damping pa-
rameter, which is then compared with the experimental behavior of structural
oscillation to estimate the correct value of the damping parameters.
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(a) (b)

Fig. 5.38: FSI-PfS-1a: Comparison between (a) DDES without material
damping, (b) LES [73], for normalized u (top row) and v (bottom row)

velocity at time t = 3TFSI .

Fig. 5.39: FSI-PfS-1a: Percentage difference of velocity magnitude between
DDES and LES[73] at t = TFSI/4.

FSI-PfS-2a: DDES

The FSI-PfS-2a test case is simulated again with DDES based on the k −
ε − ζ − f model. The fluid mesh for the study is the same as used for the
DDES simulation of FSI-PfS-1a. The structure for the problem is discretized
with 30 × 1 and 7× 1 8-node linear brick elements for the rubber plate and



86 5 Turbulent Flow and FSI test cases

Fig. 5.40: FSI-PfS-1a: Averaged y-displacement comparison DDES with and
without damping with experimental data from [73].

the end mass. The discretization employed for the fluid and the structural
subproblem is the same as for the FSI-PfS-1a DDES simulations. As for the
2-d and 3-d URANS simulations of FSI-PfS-2a, an under-relaxation factor of
ωFSI = 0.25 is used, while the convergence criteria is satisfied in 12 iterations
of the coupling algorithm on average. In the following detailed results of the
simulation are presented.

(a) (b)

Fig. 5.41: FSI-PfS-2a: DDES a) DES length scale to RANS length scale
ratio lDES/lRANS (b) Normalized velocity magnitude umag/u∞.
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Figure 5.41 shows the DES to RANS length scale ratio and normalized
instantaneous velocity magnitude contours. The contours for lDES/lRANS
provide and indication of flow regions where the DDES model acts as an LES
or as a RANS. Similar to the FSI-PfS-1a the cylinder wake and the shear
layers are completely in RANS regions. However a denser mesh would help
the model to resolve some parts of the wake in an LES region as observed for
the TL1 simulation with DDES. The instantaneous velocity contours show
small scale fluctuations in the wake of the cylinder and around the structure,
regardless of the region being in RANS mode.

Fig. 5.42: FSI-PfS-2a: Dimensionless y-displacement of structural deflection
vs. dimensionless time.

Variation of
U∗y |max U∗y |min fFSI [hz]

max. min. max. min. max. min.

DDES 0.722 0.567 -0.584 -0.721 11.56 10.37

Table 5.17: FSI-PfS-2a: Variation of maxima and minima of dimensionless
y-displacement from DDES simulation.

Figure 5.42 shows the dimensionless y-displacement of the monitoring
point on the structure plotted against the dimensionless time. The displace-
ment signal is recorded and then averaged for 37 oscillation cycles of the struc-
ture. Table 5.17 shows the variation of maxima and minima of y-displacement
and the frequency from individual oscillation cycles. The maxima of displace-
ment signal from the monitoring point varied between 0.722 and 0.567, while
the variation of the minima is between -0.584 and -0.721. The standard de-
viations of the maxima and minima are less than 0.04, i.e. within 6% of
the averaged maxima, which indicates a very good periodic behavior of the
structural oscillations. The frequency of oscillation varies between 11.56 and
10.37.
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(a) (b)

Fig. 5.43: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = TFSI/24.

(a) (b)

Fig. 5.44: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = 5TFSI/24.
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(a) (b)

Fig. 5.45: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = 9TFSI/24.

(a) (b)

Fig. 5.46: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = 13TFSI/24.
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(a) (b)

Fig. 5.47: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = 17TFSI/24.

(a) (b)

Fig. 5.48: FSI-PfS-2a: Comparison between (a) DDES (b) LES [72], for
normalized u (top row) and v (bottom row) velocity at time t = 21TFSI/24.
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Figures 5.43 to 5.48 shows a comparison of the streamwise and the trans-
verse velocity contours at six locations in the oscillation cycle for TFSI/24,
5TFSI/24, 9TFSI/24, 13TFSI/24, 17TFSI/24 and 21TFSI/24. The velocity
fields are phase-averaged for 10 oscillation cycles of the structure, while the
averaging is performed in the spanwise direction as well.

Fig. 5.49: FSI-PfS-2a: Percentage difference of velocity magnitude between
DDES and LES[72] at t = 17TFSI/24.

Figure 5.49 shows the absolute percentage difference between the ve-
locity magnitude from the current simulation and the reference LES at
t = 17TFSI/24. The largest differences can be observed in the vicinity of
the structure and close to the origin of the shear layers near the cylinder.
While a visual comparison of errors in the velocity fields from the DDES
simulations i.e. FSI-PfS-1a (figure 5.39) and FSI-PfS-2a (figure 5.49) reveal
a better prediction of the flow field in this simulation.

The averaged y-displacement of the monitoring point on the structure is
compared with the experimental results in figure 5.40. A very good agreement
can be observed with the experimental data.

fFSI [hz] Err.% U∗y |max Err.% U∗y |min Err.%
Exp. [47] 11.25 - 0.667 - -0.629 -

DDES 10.85 -3.5 0.660 -1.1 -0.642 2.1

Table 5.18: FSI-PfS-2a: Comparison between DDES and experimental
results for averaged y-displacement of structural deflections and oscillation

frequency.

Table 5.18 shows the result for the averaged extrema of the structure
and the oscillation frequency, with the corresponding errors. The averaged
extrema and the oscillation frequency are very well predicted from the sim-
ulation in comparison to the the experiment.
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Fig. 5.50: FSI-PfS-2a: Averaged y-displacement comparison for DDES with
experimental data from [47].



Chapter 6

Conclusion

6.1 Summary

The work presented in this thesis concerns the fluid-structure interaction in
turbulent flows. In this regard an efficient Poisson equation based method for
wall distance calculation is implemented for use in turbulence models, such
as the Delayed Detached Eddy Simulation (DDES) model. The performance
of the method is studied with a comparison of the calculated values of wall
distance in a channel and a square against the measured values of wall dis-
tance. The comparison shows a better prediction of the wall distance in close
proximity of walls, however away from walls the prediction deteriorates.

A wall y+ insensitive wall treatment approach, which is called the Com-
pound Wall Treatment (CWT) [81], has been implemented in the flow solver
FASTEST. The CWT implementation has been validated on stationary grids
with a channel flow test case at a Reτ = 590. The flow simulations of the chan-
nel on grids with varying wall y+ values demonstrated satisfactory results. A
test of CWT for FSI simulations has been performed with the FSI-PfS-1a test
case. The grid employed for the study was designed with a wall y+ ≈ 15 and
simulations with and without CWT were performed. A comparison between
the oscillation characteristics from the two simulations revealed a better pre-
diction of the structural deflections and the oscillation frequency with the
application of CWT.

A comparison of coupling acceleration techniques has been performed in
laminar and turbulent flow regimes in a lid driven cavity flow with flexible
bottom wall. The IQN-ILS technique required the least number of iterations
for convergence in both regimes. From previous studies with this test case, it
is obvious that the convergence rate of an acceleration technique is problem
dependent.

The FSI-PfS-1a test case has been simulated with two different element
formulations in the structural solver. The 8-node linear element with en-
hanced strain formulation and the 20-node higher order element produced

93
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similar structural deflections and oscillation frequencies. However, it was ob-
served that the use of a higher order element for the structural subproblem
slowed down the convergence of the coupling algorithm by requiring more
iterations for convergence.

The turbulence modeling capabilities of the fluid solver FASTEST have
been extended with an implementation of the Wall Adapting Local Eddy
(WALE) viscosity model for LES. The calibration of the model constant
for the WALE model has been performed with the help of the Decaying
homogeneous Isotropic Turbulence (DIT) test case. Further a validation study
of the model has been conducted with a 2-d periodic hill flow test case with
satisfactory results in comparison to the reference LES. The simulation has
been performed on a significantly coarser grid compared to the other LES
studies. The CWT treatment has been employed on the upper wall of the 2-d
hill case, where the wall y+ ≈ 15. The original formulation of the wall normal
velocity scale ζ equation in the k− ε− ζ − f model has been modified on the
same lines as proposed for the v2 − f model in [12]. A test of the modified
model revealed an improvement in the prediction of ζ in a channel flow test
case.

2-d and 3-d URANS computations for FSI-PfS-1a and FSI-PfS-2a have
been carried out with the k− ε− ζ − f turbulence model. The characteristic
oscillation frequency and structural deflections are adequately predicted for
both 2-d and 3-d URANS simulations. However, in terms of the reproducible
periodic behavior, FSI-PfS-2a showed better characteristics with a lower cy-
cle to cycle variation than the FSI-PfS-1a. 2-d URANS FSI simulations for
two test cases produced an over-prediction of the oscillation frequency. It has
been noticed that in 2-d URANS simulation of a sub-critical flow over a cylin-
der, the vortex shedding frequency is reported to be over-estimated [125, 75].
The over-prediction of the oscillation frequency has been attributed to an
increased vortex shedding frequency in 2-d URANS simulations. 3-d compu-
tations for both test cases also show a satisfactory agreement with the exper-
imental data, with better predictions for FSI-PfS-2a. The flow field from 2-d
and 3-d URANS has also been compared with the reference LES. The 3-d
URANS computations revealed a better prediction of the flow instabilities in
comparison to the 2-d URANS. Both test cases have been simulated with the
DDES model as well. The DDES of two test cases revealed a better prediction
of experimental results for FSI-PfS-2a. The issue of damping for FSI-PfS-1a
has been studied by performing DDES computations with the Rayleigh damp-
ing model. The effect of damping further reduced the structural deflections
in comparison to the DDES simulation of FSI-PfS-1a without damping. In
this case, the damping deteriorated the predictions further in comparison to
the experimental data. However, this pronounced effect of damping cannot
be ignored, but it is noteworthy that the calibration of the material damping
in [73] has been performed with a shell element formulation, while this study
employs solid elements for the structural simulation.
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Two simulations with the DDES and the dynamic Smagorinsky model
have been performed for the TL1 test case with a very dense mesh. The
characteristics of the structural oscillation reveal a satisfactory agreement
with the experimental data. The maximum differences are observed for end
mass extrema, with an over-prediction of maximum 13%. The two simulations
agree very well with a difference for extrema of less than 2%. This close
agreement between the LES and the DDES on a relatively coarser mesh is
an indication of the desired model performance from the DDES.

6.2 Outlook

For the future work, it would be interesting to investigate the discrepancies in
the prediction of FSI-PfS-1a. The structural oscillation of FSI-PfS-1a with the
3-d URANS and the DDES model are under-predicted, without consideration
of the material damping. However, the DDES simulation is performed for a
considerably coarser mesh, where only some part of the flow domain is in an
LES region. A more complex or sophisticated turbulence modeling approach
could help to improve the result or find a reason for this under-prediction.
A DDES simulation of the test case on a further refined mesh resolving the
turbulence in some part of the wake immediately after the cylinder, would
also be interesting. Further, the WALE model implemented in this study has
not been validated with an FSI simulation, such a validation study could be
performed with one of the FSI test cases.

Further more complex turbulent modeling approaches can be validated in
an FSI scenario, with the help of the test cases studied in this work or even
more challenging test cases can be employed in the current FSI frame work,
like the flow over a flexible hemisphere recently proposed in [123].
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